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Abstract. We introduce a knot semigroup as a cancellative semigroup whose
de�ning relations are produced from crossings on a knot diagram in a way simi-
lar to the Wirtinger presentation of the knot group; to be more precise, a knot
semigroup as we de�ne it is closely related to such tools of knot theory as
the 2-fold branched cyclic cover space of a knot and the involutory quandle
of a knot. We describe knot semigroups of several standard classes of knot
diagrams, including torus knots and torus links T (2, n) and twist knots. The
description includes a solution of the word problem. To produce this descrip-
tion, we introduce alternating sum semigroups as certain naturally de�ned
factor semigroups of free semigroups over cyclic groups. We formulate several
conjectures for future research.

1. The context and the paper plan

We consider cancellative semigroups (which we call knot semigroups) whose de�ning
relations come in pairs of the form xy = yz and yx = zy, where x, y, z are genera-
tors, and are `read' from a certain natural diagram (namely, a knot diagram1). Our
inspiration in this research comes partially from the study of right-angled Artin
groups (and the corresponding semigroup-theory construction, trace monoids [1]).
A right-angled Artin group is a group in which every de�ning relation has a form
xy = yx. Given an undirected graph, one can de�ne a group whose set of generators
is the set of vertices of the graph, and a de�ning relation xy = yx is introduced
whenever vertices x and y are adjacent. This construction de�nes a natural cor-
respondence between undirected graphs and right-angled Artin groups. Whereas
knot diagrams are not as ubiquitous as graphs, they have attracted much attention
of algebraists in the last century, and knot semigroups described in this paper can
become a new natural way of de�ning semigroups corresponding to knot diagrams;
we discuss this further in Section 8.

Each relation de�ning a knot semigroup has words of the same length on the two
sides of the equality; such relations are called homogeneous and, accordingly, semi-
groups de�ned in this way are also sometimes called homogeneous; another example
of homogeneous semigroups are braid semigroups (for their de�nition see, for exam-
ple, [2]); for a brief review of more examples of classes of homogeneous semigroups
see [3].

There has been a number of attempts to de�ne conjugate elements in semigroups,
generalising conjugation in groups. For recent reviews of ideas in this direction, see

1Note that a knot semigroup is not a knot invariant; that is, there are cases when two di�erent
diagrams of the same knot produce non-isomorphic knot semigroups. See more in Section 8.
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[4, 5]. In this context, knot semigroups are interesting as examples of semigroups
where conjugacy is introduced explicitly: indeed, each pair of relations de�ning a
knot semigroup states precisely that two elements x, z in the semigroup are conju-
gate.

Garside monoids are a well-known type of semigroups inspired by braid-theory
ideas, and thin monoids are a generalisation of Garside monoids [6]. Divisibility
monoids are a generalisation of trace monoids and are related to Garside monoids
[7]. With the exception of some trivial cases, knot monoids are neither Garside
monoids nor divisibility monoids. However, all knot monoids which we describe in
this paper are thin2.

The aim of this paper is to consider several standard types of knot diagrams and ex-
plicitly describe their knot semigroups (by the way, our description solves the word
problem in the semigroups). Thus, we both produce many representative examples
of knot semigroups and develop a method of studying them. Speci�cally, we de-
scribe knot semigroups of canonical diagrams of torus knots and torus links T (2, n)
and twist knots in Sections 4, 6, 7; a generalisation is suggested in Conjecture 23.
The study of knot semigroups can be naturally expanded in a number of ways,
including studying knot semigroups of braids. We describe one knot semigroup of
a braid in Section 5, because we are naturally drawn to it by its similiarities with
knot diagrams of torus knots and torus links T (2, n). We formulate Conjecture
25 for future research of knot semigroups of braids. We discuss connections with
knot theory in Section 8 and formulate Conjecture 24 suggesting a use of knot
semigroups for detecting trivial knots.

2. Main definitions

2.1. Knot semigroups. We assume that the reader has at least intuitive under-
standing of what knots, links and braids are, and how knot diagrams represent
knots; if not, see any standard knot theory textbook, for example, [8, 9, 10, 11, 12,
13].

b

a c

By an arc we mean a continuous line on a knot diagram
from one undercrossing to another undercrossing; for
example, consider the knot diagram on the left, which we
shall denote by t3, and which represents a knot known
as the trefoil knot. It has three arcs, denoted by a, b and
c. If a knot diagram d is given, we de�ne a semigroup
using this diagram, which we call the knot semigroup of

d and denote by Kd. We assume that each arc is denoted by a letter. Then at
every crossing where, say, arcs x and z form the undercrossing and arc y is the
overcrossing, `read' two de�ning relations xy = yz and yx = zy. The cancellative
semigroup generated by the arc letters with these de�ning relations is the knot
semigroup of the knot diagram. For example, on diagram t3 we can read relations
ab = bc and ba = cb at the left-top crossing, relations ac = cb and ca = bc at the
right-top crossing and relations ba = ac and ab = ca at the bottom crossing. Using

2The property of being thin relative to knot semigroups can be reformulated as follows: if two
words u = au′ and v = bv′ are equal, where a, b are letters, then there are letters c, d such that
ac = bd and u = acu′′ and v = bdv′′.
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these relations, one can deduce equalities of words in Kt3 such as, for example,
aa = bb; indeed, aac = acb = bab = bbc, hence, using cancellation, aa = bb.

Note that it is perfectly possible to consider a knot monoid instead of a knot
semigroup, as a knot semigroup with an added identity element 1. Every result in
this paper can be immediately reformulated for knot monoids.

