

DETERMINATION OF CORRECT

OPERATION AND BEHAVIOR

OF A STRUCTURED AMORPHOUS

SURFACE

BY

MALCOLM J. LEAR

A thesis submitted for the degree of MSc(Res)

School of Electronics and Computer Science

University of Essex

December 2015

Supervisors: Dr. Martin Colley

Dr. Graham Clarke

Prof. Vic Callaghan

 ii

Copyright © Malcolm J. Lear 2015

All Rights Reserved

 iii

Abstract

A recurring theme in intelligent environments is the intelligent surface composed of

nanoscale processing units (smart dust). Such a surface (iSurface) can be considered

an amorphous computer composed of a large array of identical processing units

(iCells) each with its own sensor/effectors. An important requirement of such a

surface is the need for a fast, reliable method to determine iCell operation,

performance and code integrity. Any practical solution must fulfil certain criteria.

First the impact on intercellular data communication bandwidth must be kept to a

minimum, this is particularly important in high density, high speed iSurface

applications such as high resolution video display. Previous work on processor

profiling offered a possible solution in the form of metrics derived from profiling.

This thesis describes a method developed to create long (>=32 bit) stable, robust

metrics using a profiling technique that represents the current operational state of an

iCell and thus enabling the quick exchange of diagnostics between iCells along with

data traffic. Key requirements in the development of this system were fast

acquisition of diagnostic variables, minimal affect on normal operation and the

possibility of a hardware implementation which could be completely non intrusive in

operation.

The hardware developed fulfilled all these criteria in particular a novel method to

create a stable metric that could determine compromised or incorrectly loaded code

was developed. The metric of code integrity had both attributes of stability and

responsiveness to change, something that has proven difficult to attain before. The

uniqueness of the metrics produced by the hardware was also investigated and was

determined to be very good and metric bit length was efficiently used. Impact on

processor performance was also deemed acceptable at 2.31% and the developed

architecture could theoretically be implemented in ‘system on chip’ (SOC) with zero

processor overheads.

 iv

Publications Arising from this Work

M. J. Lear, "Stable Metrics in Amorphous Computing: An Application to Validate

Operation and Monitor Behavior," in Intelligent Environments (IE), 9th

International Conference on, 5-8 Aug 2012, pp.204 – 211.

 v

Acknowledgements

I would first like to acknowledge the continuous support of my co supervisor Dr.

Graham Clarke in this endeavour, his weekly chats and enthusiastic support is very

much appreciated and certainly inspired many ideas on applications of the research

technology amongst other things. Secondly this could not have been done without

the enthusiastic support of my supervisor Dr. Martin Colley. His practical skills both

in hardware and software ensured a guiding light to solutions to any major problems.

I would also like acknowledge Prof. Vic Callaghan for listening many times and

quite often playing ‘devils advocate’ to ideas that proved core to the technology.

Lastly many thanks to my family and friends for understanding and allowing me the

space and time needed to complete this research.

Lest she thinks she’s forgotten, a special thanks to Lena for all her support.

 vi

Table of Contents

Chapter 1: Introduction ... 1

1.1 A Structured, Reprogrammable Approach: The iSurface 1

1.1.1 Current Approaches to Node Performance Determination.................. 2

1.1.2 The Proposed Solution... 3

1.2 Aim of this Work... 3

1.3 Thesis Layout .. 4

Chapter 2: Amorphous Computing and Fault Tolerance 6

2.1 Amorphous Computing Fault Tolerance Methods 7

2.2 Performance Based iCell Fault Tolerance ... 8

Chapter 3: Behavioral Metrics: The Solution.. 11

3.1 Experimental Platform... 11

3.1.1 Hardware Target Platform ... 12

3.1.2 Software Development Environment .. 12

3.1.3 Control and Data Acquisition .. 13

Chapter 4: Program Structure.. 14

4.1 Structure Definition ... 14

4.2 Useful Characteristics for Metrics ... 14

4.3 Considerations ... 15

4.4 Determining Program Structure... 15

4.5 Locating Branch Points in Software .. 17

4.6 Program Structure Table.. 20

4.7 Summary.. 22

Chapter 5: Code Integrity Metric .. 24

5.1 Uniqueness of the Code Integrity Metric .. 25

5.2 Falsification of the Program Structure Table 28

5.3 Speed of Falsification .. 29

5.4 Behavioral Metric .. 33

5.5 Summary.. 34

Chapter 6: iCell Hardware Development .. 35

6.1 Considerations on the iCell architecture.. 35

6.1.1 Processor (MCU)... 36

 vii

6.1.2 FPGA and SRAM.. 36

6.1.3 Sensors and Effectors .. 38

6.1.4 Communications.. 38

6.2 Theoretical Hardware Operation ... 39

6.2.1 The Advantages of Parallel Operation... 39

6.2.2 State Counters.. 40

6.2.3 Rebuild Program Structure Table and Create Metric of Code

Integrity... 41

6.3 JTAG interface .. 45

6.4 Physical Design ... 46

6.4.1 Circuit Schematics ... 46

6.4.2 Printed Circuit Board... 47

6.4.3 Fully Assembled iCell ... 47

6.5 Summary.. 49

Chapter 7: Utilizing JTAG to Create Metrics ... 50

7.1 JTAG an Overview.. 50

7.1.1 The JTAG Serial Bus... 50

7.1.2 The TAP State Machine .. 50

7.1.3 Analysis of the Software Based iProfiler JTAG Signals 53

7.1.4 TAP and Chain Initialization Preamble... 54

7.1.5 Robust Detection of a Microcontroller on the JTAG Interface 55

7.2 Implementing a JTAG Controller in an FPGA.................................. 55

7.2.1 JTAG Repeated Sequences.. 57

7.2.2 Halt and Read MCU Registers Operation ... 58

7.2.3 Read MCU Memory Operation ... 61

7.2.3.1 State ‘9’ Parallel Operations.. 61

7.2.3.2 State ‘1’ Parallel Operations.. 62

7.2.4 Restore MCU Registers and Resume Operation 63

7.2.5 Complete JTAG Instruction Sequence .. 64

7.3 Summary.. 65

Chapter 8: SRAM Program Structure Table and I
2
C Communications 66

8.1 Using Serial SRAM to Implement the Program Structure Table 66

8.1.1 SRAM Transfer Timing... 66

 viii

8.1.2 SRAM Initialization .. 67

8.1.3 SRAM Write Access Operation .. 68

8.1.4 SRAM Read Access Operation ... 69

8.2 Reading Metrics... 70

8.2.1 Interface Options ... 70

8.2.2 I
2
C Metrics Interface ... 71

8.2.3 I
2
C Transfer Timing... 71

8.2.4 I
2
C Protocol ... 72

8.2.5 I
2
C Read Access Operation ... 73

8.2.6 I
2
C Write Access Operation .. 73

Chapter 9: FPGA iProfiler Operation and Performance 75

9.1 Initial iProfiler Operational Checks... 75

9.2 Comparison with Software Implementation...................................... 75

9.3 Modes of Operation ... 76

Chapter 10: Conclusions ... 81

10.1 Future Work... 81

 ix

List of Tables

Table 1: Table to metric XOR Type 1. .. 26

Table 2: Table to metric XOR Type 2. .. 26

Table 3: ARM7TDMI Debug Public Instructions. ... 53

Table 4: iProfiler Halt detailed order of instructions. 60

Table 5: iProfiler Read Memory order of instructions. 62

Table 6: iProfiler Resume order of instructions... 64

Table 7: FPGA JTAG sequences. .. 88

Table 8: FPGA JTAG Halt sequences. .. 89

Table 9: FPGA JTAG Read memory sequences. .. 91

Table 10: FPGA JTAG Resume sequences. .. 92

 x

List of Figures

Figure 1: Ad hoc architecture of classic Amorphous Computing..................... 10

Figure 2: Structured architecture of the iSurface. ... 10

Figure 3: Program Structure Map. .. 15

Figure 4: Method to update the Program Structure Table and create the Code

Integrity Metric.. 17

Figure 5: Method to check program code integrity... 19

Figure 6: Software based experimental platform and instrumentation. 20

Figure 7: Branch distribution. ... 23

Figure 8: Loss of program structure detail due to program structure

granularity.…... 23

Figure 9: Uniqueness of the Code Integrity Metric (Type 1)............................ 27

Figure 10: Uniqueness of the Code Integrity Metric (Type 2)............................ 28

Figure 11: Program structure maps. .. 30

Figure 12: Average code integrity checks required to determine that ‘Angle

Conversion’ has replaced the other 3 test programs in program

memory. ... 31

Figure 13: Average code integrity checks required to determine that ‘Bit Count’

has replaced the other 3 test programs in program memory.............. 32

Figure 14: Average code integrity checks required to determine that ‘Cubic

Functions’ has replaced the other 3 test programs in program

memory. ... 32

Figure 15: Average code integrity checks to determine that ‘Random Numbers’

has replaced the other 3 programs in program memory. 33

Figure 16: Simplified iCell hardware architecture. ... 36

Figure 17: Simultaneous updating of the Structure Table and creation of the

Code Integrity Metric. ... 39

Figure 18: Code Integrity Metric operational flow / high level state machine. .. 43

 xi

Figure 19: Detailed method to check program code integrity............................. 44

Figure 20: Detailed method to update the Program Structure Table and create the

Code Integrity Metric. ... 45

Figure 21: iCell JTAG interface.. 46

Figure 22: iCell Printed Circuit Board (PCB)... 48

Figure 23: Completed iCell. .. 48

Figure 24: iSurface. ... 49

Figure 25: ARM7TDMI JTAG/Debug details. ... 51

Figure 26: JTAG TAP State machine. .. 52

Figure 27: JTAG Communication... 55

Figure 28: Relevant JTAG data transfer timing. ... 57

Figure 29: Halt operation timeline. ... 61

Figure 30: Read MCU and read SRAM operation timeline................................ 63

Figure 31: Read MCU and write SRAM operation timeline. 63

Figure 32: Resume operation timeline. ... 64

Figure 33: Relevant SRAM data transfer timing. ... 67

Figure 34: SRAM Sequential mode operation. ... 68

Figure 35: SRAM Write mode operation.. 69

Figure 36: SRAM Write bit operation. ... 69

Figure 37: SRAM Read byte operation... 70

Figure 38: Relevant I
2
C Data Transfer Timing... 72

Figure 39: I
2
C Communication. .. 73

Figure 40: I
2
C Read multiple operation. ... 73

Figure 41: I
2
C Write byte operation.. 74

Figure 42: Average checks required to falsify program structure dependent on

Program Structure Table entries used.. 78

 xii

Figure 43: Average processor period in ms required to determine change in

structure dependent on Program Structure Table entries used. 79

Figure 44: Processor performance hit and iProfiler sampling frequency

determined by the average period to falsify. 79

Figure 45: Change of the Code Integrity Metric state machine to implement a

simpler single entry check of the Program Structure Table. 80

Figure 46: iCell schematic (MCU section). .. 86

Figure 47: iCell schematic (FPGA section). ... 87

 xiii

List of Acronyms and Abbreviations

ASCII American Standard Code for Information Interchange

CIM Code Integrity Metric

CPLD Complex Programmable Logic Device

FPGA Field Programmable Gate Array

GCC GNU C Compiler

I
2
C Inter-IC bus

IDE Integrated Development Environment

JTAG Joint Test Action Group

LUT Look Up Table

MCU Microcontroller Unit

OOCD Open On Chip Debugger

PCB Printed Circuit Board

PSDT Program Structure Development Toolkit

PSM Program Structure Map

PST Program Structure Table

SAS Software Analysis System

SOC System On Chip

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

TAP Test Access Port

UART Universal Asynchronous Receiver/Transmitter

 1

Chapter 1: Introduction

People’s living space is becoming rich in electronic devices most of which have

computational capabilities undreamt of a few years ago; indeed even humble devices

such as the bedroom clock usually utilize embedded systems technology. More often

such technology will communicate and interact autonomously as protocols are

implemented and refined. Of particular interest in the near future are printable

electronics and nanotechnology that open up many new possibilities in pervasive

computing [1]. Such technology will enable entire surfaces, for example walls to

become “intelligent” and “aware” of the environment. Assuming Moore’s law is

maintained so that in future a particular computational power requires less physical

space and lower power consumption then amorphous computing could be utilized to

create these intelligent surfaces (iSurface). Typical applications would be full wall

audio/visual systems offering such things as immersive education, ambiance and

artistic interaction. The iSurface with its potentially enormous processing power,

resolution, functionality and inherent pervasive properties could well shape the

future of intelligent environments.

1.1 A Structured, Reprogrammable Approach: The iSurface

A practical implementation of the iSurface would most likely be the construction of

identical cells (iCells), each with microcontroller (MCU), memory, sensors,

effectors and communication hardware. Practical issues with power distribution and

communication along with economic issues such as minimizing costs would favour

a structured, predefined pattern of iCells as opposed to the more common ad hoc

approach. Adopting a structured approach to creating the iSurface also lends itself to

practical methods of construction such as printing and stretchy circuits (flexible

silicon). Such a structured approach may seem to be at odds with the classic

undefined amorphic structure, however faults in use or manufacture would require

an adaptive interconnection and data flow method entirely compatible with that

needed for an ad hoc arrangement of cells. This structured construction offers the

opportunity to operate in various or mixed modes. For example each cell could be

programmed in an identical way with the traditional amorphous properties of each

cell having no priori knowledge of location or orientation. Other modes could

involve the propagation of program code as well as data between nodes either

 2

directed explicitly from an external controller or by some decision making at the

cellular level. Certainly the emergent behavior of traditional amorphic components

is preserved and maybe even enhanced.

Unlike most “conventional” electronic amorphous computing networks that are

preloaded with all required programs, it is intended that the iSurface should be

reprogrammable in situ by propagating programs across the surface utilizing the data

network. A typical problem with such an approach may well be an error or failure in

the reprogramming of particular iCells. It would also be of great benefit that any

proposed solution to the issue of array reprogramming be extendable to determine

other issues inherent with high density amorphous computing arrays such as sensor,

effector, and general hardware performance.

1.1.1 Current Approaches to Node Performance Determination

Whilst much research and development on self assembly and repair topologies has

been undertaken, it seems few have addressed the issues of node performance

determination, in particular partial degradation of a computing node. Determination

of complete node failure is clearly a requirement with the aforementioned repair

topologies and consequently there is a real need for a method to monitor node

performance and propagate that information across the network array. I need to

develop a method that allows adjacent nodes in a network to be aware of minor

programming or overall performance issues so that appropriate actions could then be

performed if necessary, thus providing a very important component of a robust

amorphous computing array.

Although there has been limited research conducted in performance monitoring of

nodes within an amorphous computing array, this is not the case with processor

performance per se. One of the most common methods involves sampling the

processor’s status on a regular basis and deriving a statistical profile of the current

program operation. Whilst this may well form the basis of a method to determine

operation behavior, its inherent instability due to constant variation in program flow

makes it a poor candidate for determining program integrity at run time.

 3

1.1.2 The Proposed Solution

The nature of the statistical profile derived from processor sampling suggests the

possibility of reduction to a unique metric that has the advantages of low bandwidth

and fast intercellular comparisons to determine odd behavior of a ‘rogue’ iCell.

This assumes:

• The iCells are in close proximity and therefore sensor data is similar.

• The iCells are executing the same program code.

