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Abstract

This thesis is an application of Random Matrix Theory (RMT) to portfolio management and

financial networks. From a portfolio management perspective, we apply the RMT approach to

clean measurement noise from correlation matrices constructed for large portfolios of stocks of

the FTSE 100. We apply this methodology to a number of correlation estimators, i.e., the sample

correlation matrix, the Constant Conditional Correlation Model (CCC) of Bollerslev (1990), the

Dynamic Conditional Correlation (DCC) Model of Engle (2002) and the Regime-Switching Beta

CAPM Correlation Model, based on Ang and Bekaert (2004). For these estimators, we find that

the RMT-filtering delivers portfolios with the lowest realised risk, the best prediction accuracy

and also the highest cumulated returns and Sharpe Ratios. The gains from using the RMT-

filtering, in terms of cumulated wealth, range from 65%, for the sample correlation matrix to

30%, for the regime-dependent correlation estimator. In the case of regime switching CAPM

models, we find that the regime switching correlation matrices, in the high volatility regime are

found to be a good filter which makes further RMT-filtering to be redundant. This establishes the

validity of using regime sensitive portfolio management to deal with asymmetric asset correlations

during high and low volatility regimes.

From a financial network perspective, we assess the stability of a global banking network built

from bilateral exposures of 18 BIS reporting banking systems to net debtor countries. For this,

we applied the eigen-pair method of Markose (2012), which is based on the work of May (1972,

1974) for random networks. We use a stability condition based on the maximum eigenvalue

(λmax) of a matrix of net bilateral exposures relative to equity capital as a systemic risk index

(SRI). We provide evidence of the early warning capabilities of λmax, when this surpasses a

prespecified threshold. We use the right and left associated eigenvectors as a gauge for systemic

importance and systemic vulnerability, respectively. The λmax SRI was found to be superior in

terms of early warning when compared to the standard SRIs based on market price data, viz. the

DCC-MES of Acharya et al. (2010), the SRISK of Acharya et al. (2012) and the DCC-∆CoVaR

of Adrian and Brunnermeier (2011).



Chapter 1

Introduction

1.1 Motivation

Over the last decades, financial research and practitioners have made use of tools borrowed from

other fields in an effort to maximise their returns while minimising the risks of their investments.

Random Matrix Theory (RMT) is an example of this. Originally developed by Wigner (1955)

in the field of Statistical Physics to explain the behaviour of energy levels of complex nuclei, it

has been recently applied to clean noise from financial correlations. RMT seeks to compare the

eigenvalue distribution of the empirical correlation matrix with the eigenvalue distribution of a

random matrix, generated from random i.i.d returns. The distribution of the random correlation

matrix acts as a “null hypothesis”, allowing a separation of noise and information in the empirical

correlation matrix. The RMT approach has been used with great success in a number of studies

to clean noise from correlation matrices, delivering better portfolio analytics (see, Laloux et al.,

1999, 2000; Plerou et al., 1999, 2000a,b, 2001, 2002). Applications of the RMT to a financial

context have been mainly focused on the sample correlation matrix of stock market returns, but

this represents only the starting point of a large family of correlation estimators that are used

in academia and in the financial industry to describe the behaviour of financial correlations. In

this thesis, we seek to extend the RMT approach to different correlation estimators and markets,

and assess its performance using a wide battery of portfolio analytics. In addition, we also use
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some results of RMT to assess the stability of financial networks in a cross-border setting.

From a portfolio management perspective, we review research using RMT, which shows how

the eigenvalue density of the sample correlation matrix can be fitted relatively well by the density

of a correlation matrix calculated from random returns, with the exception of some large eigen-

values that deviate. This suggests that these eigenvalues carry economically relevant information,

whereas the rest can be regarded as “noisy”. In Laloux et al. (1999) and Plerou et al. (2002)

filtering techniques aimed at eliminating these “noisy” eigenvalues have been successfully proved

to be beneficial in reducing both, the realised risk of optimal portfolios, and to correctly predict

this realised risk.1 In a similar vein, some results based on RMT have been very successful in

reflecting the growing instability of financial networks, with great early warning capabilities (see,

Markose et al., 2015).

In this thesis, we assess the benefits of the RMT-filtering using a wide battery of tests and

correlation estimators. We test how the RMT-filtering can be used to reduce the realised risk

of minimum variance portfolios and also its implications for portfolio returns and risk-adjusted

measures. We also assess the dynamic stability of financial networks and show under what

conditions these are said to be stable. Here dynamic stability is understood as the ability of the

network to remain in equilibrium in face of a small perturbation.

1.2 Objectives

The main objectives of this thesis are summarised as follows:

1. Following the work of Laloux et al. (1999) and Plerou et al. (2002), we recreate some of

their standard results, by applying the RMT approach to large portfolios of stocks from

the FTSE 100. We test the performance of the different filters used in the literature and

determine under which conditions the RMT-filtering will be more beneficial, in terms of

realised risk reduction, prediction accuracy and risk-adjusted measures of portfolio returns.

2. We extend the use of the RMT-filtering to other correlation estimators, which may also be

afflicted by noise. Examples of these estimators are the Constant Conditional Correlation

1By realised risk we refer to the standard deviation of portfolio returns over the investment period.
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model (CCC) of Bollerslev (1990), the Dynamic Conditional Correlation (DCC) model

of Engle (2002) and the Regime-Switching Beta-CAPM correlation estimator, based on

Ang and Bekaert (2004). At least for the last two estimators, we are the first to apply

the RMT-filtering to large correlation matrices, with great improvements in realised risk

estimates.

3. As far as we are concerned, we are the first to combine the RMT approach with a Vector

Autoregressive Analysis (VAR) to explore the macroeconomic determinants of the Chilean

stock market. Here the main objective is to build portfolios with different degrees of

exposure to the market portfolio as predicted by the RMT approach and then explore their

macroeconomic determinants. Here we make a clear distinction between macroeconomic

factors that are local from those that are external.

4. Finally, using some RMT results for the stability of financial networks, we assess the

dynamic stability of a global banking network built from bilateral exposures of national

banking systems to debtor countries. Here we apply the eigen-pair method of Markose

(2012), who based on the work of May (1972, 1974) for random networks, develops a

stability condition based on the maximum eigenvalue (λmax) of a matrix of net bilateral

exposures relative to equity capital. Here we provide further evidence of the early warning

capabilities of λmax, when this surpasses a prespecified threshold. We also use the right and

left associated eigenvectors as a gauge for systemic importance and systemic vulnerability,

respectively. The early warning capabilities of these metrics are then compared with recent

systemic risk indices (SRIs) based on market price-based data, namely, the DCC-MES of

Acharya et al. (2010), the SRISK of Acharya et al. (2012) and the DCC-∆CoVaR of Adrian

and Brunnermeier (2011). We also provide a thorough analysis for these metrics, in terms

of their significance and what are their main determinants.

1.3 Thesis Outline

This thesis has been organised as follows. In Chapter 2 we review the mainstream literature on

applications of RMT for improving realised risk estimates (Section 2.2), while in Section 2.3 we
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introduce the seminal results of May (1972, 1974) for network stability. Section 2.4 reviews some

results from cross-border contagion and introduces the increasing role of cross-border financial

networks for analysing systemic risk. In Chapter 3 we provide more detail on how the RMT works

(Section 3.2) and also about the different filtering methods used in the literature (Section 3.3). In

Section 3.4 we detail the test methodology that has been applied. In particular, for the portfolio

analysis, we divide the analysis in an in-sample analysis (Section 3.4.1) and an out-of-sample

analysis (Section 3.4.2). Section 3.5, introduces the eigen-pair method of Markose (2012) applied

to a cross-border setting.

The results of this thesis have been divided into five chapters:

Chapter 4 provides a spectral analysis of correlations by using some standard RMT tools.

Section 4.2 provides an interpretation of the meaning of eigenvalues in a financial context, while

in Section 4.3 we introduce the concept of inverse participation ratio to identify the number of

significant stocks in the associated eigenvectors. Section 4.4 and Section 4.5 examine the time-

evolution of eigenvalues and eigenvectors and show how the behaviour of eigenvalues is able to

describe some stylised facts of financial markets, such as correlation asymmetries and collectivity

during market drawdowns.

Chapter 5 provides an application of RMT-filtering to a FTSE 100 portfolio by assessing

the amount of noise in the system, as mesured by the RMT. We then examine the effect of

RMT-filtering on realised risk estimates. We compare the effects of filtering on in-sample risk by

using bootstrapping techniques (Section 5.4). We then assess the filtering method out-of-sample,

by using the optimal estimation windows obtained in the in-sample analysis. Here we focus on

assessing the performance of the RMT-filtering on a wide range of metrics, from realised risk to

risk adjusted measures of returns and diversification measures.

Chapter 6 applies the RMT-filtering to regime-dependent correlation matrices. In Section 6.3

we provide a spectral analysis of correlation matrices under two different regimes (e.g., high and

normal volatility regimes) and underline the main differences in the applicability of the RMT-

filtering. In Section 6.4 we introduce the correlation estimators that will be used in the analysis,

while in Section 6.5 and Section 6.6, these are assessed in and out-of-sample using a wide battery

of tests.

Chapter 7 is an application of RMT to the Chilean Stock Market. Although many results are

4



repeated from previous chapters, one of the main contributions is the analysis of Section 7.3.3,

where we apply the RMT-filtering to some standard correlation estimators, namely, the Con-

stant Conditional Correlation model (CCC) of Bollerslev (1990) and the Dynamic Conditional

Correlation (DCC) model of Engle (2002). Section 7.4 uses the RMT approach and explores the

macroeconomic determinants of the Chilean Stock Market.

Chapter 8 provides a network analysis of the Core Global Banking System Network (CGBSN)

for 18 BIS reporting countries. Here we introduce our systemic risk indices (SRIs) in a cross-

border setting (Section 8.2) and provide an analysis of the behaviour of the network over time

(Section 8.4), while in Sections 8.5-8.6 we assess the early warning capabilities of the different

SRIs. Section 8.6.3 explores the determinants of market price-based SRIs.

In Chapter 9 we summarise all findings. We provide a discussion of our conclusions and

also discuss some lines of future research. Finally, in Appendices A-B-C, we report some tables

corresponding to Chapters 5-7-8, respectively.
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Chapter 2

Literature Review

2.1 Introduction

Markowitz (1959) Portfolio Theory is one of the most relevant topics in quantitative finance.

It basically seeks to determine the optimal portfolio weights which either maximise return for

a given level of risk, or minimise risk for a given return. In its different flavours, Markowitz

Portfolio Theory relies upon a series of assumptions and is constructed based on the first and

second sample moments of financial asset returns. While the first moments may be estimated

by calculating the sample mean returns or by some univariate econometric specification, the

estimation of the second moments, i.e., the covariance matrix of returns, can be more difficult

to estimate. This is particularly true, when the length of the time-series, T is not very large

compared to the number of assets, N . For instance, for a time-series of length T , in order to build

a portfolio of N assets, we would need to estimate (N2+N)/2 covariances from NT returns. This

results in estimation noise, since for a given number of assets, we have few records available to

estimate all the parameters. This latter would suggest the use of a longer time-series. However,

financial correlations are not stable over time (i.e., non-stationary), therefore data should not be

too old, in order to better capture current market conditions.

Thus, the problem boils down to find ways to estimate financial correlation matrices over

relatively short time horizons, but at the same time dealing with the estimation noise arising
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from the choice of a short time-series. A possible solution to this shortcoming has been found in

the field of Econophysics, by analysing the spectral properties (i.e., eigenvalues) of the sample

correlation matrix. For instance, Laloux et al. (1999) and Plerou et al. (1999) find that the

eigenvalue distribution of the sample correlation matrix can be fitted relatively well by the spec-

trum of a random correlation matrix, constructed from i.i.d time-series returns. This suggests

that most of the informational content in the sample correlation matrix is mainly dominated by

measurement noise. Conversely, deviations from this random counterpart could indicate relevant

economic information. The Econophysics literature has employed these insights using Random

Matrix Theory (RMT), a technique borrowed from Statistical Physics, which allows a separation

of noise and information and has been used to obtain only statistically significant correlation

estimates. These correlations have been found to be stable over time and have been employed in

a number of studies in the framework of Markowitz Portfolio Theory. Filtered correlation esti-

mates using only statistically significant eigenvalues as predicted by the RMT approach, resulted

in better correlation forecasts than unfiltered estimates (Plerou et al., 1999, 2000a,b, 2001, 2002;

Gopikrishnan et al., 2001).

The use of Random Matrix Theory (RMT) has not been limited to correlation matrices. It

has also been used to assess the dynamical stability of financial networks. Dynamical stability

of networks takes into account the time evolution of the network. In dynamical systems, a

system is said to be stable, if small perturbations from an equilibrium decay with time. Keeping

this in mind, May (1972) derives a stability condition for complete random matrices, where

the dynamical stability of the network will depend on the maximum eigenvalue of the weighted

adjacency matrix. While his results were based on random networks, which are by definition,

unstructured. Recent studies have shown the applicability of these results to structured networks,

i.e., small-world networks, which are more similar to real-world networks (Sinha, 2005).

In the rest of this chapter we review the key literature which supports the argument of

this thesis. We first introduce the role of Random Matrix Theory (RMT) in physics and its

applications to a financial context. We then review the role of RMT in improving Markowitz

portfolio optimisation. Of central importance to this thesis is the work carried out by three

independent groups: Laloux et al. (1999, 2000), Plerou et al. (1999, 2000a,b, 2001, 2002) and

Pafka and Kondor (2003, 2004); Pafka et al. (2004). We also discuss the applications of RMT to
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assess the stability of financial networks, in particular the work carried out by May (1972, 1974),

in the field of theoretical biology and Markose (2012); Markose et al. (2012) on the stability of

financial networks in the OTC derivative market.

2.2 Applications of Random Matrix Theory to Portfolio

Management

Applications of Random Matrix Theory (RMT) to portfolio management started by the end

of 1990s, with the work of three independent groups of researchers; Laloux et al. (1999, 2000),

Plerou et al. (1999, 2000a,b, 2001, 2002) and Pafka and Kondor (2003, 2004); Pafka et al. (2004).

2.2.1 Laloux et al. (1999, 2000)

They studied the eigenvalue distribution of a sample correlation matrix for N = 406 assets of

the S&P 500, based on daily normalised returns during 1991-1996, for a total of T = 1309 days.

They find that the largest eigenvalue λ1 is 25 times larger than the predicted value by the RMT

approach, λmax.This means that the largest eigenvalue and its associated eigenvector reflect the

“market” itself, as the associated eigenvector carries roughly equal components on all of the N

stocks. Regarding the remainder eigenvalues, the authors find that 94% of them fall in the region

predicted by the RMT. Thus, less than 6% of the eigenvectors, which are responsible for the 26%

of the total volatility, would seem to carry some information.1 This suggests that most of the

eigenvalues of the sample correlation matrix are dominated by noise.

As there is a closed-form solution for the theoretical bounds of the eigenvalue spectrum of a

random matrix, “information” can be separated from “noise” and this can be used in practice

to improve the estimates of realised risk of Markowitz portfolios.2 Keeping this in mind, the

authors designed a “filter” for the correlation matrix, by keeping only the statistically significant

1The percentage of the variation explained by the deviating eigenvalues can be calculated as the ratio between
the sum of the deviating eigenvalues and the total number of assets N (recalling that the total sum of eigenvalues
is equal to N).

2The theoretical bound for the eigenvalue distribution of a random matrix, under certain conditions, it will be
given by the bounds of the Marc̆enko-Pastur Distribution. This will provides us with a cut-off point to choose the
number of significant eigenvalues in the sample correlation matrix. This will be developed further in the coming
sections.
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eigenvalues predicted by the RMT.3 The “filtered” correlation matrix is then used to construct

optimal portfolios. For doing this, they split their sample in two subperiods. They estimate the

filtered correlation matrix using the first subperiod and construct a family of optimal portfolios

and the so-called “efficient frontiers”. In order to isolate the effects of noise in the correlation

matrix from any additional source of noise in the estimation of returns, they use realised returns.4

Likewise, using realised returns they calculate a measure of realised risk by constructing portfolios

using the second subperiod. They find that the use of the sample correlation matrix tends to

underestimate realised risk by a factor of 3. When using the filtered correlation matrix this factor

is reduced to 1.5.

2.2.2 Plerou et al. (1999, 2000a,b, 2002); Gopikrishnan et al. (2001)

In addition to their eigenvalue density, symmetric random matrices have universal statistical

properties. For example, the distribution of spacings between neighbouring eigenvalues is the

same for all real symmetric random matrices. Real symmetric random matrices whose elements

are independently drawn from a Gaussian distribution constitute the Gaussian Orthogonal En-

semble (GOE) and are, with respect to their statistical properties, representative for all real

symmetric random matrices.5 In Plerou et al. (1999) they study whether the sample correlation

matrix exhibits these universal statistical properties predicted by Random Matrix Theory. For

that purpose, they use two datasets: (i) 30-min data on 1000 records of U.S. publicly traded

companies over the 2-year period 1994-1995 and (ii) one-day prices fluctuations of 422 U.S. stocks

for the 35-year period 1962-96. In line with Laloux et al. (1999), they find that the 98% of the

eigenvalues of the sample matrix fall within the theoretical eigenvalue density. In order to test

whether these eigenvalues are genuinely random, they test for the universal properties such as

eigenvalue spacings and correlations and find that the Nearest-Neighbour distribution as well as

long range spectral correlations show good agreement with the universal predictions of the GOE

(Plerou et al., 1999, 2002). This in turn verifies that the bulk of the eigenvalue spectrum of

3That is, only keeping the eigenvalues that deviate from the theoretical edge of the spectrum.
4By doing this, they assume perfect forecast on the future average returns. While this would not make sense

in that if we knew future returns we would not need to make any forecast, it is a plausible way to assess the
effects of noise filtering on the ability to forecast realised risk.

5The study of these properties is important as the eigenvalue pdf alone does not prove the randomness and
lack of information on the eigenvalue spectrum.
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the sample correlation matrix does not contain economically relevant information. In a similar

vein, when analysing the eigenvectors associated to noisy eigenvalues, they find that these can be

described by a normal distribution. Also, the eigenvectors associated to the eigenvalues located

at the lower edge of the theoretical spectrum were found to be localised, that is, they were dom-

inated by very few large components (Plerou et al., 1999, 2002). In Gopikrishnan et al. (2001),

the eigenvectors associated with the twelve largest eigenvalues were found to have an economic

interpretation; the eigenvector associated with the largest eigenvalue was found to describe cor-

relations reflecting the market index, while the remainder ones describing correlations between

large capitalisation companies, industry sectors or shared business in certain geographical areas

(Gopikrishnan et al., 2001; Plerou et al., 2002). These statistically significant correlations were

found to be stable in time and therefore suitable for forecasting purposes.

Similar to Laloux et al. (2000), the authors use these notions to construct optimal portfolios.

For doing so, they split the sample 1994-1995 into two one-year periods. For the first period,

they calculate the sample correlation matrix C1994 and use the returns of the second period to

construct a family of optimal portfolios and obtain the predicted risk, Ω1994.6 For this family

of portfolios, they also compute the realised risk in 1995, Ω1995, but using C1995. Since the

meaningful information in C is contained in the deviating eigenvectors, they construct a “filtered”

correlation matrix, Cf1994, with a similar method to the one of Laloux et al. (2000), by keeping

only the statistically significant eigenvalues and construct a family of optimal portfolios. They

find that:

• When using the sample correlation matrix, the gap between predicted and realised risk is

significantly large, by a factor of 2.7.

• When using the filtered correlation matrix, using only the statistically significant eigenval-

ues as predicted by the RMT, this gap is reduced to 1.25. This suggests that the portfolios

constructed using the filtered correlation matrix are significantly more stable in time.

We next summarise the work of Pafka and Kondor (2003, 2004); Pafka et al. (2004) who

built on the above research, introduce a slightly different approach for estimating the correlation

6Predicted risk is defined as the standard deviation of portfolio returns using either the sample correlation
matrix or its unfiltered counterpart. It is therefore not a proper forecast, but forward validation to verify the time
stability of correlation coefficients
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matrix: Exponentially Weighted Moving Average (EWMA) correlation matrices combined with

RMT.

2.2.3 Pafka and Kondor (2003, 2004); Pafka et al. (2004)

The work carried out by Pafka and Kondor (2003, 2004) and Pafka et al. (2004) is with no

doubt illuminating, since they were the first to apply the RMT-filtering on estimated correlation

matrices, i.e., exponentially weighted moving average correlation matrices (EWMA).

In Pafka and Kondor (2003, 2004), they studied the effects of noise on portfolio risk using

simulation results. Non-random covariance matrices were built, and then they introduced noise

to these. The true (non-random) risk was assumed to be known, in order to calculate minimum

variance portfolios. The advantage of this approach is that is not necessary to have the forecasted

returns as inputs and therefore the only noise in the system could be attributed to the covariance

matrix.

One of their main findings is that the effects of noise differ depending on whether we derive

portfolio weights from a portfolio optimisation framework or we are measuring the risk of a

portfolio with a risk fixed weights (i.e, not derived from a portfolio optimisation problem). In

the first case, noise has an important effect, as weights are also depending on the noisy covariance

matrix, whereas in the second case, it becomes of second order, typically between 5-15%.7 This

is so, because investors do not really care about the composition of their portfolios, but instead

the overall risk of their portfolios. In the presence of noise, weights can be substantially different

from the true optimum, but not necessarily the overall risk. Based on this reasoning, the authors

conclude that in practice, the risk of optimal portfolios, calculated with the noisy covariance

matrices should be reconciled.

These latter results, partly clashed with the findings of Laloux et al. (1999, 2000), Plerou

et al. (1999, 2000a,b, 2002) and Gopikrishnan et al. (2001) and it was further argued that the

large discrepancies between the “predicted” and “realised” risk obtained in these studies were

attributed to low values of Q = T/N , whereas for large values of T/N this effect becomes

much smaller. However, as pointed out by Daly et al. (2008), although the simulation results

7That is, the difference between the “true” risk of the minimum variance portfolio determined in the presence
of noise and the portfolio risk calculated from the “true” covariance matrix.
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of Pafka and Kondor (2003, 2004) were indicative, there were a number of aspects that made

the approach less than satisfactory for assessing the realised risk of medium term investments.

The use of generated covariance matrices is very simplistic and therefore fails to account for

the full market structure. This is so, because markets change over time (are heteroskedastic)

introducing additional sources of error when using real data and definitively not accounted in

generated data. In addition to this, the time scale used in these studies is much shorter than

what they used in their simulations. The simulations also only considered the effect of noise at

each level of Q = T/N . They did not take into account the possibility that the optimal value of

Q may be quite different in the presence of noise than without. Finally, all the studies shown so

far only considered the case of equally weighted covariances, where each observation contributes

equally to the estimates of the covariance matrix. As pointed out by Litterman and Winkelmann

(1998), volatilities and correlations tend to vary over time, and thus the older returns are, the

less relevant they are for revealing the covariance structure at a given time. This is why, the use

of decay weights became a widely spread practice for risk management. There are many ways

to apply decaying weights to covariance matrices, while the most popular are the ones based on

the likelihood function.

In later work, Pafka et al. (2004) extended the RMT approach to Riskmetrics (Zangari, 1996)

type financial forecast. They derived a covariance estimator to take account the heteroskedas-

ticity of financial returns, by using an exponentially weighted moving average (EWMA) and

then applied the RMT approach to filter the noise of the covariance matrix. They calculated

the spectrum of a large exponentially weighted random matrix, whose upper bound needed to

be known to apply the filter. The spectrum is valid in a limiting case, as the number of assets

becomes infinite, and the decay factor tends to unity. They found good agreement between that

limiting case and the one with a finite number of assets and a realistic decay factor. From this

spectrum they were able to find its upper bound and developed RMT filters, in the same context

as in the equally weighted case. Using this bound, they kept the eigenvalues above the bound

and the rest were filtered. They show using empirical data that this approach outperformed in

a portfolio optimisation context over both, the method of exponentially weighted moving alone

and the equally weighted standard RMT-filtering.

Using bootstrapping techniques, Pafka et al. (2004) tested six methods for forecasting realised
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risk, based on equally and exponentially weighted forecasts. The unfiltered forecasts were com-

pared to those filtered using RMT, and those filtered by retaining only the largest eigenvalue.

Their results can be summarised as follows:

• The RMT filtered exponentially weighted forecasts resulted in the lowest realised risk from

the six methods. The unfiltered forecasts were found to perform better when a low number

of assets were used, or alternatively when using a larger T (for equal weights) or when

the decay factor approached to one (for exponential). The largest eigenvalue filter was the

least successful method for both weightings.

• In agreement with previous simulations, Pafka and Kondor (2003, 2004) found that the

benefits of filtering were reduced, for fixed N , as the value of T increased. A similar effect

was noted for exponential weights, where increasing the decay factor was broadly found

to reduce the effect of filtering. In the presence of filtering, however, the best parameter

values reduced the amount of data used, compared to the unfiltered case.

• In general and assuming the existence of sufficient data, the improvements seen after fil-

tering were of the same order and even below, the simulated effect of noise (Pafka and

Kondor, 2003, 2004). These authors also found that the decay factors, which produced

the least risky portfolios, were higher than the range suggested by Riskmetrics (0.94) and

further concluded that the unfiltered Riskmetrics recommended forecast was unsuitable for

their portfolio optimisation problem, more than doubling portfolio risk compared to the

best filtered result.

2.2.4 Other similar studies

Emerging markets have also been studied. For example, studies applying the RMT approach to

emerging markets, namely, Nilantha et al. (2007) for Sri Lanka and Kulkarni and Deo (2007);

Pan and Sinha (2007) for India, Medina and Mansilla (2008) for Mexico, find good agreement

with the universal properties of the RMT, with fewer deviations. In particular, Pan and Sinha

(2007), using 201 stocks of the National Stock Exchange (NSE), found fewer deviations from

the bulk distribution than those found for the NYSE. The authors argue that this was due to
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the relative weakness of intra-sector interactions between stocks, compared to the market mode.

Based on this, they suggested that the emergence of an internal structure of multiple groups of

strongly correlated components is an indication of market development.

Wilcox and Gebbie (2004, 2007) analysed the Johannesburg Stock Exchange (JSE). In this

case, they had to deal with difficulties of missing data and illiquid stocks. In the presence of such

data, they still found good agreement with the RMT. For all data cleaning methods tested, the

authors reported that most eigenvalues agreed with the RMT, while there were a small number

of large deviating values. They also noted that the choice of data cleaning method affected the

results, with some introducing more noise than others. The portfolios considered here were also

large, containing between 250 and 350 shares.

While these studies have been very successful in establishing the broad applicability of the

RMT approach to a number of different economic contexts and financial markets, most of the

existing literature using RMT to forecast realised risk has focused on relatively tranquil times

in financial markets. One of the few recent studies focusing on more turbulent periods is that of

Sandoval et al. (2012), who used the RMT approach to clean the correlation matrix of Brazilian

stocks contained in the BOVESPA Index. They use this procedure to construct portfolios of

stocks based on the Markowitz framework to build better predictions of future risk based on

past data. They do this for years of low and high volatility for the Brazilian market during

the years 2004-2010. They find that the filtered correlation matrix using the RMT approach

is certainly better than the unfiltered one, but it fails to provide a better forecast during high

volatility periods.

There have also been some work focusing on the performance of the filtering method itself.

This is the case of Daly et al. (2010) who study the effects of using different RMT-based filters on

realised risk estimates. They find that the filtering method matters, with some filters providing

more stability than others. They further developed a filter that maximises the eigenvalue spacings

in the trace of the correlation matrix (Krzanowski stability-based filter) and find that their filter

lowers realised risk, on average, by up to 6.7%.

14



2.3 Applications of Random Matrix Theory to Network

Stability

Networks change over time, examples of this, are the spread of diseases along with patterns

of human travel, people make new friends and more nodes are added to the social network.

In complex networks the node dynamics can be very different, for example, neural networks

might be featured by very complicated non-linear, even chaotic dynamics, while in SRI-models

of disease, spreading nodes can take only one of three possible states (susceptible, recovered and

infected). In both of these cases, the individual node dynamics is influenced by the wiring of the

network. Stability, which is a dynamical property, is determined by the topology of the network.

Mathematical models have been developed to analyse dynamic stability in the presence of

perturbances. Perturbances can be different, so as stability, in whose case we can distinguish

between static stability and dynamic stability. By static stability, we refer to the ability of

the network to retain its connectivity properties after nodes have been removed.8 In contrast,

dynamical stability, takes into account the time-evolution of the network. In dynamical systems,

a system is said to be stable, if small perturbations from an equilibrium decay with time.

In the seminal work of May (1972, 1974), the Wigner condition of eigenvalues for complete

random matrices was extended to sparse random networks. He was the first to state that the

stability of a dynamical network system will depend on the size of the maximum eigenvalues of

the weighted adjacency matrix of the network. May (1974) derived the maximum eigenvalue of

the network, denoted by λmax, in terms of three network parameters;

λmax =
√
Npσ2, (2.1)

where p, is the probability of connectivity, N the total number of nodes and σ, is the standard

deviation of node strength. May (1974) stated that network instability follows when
√
Npσ > 1.

Then, an initially small perturbation will gradually grow with time and drive the system away

from its equilibrium state. This led to the so-called May-Wigner Stability Theorem, which states

8The difference between random and intentional removal can be quite drastic: in scale-free network structure
that describes, for instance, the internet, a random removal of nodes has only a minor effect on connectivity and
average path length, whereas a targeted attack on the most highly connected nodes can quickly disconnect the
network into separate clusters (Boccaletti et al., 2006).
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that increasing the complexity of a network inevitably leads to its destabilisation, such that a

small perturbation will be able to disrupt the entire system. This theorem poses a trade-off

between heterogeneity in node strength, σ and connectivity p, in order for the network to remain

stable. In a non-zero mean random matrix, highly connected networks can remain stable only if

they are homogeneous in node strength, viz. σ should be very small.

May’s suggestion that increasing network complexity leads to decrease in stability was sup-

ported by numerical simulations, but it ran counter to the empirically established conventional

wisdom that biodiversity promotes ecosystem stability. Similarly, in the economics literature,

Allen and Gale (2000) gave rise to a mistaken view that only follows in the case of homogenous

graphs, that is, increasing connectivity monotonically increases system stability in the context

of diversification of counterparty risk.

The criticism to the May-Wigner Stability Theorem, is that is only valid for random networks

and cannot be applied to real-world networks, which presumably are structured. Most networks

occurring in nature are not random. Some studies suggest that introducing a hierarchical or-

ganization (by partitioning the adjacency matrix of the network into blocks) can increase the

stability of a network under certain conditions.

Small-world networks allow the possibility of having different kinds of structures in a network.

These networks have the global properties of a random network (short average path length

between the elements) while at the local level they resemble regular networks with a high degree

of clustering among neighbours.

In Sinha (2005) is examined how the introduction of small-world topological structure into

networks affect their stability. His main results indicate that, regardless of the network struc-

ture, the parameter values at which the stability-instability transition occurs with increasing

complexity is identical to that predicted by the May-Wigner criteria, but the nature of this tran-

sition changes with the topology. In this context, the May-Wigner criteria are valid for analysing

system stability of small world networks.

As we will show, for analysing the stability of networks, under certain conditions, the explicit

dynamics at the nodes can be ignored and the dynamic stability is governed by the maximum

eigenvalue of the linear stability (adjacency) matrix. In the following chapters, we will explain

how this condition is extended by Markose (2012) to the context of a global banking network
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constructed from bilateral exposures of national banking systems to net debtor countries, relative

to their equity capital. From this, we will derive the maximum eigenvalue of the stability matrix,

which will give us some insights into the stability of the global banking network over time and

also the possibility of early warning signals.

2.4 Financial Contagion in a Cross-Border Setting and the

Role of Financial Networks

Since the emerging markets crises in Asia, Russia and Brazil in the late 1990s, there has been

increasing interest in the study of cross-border contagion and spillovers that can spread a financial

crisis from one country to another (Claessens and Forbes, 2001). Calvo and Reinhart (1996)

distinguish between fundamental-based contagion (spillover), which arises when the infected

country is linked to others via trade or finance, and “pure” contagion, which arises when common

shocks and all channels for potential interconnection are either not present or have been controlled

for. There are at least three main strands of research exploring cross-border contagion. The first

studies the co-movement of asset prices and tests whether a change in asset prices in country A

has some effect on asset prices in country B, using a number of econometric techniques (Baig

and Goldfajn, 1999; Bae et al., 2003; Corsetti et al., 2002; Forbes and Rigobon, 2001).

A second strand of the literature investigates the existing financial and trade links by exploring

the channels through which contagion could take place (Dornbusch et al., 2000; Kruger et al.,

2000). For example, in the literature of early warning signals (EWS), Catão and Milesi-Ferretti

(2014) suggest the ratio of net foreign liabilities to GDP as being informative of an eventual

economic crisis in a cross-border setting. They find that when this ratio exceeds the threshold of

50% in absolute terms and 20% of country specific historical mean, it becomes a good signal for

external crisis prediction. Gourinchas and Obstfeld (2012) using data from 1973 to 2010, find

that the rapid increase in leverage and sharp appreciation of the currency are two factors that

emerge consistently as the most robust and significant predictors of financial crises. Bruno and

Shin (2015a,b) build a model of international banking systems and identify bank leverage cycle as

a main determinant of the transmission of financial conditions across borders through banking.
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They identify that local currency appreciation together with higher leverage in the banking sector

as main determinants of financial instability and develop a model that links exchange rate and

financial stability.

A third strand of the literature, the network-based one, which is more recent, has focused on

the role of international banks in transmitting financial shocks across borders.Von Peter (2007)

and Minoiu and Reyes (2013) and Hattori and Suda (2007) analyse the topological properties of

the global banking network using BIS Locational Banking Statistics spanning over 30 years. They

study the evolution of connectivity and density of transactions over the period 1978-2010 and find

that the global banking system is much more connected during 2000s, when compared to previous

decades, while the main trend is a procyclical path with the global capital flows. Von Peter

(2007) provides centrality measures of reporting countries to the 200 or so peripheral countries.

He calculates a banking centre measure, or “global hub” and measures of both unweighted node

degree, closeness and betweenness, as well as weighted centrality measures (“intermediation”,

based on weighted node degrees) and “prestige” (based on a weighted centrality indicator). His

results place the UK and US as the main international banking centres that can explain the

market share dominance in attracting foreign deposits. Network statistics based on BIS data

have also been used to develop early warning signals for cross-border financial crisis. Minoiu

et al. (2013) find that network statistics improve the performance of EWS compared to more

traditional macroeconomic variables.

So far, there are few studies testing contagion risk and the stability of cross-border flows.

Degryse et al. (2010) is one of the first to analyse the systemic importance of countries such

as the US with large global liabilities using the BIS Consolidated Banking Statistics for 17

reporting countries and carry out Furfine (2003) style contagion exercise for national banking

systems from country specific defaults over the period 1999-2006. They find that high level of

liabilities coming from the UK and US can pose a huge threat for the rest of the global financial

system. Another study is that of Castrén and Rancan (2014), who introduced the notion of

Global Macro-Networks, which is a combination of cross-border exposures of banking systems

of countries with the flow of funds between sectors within countries. The authors quantify the

magnitude of contagion losses stemming from the failure of key debtor countries and the sectors

within them with a metric they call Loss Multiplier, which they use as a measure of systemic

18



risk. Despite, the seminal nature of their concept of a global macro-net, as contagion losses are

greater after the onset of a crisis than before, the Castrén and Rancan (2014) Loss Multiplier

SRI gives no early warning and peaks well after the crisis, Markose et al. (2015). However, there

is yet no consensus on a financial network-based systemic risk index.

As pointed out by Markose (2013) an approach based on cross-border liabilities relative to

equity capital of national banking systems for analysing systemic risk allows a more complete

picture of the role of leverage in destabilising the global financial system. The concept of tipping

points have been used in the context of financial contagion and domino effects from the failure

of a trigger bank or from negative shocks, concepts made popular by Furfine (2003). However,

few have acknowledged that such instability propagation in a network is a property of dynamical

systems and for that reason needs to be studied by using spectral or eigenvalue methods as

seminally pointed out by May (1974, 1972). Markose (2012) uses the May approach and adapts

the epidemiology framework in Wang et al. (2003) to show how a weighted graph of financial

liabilities can provide an appropriate dynamic characterisation of a financial system. Stability

conditions are governed by a “cure” rate, defined as a threshold of equity capital that provides a

permissible buffer against contagion losses, and “infection” rates, arising from the exposures of

financial participants to their counterparties. This provides the basis for the so-called eigen-pair

method which simultaneously determines the maximum eigenvalue of the network of liabilities

(adjusted for equity capital), to indicate the stability of the overall system, along with eigenvector

centrality measures. This will be developed in further detail in Chapter 3, Section 3.5.
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Chapter 3

Background and Methodologies

3.1 Introduction

In this chapter we define the tools that will be used across the chapters of this thesis. We begin

by explaining how the Random Matrix Theory-based filtering (henceforth, RMT-filtering) works

and how it can be used in a portfolios optimisation context. We describe how the separation

between information and noise takes places in the eigenvalue spectrum for which there is a

theoretical benchmark given by the Marc̆enko-Pastur Distribution (Section 3.2.1). This allows

us to compare the properties of the sample correlation matrix with those of a random matrix and

identify noisy eigenvalues. This is done by using the theoretical bounds of the Marc̆enko-Pastur

Distribution, which provides us with a cut-off point, above which we can keep informationally

relevant eigenvalues and discard the noisy ones. A detailed discussion on the different filtering

methods is given in Section 3.3.

Once the filtered and unfiltered correlation estimators are obtained, these are used as inputs

for portfolio optimisation as described in Section 3.4, where we divide our analysis in an in-sample

analysis (Section 3.4.1) and out-of-sample analysis (Section 3.4.2). In both cases, we analyse the

performance of the RMT-filtering on Minimum Variance Portfolios. In Section 3.4.2, we also

provide a detailed description of the performance metrics used in all the chapter of this thesis.

In particular, this methodology will be used in three chapters of this thesis: Chapter 5 analyses
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the performance of the RMT-filtering on the sample correlation matrix for portfolios constructed

from 77 stock in the FTSE 100 Index; Chapter 6 applies the RMT-filtering to regime-switching

correlations for portfolios using the same 77 stocks and; Chapter 7, is a novel application of the

RMT-filtering, where we analyse the macro determinants of the Chilean Stock Market (Eterovic

and Eterovic, 2013), by using only the statistically significant principal components as predicted

by the RMT approach.

Finally, in Section 3.5 we introduce the eigen-pair method pioneered by Markose (2012) for

financial networks. Here we are particularly interested in analysing the Core Global Banking

Network constructed from the BIS Consolidated Banking Statistics for 18 national banking sys-

tems. This is then combined with data on the value of equity capital, from Bankscope, to build

the Stability Matrix, which represents the net exposures of national banking systems relative to

their equity capital. The maximum eigenvalue of the stability matrix (henceforth, λmax) will

give us some insights into the stability of the Core Global Banking Network over time. There-

fore, λmax can be regarded as a “systemic risk index” (SRI). In addition, the eigen-pair method

delivers the associated right and left eigenvectors, reflecting rankings for “systemic importance”

and “systemic vulnerability”, respectively. This approach is used in Chapter 8.

3.2 Random Matrix Theory (RMT)

Random Matrix Theory (RMT) was originally conceived during the 1950s by Eugene Wigner in

the field of mathematical physics. Wigner was seeking to describe the general properties of energy

levels of excited states of heavy nuclei as measured in nuclear reactions (Wigner, 1958). Such

a complex nuclear system is represented by an Hermitian operator H (called the Hamiltonian)

living in an infinite-dimensional Hilbert space governed by physical laws. Unfortunately, for

every specific case, H is not known and even if it were known, it would be extremely complicated

to write down and even if we could write it down, no computer would be able to solve its

eigenequation, Hv = λv (the so-called Schrödinger Equation of the physical system), where λ

and v are the eigenvalue-eigenvector corresponding to H.

Faced with these constraints, Wigner argued that one should instead regard a specific Hamil-

tonian H as behaving like a large random matrix that is a member of a large class (or ensemble)

21



of Hamiltonians, all of which would have the similar universal properties as the H in question

(Wigner, 1955).1 Under this setting, the energy levels (represented by the eigenvalues of H) of

the physical system could then be approximated by the eigenvalues of a large random matrix.

Since the 1960s, Wigner and his colleagues, including Freeman Dyson and Madan Lal Mehta,

have worked on Random Matrix Theory (RMT) and developed it to the point that it became a

very powerful tool in mathematical physics (Mehta, 1991). During the last decades, more inter-

est has been paid to RMT. One of the most important discoveries in RMT was its connection

to quantum chaos, which led to a Random Matrix Theory of quantum transport. The RMT

approach has since become a major tool in many fields, ranging from number theory and combi-

natorics, wireless communications to multivariate statistical analysis and principal components

analysis. A common element shared in these kind of situations is that RMT has been used as an

indirect method for solving complicated problems arising from physical or mathematical systems.

Using these insights, Laloux et al. (1999, 2000), Plerou et al. (1999, 2000a,b, 2001, 2002) and

Gopikrishnan et al. (2001) have applied the RMT approach to a financial context. In finance,

RMT predictions represent an average over all possible interactions between assets. In this

context, deviations from the universal predictions of RMT identify system-specific, non-random

properties of the system considered, providing clues about the significant interactions.

The understanding of the stability of correlations between different stocks has been an ongoing

quest in the last decades, not only because of a better understanding of the economy as a complex

dynamical system, but also for practical reasons such as asset allocation and risk forecast. As

opposed to most physical systems, where correlations between subunits can be related to basic

interactions, in the case of financial markets, the underlying interactions are not known.

In order to quantify the cross-correlations between financial assets, we first calculate the price

returns of stocks over a period of time ∆t:

Gi(t) = lnSi(t+ ∆t)− lnSi(t), (3.1)

where Si(t) denotes the price of stock i. As different stocks have different volatility levels, we

1One of Wigner’s most famous results is the Semicircle Law, for a more detailed explanation, see Appendix ??.
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proceed to define the normalised returns:

gi =
Gi(t)− < Gi >

σi
, (3.2)

where σi =
√
< G2

i > − < Gi >2 is the standard deviation of Gi and 〈·〉 denotes a time

average over the period considered. We then compute the equal-time cross-correlation matrix C

with elements:

Cij =< gi(t)gj(t) > . (3.3)

By construction, the elements Cij are bounded to the domain −1 ≤ Cij ≤ 1, where Cij = 1

corresponds to perfect correlations, Cij = −1 corresponds to perfect anti-correlations, and Cij =

0 corresponds to uncorrelated pairs of stocks.