Knot semigroups are convenient objects to study; in particular, this is so due to
the following properties (which knot semigroups share with all homogeneous semi-
groups).

Proposition 1. 1) Only words of the same length can be equal in a knot semigroup.

2) Every knot semigroup is J -trivial.
3) Every knot semigroup has a unique set of generators.

In general, the knot semigroup of a knot cannot be embedded into the knot group
of the knot (despite what simple examples in Section 3 may suggest). The knot
semigroup Kt3 of the diagram above provides a convenient counterexample con-
�rming this. Assume that Kt3 is embedded into a group G (actually, one can prove
that Kt3 can be embedded into a group: this follows from Theorem 3 and a remark
in Subsection 2.2). In G, we can deduce a−1b = bc−1 by considering bc = ab in Kt3
and multiplying by a−1 on the left and by c−1 on the right. Similarly, in G we have
bc−1 = c−1a; from these two equalities, we conclude a−1b = c−1a. Likewise, in G
we have c−1b = ac−1 and ac−1 = b−1a; hence, we conclude c−1b = b−1a. There-
fore, a−1ba−1ba−1b = c−1aa−1ba−1b = c−1ba−1b = b−1aa−1b = 1. Thus, element
a−1b ∈ G has order 3. As to the knot group of the trefoil knot, it is torsion-free
because every knot group is torsion-free; see Lemma 2 in [14].

As we see from the de�nition, the presentation de�ning a knot semigroup is not a
usual semigroup presentation, but a cancellative presentation. In general, we do not
know yet how to produce a presentation re-de�ning a given knot semigroup which
has been de�ned by a cancellative presentation3. Employing cancellation is natural
because it ensures that the knot semigroup is preserved by the �rst Reidemeister
move4. However, the knot semigroup is not preserved by neither the second nor the
third Reidemeister move; see Section 8 for more details and a discussion.

2.2. Alternating sum semigroups. Let us introduce abstract semigroups which
we will use to describe knot semigroups. Let a group G be either Zn or Z. Let
B ⊆ G. By the alternating sum of a word b1b2b3b4 . . . bk ∈ B+ we shall mean the
value of the expression b1− b2 + b3− b4 + · · ·+ (−1)k+1bk calculated in G. We shall
say that two words u, v ∈ B+ are in relation ∼ if and only if 1) the length of u is
equal to the length of v; 2) the alternating sum of u (calculated in G) is equal to
the alternating sum of v. It is obvious that ∼ is a congruence on B+. Let us denote
the factor semigroup B+/∼ by AS(G,B) and call it an alternating sum semigroup.

Let us say that g ∈ G is even (odd) in G if g can be represented in the form g = 2h
(g = 2h+ 1) for some h ∈ G. In other words, if G = Zn, where n is odd, then every
element of G is both even in G and odd in G; if G = Zn, where n is even, or if

3It is known, see, for example, [15], that a presentation of a cancellative semigroup can be
considerably more complicated than its cancellative presentation.

4Reidemeister moves are standard ways of transforming a knot diagram to produce other
diagrams of the same knot.
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a

Figure 3.1. A standard and a non-standard diagrams of the unknot

G = Z then an element of G is even in G (odd in G) if and only if it is even (odd)
as an integer.

We shall say that two words u, v ∈ B+ are in relation ≈ if and only if 1) the length
of u is equal to the length of v; 2) the alternating sum of u (calculated in G) is equal
to the alternating sum of v; 3) the number of entries in u which are even in G is
equal to the number of entries in v which are even in G (or, equivalently, the number
of entries in u which are odd in G is equal to the number of entries in v which are
odd in G). To give a simple example, the two words 5 · 3 · 2, 15 · 10 · (−1) ∈ Z+

are in relation ≈. It is obvious that ≈ is a congruence. Let us denote the factor
semigroup B+/≈ by SAS(G,B) and call it a strong alternating sum semigroup.
Obviously, if G = Zn, where n is odd, then SAS(G,B) coincides with AS(G,B).

Although it is a marginal topic for this paper, it is worth noting that every al-
ternating sum semigroup can be embedded into a group, and the following simple
construction explicitly describes the smallest group containing an alternating sum
semigroup AS(G,B). Consider a free semigroup F over the alphabet B × {1,−1}.
Consider an equivalence on F de�ned as follows: two words are related if 1) the
alternating sums of the �rst components (calculated in G) are equal; 2) the sums
of the second components (calculated in Z) are equal. It is easy to check that this
is a group congruence. An embedding of the alternating sum semigroup into the
factor semigroup is induced by the mapping b 7→ (b, 1) for each b ∈ B. A similar
construction can also be built to demonstrate that every strong alternating sum
semigroup can be embedded into a group.

3. Examples

3.1. Trivial knot. By N we denote the in�nite cyclic semigroup of positive inte-
gers. The canonical diagram of the trivial knot contains one arc and no crossings,
see Figure 3.1; therefore, its knot semigroup is isomorphic to N. For comparison,
the knot group of the trivial knot is isomorphic to Z (see, for example, Corollary
11.3 in [8]).

As a related example, consider a non-standard diagram of the trivial knot on Figure
3.1. It is not di�cult to check that in its knot semigroup all generators are equal,
therefore, the knot semigroup is isomorphic to N. Indeed, from bc = ca = gc it
follows b = g. From bf = fc = df it follows b = d. Thus, b = d = g. From
gg = dg = ge it follows g = e. From gd = df = bf = gf it follows d = f . Thus,
b = d = e = f = g. From fc = df = gd = fd it follows c = d. Finally, from
ab = ac = cb it follows a = c. Thus, a = b = c = d = e = f = g.