The first requirement can easily be met and becomes less of a problem as density

increases and sensor input becomes more homogeneous. The second requirement is

however fundamental and a prerequisite to allow intercellular behavioral

comparison. If the program code itself could be uniquely described as a metric in

much the same way as the dynamic behavior then a very complete description of an

iCell nodes health could quickly propagate across the iSurface using very low

bandwidth.

A problem with the creation of a metric of code integrity would be to have stability

and also be responsive to program change due to errors in programming, memory

faults etc. These issues and the fundamental requirement of a method to determine

code integrity over and above metrics of iCell behavior present a real challenge and

provide the focus of the research.

1.2 Aim of this Work

We believe it should be possible to create a stable profiling metric based on

monitoring and determining changes in program structure based on branch opcodes,

that would allow the operation of arrays of processing cells to be observed and

protected from faulty or unwanted behavior.

Program structure based on branch addresses should remain static and unchanged in

memory after programming and therefore be an ideal processor agnostic candidate to

provide metrics aimed at determining code integrity. Monitoring activity at these

same locations in memory would likewise be ideal in creating behavioral and

diagnostic metrics and therefore we consider it important that any system developed

to create a metric of code integrity should also be easily expanded to cover

behavioral metrics with little extra hardware overheads.

 4

Initial development will be in software at which point evaluation of uniqueness,

response to code change, complexity, cost, and System On Chip (SOC)

implementation issues will follow.

Work will then move to the implementation in hardware with particular a view on

future migration to SOC.

The final stage will be an appraisal of software/hardware implementations,

comparisons, conclusions and considerations of future work.

A stable metric of code integrity also puts real meaning into the behavioral and

diagnostic metrics, because as with biometrics, it’s important to know the animal

you are investigating first.

1.3 Thesis Layout

The thesis has a linear layout that closely matches the sequence of research and

development. Whilst this order may seem a little odd at times, it does reflect the

logical order of work undertaken and reasoning for this sequence will be justified in

the various chapters.

Chapter Two reviews related work and presents a brief overview of various

approaches to amorphous computing arrays, methods employed to determine health

of cells and implementations of fault tolerance systems. This is followed by an

introduction of the iSurface and it’s more particular fault tolerance requirements and

discusses some ideal world requirements for such systems.

Chapter Three introduces the proposed system and discusses the early development

and technical specification of the hardware platform to be used.

Chapter Four discusses the use of program structure in fault tolerance, how it can be

defined, determined and stored efficiently.

Chapter Five details the development, implementation in software and performance

of the Code Integrity Metric (CIM). There is also a brief discussion about how

behavioral metrics could be implemented to complement the Code Integrity Metric.

Chapter Six discusses the development of the iCell and implementation in hardware

of the Code Integrity Metric.

Chapter Seven looks at development and implementation of the JTAG control

system in a Field Programmable Gate Array (FPGA).

Chapter Eight looks at the implementation of the SRAM based Structure Table and

I
2
C communication sub-systems in the FPGA.

 5

Chapter Nine appraises the hardware implementation and compares performance

and operation with the earlier software based method.

Chapter Ten presents conclusions and discusses future work.

Note that parts of Chapters Three to Five were used in the publication "Stable

Metrics in Amorphous Computing: An Application to Validate Operation and

Monitor Behavior" [2] that arose from this research.

 6

Chapter 2: Amorphous Computing and Fault Tolerance

Traditional amorphous computing as described by D. Coore [3], H. Abelson [4] and

R. Nagpal [5] covers a very wide range of sciences and can be best described as the

functioning of a multicellular orgasm whether it be biological or electronic in nature.

Amorphous computing methods have to a large degree been derived from the swarm

behavior of biological organisms that display a coherent emergent intelligence. This

would include a swarm of bees, a colony of Ants, the Portuguese Man-of-War or

even groups of higher level animals including humans. All these examples to some

degree display complex emergent behavior from the cooperation of many individual

parts, some of which may not be fully functional. Electronic computing offers a

wonderful tool for researchers to allow the simulation of various amorphous

computing models and is by far the most common method employed when studying

various amorphous cellular systems and network topologies [4]. This has the benefit

of almost unhindered flexibility in modelling the entire amorphous system, from the

individual cell up to the environment in which it inhabits. The other less common

method employs electronic real world hardware using multi-processors

interconnected by ad-hoc or structured networks. Natural real world examples seem

to have ad-hoc interconnections but the emergence of coherent behavior suggests

their dynamics are dependent on rules. For example according to Y. Hu [6] the

behavior of individual Ants is based on rules that determine response to pheromone

trails left by other Ants giving rise to swarm intelligence [7].

If these natural dynamic network modes could be brought to life in silicon,

interesting research in emergent behavior would be forthcoming. This requires a

method of propagating individual’s actions and responses (determined mostly by

sensor/effectors) across the amorphous network. It would also be beneficial if this

information exchange could in some way include the health and capabilities of the

amorphous cell. For example in nature a member or members of an organism may

well loose some functionality, however that does not exclude them from

contributing to the colonies emergent behavior. Indeed if that change was a genetic

mutation and it benefited the organism in some way it may well be beneficial to

ignore the abnormality promote a possible change to the gene pool. A low

bandwidth method of inter-cellular information transfer of behavior that intrinsically

 7

includes health and capability offers the possibility of enhanced fault tolerance

beyond the current decisive yes/no methods.

2.1 Amorphous Computing Fault Tolerance Methods

Current fault tolerance methods employed tend to vary dependent on processor

granularity. For example the interesting work done by J. R. Heath [8] and M.

Hartman [9] involved fault tolerance in amorphous networks that have very simple

cells based on programmable logic. At the other end of the spectrum there are coarse

grained networks based on isolated, traditional von Neumann architectural [10]

computing units. Since this work will be based on a coarse grained network utilising

standard microcontrollers, further considerations will be confined to that area of

fault tolerance.

Considerable work and development of self assembly and repair topologies with

respect to amorphous computing has been undertaken, for example by R. Nagpal

[11],[12] and L. Clement [13]. However this work is focused on methods to create a

functional amorphous computer and how a working network can cope with node

failure, not on the actual mode of failure. The most common methods employed to

determine correct processor operation within an amorphous network tend to resolve

the issue with a decisive yes/no answer. This is typically accomplished by sending

test data back and forth between nodes and checking for corruption or more

seriously, a total failure of communication. D. Chu considered node failure using

such methods [14] and considered the loss of amorphous computer nodes as binary

stochastic noise. This work of D. Chu demonstrates that whilst communication

between cells may be unimpaired, incorrect operation due to partially corrupted

program code or other undetected problem could lead to complete failure of the

amorphous computer at relatively low levels of noise. The idea of using processor

profiling or some development of it to determine the health of amorphous computer

nodes and convey that information in a simplistic form would certainly improve the

situation.

Most current profiling techniques are based on two modes of operation, software or

hardware. The first and probably most common method employs statistical

sampling, discussed by M. A. Jennifer [15] and J. Whaley [16], where the target

processor is halted and the current states of various registers are retrieved for

analysis. This halting of the processor can be done either under hardware control or

 8

by way of software typically using interrupts initiated by in-built timers. Another

approach commonly used called path profiling [17] employs tracing that would

typically increment counters at defined points in the program which could then be

read under interrupt control, perhaps initiated by a serial port communication. This

approach either has the path monitoring code added to the program source code

before compilation or the program is modified dynamically at run time by way of

branch instructions to profiling code. The merits or otherwise of the methods

described so far are discussed by M. Arnold [18] and either rely on specially written

in-line code or interrupt subroutines. The use of in-line code is not only intrusive but

only allows profiling at fixed points in the program, requiring recompilation or some

other method to alter program code to facilitate reconfiguration of the profiling. The

intrusive nature of software based profiling was addressed by R. G. Scottow and A.

B. T. Hopkins [19] they proposed an interesting refinement that minimised the

intrusive in-line code whilst extracting useful profiling information with a processor

performance hit of just over 0.005%. Another, but less common technique of

profiling involves monitoring the target processors activity using dedicated hardware

which eliminates the need for in-line profiling code. A very interesting approach

which incorporates path profiling and a novel way of pre-processing the profiling

information was developed by H. Zhang, J Ji, X, Zhou, H. Ma [20]. Unfortunately

this requires direct access to both the address and data bus, something that is not

available on almost all microcontrollers. However the idea it uses for profiling paths

(entry to branch) and reducing the profiling information has similarities to the

proposed solution outlined in the next chapter. Another method of profiling that may

have particular relevance to this work, in that it produced unique digital signatures

from data streams was developed by Hewlett-Packard [21].

2.2 Performance Based iCell Fault Tolerance

The computing power required to simulate an amorphous organism can become

excessive due to the need to run identical cellular programs and communication and

interaction. The idea of studying amorphous computing by employing hardware

based computing cells each with dedicated processors solves the problem of

processing speed, but issues with reprogramming and adaptive communication

methods has problems of it own. The iCell’s design goals attempt to solve these

problems by employing reprogrammability of processor software by propagation

 9

across a structured amorphous array. This reprogrammability in an inherently failure

prone amorphous network raises serious issues of code corruption and therefore

precludes the use of software based profiling methods since any in-line profiling

code may well in itself be corrupt. As mentioned in the introduction a practical and

achievable approach to construct an intelligent surface and one which could be used

as a means to evaluate the proposed method of fault tolerance would be structured

and regular in nature unlike the traditional ad hoc amorphous network investigated

by A. King [22],[23], W. Butera [24] and others, illustrated in Fig. 1. The easiest

and simplest two dimensional iSurface would have iCells linked in rows and

columns as seen in Fig. 2. Diagonal connections were considered, but for practical

reasons a square iCell structure benefits from a symmetrical iCell to iCell

interconnect and is sufficient for current work and possible future research into high

speed network communication. Such a network also lends itself to practical methods

of construction such as printing J. Chang [25] and stretchy circuits (flexible silicon)

D. H. Kim [26].

 10

Figure 1: Ad hoc architecture of classic Amorphous Computing.

Figure 2: Structured architecture of the iSurface.

Node

Node

Node

Node

N
od

e

Node

Node

Node

N
ode

N
ode

Node

N
ode

Node Node

Node Node

Node

Node

Node

Node

Node NodeNodeNode

 11

Chapter 3: Behavioral Metrics: The Solution

In summary, the iCell profiling requirements are:

• hardware based

• no program code modification

• possible SOC implementation

• simple, low bandwidth method to convey iCell behavior and ‘health’

The proposed solution can meet all these targets by use of a variant of hardware

sampling and providing iCell behavioral information by way of metrics.

The requirement to identify faulty iCells and abnormal behavior within such an

amorphous surface suggested the need to develop a diagnostic system that could run

in the background on an iCell, taking little (software based) or no (hardware based)

processing time. The idea of producing metrics as an iSurface diagnostic tool

addressed several problems, the first of which was the need to propagate the

diagnostic data quickly from iCell to iCell. Secondly it would be useful for any

diagnostic information to include both behavior and code integrity. The creation of

metrics derived from iCell (MCU) profiling seemed to provide a promising solution.

The use of metrics to allow adjacent iCells to detect problems, could for example

initiate local iCell to iCell repair by means of program mirroring. Metrics based on

profiling have been used to create encryption keys, for example ICMetrics,

described by Y. Kovalchuk [27] and X. Zhai [28]. However creating stable metrics

derived from standard profiling methods in an embedded system is a challenge due

to external events causing the execution of rarely used code. Such method are also

statistical and accumulative in nature, becoming stable only after long periods of

time and therefore would be very unresponsive to serious changes in behavior or

executed program code. These issues could be resolved if an alternative profiling

method was employed that was inherently unaffected by program flow. This work

shall refer to any developed profiling method as iProfiling and derived metrics as

iMetrics. Work by V. Callaghan [29] on program analysis based on program branch

structure provided more evidence that stable diagnostic metrics could be created.

3.1 Experimental Platform

The experimental setup required to determine the viability and stability of the

diagnostic metrics can be broken down into the following areas: (i) the selection of a

 12

suitable hardware target platform; (ii) the selection of a suitable software

development environment to run on the host PC; (iii) the selection of suitable

communication channels that will allow control and acquire data for subsequent

analysis on the host PC. The following subsections describe these areas in more

detail.

3.1.1 Hardware Target Platform

Important hardware requirements deemed necessary to analyze program structure

and extract metrics included the following features: (i) a flexible interrupt controller

with timer, thus allowing periodic sampling of processor states (ii) a counter with

sufficient resolution to time processor clock cycles. (iii) Joint Test Action Group

(JTAG) interface offers full control including single step operation. (iv) serial port/s

offering a channel of communication for control and data acquisition. Previous work

and design experience with ARM processor’s suggested that the Atmel

AT91SAM7S256 [30], indeed an ARM based board developed for teaching

purposes using this processor would be the ideal choice to fulfil these requirements.

Features of the chosen development target board are:

• AT91SAM7S256 microcontroller

• 64 kBytes of SRAM

• 256 kBytes of FLASH

• 48 MHz clock (typically 1 instruction per clock cycle)

• 2 serial ports offering up to 115200 baud

• JTAG interface.

3.1.2 Software Development Environment

Important features required from the software development environment were: (i) C

and assembler language programming. (ii) debug mode utilizing the processors

hardware debug module. (iii) hard and soft break points. Previous experience

suggested a particular combination of open source software development tools

would be ideal. Components used to build the development system include:

 13

• Eclipse [31] is an open source multi language software development

environment including an IDE.

• Open On-Chip Debugger (OOCD) [32] is the software interface to the JTAG

hardware debugger module.

• GCC C compiler [33].

3.1.3 Control and Data Acquisition

The choice of hardware platform and software development environment offers two

possible modes of communication. First there are the serial ports and secondly the

JTAG interface. Serial port communication could use a bespoke protocol preferably

but not limited to ASCII characters for control and acquisition of data from the

target processor connected to a host PC or simply be used with a terminal program

such as PuTTY. JTAG offers the possibility to control the processor using OOCD

commands via a telnet connection. OOCD has a limited but very useful set of

commands offering full control over the target processor and allowing access to

memory, program counter, status and other registers.

 14

Chapter 4: Program Structure

4.1 Structure Definition

The most problematic metric to extract is one indicating the integrity of the program

code. This metric should ideally be unique to the loaded program whilst remaining

stable and unaffected by program flow. A metric based on program structure would

fulfil this requirement. Program structure as defined in “SAS-an experimental tool

for dynamic program structure acquisition” [29] will be used. In that paper program

structure was visualized using ‘structure maps’. An example structure map shown in

Fig. 3 represents a calibrated portion of the processors memory as a circle with an

arrow indicating the normal sequential incrementation of the program counter.

Deviations from the circle caused by branches are depicted as lines with green

(dashed) indicating a jump forward in memory and red (solid) a jump backwards.

The other important visualization is execution frequency (the frequency of address

access) being expressed as variation of intensity of the drawn lines. This

visualization of program structure and flow will subsequently be used in this thesis

and any future work as required.

4.2 Useful Characteristics for Metrics

When looking at the structure map in Fig. 3 both fixed and dynamic features can be

seen. Fixed features that may be used to extract metrics such as code integrity are

branch point source and destination addresses. Dynamic features of the program

structure that may be used for behavioral diagnostics are the frequencies of

processor activity at those same source and destination addresses. Whilst looking at

the structure map it is clear that both source and destination addresses are important

fixed features that could be utilized to extract metrics unaffected by program flow,

however frequencies at destination addresses can be derived from the branch source

and therefore metrics based on frequency analysis need only be concerned with

branch point memory locations (branch opcodes).