As pointed out by Plerou et al. (1999, 2000a, 2002), when estimating correlation matrices we

have the following dilemma: (i) if we use a long time-series of returns to calculate the correlation

matrix, we will have that as market conditions change over time, the correlations between any

pair of stocks may not be stationary, which lead us to use a short time-series, but (ii) if we use a

short time-series, the finite length of the time-series available to estimate correlations introduces

“measurement noise”.

This poses the following question: How can we identify from Cij those stocks that remained

significantly correlated (on average) over the period studied? To answer this question, the statis-

tics of C have to be analysed against the “null hypothesis” of a random matrix, that is, a

correlation matrix constructed from mutually uncorrelated time-series. If the properties of C

agree with those of a random correlation matrix, then it follows that the contents of the em-

pirically measured C are random. Conversely, deviations of the properties of C from those of a

random correlation matrix convey information about “genuine” correlations (Plerou et al., 2002).
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3.2.1 The Marc̆enko-Pastur Distribution (MP)

While in the previous section we defined the way the empirical correlation matrix C is con-

structed, we turn now to define its random counterpart:

R =
1

T
AAT , (3.4)

where R has the same dimension of C and A is a TxN matrix containing random i.i.d normal

returns with zero mean and unit variance. By construction R belongs to the type of matrices

often referred to as Wishart Matrices in multivariate statistics. The analysis of Wishart matrices

is carried out on an eigenvalue basis, through the following decomposition:

R = V ΛV −1, (3.5)

where the columns of V are represented by each eigenvector and the diagonal matrix Λ

contains each eigenvalue associated to each eigenvector. An interesting feature of these random

matrices is that their properties are known. In particular, in the limit N → ∞, T → ∞ such

that Q = T/N > 1 is fixed, the distribution Prm(λ) of eigenvalues λ of the random correlation

matrix R is given by:

Prm =
Q

2π

√
(λ+ − λ)(λ− λ−)

λ
. (3.6)
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Figure 3.1: The Marc̆enko-Pastur Distribution for different values of Q. When T →∞, Q→∞,
the noise band shrinks to zero.
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This distribution is known as the Marc̆enko-Pastur Distribution. In the limiting case, eigen-

values λ are bounded in the interval λ− ≤ λi ≤ λ+ (minimum and maximum eigenvalues of R)

which are given by:

λ± = 1 +
1

Q
± 2

√
1

Q
. (3.7)

In Figure 3.1, we can see how the distribution behaves under different values of Q. In

particular, by examining Equation 3.7 we can see that in the extreme case where T → ∞ and

keeping the number of assets N constant, the gap between the largest and smallest eigenvalues

predicted by the RMT shrinks to zero. We then compare the eigenvalue distribution Pc(λ) of C

with Prm(λ). Plerou et al. (1999) and Laloux et al. (1999) find the presence of a well-defined

“bulk” of eigenvalues of C that falls within the bounds λ− ≤ λi ≤ λ+ for Prm(λ). This in turn

suggests that the contents of C that agree with Prm(λ) are mostly random except for the values

that deviate. These latter eigenvalues would therefore be the ones that contain economically

relevant information.

The distinction between information and noise, with the help of the bounds of the Marc̆enko-

Pastur Distribution in the eigenvalue spectrum, can then be used to “filter” the sample correlation

matrix. This “filtered” correlation matrix should provide more stable correlations than the

standard sample correlation matrix. In what follows, we review some methods used to filter the

correlation matrix. While they all share in common the use of the eigenvalues that deviate from

the Marc̆enko-Pastur Distribution, they differ in the replacing values at the noisy part of the

spectrum.

3.3 The RMT-Filtering

There are many methods for filtering the correlation matrix based on the predictions of the

RMT. We will focus on the two most popular methods. These methods are basically based on

replacing the eigenvalues inside of the spectrum of the sample correlation matrix and at the same

time maintaining its trace. For this purpose, the eigenvalues inside of the spectrum are chosen
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to be the ones that are less or equal than the maximum eigenvalue predicted by the RMT.2 In

both filtering methods, only the deviating eigenvalues in the upper bound are considered. The

reason why the smallest deviating eigenvalues are not considered in these filters is that while large

eigenvalues are clearly separated from the MP bounds, the same does not always applies for the

smallest deviating eigenvalues. In general, small eigenvalues can be found outside of the lower

edge of the spectrum, which is consistent with the fact that the length of the time-series T and

the number of assets N are finite. In addition to this, by simple inspection of the eigenvectors

associated to the largest eigenvalues, clear non-randomness, and stability over time has been

verified, while this has not been verified in the eigenvectors associated to the smallest deviating

eigenvalues. In what follows, we discuss these two methods.

3.3.1 Laloux et al. (2000)’s Filter

The filtering method proposed by Laloux et al. (2000) takes the set, Λ = {λi}ni=1, of eigenvalues

of some NxN matrix, C, and the corresponding eigenvectors V and defines a subset

Λnoisy = {λ ∈ Λ : λ ≤ λ+}, (3.8)

with the noisy eigenvalues, where λ+ is the maximum eigenvalue predicted by RMT. Then

the filtered eigenvalues are defined as

Λfiltered = Λnew ∪ (Λ− Λnoisy), (3.9)

where

Λ− Λnoisy = {λ ∈ Λ : λ /∈ Λnoisy}, (3.10)

are the eigenvalues assumed to contain information and

Λnew = {λi : λi = Λ̄noisy∀i = 1, ..., n}, (3.11)

2That is, the upper bound of the Marc̆enko-Pastur Distribution, i.e., λ± = 1 + 1
Q
± 2

√
1
Q

.
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where n is the number of elements in Λnoisy and Λ̄noisy is the mean of all elements of Λnoisy.

Put it differently, the noisy eigenvalues are all replaced by their means. These filtered eigen-

values Λfiltered are then combined, through the eigendecomposition theorem,3 with the original

eigenvectors, V , to construct a filtered matrix

Cfiltered = V ΛfilteredV
−1, (3.12)

where Λfiltered is a matrix with Λfiltered on the main diagonal and zeroes elsewhere. By

replacing the noisy eigenvalues by their mean noisy eigenvalue implies that the trace of Cfiltered

is equal to the trace of C.

3.3.2 Plerou et al. (2002)’s Filter

As developed in Plerou et al. (2002), this method is the same as Laloux et al. (2000), but differs

in that the noisy eigenvalues are all replaced by zeroes. Then, they build the filtered correlation

matrix Cfiltered, by setting its main diagonal elements equal to 1 to preserve the trace of the

original matrix C to prevent system distortion.

3.4 Methodology for Portfolio Analysis

Having defined the different RMT-filtering methods, we use the filtered and unfiltered correlation

estimators as inputs in our portfolio optimisation framework. For this, we first make a very

strong assumption on individual return volatilities, that is, we assume that these are known

as we are mainly focused on correlations, which are the main purpose of this thesis. In this

context, individual volatilities are calculated over the investment horizon. Therefore, any source

of variation in our estimates comes strictly from the improvements in correlations. In addition,

we focus on minimum variance portfolios. As pointed out by Rosenow (2008), the volatility

prediction for minimum variance portfolios is a more powerful test for assessing the performance

of the RMT-filtering, as it not only gauges the prediction of the average covariance, but of the

whole covariance structure: the covariance matrix is first used to calculate the portfolio weights,

3Let C be a square matrix and let V be a matrix of its eigenvectors. If V is a square matrix then C = V ΛV −1

where Λ is a diagonal matrix containing the associated eigenvalues on the main diagonal.
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and then used to estimate the variance of that portfolio. Another advantage of estimating

minimum variance portfolios is that their weights only depend on the return variances and

covariances, but not on the expected returns. This means that we can assess the use of the RMT

approach in filtering noise due to measurement error isolated from any other additional source

of noise that could arise in case we had to perform a forecast of returns.

Put it differently, on each test date, we estimate the minimum variance portfolio by choosing

the weights that minimise the total expected risk. The predicted portfolio volatility at time t is

given by:

Ω2
t,predicted =

N∑
i,j=1

wi,twj,tΣij,t, (3.13)

where, wi,t are the weights of capital invested in stock i at time t. Regarding the minimum

variance portfolio weights:

wi,t =

∑N
j=1 Σ−1

ij,t∑N
k,l=1 Σ−1

k,l

, (3.14)

which minimises the variance under the constraint that the total invested money is equal to

one. Regarding our measure of realised risk, we define:

Ω2
t,realised =

N∑
i,j=1

wi,twj,t(< gi,tgi,t > − < gi,t >< gj,t >), (3.15)

where the “< · >”, represents the average of the time-series returns over the investment

horizon, which consist in the ex-post volatility over the evaluation period (i.e. an investment

horizon tf = 20 days, 1-month). As pointed out by Pafka and Kondor (2003, 2004), this realised

measure of risk can be considered a good proxy for the true portfolio risk, which is always

unknown.

3.4.1 In-sample Methodology

Following Pafka et al. (2004) and Daly et al. (2008), the test methodology for evaluating the

in-sample performance of the RMT-filtering is a bootstrap approach. This analysis consists in

taking bootstrapped samples, together with the mean across these samples. That is, for a given
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value of N (in this case, N = 77), we randomly select a test date t. Everything up to t is

used for estimation and everything afterwards as realised, future information. We repeat this

random selection 1000 times, with replacement, and calculate the mean, across all bootstrapped

samples, of the realised forecast of minimum variance portfolios, calculated using the forecasted

covariance matrix. The forecasted matrices consist on the filtered and the standard sample

correlation matrices. We measure the performance of the RMT-filtering by calculating the ratio

γ, which is the ratio between the realised portfolio risk and the predicted portfolio risk, using

the filtered and sample correlation matrices. More formally,

γ =
Ωt,realised
Ωt,predicted

=

√√√√ ∑N
i,j=1 wi,twj,tΣ

realised
ij,t∑N

i,j=1 wi,twj,tΣ
predicted
ij,t

. (3.16)

This measure will give us some insights into how close our predictions are from the realised

ones. This ratio will be calculated as an average over many test dates across 1000 bootstrapped

samples. This method is in contrast to the one used by Laloux et al. (1999, 2000) and Plerou

et al. (2000a, 2001); Gopikrishnan et al. (2001); Rosenow et al. (2002); Plerou et al. (1999) in

that in these studies use a single test date in the middle of the sample. In addition, these studies

were focused on measuring the performance of the RMT-filtering for all the portfolios along the

efficient frontier, rather than on minimum variance portfolios.

3.4.2 Out-of-sample Methodology

As we mentioned in Equation 3.7 of Section 3.2.1, the bounds of the Marc̆enko-Pastur Distribu-

tion are highly dependent on Q = T/N , which is the ratio between the length of the time-series

and the total number of assets. We also argued that for a fixed N when T increases, the noise

band shrinks to zero. This means that realised risk estimates are highly dependent on the ra-

tio Q, with higher values of Q being less noisy than low values. However, as we mentioned in

Section 3.2, the use of longer time-series is problematic, as these are nonstationary, which calls

for the use of shorter time-series that are afflicted by measurement noise and this needs to be

cleaned.

Our out-of-sample methodology consists in using the optimal value of Q obtained in our in-

sample results, which for a given number of assets N , is mainly dependent on the length of the
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time-series T and use this optimal T to estimate our minimum variance portfolios.

As opposed to the in-sample testing where we use 1000 randomly sample dates, in the out-of-

sample testing we are assessing each available date only once. Using these insights, we forward

validate as follow: For a given test date t, for a given filtering method f , we use the estimation

window T and estimate the ratio γ associated with this forecasting method. It is worthwhile

noting that for this analysis we only consider portfolios invested before t− tF , or on that date,

where tF stands for the investment period (20 days). This happens, because on day t, we do not

have knowledge of investments made after t− tF , since conceptually they are still invested.

Keeping this in mind, we assess the out-of-sample performance of the different correlation

estimators, by comparing the average ratio γ, introduced in the in-sample section. This ratio

will provide us with some insights into how close the predicted risk is to the realised risk for

the different correlation estimators. We also assess the performance of the different strategies in

their ability to produce portfolios with the lowest average realised risk. In addition, we calculate

the Mean Squared Error (MSE) as a gauge for the volatility of our risk forecast.4 More formally,

these performance measures are defined as follows:

γ =
Ωt,realised
Ωt,predicted

=

√√√√ ∑N
i,j=1 wi,twj,tΣ

realised
ij,t∑N

i,j=1 wi,twj,tΣ
predicted
ij,t

, (3.17)

MSE =

T∑
t=1

(Ωt,real − Ωt,predicted)
2

T
. (3.18)

As opposed to most studies in the RMT literature, we are the first in analysing the implica-

tions of using the RMT-filtering on portfolio returns. For doing this, we calculate the cumulated

wealth at the end of the out-of-sample period, which is defined as the compounded returns

constructed for the different strategies (i.e. weights) using the realised returns over the invest-

ment horizon (Equation 3.19). We also judge the out-of-sample performance of our portfolios by

computing risk-adjusted measures of returns, such as the Sharpe Ratio (Equation 3.20), Sortino

Ratio (Equation 3.21) and Omega Ratio (Equation 3.22). These performance metrics are defined

4For the purpose of the thesis, the MSE is used to gauge the volatility of the volatility forecast. However,
throughout the thesis, we’d rather use the term “risk” rather than volatility, this is why, we refer to the volatility
of the risk forecast.
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as follows:

ΠT
t=1(1 + rt) (3.19)

SP =
E(rt − rft )

V ar(rt − rft )
, (3.20)

Sortino =
Rp −MAR√

1
T

∑T
t=0,RP<MAR(RP,t −MAR)2

(3.21)

Ω(L) =

∫ b
L

(1− F (x))dx∫ L
a
F (x)dx

(3.22)

The Sharpe Ratio (Equation 3.20) is calculated as the ratio between expected excess returns

of a portfolio and its standard deviation.5 This ratio will provides us with insights into how

well the returns for the different strategies compensate investors for the risk taken. The Sortino

Ratio is an enhanced version of the Sharpe Ratio (Equation 3.21), which only takes into account

downside volatility by separating volatility in the upside from volatility in the downside by setting

a Minimum Acceptable Return (MAR), which in this case we set at 0.5%.6

In Equation 3.22, the Omega ratio as defined by Shadwick and Keating (2002) is a non-

parametric method, since it does not rely upon calculating the moments of a distribution of

returns for determining the ranking of each hedge fund versus a threshold level. The ratio

considers returns below and above a specific loss threshold return level. By doing this, it places

a threshold return on the unit distribution of returns (the return PDF with an area of one

underneath) which have been accumulated by summing (taking the integral) from the left hand

side to form the CDF, F (x). The returns below a certain threshold are considered as losses, and

5Excess returns are defined as the difference between the expected portfolio returns and the risk-free asset,
which in this case is the 1-month Libor.

6One of the main disadvantages of using the Sharpe Ratio is that it uses volatility as a measure of risk for the
entire time-series returns. Consequently, both large upswing and large downswing values are penalised and they
translate into higher volatility and lower Sharpe Ratio. The idea behind this measure is that investors do not
want their upside risk to be penalised. In this context, by setting a Minimum Acceptable Return (MAR) we split
returns into two categories, i.e. those returns greater or equal than MAR (upside deviations) from those returns
less than MAR (downside deviations). Thus, the Sortino Ratio only uses a measure of downside returns in the
calculation of its denominator, which means that the higher the Sortino Ratio is, the better the manager is at
controlling downside returns while not being penalised by upside returns (Sortino and Price, 1994).
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the returns above this threshold are considered as profits. The Omega ratio is non-parametric

and reflects all moments of the distribution so a fund with a high excess kurtosis will be ranked

lower than one with no excess kurtosis assuming both funds have the same return, volatility and

skewness.

Finally, following Pantaleo et al. (2011) we assess the performance of our portfolios by measur-

ing their degree of diversification across stocks in the portfolio. This will allow us to disentangle

the differences between the different strategies from an asset allocation perspective. Formally,

these measures are defined as follows:

Neff =
1∑N
i w

2
i

, (3.23)

Np = arg min
l

l∑
i=1

≥ p
N∑
i=1

|wi|, (3.24)

w−/w+ = Mean

(∑N
i |w−i |∑N
i w

+
i

)
, (3.25)

Equation 3.23 stands for effective portfolio diversification, where Neff is equal to 1 when

all wealth is invested in one stock, whereas it is N when the wealth is equally divided among

stocks, i.e., wi = 1/N . When short-sale is not permitted, Neff has a clear meaning. In contrast,

when short-sale is permitted there might be some ambiguity in the interpretation. This is why

in Equation 3.24, we consider the absolute value of the weights and we compute the smallest

number of stocks for which the sum of absolute weights is larger than a given percentage p of the

sum of the absolute value of all weights. For our analysis, we consider p = 0.9, thus N90 will be

the minimum number of stocks in the portfolio, such that their absolute weight cumulate to 90%

of the total of asset absolute weights. We are also interested in how extreme portfolio weights

are when short-sale is permitted. For doing this, we analyse the ratio between the absolute sum

of positive and negative weights, which is defined in Equation 3.25.
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3.4.3 Summary of Performance Measures

It is worthwhile noting that for the In-sample analysis of Section 3.4.1, we are mainly interested

in the ratio γ, while in the Out-of-sample analysis, we provide a more complete battery of tests

to assess the performance of our correlation estimators in a portfolio context. This does not

mean, however, that we use the same performance metrics for all the correlation estimators used

in this thesis. For example, measures of portfolio diversification are more relevant to assess the

performance of portfolios using the sample correlation matrix and its RMT-filtered version in

Chapter 5 than for assessing the performance of the regime-switching correlation matrix and its

RMT-filtered version in Chapter 6. For this latter, we focus on the ability of the correlation

estimators to deal with downside volatility, hence we use the Sortino and Omega ratios. In all

chapters, we test the ability of the RMT-filtered correlation estimators to produce (i) portfolios

with the lowest realised risk and (ii) to correctly predict realised risk. In Table 3.1 we provide a

summary for the performance measures described above.

Out-of-Sample Metrics Chapter 5 Chapter 6 Chapter 7

γ Section 5.5.1 Section 6.6.1 Section 7.3.3
MSE Section 5.5.1 Section 6.6.1 Section 7.3.3
Ωrealised Section 5.5.1 Section 6.6.1 Section 7.3.3
Ωpredicted Section 5.5.1 Section 6.6.1 Section 7.3.3
Neff Section 5.5.3 - -
Np Section 5.5.3 - -
w−/w+ Section 5.5.3 - -
ΠT
t=1(1 + rt) Section 5.5.2 Section 6.6.2 -

Sharpe Ratio Section 5.5.2 Section 6.6.2 -
Sortino Ratio - Section 6.6.2 -
Omega Ratio - Section 6.6.2 -

Table 3.1: Summary of performance metrics used across the chapters.

3.5 The Eigen-Pair Method for Network Stability

Before introducing the approach to assess the stability of financial networks, it is worthwhile

mentioning some of the challenges faced in the financial network literature. As pointed out by

Castrén and Rancan (2014), despite the evident usefulness of network tools in modelling inter-

connections, the financial applications are still very limited. A reason for this, is that network
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representation requires very granular data on counterparty exposures, which is rarely available,

at least from public sources. In order to deal with this shortcoming, previous research has often

been based on estimated linkages. Facing these constraints, most of the pre 2007 literature sim-

ulated financial network models assuming that they were random graphs or used the Entropy

method for network formation which aims to maximize the homogeneity of financial flows be-

tween FI and its counterparties. Many have discussed (Mistrulli, 2011; Cont et al., 2013) why

networks produced by the entropy method or as random graphs are not suited to characterize

real world financial networks. In a recent paper Solorzano-Margain et al. (2013) based on the

extensive bilateral data on liablities and exposures of FIs in the mexican financial system, fi-

nancial contagion arising from the unexpected failure of an FI on others s found to be more

widespread than from results obtained from calibrated financial network models mostly based

on maximum entropy algorithm surveyed in Upper (2011). This means that in order to avoid

model risk from calibration algorithms, structural bilateral balance sheet and off-balance sheet

data based network models are needed to study systemic risk from financial interconnections. In

this context, we limit our analysis to observed cross-border exposures and ignore within country

interlinkages, which are not observable and would be subject to mismeasurement in case of being

estimated by the methods mentioned above.

We introduce the eigen-pair method of Markose (2012, 2013) based on the spectral analysis of

cross-border exposures of national banking systems relative to their equity capital. In contrast

to a portfolio generalisation of risk as in the case of market price-based systemic risk indices

(henceforth, SRIs), the spectral method involves the power iteration algorithm for the matrix

representing bilateral exposures, which characterises the long range impact of individual node

failure on counterparties of counterparties in the chain of indebtedness.

The main focus here is on the Core of the Global Banking System Network (CGBSN) (18 BIS

reporting countries). We first define a network by two sets: a set of N nodes (vertices), E and

a set of links between the nodes (edges).

The CGBS network is a directed weighted network, that is, there is only one non-reciprocal

link, where the direction of a link represents obligations that all sectors of a country at the start

of an arrow have towards the banking system of another country at the end of the arrow. The

links are weighted by the amount due. In this context, the weighted matrix of the CGBS network
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is defined as:

X =



0 x12 · · · x1j · · · x1N

x21 0 · · · x2j · · · x2N

...
... 0 · · · · · · · · ·

xi1
... · · · 0 · · · xiN

...
... · · · · · · 0

...

xN1 xN2 · · · xNj · · · 0


. (3.26)

Here X is an NxN matrix, and xij are the gross liabilities of country i to banking system of

country j. Likewise, the transpose of xij , i.e., xji, denotes the gross liabilities of country j to

banking system of country i. Notice that xii = 0. The sum of an i-th row
∑N
j=1 xij represents

the total payable amount of a country i to all j countries’ banking systems. The sum of an j-th

column
∑N
i=1 xij represents the total receivable amount of the banking system of a country j.

The causal direction of contagion comes from the default of a net debtor country i to the net

creditor national banking system j. Specifically, this occurs if country i owes more to the banking

system of country j, than what country j owes to the banking system of country i relative to

j’s equity capital. The default of country i will have an impact on the solvency of country j’s

banking system and on its non-banking sectors. This can be expressed as θij =
(xij−xji)

+

Cj0
, where

the numerator takes only positive values and is equal to zero if the net exposure is negative

(xij − xji) < 0. The denominator Cj0, is initial capital of country j. This matrix Θ is referred

to as the stability matrix:

Θ =



0 (x12−x21)+

C20
· · · 0 · · · (x1N−xN1)+

CN0

0 0 · · · (x2j−xj2)+

Cj0
· · · (x2N−xN2)+

CN0

...
... 0 · · · · · · · · ·

(xi1−x1i)
+

C10

... · · · 0 · · · (xiN−xNi)
+

CN0

...
... · · · · · · 0

...

0 (xN2−x2N )+

C20
· · · (xNj−xjN )+

Cj0
· · · 0


, (3.27)

Here, we will discuss the importance of matrix Θ in describing the dynamics of the cascade
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failure of a trigger debtor country on the rest of the system. In the first instance, a failure of a net

debtor country or a subset thereof, can lead to failures in the national banking systems that are

directly exposed to it. Unlike Degryse et al. (2010), we will focus on the contagion propagated

solely from the failure of national banking systems on their liabilities to other national banking

systems. For this the Θ matrix will be scaled each quarter by the proportion of cross-border

banking system liabilities to total cross-border liabilities of both banking and non-banking sector

liabilities. The rationale behind the scaling is that the BIS Consolidated Banking Statistics does

not report interbank data, but exposures of national banking systems to debtor countries. This

is why we need to apply this transformation to approximate interbank data. As a fixed scalar

is used to scale the Θ matrix at each quarter, this will directly scale the maximum eigenvalue

that we will produce as the SRI for the cross-border banking financial network. Hence, in what

follows the notation for the Θ matrix will remain unchanged. The overall dynamics for the rate

of failure of banking system of country i at q + 1, is given by:

ui,q+1 = (1− ρ)ui,q +
∑
j

(xj,i − xi,j)+

Ci0
uj,q = (1− ρ)ui,q +

∑
j

θj,iuj,q, (3.28)

= (1− ρ)

(
1− Ci,q

Ci,0

)
+
∑
j

θj,iuj,q. (3.29)

Here, in the first term of Equation 3.28, ρ can be seen as the capital threshold for banking

system losses and it can be considered as the rate of cure in the epidemic literature. Hence,

(1 − ρ) provides the local rate of failure of a banking system stemming from a lack of its own

capital buffer. The failure rate depends on uiN = 1 − Ci,q/Ci,0, for q > 0. Here, Ci,q is the

remaining capital at q relative to initial capital at q = 0. The second term,
∑
j θj,iuj,q, adds up

to the infection rates sustained from counterparties weighted net liabilities.7 In matrix notation,

7We will briefly compare the spectral method for contagion with the popular Furfine (2003) contagion algo-
rithm. In the latter, it is assumed that a country (originally a financial institution) can spread contagion only
if the losses it faces due to the failure of counterparties exceeds a given threshold of its capital buffer. In Equa-
tion 3.28, the latter condition of failure implies that uj,q = 1, and otherwise, uj,q = 0 for i’s counterparties and
if i is deemed to have failed at q + 1 , uiq+1,j = 1 and i will trigger a wave of contagion at q + 1. In the spectral
method, there is no threshold condition for failure and contagion losses are propagated at the rate of ui,q > 0.
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the dynamics of failure of national baking systems is given by:

Uq+1 = [Θ′ + (1− ρ)I]Uq, (3.30)

where Θ′ is the transpose of matrix in Equation 8.1 with each element θ′ij = θji and I is the

identity matrix. The system stability of Equation 3.30 is evaluated on the basis of the power

iteration of the initial matrix Q = [Θ′ + (1− ρ)I], where Uq takes the form:

Uq = [Θ′ + (1− ρ)I]
q
U0 = QqU0, (3.31)

where U0 with elements (u10, u20, ...., uN0) gives the initial failure rate of a national banking

system. For instance, when U0 = (u10, u20, ...., uN0) = (1, u20, ...., uN0), this means that the

trigger banking system that fails at initial date 0 is banking system 1, and the non-failed national

banking systems have a zero but low initial failure rate of ui0 = 1/Ci0. Moving forward, the

ratio of capital at q to initial capital, Ciq/Ci0, gives the probability of survival for a non-failed

banking system and hence at the q+1th iteration, the rate of failure of a non-failed bank is given

by uiq+1 = (1 − Ciq+1/Ci0). Based on the work of May (1974, 1972), Markose (2012) shows

that the stability of the network system is determined by the maximum eigenvalue of the initial

matrix Q = [Θ′ + (1− ρ)I] when it satisfies the following conditions:

λmax(Q) = (1− ρ) + λmax(Θ) < 1, (3.32)

Hence,

λmax(Θ) < ρ. (3.33)

Here ρ is the homogeneous capital loss threshold. The threshold ρ can be regarded as a

percentage of banking system equity capital to buffer losses. In order to capture the effects of

failure of net debtor banking systems on a net creditor banking systems, λmax is rescaled by the

proportion of bank-to-bank cross-border flows over the total amount of cross-border flows (i.e.,

bank-to-bank plus bank-to-nonbank), as reported by Bruno and Shin (2015a).8 If this condition

8In Appendix C.4, we derive an absolute total equity capital loss threshold TC which is equivalent to the
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is violated, then any negative shock, in the absence of outside interventions, can propagate

through the networked system as a whole and potentially cause capital losses proportionate to

λmax(Θ). The specific estimates of capital losses, when the stability condition in Equation 8.2

is violated depends on the left eigenvectors. Further, note λmax(Θ) where Θ has been scaled by

a scalar for each quarter to reflect the proportion of cross border banking sector liabilities in the

BIS data to the total of all sectors, is a simple linear adjustment. The matrix Θ has two sets

of eigenvectors: right (V R) and left (V L) eigenvector. The right eigenvector V R gives the rank

order of systemic importance, while the left eigenvector V L gives the rank order of the countries

that are vulnerable. The right eigenvector centrality assigns a relative centrality score to all

nodes in the network based on the principle that connections to high-scoring nodes contribute

more to the score of the node in question than equal connections to low-scoring nodes. This

means that the importance of a node is not ranked based on the size of the exposure, but instead

based on how important a banking system’s neighbours are. In other words, a node is important

because is connected to other important nodes. Likewise, the left eigenvector centrality, which

is a reflection of the right eigenvector centrality, provides the impact of the exposures of each

banking system to others. Under the same principle, a node is vulnerable because is connected

to highly vulnerable nodes. Since the i-th node’s centrality is proportional to the inverse of the

maximum eigenvalue λ−1
max and the centrality measure of all its neighbours (Newman, 2010), then

denoting the right eigenvector centrality of i-th node as the i-th element of the right eigenvector

(V Ri ), we define:

V Ri = λmax(Θ)−1
N∑
j=1

θijV
R
j , (3.34)

Using matrix notation, we obtain the eigenvalue equation:

ΘV R = λmax(Θ)V R. (3.35)

Similarly, for λmax(Θ), there is another associated eigenvector V L, which by definition of the

empirical average total equity capital to risk weighted assets of the cross border banks for all the 18 countries
when the regulatory ratio for this is 10%.
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eigenvalue equation we get:

V LΘ = Θ′V L = λmax(Θ)V L. (3.36)

The matrix Θ is a non-negative matrix with real entries, hence λmax(Θ) is a real positive

number. The Perron-Frobenius theorem guarantees non-negative eigenvectors V R and V L under

the assumption that Θ represents the irreducible network.9 Using the power iteration algorithm

in Equation 3.31, it can be shown that in the steady state, the potential capital loss for banking

system of country i can be estimated as the product of λmax(Θ) and country i’s left eigenvector

centrality while using the infinity norm, vLi,∞:

ui,# ∼= λmax(Θ′)vLi,∞. (3.37)

Note that when using the infinity norm, the left eigenvector centrality of the most vulnerable

country is equal to 1.10 This implies that the maximum percentage potential capital loss of the

most vulnerable country is given by λmax(Θ). Likewise, the most systemically important country

can potentially bring about λmax(Θ)% of equity capital for the system as a whole. The proof of

Equation 4.1 can be found in Appendix C.1.

9For any randomly selected pairs of nodes (i, j) in an irreducible network, there is a path between them, viz.
Θ is strongly connected.

10For this analysis, it is important to make sure that the right and left eigenvectors associated with the largest
eigenvalue are given using the infinity norm. The infinity norm of a vector x denoted as, ||x||∞, is the largest
number in the vector. Hence, the highest ranked country, in terms of its eigenvector centrality an index of 1.
There is a simple conversion from the eigenvector produced using the Euclidean norm to one using the infinity
norm (see, Markose, 2012).
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Chapter 4

Eigenvalue Analysis for the FTSE

100

4.1 Introduction

As we described in Section 3.2, the RMT approach allows us to identify the optimal number of

eigenvalues in the sample correlation matrix. In general, the leading eigenvalues are the ones

expected to carry most of the economically relevant information about market correlations and

therefore, these can be used for forecasting purposes by using the filters defined in Section 3.3.

In addition to this, an eigenvalue analysis also has the property to deliver some very interesting

results about market behaviour. For example, Plerou et al. (2001) show that the time evolution of

the largest eigenvalue reflects the degree of collective behaviour of stocks. Song et al. (2011) finds

that the time evolution of the largest eigenvalue is related to the average correlation coefficient

of the sample correlation matrix. They also find that the time evolution of the second largest

eigenvalue and its associated eigenvector was closely related to certain market events, such as

financial crises and currency crashes. The analysis of the information content of eigenvalues can

also be used to identify the presence of clusters characterised by economic sectors of stocks with

similar correlation structures (see Coronnello et al., 2005).

Using these insights, we provide an eigenvalue analysis for the FTSE 100. For doing this,
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in Section 4.2 we first investigate the spectral properties of the sample correlation matrix and

contrast it with those of a random matrix. We also provide a financial interpretation of the

deviating eigenvalues and their associated eigenvectors. In Section 4.3 we introduce the notion

of Inverse Participation Ratio, which allows us to identify the number of significant stocks that

belong to each eigenvector. In Section 4.4 we analyse the time evolution of the largest eigenvalue

and eigenvectors and show how sensitive market correlations are to common shocks arising in

financial markets. Finally, in Section 4.5 we show how the behaviour of eigenvalues can be useful

to illustrate some stylised facts of financial correlations, i.e., asymmetries and participation of

financial assets.

4.2 A Spectral Analysis: The RMT Approach in Practice

Here we provide a spectral analysis of the sample correlation matrix for 78 stocks contained in

the FTSE 100, using daily data for the year 2007.1 We therefore have T = 260 and N = 78,

which implies Q = T/N = 3.33.

We then construct the correlation matrix C2007 based on the average time-series returns and

normalised variance equal to 1. Using Equation 3.7, we can obtain the upper and lower bounds

of the theoretical Marc̆enko-Pastur (MP) distribution. In this case, we have λ+ = 2.395 and

λ− = 0.2045.

Similarly, we generate a Wishart correlation matrix R composed by cross-correlations of mu-

tually independent returns (bounded by the aforementioned edges).2 We then plot the Marc̆enko-

Pastur (henceforth, MP) density of the eigenvalues for 10000 trials and compare it with the eigen-

value density of the sample correlation matrix C2007. The results of this exercise are presented

in Figure 4.1.

As expected, the “bulk” of the eigenvalues lies within the bounds of the MP distribution.

However, there are obvious deviations from the RMT predictions. The largest eigenvalue is

well above the maximum predicted by the RMT predictions (λ+ = 2.395). This value as well

1Throughout this section, we will be using these 78 stocks for our estimation period and out-of-sample forecast
for the years 2000-2012. The selection of these stocks was based on two criteria: (i) their availability over the
entire sample, which allows to make reliable comparisons and (ii) were the most frequently traded.

2R = A′A
T

, where A is a TxN matrix of i.i.d normal returns.
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Figure 4.1: The Marc̆enko-Pastur Distribution vs. The Sample Eigenvalue Density of C2007. We
can see two clear deviations from the upper edge of the spectrum.

as the remaining deviating eigenvalues, are the ones we expect to carry economically relevant

information, while those within the distribution bounds can be considered just as noise.

For the year 2007, there are two large deviations from the upper bound predicted by the RMT,

λ1 = 35.09 and λ2 = 3.043. We also find two clear deviations in the lower bound, λ78 = 0.0247

and λ77 = 0.0562. From a portfolio management perspective, the list of eigenvalues can be seen

as different levels of risk of a certain portfolio. Likewise, the eigenvector components associated

with each eigenvalue can be regarded as the weights of different stocks in a certain portfolio,

where some stocks are long while others are short (Plerou et al., 2002). In order to better clarify

this point, in Figure 4.2, we plot the eigenvector components corresponding to the two largest

eigenvalues.

In Figure 4.2(a), we observe that the eigenvector components associated with the largest

eigenvalue are all positive and contribute in a similar way to the eigenvectors. This suggests a

strong collective behaviour of stocks. Typically, it has been found in the literature that the largest

eigenvalue, λ1, represents the risk of the market portfolio. Similarly, the eigenvector components

associated with the second largest eigenvalue (panel(b)) have been found to be represented by

companies with the largest market capitalisations (Gopikrishnan et al., 2001).

In stock markets, the largest eigenvalue corresponds to the risk of a portfolio whose weights

are the same for each asset. There is no neutrality in this portfolio: the only bet is whether the

42



0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

Large st e igenve c tor c omponents

Pane l (a)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Pane l (c )

Normal iz e d re tu rn s of G1

N
o
rm

a
li
z
e
d

F
T
S
E
1
0
0
re

tu
rn

s

 

 

0 10 20 30 40 50 60 70
−0.4

−0.2

0

0.2

0.4

Pane l (b )

Se c ond large st e igenve c tor c omponents

β ol s= 0 .976

Figure 4.2: Eigenvector Components of the Two Largest Eigenvalues: Year 2007.

market as a whole goes up or down, this is why the risk is large. Conversely, if two stocks move

very tightly together (e.g., Coca-Cola and Pepsi), then buying one and selling the other leads to

a portfolio that hardly moves, being only sensitive to events that strongly differentiate the two

companies (Bouchaud and Potters, 2009).

For example, if we construct a time-series returns using the weights contained in the largest

eigenvector u1, using the following expression:

G1
t =

n∑
j=1

u1
jGj(t). (4.1)

This basically defines the returns on the portfolio defined by u1.3 We then proceed to nor-

malise these returns and run an OLS regression against the normalised returns of the market

index GFTSEt .

We plot the results of this regression in Figure 4.2(c). We can see that there is a clear linear

and positive relationship between the returns G1
t and GFTSE100

t , with a strong partial correlation

coefficient < GFTSE100
t , G1

t >= 0.9761. From this, we can therefore conclude that the largest

eigenvalue corresponds to the risk of the market mode. We repeat the same exercise for the

3In multivariate statistical analysis, equation 4.1 defines the first principal component.
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smallest eigenvector, u78. We plot the correlation coefficients in Figure 4.3(c).

From a portfolio perspective, the smallest eigenvector determines the least risky portfolio one

can build. This can be corroborated by the nearly zero beta coefficient of the regression against

the market index. This implies that the portfolio constructed from the smallest eigenvalues is

almost totally immune to the systematic risk emanating from the collective behaviour of stocks

represented by the largest eigenvalue.
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Figure 4.3: Eigenvector Components of the Two Smallest Eigenvalues: Year 2007.

Figure 4.3(a,b) plots the eigenvector components corresponding to the smallest deviating

eigenvalues, λ78 and λ77. Here we can see that the eigenvector corresponding to the smallest

eigenvalue exhibits clear preference for some pairs of stocks with the highest correlations. Finally,

we plot the eigenvector components of two eigenvalues inside the bounds of the MP distribution

in Figure ??.

As we mentioned above, the eigenvalues inside of the bulk of the MP distribution are assumed

to be random and therefore should not carry economically relevant information. This appears to

be the case, as the eigenvector components in both cases, do not seem to show clear preferences

for any stocks. Overall, our results are in line with the findings of most of the existing literature

on the subject (Laloux et al., 1999, 2000; Plerou et al., 1999, 2000a,b; Gopikrishnan et al., 2001;

Plerou et al., 2001, 2002; Bouchaud and Potters, 2009). In the next section, we look deeper into

the significant eigenvalues and eigenvectors to identify the individual stocks that participate in
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Figure 4.4: Eigenvector Components Associated with Two Noisy Eigenvalues: Year 2007. Their
components do not exhibit a clear preference for some stocks over others.

each of them.

4.3 The Number of Significant Components in the Devi-

ating Eigenvectors

Since the eigenvalues that are close to the bounds of the MP distribution are more likely to be

noisy, we quantify the number of components that participate significantly in each eigenvector.

For doing this, we use the notion of inverse participation ratio (IPR), often applied in localisation

theory (Guhr et al., 1998).4 The IPR of eigenvector uk is defined as

Ik =

N∑
l=1

[ukl ]4, (4.2)

where ukl , l = 1, .., 78 are the components of eigenvector uk. The meaning of Ik can be illus-

4In physics, the Inverse Participation Ratio (IPR) is a simple way to quantify how many states (eigenvectors) a
particle (company) is distributed over when there is some intrisic uncertainty about where the particle is located.
In quantum mechanics, the source of uncertainty arises because a particle can exist in a quantum superposition
of states over many locations. In this context, the IPR provides a sensitive count for how many atoms a bond
is delocalised over. This result also applies in cases where the probability distribution is not evenly distributed.
More formally, the IPR can be expressed as follows: IPR = 1/

∑n
i p

2
i , where pi is the probability that the particle

is in state i. For a quantum system, pi = |ψi|2, where ψi is the amplitude of the wave function in state i.
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trated by two limiting cases: (i) a vector with identical components, ukl = 1/
√
N has Ik = 1/N ,

whereas (ii) a vector with one component uk1 = 1 and a remainder zero has Ik = 1. Thus, the

IPR quantifies the reciprocal of the number of eigenvector components that contribute signifi-

cantly. In our case, for 2007, we have that the eigenvector associated to the largest eigenvalue has

IPR1 = 0.0140, which implies PR1 = 71.46 ≈ 71 significant stocks in the largest eigenvector,

which is almost the total number of stocks used.

The significant firms in the largest eigenvector are presented in Table A.1a in Appendix A.

By inspecting the largest eigenvector we can see that it has very strong components in the Life

Insurance sector, Financial Services, Banking and Real Estate Investments Trust and Mining to

some extent. In general, the largest eigenvector would seem to include most sectors in the FTSE

100 index.

Regarding the rest of the deviating eigenvectors, the interpretation of their meaning is not

as straightforward as in the former case. This is so, because the largest eigenvalue is of order

of magnitude larger than the others, hence constraining the remaining N − 1 since TrC = N .

Therefore, in order to avoid the effect of the largest eigenvalue, we first need to remove it from

the rest. For doing this, we regress, G1(t), calculated in Section 4.2, against each return and

compute the residuals εi(t).
5 Then, we calculate again the correlation matrix using εi(t) and

compute the eigenvectors uk of C. The number of significant participants in the second largest

eigenvector for the year 2007, can be found in Table A.1b in Appendix A.

In this case we have PR2 ≈ 32.21 significant components with strong emphasis in the Real

Estate Investment Trust, Banking, Life Insurance, Mining and Oil & Gas sectors. Also, the

removal of the first component allowed to identify a third and fourth deviating eigenvalues in the

upper bound, PR3 ≈ 34 and PR4 ≈ 35 with strong weights on the Banking, Pharmaceutical &

Biotechnology and Banking sectors.

Finally, the eigenvectors corresponding to the smallest eigenvalues, each has PR78 ≈ 3 and

PR77 ≈ 15 significant participants. We find these contain as significant participants, pairs of

stocks with the largest correlations of the sample. For example, the two largest components of

u78 correspond to stocks belonging to the same multinational, SDR and SRDC (Schroders Plc)

5Alternatively, we could have used the returns on the FTSE 100 index and the results would not change
stemming from the high correlation between both of an order of 0.9761.
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with Ci,j = 0.8989, the largest correlation of the sample. Typically, it has been found in the

literature that the components in the smallest eigenvectors represent a very small number of

stocks with large correlations.6 In particular, in each of these eigenvectors the relative sign of

the two largest components is negative. That is, pairs of stocks with correlation coefficients well

above the average < Ci,j > effectively “decouple” from the rest of the stocks.