3.2. Links. The de�nition of the knot semigroup naturally generalises from dia-
grams of knots to diagrams of links. Here are two simple examples.
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a b a b

Figure 3.2. The trivial 2-component link and the Hopf link

The diagram of the trivial 2-component link in Figure 3.2 contains two arcs a, b and
no crossings. Therefore, its knot semigroup is a free semigroup with two generators.
For comparison, the knot group of this link is a free group with two generators (see
Corollary 6.1.5 in [16]).

The diagram of the Hopf link in Figure 3.2 contains two arcs a, b and two cross-
ings, each de�ning a single relation ab = ba. Hence, its knot semigroup is a free
commutative semigroup with two generators. For comparison, the knot group of
this link is a free Abelian group with two generators (see Example 6.2.5 in [16]).

c
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g

3.3. Braids. It is perfectly possible to
generalise the de�nition of a knot semi-
group to braid diagrams 5. As an exam-
ple, consider the braid on the diagram
below.

The arcs are labelled by a, b, c, d, f , g,
h, i. Inspecting crossings, we read the following relations for the knot semigroup
of the braid: ba = ad and ab = da; ac = ce and ca = ec; dc = cf and cd = fc;
fe = eg and ef = ge; ec = ch and ce = hc; gc = ci and cg = ic.

The following equalities of arc letters can be deduced. From the relations, ac =
ce = hc; hence, by cancellation, a = h. From the relations and since a = h, we
have abc = dac = dce = cfe = ceg = hcg = aic; hence, by cancellation, b = i.

4. Torus knots T (2, n)

a0

a1

a2
a3

a4

A torus knot T (2, n) is the one whose canonical diagram,
which we shall denote by tn, consists of n anticlockwise
half-twists of two strands connected together in a shape
of a ring. For example, the diagram below is t5, and
the diagram of the trefoil knot in Section 2 is t3. The
parameter n needs to be an odd number to produce a
knot; if n is even, the diagram represents not a knot,
but a two-component link. In this section we describe the knot semigroup Ktn of
a knot diagram tn (with an odd n); the knot semigroup of a link diagram tn (with
an even n) has a slightly more complicated structure, which we describe in Section
6.

It is worth mentioning brie�y that a similar diagram consisting of n clockwise
half-twists can be considered; it is known as a right-handed torus knot, whereas a

5Note that the term `braid semigroup' already has a well established meaning, namely, it is
the subsemigroup of the braid group generated by clockwise half-twists (see, for example, [2]).
To avoid confusion, we do not use the words `braid semigroup' to mean the knot semigroup of a
braid.
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diagram of the type tn, consisting of n anticlockwise half-twists, is then referred to
as a left-handed torus knot. By the de�nition of the de�ning relations, the knot
semigroup of a knot diagram is isomorphic to that of its mirror image. There-
fore, the knot semigroup of a right-handed torus knot is isomorphic to that of the
corresponding left-handed torus knot.

In this section and in Sections 5, 6, 7 we describe knot semigroups by demonstrat-
ing that a knot semigroup is isomorphic to a certain abstract semigroup, always
following the same plan, which we shall describe now. Suppose that A+/κ is a knot
semigroup, where A is the set of arcs and κ is the cancellative congruence on the
free semigroup A+ induced by the de�ning relations of the knot semigroup. Let ∼
be a congruence on B+, where B is an alphabet of the same size as A. To establish
an isomorphism between A+/κ and B+/ ∼ we proceed as in the following Lemma
(whose simple proof is omitted).

Lemma 2. Consider a bijection φ : A → B. It induces an isomorphism between
A+ and B+, which we shall also denote by φ. Suppose a congruence κ on A+ and
a congruence ∼ on B+ are such that for each u, v ∈ A+ if u κ v then φ(u) ∼ φ(v).
Then φ induces a mapping from A+/κ to B+/∼, which we shall denote by ψ.
Moreover, ψ is a homomorphism. Suppose a subset of B+ exists, which we shall
call the set of canonical words, such that in each class of ∼ there is exactly one
canonical word and at least one word of each class of κ is mapped by φ to a canonical
word. Then ψ is an isomorphism between A+/κ and B+/∼.

The following is the main result of this section.

Theorem 3. The knot semigroup Ktn of the torus knot diagram tn (where n is
odd) is isomorphic to the alternating sum semigroup AS(Zn,Zn).

To prove the theorem, we shall proceed according to the plan outlined in Lemma
2. Let A = {a0, a1, . . . , an−1} be the set of arcs of tn. Consider a mapping φ from
A to Zn de�ned as ai 7→ i. It induces an isomorphism from A+ to Z+

n , which we
shall also denote by φ.

Lemma 4. The equality aiai+j = ai+kai+j+k is true in Ktn (where n is odd) for
all values of i, j, k ∈ Zn.

Proof. Relations in Ktn are the equalities ai−1ai = aiai+1 and aiai−1 = ai+1ai
for all i ∈ Zn. Applying relations of the type ai−1ai = aiai+1 repeatedly, we
obtain aiai+1 = ai+kai+1+k for all values of i, k ∈ Zn. Similarly, one can obtain
aiai−1 = ai+kai−1+k for all values of i, k ∈ Zn.
Consider aiai+jai+j+1 = aiai+1ai+2 = ai+2ai+3ai+2 = ai+2ai+j+2ai+j+1; hence,
aiai+j = ai+2ai+j+2. This proves the lemma for all values of i, j ∈ Zn and k = 2.