 15

Figure 3: Program Structure Map.

4.3 Considerations

For experimental purposes, a software based system to determine program structure

and acquire test data for further analysis was devised. Various options to accomplish

this were considered and evaluated. Simple profiling methods such as periodic

sampling could be achieved by using the OOCD commands via the JTAG interface.

However the JTAG debug module in most processors, including the

AT91SAM7S256 are designed primarily to debug software during the development

phase and also programming/verification of the device which would make

development and testing problematic. The only other dedicated communication

channels available were the two serial (UART) ports. Fortunately these ports are

reconfigurable, quite fast (115200 baud) and the option of setting interrupts on

receive opened up the possibility of an interrupt driven diagnostic and development

toolset employing various commands similar to OOCD.

4.4 Determining Program Structure

Any method of determining program structure by way of branch address location

would need to be dynamic due to legitimate reprogramming of some or all of

program memory. This requirement and that the Code Integrity Metric should be

stable, led to an approach inspired by Popper’s scientific method of falsification

[34]. The practical application of this method in determining program structure

Program
Start

Two nested
loops

Subroutine
call

 16

involves the creation of a metric derived from branch locations in the entire program

memory space and then the application of runtime checks to disprove the metric.

Once a change in the structure is determined a new metric is created, thus the metric

is stable, reflects the current program structure and updates quickly. However, a

problem with this approach is that the ideal properties of a program structure metric

would preclude the possibility of verifying program structure on-the-fly. For this

reason a table dedicated to holding program structure was considered. This Program

Structure Table (PST) could then be used both for falsification runtime checks and

provide the source for the variable length Code Integrity Metric. It was not deemed

important that the scan of program memory to create this table should be particularly

non-intrusive (a SOC solution would still require memory access) since this would

occur only when a change of program structure had been detected (a significant

event), see Fig. 4.

Runtime methods needed to verify executed branch locations (local program

structure) against structure information held in the table had to be of a low intrusive

nature (ideally non-intrusive if SOC). These requirements led to the idea of verifying

the locations of frequently accessed branch addresses in the first instance. Other

techniques running at a lower priority could be used to determine the branch

locations of rarely executed or dormant code. A Programming Structure

Development Toolkit (PSDT) was developed utilizing one of the UART ports with

the interrupt controller configured to issue a non-maskable interrupt on reception of

characters (commands). The associated interrupt routine performs various operations

returning information via the UART if required.

 17

Figure 4: Method to update the Program Structure Table and create the Code Integrity Metric.

4.5 Locating Branch Points in Software

Meeting the requirements with a software solution is difficult, indeed the very nature

of a software solution, i.e., it has to run on the processor, ensures it will in some way

be intrusive. However, a variation of the industry standard profiling technique called

‘statistical sampling’ offered a way to approach these ideal requirements without too

much compromise. A typical implementation of statistical sampling would

periodically halt the processor and typically retrieve register contents, program

counter and stack pointer for further analysis. The technique used for branch

location is an extension of this and has the following sequence of operations:

• Halt the processor.

• Note the program counter.

• Search for the next branch in memory following the program counter address.

• Note the address of located branch.

• Use the program counter and branch address to cross check the Program

Structure Table.

In this way an almost statistically random memory location being executed by the

processor is investigated and a check of whether a branch point is located within a

predetermined number of memory locations in advance of the memory location is

performed, see Fig. 5. It can be argued that sampling at a fixed frequency in this way

DETECT BRANCH
INSTRUCTIONS

UPDATE
PROGRAM STRUCTURE

TABLE (PST)

SEQUENTIALLY READ
ALL PROGRAM MEMORY

CREATE
CODE INTEGRITY

METRIC (CIM)

 18

is deterministic and if processes on the MCU are also periodic at or multiples of the

sampling frequency then aliasing of memory locations may skew the results. This is

indeed true, however in practice the huge difference between the sampling rate

(20 Hz) and MCU clock (48 MHz) along with an asynchronous sampling clock,

reduces the problem to such an extent that fixed rate sampling is still the most

common method used in processor profiling. Note also that the use of sampling as a

way of checking code integrity is not relying on extreme randomness. However

future work that may employ the same sampling system to implement behavioral

metrics may benefit from refinements such as a pseudo random sampling, perhaps

similar to the method investigated by S. McCanne and C. Torek [35].

 The first experimental method used to implement the branch discovery system

was done by way of an interrupt routine running on the target platform. This

technique utilized the MCU’s periodic timer to issue system interrupts at a period of

20 milliseconds. The interrupt halts current program execution and retrieves the

program counter by way of a modification to the low level interrupt library routine.

The program counter is then used as the start point in the search for branch

instructions in program memory. A sufficient branch search is then undertaken to

cross check a single entry in the Program Structure Table, after which a simple

routine to falsify the program structure is executed.

 19

Figure 5: Method to check program code integrity.

This interrupt based solution proved viable and provided evidence that program

structure could be determined by way of branch searches within a reasonable time

period (<20% of the 20 ms sampling). However since a primary goal of the research

was to develop a hardware solution which would utilize the JTAG interface it was

decided that although inconvenient, that an OOCD/JTAG solution at this stage of

the research would be more productive. The reasoning behind this change was that

technical information relating to the JTAG to MCU low level protocol seemed very

sparse and almost proprietary to processor manufacturers and further development

would likely rely to some degree on protocol reverse engineering.

A diagram of the experimental platform and instrumentation required to proceed

with the research can be seen in Fig. 6. It will be noticed that the Open On-Chip

Debugger is controlled through a Telnet port. This allows test programs running on

the PC to control the target MCU by way of the JTAG interface, thus enabling

analysis of the JTAG interface protocol using a logic analyser.

HALT PROCESSOR

READ
PROGRAM STRUCTURE

TABLE (PST)

READ PROGRAM
MEMORY

COMPARE RESULTS
TO DETERMINE

CODE INTEGRITY

DETECT BRANCH
INTRUCTION

 20

Figure 6: Software based experimental platform and instrumentation.

4.6 Program Structure Table

Ideally the Program Structure Table should have the following properties:

• Can be created quickly in software or SOC.

• Resolution to record all branch locations.

• Format that allows fast comparisons to verify program structure.

• Minimal size to maximize program space in a software implementation and

lower costs in a SOC implementation.

The first three properties could be met by storing the presence or absence at a

memory location by use of a single bit. This method requires no complex

calculations to enable reversible cross checking of table entries and branch locations

and allows for high speed operation in software or SOC solutions. Using this method

the entire program memory of 64 kB would require a table size of 8 kB (8 bits per

byte). Although workable it would severely limit the program space or be an

Development Board

Development PC

Test Equipment

USB to I2C Interface

Development Programs

Eclipse IDE (GCC Compiler)

Open On-Chip Debugger

Telnet

FPGA Communications
& Behavioral Metrics

Logic Analyser

Oscilloscope

MCU
Sensors/
Effectors

JTAG Probe

iCell

 21

expensive SOC solution. However in the case of the AT91SAM7S256 processor all

branch instructions are placed on even addresses as are all instructions due to its

particular 32-bit architecture. Therefore only one bit of the Program Structure Table

is required for every two bytes of program memory thus reducing the table

requirement to 4 kB. The possibility to reduce the table size even further by skipping

N bytes of the program memory without loosing too much program structure

accuracy was also explored.

When looking at assembler code it is quite apparent that branch instructions like

most other instructions seem to have a somewhat random distribution. To better

understand the effects of further Program Structure Table reduction, analysis of

branch distribution was performed. Four basic low complexity software routines

were employed to ensure representative and comparable results. More specifically

the test programs were based on algorithms from the automotive package from the

MiBench suite of benchmark algorithms [36], namely: Angle Conversion, Bit

Count, Cubic Functions and Random Numbers. A possible approach to obtaining the

branch addresses needed for analysis would be to perform a simple parse of the

compiled test programs binaries, noting the addresses of valid branch instructions.

However this method would result in many false positives due to data areas being

parsed as well. The solution employed was to direct the compiler to produce

comprehensive listings that included branch addresses. A program was then written

to extract the branch memory locations from these listings and then perform the

analysis. This was done for all four programs and the results can be seen in Fig. 7. It

can be seen immediately that no branches are closer than 12 addresses apart, so a

single bit in the Program Structure Table could represent the presence or absence of

a branch for every 12 bytes of program memory without loss of resolution. The

rather curious similarity between the 4 test programs distribution is due to common

library routines used by all 4 programs. This reduction would bring the Program

Structure Table size down to 5462 bits or 683 bytes assuming 64 kB of program

memory. The sharp rise in the number of branches 16 bytes apart is quite apparent

from the graphs. Calculations show that choosing to further reduce the Program

Structure Table and increase granularity by assigning 1 bit to 16 memory locations

results in an average loss of 10% program structure detail, in other words 10% of the

branches in the program memory space would not be represented in the Program

Structure Table. Further processing of the data used to produce the branch

 22

distribution graph (Fig. 7) allowed a graphical look at the relationship between the

Program Structure Table size (granularity) and loss of program structure detail, see

Fig. 8. This was achieved by plotting the percentage of entries already plotted

against the total entries in the data set whilst proceeding from the shortest to the

longest branch distribution entries. In this way the graph shows the percentage of

program structure detail (closer branch distributions) not represented in the Program

Structure Table. The effects of a less than optimal Program Structure Table size of

683 bytes are investigated further later in this work, however the optimal size of 683

bytes is perfectly acceptable for use as a means to check code integrity of iCells

within the iSurface. It should be noted that locating branches for the building of the

Program Structure Table can implement the much more simple approach of parsing

and checking the entire program memory space for branch instructions, since false

positives found in data areas will not be encountered when checked for falsification

at runtime.

The merits of a second table like the first but being based on branch destination

addresses will be evaluated if more program structure detail is deemed necessary.

4.7 Summary

A method to define and store ‘program structure’ was developed in software that can

later be implemented in hardware. The program structure was defined as locations of

branch instructions in program memory. Due to the distribution of the branch

instructions, single bit flags could be used to indicate their presence in a Program

Structure Table at an optimal 1 bit per 16 bytes of program memory.

 23

Figure 7: Branch distribution.

Figure 8: Loss of program structure detail due to program structure granularity.…..

Memory locations (bytes) between branch points

O
cc

u
rr

en
ce

s

Angle Conversion

Bit Count

Cubic Functions

Random Numbers

20%

18%

16%

14%

12%

10%

8%

6%

4%

2%

0%

160 14432 48 64 96 112 12880

Angle Conversion

Bit Count

Cubic Functions

Random Numbers

Program bytes assigned to each bit in structure table

R
ec

en
ta

g
e

lo
ss

 o
f

p
ro

g
ra

m
 s

tr
u

ct
u

re
 d

et
ai

l

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

160 14432 48 64 96 112 12880

 24

Chapter 5: Code Integrity Metric

The Code Integrity Metric is derived from the Program Structure Table and should

ideally have the following properties:

• Can be created quickly in software or SOC.

• Retains the uniqueness of the Program Structure Table.

• Variable length (bits).

To maintain the uniqueness of the Program Structure Table it was clear that all bits

in the Program Structure Table must in some way be used in the creation of the

Code Integrity Metric, i.e., any bit change in the table would result in a change of

the metric. Whilst there are many possible approaches to meet these goals it was

decided to investigate the simplest and most obvious which is to XOR the bits in the

Program Structure Table in such a way as to create the new reduced length bit

pattern of the Code Integrity Metric. A decision on how best to XOR the bits of the

Program Structure Table and maintain the structure information of particular

programs was needed since quite similar programs may produce the same Code

Integrity Metric. Two simple XOR bits reduction patterns were chosen to be

evaluated for the uniqueness quality of various lengths of metric created from the 4

test programs. Table 1 and Table 2 show these 2 patterns of XOR bit reductions

from a small 32-bit (4 byte) Program Structure Table to a 4-bit metric. Whilst these

examples are of little practical use due to size, this visualization may allow us to

deduce properties of both before we perform tests.

If we examine the first method shown in Table 1, it will be noticed that sequential

bits in the Program Structure Table are XORed together to create a single bit of the

Code Integrity Metric. This sequence length can be calculated using the following

formula:

Sequence Length = Table Length / Metric Length

where ‘Sequence Length’ is the number of sequential bits XORed together, ‘Table

Length’ is the total number of bits in the Program Structure Table, and ‘Metric

Length’ is the bit length of the Code Integrity Metric. This method which we shall

call ‘Type 1’ will reflect the characteristics of the Program Structure Table and

hence the position of the branches in the program memory and could therefore be

used to identify roughly where in memory the metric doesn’t match with the

 25

expected one. However a disadvantage is that small local changes that you find with

minor alterations in code may not show as a change in the Code Integrity Metric.

This could be a major issue if the design of the iCell required the independent

loading of small programs. The reason being, that a section of program memory

could be reprogrammed with legitimate code and that change could be entirely

reduced to 1 bit of the Code Integrity Metric. Since that single bit was created by an

XOR process, there is a 50:50 chance the variation will not show as a change to the

Code Integrity Metric.

The second method shown in Table 2, (Type 2) sources the bits required for XORing

across the entire Program Structure Table in a stepwise fashion with each step being

the length of the Code Integrity Metric in bits. Such a distribution results in the loss

of any direct relationship between the program structure and the Code Integrity

Metric, however the uniqueness of the Code Integrity Metric with similar programs

should be greater than that using the Type 1 XOR pattern. The uniqueness with both

XORing patterns will also be related to the length of the Code Integrity Metric, as

clearly the fewer bits used and the granularity becomes coarse, there is less

opportunity for the Code Integrity Metric to express unique metrics for different

programs. With this in mind, tests were performed to determine the uniqueness of

the Code Integrity Metric using the 4 test programs with a range of metric lengths

with both types of XOR pattern.

5.1 Uniqueness of the Code Integrity Metric

It was possible to extract the uniqueness data entirely on a PC. The 4 test program

were compiled using the Eclipse development environment and the binaries intended

for loading into the targets (AT91SAM7S256) SRAM were then used as input files

to an analysis program developed and running on a PC.

First the SRAM files were scanned for branch locations using simple binary

comparisons at each memory location. Then the Program Structure Table was built

using the branch location data. The Program Structure Table was 8192 bits (1024

bytes) in length which works out at 1 bit for every 8 bytes of program memory

(64 kB). A conservative size for the Program Structure Table was used to maximize

structure detail since the object of these tests is centred on the Code Integrity Metric.

With the Program Structure Tables complete, the various Code Integrity Metrics

were created using both Type1 and 2 XOR patterns and bit lengths ranging from 4 to

 26

32. With just 4 test programs it seemed unreasonable to go beyond 32 bits unless the

results showed otherwise. Fig. 9 and Fig. 10 show results of program uniqueness

utilizing XOR patterns Type 1 and 2 respectively. Note that the resulting Code

Integrity Metric value was scaled due to the variable bit length. Maximum shown in

the graphs represents the maximum numerical value possible for the various Code

Integrity Metric bit lengths. Also note that for clarity matching values have been

circled.