These results are enlightening from an asset allocation perspective, where the use of the

RMT approach allows us to identify groups of stocks that can be used to contruct portfolios

with different degrees of exposure to the systematic risk embeded in the market index.

4.4 The Evolution of the Largest Eigenvalues and Eigen-

vectors Over Time

In the last section, we studied the number of significant components in the eigenvectors associated

to the deviating eigenvalues predicted by the RMT. Now we ask whether these eigenvector

components are stable over time and whether these are sensitive to common shocks. As we showed

in the last section, each of the deviating eigenvectors defined “eigenportfolios” of correlated

clusters of stocks. In this context, by assessing the stability of eigenvectors, we want to verify

whether these clusters of stocks remain correlated over time and also whether these clusters

participate collectively when faced to common shocks.

To answer these questions, we first examine the time evolution of the two largest eigenvectors

calculated on an daily rolling window of length 100 days starting from year 2000. In Figure 4.5, we

show a colour representation where we grouped the eigenvector components in sectoral clusters of

companies and their time evolution. Vertical lines represent common shocks affecting all sectors

at a given point in time, as they represent a colour change across sectors, while horizontal colour

lines represent whether eigenvector components remained stable over time. In Figure 4.5(a), we

observe that the components of the eigenvector associated to the largest eigenvalue would seem

to be mostly positive indicating the presence of a common factor driving the behaviour of most

stocks. This common factor has highly positive components in the Mining, Banking, Food and

6See, Laloux et al. (1999, 2000); Plerou et al. (2000a); Gopikrishnan et al. (2001); Plerou et al. (2002); Bouchaud
and Potters (2009).
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Panel (a): Evolution of the largest eigenvector components
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Figure 4.5: Time Evolution of the Eigenvector Components.

Drug retail and General Retail sectors. The vertical lines, represent common shocks that affect

most sectors at a given time. All in all, it would seem that most sectors were strongly affected by

the current crisis, particularly during the years 2008-2010. Regarding the eigenvector components

associated to the second largest eigenvalue (Figure 4.5(b)), these have a more complex structure

and it would not seem to carry meaningful information, except during periods of stress in financial

markets, especially in the Banking, Financial Services and Support Services sectors. This is in

line with the findings of Song et al. (2011).

In sum, the components of the largest eigenvalue seem to reflect common global and domestic

factors affecting the FTSE index. In order to fully understand the direct relationship between

macroeconomic determinants and the evolution of the eigenvalues a proper regression analysis is

needed. We leave this interesting endeavour for Chapter 7.
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4.5 Asymmetries and Company Participation in Financial

Correlations with RMT Tools

The RMT approach can be useful to describe some stylised facts of financial correlations, such as

correlation asymmetries and co-movement of stocks under different volatility periods. It has been

often argued that financial assets are more correlated during drawdowns than during drawups,

suggesting that the benefits of financial diversification may not be as strong as we believe (Ang

and Chen, 2002).
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Figure 4.6: Time evolution of the Largest Eigenvalue (Left y-axis) vs. Average Correlation
Coefficient and the FTSE Returns (Right y-axis).

A straightforward way to verify this is to examine the evolution of the largest eigenvalue

calculated on a daily rolling window of length 100 days and compare its evolution with the average

correlation coefficient calculated with the same length. This is done in Figure 4.6. Here we

observe that in times when the average correlation coefficient is high, the largest eigenvalue follows

the same dynamics (Rosenow et al., 2003). As we showed in Section 4.2, eigenvalues represent the

risk of the portfolio returns defined by their associated eigenvectors (i.e., principal components)

and as the largest eigenvalue reflects the market, which means that during drawdowns the market

has become riskier.

Another very interesting phenomenon is the degree of participation of financial assets under

different volatility periods. That is, we do not only find that correlations increase in high volatil-
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Figure 4.7: Time evolution of the Participation Ratio (PR) Associated to Largest Eigenvector of
C vs. the PR for Random Returns (Right y-axis) and the Average Correlation Coefficient (Left
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ity periods, but also there are more companies participating significantly in the eigenvectors

associated to the largest eigenvalue (Fenn et al., 2011). In order to verify this, we plot the time

evolution of the Participation Ratios (PR), introduced in Section 4.3, calculated over a daily

rolling window of length 100 days. This is done in Figure 4.7. In addition, we plot the average

correlation coefficient calculated on a rolling window of the same length.

Here we observe that the PR of the largest eigenvalue increased considerably from 2000 to

2012, and there was a sharp increase between 2006 and 2008. This sharp rise of the PR implies

that many assets were highly correlated during the ensuing financial crisis. In order to test

the significance of the PR for the largest eigenvalue, we compare it to the corresponding PR

for random returns. Figure 4.7 shows that between 2006 and 2010, the PR of the observed

returns was significantly larger than the expected for random returns, which emphasises the

larger number of different assets that were correlated during this period.

4.6 Summary of main findings

In the present chapter we have shown the benefits of the RMT approach to describe market

correlations. Our findings can be summarised as follows:
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1. The information content of the deviating eigenvalues/eigenvectors predicted by the RMT

has the potential to identify groups or clusters of highly correlated stocks. These results are

very appealing from an asset allocation perspective, since the analysis of the eigenvector

components can be of great help to build portfolios with decreasing levels of risk.

2. By examining the evolution of the largest eigenvalue and its associated eigenvector, we find

that there are clusters of correlated stocks that remain stable over time. We also find that

these clusters behave in a similar way in face to common shocks affecting the stock market.

This is particularly true during periods of crisis.

3. The evolution of the largest eigenvalue is able to reproduce most stylised facts of financial

correlations, such as the asymmetric behaviour of correlations under different volatility

periods. During market drawdowns, that is, when average correlations increase and market

returns are low, the largest eigenvalue peaks the highest.

4. The use of RMT tools can also be very useful to identify the number of stocks that par-

ticipate significantly under different volatility periods, which is not easy reveal by using

standard financial tools. That is, by using the participation ratios introduced in section 4.3,

we find that average correlations do not only increase, but also that stocks that were not

significantly correlated under periods of low volatility, in face of a downturn, their correla-

tions will become significant. We interpret this as co-movements between assets in face of

a shock, rather than as correlations between assets per se.

All in all, we show that the use of Random Matrix Theory (RMT) can be a very powerful tool

of analysis by providing valuable informations about market behaviour, which could be used by

institutional investors to take their investment decisions or by policymaking institutions seeking

to monitor financial markets by examining very few indicators.

In what follows, we apply these insights into a portfolio optimisation context and show how the

RMT-filtering can be used to improve the forecast of the sample correlation matrix in Chapter 5.
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Chapter 5

Portfolio Analysis for the FTSE

100: RMT-Filtering

5.1 Introduction

In this chapter we apply the concepts introduced in the previous sections and consider the case

of a portfolio manager trading stocks of the FTSE 100 and assess whether the RMT-filtering

can be used to reduce portfolio risk. For doing this, in Section 5.2 we first illustrate the benefits

of noise filtering by replicating the standard methodology used in the literature (Laloux et al.,

2000; Rosenow et al., 2002). Following these studies, we split the sample into two subperiods

of one year and apply the RMT-filtering to the sample correlation matrix of the first subperiod

and construct a family of optimal portfolios. Then, for the same family of optimal portfolios

we compute the realised risk, by using next year’s sample correlation matrix and then compare

the percentage deviation between the predicted risk and the realised one. This quantity is then

compared with the one obtained using the sample correlation matrix. In order to capture different

volatility periods, we do this for the whole sample considered 2000-2012. For this setting we find

that the RMT-filtering has the potential to provide the best realised estimates for the whole

sample. These results are more pronounced when short-sale is permitted.

As pointed out by Pafka and Kondor (2003, 2004) and Daly et al. (2008), the effects of noise
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on risk estimates are strongly dependent on the ratio Q = T/N , where T is the length of the

time-series and N is the total number of assets. This is why in Section 5.3 we review some work

dealing with the sensitivity of noise to the ratio Q. We then apply these insights into a more

realistic environment, that is, by applying the different strategies as if we were an active portfolio

manager for different values of Q.

In Section 5.4 and Section 5.5, results are separated into in-sample and out-of-sample, respec-

tively. For the in-sample analysis, we assess the effects of noise filtering on realised portfolio risk

for different values of Q by using boostrapping techniques. Here we find that the RMT-filtering

performs the best for low values of the ratio Q, which is consistent with the findings of Pafka

and Kondor (2003) and Daly et al. (2008). For the out-of-sample testing, we use a battery of

tests to assess the performance of the RMT-filtering, ranging from the ratio γ (Section 3.4.1)

and Mean Squared Error (MSE) to return measures, such as the cumulated wealth at the end

of the out-of-sample period and risk-adjusted return measures such as the Sharpe Ratios for the

different strategies.

Here we find that the RMT-filtering has the potential to produce portfolios with the lowest

realised risk and also to correctly predict it. However, consistent with the in-sample results, these

benefits are highly dependent on the ratio Q = T/N and the existence/absence of short-sale,

with the RMT-filtering performing the best for low values of Q, when short-sale is permitted.

When short-sale is not permitted, similar to Pantaleo et al. (2011), we find that the filtered

correlation matrix delivers results comparable to those of the sample correlation matrix. We

therefore recommend the use of the RMT-filtering, only for low values of Q and when short-sale

is permitted. In Section 5.5.3, we provide an analysis of the weights for the different strategies,

by using different measures of diversification in order to provide a possible explanation for this

outperformance of the RMT-filtering. In Section 5.5.4, we gauge the robustness of our findings

by splitting the sample in two different volatility periods. Finally, in Section 5.6 we provide

conclusions and recommendations.
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5.2 Illustration of Noise Filtering to Improve Portfolio Risk

Estimates

The underlying randomness contained in the “bulk” of eigenvalues seen in the previous sections

has important implications for optimal portfolio selection. In the context of a Markowitz Portfolio

Theory (MPT), the effect of noise has a strong weight on the smallest eigenvectors, which are

precisely the ones that determine the least risky portfolios. This is why the Random Matrix

Approach allows reconciling the mean-variance approach of Markowitz as a tool for providing

better risk predictions. Consider a portfolio Π(t) of stocks with prices Si. The return on Π(t) is

given by

Φ =

N∑
i=1

wiGi, (5.1)

where Gi(t) is the return on stock i and wi is the fraction of wealth invested in stock i. The

fractions wi are normalised such that
∑N
i=1 wi = 1. The risk of holding the portfolio Π(t) can

be quantified by the variance

Ω2 =

N∑
i=1

N∑
j=1

wiCijwjσiσj , (5.2)

where σi is the standard deviation (average volatility) of Gi, and Cij are the elements of the

sample correlation matrix C. In order to find an optimal portfolio, we must minimise Ω2 under

the constraint that the return on the portfolio is some fixed value Φ. In addition, we also have

the constraint that
∑N
i=1 wi = 1. The resolution of this minimisation can be implemented by

using two Lagrange multipliers, which leads to a system of linear equations for wi, which can

then be solved. The family of optimal portfolios can therefore be represented as a plot of the

return Φ as a function of risk Ω2, which is the Efficient Frontier.

To illustrate the effect of randomness of C on the selected optimal portfolios, we carry out

our analysis for the years 2006-2007. We first calculate the correlation matrix C2006 using 260

daily returns and use the returns G2007
i of the next period. We then construct a family of 100

optimal portfolios, and plot Φ as a function of the predicted risk Ω2
p for 2007. For this family
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of portfolios, we also compute the realised risk Ω2
r during 2007 using C2007. We do this in order

to compare the performance of the RMT approach isolated from any additional source of noise

that could arise, for example, in case we had to make a forecast of returns.

Since the meaningful information in C is contained in the deviating eigenvectors (whose

eigenvalues are outside of the RMT bounds), we use the filtering proposed by Plerou et al.

(2002) (see, Section 3.3). We then repeat the above approach for finding the optimal portfolio

using the filtered correlation matrix, C2006
f instead of the unfiltered, C2006. We plot the efficient

frontiers for both methods, for filtered and unfiltered matrices, in Figure 5.1.
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Figure 5.1: Efficient Frontier during 2007. Top panel shows the difference between predicted and
realised risk, for the same family of optimal portfolios using the filtered correlation matrix, Cf .
Bottom panel shows the difference between predicted and realised risk, but using the unfiltered
correlation matrix, C. As it can be seen, the predicted risk is closer to the realised one when we
use the filtered correlation matrix. Short-sale permitted.

A first observation is that the filtered correlation matrix, for a given level of return, achieves

a lower realised risk than when using the unfiltered correlation matrix. A second observation is

regarding the quality of prediction. That is, how close our risk predictions are from the realised

ones. For illustrating this, we measure the relative performance of the filtered portfolios vs.

the unfiltered ones by calculating the difference between both curves with the Mean Average
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Percentage Error (MAPE), which is defined as:

MAPE =
1

n

N∑
i=1

∣∣∣∣Ω2
i r − Ω2

i p

Ω2
i p

∣∣∣∣ . (5.3)

Here the unfiltered correlation matrix underestimates realised risk by 88%, while the filtered

one only underestimates realised risk by 59%. There is certainly a sharp contrast between the

use of the filtered and unfiltered matrices, with the former performing far better than the latter

in forecasting portfolio risk.

In light of these results, an interesting question would be to assess how the filtered correlation

matrix performs relative to the unfiltered one during different volatility regimes in the stock

market. For doing this, we apply the same methodology to consecutive one-year periods from

2000-2001 to 2010-2011 in Table 5.1. In columns (1)-(2) we compare the MAPE using the filtered

and unfiltered correlation matrices, restricting “short sale”, while in columns (3)-(4) we allow for

“short sale”. Finally, in columns (5) and (6) we present the volatility of the FTSE 100 calculated

as the mean of the absolute value of returns for the year used for estimation and the VIX index

as a measure of international market volatility.

Here we observe that when “short sale” is not permitted, there are no major differences

between the portfolios built using the filtered correlation matrix and those using the unfiltered

matrix. Moreover, the overall improvement calculated as the average difference is negative. This

result could cast doubts on the effectiveness of the RMT-filtering in predicting realised risk during

periods of changing volatility.

However, these results are reversed when we allow for “short sale”. Here we observe that the

filtered correlation matrix is far superior to the unfiltered one in all cases. “Short sale” involves

selling assets that are borrowed in expectation of a fall in the asset’s price. In case the price

declines, the investor covers his position by buying an equivalent number of assets at the new

lower price and returns to the lender the assets that were borrowed. In mathematical terms,

when we allow for “short sale”, portfolio weights are allowed to be negative, and investors can

continuously sell low return assets and reinvest in higher yield assets and generate an infinite

expected return. Conversely, the investor could “short sell” a high yield asset and reinvest the
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No short sale Short sale
Unfiltered Filtered Unfiltered Filtered Vol. FTSE 100 VIX

Prediction-Realised (1) (2) (3) (4) (5) (6)

2000-2001 0.227 0.242 0.407 0.099 0.902 23.3
2001-2002 0.121 0.108 0.300 0.114 1.005 25.7
2002-2003 0.024 0.035 0.485 0.151 1.233 27.2
2003-2004 0.058 0.064 0.748 0.525 0.860 21.9
2004-2005 0.166 0.213 0.385 0.346 0.490 15.4
2005-2006 0.198 0.175 0.223 0.095 0.421 12.7
2006-2007 0.161 0.142 0.883 0.588 0.580 12.7
2007-2008 0.058 0.070 0.459 0.331 0.794 17.4
2008-2009 0.042 0.040 0.988 0.579 1.582 32.5
2009-2010 0.126 0.117 0.739 0.486 1.068 31.4
2010-2011 0.092 0.083 0.362 0.254 0.788 31.4

Average 0.115 0.117 0.543 0.324 0.883 22.0
Improvement -0.012 0.403

Table 5.1: Mean Average Percentage Error (MAPE) for each year of the sample. The MAPE
reflects the difference between predicted and realised risk for a given family of optimal portfolios
along the efficient frontier. Best results are marked in bold face.

proceeds into a low yield asset, therefore achieving an infinite negative return.1 In this context,

“short selling” would seem to expand the opportunity set for investment decisions. The use of

the RMT-filtering allows to exploit these opportunities to construct portfolios that are robust to

high volatility periods.2

These results are different from those of Sandoval et al. (2012) for the Brazilian Stock Market,

who based on a number of agreement measures between predicted and realised risk, i.e., MAPE,

Mean Squared Error (MSE), the angle between risk vectors, Simple Distance and the Kullback-

Leibler distance measure, concluded that the RMT-filtering did not produce better results than

the unfiltered approach, in particular during high volatility periods. They also find that the

RMT-filtering combined with the single-index model significantly improves risk estimates for

most of the measures analysed. Our results differ from his in that when allowing for “short

sale” the RMT-filtering performs unequivocally better than when using the standard sample

correlation matrix. In fact, as pointed out by Jagannathan (2003) and DeMiguel et al. (2009),

when we impose “short sale” constraints and minimise the portfolio variance, this is equivalent

1Evidently, a rational investor will never do this and this is why only the upward sloping part of the efficient
frontier is considered.

2While short-selling may not be allowed in certain markets and during specific times in financial markets (e.g.,
crises), it is still possible to circumvent this by using derivative positions.
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to shrinking the extreme elements of the covariance matrix, which is also a way to deal with the

estimation error (noise) that arises when we estimate large covariance matrices, making the effects

of the RMT-filtering redundant. This also could be a possible reason why the RMT-filtering does

not further improve realised risk estimates when “short-sale” is not permitted.

5.3 Sensitivity of the RMT Approach to the Data Size

Q = T/N

As we mentioned in Section 2.2.3, the effects of noise are very sensitive to the ratio Q = T/N ,

where T is the length of the time-series and N is the number of assets. Based on simulated

data, Pafka and Kondor (2003) find that for small values of Q, of the order of 1.66, noise has an

important effect on risk estimates, while for large values of Q, around 5, the error due to noise

drops to acceptable levels. In this context, the large discrepancies found between predicted and

realised risk by Laloux et al. (1999, 2000) and Plerou et al. (2000a, 2002) could be attributed to

low values of Q.

They further investigate this possibility by estimating the magnitude of this effect for values

of N and T similar to the ones used in Plerou et al. (2002) and Laloux et al. (2000). In Laloux

et al. (2000) daily returns on N = 406 stocks belonging to the S&P 500 covering the period 1991-

1996 (T = 1309 daily observations) were used to calculate the correlation matrix. As pointed

out by Pafka and Kondor (2003), for this portfolio size and this length of the time-series, the risk

of the optimal portfolio in the presence of noise is about 20% larger than without. Similarly, for

Laloux et al. (2000) 30-min returns on the largest N = 1000 U.S. stocks over the two-year period

1994-1995 (T = 6448 observations for each series) were used and the ratio between the predicted

and realised risk was about 1.09, that is, the decrease in efficiency due to noise is only around

9%. These findings suggest that the impact of noise on the portfolio optimisation problem would

not seem to be as dramatic as we think.

In Pafka et al. (2004), they assess the performance of a number of covariance matrix estima-

tors by using bootstrapping techniques. For doing this, they split the sample into an estimation

period (using past information) and an evaluation period (using future information). They cal-
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culate different correlation matrix estimators (i.e. equally weighted and exponentially weighted

compared to their “filtered” and “unfiltered” versions) using the first period and then used them

to construct “optimal” portfolios. They evaluate the performance of these estimators based on

the standard deviation of the corresponding portfolio returns in the second period. In order to

reduce the error that may arise from the use of a single sample, they perform their evaluation

on a large number of bootstrapped samples from a larger dataset of daily stock returns. They

compared the performance of their estimators for different values of N and T2. The criteria used

for comparison is the ex-post volatility (i.e. the volatility in the “investment period”) of the

minimum variance portfolios constructed by using the estimators based on ex-ante return data

(i.e. before the investment period). The volatility measures were obtained by averaging over a

larger number of bootstrapped samples.

For a sample size of N = 100 and T2 (investment period of one month), they find that the

RMT-filtering performs the best for both uniform and exponential weighting. For the case of

uniform weighting, they also suggest that the best choice for the length of the time window T1 is

around 250, (i.e. one year of daily data). They also find that the parameter used for exponential

weighting commonly used by practitioners (α = 0.94) is completely inappropriate for portfolio

optimisation with a large number of assets. This approach was also used later on by Daly et al.

(2008) to assess the performance of some RMT-filters, with similar findings to those of Pafka

et al. (2004).

As we mentioned in Section 3.2, when predicting future correlations from past correlations,

one has to balance two competing effects: the width λ+− λ− = 4
√
N/T of the noise part of the

spectrum decreases when long time-series are used. This means that the longer the time-series,

the effects of noise tend to decrease. This can be illustrated in Figure 5.2, where we plot the

percentage of deviating eigenvalues as a function of T . Here we observe that as T increases

there are more eigenvalues deviating from the noise part of the spectrum of the MP distribution,

indicating that the effects of noise would tend to decrease with the sample size. This suggest that

long time-series over many years should be analysed. However, as correlations are not stable over

time, the estimation period should not be too long in order to correctly describe the dynamics

of correlations (Rosenow et al., 2003).

In the next section, we show the implications of using different sample size on portfolio risk
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Figure 5.2: Percentage of Deviating Eigenvalues as a Function of T . The larger T gets, the
smaller the noise band of the MP spectrum and the more eigenvalues deviate from the upper
edge λ+.

estimates and provide some insights on under what conditions the RMT-filtering will perform

the best for a set of stock returns of the FTSE 100.

5.4 In-Sample Analysis

As described in Section 3.4.1, the in-sample methodology consists in a boostrap approach. For

this, we use the first 500 observations of the sample, running from 04/01/00 until 30/11/01, for

77 stocks included in the FTSE 100. Here, for a given number of assets N , we randomly select a

test date t and estimate the portfolio up to t and everything afterwards is used as realised, future

information (usually, a forecast horizon of 20 days). We repeat this random selection 1000 times,

with replacement, and calculate the mean across all bootstrapped samples of the ratio γ, defined

in Section 3.4.1, which is the ratio between realised and predicted risk. The ratio γ has been

widely used in the econophysics literature (see, Pafka et al., 2004; Pafka and Kondor, 2004; Daly

et al., 2008, 2010) to assess the performance of the RMT-filtering in forecasting realised risk.

Similarly, in the econometrics literature, this ratio has also been used to assess the performance
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of multivariate volatility models (see, Engle and Sheppard, 2001; Engle, 2002).3 We estimate our

portfolios using the sample correlation estimator (henceforth, CSAMP ) and the RMT-filtering

correlation estimator, using the method of (Plerou et al., 2002) (henceforth, CSAMP−RMT1).
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Figure 5.3: Mean Bootstrapped (in-sample) for the ratio γ of realised to predicted risk, for the

filtered approach, γ̄f =
Ωfr

Ωf
, compared to the unfiltered approach, γ̄u = Ωur

Ωu
, as a function of

Q = T/N . Notice that filtering is most effective for low values of Q. Short-sale allowed.

In Figure 5.3 we plot the mean bootstrapped results for an evaluation period of 20 days,

allowing for short-sale.4 Here we observe that the RMT-filtering has great potential to predict

realised risk for low values of Q = T/N . In particular, the forecasting ability of the filtered

correlation matrix would seem to perform the best when Q ranges between 1.6 ≤ Q ≤ 3.2.

Taking into account that we are estimating our portfolios for a fixed number of assets (N = 77),

the optimal length of the time-series used would lie between 123 ≤ T ≤ 250, that is, between 6

and 12 months (≈ 1 year of data). These results are consistent with those found by Pafka et al.

(2004) (≈ 250 days) and Daly et al. (2008) (≈ 250 days), for 100 large-cap stocks of the S&P

500.

These results are encouraging, since we find that for a given value of Q, the RMT-filtering has

3This ratio is very similar to the Mean Absolute Percentage Error (MAPE), introduced in Section 5.2, which
measures how far the predicted risk is from the realised risk.

4When allowing for short-sale we limit our weights to be no bigger than 100% on any asset and to “go short”
on 150%.
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the potential to achieve more accurate estimates of the realised risk of minimum risk portfolios,

when compared to the unfiltered correlation matrix based on historical information. The sample

correlation matrix would seem to perform better for values of Q greater than 4 (see, inset, in

Figure 5.3). These values are similar as those suggested by Pafka and Kondor (2003) who find

that for values of Q greater 5, the effects of noise drop to acceptable levels.

In the next section we assess the out-of-sample performance of the RMT-filtering in predicting

realised portfolio risk, by using a battery of tests and different estimation windows. We also

investigate whether RMT-filtered correlations are able to deliver greater cumulated portfolio

returns at the end of the out-of-sample period than the sample correlation matrix.

5.5 Out-of-Sample Analysis

In this section we provide an out-of-sample analysis that will allow us to assess how each fore-

casting method would have performed in practice in case of being used. One of the main disad-

vantages of the bootstrapping approach is that it tends to favour models with more parameters,

since the best parameter values are assessed after testing.

For the out-of-sample testing we split the sample into two subperiods. The first subperiod,

that we used in the previous section for the in-sample analysis covers the period from 04/01/00

until 30/11/01 (≈ 500 observations), while the second subperiod is the evaluation period, which

starts in 04/12/01 until 25/09/12 (≈ 2820 observations).

As explained in Section 3.4.2, for every test date t′, we consider portfolios that were invested

before t′− tf , or on that date, where tf is the investment period (in this case, 20 business days).

That is, we estimate the portfolio variance at a given month and compare it to the realised

variance on that month, which is calculated as the sample covariance of the realised returns over

the investment horizon (tf = 20 days). Subsequent retraining is done on a monthly basis.

As we showed in the in-sample analysis and as observed by Pafka and Kondor (2003), the

effects of noise would seem to strongly depend on the ratio Q = T/N , with the RMT-filtering

performing the best for small values of Q while for larger values the effects of noise are almost

negligible. To allow for this possibility, we estimate our models using different time windows,

based on three estimation windows; 125 days (≈ 6 months), 250 days (≈ 1 year) and 500 days (≈
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2 years). All these models use the first subperiod (01/04/00 until 12/31/02 ≈ 500 observations)

as initial training period.

In contrast to most studies in the literature, we estimate our portfolios with short-sale con-

straints. We believe this provides a more realistic setting as short-sale is not always allowed in

financial markets stemming from the increase in risk it brings to portfolios. Alternatively, we also

allow for short-sale, however, none of the estimated portfolios ever took an extreme position.5

Based on the above, we estimate our portfolios using the following correlation estimators:

• Sample Correlation Matrix: CSAMP .

• Filtered Sample Correlation Matrix Keeping the Largest Eigenvalue: CSAMP1.

• Filtered Sample Correlation Matrix - Method 1: CSAMP−RMT1 (Plerou et al., 2002).

• Filtered Sample Correlation Matrix - Method 2: CSAMP−RMT2 (Laloux et al., 2000)

Here we compare and contrast the performance of the sample correlation matrix, CSAMP ,

with their RMT-filtered versions, using both methods described in Section 3.3. We also filter

the sample correlation matrix by keeping only the largest eigenvalue, as we want to assess the

effectiveness of the RMT-filtering in selecting the optimal number of eigenvalues.

5.5.1 Realised Risk Estimates

In Table 5.2, we report our realised risk estimates, using the performance metrics defined in

Section 3.4.2 with short-sale constraints. Here we observe that there are no major improvements

of using the RMT-filtering on the sample correlation matrix. For the best of the cases, we

obtain a slightly better prediction and lower volatility of prediction, measured by the MSE.

For instance, when using an estimation window of 125, using (Plerou et al., 2002)’s method,

CSAMP−RMT1−125, delivers a γ ratio of 1.067 and MSE of 0.084, compared to 1.084 and 0.115,

respectively, when using CSAMP − 125. As we move to longer estimation windows, the benefits

of filtering become even more negligible.

5Similar to the in-sample analysis, when allowing for short-sale we limit our weights to be no bigger than 100%
on any asset and to “go short” on a 150%.
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No short-sale Short-sale
Model Ωest Ωreal MSE · 10−2 γ̄ Ωest Ωreal MSE γ̄

CSAMP − 125 0.102 0.114 0.115 1.084 0.045 0.142 0.012 2.976
CSAMP1 − 125 0.098 0.114 0.115 1.123 0.059 0.113 0.005 1.729
CSAMP−RMT1 − 125 0.102 0.113 0.084 1.067 0.066 0.102 0.002 1.452
CSAMP−RMT2 − 125 0.096 0.115 0.119 1.160 0.065 0.101 0.002 1.466

CSAMP − 250 0.106 0.112 0.068 1.019 0.063 0.108 0.003 1.625
CSAMP1 − 250 0.101 0.112 0.077 1.060 0.060 0.113 0.005 1.699
CSAMP−RMT1 − 250 0.106 0.111 0.062 1.008 0.069 0.101 0.002 1.353
CSAMP−RMT2 − 250 0.101 0.113 0.079 1.084 0.068 0.099 0.001 1.361

CSAMP − 500 0.106 0.111 0.057 0.994 0.071 0.100 0.001 1.334
CSAMP1 − 500 0.102 0.111 0.065 1.042 0.061 0.114 0.005 1.677
CSAMP−RMT1 − 500 0.107 0.110 0.053 0.983 0.073 0.100 0.001 1.287
CSAMP−RMT2 − 500 0.103 0.111 0.063 1.034 0.072 0.098 0.001 1.277

Table 5.2: Out-of-sample estimates of the variance of minimum variance portfolios. Notice that
the filtered correlation matrices provide the lowest average realised risk and the best realised risk
forecast in the absence of short-sale constraints. When these constraints are in place, results are
not conclusive.

Table 5.2 (Columns, 5-6) presents results allowing for a short-sale strategy.6 Here observe a

more substantial difference between the filtered correlation matrix and the unfiltered one. In gen-

eral, when comparing the results for different estimation windows for risk forecast, we find that

risk predictions using the RMT-filtering are significantly better for short estimation windows,

but these results worsen as we increase the length of the time-series. For instance, when using an

estimation window of 125 days, the predicted risk, using CSAMP−RMT1 − 125, underestimates

realised risk by 45.2%, while when using the sample correlation matrix, CSAMP −125, we under-

estimate realised risk by 197.6%. Under this scenario the difference in the quality of prediction is

striking. These results are robust across estimation windows, but the difference in performance

of the RMT-filtering seems to be narrowed as we increase the estimation window. Another ob-

servation is that the portfolios built using only one eigenvalue in the RMT-filtering, CSAMP1,

do not generate better predictions than the ones selecting the optimal number of eigenvalues

as predicted by the RMT to include in the filter, namely, CSAMP−RMT1 and CSAMP−RMT2.

This means that the remaining eigenvalues that deviate from the Marc̆enko-Pastur Distribution

do contain economically relevant information, which can be used to build better risk forecast

6We are aware that this may not be realistic as short-sale is not always allowed in financial markets, but we
acknowledge that reality must lie between these two extreme cases.
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of realised risk of minimum variance portfolios. In general, portfolios builts using the filtered

correlation matrices deliver lower realised risk estimates, lower volatility of prediction (measured

by their MSE) and better realised risk forecast.

5.5.2 Risk-Adjusted Returns Estimates

Another interesting question is about whether the filtered correlation matrices deliver greater

cumulated portfolio returns for a given level of risk. For this, we calculate cumulated portfolio

returns at the end of the out-of-sample period. This performance measure is calculated by

applying the different strategies (i.e. weights) and using the ex-post returns, which are calculated

as the average returns over the investment horizon. We then compute the compounded returns

until the end of the out-of-sample period, starting with an initial £1 investment.

In Figures 5.4a-5.4c-5.4e we plot cumulated returns, for different estimation windows and

strategies (i.e. using the filtered vs. unfiltered correlation matrices), with short sale constraints.

A first observation is that there are no major differences in cumulated returns between the

filtered and unfiltered correlation matrices. The filtered correlation matrix, using only the largest

eigenvalue in the filter, CSAMP1, would seem to perform better than the rest. These differences

become almost negligible as we increase the estimation window.

In contrast, when short-sale is allowed in Figures 5.4b-5.4d-5.4f, we find significant differences

in cumulated returns. For instance, when using the filtered correlation matrix with Plerou

et al. (2002)’s method, CSAMP−RMT1 − 125, we obtain £3.22, whereas when using the sample

correlation matrix we obtain £1.90. This is particularly true for short estimation windows. For

example, when using an estimation window of 6 months (≈ 125 days) we obtain the highest

cumulated portfolio return (≈ £3.22). Conversely, when using an estimation window of 2 years

(≈ 500 days), the filtered correlation matrix still delivers a higher cumulated return (£2.66-2.76

for both methods) when compared to the sample correlation matrix (£2.03) but the difference

seems to be shrunk. We also find differences between both RMT-based filtering methods, with

the filtering method of Plerou et al. (2002), CSAMP−F1, performing slightly better for shorter

estimation windows than the method of Laloux et al. (2000), CSAMP−F2, which performs better

for longer estimation windows. A similar observation can be noticed for the realised risk estimates
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Figure 5.4: Cumulated Wealth at the end of the out-of-sample period for different estimation
windows, with and without short-sale.
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of Section 5.5.1. In general, in terms of cumulated wealth, the benefits seen after filtering, amount

to 65%.

No short-sale Short-sale
Model Cum. Ret Sharpe Ratio Cum. Ret Sharpe Ratio

CSAMP − 125 2.075 0.192 1.906 0.217
CSAMP1 − 125 2.344 0.180 2.435 0.309
CSAMP−F1 − 125 2.167 0.172 3.223 0.320
CSAMP−F2 − 125 2.252 0.180 3.155 0.309

CSAMP − 250 2.119 0.185 2.356 0.229
CSAMP1 − 250 2.226 0.169 2.545 0.283
CSAMP−F1 − 250 2.115 0.170 2.898 0.283
CSAMP−F2 − 250 2.104 0.169 2.888 0.283

CSAMP − 500 2.091 0.184 2.038 0.227
CSAMP1 − 500 2.218 0.173 2.540 0.261
CSAMP−F1 − 500 2.103 0.167 2.666 0.255
CSAMP−F2 − 500 2.157 0.173 2.767 0.261

Table 5.3: Cumulated Wealth at the end of the out-of-sample period and Sharpe Ratios using
the filtered and unfiltered correlation matrices for different estimation windows. The filtered
correlation matrices provide the best end of the period return and the highest Sharpe Ratio in
most cases.

Table 6.3 provides the cumulated returns and Sharpe Ratios for the different strategies. The

Sharpe Ratio is calculated as the ratio between expected excess return of a portfolio and its

standard deviation. Excess returns are defined as the difference between the expected portfolio

returns and the risk-free asset, which in this case is the 1-month Libor. This ratio will provides

us some insights into how well the returns of the different strategies compensate investors for the

risk taken. That is, when comparing different strategies (i.e., filtered v.s unfiltered correlations

for different estimation windows), the one with the highest Sharpe Ratio provides the best return

for the same risk (or, equivalently, the same return for lower risk). Here we see that the portfolios

built using the filtered correlation matrices, not only provide the highest cumulated returns but

also the highest Sharpe Ratios. This is particularly true when short sale is permitted. Conversely,

when short sale is not permitted, portfolios built using the sample correlation matrix outperform

the RMT-filtered ones.
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5.5.3 Are RMT-Filtered Portfolios More Diversified?

Now we investigate how can be explained the success of the RMT-filtering in prividing the

best realised risk estimates of minimum variance portfolios as well as the highest cumulated

returns and Sharpe Ratios. For doing this, in Table 5.4 we look deeper into the weights for the

different strategies by using the measures introduced in Section 3.4.2, i.e., the effective portfolio

diversification, Neff (Equation 3.23), N90 (Equation 3.24) and the ratio between negative and

positive weights, w−/w+, when allowing for short-sale (Equation 3.25).

No short-sale Short-sale
Neff N90 Neff N90 w−/w+

Model (1) (2) (3) (4) (5)

CSAMP − 125 7.41 (3.47) 8.12 (3.49) 2.43 (1.09) 46.81 (2.42) 0.605
CSAMP1 − 125 8.63 (4.07) 9.54 (4.13) 10.77 (3.51) 45.37 (2.62) 0.281
CSAMP−F1 − 125 7.90 (3.68) 8.78 (3.90) 8.55 (2.94) 44.57 (2.73) 0.319
CSAMP−F2 − 125 7.50 (3.74) 8.23 (4.07) 8.45 (3.11) 44.21 (3.14) 0.296

CSAMP − 250 7.18 (3.29) 8.00 (3.23) 4.29 (1.64) 45.41 (2.67) 0.479
CSAMP1 − 250 8.18 (3.59) 9.12 (3.53) 10.11 (2.82) 45.56 (2.66) 0.290
CSAMP−F1 − 250 7.42 (3.41) 8.34 (3.29) 7.75 (2.63) 44.70 (3.03) 0.336
CSAMP−F2 − 250 7.06 (3.45) 7.82 (3.57) 7.75 (2.87) 44.29 (3.66) 0.312

CSAMP − 500 7.37 (3.35) 8.29 (3.54) 5.38 (2.27) 45.09 (2.74) 0.420
CSAMP1 − 500 8.18 (3.56) 9.31 (3.75) 9.84 (2.81) 45.72 (2.91) 0.294
CSAMP−F1 − 500 7.28 (3.39) 8.19 (3.68) 7.20 (2.56) 44.81 (2.93) 0.345
CSAMP−F2 − 500 7.12 (3.45) 7.92 (3.80) 7.41 (2.75) 44.49 (3.32) 0.322

Table 5.4: Average Effective Portfolio Diversification, Neff and N90, for different time windows,
using the filtered and unfiltered correlation matrices, with/without short-sale. Standard errors
in parentheses.

Recall from Section 3.4.2 that when short-sale is allowed, the interpretation of Neff can be

dubious, hence we should look at N90 instead of Neff . When short-sale is not permitted, we

find that there are no major differences in the level of diversification in portfolio weights. In

fact, this is consistent with the findings of the previous sections, where we did not find major

differences between the portfolios using the filtered correlation matrices and those using the

sample correlation matrix. When short-sale is allowed, in Column (4), we observe that the

sample correlation matrix produces portfolios which are, on average, slightly more diversified

than when using the filtered correlation matrix. However, the quantity Neff , in Column 3, is

also very informative, as a high Neff implies a relatively small
∑N
i w

2
i , which indicates that the
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weights produced by the filtered correlation matrices, on average, take less extreme positions

than when using the sample correlation matrix. In column (5), we also quantify the amount of

short-selling, measured as the ratio between the total sum of negative v.s positive weights and

verify that the portfolios built using the sample correlation matrix suffer from an overexposure

to short-selling. This is in line with previous studies assessing the effects of different spectral

correlation estimators (see, Pantaleo et al., 2011). However, as opposed to this study, we do

not find significant differences in effective diversification for the different correlation estimators

with/without short sale.

5.5.4 Robustness Test to the Recent Economic Crisis: Sub-sample Es-

timates

In the previous section we showed the out-of-sample benefits of using the RMT-filtering for the

whole sample. However, these results could be biased as the benefits from the RMT-filtering may

have kicked in at the beginning of the sample (which was a relatively low volatility period) and

then vanished as we approach the last 4 years of the sample (which was a high volatility period).

This is why we ask whether these results are robust to the recent and ongoing economic crisis,

which are the moments where good investment strategies are needed the most. For doing this, we

split the sample into two sub-periods; the first sub-period, namely, the pre-crisis period, starts in

November 2002 and ends in September 2006, while the second sub-period from September 2006

until July 2010, covers the start of the Subprime Crisis and the subsequent U.S. Banking Crisis,

which then spread to the rest of the world, affecting mainly European countries, included the

UK. We therefore classify this period as a high volatility period, where the VIX index, which is

a good proxy for international volatility rose from an average of 16.4 (2003-2006) to 25.4 (2007-

2010). Likewise, in the UK, stock market volatility, measured as the monthly standard deviation

of the returns of the FTSE 100 rose from 3.88% (2003-2006) to 7.06% (2007-2010).

Thus we should expect market correlations to behave differently under these two scenarios.

Specifically, we expect correlations to be stable during the first sub-period (2003-2006), whereas

we expect correlations to be higher during the second sub-period (2007-2010). This has important

implications from an asset allocation perspective, where the high co-movement between assets
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during market downturns can generate great losses to investors holding these assets in their

portfolios. Thus, the aim of this section is to examine how effective the RMT-filtering would

have been in case of being used at the beginning of these two sub-periods.
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Figure 5.5: Panel (a): Eigenvalue Distribution for the Pre-crisis Period (2003-2006). Panel (b):
Eigenvalue Distribution for the Crisis period (2007-2010). For a given value of Q = 13.54.

As we saw in Chapter 4, we can also see the difference between these two periods by inspecting

their eigenvalue distributions. Recall from Section 4.2 that the largest eigenvalue reflects the risk

of the market portfolio. Therefore, we should expect the largest eigenvalue to be greater during

the second period (2007-2010) than during the first period (2003-2006). In Figure 5.5, we plot the

eigenvalue distribution of the sample correlation matrix for both periods. In addition, we plot the

theoretical eigenvalue density (the Marc̆enko-Pastur Distribution) for a given value of Q (13.54).

A first observation is that the largest eigenvalue is bigger in magnitude during the years 2007-2010

(λ2007−2010
1 = 31.4) than during the years 2003-2006 (λ2003−2006

1 = 23.2), reflecting the higher

market risk faced during the economic crisis. A second observation relates to the amount of the

total variance explained by the deviating eigenvalues. For example, during the pre-crisis period,

the percentage of the total variance explained by the deviating eigenvalues amounts to 40.6%,

whereas for the crisis period this quantity amounts to 52%. While this could be attributed to the
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increase of the largest eigenvalue, it is worth noting that the remainder deviating eigenvalues also

increase in magnitude when transitioning from one period to the other. This basically evidences

the release of new useful information from the noisy part of the Marc̆enko-Pastur spectrum,

which is incorporated in the deviating eigenvalues during the crisis period.

In order to verify whether this new information is translated into better portfolio estimates,

we proceed to re-estimate our models as we had been trading at the beginning of each of these

sub-periods. For doing this, we take the first 250 days of each sub-period in order to have enough

observations for the evaluation period. We then assess the benefits of the RMT-filtering using

the same performance measures introduced in Section 3.4.2. In Table 5.5, we show the realised

risk estimates for both sub-periods under short-sale constraints. Here we find that most results

are maintained. In particular, when short-sale is not permitted, the filtered correlation matrices

do not perform any different to those using the sample correlation matrix. In many cases, it is

preferable to use the sample correlation estimator with no filtering.