Note that each value k ∈ Zn can be represented as k = 2p for some p ∈ Zn.
Applying equalities of the form aiai+j = ai+2ai+j+2 repeatedly p times, we obtain
aiai+j = ai+kai+j+k for every value of k. �

Notation xt stands for x repeated t times. Canonical words in Z+
n will be de�ned as

words in which every entry (except, perhaps, the �rst one) is 0; that is, canonical
words of length t have a form c0t−1, where c ∈ Zn.
Consider a non-negative integer valued parameter π(w) of a word w in Z+

n , which
we shall call the defect of w, de�ned as the largest number d > 1 such that the
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entry in w at position d is not 0; otherwise, if such position d does not exists, π(w)
is 0.

Lemma 5. A word in Z+ is canonical if and only if its defect is 0.

Proof. The result follows obviously from the form of canonical words. �

Lemma 6. Let u be a word in A+. Unless the defect of φ(u) is 0, there is a word
v in A+ such that v = u in Ktn and the defect of φ(v) is less than the defect of
φ(u).

Proof. Suppose the defect of φ(u) is d > 0. Then by the de�nition of π(φ(u))
the last non-zero entry q in φ(u) stands at position d > 1 . To be more speci�c,
u = u′apaqu

′′, where u′ ∈ A+, word u′′ consists only of letters a0, and p, q ∈ Zn,
with q 6= 0. De�ne v = u′ap−qa0u

′′; it is easy to see that v = u in Ktn and the
defect of φ(v) is less than the defect of φ(u). �

Corollary 7. Every word in A+ is equal in Ktn to a word in A+ which is mapped
by φ to a word with defect 0.

Proof of the theorem. Relations in Ktn are equalities ai−1ai = aiai+1 and aiai−1 =
ai+1ai for all i ∈ Zn. It is obvious that for each relation u = v the words φ(u) and
φ(v) have the same length and the same alternating sum. Therefore, by Lemma
20, φ induces a homomorphism ψ : Ktn → Z+

n /∼.
Suppose two canonical words are ∼-equivalent; then they have a form c10t−1 and
c20t−1 (where t is the length of the words). Since these two words coincide at every
position (except, perhaps, the �rst one) and have the same alternating sum, we
conclude c1 = c2. Thus, each class of ∼ contains at most one canonical word.

Consider a word w ∈ Z+
n which has a length t and an alternating sum s. Then the

canonical word s0t−1 is ∼-equivalent to w. Thus, each class of ∼ contains at least
one canonical word.

To prove that each word in A+ is equal inKtn to a word mapped by φ to a canonical
word, it is su�cient to refer to Corollary 7 and Lemma 5.

Now the result follows from Lemma 2. �

5. An infinite braid

In this section we study an object which can be seen informally as a `limit case' when
one considers tn as n tends to in�nity. Namely, we describe the knot semigroup of a
diagram of a two-strand braid consisting of in�nitely many anticlockwise half-twists;
let us denote it by B. A fragment of B is shown below.

... ...

a0 a1 a2
–

a–1

Since B looks locally like a part of a di-
agram tn, one can ask whether KB is
not similar to the alternating sum semi-
groups used in Section 4 to describe
knot semigroups of torus knots Ktn; as
we shall see, the description is similar, and �nding it will prepare us for describing
knot semigroups of torus links Ktn (for even n) in Section 6.
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Diagram B is an interesting object to consider because it contains in�nitely many
arcs (denoted on the diagram by ai) and in�nitely many crossings. Some combina-
torial techniques of knot theory do not work for such objects (which are referred
to in knot theory as `wild knots'). However, nothing stops us studying the knot
semigroup KB of B; the only new feature we shall notice is that KB is in�nitely
generated.

Proceeding according to the plan outlined in Lemma 2, letA = {. . . , a−1, a0, a1, . . . }
be the set of arcs of B. Consider a mapping φ from A to Z de�ned as ai 7→ i. It
induces a isomorphism from A+ to Z+, which we shall also denote by φ.

Lemma 8. The equality aiai+j = ai+kai+j+k is true in KB for all values of i, j, k
such that 1) j is odd or 2) k is even.

Proof. Relations in KB are equalities ai−1ai = aiai+1 and aiai−1 = ai+1ai for
all i ∈ Z. Applying relations of the type ai−1ai = aiai+1 repeatedly, we obtain
aiai+1 = ai+kai+1+k for all values of i, k. Similarly, one can obtain aiai−1 =
ai+kai−1+k for all values of i, k.

Let us prove 2). For the case k = 2, consider aiai+jai+j+1 = aiai+1ai+2 =
ai+2ai+3ai+2 = ai+2ai+j+2ai+j+1; hence, aiai+j = ai+2ai+j+2. Applying equal-
ities of this form repeatedly, we obtain aiai+j = ai+kai+j+k for all even values of
k. (In particular, note that aiai = ai+kai+k; we shall use this presently.)

To prove 1), assume that j is odd and consider aiai+jai+j+1 = aiai+1ai+2 =
ai+1ai+2ai+2 = ai+1ai+j+1ai+j ; hence, aiai+j = ai+1ai+j+1. Applying equalities
of this form repeatedly, we obtain aiai+j = ai+kai+j+k. �

Introduce canonical words in Z+ having the following form: for each word length t,
canonical words are either c0t−1, where c is an even integer, or c1t−m−10m, where
0 ≤ m ≤ t− 1 and c is an odd integer.