When viewing the results of the analysis utilizing the Type 1 XOR pattern (Fig. 9) it

will be noticed that as expected the ability of the Code Integrity Metric to

differentiate between programs suffers to a greater degree as the granularity

becomes coarser compared to that of the Type 2 XOR pattern (Fig. 10). The ability

of the Code Integrity Metric based on the Type 2 XOR pattern to differentiate 4

similar programs with a metric length of only 6 bits (64 possible values) seems a

good result. The iCells will operate with metric lengths of 128 to 256 bits, so

program integrity checks using this system should produce unique metrics for any

program.

Table 1: Table to metric XOR Type 1.

Table 2: Table to metric XOR Type 2.

32 Bit Table (4 Bytes) 4 Bit Metric

0 ^^ 1 ^^ 2 ^^ 3 ^^ 4 ^^ 5 ^^ 6 ^^ 7 = 0

8 ^^ 9 ^^ 10 ^^ 11 ^^ 12 ^^ 13 ^^ 14 ^^ 15 = 1

16 ^^ 17 ^^ 18 ^^ 19 ^^ 20 ^^ 21 ^^ 22 ^^ 23 = 2

24 ^^ 25 ^^ 26 ^^ 27 ^^ 28 ^^ 29 ^^ 30 ^^ 31 = 3

32 Bit Table (4 Bytes) 4 Bit Metric

0 ^^ 4 ^^ 8 ^^ 12 ^^ 16 ^^ 20 ^^ 24 ^^ 28 = 0

1 ^^ 5 ^^ 9 ^^ 13 ^^ 17 ^^ 21 ^^ 25 ^^ 29 = 1

2 ^^ 6 ^^ 10 ^^ 14 ^^ 18 ^^ 22 ^^ 26 ^^ 30 = 2

3 ^^ 7 ^^ 11 ^^ 15 ^^ 19 ^^ 23 ^^ 27 ^^ 31 = 3

 27

Figure 9: Uniqueness of the Code Integrity Metric (Type 1).

0 8 16 24 32

Code Integrity Metric Length

0

Max

C
o

d
e

In
te

g
ri

ty
 M

et
ri

c
sc

al
ed

Angle Conversion

Bit Count

Cubic Functions

Random Numbers

 28

Figure 10: Uniqueness of the Code Integrity Metric (Type 2).

5.2 Falsification of the Program Structure Table

A method of falsification was required that ideally had the following properties:

• Low or no intrusiveness to normal program operation.

• Achievable in software or SOC.

• Targets current program activity.

• Fast operation.

Whilst initial work on the iCell development is based on the AT91SAM7S256 with

a communication layer working in a Field-Programmable Gate Array (FPGA), the

final design may well be a single chip FPGA soft/hard core implementation. With

this in mind, a SOC solution with a zero intrusive nature is an attractive proposition.

A practical SOC solution is quite straightforward and would rely on direct access to

the program counter the data read from memory during normal operation.

Fortunately such access is possible in a totally non intrusive way when using soft

cores in an FPGA. Operation would involve comparing the data read from memory

checking for presence or absence of branch instructions and cross checking with the

0 8 16 24 32

Code Integrity Metric Length

0

Max

C
o

d
e

In
te

g
ri

ty
 M

et
ri

c
sc

al
ed

Angle Conversion

Bit Count

Cubic Functions

Random Numbers

 29

Program Structure Table. Once a mismatch is detected, the program code is falsified

and a new scan of program memory is initiated to create a new Program Structure

Table and Code Integrity Metric. In conclusion, a SOC solution would meet all ideal

requirements.

At this stage of the research a slight enhancement to falsification of code integrity

was made. Whilst proceeding with the search for a branch instruction, cross

checking with the Program Structure Table entries at each location was introduced.

This small change would speed up the average falsification of the program structure

with no extra overheads.

5.3 Speed of Falsification

Initial use of the Code Integrity Metric within the iSurface will be a determination of

correctly loaded program code in each iCell. Therefore an experiment to determine

average time taken for the system to respond to a change of program in SRAM

would provide useful information and help system optimization and future

development. Speed of falsification of program structure would likely be related to

the granularity of the Program Structure Table, so this experiment offered the chance

to try all permutations of reloading the SRAM with the test programs and varying

the table size (bits per program memory bytes). The results of these tests can be seen

in Fig. 12 to Fig. 15.

Each graph shows the results of the 4 test programs replacing the others in program

memory. For example, Fig. 12 shows results of the ‘Angle Conversion’ program

replacing ‘Bit Count’, ‘Cubic Functions’, and ‘Random Numbers’ in program

memory. The granularity of the Program Structure Table is shown along the x-axis

as program bytes assigned to each bit. The x-axis shows the average (mean) attempts

required to determine that the program is not current and has been replaced by

another in program memory. Average speed of falsification ‘time’ taken to falsify

the program structure can be calculated by multiplying the average number of

attempts by the interrupt timer period. For example, an average number of attempts

of 1.5 would take an average time of 30 milliseconds, assuming an interrupt period

of 20 milliseconds.

It will be noticed that speed of falsification is more dependent on the replacement

programs structure rather than what it replaced which is to be expected since

falsification by branch determination will depend on the current structure detail. In

 30

particular ‘Bit Count’ requires more detail (finer granularity) in the Program

Structure Table to determine a change of program. Which can be explained by the

more simple nature of this program. The binary count program is very short (16

branches in the main program) and therefore there is less opportunity to locate detail

variations from the program structure stored in the Program Structure Table. These

results provide more evidence that the Program Structure Table requires the detail

afforded by the fine granularity of a Program Structure Table of at least 1 bit for

every 16 bytes of program memory. It should also be noted that even large programs

contain small routines that could be executed for long periods of time, particularly

so in small embedded systems such as the iCell. Fig. 11 illustrates the program

structure maps for the 4 test programs.

Figure 11: Program structure maps.

These maps only show structure detail relevant to the developed system and as such

are a visualisation of the Program Structure Table. Although the test programs are

not complex and range from 3 kB to 27 kB in length, to maintain clarity the structure

maps were limited to 8 kB requiring the Cubic Functions map to be cut short. It will

be noticed that the start of memory is identical for all 4 test programs due to

common structures such as vector tables.

Memory
Start

Angle Conversion

Bit Count

Cubic Functions

Random Numbers

Program
Start

 31

This optimal table size of 512 bytes (1 bit for 16 bytes of program locations) for a

64 kB system, works out at 1.28% of the total SRAM space, making a SOC

implementation for other uses such as secure communications commercially viable.

Another possibility to reduce SOC costs is to dual use the existing JTAG interface

pins. In this scenario the JTAG pins can be reconfigured as an external 512 byte

serial SRAM interface whilst in run mode, thus a simple redesign of the internal

JTAG interface logic could provide a code integrity and behavioral metrics without

significant cost penalties to the MCU, whilst retaining 100% electrical and physical

compatibility.

Figure 12: Average code integrity checks required to determine that ‘Angle Conversion’ has

replaced the other 3 test programs in program memory.

8

10

0 16 32 48 64

Program bytes assigned to each bit in Program Structure Table

6

4

2

0

12

14

16

18

20

A
v

er
ag

e
ch

ec
k

s
re

q
u

ir
ed

 t
o

 f
al

si
fy

 p
ro

g
ra

m
 s

tr
u

ct
u

re

Bit Count

Cubic Functions

Random Numbers

 32

Figure 13: Average code integrity checks required to determine that ‘Bit Count’ has replaced the

other 3 test programs in program memory.

Figure 14: Average code integrity checks required to determine that ‘Cubic Functions’ has replaced

the other 3 test programs in program memory.

8

10

0 16 32 48 64

Program bytes assigned to each bit in Program Structure Table

6

4

2

0

12

14

16

18

20

A
v

er
ag

e
ch

ec
k

s
re

q
u

ir
ed

 t
o

 f
al

si
fy

 p
ro

g
ra

m
 s

tr
u

ct
u

re

Angle Conversion

Bit Count

Random Numbers

8

10

0 16 32 48 64

Program bytes assigned to each bit in Program Structure Table

6

4

2

0

12

14

16

18

20

A
v

er
ag

e
ch

ec
k

s
re

q
u

ir
ed

 t
o

 f
al

si
fy

 p
ro

g
ra

m
 s

tr
u

ct
u

re

Angle Conversion

Cubic Functions

Random Numbers

1012.964 269.2736

 33

Figure 15: Average code integrity checks to determine that ‘Random Numbers’ has replaced the

other 3 programs in program memory.

5.4 Behavioral Metric

As mentioned earlier in this thesis the primary goal was the implementation of a

stable metric of code integrity programmed in an FPGA. However the original idea

was complimenting this metric with one of behavior. These two metrics could then

be ‘spliced’ together like RNA and read as a single variable length binary bit pattern

to describe the functional nature of the iCell (program running) and its dynamic

behavior (what its doing). It would be rewarding although not essential to implement

a simplified version of a behavioral metric as ‘proof of concept’ that the idea of a

combined metric of code integrity and behavior has merit. With this goal in mind,

determination of the ideal method to create the behavioral metric will be considered

‘future work’ (see relevant section at the end of this thesis).

There are many possible ways of implementing a metric of dynamic behavior

reflecting current activity that compliments the stable metric of code integrity.

However it made little sense not to use data already obtained from the

implementation of the metric of code integrity which meant the best option was

utilizing standard processor profiling techniques such as the commonly used

program counter sampling [15],[16]. The profiling technique chosen acquires the

8

10

0 16 32 48 64

Program bytes assigned to each bit in Program Structure Table

6

4

2

0

12

14

16

18

20

A
v

er
ag

e
ch

ec
k

s
re

q
u

ir
ed

 t
o

 f
al

si
fy

 p
ro

g
ra

m
 s

tr
u

ct
u

re

Angle Conversion

Bit Count

Cubic Functions

358.5375

235.1626

 34

program counter on a regular basis (sampling), thus the address of the current

operation code is known. This is repeated at a precise frequency (50 Hz), which is a

typical frequency used for processor profiling by way of sampling and also happens

to be the rate used by the metric of code integrity. The collected data from such a

system can be analyzed to determine approximately how often different memory

addresses are accessed over a period of time. In our application a relatively simple

variable length metric must be derived from the sampling data so setting a single bit

when a short range of addresses is accessed should suffice. After a predefined

number of samples are taken the resulting table of bits would then be converted to a

metric of behavior. Interestingly Type 1 XOR pattern evaluated earlier in this thesis

would likely be an ideal candidate for the table to metric conversion. The reason

being is that the state of each resulting bit in the metric would be dependent on the

processor’s access to a linear continuous section of program memory.

Due to the primary goal of the research being the development of the stable metric

of code integrity and time constraints it was decided that only a proof of concept was

required. The simple metric of behavior was developed using a software approach

utilizing the same embedded ARM platform used in the early stages of the research.

The results were technically very promising but since no analysis of the behavioral

metric was undertaken, all that can be concluded is that this approach could be

implemented with little overhead in terms of FPGA area over and above the metric

of code integrity since it shares many similarities in construct and architecture.

Certainly this is a prime candidate for further research. Please see “Future Work”,

chapter 10.1.

5.5 Summary

A method to create a metric of code integrity derived from the Program Structure

Table was developed. A simple XORing of the Program Structure Table (PST) bit

pattern was considered a logical method of reduction to create the metric of code

integrity, the reason being that any single bit change of the table will alter the

resulting metric. Experiments were then performed that determined the optimal

XORing method to produce the most unique metric of code integrity for similar

running programs. Further tests followed to determine the optimum size for the PST

that ensured responsive falsification of altered program code.

 35

Chapter 6: iCell Hardware Development

6.1 Considerations on the iCell architecture.

Research up to this point has established a method to create a metric of code

integrity and briefly outlined a likely method to implement a metric of behaviour.

The goal in this second phase of the research is to implement what has been done in

software totally in hardware as to be totally transparent to any software running on

the processor being analyzed. The importance of a non intrusive method of analysis

is primarily to allow any software to run as expected, even poorly written code

relying on processor cycle dependent timing loops. The second reason is a possible

future use to determine deliberately compromised code and the need to be

undetectable by said code. As mentioned in the previous chapters we have kept a

mind on a hardware architectural solution whilst developing and evaluating the

software based implementations.

A simplified overview of the iCell hardware architecture can be seen in Fig. 16,

where it will be noted there are three main sections making up the hardware. The

iCell’s main processor (MCU) that determines the functionality of the iCell can be

seen at the top left. This is connected to the FPGA whose primary functions are high

speed inter iCell communications and fault tolerance by way of iMetrics developed

in this research. It will be noted that the on-board sensor/effectors are routed to the

MCU through the FPGA. This does to a degree future proof the design and allows

for preprocessing/protocol conversion of sensor data or the possibility of direct

sensor access by the iSurface network using inter iCell communication links. Note

that some sensors are connected directly to the MCU and cannot be routed through

the FPGA due to the use of the I2C serial bus which is open drain.

 36

Figure 16: Simplified iCell hardware architecture.

6.1.1 Processor (MCU)

The obvious choice of processor was that which was used previously on the

development board during the first phase of this research. Firstly the use of this

processor will allow much closer comparisons between the earlier software and the

later hardware based methods of creating metrics of behavior. Secondly valuable

information and understanding of the JTAG communication of that particular

processor could be gleaned by examining the data waveforms of the development

board and much knowledge of its operation and nuances had been learnt, thus

making the design process that much easier.

MCU specifications for the iCell are:

• AT91SAM7S256 microcontroller

• 64 kBytes of SRAM

• 256 kBytes of FLASH

• 48 MHz clock (typically 1 instruction per clock cycle)

• 2 serial ports offering up to 115200 baud

• JTAG interface

6.1.2 FPGA and SRAM

As with the choice of processor, previous hands on use of the MachXO FPGA’s

[37], manufactured by Lattice makes use of them here a sensible choice. A very nice

feature is they benefit from both the complexity of an FPGA but also have the

guaranteed pin to pin timing of a CPLD (Complex Programmable Logic Device).

The primary task of the FPGA will be the control of the MCU by way of the JTAG

interface. Until work is done in understanding this communication control protocol

it is difficult to determine the complexity of the task and evaluate the likely required

MCU

Sensors/
Effectors

FPGA Communications
& Behavioral Metrics

CH0

CH1

CH3

CH2

iCell

 37

number of logic gates. Therefore it was prudent to err on the safe side and select one

of the largest FPGA’s available in the MachXO range, thus the 1200 LUT (Look Up

Table) device was chosen. It should also be noted that a larger pin compatible device

was available thus reducing the risk of unexpected logic design complexity.

Other fundamental design decision was to route all general purpose IO

(Input/Output) pins on the processor though the FPGA. First of all this approach

allowed flexibility on processor pin linkage to sensors and effectors with the option

of extra intermediate interface logic and secondly it offered great flexibility to the

fast four port iCell communication network design.

FPGA specifications for the iCell are:

• LCMXO1200 FPGA

• 1200 LUT’s

• 48 MHz clock.

A minor part of the iCell architecture is the need for non-volatile memory to store

the Program Structure Table. Since it was determined in 5.3 Speed of Falsification,

that the optimal table size was 4096 bits (512 bytes or 4 Kbit), it was decided that

this would be used in the hardware implementation and be the mode of operation

when comparing the hardware version of the iCell with the earlier software based

system. Although hard coded in the FPGA it could be made selectable at a later date

if required. Fortunately a low cost serial SRAM that utilized an SPI (Serial

Peripheral Interface) [38] interface was found to be quite suitable with a sequential

write mode that would make implementation of the Program Structure Table much

easier. Although only 4 Kbit of SRAM memory was required, a popular larger

64 Kbit version of this device was selected due to availability and cost. The

additional memory space that this device offered would also allow for future

development, supporting perhaps larger tables or more importantly, data space to

create metrics of behavior.