Pre-crisis: Years 2003-2006 Crisis: Years 2007-2010
Model Ωest x 10−1 Ωreal x 10−1 MSE x 10−2 γ̄ Ωest Ωreal MSE x 10−2 γ̄

(1) (2) (3) (4) (5) (6) (7) (8)

CSAMP − 125 0.647 0.809 0.662 0.834 0.157 0.169 0.210 0.981
CSAMP1 − 125 0.627 0.802 0.663 0.817 0.149 0.172 0.320 0.906
CSAMP−F1 − 125 0.659 0.789 0.546 0.873 0.159 0.168 0.190 0.994
CSAMP−F2 − 125 0.629 0.799 0.674 0.824 0.153 0.171 0.270 0.938

CSAMP − 250 0.684 0.787 0.433 0.908 0.164 0.166 0.110 1.038
CSAMP1 − 250 0.660 0.785 0.499 0.881 0.156 0.169 0.150 0.964
CSAMP−F1 − 250 0.692 0.780 0.406 0.928 0.165 0.165 0.110 1.051
CSAMP−F2 − 250 0.662 0.793 0.490 0.869 0.160 0.167 0.140 1.009

Table 5.5: Out-of-Sample Estimates of the realised risk of minimum variance portfolios for
different estimation windows and different volatility periods. Short-sale constraints. Notice
that there are no major differences from using the filtered correlation matrices or the sample
correlation matrix.

When we permit short-sale (Table 5.5) we observe that the portfolios built using the filtered

correlation matrices deliver the best results for all performance measures analysed. Here the

effects of the RMT-filtering are strong in magnitude and therefore, more likely to be statistically

significant. In this case, both filtering methods deliver very similar results in terms of realised

risk estimates, volatility of prediction and prediction accuracy, measured by the ratio γ.

In Table 5.7, we analyse cumulated returns for both volatility period, allowing/constraining
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Pre-crisis: Years 2003-2006 Crisis: Years 2007-2010
Model Ωest x 10−1 Ωreal x 10−1 MSE x 10−5 γ̄ Ωest x 10−1 Ωreal x 10−1 MSE x 10−2 γ̄

(1) (2) (3) (4) (5) (6) (7) (8)

CSAMP − 125 0.343 1.017 5.230 0.347 0.640 2.001 2.490 0.339
CSAMP1 − 125 0.458 0.780 1.340 0.614 0.793 1.776 1.490 0.490
CSAMP−F1 − 125 0.498 0.751 0.929 0.691 0.951 1.491 0.047 0.682
CSAMP−F2 − 125 0.493 0.741 0.906 0.691 0.952 1.492 0.046 0.677

CSAMP − 250 0.472 0.800 1.400 0.605 0.867 1.543 0.640 0.585
CSAMP1 − 250 0.477 0.782 1.200 0.632 0.814 1.797 1.450 0.499
CSAMP−F1 − 250 0.521 0.753 0.742 0.714 0.981 1.470 0.040 0.721
CSAMP−F2 − 250 0.516 0.741 0.723 0.719 0.989 1.457 0.036 0.727

Table 5.6: Out-of-Sample Estimates of the realised risk of minimum variance portfolios for
different estimation windows and different volatility periods. Short-sale permitted. Notice that
the filtered correlation matrix provides the lowest average realised risk and the best realised risk
predictions in all cases.

short-selling. Here we find that when short-sale is not permitted, the sample correlation ma-

trix outperforms the filtered correlation matrices in the low volatility period. In high volatility

periods, at least the filtered correlation matrix with the method of Laloux et al. (2000), outper-

forms the sample correlation matrix in both, cumulated returns and Sharpe ratios. When we

permit short-sale, we find that during the pre-crisis period cumulated returns and Sharpe ratios

are very similar for all correlation estimators. The main difference between filtered and sample

correlation estimators kicks in when we analyse these quantities during the crisis period. Here

we find that the portfolios built using the sample correlation matrix deliver significantly poorer

cumulated returns and Sharpe ratios when compared with the filtered correlation matrices. For

instance, CSAMP − 125, delivers cumulated returns of £1.35 and Sharpe Ratio of 0.194, whereas

CSAMP−F1 − 125 yields £1.63 and a Sharpe Ratio of 0.387. Taking into account, that these

portfolios could be worth millions of pounds, these differences are striking.

This is undoubtly a very relevant result, since we have just shown that the benefits of the

RMT-filtering come from its ability to track sudden changes in volatility, delivering the best

realised risk estimates, the highest Sharpe ratios and cumulated returns. This is particularly

true when short-sale is permitted. Only in this case, the RMT-filtering probes to be robust to

the existence of different volatility periods in financial markets.

Following the analysis of Section 5.5.3, we investigate the portfolio weights under both volatil-
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Pre-crisis: Years 2003-2006 Crisis: Years 2007-2010
No Short-sale Short-sale No Short-sale Short-sale

Model Cum. Ret Sharpe Ratio Cum. Ret Sharpe Ratio Cum. Ret Sharpe Ratio Cum. Ret Sharpe Ratio
(1) (2) (3) (4) (5) (6) (7) (8)

CSAMP − 125 1.594 0.632 1.484 0.562 1.197 0.100 1.353 0.194
CSAMP1 − 125 1.651 0.596 1.532 0.571 1.129 0.177 1.317 0.362
CSAMP−F1 − 125 1.604 0.604 1.512 0.560 1.185 0.141 1.633 0.385
CSAMP−F2 − 125 1.614 0.596 1.531 0.571 1.245 0.177 1.599 0.362

CSAMP − 250 1.562 0.630 1.335 0.573 1.215 0.116 1.639 0.194
CSAMP1 − 250 1.624 0.536 1.547 0.471 1.160 0.173 1.315 0.412
CSAMP−F1 − 250 1.529 0.546 1.391 0.435 1.202 0.148 1.769 0.471
CSAMP−F2 − 250 1.536 0.536 1.432 0.471 1.246 0.173 1.671 0.412

Table 5.7: Cumulated Wealth at the end of the out-of-sample period and Sharpe ratios using
the filtered and sample correlation matrices for different window lengths and different volatility
periods. Notice that the filtered correlation matrix provides the best end of the period return
and the highest Sharpe Ratios in most cases.

ity periods. In Table 5.8, in Columns (2) and (4), we show the measures of portfolio diversifi-

cation, N90 and the average of the absolute sum of negative/positive weights, w−/w+. Similar

to Section 5.5.3, we observe no major differences between the degree of diversification for the

portfolios using the filtered correlation matrices and those using the sample correlation matrix.

Likewise, when analysing different volatility periods, the magnitude of these quantities does not

appear to change when transitioning from one period to the other. Therefore, the success of

the RMT-filtering does not come from the fact that invests in more stocks than the standard

correlation matrix.

Pre-crisis: Years 2003-2006 Crisis: Years 2007-2010
Model N90 w−/w+ N90 w−/w+

(1) (2) (3) (4)

CSAMP − 125 46.10 (2.07) 0.565 46.68 (2.20) 0.643
CSAMP1 − 125 45.73 (2.39) 0.259 45.52 (2.70) 0.300
CSAMP−F1 − 125 44.65 (3.08) 0.288 44.73 (3.09) 0.372
CSAMP−F2 − 125 44.31 (3.03) 0.266 44.94 (3.47) 0.354

CSAMP − 250 45.42 (2.42) 0.437 46.02 (2.47) 0.543
CSAMP1 − 250 45.44 (2.56) 0.274 45.86 (2.59) 0.312
CSAMP−F1 − 250 45.34 (3.03) 0.306 44.68 (3.58) 0.387
CSAMP−F2 − 250 45.26 (2.94) 0.281 44.84 (3.66) 0.371

Table 5.8: Portfolio Diversification, N90, for different time windows, using the filtered and sample
correlation matrices, under different volatility periods. Standard errors in parentheses.
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The correlation estimators, however, do differ in their degree of exposure to short-selling. In

Columns (2) and (4), we find that the portfolios using the sample correlation matrix increase

their exposure to short-selling during the crisis. While a similar phenomenon happens with the

portfolios built using the filtered correlation matrices, the difference in magnitude is sizeable.

For instance, for CSAMP−F1 − 125, the ratio is w−/w+ = 0.373, when compared to 0.644, when

using CSAMP − 125. Moreover, by observing cumulated returns and Sharpe Ratios during the

crisis, we find that the portfolios built using the sample correlation matrix did not only exhibit

an overexposure to short-selling, but also made the wrong bet by investing in artificially low risk

assets and therefore dampening Sharpe ratios.

5.6 Concluding Remarks

In the present chapter we have investigated the benefits of the RMT-filtering on the sample

correlation matrix, constructed from daily data on 77 stocks contained in the FTSE 100, covering

the period 04/01/00 until 25/09/12. We estimated a number of minimum variance portfolios,

using the sample correlation matrix, and the RMT-based filtered correlation matrices, using the

methods of Plerou et al. (2002) and Laloux et al. (2000) as described in Section 3.3. These

portfolios were estimated using different estimation windows and allowing/restricting short-sale.

Our main findings can be summarised as follows:

• We find that the RMT-filtering delivers the lowest realised risk, the lowest volatility of

prediction and the best prediction accuracy when compared with the sample correlation

estimator. This is particularly true in the absence of short-sale constraints. Under these

conditions, the effects of the RMT-filtering, translated in an improvement of 65% in terms

of cumulated wealth, for the best result.

• When short-sale constraints are in place, results are ambiguous and we therefore recom-

mend the use of the sample correlation estimator.

• We also find that the RMT-filtering performs the best for short estimation windows, of the

order of 6 months to 1 year of data (e.g., 1.6 ≤ Q ≤ 3.2). This is consistent with what it

has been found in the literature (see, Pafka et al., 2004; Daly et al., 2008). For higher values
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of Q (e.g., 3.2 < Q < 6.5) these benefits would appear to taper, as the filtered correlation

matrix converges to the sample correlation matrix, as the sample size increases.

• These results are robust to both, low and high volatility periods in financial markets. In

the former case, we find that there are no major differences between using the sample and

filtered correlation matrices. In the latter case, we find that the RMT-filtered correlation

estimators outperform the sample correlation estimator in both cumulated returns and

Sharpe Ratios.

These results are not surprising since for a given value of Q, the RMT approach selects

different numbers of eigenvalues to include in the filter, depending on the volatility period faced

during the estimation period (see, Figure 5.6). For example, from June 2007 until present (the

Crisis period), the RMT-filtering selected more often different number of eigenvalues to include

in the filter (a sudden jump from 1 to 3). This evidences the release of new information from

the noisy part of the spectrum that is incorporated in the filtered correlation matrix when facing

market downturns.
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Figure 5.6: Number of Deviating Eigenvalues included in the RMT-filtering over the out-of-
sample period. For a given value of Q, there are eigenvalues entering and exiting the Marc̆enko-
Pastur distribution.

This is in contrast to the sample correlation matrix, which treated all eigenvalues as equally

significant in both periods. We therefore stress the importance of distinguishing the noise coming
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from the use of a short time-series and the noise introduced by the nonstationarity of the data.

In the latter case, we have just shown that the RMT-filtering is also able to deal with this

problem. We therefore recommend the use of the RMT-filtering under two conditions; (i) when

using a short time window, because of its effectiveness in tracking sudden changes in volatility

and (ii) when allowing for short-sale, as it allows taking full advantage of short-selling positions

to overcome high volatility periods. In this context, short-selling can be a very powerful strategy

when using the right correlation estimator.

We also suggest a possible explanation for the success of the RMT-filtering. It would seem

that the portfolios built using the sample correlation matrix tend to take, on average, more

extreme positions and are more overexposed to short-selling than those built using the filtered

correlation matrix. These results are robust to both volatility periods.

In Pantaleo et al. (2011), the performance of nine covariance estimators was analysed, for

100 highly capitalised stocks of the NYSE. The covariance estimators were based on those aimed

to shrink the covariance matrix (Shrinkage Estimators), or by creating clusters of stocks (Ag-

glomerative Hierarchical Clustering Estimators) and others based on the spectral properties of

the correlation matrix (Random Matrix-based filtering). They assessed the performance of these

models by analysing their realised risk, for different estimation windows, with and without short

sale. They find that when short-sale is allowed, their estimators are able to produce portfolios

which are significantly less risky than those using the sample correlation matrix (i.e.unfiltered).

They also find that the portfolios using the sample correlation matrix had a greater exposure to

short-selling than those using the filtered correlation matrix. However, when short-sale is not

allowed, they find that the realised risk of the portfolios built using the sample correlation matrix

are comparable to those of the other estimators, but they are significantly less diversified. Our

results are similar in that, for short estimation periods, we find significant differences between

the portfolios built using the filtered and sample correlation matrices, which is particularly true

when short-sale is allowed. However, we do not find major differences in the degree of diver-

sification for the different correlation estimators and time windows used, except in the amount

of overexposure to short-selling, which may shed some lights about the possible causes for the

larger risk found in the portfolios built using the sample correlation matrix.
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Chapter 6

A Comparative Study: Regime

Switching Models and

RMT-Filtering

6.1 Introduction

Since the seminal work of Longin and Solnik (2001), who formally established the statistical sig-

nificance of an assymetric correlation phenomenon, large amount of research has been devoted to

the study of this asymmetric behaviour in financial markets. These studies, have been motivated

by the idea that correlations of asset returns are higher during market downturns than during

boom market conditions. An early strand of literature has made use of time-varying volatility

models, such as GARCH-M models with asymmetry to capture this phenomenon (Engle and

Kroner, 1995; Bekaert and Harvey, 1997; DeSantis et al., 1999; Bekaert and Wu, 2000), Jump

Models (Das and Uppal, 2004), where returns are drawn from a bivariate normal to produce

larger downward correlations.

A second strand of the literature on the asymmetric behaviour of correlations makes use of

Regime-Switching (RS) models (Hamilton, 1989). The first of this kind is the RS-Normal Models,
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which mix two different bivariate normal distributions allowing returns to switch between a

regime with lower conditional means, higher volatility, higher correlations and another depicting

normal market conditions of higher positive means, lower volatilities and lower asset correlations.

This model was used by Ang and Bekaert (2002) to examine international asset allocation under

higher correlations with downside moves in country returns. They estimate this model for equity

returns from the US, Germany and the UK and find that international equity returns would seem

to be characterised by two regimes: “a normal regime and a bear market regime, where stock

market returns are, on average, lower and much more volatile than in normal times. Importantly,

in the bear market regime, correlations between various returns are higher than in the normal

regime” (Ang and Bekaert, 2002). The authors find that this model captures a large part of the

asymmetric behaviour of international equity returns of developed countries. A second version of

these models is the RS-GARCH model, which combines elements of the switching behaviour of

pure RS-Normal Models with the volatility persistence of GARCH processes (Engle and Kroner,

1995; Gray, 1996).

The existence of asymmetries in financial correlations is of common knowledge for most re-

searchers and those in the financial industry. However, one of the major difficulties found by

researchers has been the inability to correctly predict sudden changes in correlations. In Ang

and Chen (2002) the performance of the aforementioned models was examined. Of these, they

find the Regime-Switching Normal Model to be the most successful in matching the magnitude

of empirical correlation asymmetries. The authors argue that while Regime-Switching Models

are quite successful in capturing asymmetries in financial correlations, there is still a signifi-

cant amount of asymmetries left unexplained. Hence, in the present study we ask whether the

RMT-filtering approach for asset correlations can improve the performance of minimum variance

portfolios based on the RS-approach introduced by Ang and Chen (2002).

The purpose of this chapter is to investigate the statistical properties of regime-dependent

correlation matrices constructed from stock returns in the FTSE 100 using Random Matrix The-

ory (RMT) and analyse the implications of this for the optimal portfolio weights in standard

Markowitz’s Portfolio Theory and also for Hamilton’s two state regime sensitive portfolio opti-

misation. As we saw in the previous sections, the underlying argument behind the use of the

RMT-filtering is that when we estimate correlation matrices, we usually have too little observa-
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tions compared to the number of parameters in the correlation matrix. This results in estimation

noise, which in turn affects correlation estimates and subsequently, portfolio estimates. We ex-

pect regime-dependent correlation matrices to be afflicted by a similar phenomenon. In this

context, regime-dependent portfolio weights could be improved to yield better risk forecasts and

higher portfolio returns by the same reasoning.

In this chapter, we estimate filtered and unfiltered versions of regime-dependent correlation

matrices, where regimes are driven by the market index and construct a number of portfolio

metrics. We report the following findings; (i) the RMT-based filtering improves the performance

of regime-dependent correlation matrices, in terms of better realised risk estimates and risk-

adjusted measures of returns. However, the source of the improvement comes from filtering

correlations in Regime 1 (low volatility regime). This happens because there is good agreement

between the eigenvalue distribution in Regime 1 and the Marc̆enko-Pastur Distribution. This

allows us to distinguish signals from noise in the eigenvalue spectrum for Regime 1. While this

is true for correlation in Regime 1, correlations for Regime 2 (high volatility regime) are far from

normal, which means that, when contrasted with the Marc̆enko-Pastur, there is significantly more

information, which makes filtering redundant; (ii) these results hold for short estimation windows

and when short-sale is permitted; (iii) we also find that the filtered sample correlation matrix

can be as competitive as any regime-dependent estimator, in terms of realised risk estimates and

risk-adjusted measures of returns; (iv) finally, from an asset allocation perspective, we find that

the filtered regime-dependent correlation estimators deliver more diversified portfolio weights

and also place less resources on Financials than their unfiltered counterparts.

The rest of the chapter is organised as follows: Section 6.2 provides a brief introduction to

Regime-Switching Models and introduce a parsimonious version of the CAPM Model with regime

shifts (Section 6.2.1) and an illustration of the model (Section 6.2.2). Section 6.3 provides an

spectral analysis of the regime-dependent correlation matrices. Section 6.4 defines the correlation

estimators used in our analysis. In Section 6.5, we report our in-sample results by constructing

realised risk forecasts for minimum variance portfolios using a bootstrap approach. Section 6.6

reports the out-of-sample results of our correlation estimators in terms of both, their ability to

correctly predict realised risk of minimum variance portfolios (Section 6.6.1) and also in their

ability to produce portfolios with the highest cumulated returns and risk-adjusted measures
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of returns (Section 6.6.2). Section 6.7 studies the implications of our analysis from an asset

allocation perspective. Finally, in Section 6.8 we provide conclusions and recommendations.

6.2 Regime-Switching Models

As we mentioned in the introduction, the existence of different “regimes” in financial markets has

great implications from an asset allocation perspective. This is so, because the optimal portfolios

during bear markets are substantially different from those of a normal market. As pointed out by

Ang and Bekaert (2002), the benefits of financial diversification dominate the costs of ignoring

the regimes, but a Regime-Switching strategy will out-perform static strategies out-of-sample.

As reported by Hess (2006), Regime-Switching provides valuable timing signals for portfolio

rebalancing. He finds that investors should apply more aggressive portfolio strategies during

market downturns, because these are precisely the moments in which there is great commonality

between assets delivering great losses to investors. This calls for a model that, on the one

hand, can be able to describe the co-movement between assets and, on the other hand, can

capture asymmetries in correlations, especially during market downturns. In Ang and Bekaert

(2002), the Regime-Switching CAPM model was introduced to model asymmetric correlations in

international portfolios. This model was found to provide portfolio decisions based on bull/bear

regimes and asymmetric correlations with inspiring investment insights. In the next section, we

introduce this specification to model regime-dependent correlations and investigate the spectral

properties of regime-dependent correlation matrices with the help of RMT tools.

6.2.1 A Parsimonious RS-Model: The Beta-CAPM

In order to illustrate how the Beta-CAPM works, we assume that the market, which is given

by the returns of the FTSE 100, is the one that switches between regimes and drives all asset

returns. In this context, market returns (in excess of the 1-month Libor rate) are defined as:

yftset = uftset + σftse(st)ε
ftse
t , (6.1)

where uftset is the market expected return and σftse(st)ε
ftse
t is the conditional volatility. In
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this model, these two values are allowed to change depending on the realisation of the regime,

st. The “switch” between the two regimes is governed by a transition probability matrix, char-

acterised by two transition probabilities:

P = p(st = 1/st−1 = 1), (6.2)

Q = p(st = 2/st−1 = 2). (6.3)

If the portfolio manager knows the regime, the expected excess returns for the market index

next period will be either:

eftse1 = Puftse(st+1 = 1) + (1− P )uftse(st+1 = 2), (6.4)

eftse2 = (1−Q)uftse(st+1 = 1) +Quftse(st+1 = 2). (6.5)

In practice, we cannot be certain about which regime we are in and therefore we need to

infer it from the data available at each point in time. We do this by constructing the regime

probability, which is the probability that tomorrow’s regime is the first regime given current and

past information. In this simple model, the information set consists simply on the market returns

data.

The model embeds time-varying volatility for the market return, which consists of two com-

ponents. For example, if the regime today is the first regime, the conditional variance for the

market excess return is given by:

Σftse1 = P (σftse(st+1))2 + (1− P )(σftse(st+1 = 2))2+

+P (1− P )[uftse(st+1 = 2)− uftse(st+1 = 1)]2,

(6.6)
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Σftse2 = (1−Q)(σftse(st+1))2 +Q(σftse(st+1 = 2))2+

+Q(1−Q)[uftse(st+1 = 2)− uftse(st+1 = 1)]2.

(6.7)

The first component in these equations is simply a weighted average of the conditional vari-

ances in the two regimes; the second component is a jump component that arises because the

conditional mean is different across regimes. We model the individual asset excess returns, yjt+1,

using a CAPM-inspired beta model:

yjt+1 = αi + βjuftse(st+1) + βjσftse(st+1)εftset+1 + σ̄jεjt+1 (6.8)

yjt+1 = αj + βjyftset+1 + σ̄jεjt+1 (6.9)

In Equation 6.9, individual returns are modeled as a function of the market index and an

idiosyncratic volatility term. This model is very parsimonious and only requires the estimation of

the index market process, a constant term α, one beta and an idiosyncratic volatility per stock.

With regime switches, this simple model captures time-variation in expected returns, volatility

and correlations, all driven by the market index regime.

In order to derive the expected returns and covariance matrix for stock returns, we introduce

further notation. We first define the covariance matrix, conditional on period t, denoted by

Σi = Σ(st = i) and the vector of excess returns, ei = e(st = i). Given that the mean of

the market index switches between states, the expected excess returns of stock i are given by

αj + βjeftsei for the current regime i, where eftsei are given by Equations 6.6 and 6.7. In matrix

notation, let

α =


α1

...

αN

 and β =


β1

...

βN

.
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Hence, the expected return vector is given by:

ei = α+ βeftsei , i = 1, 2. (6.10)

In Equation 6.9, expected returns differ across individual stocks only through their different

betas with respect to the market index, which is regime dependent. Regarding the regime-

dependent covariance matrix, this has three components (Equation 6.11). The first is an id-

iosyncratic part, captured by the matrix V , which is a matrix that captures variances and

covariances between the error terms for each asset. By doing this, we are assuming that there

are other sources of variation between assets, intra-industry correlations not necessarily driven

by the market index. However, systematic risk is driven by the variance of the market index and

the betas as in any factor model. As the market index next period depends on the realisation of

the regime, we have two possible covariance matrices for the unexpected returns next period:

Ωi = (ββ′)(σftse(st+1 = i))2 + V, i = 1, 2. (6.11)

Finally, the actual covariance matrix takes into account the regime structure, in that it de-

pends on the realisation of the current regime and it adds a jump component to the conditional

covariance matrix, which arises because the conditional means transition between regimes. Con-

sequently, the conditional covariance matrices can be written as:

Σ1 = PΩ1 + (1− P )Ω2 + P (1− P )(e1 − e2)(e1 − e2)′, (6.12)

Σ2 = (1−Q)Ω1 +QΩ2 +Q(1−Q)(e1 − e2)(e1 − e2)′. (6.13)

It is straightforward to show that this model structure implies that the correlations implied

by Ω1, the normal regime, will be lower than the correlations implied by Ω2, the high volatility

regime. This model is estimated in the following steps:

1. We first estimate a Seemingly Unrelated Regression (SUR) Model for stock returns with

respect to the market excess returns and obtain the α’s, β’s coefficient and V .1 These

1The SUR model, initially proposed by Zellner (1962), is a generalisation of a linear regression model that
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coefficients are therefore not regime-dependent, as the model does not allow for asset-

specific regimes.

2. Estimate the market index equation by Maximum Likelihood (MLE) and obtain the un-

conditional parameters (eftse1 , eftse2 , σftse1 , σftse2 , P,Q).

3. We plug the values obtained in (1) and (2), in the equations shown above and we obtain

the regime-dependent covariance matrices.

In what follows, we apply these steps to our data and obtain the regime-dependent covariance

matrices and analyse their properties.

6.2.2 Data Analysis: The Existence of Different Regimes in the FTSE

100 Index

We use the returns of the FTSE 100 Index, covering the period from January 2000 until October

2012. Keeping this in mind, we estimate a two-state Regime Switching Model for the market

index as described in Equation 6.1. Likewise, we estimate the SUR parameters for each individ-

ual stock of our sample and build the regime-dependent covariance matrices of Equations 6.11

and 6.12.2 The results of this exercise are presented in Table 6.1.

Regime 1 Regime 2 Transition Pbs.
µ1 σ1 µ2 σ2 P Q

Estimates 0.81 15.77 -2.02 39.75 0.99 0.98
Std. Errors (0.003) (0.000) (0.012) (0.006) (0.02) (0.01)

Table 6.1: Regime-Switching Estimation for the FTSE Index. All parameters are monthly
and expressed in percentages, except for the transition probabilities P and Q. Whole sample
estimates.

These results provide clear evidence of the existence of an asymmetric behaviour in mean (as

µ1 > µ2) and variance (as σ2
1 < σ2

2) for the FTSE 100 Index. All the coefficients are statistically

consists of several regression equations, each having its own dependent variable and potentially different sets of
exogenous explanatory variables. A special case of this model is when the error terms are assumed to be correlated
across equations. This is estimated by FGLS with a specific form of the variance-covariance matrix and is far
more efficient than estimating each equation separately by OLS.

2In order to make these new results comparable to those of Chapter 5, we use the same 77 stocks used in the
previous analysis.
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significant at 1%. Assuming that the behaviour of individual stocks is driven by the market index,

we should expect this to induce asymmetries in correlation matrices. The expected returns and

standard deviation in Regime 1 are 0.81% and 15.77% per month, respectively. While in Regime

2, these quantities are -2.02% and 39.75% per month. In this case, standard deviations are

signficantly higher than those found in previous studies (for example, Ang and Bekaert (2002)).

Having said this, it is worthwhile noting that these differences are not puzzling since we are

using daily instead of monthly data, hence we should expect to see higher standard deviations

when using data that is sampled more frequently. Nonetheless, this does not change the main

message: “Regime 1 is much more stable than Regime 2, with less volatility and positive returns,

in contrast to Regime 2, which is considerably more volatile and exhibits negative returns”.
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Figure 6.1: Smoothed and Filtered Probabilities for Regime 1 - Whole Sample Estimates (2000-
2012).

We can also see that the transition probabilities P and Q, show that both regimes are highly

persistent. For example, Regime 1 is more persistent than Regime 2. In this case, there is 99%

of probability that the market stays in Regime 1 next period given that it is currently in Regime

1, while there is a 98% of staying in Regime 2 next period given that the process is already in

Regime 2. While these probabilities would appear to be similar, they yield very different results

when calculating the duration of regimes. For example, for Regime 1, the expected duration

is approximately 1/(1 − P ) = 105.6 days (≈ 5 months), while the duration of Regime 2 is
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approximately 1/(1−Q) = 45.09 days (≈ 2 months).3 We also report the regime probabilities,

namely, the filtered and smoothed probabilities. The former is the probability that the regime

next period is the low volatility period regime given current information, while the latter is

the probability that the regime in the next period is the low volatility period given all of the

information available in the data sample, which is calculated backwards by using the filtered and

forecasting probabilities.
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Figure 6.2: FTSE 100 Returns and Index - Whole Sample Estimates.

In Figure 6.1, we show the probabilities of being in Regime 1. For instance, if the filtered

probability is greater than 0.50, we are in Regime 1, otherwise we are in Regime 2. From this

figure, it is easy to see that there were many times where these probabilities have dipped down

from the cut-off of 0.50, hence showing greater probability of being in Regime 2. Keeping this

in mind, by looking at the filtered probabilities, and ignoring short-lived regime changes, we

can identify approximately 4 regimes shifts during the entire sample; A more volatile regime in

2000-2003 followed by a quiet regime in 2003-2007, another volatile period in 2007-2009, which

3The expected duration of Regime 1 is calculated as:
∑∞
k=1 kp

k−1
1 (1−p1) = 1/(1−p1); (see, Hamilton, 1989).
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coincides with the Global Financial Crisis (GFC) and a post-crisis period in 2010-2012.4

It is worthwhile mentioning the reason why we do not use monthly data, which is that given

the total number of stock (N = 77), we would need at least 6 years of data to estimate the models

and we would be left with very few observations to assess the performance of the models out-of-

sample. Even if we could obtain longer data, the FTSE 100 index has changed its composition

over the years, which means that our sample would be significantly reduced. Recall that we are

also interested in assessing the performance of the RMT-filter under different values of the ratio

Q = T/N . The use of daily data also leads us to make the strong assumption that daily regime

probabilities on a given day will remain constant over the evaluation period, which in our case

is 20 days. This latter would not seem to be problematic since regimes are highly persistent.

In Figure 6.2, we can see the returns of the FTSE 100 Index and below the FTSE 100 Index

prices. By comparing these quantities, with those depicted in Figure 6.1, we can see that when

the market is in Regime 2, the FTSE 100 Index returns are mostly negative. This is particularly

true, during the 3rd quarter of 2007. Conversely, large returns are associated with a more stable

regime, such as Regime 1.

Why is this important? The importance of this is that financial correlations exhibit a similar

pattern to that of the market. For example, in Figure 6.3, we plot the distribution of the sample

correlation matrix for the entire sample on a daily rolling window of 250 days. Here we observe

that, in general, correlations are faily positive and that in periods of high volatility, such as during

the Subprime Crisis and the crisis that followed, there was a shift in the distribution towards

the right, that is, higher skewness, as opposed to more tranquil times, where the distribution is

more centered and also with a lower excess of kurtosis. In the next section, we will explore the

spectral properties of the regime-dependent correlation matrices, with the help of RMT tools.

As we will show, similar conclusions can be derived from the analysis that follows.

4Recall that for our analysis we are using daily data. Therefore, we should expect that the use of daily data
will tend to bring more volatility in regime shifts. For this reason, we consider only longer periods of time for the
process to be in a certain regime.
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Figure 6.3: Distribution of the Sample Correlation matrix estimated on a daily rolling window
of length 250 days. Note that the distribution shifts to the right post year 2008.

6.3 Spectral Properties of Regime-Dependent Correlation

Matrices: Combining RMT with MRS

In this section, we analyse the spectral properties of regime-dependent correlation matrices,

constructed as described in Section 6.2.1. In Figure 6.4 we plot the eigenvalue distributions of

the regime-dependent correlation matrices against the Marc̆enko-Pastur Distribution (MP) for

our in-sample period, which uses the first 500 observations. Panel (a) presents the eigenvalue

distribution for Regime 1. Here we observe that the largest eigenvalue is of the order of λ1 = 9.8,

explaining a 12.7% of the total variance of the data. There are three large deviations from

the theoretical upper limit, λ+ = 1.33. In contrast, the eigenvalue distribution for Regime 2

(Panel (b)), exhibits one large deviation at the upper edge of the spectrum, λ1 = 24, which is

considerably larger in magnitude compared to Regime 1, capturing 31.1% of the total variance

of the data. A second observation is that there are more eigenvalues lying outside at the lower

bound of the MP distribution. This property of eigenvalues is known as “eigenvalue repulsion”.
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By eigenvalue repulsion we refer to the dynamics of the small eigenvalues are contrary to those of

the largest eigenvalue.5 For instance, a decrease in the largest eigenvalue, with a corresponding

increase in the small eigenvalues, implies a redistribution of the correlation structure across

more dimensions of the vector space spanned by the correlation matrix. Therefore, additional

eigenvalues are needed to explain the correlation structure of the data. Conversely, when the

correlation structure is dominated by a small number of factors (e.g, the “single-factor model” of

stock returns), the number of eigenvalues needed to describe the correlation structure in the data

is reduced. This means that fewer eigenvalues are needed to describe the correlation structure

of “drawdowns” than that of “draw-ups” (Conlon et al., 2009).
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Figure 6.4: Eigenvalue Distributions by Regime vs. the Marc̆enko-Pastur Distribution.

A Kolgomorov-Smirnov test cannot reject the null that the eigenvalue distribution for Regime

1 belongs to the Marc̆enko-Pastur (MP) Distribution at 10% significance. However, the test

rejects the null for the eigenvalue distribution for Regime 2.6 This means that filtering the corre-

5This is a consequence of the fact that the trace of the correlation matrix must remain constant under trans-
formations and any change in the largest eigenvalue must be reflected by a change in one or more of the other
eigenvalues.

6The Kolgomorov-Smirnov test, is a nonparametric test of the equality of continuous, one-dimensional prob-
ability distributions that can be used to compare a sample with a reference probability distribution. It basically
quantifies the distance between the empirical distribution function of the sample and the cumulative distribution
function of the reference distribution.
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lation matrix in Regime 2 would be redundant, as there is already enough information outside of

the bounds of the MP distribution. This suggests that Regime Switching correlations might be

benefited from using the RMT approach. More especifically, these benefits would come from fil-

tering correlations in Regime 1, where there is a close-form solution for the eigenvalue spectrum,

which is given by the Marc̆enko-Pastur Distribution. In what follows, we explore the impli-

cations of RMT-filtering on regime-dependent correlation matrices in a portfolio optimisation

framework.

6.4 RMT-Based Correlation Estimators

Regarding our correlation estimators, we introduce new notation and propose nine estimators:

• Sample Correlation Matrix: CSAMP .

• Filtered Sample Correlation Matrix - Method 1: CSAMP−RMT1 (Plerou et al., 2002).

• Filtered Sample Correlation Matrix - Method 2: CSAMP−RMT2 (Laloux et al., 2000)

• CAPM-based Correlation Matrix: CCAPM .

• Filtered CAPM-based Correlation Matrix - Method 1: CCAPM−RMT1.

• Filtered CAPM-based Correlation Matrix - Method 2: CCAPM−RMT2.

• Regime Switching Correlation Matrix: CRS .

• Regime Switching Correlation Matrix - Method 1: CRS−RMT1.

• Regime Switching Correlation Matrix - Method 2: CRS−RMT2.

The first three estimators are those used in Chapter 5, where we estimated the effects of

the RMT-filtering on the sample correlation matrix. The fourth and the seventh estimators

are the CAPM-based estimator and the Regime Switching estimator (MS), respectively and

their filtered versions. In a portfolio optimisation context, the RS correlation estimator works

as follows: First, we estimate the regime-dependent correlation matrices based on the model

described in Section 6.2.1. Second, we take the filtered probabilities at the end of the in-sample
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period and compare it to a cut-off point of 0.5. If the filtered probability is greater than 0.5, then

we classify next period as Regime 1, otherwise we classify it as Regime 2. From this decision rule,

we use either of the regime-dependent correlation matrices as input for portfolio optimisation.

6.5 In-Sample Analysis

For the in-sample testing, we use the first 500 observations of our sample and follow the methodol-

ogy introduced in Section 3.4.1. This analysis consisted in taking bootstrapped samples, together

with the mean across these samples. That is, for a given number of stocks, we randomly select

a test date t and estimate everything up to t and everything afterwards is regarded as realised

future information.7 We repeat this exercise 1000 times, with replacement and calculate the

mean, across all bootstrapped samples of the statistic γ, which is the ratio between the realised

portfolio risk and the predicted risk of minimum variance portfolios. This metric will gauge how

close our predictions are from the realised ones. For the purpose of this chapter, we will test the

in-sample performance of three correlation estimators; the unfiltered regime-switching correla-

tion estimator (CMS), the filtered regime-switching correlation estimator, using the method of

Plerou et al. (2002) (CRS−RMT1) and the filtered regime-switching correlation estimator, using

the method of Laloux et al. (2000) (CRS−RMT2). For these cases, the RMT-filtering is only

applied to the low volatility regime (Regime 1).8

The results of this exercise are depicted in Figure 6.5.9 A first observation is that the RMT-

filtering delivers much better realised risk estimates than its unfiltered version. This is especially

true for short estimation windows. However, in contrast to the case when the sample correlation

matrix is filtered, both the filtered and unfiltered regime-dependent correlation matrices require

in general more observations to deliver better risk estimates. This happens because longer

estimation windows allow for a better identification of regimes, whereas short estimation windows

will tend to make the wrong bet when estimating the filtered probabilities. In general, the benefits

of filtering would seem to persist over the in-sample period, for values of Q, within the interval

7For this particular case, we leave an horizon window of 20 business days.
8It is worthwhile mentioning that the present study is mainly focused on correlation modeling, therefore,

individual variances are assumed to be known and are the same across correlation estimators.
9For the present analysis, we allow for short-sale by limiting weights to be no bigger than 100% on any asset

and to “go short” on a 150%.
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Figure 6.5: Mean Bootstrapped (in-sample) for the ratio of realised to predicted risk, for the

filtered regime-dependent correlation matrices, γ̄f =
Ωfr

Ωf
, compared to the unfiltered approach,

γ̄u = Ωur

Ωu
, as a function of Q = T/N . Notice that filtering is most effective for low values of Q.

[1.30, 5]. For values above 5, we still get some improvements, but these are not sizeable. A

second observation is that both filtering methods deliver similar realised risk estimates. While

differences are not noticeable with the naked eye, the filtering method 2 (Laloux et al., 2000)

delivers slightly better realised risk estimates.

6.6 Out-of-Sample Analysis

For the out-of-sample analysis, we follow the methodology described in Section 3.4.2. Similar

to Chapter 5, we split the sample in two subperiods. The first subperiod, that we used in the

previous section for the in-sample analysis covers the period from 04/01/00 until 30/11/01 (≈

500 observations), while the second subperiod is the evaluation period, which starts in 04/12/01

until 25/09/12 (≈ 2820 observations). As explained in Section 3.4.2, for every test date t′, we

consider portfolios that were invested before t′ − tf , or on that date, where tf is the investment

period (in this case, 20 business days). That is, we estimate the portfolio variance at a given

month and compare it to the realised variance on that month, which is calculated as the sample

covariance of the realised returns over the investment horizon (tf = 20 days).
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As we saw in Section 6.5, the optimal value of Q falls within the interval Q = T/N ∈ [1.3, 5],

with the RMT-filtering performing the best for low values of Q, whereas for larger values, these

benefits would tend to taper. An estimation window of 250 days, given a fixed number of

assets, N = 77, is consistent with a value of Q = 3.24, which is exactly in the middle of the

aforementioned interval, while an estimation window of 500 days is consistent with Q = 6.49,

well outside this interval. We expect the model to favour short over long estimation windows.

As opposed to most studies in the literature, we estimate our models with short-sale constraints.

We think that this provides a more realistic setting as short-sale is not always allowed in financial

markets stemming from the increase in risk that brings to portfolios. Alternatively, we also allow

for short-sale, however, none of the estimated portfolios ever took an extreme position.10 All

these models use the first subperiod (01/04/00 until 12/31/02 ≈ 500 observations) as initial

training period. Subsequent retraining is done on a monthly basis.

6.6.1 Realised Risk Estimates

In Table 6.2, we report our realised risk estimates, using the performance metrics defined in

Section 3.4.2 with short-sale constraints (Columns 2-5). Here we observe that there are no

major improvements in realised risk estimates by using the RMT-filtering on regime-dependent

correlation matrices. In most cases, estimates are only slightly better when applying the RMT-

filter. This is consistent with the findings of Chapter 5, where we reported that there were no

significant gains from filtering the sample correlation matrix when short-sale constraints are in

place.

When short-sale is allowed (Columns 6-9) we observe that there are great improvements in

realised risk estimates. In general, the filtered regime-dependent correlation matrices deliver the

best realised risk estimates, the lowest volatility of prediction (MSE) and also the best prediction

accuracy. For instance, when using CRS−F1−250, we obtain a ratio γ̄ = 1.44 and MSE of 0.21,

when compared to the unfiltered regime-dependent correlation matrix, CRS−250, which yields

γ̄ = 1.64 and MSE of 0.27. Similar to the case of the sample correlation matrix, as we increase

the estimation window to 500, the benefits of filtering become less evident. An interesting

10We refer to extreme positions to those portfolios that place all the weight on one or very few stocks. Also,
similar to the in-sample analysis, when allowing for short-sale we limit our weights to be no bigger than 100% on
any asset and to “go short” on a 150%.
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No short-sale Short-sale
Model Ωest Ωreal MSE x 10−2 γ̄ Ωest Ωreal MSE x 10−2 γ̄

CSAMP−250 0.106 0.112 0.068 1.055 0.063 0.108 0.310 1.689
CSAMP−F1−250 0.106 0.111 0.062 1.042 0.069 0.101 0.200 1.407
CSAMP−F2−250 0.101 0.113 0.079 1.121 0.068 0.099 0.190 1.408
CCAPM−250 0.106 0.112 0.068 1.054 0.063 0.108 0.310 1.690
CCAPM−F1−250 0.106 0.111 0.061 1.042 0.069 0.101 0.200 1.408
CCAPM−F2−250 0.109 0.112 0.068 1.016 0.085 0.098 0.069 1.131
CRS−250 0.106 0.112 0.055 1.069 0.064 0.106 0.270 1.640
CRS−F1−250 0.107 0.111 0.050 1.052 0.069 0.101 0.210 1.441
CRS−F2−250 0.104 0.112 0.060 1.100 0.068 0.100 0.200 1.446

CSAMP−500 0.106 0.111 0.057 1.028 0.071 0.100 0.150 1.390
CSAMP−F1−500 0.107 0.110 0.053 1.016 0.073 0.100 0.160 1.339
CSAMP−F2−500 0.103 0.111 0.063 1.070 0.072 0.098 0.140 1.324
CCAPM−500 0.106 0.111 0.057 1.028 0.071 0.100 0.150 1.390
CCAPM−F1−500 0.108 0.110 0.052 1.016 0.073 0.100 0.160 1.339
CCAPM−F2−500 0.111 0.111 0.060 0.989 0.088 0.097 0.058 1.090
CRS−500 0.105 0.110 0.052 1.063 0.071 0.099 0.150 1.369
CRS−F1−500 0.106 0.110 0.490 1.049 0.073 0.097 0.130 1.309
CRS−F2−500 0.104 0.110 0.567 1.081 0.072 0.097 0.130 1.309

Table 6.2: Out-of-sample Estimates of the realised risk of minimum variance portfolios. Notice
that the filtered correlation matrices provide the lowest average realised risk and the best realised
risk forecast in all cases, when short-sale is allowed.

observation is that the filtered versions of the sample and CAPM-based correlation estimators

can be as competitive as the filtered RS-based correlation estimators. An example of this, is that

CSAMP−RMT1−250 delivers a ratio γ̄ = 1.40 very close to 1.44, delivered by CRS−RMT1−250.