Consider two non-negative integer valued parameters of a word w in Z+:

• Let π1(w) be the largest number p such that the entry in w at position p is
even and the entry in w at position p+ 1 is odd; otherwise, if such position
p does not exists, π1(w) is 0.

• Let π2(w) be the largest number q > 1 such that the entry in w at position
q is neither 0 nor 1; otherwise, if such position q does not exists, π2(w) is
0.

By the defect of a word u ∈ Z+ we mean the pair (π1(u), π2(u)). The defects are
assumed to be ordered by the lexicographic order.

Lemma 9. A word in Z+ is canonical if and only if its defect is (0, 0).

Proof. The result follows obviously from the form of canonical words. �

Lemma 10. Let u be a word in A+. Unless the defect of φ(u) is (0, 0), there is a
word v in A+ such that v = u in KB and the defect of φ(v) is less than the defect
of φ(u).

Proof. Suppose the defect of φ(u) is (p, q). Suppose p > 0. Note that in the notation
of Lemma 8, the entries in u at positions p and p + 1 are aiai+j , where j is odd
(because i is even and i + j is odd). That is, u = u′aiai+ju

′′, where u′, u′′ ∈ A+,
and all letters in u′′ have even indices. De�ne v = u′ai+1ai+j+1u

′′; it is easy to see
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that v = u in KB. In φ(v) the entry at position p + 1 is even, and all entries in
at positions greater than p+ 1 are also even. Therefore, π1(φ(v)) is at most p− 1,
hence, it is less than π1(φ(u)).

Now suppose p = 0 and q > 0. Then at some position q > 1 in u there is an entry
ad which is neither a0 nor a1. To be more speci�c, u = u′acadu

′′, where u′, u′′ ∈ A+

and all letters in u′′ are either a0 or a1. If d is even, de�ne v = u′ac−da0u
′′. If

d is odd, de�ne v = u′ac−d+1a1u
′′. In either case, it is easy to see that v = u in

KB. Note that the entry at position q − 1 or q in φ(v) is even (odd) if and only
if the entry at this position in φ(v) is even (odd); therefore, π1(φ(v)) is equal to
π1(φ(u)), that is, π1(φ(v)) = 0. All entries in v at positions equal to or greater
than q are either a0 or a1. Thus, π2(φ(v)) is at most q− 1, therefore, it is less than
π2(φ(u)). �

Corollary 11. Every word in A+ is equal in KB to a word in A+ which is mapped
by φ to a word with defect (0, 0).

Theorem 12. The knot semigroup KB of B is isomorphic to SAS(Z,Z).

Proof. Relations in KB are equalities ai−1ai = aiai+1 and aiai−1 = ai+1ai for all
i ∈ Z. It is obvious that for each relation u = v the words φ(u) and φ(v) have the
same length and the same alternating sum. Since i − 1 and i + 1 are either both
odd or both even, φ(u) and φ(v) have the same number of odd entries. Therefore,
by Lemma 20, φ induces a homomorphism ψ : KB→ Z+/≈.
Suppose two canonical words are ≈-equivalent. Since they have the same length
and the same number of odd entries, the two words have a form either c10t−1 and
c20t−1 (where c1 and c2 are even) or c11t−m−10m and c21t−m−10m (where c1 and
c2 are odd). In either case, since these two words coincide at every position (except,
perhaps, the �rst one) and have the same alternating sum, we conclude p1 = p2.
Thus, each class of ≈ contains at most one canonical word.

Consider a word w ∈ Z+ which has a length t, an alternating sum s and contains d
odd entries. If d = 0 then, obviously, s is even and then the word s0t−1 is canonical
and ≈-equivalent to w. Suppose d is positive and odd; then, obviously, s is odd
and then the word s1d−10t−d is canonical and ≈-equivalent to w. Suppose d is
positive and even; then, obviously, s+ 1 is odd and then the word (s+ 1)1d−10t−d

is canonical and ≈-equivalent to u. Thus, each class of ≈ contains at least one
canonical word.

To prove that each word in A+ is equal inKB to a word mapped by φ to a canonical
word, it is su�cient to refer to Corollary 11 and Lemma 9.

Now the result follows from Lemma 2. �

6. Torus links T (2, n)

The aim of this section is to describe knot semigroups of torus links T (2, n) and to
propose a formulation unifying this result with that describing knot semigroups of
torus knots T (2, n). The diagram below shows an example of a torus link, namely,
t4.

Theorem 13. The knot semigroup Ktn of the torus link diagram tn (where n is
even) is isomorphic to the strong alternating sum semigroup SAS(Zn,Zn).
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a3
a2

a0
a1

We skip the proof of this theorem because it almost
literally repeats the arguments in Section 5, with Zn
substituted for Z where necessary.

Since SAS(Zn,Zn) = AS(Zn,Zn) for odd values of n,
one can combine the results of Theorems 3 and 13 in
one statement:

Corollary 14. The knot semigroup Ktn of the diagram tn for every positive n is
isomorphic to the strong alternating sum semigroup SAS(Zn,Zn).