 38

SRAM specifications for the iCell are:

• 23K640 Serial SRAM

• 64 kb

• 12 MHz clock.

6.1.3 Sensors and Effectors

A broad range of sensor and effectors were chosen to give the iCell good

functionality and allow a wide range of experiments to be carried out including

determination of sensor/effector failure or subtle changes in performance by way of

metrics. When possible the interfaces were routed through the FPGA to allow

hardware data sniffing and augmented functionality. The analogue nature of the

ambient light sensor and microphone required a direct connection to the analogue

inputs of the processor and the open drain I
2
C interface of the 3-axis accelerometer

needed direct connections as well.

Sensors/Effectors for the iCell are:

• ambient light sensor

• RGB LED light emitter

• microphone

• loudspeaker

• capacitance proximity sensor

• 3-Axis accelerometer

• temperature sensor

6.1.4 Communications

Whilst the current research is targeting fault tolerance and in particular a method

utilizing metrics, it would be diligent to consider inter-cell communication

requirements thus current hardware can be used in future work. The intended

structure of the iCell architecture of rows and columns was outlined and discussed in

the introduction. With this in mind, each iCell would be square in shape requiring 4

communication ports situated on all 4 sides. To maintain maximum bandwidth each

port should have at least separate data and clocks both in and out. Also physical

simulation of linkage failure requires removable jumpers on serial data lines.

 39

Another useful communication link is a generic bidirectional infrared system that

can be used with smart devices, tablets, phones or maybe hand held remote control

units.

Communications for the iCell are:

• 4 high speed serial iCell to iCell bidirectional communication links.

• bidirectional infrared communication link.

6.2 Theoretical Hardware Operation

6.2.1 The Advantages of Parallel Operation

Here we consider operations required and how they may be implemented in the

FPGA. One huge advantage of a hardware implementation is the inherent parallel

nature of logic found in programmable devices such as an FPGA. For example the

Code Integrity Metric needs only be determined when the Program Structure Table

is created. In the software solution the Program Structure Table was first created by

parsing processor memory and then the Code Integrity Metric was created by

parsing the Program Structure Table. However the parallel nature of the FPGA

means both can be created simultaneously, see Fig. 17. Time saving was not actually

the big advantage with this approach, it did however reduce the amount of logic

considerably and is a good example of how operationally different the hardware and

software solutions proved to be.

Figure 17: Simultaneous updating of the Structure Table and creation of the Code Integrity Metric.

With parallel solutions that the FPGA could offer in mind, a simplified operational

flow diagram was drawn up to aid the design process. The final revision of that flow

DETECT BRANCH
INSTRUCTIONS

CREATE
CODE INTEGRITY

METRIC (CIM)

UPDATE
PROGRAM STRUCTURE

TABLE (PST)

SEQUENTIALLY READ
ALL PROGRAM MEMORY

 40

diagram can be seen in Fig. 18. Although the FPGA design process hit many

problems at the lower subsystem levels the higher level flow diagram proved sound

and required minimal changes.

6.2.2 State Counters

It was decided that the best approach to implementing the rather complex FPGA

design was to use a hierarchy of state machines. From previous experience this

should result in a reduction of logic and result in easier development due to the more

manageable modular nature of the subsystems. Referring to the operational flow

diagram shown in Fig. 18, it will be noted that each block represents the highest

level state machine and each has a hexadecimal number showing the 4-bit state

counter.

It was considered that the state counters should if possible use a gray code count

[39]. However it was soon determined that it would not be possible in all instances

due to state machine flow restrictions and the registered nature of the design would

offer no advantage anyway.

All state counters are reset at power-on to known states. This is accomplished by

using the MCU’s hardware reset output. The MCU has internal circuitry that

monitors power supply voltages and issues an internal reset on power-on and pulls

an external line low for other devices. It will be noted that there are two possible

states at power-on. The first was implemented merely for development use to allow

test equipment to be set up ready to trigger and capture signal waveforms and data.

The state machine would continually loop in state ‘F’ waiting for a button to be

pressed, at which point it would proceed to state ‘C’. State ‘C’ is the normal

power-on state if not in development mode. As with the software based development

system, the profiling technique used is activated every 20 ms (50 Hz) and therefore a

50 Hz timing clock was implemented. The state machine stays in state ‘C’ until a

trigger pulse from the timing clock is detected, at which point the state machine

counter changes to state ‘8’.

State ‘8’ halts the processor so memory and register can be accessed. This is done by

sending a sequence of commands serially to the MCU’s JTAG interface. Whilst this

is being done there is plenty of free time to setup the serial SRAM ready for

subsequent use. This makes use of the parallel nature of the FPGA so JTAG

communication to the MCU and SRAM setup is done simultaneously. SRAM setup

 41

is straightforward and places it into sequential access mode. Also a flag that

determines whether subsequent access is read or write, is set to read. Once the

processor is halted the state counter changes to ‘9’.

State ‘9’ in conjunction with the decision making state ‘D’ forms the key operation

of cross-checking the program memory with the Program Structure Table, thus

determining code integrity. This operation can be seen in more detail in Fig. 19. It

will be noted that because each bit of the Program Structure Table represents 16

bytes of program memory, adjustment to a 16-byte boundary is first performed.

State ‘9’ also sets two flags, the first (‘Bra’) is reset low and the other (‘SRAMBra’)

is determined by the Program Structure Table held in SRAM. It can been seen in

Fig. 19 that 16 bytes must be read from program memory for each cross-check of the

Program Structure Table therefore state ‘9’ performs a total of 4 reads and sets the

‘Bra’ flag if a branch instruction is found. State ‘D’ then evaluates the flags. If both

‘Bra’ and ‘SRAMBra’ are low then there is correlation between the Program

Structure Table and program memory, but no branch found. In this case the state

machine returns to state ‘9’ and performs another check for program integrity on the

next 16 bytes of program memory. If however both flags are set high then there is

both correlation and the detection of a branch instruction which as with the software

development version requires and exit from the check on code integrity. Thus the

state machine moves to state ‘A’ which sends JTAG commands and data to the

processor that restores registers to resume operation in a transparent way. Finally a

flag mismatch would indicate a change in program memory and loss of program

integrity. On detection of this situation the state machine moves to state ‘3’.

6.2.3 Rebuild Program Structure Table and Create Metric of Code Integrity.

State ‘3’ sets the SRAM into sequential write mode ready to accept the Program

Structure Table data stream and clearing the Metric of Code Integrity before moving

on to state ‘1’.

State ‘1’ in conjunction with the decision making state ‘6’ forms another key

operation of updating the Program Structure Table and in parallel creating the metric

of code integrity. This operation can be seen in more detail in Fig. 20. It can been

seen that 16 bytes must be read from program memory for each write of the Program

Structure Table therefore state ‘1’ performs a total of 4 reads and writes a logic high

to the SRAM if a branch instruction is found. As mentioned earlier in this section,

 42

the parallel nature of the programmable logic used in the FPGA allows the Metric of

Code Integrity to be created simultaneously with the SRAM write operation. The

Code Integrity Metric being quite short can be stored in the FPGA. Although the

initial research suggested uniqueness was quite good and divergent with a low Code

Integrity Metric bit count it was decided that the Metric of Code Integrity be made

variable up to 128 bits to allow possible future use in security research. A single bit

is selected from the stored Metric of Code Integrity using a counter following the

Type 2 XOR pattern discussed early and seen in Table 2. That selected bit is then

XORed with the bit being written to the Program Structure Table. State ‘6’ loops

back to continue the operation through the entire processor memory, in this case

64 kB. When the last address is detected the state machine moves to state ‘A’ which

resumes normal processor operation. It must be noted that the time taken to rebuild

the Program Structure Table and create the Metric of Code Integrity takes several

seconds (4.9 s) and cannot in anyway be considered non-intrusive, however this

operation would only occur when there is a change of code in the processor memory

which would likely be a highly intrusive event anyway. It should also be noted that a

SOC version would only require a single processor 48 MHz clock cycle per 32-bit

program memory location to complete this operation thus a scan of 64 kB would

take 341.33 µs.

 43

Figure 18: Code Integrity Metric operational flow / high level state machine.

IS BUTTON
PRESSED

YES

NO

IS THERE A
50 Hz PULSE

YES

NO

JTAG HALT

Clear SRAM Write Flag (Read)
Set SRAM into Sequential Mode

JTAG READ MEMORY * 4
SRAM READ MEMORY

Bra=0
SRAMBra=0

SRAMBra=1
Bra=1

Bra<>
SRAMBra

Set SRAM Write Flag (Write)
Set SRAM into Write Mode

Set Address to Start of FLASH

JTAG READ MEMORY * 4
SRAM WRITE MEMORY

XOR METRIC (CIM)

IS ADDRESS AT
END OF FLASH

YES NO
Clear SRAM Write Flag (Read)

JTAG RESUME

If MCU Branch Detected: Bra=1
SRAMBra=SRAM Branch Bit

If MCU Branch Detected:
SRAM Branch Bit=1

Bra=0

IF:

C

F

8

9

D

A
6

1

3

Power on development state

Power on normal state

50 Hz
CLOCK

Address = Current Program Counter
Align Address to 16-Byte Boundary

 44

Figure 19: Detailed method to check program code integrity.

0
0

0
4

0
8

0
C

1
4

1
8

1
C

1
0

2
4

2
8

2
C

2
0

3
4

3
8

3
C

3
0

00 00

Boolean ‘OR’

0

MCU Program Memory

Bit 7 Byte 0 Bit 6 Byte 0 Bit 4 Byte 0Bit 5 Byte 0

Boolean ‘XOR’

Program Structure Table in SRAM 0

Align to 16-byte boundary at 0x20

Program halted at 0x28

(Compare)
Program Integrity

HALT PROCESSOR
EVERY 20 ms

 45

Figure 20: Detailed method to update the Program Structure Table and create the Code Integrity

Metric.

6.3 JTAG interface

The JTAG interface to the processor on iCell serves two purposes. The first is a

method to debug, reprogram and generally use the interface in for normal purposes.

The second is for low intrusive access to the processor that allows dynamic and

stable behavioral metrics to be created. Fortunately both are not required

simultaneously so an easy method of switching between the modes was required.

The method devised can be seen in Fig. 21. In normal JTAG programming mode the

single jumper is fitted to J7, thus daisy chaining the JTAG programming through

both the processor and FPGA. This way either the processor or the FPGA can be

reprogrammed with standard development tools. If the jumper is moved from J7 to

0
0

0
4

0
8

0
C

1
4

1
8

1
C

1
0

2
4

2
8

2
C

2
0

3
4

3
8

3
C

3
0

Bit 7 Byte 0 Bit 6 Byte 0 Bit 4 Byte 0Bit 5 Byte 0

0 0 01 00 00 00 00 10 0

Boolean ‘OR’ Boolean ‘OR’ Boolean ‘OR’ Boolean ‘OR’

Program Structure Table in SRAM

01 10

MCU Program Memory

Boolean ‘XOR’ Boolean ‘XOR’ Boolean ‘XOR’ Boolean ‘XOR’

Program Code Integrity Metric in FPGA

01 10

XX XX

Bit n Bit n Bit n Bit n

 46

J6, the FPGA takes control and can access the processor. In this mode it is essential

that any JTAG programmer interface has been removed.

Figure 21: iCell JTAG interface.

6.4 Physical Design

6.4.1 Circuit Schematics

The physical design of the iCell was dictated by the need to connect several together

in a structured array allowing bi-directional communication on all 4 sides. The

physical size for these experiments due to the low number of devices would it seem

not be particularly important, however future work may well require larger arrays to

be constructed, thus a minimal profile is preferred. The 2 main components, both in

physical size and functionality are the FPGA and MCU which required a large

number of interconnects between them. It was decided that mounting these coaxially

on opposite sides of the printed circuit board (PCB) was the best approach to solve

this problem and would also minimize the physical profile. A schematic was first

devised which incorporated all the desirable sensors and effectors, the JTAG

interconnect and inter iCell communication links. The schematics of the MCU

section can be seen in Appendices, Fig. 46 and the FPGA, Fig. 47. Fortunately

interconnect between the MCU and FPGA offered lots of freedom due to the

0V
J6 J7

TCK
TMS
TDI

TDO

MCU
JTAG

PROGRAMMER

FPGA

TCK
TMS
TDI

TDO

 * TCK_iMetrics
* TMS_iMetrics
* TDI_iMetrics
TDO_iMetrics

/iMetricsen

TCK
TMS
TDI
TDO

 * Note these 3 FPGA outputs must be programmed to go tristate when /iMetricsen is deasserted.
 Failure to do this will result in programming lockup, requiring the cutting of PCB tracks.

 J6 must be removed when programming and fitted to activate metrics.
 J7 must be fitted when programming and removed to allow the metrics system to function.

 47

reprogrammable nature of the FPGA, thus the schematics were only finalised after

the PCB was routed.

An important consideration was power supply voltage and method of distribution

across the iSurface. All devices used in the iCell required 3.3V. Diligent design

would suggest supplying a somewhat higher voltage across the iSurface and regulate

down on each individual iCell to the required 3.3V. However this iCell was

constructed at a macro scale purely for practical reasons with components selected

that would allow scaling to sub 1 cm
2
 size. A smaller scale would preclude the use

of an efficient switching regulator and a linear one would cause thermal issues. For

this reason the 3.3V supply is routed directly across the iSurface along with the high

speed data links. Use of good decoupling and ferrite beads should suffice to provide

a reliable power supply.

6.4.2 Printed Circuit Board

The bare PCB can be seen in Fig. 22. The final revision reduced the footprint down

to 38mm x 38mm without compromising the desired specification. It will be noted

that even with the coaxially mounted MCU and FPGA there is still a good ground

plane on the bottom side. Also of note is the use of a reasonable size moving coil

loudspeaker (diameter 23mm) mounted on the lower side above the MCU. Although

this small size restricts the low frequency response on each individual iCell, larger

arrays would enhance performance at lower frequencies with a proportional

improvement to the audio output quality. Clearly it would be of benefit to mount the

loudspeaker on the top side of the PCB, however that would restrict attachment of

test equipment to many of the signal lines. Note that the design does allow for

loudspeaker fitment on the top if required.

Although not directly relevant to this research it should be mentioned that Fig. 22

also shows to the right hand side a smaller board that is used for capacitive

proximity detection. This sensor relies on capacitance change in a resistor and

capacitor (RC) network. This takes advantage of the very high input impedance of

the FPGA to measures change in capacitance by timing the charge and discharge

times when fed with a slow clock.

6.4.3 Fully Assembled iCell

The completed fully populated iCell can be seen in Fig. 23.

 48

Although only 2 iCells were constructed, Fig. 24 is included to illustrate the way

they physically interlock. The example shows what an array of 16 would look like in

a basic 4 by 4 configuration. Note that external power and high speed iSurface data

would be connected by means of a common multi-connector PCB strip along one of

the edges.

Figure 22: iCell Printed Circuit Board (PCB).

Figure 23: Completed iCell.

 49

Figure 24: iSurface.

6.5 Summary

With a software based implementation of the metric of code integrity developed and

optimized, the hardware design requirements could be finalized. Primary

components of the iCell were the MCU, FPGA, SRAM and various sensor/effectors.