This suggests that the benefits of the RMT-filtering are larger for the sample correlation matrix

than for the regime-dependent correlation estimators.

6.6.2 Risk-Adjusted Returns Estimates

In Table 6.3 we report results on the out-of-sample performance of the models in terms of their

cumulated wealth and risk-adjusted measures. These portfolio strategies are associated to the risk

performance measures calculated above. Here we observe that, when short-sale is not permitted,

the filtered regime-dependent correlation estimators deliver relatively similar cumulated returns

and only slightly better risk adjusted measures than their unfiltered counterparts.

In contrast, when we allow for short-sale we observe that the filtered RS-based correlation

estimators deliver the highest cumulated returns (£3.32-£3.31) and the highest Sharpe ratio
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No short-sale Short-sale
Model Cum.Ret Sharpe Sortino Omega Cum.Ret Sharpe Sortino Omega

CSAMP − 250 2.119 0.172 0.147 1.333 2.356 0.209 0.211 1.439
CSAMP−RMT1 − 250 2.115 0.170 0.143 1.335 2.899 0.285 0.327 1.716
CSAMP−RMT2 − 250 2.104 0.169 0.144 1.335 2.888 0.283 0.320 1.715
CCAPM − 250 2.118 0.172 0.147 1.333 2.356 0.209 0.211 1.439
CCAPM−RMT1 − 250 2.115 0.170 0.143 1.335 2.905 0.286 0.328 1.719
CCAPM−RMT2 − 250 2.170 0.180 0.154 1.358 2.775 0.275 0.296 1.671
CRS − 250 2.054 0.163 0.132 1.314 2.546 0.230 0.238 1.512
CRS−RMT1 − 250 2.078 0.166 0.136 1.322 3.321 0.319 0.401 1.882
CRS−RMT2 − 250 2.041 0.163 0.131 1.311 3.317 0.320 0.396 1.881

CSAMP − 500 2.091 0.171 0.144 1.323 2.038 0.185 0.161 1.332
CSAMP−RMT1 − 500 2.103 0.167 0.140 1.327 2.666 0.255 0.276 1.604
CSAMP−RMT2 − 500 2.157 0.173 0.150 1.344 2.767 0.261 0.288 1.634
CCAPM − 500 2.090 0.171 0.144 1.323 2.038 0.185 0.161 1.332
CCAPM−RMT1 − 500 2.103 0.167 0.140 1.327 2.666 0.255 0.276 1.604
CCAPM−RMT2 − 500 2.214 0.182 0.159 1.366 2.763 0.265 0.283 1.638
CRS − 500 2.023 0.161 0.129 1.297 2.135 0.194 0.174 1.369
CRS−RMT1 − 500 2.038 0.162 0.132 1.304 2.559 0.252 0.271 1.569
CRS−RMT2 − 500 2.031 0.162 0.130 1.300 2.630 0.259 0.280 1.597

Table 6.3: Cumulated Wealth at the end of the out-of-sample period and Sharpe Ratios using
the filtered and unfiltered correlation matrices for different window lengths. We estimate the
filtered versions of the sample correlation matrix, the CAPM-Based correlation matrix and the
Regime Switching versions for Minimum Variance Portfolios.
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(0.310-0.320), when compared to any of the other strategy. This represents an improvement of

30% in total cumulated wealth, for the RS-based correlation estimator and 23%-17.7% for the

sample and CAPM-based correlation estimators, respectively. Taking into account that these

portfolios could be worth millions of pounds, these improvements are sizeable. We also find that

the filtered portfolios, in general, exhibit lower downside volatility (e.g., less “bad volatility”,

higher Sortino Ratio) and most of this volatility is in the upside (e.g., more “good volatility”,

higher Omega Ratio). In this case, the filtered RS-based correlation estimator is the clear winner

by delivering strategies with the lowest downside volatility, measured by its Sortino ratio. These

results are robust across correlation estimators and different filtering methods. In particular, the

models filtered using the method of Plerou et al. (2002) (Method 2), tend to perform better than

the method used in Laloux et al. (2000) (Method 1).

In Figure 6.6, we plot the cumulated wealth delivered by our correlation models. Here we

can see that the filtered RS-based correlation estimators deliver the highest cumulated wealth

compared to any other unfiltered strategy.

6.7 Implications for Asset Allocation

As we have shown so far, the filtered correlation estimators deliver the highest cumulated returns

and risk-adjusted measures. In this section, we ask what are the industry sectors privileged by

our correlation estimators. This is with no doubts a very important question, since we are mainly

interested in understanding how the previous analysis can be translated into an asset allocation

context. For doing this, we group portfolio weights delivered in each optimisation round by

industry sectors; Basic Materials (BM), Industrials (IND), Financials (FIN), Consumer Goods

(C.G), Consumer Services (C.SS), Health (HE), Oil & Gas (O&G), Telecommunications (TEL)

and Technology (TECH).11

In Table 6.4, we provide the average weights delivered by our correlation estimators over

the out-of-sample period (from 01/02/03 until 10/16/12), using an estimation window of 250

11We use the Industry Classification Benchmark (ICB), which is an industry classification taxonomy launched
by Dow Jones and FTSE in 2005 and now owned solely by FTSE International. It is used to segregate markets
into sectors within the macroeconomy. The ICB uses a system of 10 industries, partitioned into 19 supersectors,
which are further divided into 41 sectors, which then contain 114 subsectors. In the present analysis, we use the
most general, which comprises 10 industries.
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Figure 6.6: Cumulated Wealth at the end of the out-of-sample period for different estimation
windows, with and without short-sale.
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Model BM IND FIN C.G C.SS HE O&G UT TEL TECH

CSAMP 0.019 0.189 0.164 0.095 0.261 0.071 0.059 0.111 0.025 0.006
CSAMP−RMT1 0.006 0.198 0.077 0.115 0.298 0.082 0.073 0.128 0.012 0.011
CSAMP−RMT2 0.016 0.201 0.059 0.118 0.316 0.091 0.060 0.122 0.010 0.009
CCAPM 0.019 0.189 0.164 0.095 0.261 0.071 0.059 0.111 0.025 0.006
CCAPM−RMT1 0.006 0.197 0.077 0.116 0.298 0.082 0.073 0.129 0.012 0.011
CCAPM−RMT2 0.012 0.182 0.059 0.129 0.308 0.092 0.057 0.140 0.013 0.008
CRS 0.021 0.188 0.168 0.092 0.263 0.068 0.056 0.113 0.025 0.006
CRS1 0.024 0.183 0.158 0.101 0.268 0.076 0.057 0.108 0.021 0.004
CRS2 0.015 0.198 0.191 0.073 0.251 0.050 0.053 0.125 0.034 0.012
CRS−RMT1 0.015 0.190 0.126 0.097 0.275 0.076 0.070 0.119 0.019 0.012
CRS1−RMT1 0.016 0.186 0.098 0.108 0.285 0.088 0.077 0.116 0.012 0.013
CRS−RMT2 0.020 0.192 0.115 0.100 0.288 0.082 0.061 0.115 0.018 0.010
CRS1−RMT2 0.022 0.189 0.081 0.112 0.305 0.096 0.064 0.110 0.012 0.009

Table 6.4: Average Composition of minimum variance portfolios for all correlation estimators,
using an estimation window of length 250. Short-sale allowed.

days (short-sale permitted). Here we observe that portfolios weights are relatively similar across

estimators. In general, portfolios weights are mainly concentrated in Consumer Services (C.SS),

followed by Industrial (IND) and Financials (FIN). Regarding the filtered correlation estimators,

these tend to place less emphasis on financials and distribute more evenly the weights across

industries. In the same line, the filtered sample correlation matrix would seem to apply a similar

strategy to the regime-dependent correlation matrices, by investing less in Financials and placing

more resources on Utilities and Consumer Goods.

6.8 Concluding Remarks

In the present study, we apply Random Matrix Theory-based filtering to regime-dependent cor-

relation estimators as of Ang and Bekaert (2004), for a large dimensional system, using daily

records of 77 stocks of the FTSE 100, covering the period 2000-2012. To these models, we ap-

plied the RMT-filtering using two methods, the one of Plerou et al. (2002) (Method 1) and the

one of Laloux et al. (2000) (Method 2) and then built minimum variance portfolios in the spirit

of Markowitz Portfolio Theory (MPT). We also assess the performance of these models based

on the cumulated wealth at the end of the period and risk-adjusted measures of returns. Our
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findings can be summarised as follows:

• In terms of applicability of the filter in a Regime Switching context, we find that the

spectrum in Regime 1 (low volatility regime), can be fitted relatively well by the Marc̆enko-

Pastur Distribution, which allows us to distinguish signals from noise in the correlation

matrix for Regime 1. In this context, filtering is only applied to the correlation matrix of

Regime 1. Recall that the Marc̆enko-Pastur Distribution is based on the assumption of

normality of returns. While this may be true for Regime 1, returns for Regime 2 are far

from being normal.

• In terms of cumulated returns, we find that the RMT-filtering enhances the performance

of portfolio returns in 30% for the regime-dependent correlations and 23%-17.7%, for the

CAPM-based and sample correlation estimators, respectively. In addition, the filtered

regime-dependent correlation estimators are able to deal better with downside risk than

their unfiltered version, with more volatility in the upside than in the downside.

• We also find that the RMT-based filtering works best for short estimation windows and

when short-sale is permitted.

• These results are robust to both filtering methods. In particular, the method of Plerou

et al. (2002) (Method 1) delivers better cumulated returns than the method of Laloux et al.

(2000) (Method 2) across estimators.

• Finally, from an asset allocation perspective, we find that the success of the filtered regime-

dependent correlation estimators comes from their ability to deliver more diversified port-

folios and also by placing less resources on Financials. This finding is common to all filtered

correlation estimators.

To conclude, the present study puts in evidence the importance of filtering methods in bring-

ing greater stability in the eigenvalue spectrum for the case of regime-dependent correlation

models. We have shown that even when we use estimated correlation matrices, rather than

historical correlation matrices, the RMT-filtering can still enhance the performance of our port-

folios.
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Chapter 7

An Application of RMT to an
Emerging Market Published as: “Separating the Wheat

from the Chaff: Understanding Portfolio Returns in an Emerging Market”(2013) (With

Dalibor S. Eterovic). Emerging Markets Review, vol. 16, issue C, pages 145-169.

7.1 Introduction

The present chapter applies some results of Random Matrix Theory (RMT) to the Chilean Stock

Market. Two questions frame our investigation. First, we ask if all the return correlations across

the Chilean stock market are equally statistically significant. Second, we ask which are the main

macroeconomic drivers affecting the Chilean stock market returns. To answer these questions,

we use Random Matrix Theory (RMT) to study the daily returns of 83 Chilean stocks that are

part of the IPSA and IGPA indices from January 2000 to January 2011. The RMT helps us to

separate the wheat from the chaff in the correlation matrix. Using Markowitz’s Portfolio Theory

(MPT), we compare the efficiency of portfolios constructed under RMT with others constructed

under the standard approach which considers all covariances in the correlation matrix equally

significant. Finally, we use a Vector Autorregresion approach (VAR) to determine the impact

of a set of macroeconomic and financial variables on the optimal portfolios derived from our

significant eigenvalues.

We focus on the Chilean stock market as we think provides a good case study for other

emerging markets due to a number of reasons. First, the Chilean equity market is one of the most

developed within the emerging market world with a market capitalisation of 120% of its GDP.
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Other markets such as the Brazilian one have much lower market capitalisations as percentage

of their GDP (58%) while Mexico has a market capitalisation of 39% of GDP. Second, Chile

is a small open economy with almost no restrictions to the access of international investors.

Therefore, both idiosyncratic and global factors are likely to be important determinants of the

stock market returns. Assessing the relative importance of domestic versus international factors

in explaining domestic market volatility is key for developing public policy and market regulation

in other emerging economies that are following the path of financial liberalisation.

Our main findings can be summarised as follows: First, applying Random Matrix Theory

to a portfolio composed of Chilean equities improves its efficiency compared to a portfolio con-

structed using a standard MPT approach by at least 48%.1 Second, using VAR analysis, we

identify global risk aversion as the main macroeconomic determinant of the Chilean equity mar-

ket returns, followed in importance by shocks to the monthly rate of inflation and the country’s

monetary policy rate. Third, it is possible to diversify away some of the market portfolio risk

by adding positions on the portfolios constructed by the second and third largest eigenvalues.

Fourth, the three smallest eigenvalues produce portfolio returns that are mostly uncorrelated

with macroeconomic shocks. These portfolios are also uncorrelated with the market portfolio.

Finally, we show that the insights provided by the RMT approach can help us to improve some

existing models of the MV-GARCH literature, with significant improvements in realised risk

predictions.

This chapter contributes to the academic literature in two important ways. First, by applying

RMT to the Chilean stock market we provide further evidence of the benefits of using this

technique in building efficient portfolios. Second, to the best of our knowledge we are one

of the first to explore the relationship between macroeconomic variables and portfolio returns

constructed using statistically significant correlations. The rest of the chapter is organised as

follows. In Section 7.2, we provide an eigenvalue analysis of the Chilean Stock Market, while

in Section 7.3, we apply the RMT notions in a Markowitz’s portfolios framework to improve

portfolio risk estimates. In Section 7.4, we look for the macroeconomic and financial drivers of

stock returns. Finally, in Section 7.5, we conclude and propose lines for future research.

1Throughout this chapter, efficiency is measured by the Mean Percentage Error, which measures how close the
risk of our portfolios are from the “true” realised risk. This is an average result over the sample analysed in the
most restrictive scenario, that is, without allowing for a “short-sale” strategy.
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7.2 Eigenvalue Analysis for the Chilean Stock Market

Here we apply the same analysis of Chapter 4 to 83 records of Chilean stocks, using daily data

for the year 2005.2 We therefore have T = 260 and N = 83, which implies Q = T/N = 3.132.

We then construct the correlation matrix C2005 based on the average time-series returns

and normalised variance equal to 1. Using Equation 3.7 from Chapter 3, we obtain the upper

and lower bounds of the theoretical Marc̆enko-Pastur (MP) distribution. In this case, we have

λ+ = 2.4492 and λ− = 0.1892.

Similarly, we generate a Wishart correlation matrix R composed by cross-correlations of

mutually independent returns. We then plot the Marc̆enko-Pastur density of the eigenvalues for

10000 trials and compare it with the eigenvalue density of the sample correlation matrix C2005.

The results of this exercise are presented in figure 7.1.
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Figure 7.1: Eigenvalue Distribution of the Sample Correlation Matrix vs. The Marc̆enko-Pastur
Distribution. Year 2005

As expected, the majority of the eigenvalues lie within the bounds of the MP distribution.

However, there are obvious deviations from the RMT predictions. The largest eigenvalue is well

above the maximum predicted by the RMT (λ+ = 2.4492). This value as well as the remaining

deviating eigenvalues, are the ones that are expected to carry economically relevant information,

2Thoughout the chapter, we will be using these 83 stocks for every year of the sample (2000-2010). The
selection of these stocks was based on two criteria: (i) their availability over the entire sample, which allows to
make reliable comparisons and (ii) were the most frequently traded.
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while those within the distribution bounds can be considered just noise.

For 2005, there are two large deviations from the upper bound predicted by the RMT, λ1 =

7.4196 and λ2 = 2.5942. We also find three clear deviations in the lower bound of the MP

distribution, λ83 = 0.1419, λ82 = 0.1543 and λ81 = 0.1572. As we mentioned in Section 4.2, from

a portfolio management perspective, the list of eigenvalues can be seen as different levels of risk

of a certain portfolio. Likewise, the eigenvector components associated to each eigenvalues can

be regarded as the weights of the different stocks in a certain portfolio. In figure 7.2 (panel (a)

and (b)), we plot the components corresponding to the eigenvector 1 and 2 from the two largest

eigenvalues.
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Figure 7.2: Eigenvector Components of the Two Largest Eigenvalues: Year 2005.

In figure 7.2 we observe that most of these components are positive and contribute in a

similar way to the eigenvectors. This suggests a strong collective behaviour of stocks. From a

portfolio perspective, eigenvector components can be seen as the weights of the different stocks in

a certain portfolio, where some stocks are long while others are short. In this line, the eigenvalue

λ1 represents the risk of the market portfolio. In general, large eigenvalues correspond to a mix

of risky assets.

In stock markets, the largest eigenvalue corresponds to the risk of a portfolio whose weights

are the same for each assets. There is no diversification on this portfolio: the only bet is whether

the market as a whole goes up or down, this is why the risk is large. Conversely, if two stocks move

very tightly together (e.g., Coca-Cola and Pepsi), then buying one and selling the other leads to
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a portfolio that hardly moves, being only sensitive to events that strongly differentiate the two

companies (Bouchaud and Potters, 2009). In order to prove this latter point, we construct a time-

series using the weights contained in the largest eigenvector u1 using Equation 4.1, G1
t ,

3 which

defines the principal components associated to the largest eigenvalue. This principal component

is then normalised and we run an OLS regression against the normalised returns of the market

index Gipsat , represented by the Indice de Precios Selectivo de Acciones (IPSA), which is the

market index that measures the price variations of the 40 most traded stocks.4

We plot the results of this regression in figure 7.2 (panel (c)). We observe that there is a

clear linear and positive relationship between the returns G1
t and Gipsat , with a strong correlation

coefficient< Gipsat G1
t >= 0.8977. From this, we can therefore conclude that the largest eigenvalue

corresponds to the risk of the market mode. We repeat the same exercise for the smallest

eigenvector u83. We plot the correlation coefficients in figure 7.3.
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Figure 7.3: Eigenvector Components of the Two Smallest Eigenvalues: Year 2005.

From a portfolio perspective, the smallest eigenvalue determines the least risky portfolio one

can build. This can be corroborated by the nearly zero beta coefficient of the regression against

the market index. This in turn implies that the portfolio constructed from the smallest eigen-

values is almost totally immune to the systematic risk emanating from the collective behaviour

of stocks represented by the largest eigenvalue.

Figure 7.3 plots the eigenvector components corresponding to the smallest eigenvalues, λ83

3G1
t =

∑n
j=1 u

1
jGj(t).

4Due to their high correlation, using the IGPA would not change the results.
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and λ82. Here we can see that the eigenvector corresponding to the smallest eigenvalue exhibits

clear preference for some pairs of stocks with the highest correlations. Finally, we plot the

eigenvector components of two eigenvalues inside the bounds of the MP distribution in figure 7.4.

As we mentioned above, the eigenvalues inside of the bulk of the MP distribution are assumed

to be random and therefore should carry no economically relevant information. This appears to

be the case, as the eigenvector components for both cases, do not seem to show major preferences

for any stocks. Overall, our results are in line with the findings of most of the existing literature

on the subject (Laloux et al., 1999, 2000; Plerou et al., 1999, 2000a,b; Gopikrishnan et al., 2001;

Plerou et al., 2001, 2002; Bouchaud and Potters, 2009). In the next section, we look deeper into

the significant eigenvalues and identify the individual stocks that participate in each of them.
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Figure 7.4: Eigenvector Components of Two Eigenvalues Inside of the Bulk: Year 2005.

The Number of Significant Components in the Deviating Eigenvectors

As in Chapter 4, we quantify the number of components that participate significantly in each

eigenvector by using the Inverse Participation Ratio (IPR), which quantifies the reciprocal of

the number of eigenvector components that contribute significantly (see, Section 7.2).

In this case, we have that the eigenvector associated to the largest eigenvalue has a IPR1 =

0.0287, which implies that we have PR1 = 34.86 ≈ 35 significant stocks in the largest eigenvector.

This is a very important result, which together with the high correlation of the first principal

component with the market returns of IPSA index, is basically telling us that most of the
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volatility of the IPSA-IGPA index is driven by these 35 stocks. The significant firms in the

largest eigenvector are presented in Table B in Appendix B of this chapter. By inspecting the

largest eigenvector we can see that it has very strong components in the mining sector, with

companies such as SQM-A, Oro Blanco and CalicheraA; energy sector, in companies such as

Enersis and Endesa, as well as in the retail sector represented by Falabella. Also very important

is the contribution of the food and beverage industry, represented by firms such as Andina A

and B, CCU, San Pedro and Conchatoro. In general, the largest eigenvector appears to include

most sectors of the Chilean stock market.

Regarding the rest of the deviating eigenvectors, the interpretation of their meaning is not

as straightforward as in the former case. This is so because the largest eigenvalue is of order

of magnitude larger than the others, hence constraining the remaining N − 1 since TrC = N .

Therefore, in order to avoid the effect of the largest eigenvalue, we first need to remove it

from the rest. For doing this, we regress, G1(t), calculated in Section 7.2, against each return

and compute the residuals εi(t). Then, we calculate again the correlation matrix using εi(t)

and compute the eigenvectors uk of C. The number of significant participants in the second

largest eigenvector for the year 2005, can be found in Table B.2b. In this case we have PR2 ≈

15 significant components with strong emphasis in the mining sector with companies such as

CalicheraA, Oro Blanco and SQM-A/B, in the energy and combustibles sector, with companies

like ECL, Colbun and COPEC as well as in the forest and agro-industrial sector with companies

like CMPC, IANSA and Campos. Also, the removal of the first component allowed to identify

a third deviating eigenvalue in the upper bound, with PR3 ≈ 28, with again strong weights on

the mining, energy and banking and investment sectors.

Finally, the smallest eigenvectors, each has PR83 ≈ 24 and PR82 ≈ 24 significant partici-

pants. Recall that these eigenvectors determine the least risky portfolios of stocks one can build

when using the Markowitz Portfolio Theory (MPT). Typically, it has been found in the literature

that the components in the smallest eigenvectors represent a very small number of stocks with

large correlations.5 As we can see in Table B.2b, this is not the case for the Chilean stock market.

For the smallest eigenvector, u83, although, we do find strong negative correlations between some

5See, Laloux et al. (1999, 2000); Plerou et al. (2000a); Gopikrishnan et al. (2001); Plerou et al. (2002); Bouchaud
and Potters (2009).
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pairs of stocks, instead of finding a small portfolio we rather find a quite diversified portfolio of

stocks composed by a mix of sectors, with strong preferences for stocks in the food and beverage

industry, metal-mechanic industry, investment and real estate and to a lower extent mining. The

portfolio composed by these stocks has a correlation with the IPSA, < G2005
83 Gipsa >= −0.0081.

Regarding the second smallest eigenvalue (not shown), u82, we notice it has strong weights again

in the food and beverage, mining, energy sectors and to a lower extend on public services and

private pension funds (AFPs). Therefore, the results for the Chilean equity market are differ-

ent to what has been found in the literature for the U.S, where the portfolios defined by the

smallest eigenvector contain very few stocks with very large negative correlations. A similar phe-

nomenon has nonetheless been found in recent literature on emerging markets (Pan and Sinha,

2007), where there is a tendency for relatively weak intra-sector interactions between stocks. In

this context, the emergence of an internal structure of multiple groups of strongly correlated

components would be sign of market development.

7.3 Portfolio Analysis for the Chilean Stock Market

The underlying randomness contained in the “bulk” of eigenvalues seen in Section 7.2 has im-

portant implications in optimal portfolio selection. In the context of a Markowitz’s optimal

portfolio theory, the effect of noise has a strong weight on the smallest eigenvalues, which are

precisely those that determine the least risky portfolios. This is why the Random Matrix Ap-

proach allows reconciling the mean-variance approach of Markowitz as a tool for providing better

risk predictions.

7.3.1 Noise Filtering Using the Sample Correlation Matrix

To find the effect of randomness of C on the selected optimal portfolio, we carry out our analysis

for the years 2005-2006. We first calculate the sample correlation matrix C2005 and using the

returns Gi for 2006, we construct a family of 100 optimal portfolios, and plot Φ as a function of

the predicted risk Ω2
p for 2006. For this family of portfolios, we also compute the realised risk Ω2

r

during 2006 using C2006. We do this in order to compare the performance of the RMT approach

isolated from any additional source of noise that could arise, for example, in case we had to make
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a forecast of returns.

Since the meaningful information in C is contained in the deviating eigenvectors (whose

eigenvalues are outside of the RMT bounds), we use the filtering approach carried out in the

study of Plerou et al. (2002). They construct the filtered matrix Cf , by retaining only the

deviating eigenvectors, using the eigenvector decomposition C = V ΛV −1, where V contains

the eigenvectors and Λ is a diagonal matrix containing the eigenvalues. Plerou et al. (2002)

construct the filtered matrix Cf , by setting a new diagonal matrix Λf , with elements Λfii =

(0, .., 0, 0, ., 0, λ2, λ1). Then they transform Λf back to the basis of C, resulting in the filtered

sample correlation matrix Cf .6. In addition, they set the diagonal elements Cfii = 1, to preserve

Tr(C) = Tr(Cf ) = N . We use this filtering technique and we repeat the above approach for

finding the optimal portfolio using Cf instead of C. We plot the efficient frontiers for both

approaches, for the filtered and unfiltered matrices, in figure 7.5.7
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Figure 7.5: Efficient Frontier during 2006.

6The reason why the smallest deviating eigenvalues are not considered in these filters is that while large
eigenvalues are clearly separated from the RMT bounds, the same does not always applies for the smallest
deviating eigenvalues. In general, small eigenvalues can be found outside of the lower edge of the spectrum, which
is consistent with the fact that the length of the time-series T and the number of assets N are finite. In addition
to this, by simple inspection of the eigenvectors associated to the largest eigenvalues, clear non-randomness, and
stability over time has been verified, while this has not been verified in the eigenvectors associated to the smallest
deviating eigenvalues.

7For this example, we also allow for “short-sale”. Although, “short-selling” is not always possible as increases
the risk of the portfolio.
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In order to measure the relative performance of the filtered portfolios vs. the unfiltered ones,

we calculate the difference between both curves by using the Mean Average Percentage Error

(MAPE), defined as:

MAPE =
1

n

N∑
i=1

∣∣∣∣Ω2
i r − Ω2

i p

Ω2
i p

∣∣∣∣ (7.1)

In this case, we have that the unfiltered approach, which uses the sample correlation matrix,

underestimates realised risk in 28%, while when using the RMT approach it only underestimates

realised risk in 16%. There is certainly a sharp contrast between the use of the filtered and

unfiltered matrices, with the filtered matrix performing far better than the unfiltered matrix for

forecasting portfolio risk.

In this context, also an interesting question would be to assess how the filtered approach

performs relative to the unfiltered one, during different volatility regimes in the stock market.

To do this, we apply the methodologies presented in Chapter 5, Section 5.2 to consecutive one-

year periods from 2000-2001 to 2009-2010 in Table 7.1. In columns (1)-(2) we compare the MAPE

using the filtered and sample correlation matrix, not allowing for “short sale”, while in columns

(3)-(4) we compare again both approaches, but this time allowing for “short-sale”. Finally, in

columns (5) and (6) we present the volatility of the IPSA calculated as the mean of the absolute

value of returns for the predicted year and the VIX index as a measure of international market

volatility.

By comparing columns (1) and (2) we observe that in most cases, the filtered correlation

matrix delivers better realised risk estimates, with only one exception; when using the correlation

matrix of 2007 to predict the realised risk of 2008. During 2007 the burst of the housing bubble

in the U.S led to the start of a crisis whose zenith was reached in 2008. Notice that “short-sale”

constraints are a very extreme assumption. The reason for this is that “short-sale” constraints

can be easily circumvented with the use of derivative positions, allowing better flexibility.

The results for 2007-2008 are reversed when we allow for “short- sale”. From columns (3) and

(4), we can see that the filtered approach delivers better realised risk estimates in all cases. Under

this setting, “short-selling” would seem to provide more flexibility to overcome high volatility

periods in financial markets, which are precisely the times where good investment decisions are
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No short sale Short sale
Unfiltered Filtered Unfiltered Filtered Vol. IPSA VIX

Previous-Predicted (1) (2) (3) (4) (5) (6)

2000-2001 0.307 0.100 0.345 0.066 0.745 23.3
2001-2002 0.029 0.027 0.344 0.096 0.615 25.7
2002-2003 0.238 0.189 0.458 0.206 0.708 27.2
2003-2004 0.255 0.220 0.735 0.375 0.695 21.9
2004-2005 0.058 0.019 0.428 0.108 0.567 15.4
2005-2006 0.288 0.163 0.412 0.179 0.581 12.7
2006-2007 0.333 0.276 0.487 0.169 0.545 12.7
2007-2008 0.073 0.130 0.367 0.173 0.888 17.4
2008-2009 0.127 0.041 0.367 0.192 1.168 32.5
2009-2010 0.052 0.023 0.379 0.186 0.754 31.4
Average 0.176 0.119 0.439 0.175 0.727 22.07

Improvement 0.481 3.71

Table 7.1: Mean Average Percentage Error for each year of the sample.

needed the most.

Our results are different from those of Sandoval et al. (2012) for the Brazilian stock market,

who based on a number of agreement measures between predicted and realised risk, i.e., MAPE,

Mean Squared Error (MSE), the angle between risk vectors, Simple Distance and the Kullback-

Leibler distance measure, conclude that the RMT-filtering did not produce better results than

the unfiltered approach, in particular during high volatility periods. They also find that the

RMT-filtering combined with the single-index model significantly improves risk estimates for

most of the measures analysed. We only find this phenomenon in one case in our sample; when

using the correlation matrix of 2007 to predict the one of 2008, with “short-sale” constraints.

Conversely, when “short-sale” is allowed, the filtered approach outperforms the unfiltered one in

all cases.

In the next section, we will try to separate out diversifiable from non-diversifiable risk with

the use of a simple one-factor model, to extract the market effect and assess the performance of

the RMT approach for the filtered and sample correlation matrices.
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7.3.2 Improving our Results by Getting Rid of the Non-diversifiable

Risk

Now we extend our previous results by removing the effect of the market portfolio from our

time-series returns and verify how the RMT-filtering performs under this new scenario. In the

previous analysis we were not able to fully distinguish between diversifiable and non-diversifiable

risk. Diversifiable risk is directly related to correlations between stocks. While non-diversifiable

risk is mainly driven by market momentum and/or breaking news that may affect all stocks

at the same time and inducing new correlations that could not be distinguished from the real

correlations between stocks. This is particularly true, during drawdowns. To remove the market

effect, we run an OLS regression of the form Gi(t) = αi + βiG(t)IPSA + εi(t), where Gi(t) are

the individual returns and G(t)IPSA are the returns of the IPSA index, retrieve the residuals

ei,t = Gi,t − βGIPSAt of that regression and build again our correlation matrix. This new

correlation matrix would be to some extent immune from the market effect. Recent emerging

markets literature has made use of this approach to distinguish between co-movements in financial

assets from “pure contagion” (Bunda et al., 2009).8

In figure 7.6, we plot the volatility of the IPSA index, measured as the absolute value of

its returns, together with the volatility of a Telecommunication Company (ENTEL), while in

the third plot we include the volatility of ENTEL after removing the IPSA index. We can see

that most peaks in the time-series are now smoother after removing the effects of the market.

Table 7.2 presents the performance of the RMT approach, for each year of the sample when

the market effect is removed. As we can see by observing columns (7) and (8), the filtered

approach outperforms the unfiltered one in every year with the exception of 2007-2008. As in

the case without removing the non-diversifiable risk, when we allow for “short-sale”, the filtered

approach performs unequivocally better than the unfiltered one. It would seem that the removal

of the market mode allow us to improve our risk estimates compared to the risk estimates of

the previous section. Overall, these results are encouraging since it tells us that we can use the

RMT approach also during periods of high volatility, when good investment strategies are most

needed.

8Alternatively, we could have used the time-series built from the largest eigenvector, with similar results given
the high correlation between the largest eigenvector returns and the IPSA-IGPA indices.
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Figure 7.6: Volatility After Removing the Market Mode.

No short sale Short sale
Unfiltered Filtered Unfiltered Filtered Vol. IPSA VIX

Previous-Predicted (1) (2) (3) (4) (5) (6)

2000-2001 0.319 0.083 0.347 0.076 0.745 23.3
2001-2002 0.031 0.012 0.364 0.089 0.615 25.7
2002-2003 0.229 0.145 0.454 0.201 0.708 27.2
2003-2004 0.240 0.219 0.706 0.391 0.695 21.9
2004-2005 0.049 0.026 0.422 0.131 0.567 15.4
2005-2006 0.308 0.090 0.450 0.154 0.581 12.7
2006-2007 0.420 0.241 0.527 0.210 0.545 12.7
2007-2008 0.105 0.184 0.443 0.227 0.888 17.4
2008-2009 0.109 0.061 0.377 0.040 1.168 32.5
2009-2010 0.091 0.017 0.418 0.139 0.754 31.4
Average 0.190 0.108 0.451 0.166 0.727 22.07

Improvement 0.763 3.71

Table 7.2: Mean Average Percentage Error for each year of the sample without the market mode.
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This is particularly true, when investors can exploit a full opportunity set, giving room

for a “short-sale” strategy. However, “short-sale” is not always possible in financial markets.

Despite this potential constraint, the use of the RMT approach could be used for medium/long

term investment decisions, as oppose to active strategies that try to “beat the market” second

by second, implying greater chances of large losses. This is quite evident when observing the

outstanding performance of the strategy suggested by the RMT approach in horizons greater

than one year.

7.3.3 Improving Standard Correlation Models with RMT Tools

As we have shown so far, the RMT-filtering can be very useful to improve the prediction of

the realised risk of a family of efficient portfolios. The aim of this section is to introduce some

existing models of the MV-GARCH literature and verify whether these models can be improved

with the use of RMT-filtering. In this context, the use of Random Matrix Theory can be useful

to overcome the so-called “curse of dimensionality”, a problem which is very common in high

dimensional systems.

We propose two MV-GARCH models, which combine elements of the MV-GARCH literature

with the possibility of using an optimal number p of principal components or factors predicted

by the RMT analysis of the correlation matrix. The first model is the Conditional Constant

Correlation (CCC) model of Bollerslev (1990). In this model only the parameters of the N

univariate GARCH processes have to be estimated simultaneously, whereas the time-constant

correlation matrix is the unconditional correlation matrix of GARCH residuals. The covariance

matrix in the CCC models is described by
∑
ij,t = Ci,jσi,tσj,t. The second model is the Dynamic

Conditional Correlation (DCC) model of Engle (2002). This model is similar to the CCC model

but allows the correlation matrix to be time-varying. To the best of our knowledge only the

CCC model has been tested in a RMT context with significant improvements in realised risk

predictions (Varga-Haszonits and Kondor, 2007; Rosenow, 2008).

To estimate conditional correlations and show the benefits of noise filtering, we estimate the

realised risk minimum variance portfolios, according to four different specifications:

1. Model I: CCC(p) model, using p = pRMT , N principal components, where pRMT is the
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number of principal components predicted by the RMT and N is the full set of principal

components.

2. Model II: DCC(p)-w model, using p = pRMT , N principal components, where pRMT is the

number of principal components predicted by the RMT and N is the full set of principal

components.

3. Model III: Factor-GARCH model, using p = 1, 2 principal components.9

4. Model IV: RiskMetrics covariance estimator of (Zangari, 1996), Ht = 0.06εtε
′
t + 0.94Ht−1.

In both, the CCC model and the DCC model, the RMT filter is carried out over the stan-

dardised covariance matrix of GARCH residuals at every time step.

We use the same daily data set covering the period 2000-2011 to estimate these models. In

order to make sure a MV-GARCH model is the correct specification we perform the ARCH test

of Engle (1982) on individual time-series and we end up with a subsample of 40 firms for our

analysis. Unlike the previous analysis, we rather focus on predicting the realised risk of minimum

variance portfolios than on the portfolios along the efficient frontier. In order to compare and

contrast the performance of the models out-of-sample we use forward validation. This method

considers every test date t′ and for each one uses data prior to the test date (t = t′−F ) to optimise

any model parameter. This enables the comparison between filtered and unfiltered models and

also provides some insights of their stability over time, as well as for model selection (Hjorth and

Hjort, 1982). This approach has also been used in the Econophysics literature to evaluate the

performance of different filtering approaches (Daly et al., 2008, 2010). In order to capture the

time-varying nature of correlations, the DCC model is estimated over a daily rolling window of

length 2-years, while the rest of the models are estimated on a rolling window of length 1-year.10

The forward validation is performed over a period of 2547 days (covering the period 2002-

2011), 520 (years 2000-2001) days of which were used as the initial trading period. Subsequent

9This model is similar to the O-GARCH model proposed by Alexander (2002). However, it differs from the
former in that we keep residual variances and therefore will tend to work well for weakly correlated time-series,
as stocks, where the O-GARCH may suffer from identification problems.

10The difference in the window length in the DCC model stems from the fact that over relatively short horizons,
correlations will tend to be more stable, in whose case, the DCC model will tend to be very similar to the CCC
model. This is why we estimate the DCC model using a wider window in order to capture some of this time-
variation in correlations. In either case, we verified that the benefits of the RMT-filtering remain robust in both
cases.
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trading was done daily. This approach has the appeal of simulating a real trading environment

giving some insights on how the model would have performed in the past in case of being used.

In this context, for each test date t′ the predicted volatility of minimum variance portfolios

will be given by

Ω2
t,predicted =

N∑
i,j=1

wi,twj,tHij,t (7.2)

where Hij,t is the predicted covariance matrix estimated under the aforementioned models

and {wi}Ni=1 are the weights of the minimum variance portfolio. On the other hand, the realised

risk of the minimum variance portfolio is defined by

Ω2
t,realised =

N∑
i,j=1

wi,twj,t(< gi,tgi,t > − < gi,t >< gj,t >), (7.3)

where the expectation values are taken over F = 60 daily returns preceding the test date

t′.11 Although we do not impose “short-sale” constraints, none of the portfolio weights ever took

an extreme position over the sample. We calculate the average predicted portfolio variance, the

average realised variance, the mean square error (MSE) of the prediction and the MAPE. The

results of the estimation of these models can be found in table 7.3.

Model Ω2
est x 10−4 Ω2

real x 10−4 MSE x 10−8 MAPE

CCC − (pRMT ) 0.103 0.295 0.114 0.522
CCC − (N) 0.097 0.323 0.139 0.578

DCC − (pRMT ) 0.129 0.279 0.086 0.532
DCC − (N) 0.125 0.290 0.118 0.581

Factor −GARCH(1) 0.043 0.450 0.401 0.830
Factor −GARCH(2) 0.043 0.459 0.426 0.838

RiskMetrics 0.025 0.559 0.757 0.931

Table 7.3: Estimation of the Realised Risk of Minimum Variance Portfolios with MV-GARCH
Models.

We assess the performance of minimum variance portfolios first based on their ability to

produce portfolios with a low average realised variance and second and more importantly, by

11This is because on day t′, we do not fully know the outcome of investments made after t = t′ − F , since
conceptually they are still being invested.
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their ability to correctly predict this variance. Regarding the first criterium of assessment we

find that by far the best results are obtained by the CCC − (pRMT ) and the DCC − (pRMT )

models. Their realised variance is significantly smaller compared to their Factor − GARCH

versions and also smaller than their unfiltered counterparts. The models using the RMT-filtering

also produced portfolios with the lowest mean squared error (MSE) and mean average percentage

error between 52% and 54%. These results also stress the shortcomings of using the Exponentially

Weighted Moving Average (EWMA) models, which, despite their simplicity, can lead to a serious

underestimation of the underlying risks of minimum variance portfolios.

Overall we find two main tendencies: for good covariance prediction, it is necessary to de-

scribe the time dependence of the correlation strength correctly, which can be done by choosing a

relatively short estimation period for correlations. Second, a short estimation period for correla-

tions induces noise, which needs to be removed by filtering. The clear winner of the comparison

are the CCC − (pRMT ) and the DCC − (pRMT ) models. These two models have an excellent

prediction accuracy for minimum variance portfolios. These results are encouraging since we

have just shown that the use of RMT-filtering can be very helpful to improve some existing

models of the MV-GARCH literature.

7.4 Macroeconomic Determinants of the Chilean Stock Mar-

ket Returns

In the previous section, we applied the RMT-filtering to the Chilean stock market and obtained

optimal portfolios. These portfolios showed improved efficiency compared to a benchmark of

standard Markowitz portfolios. Now we turn to the macroeconomic and financial determinants

of the Chilean stock market returns. The question we try to answer here is which are the main

macroeconomic and financial factors affecting the Chilean stock market returns? To answer this

question we rely on Vector Autorregresion analysis (VAR). Our main dependent variables are

the monthly returns of optimal portfolios constructed using the 3 largest and the 3 smallest

statistically significant eigenvalues with as predicted by the RMT for the whole sample.12 We

12Monthly portfolio returns are constructed based on the same analysis of Section 7.2, but using the significant
eigenvectors calculated for the whole sample. This results in 6 deviating eigenvalues; 3 deviating on the upper
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denominate the portfolio returns as G1
t , G

2
t and G3

t for the returns of the portfolios constructed

using the first, second and third largest eigenvalues and G81
t , G82

t and G83
t for the returns of the

portfolios constructed using the first, second and third smallest eigenvalues.

To account for macroeconomic factors affecting the returns, we include 3 domestic macroe-

conomic variables in our estimations: the seasonally adjusted monthly change of industrial pro-

duction (xIMACEC
t ), the seasonally adjusted monthly inflation (πt) and the monetary policy rate

(rt).
13 Representing more than 60% of Chilean exports, copper prices are likely to be one of

the main channels through which international shocks translate to the Chilean economy. We

include a variable with the monthly change of the price of copper (P coppert ) to account for this

effect. Finally, to account for international financial factors we include the V IX. This variable

is commonly used as a gauge for international stock market volatility and investors risk aversion.

We estimate an unrestricted VAR with the following structure:

V AR(L) :
(
V IX,P coppert , xIMACEC

t , πt, rt, G
1
t , G

2
t , G

3
t , G

81
t , G

82
t , G

83
t

)
(7.4)

Producing impulse responses from this econometric model requires an identification strategy.