7. Twist knots

a0 a1 a2 a3 a4

a5

A twist knot is the one whose canonical diagram, which
we shall denote by twn, consists of n clockwise half-
twists of two strands (shown on the diagram as hori-
zontal) and 2 anticlockwise half-twists of two strands
(shown on the diagram as vertical); the de�nition can
be found, for instance, in Exercise E9.6 in [10]. For ex-
ample, the diagram below is tw4. In this section we
describe knot semigroups of diagrams twn; they are iso-
morphic to alternating sum semigroups of some special type, as the following result
shows. Denote the set {0, 1, . . . , n+ 1} by [n+ 2].

Theorem 15. The knot semigroup Ktwn of the twist knot diagram twn is isomor-
phic to the alternating sum semigroup AS(Z2n+1, [n+ 2]).

It is interesting to note that according to this theorem, Ktw1 is isomorphic to
Kt3. This is not surprising, because diagrams tw1 and t3 represent the same knot,
namely, the trefoil knot.

To prove the theorem, we proceed once again according to the plan in Lemma 2.
Let A = {a0, a1, . . . , an+1} be the set of arcs of twn. Consider a mapping φ from A
to [n+ 2] de�ned as ai 7→ i. It induces an isomorphism from A+ to [n+ 2]+, which
we shall also denote by φ.

Lemma 16. The equality aiai+j = ai+kai+j+k is true in Ktwn for all values of
i, j, k such that 0 ≤ i ≤ i+ j ≤ i+ j + k ≤ n+ 1.

Proof. Relations in Ktwn are, on the one hand, the equalities ai−1ai = aiai+1 and
aiai−1 = ai+1ai for all i = 1, 2, . . . , n (from the crossings at the bottom of the
diagram) and, on the other hand, two equalities a0an+1 = an+1a1 and an+1a0 =
a1an+1 and two equalities ana0 = a0an+1 and a0an = an+1a0 (from the crossings
at the top of the diagram). Using the former type of relations and the same proof
as in the �rst two paragraphs of the proof of Lemma 4 or Lemma 8, one can show
that aiai+j = ai+kai+j+k for all even k.

Now we shall prove that a0aj = a1aj+1 for all values of j = 0, 1, . . . , n. Let j be odd.
Consider a0a0aj = aj−1aj−1aj = aj−1ajaj+1 = a0a1aj+1; hence, a0aj = a1aj+1.
Consider an+1a0a0 = a0ana0 = a0a0an+1 = a0an+1a1 = an+1a1a1; hence, a0a0 =
a1a1. Let j be even and positive. Consider a0a0aj = a1a1aj = aj−1aj−1aj =
aj−1ajaj+1 = aj−2aj−1aj+1 = a0a1aj+1; hence, a0aj = a1aj+1.
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Now suppose k is odd. If i is even we have aiai+j = a0aj = a1aj+1 = ai+1ai+j+1 =
a(i+1)+(k−1)a(i+j+1)+(k−1) = ai+kai+j+k. If i is odd we have aiai+j = a1aj+1 =
a0aj = ai+1ai+j+1 = a(i+1)+(k−1)a(i+j+1)+(k−1) = ai+kai+j+k. �

Canonical words in [n+ 2]+ will be de�ned as words of the form 000t−2 or c00t−2

or 0c0t−2, where t ≥ 2 is the length of the word and c ∈ {1, 2, . . . , n}. It is worth
noting that canonical words of length 1 can only be of the �rst two kinds, thus,
they are 0, 1, . . . , n + 1. (Let us comment informally that in an alternating sum
semigroup AS(n,B) with a `su�ciently large' B we would expect, for almost every
t, the set of words of length t to split into exactly n classes of the congruence ∼.
This is why in AS(2n+ 1, [n+ 2]) we have exactly 2n+ 1 canonical words of length
t for each t ≥ 2.)

Consider a non-negative integer valued parameter π(w) of a word w in [n + 2]+,
which is 0 if the �rst two entries in w are 00 or c0 or 0c for some c ∈ {1, 2, . . . , n},
and which is 1 otherwise. De�ne the defect of a word w = b1b2b3...bt in [n+ 2]+ as
a word π(w)b3...bt. Defects are assumed to be ordered antilexicographically (that
is, by the right-to-left dictionary order).

Lemma 17. A word in [n + 2]+ is canonical if and only if its defect is a word
consisting of 0s.

Proof. The result follows obviously from the form of canonical words. �

Lemma 18. Let u be a word in A+. Unless the defect of φ(u) is a word consisting
of 0s, there is a word v in A+ such that v = u in Ktwn and the defect of φ(v) is
less than the defect of φ(u).

Proof. Suppose the defect of φ(u) has a non-zero entry at a position which is not the
�rst one. This means that at some position d ≥ 3 there is a non-zero entry r in φ(u).
To be more speci�c, u = u′apaqaru

′′, where u′, u′′ ∈ A+ and p, q, r ∈ [n + 2], with
r 6= 0. If q 6= 0, de�ne v = u′apaq−1ar−1u

′′. Now suppose q = 0. If p 6= n+ 1 note
that apa0ar = ap+1a1ar = ap+1a0ar−1 and de�ne v = u′ap+1a0ar−1u

′′. If p = n+1
note that an+1a0ar = a1an+1ar = a1anar−1 and de�ne v = u′a1anar−1u

′′. In each
case, it is easy to see that v = u in Ktwn and the defect of φ(v) is less than the
defect of φ(u).