The MCU provided the functionality of the iCell, whilst the FPGA and SRAM the

behavioral metrics. Flexibility on MCU pin usage and functionality was provided by

routing the sensor/effector interface lines through the FPGA. The 4 high speed inter

iCell communication ports are not required in the current research, however use for

FPGA development diagnostics would be possible.

It was decided that the FPGA operation would be based on a hierarchy of state

machines, resulting in a complex sequence of logic controlling the MCU by way of

the JTAG interface at the lowest levels.

Circuit schematics were drawn up and PCB design files sent off for manufacture.

 50

Chapter 7: Utilizing JTAG to Create Metrics

7.1 JTAG an Overview

A key part of the hardware implementation is the control and access to the MCU by

the FPGA using the JTAG interface. Despite extensive searches for previous work in

this area, it seems control and profiling analysis by way of dedicated programmable

hardware in its entirety is a new concept, so this part of the research proved to be

interesting as well as challenging.

7.1.1 The JTAG Serial Bus

The JTAG serial bus or interface is designed both for determining the logic state of

pins and for debugging purposes. Debugging involves read/write access to program

memory and controlling specially designed debug modules which are usually vendor

dependant. The debug module of the AT91SAM7S256 used in the iCell like most

allows access to internal registers and memory by way of JTAG loaded machine

code instructions placed directly into the core pipeline.

The physical interface is comprised of 5 serial lines, 4 of which are inputs and 1

output. The pins are:

1. TCK (Test Clock)

2. TMS (Test Mode Select)

3. TDI (Test Data In)

4. TDO (Test Data Out)

5. TRST (Test Reset) is optional and is left unconnected in the iCell design.

7.1.2 The TAP State Machine

The AT91SAM7S256 processor uses the ARM7TDMI core and its internal

JTAG/debug architecture can be seen in Fig. 25. It will be noticed that both the TCK

and TMS signals enter the Test Access Port (TAP) controller. The TAP controller as

seen in Fig. 26 is a state machine that uses the TMS signal as the navigation control

and TCK as the transition clock. It will be noticed that the controller has both an

instruction (IR) and a data register (DR). The instruction register is 4 bits in length

and the data register varies dependent on selected use. The instruction register for

the ARM7TDMI core has 10 public instructions of which SCAN_N, INTEST and

RESTART should be sufficient to implement the required iProfiler functions,

 51

however this isn’t certain so for completeness and clarity all instructions can be seen

in Table 3.

Figure 25: ARM7TDMI JTAG/Debug details.

Scan Chain 2 (38-bits)

Test Access Port
Controller

Scan Path Select Register (4-bits)

ID Code Register (32-bits)

BYPASS Register (1-bit)

TDI

TCK

TMS

TRST

TDO

I/O Pins

I/O PinsI/O Pins

JTAG

Boundry
Scan Chain 3

Boundry
Scan Path

Scan Chain 1 (33-bits)

Scan Chain 0 (105-bits)

Instruction Register (4-bits)

Core Logic

 52

Sel-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Run-Test/Idle

Test-Logic-Reset

Sel-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0 1 0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

C

F

7

6

2

1

3

0

5

4

E

A

9

B

8

D

Figure 26: JTAG TAP State machine.

Referring to the TAP state machine shown in Fig. 26, it will be noticed that there are

16 states determined by a 4-bit state counter that is set to hexadecimal 0xF (Test-

Logic-Reset) on power-on reset. On each positive going edge of the TCK clock

there is a state transition that is dependent on the polarity of TMS (shown at the

bottom of each state). For example if TMS stayed high the state would simply

loopback and remain in Test-Logic-Reset, however if low it would transition on to

state 0xC (Run-Test-Idle).

 53

Table 3: ARM7TDMI Debug Public Instructions.

7.1.3 Analysis of the Software Based iProfiler JTAG Signals

Although there is sufficient technical information to determine the hierarchy of

commands and data, it was decided that the complex nature of the problem could be

minimised by a more rigorous analysis of the JTAG transfers between PC and target

processor using the software based experimental platform first shown in Fig. 6. The

three main JTAG operations required to implement the FPGA based iProfiler are

Halt (acquire program counter), read memory and Resume. These operations were

initiated by sending commands to OpenOCD by way of a PuTTY telnet terminal.

The Halt command halts the processor and returns the complete set of internal

registers r0 - r12, sp_svc, lr_svc and pc. These registers values are required to return

the processor to its pre-debug state when resuming normal operation since they may

well be used or altered whilst in debug mode. The read memory (mdw) command

reads a 32-bit value from any location in the address space including SRAM and

FLASH. Finally the Resume command restores the registers to their pre-debug state

and exits debug mode.

Inspection of the JTAG bus using a 4 channel logic analyser confirmed much of

what was gleaned from various sources about the protocol and gave confidence in

what was required to develop a working hardware based iProfiler, indeed some

sequences of JTAG signals captured by the logic analyzer could form the basis of

the initial FPGA design.

Instruction Binary Hexdecimal

EXTEST 0000 0x0

SCAN_N 0010 0x2

SAMPLE/PRELOAD 0011 0x3

RESTART 0100 0x4

CLAMP 0101 0x5

HIGHZ 0111 0x7

CLAMPZ 1001 0x9

INTEST 1100 0xC

IDCODE 1110 0xE

BYPASS 1111 0xF

 54

7.1.4 TAP and Chain Initialization Preamble

The independence of the FPGA based iProfiler to the target processor was

considered important so that serious processor problems such as a system reset or

JTAG reconnection whilst ‘live’ were manageable. To fulfil that aim an

initialization preamble was developed that placed the targets TAP controller in a

know state at the start of every JTAG sequence of commands. A description of this

process here is an ideal opportunity to explain the JTAG communication process at a

low level.

Referring to Fig. 27 all 4 JTAG signal lines are shown along with the current state of

the TAP controller. It will be noticed that the initial state of the 3 output lines (TCK,

TMS and TDI) from the FPGA iProfiler are logic low. The return signal from the

target processor happens to be high in this example but depending on the last

operation this may not be the condition. The first requirement is to set the TAP

controller state machine to a known state. This can be achieved by applying a logic

high to the TMS line for at least 5 cycles of the TCK clock. Looking at TAP state

machine in Fig. 26 it can be seen that not matter what initial state was present after 5

clock cycles with the TMS line high ensures a return to state 0xF (Test-Logic-

Reset). Next the correct scan chain must be selected. As noted in Fig. 25 the

processors ARM7TDMI core has 3 scan chains.

Scan chain 0 is 105 bits in length and provides serial access to both the data and

address buses. Scan chain 1 is 33 bits in length and is a subset of scan chain 0,

providing access to the to the data bus (D[31:0]) and the breakpoint bit

(BREAKPT). This can be used to place and execute a processor instruction onto the

data bus. Scan chain 2 is 38 bits in length and provides access to the embedded in

circuit emulation (EmbeddedICE) macrocell registers. The scan chain places 32-bit

values into a set of watchdog registers and comparators to initiate a breakpoint

condition. The watchdog register and comparator select address is 5 bits in length

plus a read/write bit.

The first action of the iProfiler is to the halt the processor; therefore scan chain 2

needs to be selected. It will be noticed that TMS is used to transition the TAP state

machine from 0xF to 0xA which allows loading of the SCAN_N instruction into the

4-bit TAP instruction register. Note the data is mirrored (big-endian) due to the least

significant bit being loaded first. Once loaded the state machine is transitioned to

0x2 which allows loading of the scan chain number, in this case 0x2 (big-endian).

 55

Figure 27: JTAG Communication.

7.1.5 Robust Detection of a Microcontroller on the JTAG Interface

Determination of an active (powered) microcontroller present on the JTAG interface

can be achieved be monitoring the TDO JTAG serial line during the TAP and Chain

initialization preamble procedure. Referring again to Fig. 27 it will be noticed that

the TDO line is logic high up until the point that the FPGA drives the TDI high, at

which point the MCU pulls the TDO low. Without a processor connected or a

problem with communication due to other hardware faults the TDO would not react

in this way. This test during JTAG initialization was used to provide a reliable

method to either carry on the JTAG sequence or abort and reattempt at the next

sample (20 ms later). This proved to be an incredibly reliable method of determining

the status of the JTAG communication during the critical initialization without

adding any communication overheads, moreover it crucially does nothing more than

attempt to set up the TAP and Chain so any break in communication at this point

will be fully recoverable on the next sample.

7.2 Implementing a JTAG Controller in an FPGA

By far the most complex part of the FPGA iProfiler is the JTAG controller. As

mentioned earlier in Section 6.2.2 it was decided that the best design strategy was a

hierarchy of state machines. Although the top level state machine was already

thought out and a top-down design path may seem reasonable, no functionality

TMS (test mode select)

TCK (clock)

TDI (test data in)

TDO (test data out)

select scan chain 2set debug tap
state machine to F

DBGTAPSM[3:0] (tap controller state machine)

XX X X X F C 7 4 E A A A A 9 D C 7 6 2 2 2 2 1 5 C 7 4 E

0 0 01 0 0 01

SCAN_N Scan Chain 2

 56

would be possible without some sort of real access to the JTAG. Therefore a bottom-

up path was chosen. This would allow test JTAG sequences to be developed and

checked for accuracy using a logic analyser.

The first important decision was the JTAG clock speed. The earlier software based

experiments using OpenOCD had a rather sedate speed of 1 MHz and even then the

host PC could not keep up and spurious gaps were apparent in the command and

data transfers. Information on the maximum debug clock speed for the ARM7TDMI

core was difficult to locate and sometimes contradictory. An expanded and updated

version of the AT91SAM7S range of devices was located which gave a maximum

TCK speed of 9.8 MHz [30], however specifications found in the Atmel AT91SAM-

ICE user guide indicated a maximum emulation speed of 12 MHz. Since this is the

official USB JTAG controller from Atmel it was decided that the TCK clock speed

for the iProfiler would also be 12 MHz with the option of falling back to 10 MHz

should there be reliability problems. The FPGA itself has a master clock that needs

to run at least twice that speed to raise and lower the TCK clock at 12 MHz. The

diagram, Fig. 28 illustrates critical timing that must be adhered to for reliable JTAG

operation. It will be noticed data both from the processor and FPGA changes on the

rising edge of the 12 MHz TCK clock and is read on the falling edge. This timing

would indicate that an operational 24 MHz clock to the FPGA would suffice,

however access to the SRAM based Program Structure Table may require more

operations per TCK clock so a 48 MHz clock was initially chosen. The TCK falling

to TDO valid (Tbsod) timing shown in Fig. 28 was also not located in official

documents, however analysis of the signals whilst using OpenOCD gave a figure of

14 ns, well within the planned sample time of 2 FPGA clock cycles (41.66 ns).

 57

Figure 28: Relevant JTAG data transfer timing.

7.2.1 JTAG Repeated Sequences

When observing the JTAG control signals whilst issuing OpenOCD commands it

became apparent that there were many repeated sequences and the idea of coding a

state machine at the lowest level to generate those sequences seemed a way a

reducing the logistics to manageable level. For example each access the software

based iProfiler made to the processor every 20 ms required 3,791 TCK clock cycles

with complex defined states for both the TMS and TDI signals. Since the sequences

created by the software based iProfiler had more functionality than required it was

decided that the entire Halt, Read memory and Resume sequences should be

documented in tabular form. This process was completed and a short program was

written that could locate and extract repeated instruction sequences. There were 2

main types of sequences. The first and usually smaller sequences controlled the TAP

state machine and the others were mostly 32-bit ARM machine instructions to be

executed by the processor. It proved convenient that when a 32-bit limit was set to

sequence length, the number of unique sequences was also slightly lower that 32.

TMS (Test Mode Select)

TCK (Test Clock)

TDO (Test Data Out)

TDI (Test Data In)

Ftck
MCU reads
TMS & TDI

Tbsod

FPGA reads
TDO

 58

This meant that a 5-bit binary counter running at 12 MHz could serialize the

sequences being sent out of the FPGA and the sequence selector need only be 5-bits

as well. Appendices Table 7 lists all sequences required and Appendices Table 8 to

Table 10 list the order those sequences are selected to implement the iProfiler’s

JTAG control system.

Each sequence controls the iProfiler’s JTAG TMS and TDO output pins and must be

hard coded into the FPGA. This presented a problem since the preferred

programming language PALASM had no support for data arrays or any other

structures. However it proved fairly straightforward to write a small program to

import the sequence data and generate PALASM equations that could be imported to

the design files. A significant benefit of coding the sequences into equation code

rather than using fixed arrays in FPGA FLASH was the large reduction of logic

requirements due to the compilers efficient logic optimisation and minimization.

7.2.2 Halt and Read MCU Registers Operation

The first operation to be implemented in the FPGA serves albeit with minor

modifications much the same function to the software based OpenOCD Halt

command. The first deviation from the OpenOCD implementation is the addition of

the preamble discussed in Section 7.1.4.

A fundamental requirement with OpenOCD and the iProfiler is the restoration of all

processor program registers when issuing the Resume command. In the case of

OpenOCD this is accomplished by having the Halt command provide a complete

processor register dump that are saved so the Resume command can restore them

and allow the processor to continue seamlessly from where normal operation was

halted. Whilst OpenOCD has to cope with the possibility of any or all registers

being modified during debug mode that is not the case with the iProfiler which has a

defined operation that requires the use of only the program counter, registers r0 and

r1. This allows a simplified Halt sequence which can be considerably shorter than

the OpenOCD implementation.

For clarity the sequences were grouped and referred to as iProfiler instructions, the

order of which to halt the processor can be seen in Table 4. It will be noticed the

table also includes the clock cycles for each instruction. With the total cycle count

being 1,190 and each clock cycle at 12 MHz having a period of 83.33 ns results in a

total period of 99.166 µs. It will be noticed that the rather curious processor

 59

instruction MOV r8,r8 is to be seen. The ARM processor is a Reduced Instruction

Set Computing (RISC) processor and saves an opcode by making use of the MOV

instruction to perform a No Operation (NOP) by moving a register to itself, in this

case r8, but any register could be used for this purpose. No Operations in this case

are required to push instructions into the ARM7TDMI 3-stage pipeline.

Fig. 29 shows a timeline of important events within the 99 µs period. Note that

JTAG controller operations are shown in blue. The first operation highlighted is the

initialization of the SRAM into sequential access mode. This does not play a part in

halting the processor, but is a separate initialization done in parallel and shown due

to being within the iProfiler’s halt timeframe. Next is the reading of the processor

registers r0 and r1, followed by the program counter. Note that due to pipelining the

program counter value is 24 bytes ahead of the instruction currently being processed.

When the processor is instructed to resume operation the pipelining look-ahead

buffer is cleared and the program counter address must reflect this, which means 24

must be subtracted before it is restored. This adjusted value is also used by the

iProfiler to search for branches in the quest to falsify code integrity. This adjustment

is highlighted in green and like the SRAM initialization is also performed in parallel.

 60

Table 4: iProfiler Halt detailed order of instructions.