To deal with this issue, we follow Pesaran and Shin (1998) and use a generalised impulse response

function for an unrestricted VAR. This identification method has the advantage over the Choleski

decomposition in that it produces impulse responses, which are invariant to the ordering of the

variables in the system.

We run a battery of tests to get the optimal number of lags for our VAR (Table 7.4). The

majority of the tests recommend the use of 1 lag in the regressions.

Since we are mainly interested in the effects of macroeconomic and financial variables on

the returns of our portfolios we focus on this set of impulse responses. Figure 7.7 presents the

impulse responses for the VAR(1).

The impulse response functions suggest that shocks to the macroeconomic variables have

important and varied effects on the portfolio returns:

• V IX: A positive shock to the V IX (an increase of the international volatility) has a

edge and 3 deviating eigenvalues on the lower edge of the spectrum. We constructed returns based on their
corresponding eigenvectors.

13We treated the seasonality of time-series using the X12 methodology for seasonally adjusted time-series.
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Figure 7.7: Generalized Impulse Responses
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Lag LR-test LR-Mod FPE AIC SC HQ
0 -641.522 NA 1.94e-09 11.154 11.413 11.259
1 -265.279 675.309 2.49e-11* 6.791* 9.907* 8.056*
2 -177.902 140.400 4.64e-11 7.365 13.338 9.790
3 -69.583 153.682* 6.58e-11 7.582 16.412 11.167
4 28.544 120.773 1.27e-10 7.973 19.659 12.718
5 150.565 127.235 2.02e-10 7.956 22.498 13.860
6 296.965 125.128 2.90e-10 7.521 24.921 14.585

Table 7.4: VAR Lag Order Selection Criteria Notes: *indicates lag order selected by the criterion; LR:
sequential modified LR test statistic (each test at 5% level); FPE: Final prediction error; FPE: Final
prediction error; AIC: Akaike information criterion; SC: Schwarz information criterion; HQ: Hannan-
Quinn information criterion; Endogenous variables: G1

t , G
2
t , G

3
t , G

83
t , G82

t , G81
t , xIMACEC

t , πt, rt, P
copper
t

and V IX. Sample: 2000M10 2011M1.

transitory negative effect on the returns of the portfolio constructed using the first largest

eigenvalue and a transitory positive effect on the returns of the portfolio constructed with

the second largest eigenvalue. The negative impact on returns happens during the first and

second months for G1
t . The positive effects on G1

t also happen during the first and second

months. On the other hand, unexpected shocks to the VIX have no effects on the portfolio

returns constructed with the smallest eigenvalues.

• P coppert : A shock to the monthly change of the price of copper has a positive effect on G1
t

but no effect on the remaining portfolios.

• xIMACEC
t : A positive shock to the economic dynamism measured as the monthly change

of xIMACEC
t , does not have any impact on the returns of the portfolios constructed with

the 3 largest eigenvalues nor the returns of the portfolio constructed with the third smallest

eigenvalue. However, it has a transitory negative impact on the returns of the portfolios

constructed with the first and second smallest eigenvalues. These effects occur during the

1st month of the shock.

• πt: A positive shock on the seasonally adjusted monthly inflation has a transitory nega-

tive impact on the returns of the portfolio constructed with the largest eigenvalue and a

transitory positive one on the returns of the portfolio constructed with the third largest

eigenvalue. On the other hand, inflation shocks would not seem to have an impact on G81
t ,

G82
t and G83

t .
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• rt: A positive shock to the monetary policy rate (an unexpected increase of the rt) has

a transitory negative impact on the returns of the portfolio constructed with the largest

eigenvalue and a transitory positive one on the returns of the portfolio constructed with

the third largest and the second smallest eigenvalues.

To better understand the relative importance of each macroeconomic shock on the portfolio

returns we carry out a Variance Decomposition Analysis. To do this, we need a different iden-

tification strategy for the residuals. We opted for the Choleski decomposition with the ordering

presented in Equation 7.4. The international volatility (V IX) is the most exogenous variable,

followed by the copper price (P coppert ). Then, we included the domestic macroeconomic variables

beginning with the xIMACEC
t , πt and rt. Finally, we include our monthly portfolio returns or-

dered from the one constructed by largest eigenvalue to the portfolio return constructed by the

smallest eigenvalue. Table 7.5 presents the results of this exercise.

Our results have important implications for risk diversification across Chilean equities. First,

the main macroeconomic determinant of the market portfolio volatility (G1
t ) is the international

volatility (V IX). This variable explains more than 20% of the market portfolio returns variance

after 12 months. Domestic inflation followed by the monetary policy rate (rt) are also important

macroeconomic determinants explaining 6.3% and 2.5% of the market portfolio returns variance

after 12 months, respectively. Second, it would be possible to diversify away some of the market

portfolio risk by adding positions on the portfolios constructed with the second and third largest

eigenvalues. The V IX explains 10% of the returns variance of G2
t and 5.7% of the return

variance of G3
t . But, the impact is of different sign than for the market portfolio returns. Third,

as expected, the three smallest eigenvalues produce portfolio returns that are mostly uncorrelated

with macroeconomic shocks. These portfolios are also uncorrelated with the market portfolio.14

In sum, the market portfolio (which is very close to the IPSA-IPGA indices) is mostly af-

fected by international shocks and therefore should be used by investors willing to increase their

14It should be noted, however, that the use of these portfolios might be problematic for at least two reasons.
First, since they are very close to the bounds of the MP distribution, in whose case they may not be significant
and their existence may be due to the fact that N and T are finite in practice. Second, if eigenvalues are very
close to zero (as it would be the case if they were affected by noise), the covariance will be almost singular which
means that its invertibility will be at stake distorting portfolio weights and consequently, risk estimates. This is
why, in practice, we rather focus on the eigenvalues that clearly deviate from the MP distribution, that is, we
focus on the largest ones. The main results of the VAR analysis are robust to the exclusion of the three smallest
eigenvalues from the specification.
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exposure to global risks or when they are expecting a decrease in international volatility. The

portfolios constructed with the second and third largest eigenvalues, on the other hand, could be

used by investors to increase exposure to global risks but when they are expecting an increase

on global volatility (due to their positive correlation with the V IX). Finally, as theoretically

expected, the portfolios constructed using the smallest eigenvalues are uncorrelated to macroe-

conomic variables and global risk aversion.

7.5 Concluding Remarks

In this chapter we apply Random Matrix Theory (RMT) to study the correlations of 83 Chilean

stocks that are part of the IPSA and IGPA indices during the period 2000 to 2011. We find

that using RMT to identify statistically significant correlations within our sample of stocks

significantly improves the efficiency of a family of Markowitz Portfolios.

Moreover, by using Vector Autoregressive analysis we identify the global risk aversion as

the main driver of the market returns followed in importance by shocks to the monthly rate of

inflation and the country’s monetary policy rate. Using the statistically significant eigenvalues

we can construct portfolios, which are uncorrelated to macroeconomic and financial factors such

as global risk aversion.

Despite the recent success of RMT in financial applications, challenges remain. Recent evi-

dence has suggested that meaningful correlations can be measured in the bulk of the MP eigen-

value spectrum (Burda et al., 2004; Burda and Jurkiewicz, 2004; Malevergne and Sornette, 2004;

Kwapièn et al., 2006). One possible reason for this is the fact that we are assuming that our

returns are normally distributed and under this premise we carry out our comparisons with the

sample correlation matrix. In reality, returns in financial markets are not normally distributed

and exhibit a number of features, such as fat tails, volatility clustering and non-stationarity.

Recent literature has been improving these matters by developing extensions of the MP dis-

tribution to account for these phenomena (Potters et al., 2005; Bouchaud and Potters, 2009).

However, still one of the main difficulties has been to generate predictions during critical periods,

where there is a high collectivity between stocks, especially during drawdowns. In this context,

an interesting line of future research is to extend this approach focusing on turbulent periods
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in financial markets. In the present chapter, we have tried to deal with this by combining the

RMT approach with some standard models of the MV-GARCH literature in order to capture

to some extent the short run dynamics of financial correlations with significant improvements in

correlation estimates. Another interesting line of future research would be extending our analysis

to regional stocks such as the MILA or the MSCI LATAM. Also, it would be interesting to apply

RMT to cross assets within the Chilean financial market including the return of equities, fixed

income and currencies. This would give us a more complete picture of the factors that account

for the volatility of the Chilean financial market.

All in all, the results obtained for the Chilean case provide important evidence of the broad

applicability of the RMT approach to equity returns in emerging markets portfolios. The Chilean

Stock Market is characterised by the existence of large institutional investors such as private

pension funds that maintain important structural positions on this market. Applying RMT to

their portfolio optimisation could be useful in diversifying some of the systematic risk of the

Chilean market.
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Chapter 8

Early Warning and Systemic Risk

in Core Global Banking:

Financial Network and Market

Price-based Methods

8.1 Introduction

Having started in the US as the bursting of a housing bubble, the 2007 Global Financial Crisis

(GFC) that spread globally has underscored the importance of banking system stability in terms

of cross-border propagation of contagion. The role of cross-border exposures in the dynamics

of the GFC with European banks having a surprisingly large exposure to US securitized assets

(Allen et al., 2011), which led to a 50% equity capital loss (valued at $1.6 trillion), has led

many to conclude that global financial interconnectedness is a major vehicle for systemic risk

and macroeconomic instability (Soramäki et al., 2007; Degryse et al., 2010; Castrén and Rancan,

2014). The tax payer bailout of the financial systems of the US, UK and of some Euro-zone

countries in 2007-9 period of the GFC costing over $14 trillion, Alessandri and Haldane (2009),
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has intensified efforts by regulators and academics to identify, avert and manage the large-scale

breakdown of financial intermediation due to the domino effects of insolvency and illiquidity.

While there is no universally agreed definition, systemic risk is defined as the “disruption to

the flow of financial services that is caused by the impairment of all or parts of the financial

system and has the potential to have serious negative spillovers to the real economy”.1 This

motivates a second question, which is how can we quantify systemic risk and identify those

financial institutions that are systemically important by posing a major threat to the financial

system?2

The development of systemic risk indices (henceforth, SRIs) has taken two main approaches.

These are market price oriented statistical SRIs and the financial network approach championed

by Haldane (2009) based on the interconnectedness of assets and liabilities of individual economic

agents or sectors. Due to the ease of publicly available market price data on FIs, and the

popularity of generalizing from the Basel II individual risk measures such as Value at Risk and

Expected Shortfall to a portfolio approach, the majority of SRI analytics have taken this route.

Of particular interest here are the purely market price-based SRI, namely, the Marginal Expected

Shortfall (MES) of Acharya et al. (2010), the ∆CoVaR of Adrian and Brunnermeier (2011) and

an hybrid SRISK developed by Acharya et al. (2012) and Brownlees and Engle (2012), which

combines balance-sheet data on leverage and equity with market price-based data.

However, these market price-based SRIs have not been free from criticism. One of the main

problems is the absence of any early warning signals and they tend to be “coincident” or “near-

coincident” indicators of financial instability (Arsov et al., 2013). This happens because most

mainstream risk management models suffer from the so-called “paradox of volatility”, a term

coined by Borio and Drehmann (2011) and adopted by others (Brunnermeier and Sannikov, 2015).

That is, volatility of asset returns, which is a key measure of risk tends to be underestimated

during asset price booms when systemic risk from leverage is building up on the balance sheets

of banks and non-bank sectors.3 This was presaged by Minsky (1986) who claimed that asset

1IMF-BIS-FSB (2009) and IMF (2011).
2By SIFIs, we refer to those financial institutions whose distress or disorderly failure, stemming from their

size, complexity and systemic interconnectedness, would lead to a massive disruption to the rest of the financial
system and, ultimately, the economic activity (Financial Stability Board, 2011).

3The volatility paradox can be seen in publicly available volatility indexes, such as the VIX and the V-FTSE in
that they are extremely low during asset price booms and are at a local minimum just before the market crashes
(see Markose, 2013).
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bubbles mask the growing financial system fragility as the enhanced market values for assets

and the perception of low risk from volatility measures encourage procyclical excessive growth of

leverage of banking systems with a commensurate growth of both their exposures and liabilities

within interbank and with non-bank sectors. Sooner or later, this may result in system collapse.4

Borio et al. (2001) give an extensive discussion on the general problem of procyclicality and

underestimation of market price-based SRIs. Benoit et al. (2013) find that some market price-

based SRIs represent systematic risk rather than systemic risk and tend to covary with the

market index, which makes them highly procyclical. They also find that the ∆CoVaR can be

explained by its own VaR in the time-series domain, which means that forecasting systemic risk,

using ∆CoVaR is not different from forecasting VaR of an individual institution. SRISK, though

well determined in the cross-section by the leverage of individual banks or of national banking

systems, it loses information when aggregated into an index form. This calls for new methods for

systemic risk estimation that can capture the growing risk from chains of indebtedness between

FIs and also other economic sectors, both nationally and in a cross-border setting.

In the context of highly integrated international financial markets, the cross-border exposure

of banks has become one of the major catalysts for the global financial crisis (Haldane, 2009;

Allen et al., 2011; Minoiu and Reyes, 2013; Castrén and Rancan, 2014). As pointed out by

Degryse et al. (2010), shocks that impact the proper functioning of this densely interconnected

network of activities involving cross-border banking may affect not only banks themselves but

also the economies they operate in. This is why, it is vital to investigate the topological structure

of global banking and its vulnerability to liabilities of debtor countries.

Following Minsky (1986), we hold the view that bilateral balance sheet-based interlinkages

are essential to assess the fragility of the financial system. The important point about the Minsky

thesis of financial busts from leverage (see, Schularick and Taylor, 2012) is that the growth of

leverage and ensuing financial fragility of the system does not happen overnight. In view of

this and the above discussion, some have recognized the pitfalls of relying on market price based

SRIs that underestimate the build up of systemic risk of failure from growing bilateral obligations

relative to the buffers of their counterparties. Hence, it is sensible to include early warning of

4The idea of procyclicality of leverage is now acknowledged to be a major source of systemic risk and is well
articulated in Adrian and Shin (2010, 2011a).
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impending financial crisis as an important component of SRIs in order that regulators are not

blindsided by low volatility measures in asset returns.5 Regulatory authorities mandating the

reporting of bilateral financial obligations of relevant financial agents may become de riguer,

Markose (2013), to directly to assess the instability of the financial system. Alternatively, as in

Brunnermeier and Cheridito (2013) two stage reduced form macro-models which will explicitly

work to overcome the volatility paradox in their new Syst Risk index or some other model that

inverts the low volatility in asset returns to proxy leverage (see, Bruno and Shin, 2015b,a) have

been proposed. As bilateral balance sheet information is typically not publicly available, the

BIS Consolidated Banking Statistics is an exception in a cross-border setting between debtor

countries and exposed banking systems.

The objective of this chapter is to compare and contrast the market price-based SRIs for the

global banking system with a network based SRI. For the latter, we follow the eigen-pair method

developed by Markose (2012) and Markose et al. (2012). We estimate a SRI based on a spectral

measure of stability of financial networks constructed from a matrix of cross-border exposures

of national banking systems. As the spectral approach describes the stability of dynamical

systems, we give an appropriate dynamical characterization of the rates of failure of national

banking systems when losses exceed a given regulatory capital threshold. The network based

SRI is the maximum eigenvalue of this stability matrix and tipping points are identified when the

latter is greater than a prespecified capital loss threshold. We also use the associated right and

left eigenvectors of this matrix of national banking system exposures relative to equity capital, to

gauge systemic importance and vulnerability of debtor countries and national banking systems,

respectively. For this analysis, we use data from the Consolidated Banking Statistics reported

by the BIS and banks’ equity capital from Bankscope for the period 2005Q4-2013Q4 for 18 core

country banking systems. Note that only the equity capital of banks with cross-border exposures

in each reporting country is taken from Bankscope.

For the market price-based SRIs, namely, the DCC-MES, DCC-∆CoVaR and SRISK, we use

the MSCI Financials corresponding with the 18 BIS reporting national banking systems and the

MSCI World as proxy for the market index. This chapter is amongst the first comprehensive

5However, interestingly, early warning has not been included in the list of desirable properties of so called
theoretical multivariate measures of risk that involve several interconnected components (see, Armenti et al.,
2015).
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applications of these measures in a cross-border setting.

Our findings covering the period 2005Q4-2013Q4 can be summarised as follows: First, we

find that the SRI based on the maximum eigenvalue constructed from cross-border financial

network exposures peaks way before the start of the financial crisis in September 2007. Our

eigen-pair SRI remarkably estimates the 60% loss of equity capital that was realised in 2009 for

the global banking system from the most systemically important debtor country identified as the

US. Second, we are also able to identify the increasing vulnerability of the Belgian (2008Q3) and

Portuguese (2013Q4) banking systems before the bankruptcies of their major banks.6 Third,

we find that market price-based SRIs tend to be highly contemporaneous with standard market

risk measures, such as the VIX/VSTOXX, making them inversely related to asset price booms.

That is, market price-based SRIs are found to peak with the crisis or even after it. Finally, we

corroborate the Benoit et al. (2013) findings that the market price-based SRIs, namely, DCC-

MES, ∆CoVaR and SRISK, are determined by systematic risk measures. While the eigenpair

SRI uses a capital loss threhold to identify tipping points, the lack of similar thresholds in the

market price-based SRIs is found to be the add to the difficulty of monitoring the onset of

potential crises.

The chapter is organised as follows: Section 8.2 briefly describes the eigen-pair method devel-

oped by Markose (2012) and Markose et al. (2012). We also derive the market price-based SRIs

in a cross-border setting. Section 8.3 describes the data and estimation methodology used in

our analysis. In Section 8.4 we provide a network analysis of cross-border exposures in the core

global banking network. Section 8.5 gives the results on cross-border banking network stability,

contrasted with market price-based SRIs. Section 8.6 analyses rankings of systemic importance

and vulnerability over time for different groups of countries using both methods. Finally, in

Section 8.7 we report conclusions and future work.

8.2 Systemic Risk Indices (SRIs) in a Cross-Border Setting

In this section we provide a brief review of the eigen-pair method of Markose (2012), which was

further developed in Section 3.5. We also review some popular SRIs based on publicly available

6The Greek case and a fuller discussion of the Eurozone Crisis is given in Markose et al. (2015).
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market price-based data. As pointed out by Benoit et al. (2013), these measures are constantly

monitored by many central banks around the world.

8.2.1 Eigen-Pair Method based on Network Analysis

As we described in Section 3.5, the eigen-pair method of Markose (2012, 2013) is based on the

spectral analysis of cross-border exposures of national banking systems relative to their equity

capital. Here the main focus is the Core of the Global Banking System Network (CGBSN) (18

BIS reporting countries), which is a directed weighted network, where the direction of a link

represents obligations that all sectors of a country at the start of an arrow have towards the

banking system of another country at the end of the arrow. These obligations are then netted

and divided by their respective equity capital to yield the stability matrix Θ:

Θ =



0 (x12−x21)+

C20
· · · 0 · · · (x1N−xN1)+

CN0

0 0 · · · (x2j−xj2)+

Cj0
· · · (x2N−xN2)+

CN0

...
... 0 · · · · · · · · ·

(xi1−x1i)
+

C10

... · · · 0 · · · (xiN−xNi)
+

CN0

...
... · · · · · · 0

...

0 (xN2−x2N )+

C20
· · · (xNj−xjN )+

Cj0
· · · 0


, (8.1)

As we mentioned in Section 3.5, Markose (2012), based on the work of May (1974, 1972)

shows that the stability of the network system is determined by the maximum eigenvalue of the

stability matrix:

λmax(Θ) < ρ. (8.2)

Where ρ is the homogeneous capital loss threshold. The threshold ρ can be regarded as a

percentage of banking system equity capital to buffer losses. If this condition is violated, then

any negative shock, in the absence of outside interventions, can propagate through the networked

system as a whole and potentially cause capital losses proportionate to λmax(Θ).

In addition, Θ has two sets of eigenvectors: right (V R) and left (V L) eigenvector. The right

eigenvector V R gives the rank order of systemic importance, while the left eigenvector V L gives
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the rank order of the countries that are vulnerable. These rank orders of systemically important

financial systems, will be compared to those using market price-based data as described below.

8.2.2 Marginal Expected Shortfall (MES)

In our cross-border setting, the MES represents the marginal contribution of the financial system

of country i to global systemic risk, measured by the Expected Shortfall (ES) of the global system,

proxied by the MSCI World Index. The MES was initially proposed by Acharya et al. (2010) and

later on extended in a dynamic conditional correlation (DCC) version by Brownlees and Engle

(2012). The Expected Shortfall (ES) at the α% level is the expected return in the worst α% of

the cases. This could be extended to the general case, where returns exceed a given threshold

C. In formal terms, denoting the MSCI World returns at time t by rm,t and the country MSCI

Financial returns by ri,t, the conditional ES of the system can be defined as:

ESmt(C) = Et−1(rm|rmt < C) =

N∑
i=1

witEt−1(rit|rit < C). (8.3)

Here, wi,t are the weights of the country MSCI Financials. In this context, the MES corre-

sponds to the partial derivative of the system ES with respect to the weight of country i in the

global financial system:

MESit(C) =
∂ESmt(C)

∂wit
= Et−1(rit|rit < C). (8.4)

The higher a country’s MES, the higher the individual contribution of the country to the risk

of the global system. In general, when modelling the distribution of financial returns, the critical

issues are dynamic volatility and the modelling of asymmetries. It is well documented that asset

return distributions are skewed and fat-tailed. Moreover, the volatility of asset returns is not

constant, it is mean-reverting and tends to cluster. Another important stylised fact of asset

returns volatility is that a large negative price shock increases volatility by much more than a

positive price shock of the same magnitude, which is also known as “leverage-effect”. To address

at least the dynamics of volatility, we follow Brownlees and Engle (2012) and Benoit et al. (2013)

and assume that the returns of the world market and national banking system i at time t, follow

130



a bivariate GARCH(1,1) process for the demeaned returns:

Rt = H
1/2
t Vt. (8.5)

Here R′t = (rmt, rit) denotes a return vector of the world market and the MSCI Financials,

respectively. The random vector V ′t = (εmt, ξit) are the associated standardised innovations

and are assumed to be i.i.d with the following first moments: E(Vt) = 0 and E(VtV
′
t ) = I2,

a two-dimensional identity matrix. The Ht matrix denotes the conditional variance-covariance

matrix:

Ht =

 σ2
mt σitσmtρit

σitσmtρit σ2
it

 . (8.6)

Here σit and σmt, denote the conditional standard deviations and ρit the conditional corre-

lation between the world market and the country financial returns. Based on Equations 8.5 and

8.6, Brownlees and Engle (2012) show that the MES can be expressed as:

MESit(C) = σitρitEt−1

(
εmt|εmt <

C

σmt

)
+ σit

√
1− ρ2

itEt−1

(
ξmt|εmt <

C

σmt

)
. (8.7)

Then, the MES can be expressed as a function of the country’s return volatility, its correlation

with the global index return, and the comovement of the tail distribution. As demonstrated by

Benoit et al. (2013), the i.i.d assumption on ξi,t and εm,t implies that the conditional expectation

Et−1

(
ξmt|εmt < C

σmt

)
is null. It is worthwhile mentioning that the assumption that ξi,t and εm,t

are i.i.d is a very strong assumption. In fact, there are a number of reasons to believe that

extreme values of these disturbances could occur at the same time for systemically risky national

banking systems. That is, when the world market is in its tail, the national banking system’s

disturbances may be even further in the tail if there is serious risk of default. 7 Thus, the MES

7While there are many ways to model this dependence between the disturbance terms, many studies have
relied on the use of Kernel functions where additional assumptions are needed, making results highly dependent
on these assumptions. Faced to these potential shortcomings, we limit our analysis to the most simplistic case.
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can be expressed as:

MESit(α) = βitESmt(α). (8.8)

Under these assumptions, ranking systemically important financial systems is equivalent to

sorting financial systems based on their betas (Benoit et al., 2013). This SRI is estimated using

daily data using the Dynamic Conditional Correlation Model of Engle and Sheppard (2001), from

which the time-varying beta is obtained (Equations (8.5) and (8.6)). In order to compare the

MES with the network-based SRI based on λmax, we calculate the quarterly MES by averaging

the daily MES within each quarter. To obtain our broad measure of MES, quarterly MES are

averaged across countries, as done by Acharya and Stefen (2012) to calculate country MES.8

8.2.3 SRISK

The SRISK measure was developed by Acharya et al. (2012) and Brownlees and Engle (2012).

It is an extension of the MES by considering both the liabilities and the size of the financial

system. In a cross-country setting, the SRISK corresponds to the expected shortfall of the

financial returns of a given country, conditional on a crisis affecting the global market (e.g., the

MSCI World). The country with the largest shortfall is assumed to be the largest contributor to

the crisis and can be, therefore, regarded as the most systemically important. Following Acharya

et al. (2012), the SRISK is defined as:

SRISKi,t = MAX [0;φ(Di,t + (1 − LRMESi,t)Wi,t) − (1 − LRMESi,t)Wit] . (8.9)

Here φ is the prudential capital ratio, which is assumed to be 8%, Dit is the book value of

total liabilities of country i’s banking system, and Wit is the market capitalisation or market

value of equity of the national banking system. The LRMESi,t is the long-run marginal expected

shortfall of country i. It measures the sensitivity of the country’s equity return to the downturn of

the world market in the case of a financial crash. Acharya et al. (2012) and Brownlees and Engle

(2012) define a market crash as a hypothetical 40% semiannual world market decline. LRMES

is particularly difficult to estimate because it corresponds to an extremely rare event. In fact,

8Alternatively, we could have used the maximum within each quarter, although our main results do not change.
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there have been only three episodes of this magnitude over the last century (1929, 2000 and

2008). In addition, the LRMES is typically not available in closed form for this class of dynamic

models. We follow Brownlees and Engle (2012) and implement a simulation based procedure to

obtain exact LRMES predictions. This procedure consists of simulating a random sample of the

h-period country and market (arithmetic) returns conditional on the information set available on

day T . The LRMES for day T is then calculated using the Monte Carlo average of the simulated

returns,

LRMESi,T =

∑S
s=1Ri,T+1:T+hI{Rm,T+1:T+h < C}∑S

s=1 I{Rm,T+1:T+h < C}
, (8.10)

where C is the semiannual 40% drawdown and S is the number of runs of simulations, which in

this case is S = 50, 000. Ri,T+1:T+h are cumulated returns over a six months period. The details

of the simulation algorithm are provided in C.2. If we define leverage as Li,t = (Di,t+Wi,t)/Wi,t,

SRISK becomes:

SRISKi,t = MAX [0; (φLi,t − 1 + (1− φ)LRMESi,t)Wi,t] . (8.11)

Notice that the SRISK is a weighted average of leverage-1 and the LRMES. In order to allow

comparison with the rest of the SRIs, we scale the SRISK by the country’s equity. Hence,

throughout the analysis, we use:

SRISK#
i,t =

SRISKi,t

Wi,t
. (8.12)

In order to compare and contrast the SRISK# with λmax, we perform this simulation proce-

dure for each quarter using data for that particular quarter and construct the quarterly SRISK#
i,t

measure for every country i. To calculate the overall index, we follow Acharya et al. (2010) and

we take the average of the quarterly SRISK# across countries.

8.2.4 ∆CoVaR

This measure was developed by (Adrian and Brunnermeier, 2011) and is based on the concept

of Value-at-Risk, denoted as VaR(α), which is the maximum loss within the α%-confidence
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interval. Then, the CoVaR corresponds to the V aR of the MSCI World Index returns obtained

conditionally on some event C(rit) observed for country i:

Pr
(
rmt ≤ CoV aRm|C(rit)

t |C(rit)
)

= α (8.13)

The ∆CoVaR of country i is then defined as the difference between the VaR of the MSCI

World returns conditional on this country’s financial system being in distress and the VaR of the

MSCI World returns conditional on the financial system of country i being in its median state9:

∆CoV aRit(α) = CoV aR
m|rit=V aRit(α)
t − CoV aRm|rit=Median(rit)

t . (8.14)

We follow Benoit et al. (2013) and derive the DCC variant of ∆CoVaR as a function of the

conditional correlations, volatilities, and VaR:

∆CoV aRit(α) = γit[V aRit(α)− V aRit(0.5)]. (8.15)

Here γit = ρitσmt/σit with ρi,t denoting the conditional correlation between the returns of

the MSCI Financial returns of country i and the MSCI World returns. If we assume that the

marginal distribution of the returns is symmetric around zero, ∆CoVaR is strictly proportional

to VaR10:

∆CoV aRit(α) = γitV aRit(α). (8.16)

This means that while ∆CoVaR-based rankings and VaR-based rankings of systemic risk may

differ in the cross-section (that is, at a given point in time t), in the time-series, that is, for a

given financial system i, ∆CoVaR is proportional to VaR. As a consequence, as noted by Benoit

et al. (2013), forecasting the future evolution of the contribution of a country’s financial system

i to global systemic risk is equivalent to forecast its risk in isolation. We compute the quarterly

∆CoVaR by taking the average within each quarter. In a similar fashion, the overall index is

calculated by taking the average of the quarterly ∆CoVaR across countries.

9Following Adrian and Brunnermeier (2011), we focus on the event of ri,t = V aRiα.
10A similar exercise carried out without assuming that the marginal distribution of returns is symmetric and

results do not change the main conclusions of the chapter
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8.3 Data Description

In this section we describe the data used to construct the network-based SRI and also the

aggregated financial indices used to construct the market price-based SRIs.

8.3.1 BIS Consolidated Banking Statistics and Bankscope Data

The Core Global Banking System Network (CGBSN) is based on Consolidated Banking Statistics,

Table 9D of the BIS, which gives foreign claims of reporting banks on an ultima risk basis. The

information on banking system equity for each country is taken from Bankscope database.

The sample of BIS Consolidated Banking Statistics consists of 18 reporting countries and

spans quarterly from 4th quarter of 2005 until 4th quarter 2013.11 This data provides information

on positions of reporting countries’ banking systems via-a-vis counterparts located outside of the

reporting countries (BIS, 2013). We consider only the core counterparts that correspond to the

same reporting countries.

The second ingredient needed to construct the CGBS network is information about the

amount of equity, which serves as a buffer for losses incurred by banks, is reported by Bankscope.12

Total bank equity should be understood in terms of a balance sheet equation as total assets less

total liabilities. As data comes disaggregated for individual institutions, the total equity for

given country’s banking system is calculated as a sum of cross-border banks headquartered in

the country (excluding central banks). This is treated as a proxy for the amount of equity capital

in the banking system of the country.

Bankscope data on total bank equity is reported on a annual basis, so data is taken for the

end of the year, that is, for the fourth quarter of a given year. In order to obtain data for every

quarter over the sample, the missing quarters are filled with the help of linear interpolation.13 A

similar approach is followed for the data on national banking system liabilities used to compute

11The countries in the sample are Australia, Austria, Belgium, France, Germany, Greece, India, Ireland, Italy,
Japan, Netherlands, Portugal, Spain, Sweden, Switzerland, Turkey, United Kingdom and United States.

12Data for “Total equity” is defined as the sum of ’Common equity + Non-controlling interest + Securities
revaluation reserves + Foreign Exchange Revaluation Reserves + Other Revaluation reserves”. As quoted from
the user guide of Bankscope available at: https://bankscope.bvdinfo.com. Total equity has the code 11840 in the
Bankscope database.

13This was the method preferred to interpolate the value of equity as polynomial interpolation tends to generate
extremes when the degree of the polynomial is large. We also interpolated the value of equity using cubic spline
and results are very similar.

135



the SRISK measure of systemic risk.

8.3.2 MSCI Financials Data

In order to estimate the DCC-MES, DCC-∆CoVaR and SRISK SRIs, we use the individual

MSCI Financials for the 18 countries and the MSCI World as a proxy for the market return that

is faced by the financial system of each country in the sample. The MSCI World Financial Index

captures large and mid cap representation across 23 Developed Markets (DM).14 We use daily

returns of MSCI Financials for each country during the period 03/10/2005 until 31/12/2013.

This data has been retrieved from Bloomberg and it has been adjusted for bank holidays.15

8.4 Network Analysis of the Core Global Banking System

Based on the methodology introduced in Section 3.5, we explore the evolution of the network

topology of the core global banking system. For this analysis, we have chosen three specific

periods: Figure 8.1 (Panel (a)) represents the pre-crisis period; Panel (b) depicts the midst of

the crisis, while Panel (c), shows the network topology after the crisis (2013Q1). These figures

represent the banking systems of 18 countries, with net cross-border exposures. The size of the

node is proportional to the total netted position. Blue nodes are net lenders, while red nodes

are net borrowers. The links are weighted and the thicker the edge, the larger the cross-border

claim of a node at the end of an arrow on the originating node.

Before the crisis the US is followed by Italy and UK in net payables, strongly borrowing from

Switzerland, the UK, Germany and Japan. After the crisis, Italy and the UK are no longer

among the top net borrowers and are overtaken by Belgium, followed by Ireland, India and

Turkey. As we can see, Belgium started as a net lender and after the Eurozone crisis became a

net borrower. In fact, the Belgian banking system suffered huge losses during 2008 when Fortis

group was sold to BNP Paribas and in 2011 Dexia group was dismantled.

14DM countries include: Australia, Austria, Belgium, Canada, Denmark, France, Germany, Hong kong, Ire-
land, Israel, Italy, Japan, the Netherlands, Norway, New Zealand, Norway, Portugal, Singapore, Spain, Sweden,
Switzerland, the United States and United Kingdom.

15We reckon the fact that the MSCI Financials also includes non-bank financial institutions. Nonethess, the
banking sector comprises nearly 45% of the index and it can be therefore considered as a good proxy for the
performance of the banking sector.
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Figure 8.1: CGBS Network Topology. Direction of arrows goes from borrowing country to lending
banking system.

(a) (2006Q1) (b) (2009Q1)

(c) (2013Q1)

Note: Net payables are coded in red. Net receivables are coded in blue. Authors calculations.

During 2006Q1, the largest net lender is Switzerland followed by Germany and the Nether-

lands. During the crisis France becomes the most exposed to foreign debt, while Switzerland,

Japan and Germany occupy the second, third and fourth position, respectively. In 2013, the

largest net lender is Japan, followed by Switzerland, France and Germany. Also Canada be-

comes one of the top net lenders.

Among the GIIPS the largest borrower is always Italy. Spain is the only banking system

from GIIPS countries that started as a net lender, became a borrower during the crisis and

then returned to a net lender position in 2013Q1 (with net receivables even higher than the

Netherlands). Ireland started as a net lender and became gradually more indebted in 2013. On

the other hand, Greece held net debt of $156bn before the crisis, in 2009 its debt increased
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significantly to $228bn, but during 2013 became a small net lender with $13n in net receivables.

An interesting observation is that the GIIPS countries did not increase their overall borrowing

from 2006Q1 to 2009Q1, but instead they changed the composition of their lenders. In fact,

during 2009Q1, GIIPS countries strongly borrowed from Non-GIIPS Eurozone countries, as in

the case of the strong borrowing of Italy from France and Spain and Ireland from Germany. This

effect vanishes as we approach 2013Q1, where the non-GIIPS Eurozone countries decreased their

overall lending and their exposure to GIIPS countries. Finally, the US is the largest borrower in

all three periods. It owes a huge amount payable to Switzerland and the UK. During the financial

crisis, the American banking system increased its debt to Japan and France, but during 2013Q1

it decreased its borrowing from European economies and Canada and Japan became their main

lenders.

The tiered layout in these graphs is constructed according to the gross borrowing of the

country. The range of gross borrowing of all countries is taken as a ratio of each country’s gross

payables divided by that of the country with the highest borrowing. Countries that are ranked

in the top 70 percentile of this ratio constitute the inner core. The mid-core is constructed

from countries between the 70 and 30 percentile and the out-core between 30 and 10 percentile.

Countries with the lowest ratio belong to the periphery. The links are colour coded based on

their tier membership of the originating node.

The only country in the inner tier is always the US. We can see that it owes huge amount

payable to Switzerland and the UK. With the rise of the GFC the American banking system

increased its debts to Japan and France, but in 2013 the exposures of European economies

become smaller and increase in Japanese and Canadian exposure can be observed.

The mid-core tier is populated initially only by the United Kingdom, joined by Germany just

during the crisis in 2009. The highest weight of the British out-degree has a link between the

UK and Germany equal to $551.6bn in 2006 and gradually becoming lower ($312.9bn in 2009

and $218.7bn in 2013), eventually being overtaken by the debt to Spain in 2013 ($304.4bn). The

outer-core banking systems are mostly France, Germany, Japan, the Netherlands and from the

GIIPS: Italy and Spain. One can observe that during the GFC (2009) and after the Eurozone

Crisis (2013) Italy holds a significant debt towards France. All remaining countries belong to

the periphery of the Core Global Banking System network.
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It can be seen that the network topology becomes more tiered during the financial crisis

and after the crisis when more banking systems move towards periphery. Nevertheless, every

banking system within the Core Global Banking System can be of a potential threat due to the

highly interconnected structure of the network, as the sovereign crisis started in a peripheral

country and created waves throughout the system (Kalbaska and Gatkowski, 2012; Arghyrou

and Kontonikas, 2012).

8.5 Spectral and Market Price-Based SRIs

The level of instability of the Core Global Banking System Network (CGBSN), reflected by the

maximum eigenvalue (λmax) of matrix Θ is depicted in Figure 8.2 as a dark grey line (right axis).

In order to capture the effects of failure of net debtor banking systems on a net creditor banking

systems, we rescale the index by the proportion of bank-to-bank cross-border flows over the total

amount of cross-border flows (i.e., bank-to-bank plus bank-to-nonbank), as reported by Bruno

and Shin (2015a). As we can see, λmax(Θ) (right axis), jumps from a value of 0.28 in 2006Q4

to over 0.57 in 2007Q1 and approaching 0.6 in 2008Q4, reflecting the unsustainable liabilities

of debtor countries relative to capital in the exposed national banking systems. This suggests

that λmax provides a reasonable early warning for the crisis that was about to come, with the

collapse of two Bear Stearns hedge funds followed by the collapse of two BNP Paribas hedge

funds in 2007Q3 that were highly exposed to Subprime Mortgage Backed Securities. What is

remarkable is the estimation of a 57% loss of capital in the system as indicated by λmax(Θ) by

2007Q1 that occurs during the course of the crisis (see Allen et al., 2011). After the financial

crisis unraveled, λmax falls in 2009 to 0.49 and remains at a high level, between 0.49 and 0.54,

until the end of 2011. If we assume that a maximum eigenvalue of over 30%, exceeds the capital

equity ratio that banks consider as desirable, system instability is still a persistent problem even

until the last quarter of 2013.16 The index also exhibits some spikes during the first Greek

bailout in 2010Q2 and the US Debt Ceiling crisis in 2011Q3, which caused huge uncertainty in

the financial markets.

16Markose (Reserve Bank of India, 2011) finds that the Basel III capital ratio 6% for risk weighted assets
typically implies capital ratio of 30% for total assets. Thus, a value of ρ = 0.3 can be considered a proxy for
capital adequacy ratios of banking systems.
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Maximum Eigenvalue (λmax(Θ)) of the CGBSN vs. DCC-∆CoVaR, DCC-MES and SRISK during the
period (2005Q4-2013Q4).

Figure 8.2: Note: For quarters between 2011Q4-2012Q4 the Maximum Eigenvalue, λmax (right
axis), is calculated for CGBS network without Greece, when it was virtually bankrupt with
negative equity capital in banking system.

We compare the above results with market price-based SRIs, i.e., the DCC-MES, DCC-

∆CoVaR and the SRISK, which are calculated for every quarter, using data for that particular

quarter. The country indices have been averaged to obtain the aggregated index for the whole

financial system (left axis). Here we can see that while SRISK starts picking up in 2007Q2, the

DCC-MES and the ∆CoVaR exhibit at large increase with the Lehman collapse during 2008Q3.

During 2008Q4, the indices increase even further as the credit crunch hits Europe’s banking

sector as the European banking and insurance giant Fortis is partly nationalised to ensure its

survival in the Netherlands during the last four months of 2008, causing a daily downturn of

129% (of log returns or 72% of ordinary returns) in the Dutch banking index the 14th October

2008. These measures also seem to coincide with subsequent event in financial markets, such

as the Sovereign Greek Debt Crisis (2010Q2) and the US Debt Ceiling Crisis (2011Q3). The

SRISK, which is an hybrid SRI by combining leverage together with market price data, does

not provide any early warning for the sample analysed. A possible explanation for this is given

by Benoit et al. (2013), who argue that the SRISK tends to depend on leverage during calm

periods, while during crisis periods tends to depend on the beta of the country, as correlations

inscrease and equity drops. In this particular case, the beta effect would seem to predominate
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over the leverage effect. Therefore, for the sample analysed, the SRISK mainly behaves as a

purely market price-based SRI. For further analysis, see the Appendix of this chapter.

We explore the degree of procyclicality of these indices by computing the R2’s from a regres-

sion of the VIX index against the systemic risk measures at different time lags to gauge their

explanatory power.17 As documented by Adrian and Shin (2011b), standard risk management

risk measures, such as the VaR of financial equity returns, fluctuate procyclically with measures

of risk such as the implied volatility of options on banks’ traded shares. This means, that finan-

cial intermediaries are shedding risks and withdrawing credit precisely when the financial system

is under stress, serving to amplify the downturn. In Table 8.1, we report contemporaneous and

lagged regression R2 coefficients (for up to 2 lags) between the different systemic risk measures

and the VIX (Column 1). In addition, taking into account that most countries in our sample

are European, we also report the R2’s with the VSTOXX (Column 2).18 Finally, in Column 3,

we report the R2’s of a regression of the TED spread on the systemic risk measures. The TED

spread is the difference between the 3-month T-bill and the rate at which banks lend to each

other on a 3-month period (measured by the Libor) and it is often used as a good proxy for

interbank credit risk and perceived health of the banking system.19

We calculate the R2’s based on 50,000 bootstrapped samples. We report the standard errors

in parentheses. The results of this exercise are presented in Table 8.1. Here we can see that the

market price-based SRIs are contemporaneous with the VIX/VSTOXX, with R2’s of over 70%

at time t, which tends to decrease as the number of lags increases. The maximum eigenvalue

exhibits the lowest contemporaneous explanatory power (40%), which then increases slightly and

remains statistically significant after two lags. Market price-based SRIs tend to decrease their

explanatory power with time lags and in some cases, they even lose significance, as the case of

the DCC-∆CoVaR. Another interesting finding can be seen in Column 3, where λmax exhibits

a low but significant explanatory power with respect to the TED spread, thus reflecting the

17The VIX is the symbol for the Chicago Board Options Exchange Volatility Index. Often used as a good proxy
for international risk aversion. A high value of the VIX corresponds to a more volatile market.