Now suppose the defect of φ(u) has a non-zero entry only at the �rst position.
Let u = apaqu

′, where u′ ∈ A+ and p, q ∈ [n + 2]. If both p 6= 0 and q 6= 0, let
m = min(p, q), note that apaq = ap−maq−m and de�ne v = ap−maq−mu

′. If p = 0
and q = n+1, recall that by one of the de�ning relations a0an+1 = ana0 and de�ne
v = ana0u

′. Likewise, if p = n + 1 and q = 0, de�ne v = a0anu
′. In each case, it

is easy to see that v = u in Ktwn and the defect of φ(v) is a word consisting of
0s. �

Corollary 19. Every word in A+ is equal in Ktwn to a word in A+ which is
mapped by φ to a word with a defect consisting of 0s.

Proof of the theorem. Relations in Ktwn are listed in the proof of Lemma 16. It is
obvious that for each relation u = v the words φ(u) and φ(v) have the same length
and the same alternating sum (calculated in Z2n+1). Therefore, by Lemma 20, φ
induces a homomorphism ψ : Ktn → [n+ 2]+/∼.
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Consider two canonical words which are ∼-equivalent. If their alternating sums
are both 0 then, since a canonical word can have at most one non-zero entry, both
words consists only of 0s and, therefore, are equal. Suppose two canonical words
share the same non-zero alternating sum. First consider the case when they have
the non-zero entry at the same positions, for example, c100t−2 and c200t−2 (where
t is the length of the words). Since these two words coincide at every position
(except, perhaps, one) and have the same alternating sum, we conclude c1 = c2.
Now suppose two canonical words have the non-zero entry at di�erent positions, for
example, c100t−2 and 0c20t−2. Because the two words have the same alternating
sum, c1 = −c2 in Z2n+1; since both c1, c2 ∈ {1, 2, . . . , n}, this case is impossible.
Thus, each class of ∼ contains at most one canonical word.

Consider a word w ∈ [n + 2]+ which has a length t and an alternating sum s. If
s ∈ [n+ 2], the canonical word s00t−2 is ∼-equivalent to w. Otherwise, let q = −s,
with the inverse calculated in Z2n+1; the canonical word 0q0t−2 is ∼-equivalent to
w. Thus, each class of ∼ contains at least one canonical word.

To prove that each word in A+ is equal in Ktwn to a word mapped by φ to a
canonical word, it is su�cient to refer to Corollary 19 and Lemma 17.

Now the result follows from Lemma 2. �

8. Context in knot theory and conjectures

8.1. Groups and quandles. Among instruments of knot theory, there are some
which consider a knot as an oriented curve, that is, are de�ned in the context of
a speci�c prescribed direction of travel along the curve, and some others which do
not require such an orientation. The Wirtinger presentation (and, likewise, the
Dehn presentation) of the knot group (see, for example, Section 6.11 in [12] or
Chapter 11 in [8]) is a well-known example of the former kind. The fundamental
groups of branched cyclic cover spaces of knots are an example of the latter kind.
They are used in one of formulations of a deep result in low-dimensional topol-
ogy, the so-called Smith conjecture (see page 12 in the main book on the subject
[17]). Speci�cally, one partial case of the Smith conjecture can be formulated [18]
as stating that if the fundamental group of the 2-fold branched cyclic cover space
of a knot is trivial then the knot is a trivial knot (the converse statement is ob-
viously true). That is, one can use these groups to `untangle' trivial knots. The
fundamental group of the 2-fold branched cyclic cover space of a knot is related
to the knot group: indeed, it is isomorphic to the factor group of the knot group
produced by assuming that the square of each meridian6 is 1. This implies that
at each crossing in a knot diagram where the Wirtinger presentation produces one
relation, say, ab = bc, the other group will have two relations, ab = bc and ba = cb.
These are the same relations as in the de�nition of a knot semigroup.

Another important pair of algebraic constructions are the quandle of an (oriented)
knot and the involutory quandle of an (unoriented) knot. Quandles are powerful
knot invariants (for an introduction to quandles, see [19] or [11]). It is possible to
reconstruct the knot group from the knot's quandle [20]. Involutory quandles have
been used to distinguish knots [20]. It is possible to reconstruct the fundamental
group of the 2-fold branched cyclic cover space of a knot from the knot's involutory
quandle [18]. The involutory quandle of a knot is trivial if and only if the knot

6A meridian is an element of the knot group corresponding to one arc.
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is trivial; thus, involutory quandles can be used to `untangle' trivial knots [18].
However, applying these constructions to individual examples of knot diagrams can
be hard: as it is said in [21], `unfortunately, it is often very di�cult to decide upon
the triviality' of the involutory quandle of a given knot (in order to check whether
the knot is trivial). Or, as it is said in [22], `Quandles ... are very di�cult to work
with. The problem of recognizing whether there exists an isomorphism between
two quandles given by presentations is apparently not easier than the problem of
recognition of isomorphism between groups'.

The knot semigroups introduced in this paper are closely related to the fundamental
groups of the 2-fold branched cyclic cover spaces of knots and to involutory quandles
of knots. In particular, one can prove that the fundamental group of the 2-fold
branched cyclic cover space of a knot is a factor semigroup of the knot semigroup
produced by assuming that the square of each generator is 1.

Because each knot semigroup has a unique set of generators (see Proposition 1),
one may hope that knot semigroups can be easier to work with than knot groups
or knot quandles. In particular, `untangling' trivial knots using knot semigroups
(see Conjecture 24 below) may be easier than with other constructions.

It must be said that the elements and the multiplication in the semigroups studied
in this paper have nothing in common with constructions which de�ne an asso-
ciative product of knots and thus turn the set of all knots into a semigroup. Such
constructions include the connected sum of knots (see [16] or [9] or other textbooks,
in which this operation may be also called the sum or the product) and generalisa-
tions of the product in the braid group (for an introduction to tangles, see [13, 23]
or the original paper [24]; for examples of applying semigroups to study tangles,
see [25, 26]).