Clock Cycles

@ 12 MHz JTAG Instructions

7 Set TAP State C

32 Scan Chain 2, INTEST

43 Write 0xFFFFFFFF to Watchpoint 0 Address Mask

43 Write 0xFFFFFFFF to Watchpoint 0 Data Mask

43 Write 0x00000100 to Watchpoint 0 Control Value

43 Write 0x000000F7 to Watchpoint 0 Control Mask

43 Read Debug Status

45 Read Debug Comms Control Register

43 Write 0x00000005 to Debug Control

39 Write 0x00000000 to Watchpoint 0 Control Value

38 Scan Chain 1, INTEST

43 STM r0, r1, sp_svc, lr_svc, pc

43 MOV r8 r8

43 MOV r8 r8

43 Return r0

43 Return r1

43 Return spsr

43 Return spsr

43 Return pc + 24

43 MRS Rd CPSR

43 STR

43 MOV r8 r8

43 MOV r8 r8

43 Return spsr

43 MRS Rd SPSR

43 STR

43 MOV r8 r8

43 MOV r8 r8

40 Return spsr

 61

Figure 29: Halt operation timeline.

7.2.3 Read MCU Memory Operation

The iProfiler instructions to perform a processor memory read can be seen in Table

5. Of note is the ‘Set Address’ and ‘Return Data’ where a 32-bit memory address is

sent and the 32-bit read data is returned. The entire operation has a total cycle count

of 895 which results in a total period of 74.5833 µs.

Fig. 30 and Fig. 31 both illustrate the timeline of the iProfiler memory read and

various other operations performed in parallel. The memory read operation

highlighted in blue is identical in both instances and as mentioned in the diagram is

repeated 4 times to determined whether a branch instruction is present in within a

16-byte block.

7.2.3.1 State ‘9’ Parallel Operations

The secondary parallel operations shown in Fig. 30 are performed when the high

level code integrity state machine seen in Fig. 18 is at state ‘9’. The first is the

clearing of the single bit ‘Bra’ flag. As noted on the diagram this is only done once

at start of the 4 repeated memory reads.

Next, highlighted in red is the reading the Program Structure Table held in the serial

SRAM ready for comparison in state ‘D’ of the code integrity state machine.

Immediately after the return from the processor of the 32-bit data from the memory

read, a comparison is made to determine the presence of a branch instruction which

if present will cause the ‘Bra’ flag to be set.

Finally the memory read address in incremented by 4, ready for the next read

operation.

Initialize SRAM
to sequential

Store r0
from MCU

Store r1
from MCU

Store pc
from MCU

Subtract 24 from
Stored pc

Set address to adjusted stored pc
and align to 16-byte boundry

 62

Table 5: iProfiler Read Memory order of instructions.

7.2.3.2 State ‘1’ Parallel Operations

This memory read operation is performed whilst reading the entire processor

memory for the purpose of Rebuilding the Program Structure Table and creating a

new Code Integrity Metric. Apart from reading of processor program memory the

other parallel operations involve SRAM write access. As with the parallel operations

described for state ‘9’, the ‘Bra’ flag is again cleared at the start and set if a branch is

detected. Referring to Fig. 31, it can be seen highlighted in pink that the SRAM is

placed into write mode. This is actually initiated on exit from state ‘3’ but executes

in state ‘1’. The SRAM’s serial data input (SI) is then set to reflect the state of the

‘Bra’ flag ready to be written into the SRAM which is then completed by the

strobing of the SRAM clock pin with a high going single pulse. Note that as shown

in the diagram, the SRAM write only occurs at the end of the 4 repeated operations.

Clock Cycles

@ 12 MHz JTAG Instructions

46 STM r0

43 MOV r8 r8

43 MOV r8 r8

43 Set Address

43 MOV r8 r8

43 MOV r8 r8

43 MOV r8 r8

43 LDM r1

42 Scan Chain 2, INTEST

43 Read Debug Status

41 Read Debug Comms Control Register

38 Scan Chain 1, INTEST

43 STM r1

43 MOV r8 r8

43 MOV r8 r8

43 Return Data

43 MRS Rd CPSR

43 STR

43 MOV r8 r8

43 MOV r8 r8

40 Return spsr

 63

Figure 30: Read MCU and read SRAM operation timeline.

Figure 31: Read MCU and write SRAM operation timeline.

7.2.4 Restore MCU Registers and Resume Operation

The last iProfiler instructions take the target processor out of debug mode and

resumes normal operation. The instructions can be seen in Table 5 and the timeline

in Fig. 32. The iProfiler resume restores registers r0 and r1, both of which were used

in the memory read operation. Also restored is the already adjusted program counter.

The final debug command ‘RESTART’ returns the processor to normal operation.

The entire cycle count for resume operation is 764 which results in a total period of

63.66 µs.

Read branch
table bit

in SRAM

Note: This operation is repeated
4 times within State ‘9’

Set ‘Bra’ flag if data
is branch instruction

Add 4 to memory
read address

Clear ‘Bra’ flag.
Note: Only on

the first of the 4
repeat operations

Send program
memory read

address to MCU

Store program
memory data
from MCU

Note: This operation is repeated
4 times within State ‘1’

Place SRAM
into write mode.

Note: This is
initiated in State ‘3’

Send program
memory read

address to MCU

Store program
memory data
from MCU

Clear ‘Bra’ flag.
Note: Only on

the first of the 4
repeat operations

Set ‘Bra’ flag and
SRAM Serial In (SI) if

data is branch instruction

Add 4 to memory
read address

Strobe SRAM clock
(SCK) to write ‘Bra’ flag.

Note: Only on the last
of the 4 repeat operations

 64

Table 6: iProfiler Resume order of instructions.

Figure 32: Resume operation timeline.

7.2.5 Complete JTAG Instruction Sequence

In normal operation the iProfiler would on boot up determine very quickly a

mismatch between the Program Structure Table and the program structure found in

the target processor. This would result in a program memory scan to rebuild the

Program Structure Table and create a new Code Integrity Metric. Once settled all

three iProfiler operations (Halt, Memory Read and Resume) would be executed

sequentially every 20 ms. The total clock cycles would be Halt cycles (1,190) +

Read cycles (895 * 4 * n) + Resume cycles (773), where ‘n’ is the average number

of read cycles required to locate a branch within program memory and verify

program structure. Referring back to section 5.3, a typical value of n with the

Clock Cycles

@ 12 MHz JTAG Instructions

46 STM r0 r1

43 MOV r8 r8

43 MOV r8 r8

43 Restore r0

43 Restore r1

43 MOV r8 r8

43 STM pc

43 MOV r8 r8

43 MOV r8 r8

43 Restore pc

43 MOV r8 r8

43 MOV r8 r8

43 MOV r8 r8

43 MOV r8 r8

43 MOV r8 r8

43 B

32 Scan Chain 2, INTEST

40 Write 0x00000000 to Debug Control

10 RESTART

Restore r0
to MCU

Restore r1
to MCU

Restore pc
to MCU

 65

optimal 1 bit per 16 bytes structure table is around 1.6 which results in a total clock

cycle count of 7691. With a continuous JTAG TCK clock frequency of 12 MHz

(83.33 ns), this results in a total iProfiler period of 0.641 ms every 20 ms or

3.3204% of the target processors average runtime. Note the hardware iProfiler has

different modes of operation including an option that fixes the value of n to 1 (one

read cycle). Although operating in such a single read cycle mode would certainly

take more samples to identify a potential problem with code integrity, it does have

the advantage of a fixed penalty on processor performance. This mode of operation

and others will be investigated and discussed later in this thesis.

The design of the iProfiler’s JTAG controller was a significantly more complex

problem than first imagined and utilized most of the LCMXO1200 FPGA’s logic

resources. For this reason the device was removed and upgraded to the larger, pin

compatible LCMXO2280. Final utilization for this upgraded device used 1,893 of

the available 2,280 look up tables (LUTs), leaving 17% free space for future

development and work.

7.3 Summary

The first and most difficult requirement to implement the metric of code integrity in

hardware was a full understanding of the JTAG low level communication protocol.

Due to lack of comprehensive information and in particular useful documentation on

the ARM7TDMI debug interface, it was decided that a degree of reverse engineering

using a logic analyzer would be the best approach. Using the information gleaned

from this signal analysis coupled with the available documentation resulted in an

optimized method to perform the all the required functions needed to create the

iMetrics in hardware. These functions were: halting of the MCU and retrieving the

program counter address, reading data from program memory space, then finally

resuming normal MCU operation.

 66

Chapter 8: SRAM Program Structure Table and I
2
C

Communications

8.1 Using Serial SRAM to Implement the Program Structure Table

The selection process for the 64 Kbit 23K640 Serial SRAM was discussed in

Section 6.1.2 and here we take the opportunity to look at how it functions as the

Program Structure Table in more detail.

8.1.1 SRAM Transfer Timing

Fig. 33 illustrates the relevant transfer timing when using a serial clock (SCK) with a

50:50 mark/space ratio.

To ease the logic design process it would be useful if the device could operate at the

same clock rate as the JTAG, detailed in the previous chapter. In fact referring to

both transfer diagrams it will be seen that the clocking and relative transfer

sequences are almost identical. The chosen memory chip has a maximum clock

speed rating of 20 MHz, so 12 MHz operation is well within its limits. As with the

JTAG, data is read on the rising clock edge and data out made valid on the falling,

thus the FPGA’s 48 MHz clock is more than adequate to implement the SRAM

control interface. The only other possible timing issue is output valid from clock

low, indicated in the diagram as ‘Tv’ which in the case of the selected chip is 32 ns.

With the FPGA running at 12 MHz the worst case period between the falling

(request data) and rising edge (read data) will be 41.66 ns, resulting in a good

9.66 ns safety margin.

 67

Figure 33: Relevant SRAM data transfer timing.

8.1.2 SRAM Initialization

The serial SRAM as used in the iProfiler requires well defined modes of read/write

access. The device is only written to when the Program Structure Table is being

rebuilt. In this mode, data is written sequentially through the entire process without

interruption. Fortunately the chip has a sequential mode of operation that only

requires the data being set on the serial data input pin followed by a strobing of the

clock pin. This however is not the default mode when powered up, so initialization

is needed.

Fortunately initialization in the selected device is fairly straightforward with the

sequence needed to achieve this illustrated in Fig. 34. When the chip select (CS)

goes active low the SRAM expects an 8-bit instruction. The instruction ‘Write

STATUS register’ is sent, followed by the 0x81 which sets the device into

sequential mode. Finally the chip select is deselected.

SI (Serial data In)

CS (Chip Select)

SO (Serial data Out)

Tv Tdis

SCK (Serial Clock)

Fsck
FPGA reads

SO
SRAM reads

SI

 68

Figure 34: SRAM Sequential mode operation.

8.1.3 SRAM Write Access Operation

As described in the previous section, the SRAM writing requirements of the

hardware based iProfiler are quite straightforward in that only a simple clock pulse

is required for every bit written into memory. However although the device is

initialized into sequential mode, it still requires an instruction to start the process.

This procedure can be seen in Fig. 35. Again the chip select is made active and the

8-bit instruction to initiate a serial write is clocked in followed by the 16-bit start

address, which in this case is zero. The SRAM is now set up to allow sequential

writes, which can continue indefinitely whilst the chip select is held low.

The subsequent writing operation is illustrated in Fig. 36, where it can be seen that

the data on the serial input (SI) is made valid immediately after the branch detection

which is followed by a single high going clock 3.54166 µs later. This continues until

the Program Structure Table has been rebuilt at which point the chip select is raised

to terminate the sequential write operation.

SCK (Serial Clock)

SO (Serial data Out)

SI (Serial data In)

data to status register8 bit instruction

CS (Chip Select)

 69

Figure 35: SRAM Write mode operation.

Figure 36: SRAM Write bit operation.

8.1.4 SRAM Read Access Operation

Whilst single bits can be written into the SRAM, the situation is slightly different

when reading. Although each read requires only 1 bit to determine program code

integrity, it will be noticed in Fig. 37 that a whole byte must be read out. First the

byte read instruction is sent (0x03) followed by the address location. The 8-bit data

is then read out and the lower 3 bits of the Program Structure Table selects the

required bit to cross check with program structure found in processor memory.

SO (Serial data Out)

SI (Serial data In)

set address to zero8 bit instruction

CS (Chip Select)

SCK (Serial Clock)

SCK (Serial Clock)

SO (Serial data Out)

CS (Chip Select)

SI (Serial data In)

A=$7ff bit0A=$7ff bit1A=$7ff bit2

 70

Figure 37: SRAM Read byte operation.

8.2 Reading Metrics

8.2.1 Interface Options

The intended use of behavioral metrics in amorphous computing is manyfold and

could well spawn new avenues of research. However the hardware aims of the

current work require only the creation of the Code Integrity Metric for performance

comparison with the initial software implementation. Having said that, it would be

nice to implement an interface that allowed control over the metric parameters and

could allow the iCell processor to access it own metrics. It would also be preferable

that the interface was not obvious should the iCell software not require access. Note

the metrics may well stay in the domain of the FPGA in some implementations,

since inter-iCell communication links are also at that level.

There are three common interfaces that could be used to implement such an

interface. The first is serial RS232 (Recommended Standard-232 [40]. This is a

rather simple standard with a long history dating back 1962. Most microcomputers

support it and although PC’s don’t usually have a built in port, USB adapters are

available. The main problem with RS232 is synchronization and quite often buffer

requirements which make implementation in an FPGA troublesome. Also it would

rob the processor of a potentially valuable communication port, since only one

device can be connected at a time. The next possibility is SPI [38], a form of which

is used by the Program Structure Table SRAM. This serial interface has the

advantage of supporting several devices, thus does not place limitations on the

processor. However SPI devices are daisy chained, and any data has to traverse and

pass though all devices, requiring software modification to access other devices even

SCK (Serial Clock)

SO (Serial data Out)

D D D D D D D D
7 6 5 4 3 2 1 0

SI (Serial data In)

A A A A A A A A A A A
7 6 5 4 3 2 1 010 9 8

CS (Chip Select)

8 bit data out11 bit address select8 bit instruction

 71

if metric data is not required at the processor level. Lastly there is the I
2
C [38] serial

bus option. This bus like SPI is serial, but differs in that devices are connected in

parallel rather than in series. Individual device selection is accomplished by giving

each device type a unique identifier in the form of a 7-bit address. For control and

access to the iProfiler’s metrics this interface type seems ideal due to its

transparency when connected, assuming device address clash is avoided.

8.2.2 I
2
C Metrics Interface

Fortunately the I
2
C protocol allows flexibility on data length which meant no

compromises were necessary on the rather straight forward interface. The need to

modify or control the creation of the Code Integrity Metric is entirely optional and

depending on application, parameters could be hard coded into the FPGA or SOC

implementation. However various modes of operation are required to complete a

comprehensive analysis and performance comparisons with the software

implementation which will require a minimal number of control settings. The first of

these would be the setting of the metric length. The ability to initiate a metric update

on demand would also be useful as a diagnostic and development aid.

The control registers functionality could be accommodated in less than 8 bits thus a

simple 8-bit I
2
C write cycle would suffice with bits [2:0] selecting the metric length

and bit 3 initiating a metric update cycle when high. The 8 possible metric lengths

are: 2,4,8,16,32,64,128 and 24. Note that the 24-bit selection was only implemented

for purposes of comparison with the earlier software implementation.

The I
2
C multiple-byte read is perfectly suited to read back variable length metrics.

It should be noted that the LCMXO2280 FPGA has no native I
2
C as some other

chips do, requiring additional work to design the interface in its entirety. This

however has the advantage of a no-compromise solution to the interface.