18Which is the European counterpart of the VIX, based on the EURO STOXX 50 realtime options prices and
is designed to reflect the market expectations of near-term up to long-term volatility.

19When the Ted spread goes up, the interbank default risk is considered to be higher and when the spread
decreases, the interbank default risk is considered to be lower. When there is a downturn in the economy, banks
suspect that some banks may encounter problems. However, they do not know which banks, so they restrict
interbank lending, resulting in higher Ted spreads and lower liquidity in the interbank market, which ultimately
produces lower credit availability for consumers and corporates.
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VIX VSTOXX TED Spread

Systemic Risk Measures (1) (2) (3)

λmaxt 0.401*** 0.338*** 0.265***
(0.126) (0.121) (0.095)

λmaxt−1 0.444*** 0.343*** 0.288***
(0.118) (0.132) (0.101)

λmaxt−2 0.436*** 0.373*** 0.245**
(0.124) (0.139) (0.112)

DCC −MESt 0.820*** 0.828*** 0.273*
(0.060) (0.056) (0.184)

DCC −MESt−1 0.370*** 0.333* 0.036
(0.194) (0.193) (0.060)

DCC −MESt−2 0.147* 0.147* 0.033
(0.136) (0.129) (0.049)

DCC − ∆CoV aRt 0.784*** 0.720*** 0.152*
(0.063) (0.078) (0.091)

DCC − ∆CoV aRt−1 0.294** 0.265** 0.026
(0.162) (0.147) (0.044)

DCC − ∆CoV aRt−2 0.058 0.074 0.025
(0.060) (0.067) (0.030)

SRISKt 0.716*** 0.807*** 0.147*
(0.1031) (0.064) (0.097)

SRISKt−1 0.274** 0.290** 0.023
(0.149) (0.155) (0.038)

SRISKt−2 0.061 0.082 0.042
(0.069) (0.086) (0.051)

Table 8.1: Bootstrapped R2’s from a regression of the VIX, VSTOXX and TED spread (taken as
the last day of every quarter) on the SRIs. DCC-MES, DCC-∆CoVaR and SRISK are calculated
at a 5% tail. Standard Errors in Parentheses. * Significance at 10%; ** Significance at 5% and
*** Significance at 1%. Own Calculations.

potential tightening of credit conditions in the interbank market with some time in advance.

Market price-based SRIs are not able to reflect this phenomenon, not even contemporaneously.

8.6 Systemic Risk Importance and Vulnerability in the

Global Banking System

As we mentioned above, the eigen-pair method introduced by Markose (2012) not only delivers

an index for systemic stability, based on the maximum eigenvalue (λmax) of the stability matrix

(Θ), but also delivers simultaneously its associated right (VR) and left (VL) eigenvectors. The

right eigenvector centrality delivers the rank order of the systemically important countries whose

default on their obligations can cause damage to banking systems that are exposed to them. The
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left eigenvector delivers the rank order of those banking systems that are vulnerable to contagion.

It has been found that the rank order based on the right eigenvector centrality (VR) is a good

proxy for the countries that will bring about the largest losses by their default to creditor banking

systems, whereas the left eigenvector centrality (VL) ranks order those banking systems which

are vulnerable to default by debtor countries.

Figure 8.3: Rankings of Systemic Importance for Core Europe, the US, the UK, Japan, Switzer-
land and average for other countries (2005Q4-2013Q4)

(a) RIGHT EIGENVECTOR CENTRALITY (VR) (b) DCC-MES

(c) DCC-∆CoVaR (d) SRISK

Note: Estimations based on Right Eigenvector Centrality (VR), DCC-MES, DCC-CoVaR and
SRISK. For quarters (2011Q4-2012Q4) Greece is removed due to negative equity; GIIPS: Por-
tugal, Italy, Ireland, Greece, Spain; Eurozone non-GIIPS: Germany, France, the Netherlands,
Belgium, Austria; Other: Australia, Canada, India, Sweden.

The Right Eigenvector Centrality (VR) for the major economies and blocks in our sample is

depicted in Figure 8.3 (Panel (a)). Here we verify the large systemic threat posed by the US. In

fact, this can be verified in the whole Core Global Banking System Network which is populated

by American liabilities. Thus, it should not be surprising that the failure of Bear Stearns in 2007

and Lehman Brothers collapse in 2008 triggered contagion waves throughout the global financial
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system. The Right Eigenvector Centrality (VR) at that time was at levels above 0.9. The index

fell to around 0.8 during the Eurozone Sovereign Crisis, with a visible tweak due to the Greek

bankruptcy and bailout, but returned to almost 0.9 in 2013Q4. The United Kingdom is ranked

as the second most important country. The British index increased twofold in the aftermath of

the Subprime Financial Crisis and due to its closeness to the Eurozone, but did not return to its

pre-crisis levels.

The rest of the countries, including non-GIIPS Eurozone countries (Germany and France),

are of marginal systemic importance when compared with the aforementioned financial systems,

which can give us some insights into how much damage would be caused, in case of financial

default of the US or the UK. These two financial systems are a clear example of the “too

interconnected to fail” phenomenon proposed by Markose et al. (2012).

An interesting point, regarding the GIIPS countries, is that their systemic importance was

higher than that of the non-GIIPS Eurozone countries until the last quarter of 2011. A possible

explanation for this phenomenon is that most outstanding debt of the GIIPS were restructured

after the Eurozone Sovereign Crisis and the main burden was taken by the rest of the Eurozone,

leading to an increase in the systemic threat posed by the non-GIIPS Eurozone countries. It is

also noteworthy that Japan and Switzerland are the main lenders in the CGBSN and are ranked

the lowest when it comes to systemic importance.

Regarding the market price-based rankings of systemic importance (Panels (b,c,d)), these

tend to indicate the systemic importance of the US at the start of the crisis. The DCC-MES

(Panel (b)) ranks the US as most systemically important at the start of the crisis in 2007Q3,

but then is overtaken by Switzerland and Japan, during 2008Q1 and 2008Q2, respectively. Then

picks up again during 2008Q3, with the Lehman collapse, to fall again during 2009Q1, when the

crisis was already set in Europe. Here aside the four main systemic contributors, namely, the US,

Switzerland, the UK and Japan, the GIIPS systemic importance start picking up during 2008Q3,

when Ireland falls into recession, but then is overtaken by the non-GIIPS Eurozone countries in

2008Q4, when most of their banks start facing difficulties.

A point that is worthwhile noting here is that most country groups reach their first peak

in 2008Q3, which coincides with the Lehman Brothers collapse in the US. In Switzerland, UBS
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having troubles due to Subprime-related investments20 and the credit crunch reaching the UK,

with housing prices falling more than a 10%. The only exception is Japan, which attains its

highest in 2008Q4, which coincides with the effects of the crisis spreading into Asia.21

The DCC-∆CoVaR (Figure 8.3, Panel (c)) reports a similar story. Here we observe that all

groups of countries reach their highest point during 2008Q4. During this quarter, the non-GIIPS

Eurozone countries rank as third, after the US and Switzerland, reflecting the fact that the crisis

mainly affected the European Core countries and then spread to the periphery. The US ranks first

until 2009Q3, but then is overtaken by the GIIPS and non-GIIPS Eurozone countries. Finally

the SRISK (Panel (d)) mainly ranks the UK as the most systemically important country, followed

by Japan, non-GIIPS countries, Switzerland and the US for the period 2008Q4. An interesting

observation here is that the importance of the non-GIIPS Eurozone countries is always above

of that of the GIIPS, except during the period 2011Q3-2013Q1. Here Greece, reports negative,

therefore driving the average of GIIPS countries. This period also comprehends the second Greek

bailout in 2012Q1.

While the market price-based SRIs can give us some insights on what are the potential

losses coming from one country to the rest of the system, only ∆CoVaR give us a ranking for

the countries that are most susceptible to suffer from these potential losses. We allow for this

possibility in Figure 8.4, where we plot the Left Eigenvector Centrality (VL, Panel (a)), while

in Panel (b), we plot the vulnerability rankings delivered by the DCC-∆CoVaR for the same

group of countries.22 In Figure 8.4, Panel (a), we can see a different story as the one shown by

Figure 8.3. Now Switzerland is the most systemically vulnerable financial system in the CGBSN.

Japan was ranked the third most vulnerable financial system, after non-GIIPS Eurozone block,

but then surprisingly, after 2012 increased its vulnerability to 0.28 and moved to the second

position in the ranking.

In terms of vulnerability, the non-GIIPS Eurozone countries are the second most fragile in

the CGBSN, slightly surpassed by Japan in 2012-2013. At the same time, the evolution of the

GIIPS’s Left Eigenvector Centrality reveals how their financial systems were damaged during the

20UBS eventually received a capital injection from the government in October 2008.
21In October 2008, Japan’s stock index, the Nikkei, fell 10%, its biggest drop in 20 years.
22Vulnerability, in a ∆CoVaR context, is defined as the VaR of the country, conditional on the VaR of the

market (Adrian and Brunnermeier, 2011).
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crisis. Starting with a relatively low value, the index experienced a jump in 2007Q1 and then

again in 2010Q2 when the Sovereign Crisis hit the Eurozone. The high vulnerability of the non-

GIIPS Eurozone countries is the result of high lending of these banking systems, especially to

the GIIPS, which became more vulnerable with the equity capital eroded by the losses incurred

during the Eurozone crisis.

Figure 8.4: Rankings of Systemic Vulnerability for the US, the UK, Japan, Switzerland and
averages for GIIPS, non-GIIPS Eurozone and other countries (2005Q4-2013Q4)

(a) LEFT EIGENVECTOR CENTRALITY (VL) (b) DCC-∆CoVaR

Note: For quarters (2011Q4-2012Q4) Greece is removed due to negative equity.

The impact of the Sovereign Crisis in the Eurozone can also be seen in the case of the United

Kingdom. Its vulnerability increased considerably between 2010Q1 and 2011Q4, when it reached

its maximum. A possible explanation for this could be the UK acting as an intermediary for

refinancing the GIIPS financial systems, borrowing money from financial systems outside of the

Eurozone and lending them to the GIIPS. The British Left Eigenvector Centrality only improved

in the last quarter of 2013. Finally, the US’s Left Eigenvector Centrality is extremely low at all

times, while the CGBSN is only able to capture the cross-border banking exposures, there are

other possible contagion channels, with which the American financial system would probably be

more vulnerable. This latter, underlines the need of more granular mapping of current financial

interconnections to analyse the propagation of contagion in financial systems (Markose, 2013).

The DCC-∆CoVaR ranks the US as the most vulnerable, followed by Switzerland and the

non-GIIPS Eurozone countries during 2008Q4. The UK picks up during 2009Q1 but then its

vulnerability decreases. After 2009Q3, the highest rank of vulnerability is mainly dominated by

the non-GIIPS Eurozone countries and the GIIPS.
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8.6.1 Systemic Importance and Vulnerability of Core Eurozone Coun-

tries

While we have made the distinction that a systemically important financial system is not nec-

essarily the most vulnerable, a very dangerous situation could arise when a country of high

systemic importance is at the same time, increasingly vulnerable. In this context, a small per-

turbation can harm the financial system, which in turn can cause a huge damage to the global

network. A clear example of this instability was the rise of the UK’s vulnerability (the second

most systemically important country based on the CGBSN). In Figure 8.5, we plot the SRIs

of the non-GIIPS Eurozone countries. We are particularly interested in the largest economies

of the Eurozone: France and Germany. Panel (a) shows the evolution of the Right Eigenvector

Centrality (VR) for these economies. Here we can see that the systemic importance of all these

countries was minimal before the crisis unraveled. The Right Eigenvector Centrality for these

countries experienced an early increase in 2007Q1, especially in the case of Germany and Austria.

The importance of these two financial systems increased steadily throughout and even after the

US financial crisis, whereas the Dutch and Belgian indices grew just before the European Crisis.

French potential to trigger contagion losses increased considerably in the midst of the Sovereign

Crisis. This trend seems to be disrupted between 2011Q4 and 2012Q4.23 Furthermore, France

became the most vulnerable banking system of the non-GIIPS Eurozone countries after 2009,

only surpassed by the Netherlands in the last quarter of 2013. By 2013, Germany was the most

systemically important country of the group, while France and the Netherlands posed the least

threat of triggering significant contagion in the CGBSN.

The DCC-MES and DCC-∆CoVaR based rankings remain relatively low and homogeneous

during the US Financial crisis and all countries start picking up during 2008Q2, reaching their

maximum during 2008Q4, with the exception of Belgium, which peaks in 2008Q3. After that,

they only react in the face of critical market event, such as the Greek bailout during 2010Q2, the

growing uncertainty over Greece staying in the Eurozone (2011Q4) and the second Greek bailout

(2012Q1). Here the Netherlands is ranked as first from 2008Q3 and then remains mostly in that

position until 2011Q4, overtaken by France, only during 2011Q4 (Panel (b)). This highest peak

23This is not due to the removal of bankrupted Greece from the sample, as experiments conducted without
Greece in the whole period exhibit no change in the French systemic importance index.
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Figure 8.5: Rankings of Systemic Importance for Core Eurozone Countries (2005Q4-2013Q4)

(a) RIGHT EIGENVECTOR CENTRALITY (VR) (b) DCC-MES

(c) DCC-∆CoVaR (d) SRISK

For quarters (2011Q4-2012Q4) Greece is removed due to negative equity.

during 2008Q4 coincides with the Dutch government providing a capital injection of EUR 10

billion to ING Group during October 2008. The SRISK ranks Germany as the most systemically

important until 2008Q2, overtaken by the Netherlands in 2008Q3, which leads for most of the

sample. Then, France takes the lead in the last two quarters.

Indeed, the recent financial crisis reached its peak in the Netherlands in the last four months of

2008. During this period, two financial companies, Fortis NV and ABN AMRO, were experiencing

great difficulties. In fact, prior to its collapse in 2008, Fortis was the largest financial services

company in Belgium, named as Fortis SA/NV, and in the Netherlands, named as Fortis NV. As

it can seen from Figure 8.6 (Panel (a)), the Belgian banking system was the most vulnerable

before 2008Q3. On the 13th of October 2008, the Belgian government designed and approved

a mechanism to compensate certain categories of Fortis shareholders. In the same month, the

Dutch government became involved and bailed-out the bank.
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Figure 8.6: Rankings of Systemic Vulnerability for Core Eurozone Countries (2005Q4-2013Q4)

(a) LEFT EIGENVECTOR CENTRALITY (VL) (b) DCC-∆CoVaR

Note: For quarters (2011Q4-2012Q4) Greece is removed due to negative equity. Source: Own
calculations.

In fact, this event is reflected in Panel (a), where the Left Eigenvector Centrality of Belgium

drops almost to the half (from 0.73 to 0.41), while the Dutch index more than doubles (from 0.14

to 041, if we also add the capital injection granted to ING over the same month).24 A similar

phenomenon is observed for the DCC-MES in Figure 8.5b, Panel (b). Finally, on December

2008, the Belgian government announces that will proceed with the sale of Fortis assets to BNP

Paribas SA, which in turn had an effect on French vulnerability during 2009. As it can be

seen in Figure 8.6, Panel (a), when the Left Eigenvector Centrality Index for Belgium falls, it

increases for France. While, the DCC-∆CoVaR-based ranking is able to identify the vulnerability

of Belgium and Netherlands during 2008Q4, they are unable to capture the growing instability

of the Belgian banking system, whereas the Left Eigenvector Centrality does so way before the

crisis.

8.6.2 Systemic Importance and Vulnerability of Eurozone Periphery

Countries

As we showed in the previous section, the rise of systemic importance coupled with an increase

in systemic vulnerabilities of non-GIIPS Eurozone countries during the financial crisis of 2008

24Another Dutch bank which was involved with changes in the management, ownership, and financial conditions
was the ABN AMRO. This bank was acquired by a banking consortium consisting of the Royal Bank of Scotland
(RBS) Group, Santander Group and Fortis. On the 13th of October 2008, the British government declared a
bail-out package for the financial system. This resulted in a total state ownership in RBS of 58%. Following the
collapse of Fortis and nationalization of RBS, the ABN AMRO Bank was nationalized by the Dutch government.
Consequently, the Dutch banking index return declines extremely on the 14th of October 2008.
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and the Sovereign Crisis, provides evidence of the building-up of instability in the high-income

Eurozone countries at that time. Figure 8.7 illustrates the SRIs for the GIIPS. In Panel (a)

we plot the Right Eigenvector Centrality (VR), which shows that, on average, the systemic

importance of the GIIPS was higher than that of the non-GIIPS Eurozone countries. If in

addition to this, we look at the Left Eigenvector Centrality (VL) of Figure 8.8 (Panel (a)), we

can see precisely the opposite. In this context, the GIIPS posed more systemic threat and were

less vulnerable than non-GIIPS Eurozone countries.

Figure 8.7: Rankings of Systemic Importance for Eurozone Periphery Countries (2005Q4-
2013Q4)

(a) RIGHT EIGENVECTOR CENTRALITY (VR) (b) DCC-MES

(c) DCC-∆CoVaR (d) SRISK

Note: For quarters (2011Q4-2012Q4) Greece is removed due to negative equity. Source: Own
calculations.

As we showed in Section 8.4, GIIPS were heavily indebted to the Eurozone countries before

the Sovereign Crisis. The strong cross-border flows between the GIIPS and non-GIIPS Eurozone

countries could have been the channel of systemic risk spread, which led to the creation of the

European Financial Stability Facility (EFSF) after the e110 bn bailout of Greece in May 2010,
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help from the EFSF for Ireland (November 2010), Portugal (May 2011) and again Greece in

February 2012 (Arghyrou and Kontonikas, 2012).

With more than 400% growth of cross-border banking claims of countries such as Ireland or

Spain between 2003 and 2008 (Bruno and Shin, 2014), it is not surprising the increase in the Right

Eigenvector Centrality of GIIPS countries until the second half of 2009 as depicted in Figure 8.7

(Panel (a)). Before the Sovereign Crisis in 2010, the most systemically important country of

the GIIPS was Italy followed closely by Spain and Greece. By 2010Q2, all GIIPS countries

but Ireland, had a higher systemic importance ranking than Germany. The Right Eigenvector

Centrality Index rose sharply for Ireland by the end of 2011 and during 2012, when it started

raising money from financial markets. By the end of 2013, the most systemically important

countries were Ireland, Italy, Spain, Portugal and Greece. Market price-based SRIs tend to

agree that Ireland is the most systemically important before and during the crisis, followed by

Greece and Spain. Notice that the SRISK for Greece jumps sharply between 2012Q2 and 2013Q1,

reflecting the increasing instability of the Greek banking system.25

Figure 8.8: Rankings of Systemic Vulnerability for Eurozone Periphery Countries (2005Q4-
2013Q4)

(a) LEFT EIGENVECTOR CENTRALITY (VL) (b) DCC-∆CoVaR

Note: For quarters (2011Q4-2012Q4) Greece is removed due to negative equity. Source: Own
calculations.

When we analyse the systemic vulnerability of GIIPS in Figure 8.8 (Panel (a)) it can be

noticed that Ireland became very vulnerable before the financial crisis of 2008 but with the

bailout in the last quarter of 2010 its Left Eigenvector Centrality fell to very low levels. In fact,

25It is worthwhile noting that this sharp increase is due to the fact that Greece reports negative equity during
this period, which we have assumed to be slightly positive.
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this event can also be seen in market price-based SRIs in Figure 8.7, where Ireland ranks as

one of the most systemically important of all the GIIPS, as well as one of the most vulnerable

in Figure 8.8 (Panel (b)). Spain became the most vulnerable country among the GIIPS due

to the Sovereign Crisis. Italian vulnerability increased already in 2007 and remain in a steady

rise until the end of 2012. Something that is worthwhile noting is the recent vulnerability of

the Portuguese banking system during the second half of 2013 (Figure 8.8, Panel (b)). This

eventually led to the collapse of the major Portuguese Banco Espirito Santo in August 2014,

generating fears of a second round of contagion in the Eurozone. The eigen-pair method shows

that Portugal is becoming the most vulnerable banking system among the GIIPS, event which

is neither anticipated by any of the other SRIs presented above.

8.6.3 What Explains Market Price-Based SRIs?

In this section we ask what are the possible reasons for the divergence in rankings of systemically

important banking systems. For answering this question, we follow Benoit et al. (2013) and

calculate the R2’s from a time-series and cross-sectional regression of the SRIs presented above

and some of the ingredients used to construct them, namely, the beta of the country’s banking

system, total book value liabilities, value of equity and Value at Risk.26 As pointed out by

Benoit et al. (2013), under certain conditions, the DCC-MES and beta tend to identify the same

systemically important financial institutions. This latter begs the question of why not rank

institutions/countries by the betas in the first place? Another concern, is that it leads to the

confusion between systemic and systematic risk.27 In addition, as we have shown throughout

this chapter, most of these market price-based SRIs tend to increase during market downturns,

which makes them to be highly procyclical. Indeed, this can be seen in Table 8.2, where the

R2’s shows an almost perfect cross-sectional correlation between the DCC-MES and beta, where

we can confirm this finding. That is, rankings of SIFIs with DCC-MES are equivalent to rank

countries with the highest betas.

Although the SRISK is a function of beta, it does not seem to be much sensitive to beta, in

26When we estimate cross-sectional regressions, we regress cross-country SRIs against cross-country betas at
each t. In contrast, in the time-series domain, we regress individual country SRIs against individual country beta
for that particular country. In both cases, the R2s are retrieved and subsequently averaged.

27Systematic risk is already accounted for in the banking regulation since the 1996 Amendment of the Basel
Accord as regulatory capital depends on the banks’s market risk VaR.
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Time-Series Cross-Section
MES EQ LTQ LVG BETA VaR EQ LTQ LVG BETA VaR
avg 0.039 0.082 0.181 0.631 0.508 0.037 0.036 0.018 1.000 0.387
std 0.045 0.113 0.152 0.350 0.274 0.047 0.048 0.018 0.000 0.266
max 0.183 0.479 0.491 1.000 0.874 0.183 0.201 0.588 1.000 0.852
min 0.000 0.000 0.000 0.107 0.035 0.000 0.000 0.000 1.000 0.000

∆CoVaR EQ LTQ LVG BETA VaR EQ LTQ LVG BETA VaR
avg 0.023 0.048 0.190 0.064 0.802 0.031 0.026 0.167 0.859 0.341
std 0.022 0.089 0.159 0.088 0.247 0.043 0.035 0.169 0.077 0.228
max 0.085 0.483 0.468 0.319 0.985 0.195 0.154 0.578 0.966 0.869
min 0.000 0.000 0.000 0.000 0.057 0.000 0.000 0.002 0.597 0.011

SRISK EQ LTQ LVG BETA VaR EQ LTQ LVG BETA VaR
avg 0.197 0.196 0.589 0.202 0.588 0.029 0.081 0.791 0.191 0.366
std 0.170 0.175 0.235 0.145 0.225 0.032 0.080 0.214 0.195 0.322
max 0.641 0.735 0.992 0.572 0.873 0.171 0.308 0.996 0.556 0.980
min 0.012 0.002 0.075 0.010 0.012 0.000 0.001 0.065 0.001 0.001

Table 8.2: R2 statistics (average, minimum, maximum and standard deviation) obtained from a re-
gression of a systemic risk measure (MES, ∆CoVaR and SRISK, on firm characteristics, namely, equity
capital (EQ), liabilities (LTQ), leverage (LVG), beta and VaR. We report two types of regressions:
time-series regressions for each of the 18 countries and cross-sectional regressions for the 33 data points
available (2005Q4-2013Q4). Bold figures indicate the explanatory variable with the highest R2’s. Au-
thors calculations.

b

both the cross-section and time-series, with an R2 of 0.191 and 0.201, respectively. However, the

SRISK would seem to be explained by leverage (LVG), with a cross-sectional R2 of 0.791. Cross-

sectional correlations are very important in this case, as these are the ones that provides with

the rankings at a given point in time. For this particular case, we have that ranking countries

based on SRISK would tend to coincide with ranking countries based on their total leverage.

We find that the DCC-∆CoVaR is explained in a 80% in the time-series by its VaR. A high

correlation in the time-series domain means that while rankings may differ, for a given country,

DCC-∆CoVaR is proportional to its VaR. This means that forecasting the future evolution of

the contribution of a country to systemic risk is equivalent to forecast its risk in isolation.This

provides evidence that most SRIs can be summarised by using standard risk measures. While we

have made use of a very limited sample, our findings are in line with those studies using larger

samples (Benoit et al., 2013).
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8.7 Concluding Remarks

The present study illustrates the use of financial network approach as an important tool for

assessing the stability of financial systems. Using Consolidated cross-border banking data from

the BIS and aggregated equity data from Bankscope for 18 countries, we apply the eigen-pair

method developed by Markose (2012) and Markose et al. (2012) to estimate systemic risk and

identify systemically important countries and countries with vulnerable banking systems.

The main contribution of this research is that it is one of the first to provide a cross-border

comparison of systemic risk indices based on market price-based data and the network approach

to cross-border liabilities. As opposed to most of SRIs in the literature, the eigen-pair method

based on bilateral netted exposures relative to equity capital of cross-border banks in national

banking systems, makes a clear distinction between systemic importance and systemic vulnera-

bility. Standard market price-based SRIs lack any threshold above which one can identify early

turning points in system stability. In contrast, the eigen-pair method provides a close-form metric

through the condition λmax(Θ) < ρ, where ρ is the regulatory capital buffer, obtained at length

in Appendix C.4. In particular, the use of this metric in a network setting has been proved to

have valuable early warning capabilities. In fact, the maximum eigenvalue of the stability matrix

Θ, peaks way before the Subprime crisis started. While we are aware of the fact there is some

statistical uncertainty due to the short sample length used in our analysis, λmax(Θ) seems to

indicates the 60% loss in equity capital witnessed during the 2007 Crisis (see, Figure 8.2 and

Appendix C.4). Moreover, the Left Eigenvector Centrality was able to highlight the increasing

vulnerability of the Portuguese banking system more than half a year before the collapse of one

of its major banks and also indicate problems in the Belgian banking system way before its major

financial group had to be bailed out.

The above results are compared with standard market price-based SRIs, namely, the DCC-

MES of Acharya et al. (2010), the SRISK of Acharya et al. (2012) and the DCC-∆CoVaR of

Adrian and Brunnermeier (2011), using data on the MSCI Financials for the 18 countries of

our sample. These models have been deliberately estimated in their simplest form, avoiding

state variables as in the case of DCC-∆CoVaR and without estimating their predicted values.28

28Indeed, many of these authors have used bank balance sheet characteristics such as book leverage, profitability
(ROA), non-performing loans, whole-sale funding and mortgage loans as regressors to obtain forward measures
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All this with the idea to assess whether these indicators are able to reflect any risk build up

before a crisis unravels.29 Our main finding is that these measures exhibit an extremely high

contemporaneous correlation with market sentiment measures such as the VIX/VSTOXX, which

makes them highly procyclical, with little early warning capabilities. Likewise, most of them tend

to match perfectly market events and only during those times are able to identify systemically

important financial systems. In this context, these measure are useful only in the cross-sectional

domain, that is, to identify systemically important financial systems at a point in time. In

general, rankings based on these measures tend to agree on the dominance of the US and the UK

at the start of the crisis and also are able to reflect the interplay between Non-GIIPS Eurozone

and GIIPS countries. They also reflect the systemic importance of Ireland at the start of the

crisis, as well as the Netherlands during 2008Q4. However, they are not able to pick up the

increasing vulnerability of the Belgian banking system before the crisis nor the vulnerability of

the Portuguese banking system at the end of 2013. Surprisingly, the SRISK, which combines

leverage with market price-based data is not able to capture the increasing instability of the

countries’ banking system. A possible explanation for this, is that while leverage is increasing

in the run up of the crisis, the reliance on the market through the LRMES nullifies this effect,

preventing the SRISK to provide any early warning.

Following Benoit et al. (2013), we assess whether market price-based SRIs can be rationalised

by standard risk measures, such as beta, VaR and liabilities. First, we find that the DCC-MES

can be well explained by country betas in the cross-section, which is not any different to ranking

countries by their betas. Second, we find that the ∆CoVaR can be well explained by its VaR

in the time-series domain, which means that forecasting ∆CoVaR is not any different than

forecasting the risk of the country’s banking system in isolation with its VaR. Finally, we find

that the SRISK is highly explained by leverage. These findings are in line with those using larger

samples of financial institutions (Benoit et al., 2013).

The present study outlines the importance of the informational content of cross-border bal-

ance sheet data in a network setting for assessing global financial stability. Future research

of systemic risk (Idier et al., 2013).
29This is what Paul McCulley famously coined the term often known as the “Minsky Moment”, after Hyman

Minsky, to describe the point at which markets lose confidence in the sustainability of a process of ever greater
amounts of leverage provided against increasingly over-valued collateral. See McCulley (2008).
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should widen the scope of this methodology by including exposures of sectors within countries

and between sectors from different countries, as in the Castrén and Rancan (2014) framework.

This would require the use of more sectoral data on cross-border exposures of banking systems.
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Chapter 9

Conclusions and Future Work

9.1 Goals of the Thesis

In this section, we summarise the goals of this thesis:

• We showed the benefits of using the RMT approach to financial correlations of stocks for

the FTSE 100. We tested the performance of the different filters used in the literature

and determine under which conditions the RMT-filtering will be more beneficial, using a

wide range of different tests, in terms of realised risk reduction, prediction accuracy and

risk-adjusted measures of portfolio returns.

• We extended the RMT-filtering to other correlation estimators, which may also be afflicted

by noise. Examples of these estimators are the Constant Conditional Correlation model

(CCC) of Bollerslev (1990), the Dynamic Conditional Correlation (DCC) model of Engle

(2002) and the Regime-Switching Beta-CAPM correlation estimator, based on Ang and

Bekaert (2004). At least for the last two estimators, we were the first to apply the RMT-

filtering to large correlation matrices, with great improvements in realised risk estimates.

• We were the first to combine the RMT approach with a Vector Autoregressive approach

(VAR) to explore the macroeconomic determinants of the Chilean stock market. Here

the main goal was to build portfolios with different degrees of exposure to the systematic

risk embedded in the market portfolio with the help of RMT tools and then explore their
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macroeconomic determinants, by making a clear distinction between macroeconomic factors

that are local from those that are external.

• We used some RMT results for the stability of financial networks and assessed the dynamic

stability of a global banking network built from bilateral exposures of country banking

systems to debtor countries. Here we applied the eigen-pair method of Markose (2012), who

based on the work of May (1972, 1974) for random networks, develops an stability condition

based on the maximum eigenvalue λmax of a matrix of net bilateral exposures relative to

equity capital. Here we provided further evidence of the early warning capabilities of λmax,

when this surpasses a prespecified threshold. We also used the right and left associated

eigenvectors as a gauge for systemic importance and systemic vulnerability, respectively.

These metrics were then contrasted with recent systemic risk indices (SRIs) based on

market price-based data, namely, the DCC-MES of Acharya et al. (2010), the SRISK of

Acharya et al. (2012) and the DCC-∆CoVaR of Adrian and Brunnermeier (2011) in terms

of their early warning capabilities. We also provided a thorough analysis for these metrics,

in terms of their significance and their main determinants.

9.2 Concluding Remarks

In this section we review the main conclusions of this thesis from the point of view of an in-

stitutional investor considering implementing the RMT-filtering to clean noise from correlation

matrices and also from a central banker’s perspective seeking to monitor financial institutions

based on a network approach.

9.2.1 Sample Correlation Matrix

In this thesis we examined the application of two RMT filters to build portfolios of stocks in

the FTSE 100 and also the Chilean stock market. We studied the effect on realised risk forecast

of minimum variance portfolios using both, an in-sample and an out-of-sample analysis. Our

results are in good agreement with previous studies (Pafka et al., 2004; Daly et al., 2008, 2010)

in that the RMT-filtering is able to improve the forecast of the realised risk of minimum variance
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portfolios.

When filtering the sample correlation matrix we find that the RMT-filtering delivers the

lowest realised risk, the lowest volatility of prediction and the best prediction accuracy when

compared to the sample correlation estimator. This is particularly true in the absence of short-

sale constraints. We also find that the RMT-filtering performs the best for short estimation

windows, of the order of 6 months to 1 year of data (e.g., 1.6 ≤ Q ≤ 3.2). This is consistent with

what it has been found in the literature (see, Pafka et al., 2004; Daly et al., 2008). For higher

values of Q (e.g., 3.2 < Q < 6.5) these benefits would seem to be diminished, as the filtered

correlation matrix converges to the sample correlation matrix, when the sample size increases.

These results are robust to both, low and high volatility periods in financial markets. In the

former case, we find that there are no major differences between using the sample and filtered

correlation matrices. In the latter case, we find that the RMT-filtered correlation estimators

outperform the sample correlation estimator in both cumulated returns and Sharpe Ratios. We

also suggest a possible explanation for the success of the RMT-filtering. It would seem that

the portfolios built using the sample correlation matrix tend to take, on average, more extreme

positions and are more overexposed to short-selling than those built using the filtered correlation

matrix. These results are robust to both volatility periods.

9.2.2 Other Correlation Estimators

In terms of applicability of the RMT-filtering in a Regime Switching context, we find that the

spectrum in Regime 1 (low volatility regime), can be fitted relatively well by the Marc̆enko-

Pastur Distribution, which allows us to distinguish signals from noise in the correlation matrix

for Regime 1. In this context, filtering is only applied to the correlation matrix of Regime 1.

Recall that the Marc̆enko-Pastur Distribution is based on the assumption of normality of returns.

While this may be true for Regime 1, returns for Regime 2 are far from being normal. In terms

of cumulated returns, we find that the RMT-filtering enhances the performance of portfolio

returns in 30% for the regime-dependent correlations and 23%-17.7%, for the CAPM-based and

sample correlation estimators, respectively. In addition, the filtered regime-dependent correlation

estimators are able to deal better with downside risk than their unfiltered version, with more
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volatility in the upside than in the downside. We also find that the RMT-based filtering works

better for short estimation windows and when short-sale is permitted. These results are robust

to both filtering methods. In particular, the method of Plerou et al. (2002) (Method 1) delivers

better cumulated returns than the method of Laloux et al. (2000) (Method 2) across estimators.

Finally, from an asset allocation perspective, we find that the success of the filtered regime-

dependent correlation estimators comes from their ability to deliver more diversified portfolios

and also by placing less resources on Financials. This finding is common to all filtered correlation

estimators.

Regarding the conditional correlation estimators, we find that by far the best results are

obtained by the filtered versions CCC − (pRMT ) and the DCC − (pRMT ) models. Their realised

variance is significantly smaller compared to their Factor −GARCH versions and also smaller

than their unfiltered counterparts. The models using the RMT-filtering also produced portfolios

with the lowest mean squared error (MSE) and mean average percentage error between 52% and

54%. These results also stress the shortcomings of using the Exponentially Weighted Moving

Average (EWMA) models, which, despite their simplicity, can lead to a serious underestimation

of the underlying risks of minimum variance portfolios.

9.2.3 Combining RMT with VAR Analysis

In our study for the Chilean Stock Market. We use the statistically significant principal compo-

nents as predicted by the RMT approach and we are able to construct portfolios with different

degrees of exposure to the market portfolio. By contrasting this to a number of local and ex-

ternal macroeconomic variables, we compute impulse responses that allow us to identify the

global risk aversion as the main driver of the market returns, followed in importance by shocks

to the monthly rate of inflation and the country’s monetary policy rate. With the use of statis-

tically significant eigenvalues we are also able to construct portfolios, which are uncorrelated to

macroeconomic shocks.
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9.2.4 Systemic Risk in a Cross-Border Setting and the Role of Finan-

cial Networks

In this study we provide a cross-border comparison of systemic risk indices based on market price-

based data and the network approach to cross-border liabilities. As opposed to most of SRIs in

the literature, the eigen-pair method based on bilateral netted exposures relative to equity capital

of national banking systems, makes a clear distinction between systemic importance and systemic

vulnerability. Standard market price-based SRIs lack any threshold above which one can identify

early turning points in system stability as a whole. In contrast, the eigen-pair method provides

a close-form metric through the condition λmax(Θ) < ρ, where ρ is the regulatory capital buffer.

In particular, the use of this metric in a network setting has been proved to have valuable early

warning capabilities. In fact, the maximum eigenvalue of the stability matrix Θ, peaks way

before the Subprime crisis started. A remarkable finding is that λmax(Θ) for the networked

system indicates the 60% loss in equity capital witnessed during the 2007 Crisis. Moreover, the

Left Eigenvector Centrality was able to highlight the increasing vulnerability of the Portuguese

banking system more than half a year before the collapse of one of its major banks and indicate

problems in the Belgian banking system way before its major financial group had to be bailed

out.

9.3 Summary

In the majority of portfolio metrics analysed in this thesis, we have shown the benefits of the

RMT-filtering in producing portfolios with the lowest realised risk and also to correctly predicted

it. In the same vein, the associated portfolios were also found to deliver more diversified portfolios,

with greater cumulated returns and Sharpe Ratios. These portfolios were also found to deal better

with downside risk.

We also showed that the RMT-filtering can also be used to improve the performance of

estimated correlation matrices, as the case of the Constant Conditional Correlation (CCC) model

of Bollerslev (1990), the Dynamic Conditional Correlation (DCC) models of Engle (2002) and

the Regime-Switching Beta-CAPM correlation estimator, based on Ang and Bekaert (2004).
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These results hold in the absence of short-sale constraints and when using relatively short

estimation windows (usually, 6 months to 1 year of data), as in this case the RMT-filtering

performs the best.

Finally, we showed how the stability condition seminally derived in May (1972, 1974) for

random networks and later on extended by Markose (2012) can be used to build a systemic

risk index with great early warning on the growing instability of cross-border banking flows.

As opposed to market price-based SRIs, the eigen-pair method delivers a threshold for which

the stability of the networked system can be assessed. This outlines the importance of the

informational content of cross-border balance sheet data in a network setting for assessing global

financial stability.

9.4 Future Work

A number of interesting areas of research came along with the development of this thesis. From

a theoretical perspective, for example, recent evidence suggests that meaningful correlations

can be measured in the bulk of the MP eigenvalue spectrum (Burda et al., 2004; Burda and

Jurkiewicz, 2004; Malevergne and Sornette, 2004; Kwapièn et al., 2006). This happens because

we are assuming that returns are normally distributed, which is not the case in real life. Indeed,

returns in financial markets are not normally distributed and exhibit a number of features, such

as fat tails, volatility clustering and non-stationarity. Recent literature has been improving these

matters by developing extensions of the MP distribution to account for these phenomena (Potters

et al., 2005; Bouchaud and Potters, 2009). In this context, an interesting line of future research

could be focused on extending the RMT approach to more fat-tailed distributions.

In a more practical setting, it would be interesting to study the correspondence between the

stocks privileged by the RMT-filtering with those of a Fama and French (1992) factor model.

To see whether these correspond to low price to earnings stocks (value stocks), high market

capitalisation stocks (size stocks) and high divident stocks (growth stocks). This would provide

us with some insights into how noisy correlations are in these different segments.

Finally, it would be an interesting line of research the analysis of correlation-based networks

in the spirit of Song et al. (2011). For example, centrality measures based on these networks
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could be used to identify stocks that are less central in the network to design optimal trading

strategies (Pozzi et al., 2013).
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Appendix A

Tables & Figures from Chapter 5
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Company Abbreviation Classification Sign

PRU LN Equity PRU Life Insurance +
OML LN Equity OML Life Insurance +
ADN LN Equity ADN Financial Services +
SDRC LN Equity SDRC Financial Services +
LGEN LN Equity LGEN Life Insurance +
AV/ LN Equity AV Life Insurance +
LLOY LN Equity LLOY Banks +
SDR LN Equity SDR Financial Services +
EMG LN Equity EMG Financial Services +
CSCG LN Equity CSCG Real Estate Investments Trusts +
BLT LN Equity BLT Mining +
HSBA LN Equity HSBA Banks +
RSA LN Equity RSA Nonlife Insurance +
STAN LN Equity STAN Banks +
BARC LN Equity BARC Banks +
WPP LN Equity WPP Media +
IAG LN Equity IAG Travel and Leisure +
RBS LN Equity RBS Banks +
ANTO LN Equity ANTO Mining +
LAND LN Equity LAND Real Estate Investments Trusts +
AAL LN Equity AAL Mining +
WOS LN Equity WOS Support Services +
BLND LN Equity BLND Real Estate Investments Trusts +
SAB LN Equity SAB Beverages +
UU/ LN Equity UU Gas, Water and Multiutilities +
HMSO LN Equity HMSO Real Estate Investments Trusts +
NXT LN Equity NXT General Retailers +
DGE LN Equity DGE Beverages +
REX LN Equity REX General Industrials +
PSON LN Equity PSON Media +
RR/ LN Equity RR Aerospace and Defense +
CPI LN Equity CPI Support Services +
SVT LN Equity SVT Gas, Water and Multiutilities +
IMI LN Equity IMI Industrial Engineering +
WTB LN Equity WTB Travel & Leisure +
MGGT LN Equity MGGT Aerospace and Defense +
WEIR LN Equity WEIR Industrial Engineering +
IAP LN Equity IAP Financial Services +
TSCO LN Equity TSCO Food & Drug Retailers +
BT/A LN Equity BTA Fixed Line Telecommunications +
MKS LN Equity MKS General Retailers +
BNZL LN Equity BNZL Support Services +
REL LN Equity REL Media +
AGK LN Equity AGK Support Services +
AZN LN Equity AZN Pharmaceuticals & Biotechnology +
SMIN LN Equity SMIN General Industrials +
MRW LN Equity MRW Food and Drug Retailers +
ARM LN Equity ARM Technology Hardware and Equipment +
JMAT LN Equity JMAT Chemicals +
BP/ LN Equity BP Oil & Gas Producers +
ABF LN Equity ABF Food Producers +
SHP LN Equity SHP Pharmaceuticals and Biotechnology +
BA/ LN Equity BA Aerospace and Defense +
CRH LN Equity CRH Construction and Materials +
SRP LN Equity SRP Support Services +
SGE LN Equity SGE Software & Computer Services +
SSE LN Equity SSE Electricity +
VOD LN Equity VOD Mobile Telecommunications +
RDSB LN Equity RDSB Oil & Gas Producers +
AMEC LN Equity AMEC Oil Equipment & Services +
CRDA LN Equity CRDA Chemicals +
KGF LN Equity KGF General Retailers +
RIO LN Equity RIO Mining +
GKN LN Equity GKN Automobile & Parts +
SN/ LN Equity SN Health Care Equipment and Services +
BATS LN Equity BATS Tobacco +
CNA LN Equity CNA Gas, Water & Multiutilities +
NG/ LN Equity NG Gas, Water & Multiutilities +
ULVR LN Equity ULVR Food Producers +
BG/ LN Equity BG Oil & Gas Producers +
BSY LN Equity BSY Media +

(a) Largest Eigenvector Components - Year 2007.