8.2. Knot invariants. We want to present an example demonstrating that knot
semigroups are not knot invariants. The simplest example of the kind is not a
knot, but a link. Compare the standard diagram of the trivial 2-component link on
Figure 3.2 and its non-standard diagram l below.

Lemma 20. Let ∼ be the smallest cancellative congruence on a free semigroup
A+ containing a set of pairs of words {(uλ, vλ)|λ ∈ Λ}, where uλ, vλ ∈ A+. Let
φ : A+ → S be a homomorphism from A+ to a cancellative semigroup S. Suppose
φ(uλ) = φ(vλ) for each λ ∈ Λ. Then ∼ ⊆ Ker φ.

Proof. Since a subsemigroup of a cancellative semigroup is cancellative, Im φ is a
cancellative semigroup; therefore, Kerφ is a cancellative congruence on A+. By the
hypothesis, Ker φ contains all pairs (uλ, vλ). At the same time, ∼ is the smallest
cancellative congruence on A+ containing all pairs (uλ, vλ). Therefore, ∼ ⊆ Ker φ.

�

Proposition 21. In the knot semigroup Kl of l words a, b and c are pairwise
distinct.

Proof. The plan of the proof is as follows. Consider two parameters of a word over
the alphabet {a, b, c}: 1) the number of as in the word; 2) the number of bs preceded
by an even number of as minus the number of bs preceded by an odd number of
as plus the number of cs preceded by an odd number of as minus the number of cs
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preceded by an even number of as. Whenever words are equal in Kl they have the
same values of both parameters. Therefore, words a, b and c are not equal in Kl.

Now let us present the argument in detail. Consider a semigroup S whose set of
elements is ({0} ∪ N) × Z with multiplication (p, q)(r, s) = (p + r, q + (−1)ps). It
is easy to check that this multiplication is associative, and that S is cancellative.
Consider a homomorphism φ from the free semigroup {a, b, c}+ to S induced by
the mapping de�ned on the generators a 7→ (1, 0), b 7→ (0, 1), c 7→ (0,−1).

The diagram l has two crossings, each de�ning two relations ab = ca and ba = ac. It
is easy to check that φ(ab) = (1,−1) and φ(bc) = (1,−1). Similarly, φ(ba) = (1, 1)
and φ(ac) = (1, 1). By Lemma 20, from this it follows that if two words u, v are
equal in Kl then φ(u) = φ(v).

Now recall that φ(a) = (1, 0), φ(b) = (0, 1) and φ(c) = (0,−1). Since the values
of φ on a, b, c are pairwise distinct, we conclude that a, b, c are pairwise distinct in
Kl. �

a bc

Let S be a semigroup without an identity element. By
saying that s ∈ S is an indecomposable element we mean
that s cannot be represented as a product s = ab for any
a, b ∈ S. The following result is obvious.

Lemma 22. In a knot semigroup the only indecompos-
able elements are those that can be expressed by one-
letter words.

By Proposition 21, semigroup Kl has three indecomposable elements, whereas the
knot semigroup of the standard diagram, as discussed in Subsection 3.2, has two
(a and b). Therefore, the two knot semigroups are not isomorphic. Therefore, knot
semigroups are not knot invariants.

Although knot semigroups are not knot invariants, it is possible to consider knot
invariants based on knot semigroups; for instance, the family of knot semigroups of
all diagrams of a knot is, obviously, an invariant of a knot.

1

2

3

4

8.3. Rational knots. We hope that the results
of Sections 4 and 7 can be generalised. Both
torus knots and twist knots are rational knots.
There are several elegant de�nitions of the class
of rational knots (see, for example, Chapter 12
in [10] and [23]) and, accordingly, several types
of diagrams which can be associated with them. For our purposes, a canonical
diagram of a rational knot is the one which is based on a 4-strand braid in which
every crossing is either a clockwise half-twist of strands in positions 1 and 2 or an
anticlockwise half-twist of strands in positions 2 and 3 (as in the example shown
on the diagram); this type of diagram is described, for example, in Proposition
12.13 in [10] and on page 187 in [13]. Canonical diagrams of torus knots and twist
knots can be transformed into this type of diagrams in a way which does not a�ect
knot semigroups. These and other examples allow us to formulate the following
hypothesis for future research.

Conjecture 23. The knot semigroup of a canonical diagram of a rational knot is
isomorphic to an alternating sum semigroup.
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8.4. Other conjectures. Thanks to examples such as in Subsection 3.1, and due
to the similarity of knot semigroups to constructions in [18, 17], the following hy-
pothesis seems justi�ed.

Conjecture 24. A knot diagram has the knot semigroup isomorphic to N if and
only if it is a diagram of the trivial knot.

Denote the endpoints of an n-strand braid on the left by L1, L2, . . . , Ln and on the
right by R1, R2, . . . , Rn, in both cases counting from the top to the bottom. By
a(Li) or a(Ri) denote the letter which is the label of the arc incidental with Li or
Ri.

Thanks to examples such as in Subsection 3.3, and due to the existence of a similar
group-based construction (see, for example, page 32 in [27]), the following hypoth-
esis seems justi�ed.

Conjecture 25. A braid diagram b represents a trivial braid if and only if the
equalities a(Li) = a(Ri) are true in Kb for all i.
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