Company Abbreviation Classification Sign

CSCG LN Equity CSCG Real Estate Investments Trusts +
LAND LN Equity LAND Real Estate Investments Trusts +
LLOY LN Equity LLOY Banks +
HMSO LN Equity HMSO Real Estate Investments Trusts +
RBS LN Equity RBS Banks +
BLND LN Equity BLND Real Estate Investments Trusts +
AV/ LN Equity AV Life Insurance +
BARC LN Equity BARC Banks +
IAG LN Equity IAG Travel & Leisure +
PRU LN Equity PRU Life Insurance +
LGEN LN Equity LGEN Life Insurance +
OML LN Equity OML Life Insurance +
WOS LN Equity WOS Support Services +
NXT LN Equity NXT General Retailers +
KGF LN Equity KGF General Retailers +
ABF LN Equity ABF Food Producers +
TSCO LN Equity TSCO Food & Drug Retailers +
SHP LN Equity SHP Pharmaceuticals & Biotechnology +
ADN LN Equity ADN Financial Services +
MKS LN Equity MKS General Retailers +
EMG LN Equity EMG Financial Services +
RSA LN Equity RSA Nonlife Insurance +
CRDA LN Equity CRDA Chemicals +
AZN LN Equity AZN Pharmaceuticals & Biotechnology +
RRS LN Equity RRS Mining -
ANTO LN Equity ANTO Mining -
BLT LN Equity BLT Mining -
AAL LN Equity AAL Mining -
RIO LN Equity RIO Mining -
BP/ LN Equity BP Oil & Gas Producers -
BG/ LN Equity BG Oil & Gas Producers -
RDSB LN Equity RDSB Oil & Gas Producers -

(b) Second Largest Eigenvector Components -
Year 2007.

Company Abbreviation Classification Sign

BARC LN Equity BARC Banks +
RBS LN Equity RBS Banks +
HSBA LN Equity HSBA Banks +
GSK LN Equity GSK Pharmaceuticals & Biotechnology +
AZN LN Equity AZN Pharmaceuticals & Biotechnology +
LLOY LN Equity LLOY Banks +
BATS LN Equity BATS Tobacco +
KGF LN Equity KGF General Retailers -
SMIN LN Equity SMIN General Industrials -
JMAT LN Equity JMAT Chemicals -
ARM LN Equity ARM Technology Hardware & Equipment -
CPI LN Equity CPI Support Services -
NXT LN Equity NXT General Retailers -
CRDA LN Equity CRDA Chemicals -
WTB LN Equity WTB Travel & Leisure -
BA/ LN Equity BA Aerospace and Defense -
IAP LN Equity IAP Financial Services -
TLW LN Equity TLW Oil & Gas Producers -
REX LN Equity REX General Industrials -
BNZL LN Equity BNZL Support Services -
AGK LN Equity AGK Support Services -
RRS LN Equity RRS Mining -
BLT LN Equity BLT Mining -
ADN LN Equity ADN Financial Services -
MGGT LN Equity MGGT Aerospace and Defense -
RIO LN Equity RIO Mining -
SRP LN Equity SRP Support Services -
IMI LN Equity IMI Industrial Engineering -
AMEC LN Equity AMEC Oil Equipment & Services -
SDRC LN Equity SDRC Financial Services -
WEIR LN Equity WEIR Industrial Engineering -
ANTO LN Equity ANTO Mining -
SDR LN Equity SDR Financial Services -
AAL LN Equity AAL Mining -

(c) Third Largest Eigenvector Components -
Year 2007.

Company Abbreviation Classification Sign

ANTO LN Equity ANTO Mining +
AAL LN Equity AAL Mining +
BLT LN Equity BLT Mining +
RBS LN Equity RBS Banks +
RIO LN Equity RIO Mining +
BARC LN Equity BARC Banks +
CRH LN Equity CRH Construction & Materials +
NXT LN Equity NXT General Retailers +
LGEN LN Equity LGEN Life Insurance +
KGF LN Equity KGF General Retailers +
LLOY LN Equity LLOY Banks +
GKN LN Equity GKN Automobile & Parts +
WOS LN Equity WOS Support Services +
ABF LN Equity ABF Food Producers -
GSK LN Equity GSK Pharmaceuticals & Biotechnology -
SAB LN Equity SAB Beverages -
SN/ LN Equity SN Health Care Equipment and Services -
CNA LN Equity CNA Gas, Water & Multiutilities -
IAP LN Equity IAP Financial Services -
AZN LN Equity AZN Pharmaceuticals & Biotechnology -
MGGT LN Equity MGGT Aerospace and Defense -
TSCO LN Equity TSCO Food & Drug Retailers -
BT/A LN Equity BT/A Fixed Line Telecommunications -
BA/ LN Equity BA Aerospace and Defense -
UU/ LN Equity UU Gas, Water & Multiutilities -
MRW LN Equity MRW Food & Drug Retailers -
ULVR LN Equity ULVR Food Producers -
RB/ LN Equity RB Household Goods & Home Construction -
VOD LN Equity VOD Mobile Telecommunications -
IMT LN Equity IMT Tobacco -
SVT LN Equity SVT Gas, Water & Multiutilities -
DGE LN Equity DGE Beverages -
SSE LN Equity SSE Electricity -
BATS LN Equity BATS Tobacco -
NG/ LN Equity NG Gas, Water & Multiutilities -

(d) Fourth Largest Eigenvector Components -
Year 2007.

Company Abbreviation Classification Sign

SDRC LN Equity SDRC Financial Services +
VOD LN Equity VOD Mobile Telecommunications +
SDR LN Equity SDR Financial Services -

(e) Smallest Eigenvector Components - Year
2007.

Company Abbreviation Classification Sign

AAL LN Equity AAL Mining +
RDSB LN Equity RDSB Oil & Gas Producers +
VOD LN Equity VOD Mobile Telecommunications +
RIO LN Equity RIO Mining +
RBS LN Equity RBS Banks +
GSK LN Equity GSK Pharmaceuticals & Biotechnology +

BARC LN Equity BARC Banks +
HSBA LN Equity HSBA Banks +

BP/ LN Equity BP Oil & Gas Producers +
SDR LN Equity SDR Financial Services +
BG/ LN Equity BG Oil & Gas Producers +

TSCO LN Equity TSCO Food & Drug Retailers +
BLT LN Equity BLT Mining +

SDRC LN Equity SDRC Financial Services -
HMSO LN Equity HMSO Real Estate Investments Trusts -

(f) Second Smallest Eigenvector Components -
Year 2007.

Table A.1: Significant Participating Firms in Each Eigenvector for 2007.
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Appendix B

Tables & Figures from Chapter 7

V IX P coppert xIMACEC
t πt rt G1

t G2
t G3

t G81
t G82

t G83
t

Mean 22.028 1.512 0.526 0.258 3.803 0.110 -0.053 -0.015 -0.005 0.005 -0.009
Median 21.090 0.558 0.651 0.220 3.500 0.090 -0.031 0.004 -0.003 0.006 -0.005
Maximum 59.890 35.424 7.215 1.110 8.250 1.212 0.698 0.674 0.109 0.102 0.089
Minimum 10.420 -36.471 -5.830 -1.029 0.500 -0.864 -0.770 -0.674 -0.138 -0.114 -0.151
Std. Dev. 9.139 8.954 1.587 0.383 2.004 0.325 0.210 0.182 0.046 0.045 0.038
Skewness 1.415 -0.158 -0.197 -1.029 0.185 0.082 -0.353 0.341 -0.185 -0.283 -0.519
Kurtosis 5.772 5.883 7.176 3.587 2.329 4.159 5.425 5.866 3.321 2.657 4.346
Jarque-Bera 80.447 46.275 90.184 2.863 3.010 7.021 32.687 44.472 1.233 2.243 14.795
Probability 0.000 0.000 0.000 0.238 0.222 0.030 0.000 0.000 0.540 0.326 0.001
Sum 2709 199.665 64.674 34.388 467.750 13.476 -6.499 -1.796 -0.623 0.581 -1.061
Sum Sq. Dev. 10190 10502.89 307.350 19.399 489.907 12.904 5.370 4.050 0.253 0.243 0.180
Observations 123 123 123 123 123 123 123 123 123 123 123

Table B.1: Descriptive statistics of Variables used in the VAR estimation. Note: Sample period
from 2000M11 to 2011M01. Authors calculations.

1. V IX: Is the Chicago Board Options Exchange Market Volatility Index. Source: Bloomberg.

2. PCoppert : Is the seasonally adjusted monthly change of the London Metal Exchange copper

price. Source: Bloomberg.

3. xIMACEC
t : Is the monthly change of the IMACEC (monthly indicator of economic activity

which cover 90% of goods and services included in the GDP). Source: Chilean Central

Bank.

4. rt: Is the Chilean Central Bank Monetary Policy Rate. Source: Chilean Central Bank.
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Company Business Sector

SQM A Mining
ENERSIS Energy
ANDINA B Food and beverage
FALABELLA Commerce and retail
VAPORES Shipping
ENDESA Energy
ORO BLANCO Mining
CAP Metalmechanics
CALICHERA A Mining
ANDINA A Food and beverage
CMPC Forest products, cellulose
CCU Food and beverage
COPEC Energy and natural resources
ENTEL Telecommunications
MADECO Metalmechanics
BCI Banking and Financial Services
LAN Airline and cargo
COLBUN Energy
SAN PEDRO Food and beverage
QUINENCO Conglomerate
CINTAC Metalmechanics
ALMENDRAL Various investments
BSANTANDER Banking and Financial Services
CONCHATORO Food and beverage
SMCHILE B Banking and Financial Services
GASCO Energy and natural resources
INFORSA Forest products, cellulose
PARAUCO Commerce and retail
AGUASA Water resources
CRISTALES Plastics and glasses
CHILE Banking and Financial Services
CEMENTOS Construction
IANSA Food and beverage
CGE Energy

(a) Largest Eigenvector

Company Business Sector

CALICHERAA Mining
ORO BLANCO Mining
SQM A Mining
NORTEGRAN Investments and Real Estate
SQM B Mining
ANDINA A Food and Beverage
ANDINA B Food and Beverage
CMPC Forest Products related
IANSA Agro-Industrial products
ECL Energy
COLBUN Energy
CAMPOS Agro-Industrial products
CINTAC Metalmechanics
INFORSA Forest Products related
COPEC Energy and Natural Resources

(b) Second Largest Eigenvector

Company Business Sector

CAMPOS Agro-Industrial products
IANSA Agro-Industrial products
NORTEGRAN Investments and Real Estate
ORO BLANCO Mining
CALICHERAA Mining
SM CHILE E Mining
ECL Energy
QUINTEC Investments and Real Estate
NAVARINO Transport and Logistics
EMBONOR B Food and Beverage
PUCOBRE A Mining
SQM B Mining
GENER Energy
PROVIDA Pension Fund
SOMELA Metalmechanics
CINTAC Metalmechanics
ENERSIS Energy
COPEC Energy and Natural Resources
ENDESA Energy
ENTEL Telecommunications
CMPC Forest Products related
MADECO Mining Related
BSANTANDER Banking and Financial Services
FALABELLA Commerce and Retail
LAN Airline Services
CGE Energy
ALMENDRAL Investments and Real Estate
CAP Metalmechanics

(a) Third Largest Eigenvector

Company Business Sector

CGE Energy
ELECMETAL Metalmechanics
KOPOLAR Food and Beverage
ORO BLANCO Mining
EMBONOR B Food and Beverage
MARINSA Investments and Real Estate
SECURITY Banking and Financial Services
CAP Metalmechanics
ANDINA A Food and Beverage
CALICHERAA Mining
ENERSIS Energy
CHILE Banking and Financial Services
BANMEDICA Investments (health related)
NORTEGRAN Investments and Real Estate
PARAUCO Commerce and Retail
BSANTANDER Banking and Financial Services
EMBONOR A Food and Beverage
EMILIANA Food and Beverage
SM CHILE E Banking and Financial Services
ENDESA Energy
TELCOY Telecommunications
CINTAC Metalmechanics
CONCHATORO Food and Beverage
FOSFOROS Matches producers

(b) Smallest Eigenvector

Table B.2: Significant Participating Firms in Each Eigenvector
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Appendix C

Additional Analyses from

Chapter 8

C.1 Proof Equation 4.1

For this result in Equation 4.1, note for any real non-negative vector U1 in (3.31), the q power of

the matrix denoted as Θ′q, can be solved iteratively using the infinity norm of the vector Θ′qUq

denoted as ||Θ′qUq||∞ to normalise the vector as in the power iteration equation:

Uq+1 =
Θ′Uq
||Θ′Uq||∞

=
Θ′qU1

||Θ′qU1||∞
. (C.1)

The iteration is said to have converged at q + 1 when Uq+1 = Uq = V L with an epsilon

margin of error. The vector V L is the left eigenvector of the matrix and ||Θ′qV L||∞ = λmax(Θ′).

Multiplying through by λmax(Θ′) in the power iteration equation, we have the eigenvalue equa-

tion Θ′V L = λmaxV
L ≡ Θ′qU1. This leads to the result in Equation 4.1. That is, the potential

capital loss for country i is given by ui,# ∼= λmax(Θ′)vi,∞.
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C.2 Simulation Algorithm for LRMES

Here we describe the simulation based procedure developed by Brownlees and Engle (2012) to

construct the LRMES forecasts. That is, we are interested in computing the LRMES of country

i on period T at horizon h, conditional on a global market decline equal to C (which for this

case we set it to 40%),

LRMESi,T = ET (Ri,T+1:T+h|Rm,T+1:T+h < C). (C.2)

The authors assume parameters to be known while in practice they use estimated parameters

using all of the information available up to time T .

1. Construct the GARCH-DCC standardised innovations

εm,t =
rm,t
σm,t

and ξi,t =

(
ri,t
σi,t
− ρi,t

rm,t
σm,t

)
/
√

1− ρ2
i,t, (C.3)

for each t = 1, ..., T . Notice that by construction εm,t and ξi,t are i.i.d ∼ F(0,1).

2. Sample with replacement Sxh pairs of standardised innovations [εm,tξi,t]
′. Use these to

construct S pseudo samples of GARCH-DCC innovations from period T + 1 to period

T + h, that is

 εsm,T+t

ξsi,T+t


t=1,...,h

s = 1, ..., S. (C.4)

3. Feed the pseudo samples of GARCH-DCC innovations into the DCC and GARCH filters

respectively using as initial conditions the last values of the conditional correlation ρi,T and

variances σ2
m,T and σ2

i,T . This step delivers S pseudo samples of GARCH-DCC returns from

period T + 1 to period T + h conditional on the realised process up to time T , that is

 rsm,T+t

rsi,T+t


t=1,...,h

|FT s = 1, ..., S. (C.5)
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4. Construct the multi-period arithmetic firm return of each pseudo sample

Rsi,T+1:T+h = exp

[
h∑
t=1

rsi,T+t

]
− 1, (C.6)

and compute the multi-period arithmetic market return Rsm,T+1:T+h analogously.

5. Compute the LRMES as the Monte Carlo average of the simulated multi-period returns

conditional on the systemic event

LRMESi,T =

∑S
s=1Ri,T+1:T+hI{Rm,T+1:T+h < C}∑S

s=1 I{Rm,T+1:T+h < C}
. (C.7)

C.3 Breakdown of the Core Global Banking System: SRISK#

As we can see from Figure C.1, leverage was, on average, already high of the order of 20 for the 18

national banking systems during 2005Q4, peaking at 23 in 2008Q4. If we think of the minimum

leverage ratio stipulated in Basel III of 3%1, which is equivalent to a leverage of the order of

33. This would imply that these national banking systems, on average, exhibit lower leverage

than what Basel III expects from them. However, in our sample, there are countries such as

Ireland that exhibit a leverage well above 33, prior to the crisis, reaching a peak of 51, during

2008Q4. In contrast, there are countries such as Canada that exhibit a leverage of 6 over the

entire sample. This definitively, tends to drive the results. As suggested by Engle et al. (2014),

the SRISK could be weighted by the market value of equity. However, this neglects the systemic

importance of many GIIPS countries, as they carry a very small weight in the overall equity and

these countries were precisely the ones that had the greatest potential to trigger capital losses in

the international banking system.

In addition, the LRMES remains subdued at 25% right up to 2007Q1, peaking to 76% during

2008Q4. This compensates the weight of leverage in the SRISK# formula, therefore, preventing

this latter from picking up in the run up to the crisis.

1Under Basel III, “leverage ratio” is defined as the ratio between Tier 1 capital and the bank’s average total
consolidated assets (sum of the exposures of all assets and non-balance sheet items).

170



Figure C.1: Average Equity, Leverage, LRMES, and SRISK#

(a) EQUITY (b) LEVERAGE

(c) LRMES (d) SRISK#

C.4 Estimation Methodology for the Capital Threshold for

Losses

In Section 3.5 we argued that the stability of the networked system is given by the condition

λmax(Θ) < ρ, where ρ is the capital loss threshold. These thresholds have to be carefully

specified. In this appendix we determine how the absolute capital threshold, ρ, that works as a

buffer against losses relates to the regulatory Tier 1 Capital requirement.

Based on the Basel II criteria, the capital inadequacy in a bank from losses of receivables

from counterparties can be defined as follows:

EquityCapital − LGD
RWA

< 10% = TRWA. (C.8)

Here LGD is loss given default, which is the magnitude of likely losses on the exposure, usually

expressed as a percentage of the exposure and RWA is risk weighted assets. This condition states
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that equity capital minus losses should be greater than 10% of risk weighted assets. However,

as the practical aspects of avoiding insolvency requires recapitalization, it is important to see

the equivalence of the above Basel rule with permissible LGD as function of Equity capital,

denoted as TC . This equivalence is important as it hints at the permissible loss the country

should experience before being considered in distress. If we assume that this condition is exactly

met at TC · Equitycapital = LGD, by substituting this into C.8 when the condition in C.8 is

exactly met, we have:

TC = MAX

(
0, 1− TRWA

RWA

EquityCapital

)
. (C.9)

For instance, when EquityCapital
RWA = 10% = TRWA, we have TC = 0, which means that there

is no room to lose anything and the bank/banking system requires recapitalization. In contrast,

if we allow a relatively small number for EquityCapital
RWA = 12% but above TRWA = 10%, we

have TC = 16.6%. What this implies is that when banks/banking systems have an average

Equity Capital/RWA of 12%, then by C.8, the permissible loss that can be sustained before

being considered in distress is 16.6% of Equity Capital. Based on this, we conclude that the

Basel II criteria of capital adequacy can be highly misleading in terms of signalling distress in

the system. In Table C.2 we calculated TC for every country for all the years and we plot the

minimum of TC together with λmax(Θ). We also provide the number of banking systems that

require recapitalization as indicated by their TC for every quarter. Here we observe that before

the GFC, capital buffers were very low ranging between 14% to 9% during 2008Q4. This period

also coincides with more than the half of the national banking systems requiring recapitalization.

This trend is reversed as we approach 2013Q4, where banks started to build their capital buffers

from historical lows to 9% to more than 35% in 2013Q4.

In general, there are growing concerns about the reliability of the denominator of capital

ratios, similar to the previous loss of confidence in the numerator in the run-up to the 2007

financial crisis. Back then, market participance moved away from regulatory measures2 and fo-

cused instead on capital measures, which better reflected true loss-absorbing capital. While Basel

III attempted to correct the main deficiencies of the denominator by adopting more stringent

2e.g., Core Tier 1 in Europe and Tangible Common Equity or Tier 1 Common in the US.
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definitions of capital, there is an increasing loss of confidence in the way that banks calculate

their RWA (particularly the ones using Basel II advanced IRB approach). This is why some

market participants prefer to rely on unweighted capital measures to assess solvency or to re-

quire a higher capital ratio to compensate for the possible understatement of RWAs (Leslé and

Avramova, 2012). For our analysis, this suggests that the Tier 1/RWA ratio is overstated and

therefore we should expect TC to be much smaller in case RWAs were properly calculated.

Figure C.2: Note: For quarters between 2011Q4-2012Q4 the Maximum Eigenvalue, λmax (right
axis), is calculated for CGBS network without Greece, when it was virtually bankrupt with
negative equity capital in banking system. Nonetheless, the main source of instability is given
by the GIIPS countries.

C.5 Cross-Border Flows Breakdown used to Rescale λmax
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Figure C.3: Cross-border liabilities by type of counterparty. Left panel shows cross-border debt
liabilities by pairwise classiffication of borrower and lender. “Bank to bank” refers to cross-
border claims of banks on other banks (BIS banking statistics table 7A minus 7B). “Bank to
non-bank” refers to cross-border claims of banks on non-banks (BIS table 7B). Claims of non-
banks are from BIS international debt security statistics, tables 11A and 11B). The right panel
shows cross-border debt liabilities of developed countries according to BIS classiffication. Source:
Bruno and Shin (2015a).

Daily Returns MSCI Financials and World Leverage = Liabilities+Equity
Equity

Country Mean Std Max Min Mean Std Max Min

Australia 0.00% 1.39% 9.14% -8.87% 17.65 0.93 18.82 16.01
Austria -0.05% 2.60% 17.13% -18.53% 16.50 1.19 19.87 14.73
Belgium -0.06% 2.36% 16.70% -34.30% 22.25 2.97 29.60 17.66
Canada 0.01% 1.41% 11.70% -13.12% 6.76 4.59 12.09 2.12
France -0.01% 2.34% 17.05% -11.80% 23.83 2.25 29.76 19.44
Germany -0.01% 2.03% 16.08% -12.50% 25.88 3.62 32.81 17.93
Greece -0.16% 4.33% 25.74% -34.97% 36.44 36.33 105.63 12.80
India 0.04% 2.18% 19.23% -13.82% 14.56 0.6 16.14 13.82
Ireland -0.17% 5.26% 38.53% -56.65% 32.15 9.01 51.96 17.82
Italy -0.04% 2.22% 15.60% -10.49% 14.83 1.02 16.82 13.60
Japan -0.02% 2.00% 14.49% -12.40% 19.80 1.34 23.39 17.88
Netherlands -0.02% 3.08% 21.46% -20.31% 25.35 2.91 32.30 18.50
Portugal -0.09% 2.44% 15.28% -13.17% 21.35 1.71 24.60 18.46
Spain -0.02% 2.17% 19.55% -12.25% 18.34 1.24 21.84 15.92
Sweden 0.02% 1.98% 12.84% -9.50% 23.01 1.77 26.53 18.57
Switzerland -0.03% 2.11% 16.11% -11.75% 21.22 1.78 24.82 17.94
Turkey 0.02% 2.35% 15.41% -11.71% 9.26 1.54 16.00 8.27
United Kingdom -0.02% 1.99% 17.61% -13.43% 25.69 4.83 39.86 19.20
United States -0.01% 2.34% 16.04% -17.80% 13.43 1.32 15.60 11.64
MSCI World 0.01% 1.16% 8.90% -7.37% - - - -

Table C.1: Source: Bloomberg for the MSCI and Bankscope for Leverage. Authors calculations
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Country Equity (in Billion USD) RWA (in Billion USD)
Mean Std Max Min Mean Std Max Min

Australia 165.34 66.01 247.48 32.34 1132.7 324.5 1506.3 261.0
Austria 131.19 23.06 154.06 63.54 726.5 181.1 1042.7 317.8
Belgium 145.89 17.63 194.46 110.41 811.9 215.1 1107.6 401.9
Canada 242.60 136.16 435.96 94.27 573.4 640.8 1472.4 3.0
France 822.30 189.27 1141.83 401.32 3792.7 762.1 4660.4 2146.9
Germany 759.67 245.53 1161.15 247.19 3962.2 1197.2 5909.3 902.8
Greece 24.98 12.82 48.69 5.94 272.3 77.5 460.0 121.0
India 119.16 42.44 177.35 49.86 408.2 262.2 1158.5 7.7
Ireland 59.34 11.94 77.92 37.89 446.2 107.8 627.0 308.0
Italy 395.21 59.94 470.74 223.98 2473.9 515.9 2930.5 1180.4
Japan 1211.97 372.44 1674.03 673.06 4301.7 2996.4 8356.2 810.2
Netherlands 269.06 39.57 335.77 166.61 1242.9 135.1 1511.2 1034.2
Portugal 35.33 6.35 45.89 19.39 357.1 49.4 403.8 225.7
Spain 267.24 76.14 407.98 124.90 2192.8 492.7 2798.3 1108.4
Sweden 96.01 26.41 149.44 49.16 769.4 80.2 865.0 526.8
Switzerland 266.90 45.07 366.91 179.67 814.6 253.7 1485.9 428.3
Turkey 79.84 28.94 129.63 26.13 351.7 204.8 703.0 25.7
United Kingdom 1076.48 244.07 1441.59 637.18 5985.7 749.7 7014.2 3896.0
United States 2801.10 671.71 3765.27 1774.46 13779.2 3037.9 17590.3 7611.9

Table C.2: Equity and Risk Weighted Assets (RWA, in Billion USD) from Bankscope. Authors
calculations

Country Tier 1 Capital (in Billion USD) Tier 1 Capital /RWA (%)
Mean Std Max Min Mean Std Max Min

Australia 104.64 41.30 157.36 22.19 8.97% 1.28% 10.96% 7.15%
Austria 88.89 28.20 120.03 26.25 11.97% 1.64% 14.13% 8.26%
Belgium 89.96 30.10 127.12 34.36 11.25% 3.37% 15.72% 6.05%
Canada 77.73 86.00 190.63 0.48 16.47% 3.59% 27.04% 12.22%
France 461.74 182.22 677.44 119.30 11.6% 3.07% 15.81% 5.55%
Germany 436.17 211.98 848.40 67.92 10.42% 2.64% 14.49% 7.29%
Greece 17.71 9.59 34.08 1.60 6.43% 2.64% 11.20% 0.6%
India 61.60 33.92 120.61 10.58 28.7% 33.6% 136.7% 10.41%
Ireland 45.75 9.97 61.43 25.52 10.47% 2.16% 16.88% 8.07%
Italy 231.46 55.55 282.98 100.93 9.34% 1.18% 11.40% 7.86%
Japan 832.05 239.20 1153.12 444.09 31.40% 19.82% 67.74% 11.40%
Netherlands 152.02 24.84 222.37 113.06 12.37% 2.29% 15.24% 8.80%
Portugal 32.83 9.63 46.85 16.31 9.06% 1.92% 12.76% 6.69%
Spain 213.70 71.80 304.70 86.88 9.50% 1.52% 12.95% 7.65%
Sweden 82.37 22.64 114.84 41.81 10.63% 2.52% 14.22% 7.47%
Switzerland 146.84 51.73 269.24 74.74 17.93% 2.04% 20.11% 13.63%
Turkey 59.86 23.63 93.65 17.10 22.58% 12.47% 66.46% 12.77%
United Kingdom 820.21 239.23 1093.89 319.62 13.42% 2.70% 16.52% 8.20%
United States 1623.80 482.37 2316.40 874.23 11.61% 1.19% 13.17% 9.30%

Table C.3: Tier 1 Capital and Risk Weighted Assets (RWA, in Billion USD) from Bankscope.
Authors calculations
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C.6 Alternative Measures of Systemic Instability from Net-

work Theory

A hypothetical disconnection of the network is expected to lead to a global economic crisis, since

it disconnects international markets (Joseph et al., 2014). To measure this effect in the Global

Banking Network, we introduce the concept of algebraic connectivity of a graph, which is defined

as the real-part of the smallest non-zero eigenvalue of the normalised Laplacian, which is defined

as:

LN = I −D−1
in ·WT , (C.10)

where D−1
in = diag(1/sin1 , ..., 1/s

in
N ) is the diagonal matrix consisting of all node’s instrengths.

The Laplacian matrix has exactly one zero eigenvalue for every strongly connected component.

A graph is said to be strongly connected, if there is a directed path between any pair of nodes

(i, j). If such a path does not exists for all node pairs, but the underlying undirected graph is

connected, the network is said to be weakly-connected. For the case of a single strongly connected

component, the emphalgebraic connectivity, λ1 is the second smallest eigenvalue of LN . It is

a measure for the robustness of a network against edge/node removal. This is because a zero-

value means the decomposition of the network into two disconnected components. The results

of this exercise are in Figure C.4, where we plot the algebraic connectivity, λ1 together with

λmax for the whole sample. Here we observe that whenever λmax spikes up, there is a tweak

in the algebraic connectivity. This means that before a financial turmoil unravels, the network

becomes more disconnected. While this could be considered as an early warning, the absence of

a proper threshold unables to pinpoint exactly when system stability is at stake. In contrast,

lambdamax depicts growing instability and there is an specified threshold, through the condition

λmax(Θ′) < ρ above which we can consider the system to be unstable.
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Figure C.4: Algebraic connectivity, λ1 and λmax. Author Calculations.

Figure C.5: Algebraic connectivity, λ1 and λmax, excluding Greece for 2011Q4-2012Q4. Author
Calculations.
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BIS Bank for International Settlement
CSAMP Sample Correlation Matrix
CSAMP1 Filtered Sample Correlation Matrix by keeping the Largest Eigenvalue
CSAMP−RMT1 Filtered Sample Correlation Matrix by the method of Plerou et al (2002)
CSAMP−RMT2 Filtered Sample Correlation Matrix by the method of Laloux et al (2000)
CCAPM Sample Correlation Matrix
CCAPM−RMT1 Filtered CAPM Correlation Matrix by the method of Plerou et al (2002)
CCAPM−RMT2 Filtered CAPM Correlation Matrix by the method of Laloux et al (2000)
CRS Sample Correlation Matrix
CRS−RMT1 Filtered Regime-Switching Correlation Matrix by the method of Plerou et al (2002)
CRS−RMT2 Filtered Regime-Switching Correlation Matrix by the method of Laloux et al (2000)
CAPM Capital Asset Pricing Model
CCC Constant Conditional Correlation
CDF Cumulative Distribution Function
CGBSN Core Global Banking System Network
DCC-MES Dynamic Conditional Correlation Marginal Expected Shortfall
DCC-∆CoVaR Dynamic Conditional Correlation Delta Value-at-Risk
∆CoVaR Delta Conditional Value-at-Risk
EQ Equity Capital
EWMA Exponentially Weighted Moving Average
FPE Final Prediction Error
GFC Global Financial Crisis
GIIPS Greece-Ireland-Italy-Portugal-Spain
γmax Gamma Ratio

Ik Inverse Participation Ratio
λ Maximum Eigenvalue of the Stability Matrix Ω
LTQ Liquidity
LRMES Long-run Marginal Expected Shortfall
LVG Leverage
MA Moving Average
MAPE Mean Average Percentage Error
MAR Minimum Acceptable Return
MES Marginal Expected Shortfall
MP Marc̆enko-Pastur Distribution
MPT Markowitz Portfolio Theory
MSCO Morgan Stanly Composite Index
MSE Mean Square Error
MV-GARCH Multivariate Generalized Autoregressive Conditional Heterokedasticity
Neff Effective Portfolio Diversification
N90 Portfolio Diversification
Ωest Estimated Risk of the Portfolio
Ωreal Realised Risk of the Portfolio
Ω Omega Ratio
PR Participation Ratio
Π Cumulated Returns
RMT Random Matrix Theory
RS-GARCH Regime-Switching Generalised Autoregressive Conditional Heteroskedasticity Model
RWA Risk Weighted Assets
Sortino Sortino Ratio
SP Sharpe Ratio
SRI Systemic Risk Index
SRISK Systemic Risk
V L Left Eigenvector Centrality
V R Right Eigenvector Centrality
VAR Vector Autoregressive

Table C.4: Acronyms often used in the thesis.
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Armenti, Y., Crépey, S., Drapeau, S., Papapantoleon, A., 2015. Multivariate shortfall risk allo-

cation. http://arxiv.org/pdf/1507.05351.pdf.

Arsov, I., Canetti, E., Kodres, E., Mitra, S., 2013. ”near-coincident” indicators of systemic stress.

IMF Working Paper WP/12/115.

Bae, K., Karolyi, G., Stulz, R., 2003. A new approach to measuring financial contagion. Review

of Financial Studies 16 (717-763).

Baig, T., Goldfajn, I., June 1999. Financial market contagion in the asian crisis. IMF Staff Papers

46 (2).

Bekaert, G., Harvey, C. R., January 1997. Emerging equity market volatility. Journal of Financial

Economics 43 (1), 29–77.

Bekaert, G., Wu, G., 2000. Asymmetric volatility and risk in equity markets. Review of Financial

Studies 13 (1), 1–42.

180



Benoit, S., Colletaz, G., Hurlin, C., Perignon, C., 2013. A theoretical and empirical comparison

of systemic risk measures. HEC Paris Research Paper No. FIN-2014-1030.

BIS, 2013. Committee on the global financial systems. improving the bis international banking

statistics. CGFS Papers (47).

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D., 2006. Complex networks: Struc-

ture and dynamics. Physics Reports 424 (4-5), 175 – 308.

Bollerslev, T., 1990. Modeling the coherence in short-run nominal exchange rates: A multivariate

generalized arch model. Review of Economics and Statistics 72, 498–505.

Borio, C., Drehmann, M., 2011. Toward an operational framework for financial stability: “fuzzy”

measurement and its consequences. In: Alfaro, R. (Ed.), Financial Stability, Monetary Policy,

and Central Banking, 1st Edition. Vol. 15. Central Bank of Chile, Ch. 04, pp. 063–123.

Borio, C., Furfine, C., Lowe, P., 2001. “procyclicality of the financial system and financial sta-

bility: Issues and policy options,” in marrying the macro- and micro- prudential dimensions

of financial stability. BIS Papers 1, 1–57.

Bouchaud, J. P., Potters, M., Oct. 2009. Financial applications of random matrix theory: A

short review. Quantitative Finance.

Brownlees, T., Engle, R., 2012. Volatility, correlation and tails for systemic risk measurement.

Working Paper, NYU.

Brunnermeier, M. K., Cheridito, P., 2013. “measuring and allocating systemic risk”.

Brunnermeier, M. K., Sannikov, Y., 2015. International credit flows and pecuniary externalities.

American Economic Journal: Macroeconomics 7 (1), 297–338.

Bruno, V., Shin, H., 2014 2014. Cross-border banking and global liquidity. Monetary and Eco-

nomic Department, BIS Working Papers (458).

Bruno, V., Shin, H. S., 2015a. Cross-border banking and global liquidity. Review of Economic

Studies 82 (2), 535–564.

181



Bruno, V., Shin, H. S., 2015b. Capital flows and the risk-taking channel of monetary policy.

Journal of Monetary Economics 71, 119–132.

Bunda, I., Hamann, A. J., Lall, S., 2009. Correlations in emerging market bonds: The role of

local and global factors. Emerging Markets Review 10 (2), 67 – 96.

Burda, Z., Görlich, A., Jarosz, A., Jurkiewicz, J., 2004. Signal and noise in correlation matrix.

Physica A: Statistical Mechanics and its Applications 343 (0), 295 – 310.

Burda, Z., Jurkiewicz, J., 2004. Signal and noise in financial correlation matrices. Physica A:

Statistical Mechanics and its Applications 344, 67 – 72, applications of Physics in Financial

Analysis 4 (APFA4).

Calvo, S., Reinhart, C., 1996. Capital flows to latin america: Is there evidence of contagion

effects? World Bank Policy Research Working Paper 1619.

Castrén, O., Rancan, M., 2014. Macro-networks: An application to euro area financial accounts.

Journal of Banking & Finance 46 (0), 43 – 58.

Catão, L. A. V., Milesi-Ferretti, G. M., 2014. External liabilities and crises. Journal of Interna-

tional Economics, 94(1), 18–32.

Claessens, S., Forbes, K., 2001. International financial contagion. Norwell: MA: Kluwer Academic

Publishers.

Conlon, T., Ruskin, H., Crane, M., 2009. Cross-correlation dynamics in financial time series.

Physica A: Statistical Mechanics and its Applications 388 (5), 705 – 714.

Cont, R., Moussa, A., Santos, E., 2013. Network structure and systemic risk in banking systems.

Handbook on Systemic Risk, Cambridge University Press, 327– 367.

Coronnello, C., Tumminello, M., Lillo, F., Micciche, S., Mantegna, R. N., 2005. Sector identifi-

cation in a set of stock return time series traded at the London Stock Exchange. Acta Physica

Polonica B 36, 2653–2679.

Corsetti, G., Pericoli, M., Sbracia, M., April. 2002. Some contagion, some interdependence -

more pitfalls in tests of financial contagion. C.E.P.R. Discussion Papers (3310).

182



Daly, J., Crane, M., Ruskin, H., 2008. Random matrix theory filters in portfolio optimisation: A

stability and risk assessment. Physica A: Statistical Mechanics and its Applications 387, 4248

– 4260.

Daly, J., Crane, M., Ruskin, H. J., 2010. Random matrix theory filters and currency portfolio

optimisation. Journal of Physics: Conference Series 221 (1), 012003.

Das, S. R., Uppal, R., 2004. Systemic risk and international portfolio choice. The Journal of

Finance 59 (6), 2809–2834.

Degryse, H., Elahi, M., Penas, M. F., 2010. Cross-border exposures and financial contagion.

International Review of Finance 10:2, 209–240.

DeMiguel, V., Garlappi, L., Nogales, F. J., Uppal, R., 2009. A generalized approach to portfolio

optimization: Improving performance by constraining portfolio norms. Management Science

55 (5), 798–812.

DeSantis, G., Gerard, B., Hillion, P., 1999. The european single currency and world equity

markets. In European capital markets with a single currency, ed. J. Dermine and P. Hillion,

Oxford University Press, Oxford., 205–35.

Dornbusch, R., Y.C, P., S, C., 2000. Contagion: Understanding how it spreads. World Bank

Research Observer 15, 177–197.

Engle, R., 2002. Dynamic conditional correlation: A simple class of multivariate generalized au-

toregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics

20 (3), pp. 339–350.

Engle, R., Sheppard, K., 2001. Theoretical and empirical properties of dynamic conditional

correlation multivariate garch. Working Paper UCSD 15.

Engle, R. F., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance

of united kingdom inflation. Econometrica 50 (4), 987–1007.

Engle, R. F., Jondeau, E., Rockinger, M., 2014. Systemic risk in europe. Forthcoming in the

Review of Finance.

183



Engle, R. F., Kroner, K. F., 1995. Multivariate simultaneous generalized arch. Econometric

Theory 11 (1), 122–150.

Eterovic, N. A., Eterovic, D. S., 2013. Separating the wheat from the chaff: Understanding

portfolio returns in an emerging market. Emerging Markets Review 16 (0), 145 – 169.

Fama, E., French, K., 1992. The cross-section of expected stock returns. Journal of Finance 47,

427–465.

Fenn, D. J., Porter, M. A., Williams, S., McDonald, M., Johnson, N. F., Jones, N. S., 2011.

Temporal evolution of financial market correlations. Physical Review E 84 (2).

Financial Stability Board, 2011. Policy measures to address systemically important financial

institutions. FSB Publication.

Forbes, K., Rigobon, F., 2001. Measuring contagion: Conceptual and empirical issues. In Inter-

national Financial Contagion (Edited by Claessens, S. and Forbes, K.), Springer, 43–66.

Furfine, C. H., 2003. Interbank exposures: Quantifying the risk of contagion. Journal of Money,

Credit and Banking (35(1)), 111–128.

Gopikrishnan, P., Rosenow, B., Plerou, V., Stanley, H. E., 2001. Quantifying and interpreting

collective behavior in financial markets. Physical Review E 64, 035106.

Gourinchas, P., Obstfeld, M., 2012. Stories of the twentieth century for the twenty-first. American

Economic Journal: Macroeconomics 4(1), 226–265.

Gray, S., September 1996. Modeling the conditional distribution of interest rates as a regime-

switching process. Journal of Financial Economics 42 (1), 27–62(36).

Guhr, T., Müller-Groeling, A., Weidenmüller, H. A., 1998. Random-matrix theories in quantum

physics: common concepts. Physics Reports 299 (4-6), 189 – 425.

Haldane, A., 2009. Rethinking the financial network. Speech delivered at the Financial Student

Association. Amsterdam.

Hamilton, J. D., March 1989. A new approach to the economic analysis of nonstationary time

series and the business cycle. Econometrica.

184



Hattori, M., Suda, Y., 2007. Developments in a cross-border bank exposure “network” in bis

(ed.), research on global financial stability: the use of bis international financial statistics.

CGFS Papers. Bank for International Settlements 29, 16–31.

Hess, M., 2006. Timing and diversification: A state-dependent asset allocation approach. Euro-

pean Journal of Finance 12 ((3)), 189–204.

Hjorth, U., Hjort, U., 1982. Model selection and forward validation. Scandinavian Journal of

Statistics 9 (2), pp. 95–105.

Idier, J., Lame, G., Mesonnier, J.-S., May 2013. How useful is the marginal expected shortfall for

the measurement of systemic exposure? a practical assessment. ECB Working Paper (1546).

IMF-BIS-FSB, 2009. Financial stability board international monetary fund-bank for international

settlements (2009) guidance to assess the systemic importance of financial institutions, markets

and instruments: Initial considerations.

Jagannathan, R., 2003. Risk reduction in large portfolios: Why imposing the wrong constraints

helps. The journal of finance : the journal of the American Finance Association.

Joseph, A. C., Joseph, S. E., Chen, G., 02 2014. Cross-border portfolio investment networks and

indicators for financial crises. Scientific Reports 4, 3991 EP –.

Kalbaska, A., Gatkowski, M., 2012. Eurozone sovereign contagion: Evidence from the cds market

(2005-2010). Journal of Economic Behavior & Organization 83 (3), 657 – 673.

Kruger, M., Osakwe, P. N., Page, J., 2000. Fundamentals, contagion and currency crises: An

empirical analysis. Development Policy Review 18 (3), 257–274.

Kulkarni, V., Deo, N., 2007. Correlation and volatility of an Indian stock market: A random

matrix approach. The European Physical Journal B 60.
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