8.2.3 I
2
C Transfer Timing

The relevant timing can be seen in Fig. 38. Although more complex than the JTAG

or SRAM interfaces the bus is quite slow and raises few problems in terms of critical

timing. The I
2
C serial bus has a clock (SCL) and data wire (SDA). The clock

frequency has a standard operational mode of 100 kHz and a fast mode of 400 kHz.

The specification [41] was enhanced in 1998 to allow bit rates up to 3.4 Mbits/s,

however few if any microprocessors support such speeds so they can be ignored.

 72

The clock timing period (Fscl) at 400 kHz would be 2.5 µs or 120 FPGA clock

cycles at 48 MHz. Although clock speed isn’t an issue, the I
2
C bus has some

idiosyncrasies that need to be considered. It will be noticed in Fig. 38, that data

changes only whilst the clock is low (ignoring start/stop conditions). This is to allow

data to be read by master or slave while clock is high. Clearly synchronization is

important and clock edges are normally used to capture data, but here the original

specification was unclear. Previous experience has revealed that most

implementations tend to clock data on the rising edge and change on the falling.

More importantly this mode of operation does not violate the timing diagram, where

Tsu;dat must be greater than 10 ns and Thd;dat can be 0 ns.

Figure 38: Relevant I
2
C Data Transfer Timing.

8.2.4 I
2
C Protocol

A typical I
2
C read/write cycle is illustrated in Fig. 39. An important feature of the

I
2
C serial bus is that any device, be it master or slave can only pull the clock or data

lines low and resistors must be used to pull the signals high. The iProfiler is a slave

device so the clock will be provided by the master which could well be the iCell

processor itself or for development purposes some sort of adapter to allow capturing

of the created metrics by a PC or some other monitoring system.

The start condition is identified by a falling edge on the data line whilst clock is

allowed to remain high and stop on a rising edge. Both of these conditions are

controlled by the master.

S

start

P

stopchange
of data
allowed

SCL (Serial CLock)

SDA (Serial DAta)

Tsu;dat Thd;dat

Fscl

 73

The master follows the start condition with a 7-bit slave address and a read/write bit

which indicates a write cycle if low. A responding slave that matches the address

then pulls the data low to indicate acknowledgement. The slave address chosen for

the iProfiler is 0x11 (read) and 0x10 (write).

This is followed by single or multiple data bytes, also with acknowledgement bits.

Figure 39: I
2
C Communication.

8.2.5 I
2
C Read Access Operation

The iProfiler’s variable length metric requires a read multiple operation which can

be seen in Fig. 40 where the transmissions from master to slave are shaded. The

multiple read is actually identical to the single byte read with the number of bytes

being transferred determined by acknowledgments from the master. For each byte

sent back from the slave device the master responds with an acknowledgment as

seen in the diagram Fig. 40. An acknowledgment indicates that the master expects

another byte of data and its absence is a request to terminate the read operation. An

early implementation had the termination of the read multiple operation determined

by the stop condition, however it became apparent that the absence of acknowledge

was the correct way to do this and the stop condition in a read access is most likely

superfluous.

Figure 40: I
2
C Read multiple operation.

8.2.6 I
2
C Write Access Operation

The I
2
C write byte operation is fairly straightforward and can be seen in Fig. 41. As

with the read operation, the master first sends the slave address followed by the

Slave Address A A PData1 Data2...R A

data transfered (n bytes + acknowledge)

‘1’ (read)

from master to slave
from slave to master

A
A
S
P

=
=
=
=

acknowledge (SDA low)
not acknowledge (SDA high)
START condition
STOP condition

S

6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SDA (Serial DAta)

SCL (Serial CLock)

S P

data dataaddress r/w ackstart ack ack stop

 74

read/write bit set low (0x10). If the sent address matches that of the slave, a response

in the form of an acknowledgment in sent back to the master. This is followed by a

single data byte from the master which is also acknowledged. Finally the master

sends the stop condition. Although the stop condition could well be ignored, it is

used to reset the iProfiler’s I
2
C transfer state machine to cope with any

communication errors.

Figure 41: I
2
C Write byte operation.

Slave AddressS A PDataW A

data transfered
(byte + acknowledge)‘0’ (write)

from master to slave
from slave to master

A
A
S
P

=
=
=
=

acknowledge (SDA low)
not acknowledge (SDA high)
START condition
STOP condition

 75

Chapter 9: FPGA iProfiler Operation and Performance

9.1 Initial iProfiler Operational Checks

Throughout the development of the iProfiler rigorous checks at each stage of the

design process were instigated to ensure operation was as expected. This verification

process was vindicated by the reliable operation of the final design. Such checks

included forcing the hierarchy of state machines into unused modes and ensuring

safe recovery back to normal operation. Although this is unlikely to happen during

normal operation, it does provide some protection against a noisy or fluctuating

power supply. This current work conveniently left the iCell’s network

communication links unused, thus providing a useful way to break out and

instrument the internal operational states of the iProfiler in the FPGA.

The hardware based iProfiler, although difficult to implement proved very robust in

operation and easy to control and obtain a stable but responsive metric of code

integrity. The iProfiler never failed in operation over a period greater than 6 month

and always recovered from deliberate electrical interruptions to its power and target

processor JTAG link connections. Also such actions never caused a non-recoverable

system failure although sometimes it would result in a recoverable reset of the target

processor. Power cycling the iProfiler or the target processor together or alone

always resulted in correct operation. Performance was excellent, predictable and

fulfilled all the design goals.

Unfortunately due to the unexpected complexity of the JTAG control interface, the

chosen FPGA was too low on space to implement both metric of code integrity and

behavior in the same device running simultaneously. However all low level

functions to implement a basic behavioral metric in FPGA already exist in the

current design and have been proven to operate as specified.

9.2 Comparison with Software Implementation

Once the I
2
C communication interface was finalised, further checks could be

performed at a higher level. The first was confirming that the hardware iProfiler was

producing the same metrics of code integrity as the earlier software based version.

When this was performed with all 4 test programs at metric lengths of 2, 4, 8, 16, 32,

64, and 128, total correlation was found. This rather simple test verified much of the

iProfiler’s hardware design, including the following systems/sub-systems:

 76

1. Halt the target processor (JTAG).

2. Read program memory of the target processor (JTAG).

3. Resume operation of the target processor (JTAG).

4. Create the Code Integrity Metric.

Correct operation of these systems was already determined by careful observation of

internal state machines and external signals lines during development however

conformation was welcome.

To perform a more in depth analysis and comparison of the iProfiler to the earlier

software based system, some instrumentation features were added to the FPGA

design. This involved incorporating a test mode selected by one of the iCells unused

communication ports. Referring back to Fig. 18, the 50 Hz timer was disabled and

triggering was instead initiated by an I
2
C write to the iProfiler control register. Also

during this mode all write operations to the Program Structure Table held in SRAM

were disabled and finally the I
2
C returned the SRAMBra and Bra flags rather than

the Code Integrity Metric. With these minor changes, the speed of falsification tests

could be duplicated in hardware, thus verifying operational replication of the earlier

software based iProfiler. The analysis involves loading one of the test programs into

the target processor and running the iProfiler in normal mode, thus the Program

Structure Table reflects the structure of the loaded test program. Then the iProfiler is

placed into its new test mode and a second test program is loaded into the target

processor. In this mode the target processor’s program structure does not match the

Program Structure Table stored in the SRAM and due to the disabling of the write

access to the SRAM, this situation is maintained. A small data gathering program on

a PC then continually triggers the iProfiler and determined whether the processors

resident running program has been falsified by checking the Bra and SRAMBra

flags. In this way average falsifications checks required to determine a program code

change can be calculated and compared with the original data gathered in the earlier

work detailed in Chapter Five The data matched to greater than 3 decimal places

and displayed convergence, thus verifying the hardware was operating in the same

manner as the software version.

9.3 Modes of Operation

The existing operation of the iProfiler searches in processor memory for the next

branch instruction from the current program counter location and along the way

 77

cross checks the encountered program structure with that recorded in the Program

Structure Table held in SRAM. Whilst it was felt this was a fairly optimal method to

verify structure in terms of response time it was by no means certain and for this

reason consideration of other operating modes was required. An alternative method

is to fix the number of entries cross checked in the Program Structure Table, again

starting at the current program counter location.

Due to the rather more time consuming hardware setup needed for data collection it

was decided to return to the software version to determine the optimal method of

program structure verification. The software method also has the advantage of

returning the number of program structure entries read whilst running in the

dynamic mode used so far, which will allow computation of the average iProfiler

samples required to falsify code integrity.

Fig. 42 illustrates average falsification times with a range of Program Structure

Table entry checks per iProfiler sample. This graph was the result of all 4 test

programs being replaced by each other in program memory with 500,000 samples in

each configuration. It will be noticed that there is a significant drop in average

iProfiler samples required to falsify code integrity when more than one Program

Structure Table entries are cross checked, with two entries showing the greatest

improvement. However the longer sample period would offset this gain to some

degree so this must be taken into account to determine the optimal solution. The

average period of processor time in milliseconds to falsify the exchanged program

code was computed and can be seen in Fig. 43. It will be noticed that the longer

sample periods required to check multiple structure table entries outweighs the gain

of the reduced samples seen in Fig. 42, thus a fixed length iProfiler sample utilizing

a single Program Structure Table entry check would seem to be the optimal solution.

This method also has the advantage of a relatively easy fit into a SOC solution due

to processor instructions needed for comparison with the Program Structure Table

being held in the instruction pipeline. The ARM7TDMI core has a 3 instruction

pipeline, which would require either a core change to 4 instructions or the more

practical solution of adopting 12 bytes per structure table entry.

Comparison with the dynamic variable period branch search method would be useful

so a single plot of the average entries and period to falsification is shown in red.

Although the average period of 0.7736 ms is faster than the 0.8607 ms found with

the fixed single entry check, the advantage of a constant, deterministic performance

 78

hit on the target processor would outweigh the slight gain of 11.26% in falsification

speed. Processor speed degradation with the single entry check performed every

20 ms (50 Hz) is 2.3096%.

Figure 42: Average checks required to falsify program structure dependent on Program Structure

Table entries used.

The iProfiler sampling frequency is directly related to the processor performance hit

and the average period of falsification. This relationship based on the test program

falsification results can be seen in Fig. 44 and were calculated using the following

formulas.

Sampling Frequency = 1 / (Average Period to Falsify * Average Samples to Falsify)

Where the average samples to falsify using the single entry check is 1.8634251.

Processor Hit = Sampling Frequency * Period Per Active Sample

Where the period per active sample using the single entry check is 0.4619166 ms.

Perhaps in some situations a slower response time to determine code integrity would

be quite adequate. For example an average response time of 10 seconds would result

in an iProfiler sample rate of 0.186342 Hz and an almost unperceivable performance

slow down of 0.008607% which is acceptable in most real-time systems.

1.4

1.5

0 1

Program Structure Table entries used in structure check

1.3

1.2

1.1

1.0

1.6

1.7

1.8

1.9

2.0

A
v

er
ag

e
ch

ec
k

s
re

q
u

ir
ed

 t
o

 f
al

si
fy

 p
ro

g
ra

m
 s

tr
u

ct
u

re

2 3 4 5 6 7 8 9 10 11 12

 79

Figure 43: Average processor period in ms required to determine change in structure dependent on

Program Structure Table entries used.

Figure 44: Processor performance hit and iProfiler sampling frequency determined by the average

period to falsify.

2.0

0 1

Program Structure Table entries used in structure check

1.0

0.0

3.0

4.0

5.0

A
v

er
ag

e
p

er
io

d
 (

m
s)

 r
eq

u
ir

ed
 t

o
 f

al
si

fy
 p

ro
g

ra
m

 s
tr

u
ct

u
re

2 3 4 5 6 7 8 9 10 11 12

Average period to falsify (seconds)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

200

180

160

140

120

100

80

60

40

20

0

S
a
m

p
li

n
g

 f
re

q
u

e
n

c
y

 (
H

z
)

P
ro

c
e
ss

o
r

p
o

rf
o

rm
a
n

c
e
 H

it

9%

8%

7%

6%

5%

4%

3%

2%

1%

0%

 80

Since the fixed program structure entry check and other modes of operation were

considered worthy of investigation early in the hardware development, the FPGA

design already had a working implementation. This mode of operation requires an

alteration of the Code Integrity Metric state machine previously seen in Fig. 18. This

modification for single entry check can be seen here in Fig. 45, where it will be

noted it’s actually a simplification of the original design and confined to state ‘D’.

Figure 45: Change of the Code Integrity Metric state machine to implement a simpler single entry

check of the Program Structure Table.

SRAMBra =
Bra

Bra<>
SRAMBra

IF:
D

A

 81

Chapter 10: Conclusions

A requirement a large amorphous computing array such as the iSurface for quick

inter-iCell diagnostics is clear and I argue that this can be fulfilled by the use of

stable metrics based on program structure. Further, behavioral metrics can only have

any real meaning when a metric based on program code is available. Traditional

methods to produce such metrics rely on the idea of accumulating data during run

time using various profiling techniques. However, creating something stable derived

from the inherently dynamic process of program activity is a serious problem and

likely unresolvable. The idea of turning this process ‘on its head’ and using similar

profiling techniques to disprove a metric created by program structure has been

shown to possess the ideal properties of responsiveness to code change, stability and

the possibility of a low cost SOC implementation.

Although security was not the intended application for the Code Integrity Metric, it

does offer a way to remotely monitor a single processor installation. One scenario

would be the installation of an iProfiler dongle being plugged into the monitored

processor’s JTAG socket. Such a dongle would either continuously stream the CIM

or send an alarm on a change in CIM over an encrypted link, for example GPRS.

Behavioral metrics could also be used to trip an alarm if straying beyond defined

parameters.

Further work on behavioral metrics is already underway and will be addressed in a

follow-up paper to “Stable Metrics in Amorphous Computing: An Application to

Validate Operation and Monitor Behavior” [2].

A stable metric of code integrity also puts real meaning into the behavioral and

diagnostic metrics, because as with biometrics, it’s important to know the animal

you are investigating first.

10.1 Future Work

The work done so far has been based on the determination of incorrect loaded

program code in its entirety and not on the smaller differences caused by corruption

or external compromisation. In this respect it would be important to look at possible

benefits of fixed or variable multiple structure table entry checks to determine such

small changes.

 82

Whilst sampling data in the current system it was noted that sometimes aliasing

seemed to occur, in other words the sampling period matched the time taken for the

target processor’s running code to perform a set of operations and return to the same

address in memory. This is a fairly well known profiling problem when sampling

and can be solved by various methods including the randomization of the sampling

period. It would be interesting to investigate the improvement such enhancements

would have when employed in the iProfiler system.

Initial preliminary work on the creation of a behavioral metric to complement the

Code Integrity Metric showed great promise and further development will certainly

be pursued in this direction.

The original research plan was to develop a method that harnessed the two layer

FPGA/MCU infrastructure to solve the problem of fast inter-iCell data

communication, thus allowing directed, parallel propagation across the iSurface.

This however raised the issue of fault tolerance in such a topology which resulted in

the work presented in this thesis. To continue back on track with the original

concept, along with a developed method of fault tolerance would seem a logical next

step.

To conclude, the technology developed in this work has potential far beyond the

initial research goals, particularly in security of embedded systems and offers many

opportunities for further research.

 83

 Bibliography

[1] M. Satyanarayanan, “Pervasive Computing Vision and Challenges,” IEEE Personal Comm.,

vol. 6, no. 8, Aug. 2001, pp. 10–17.

[2] M. J. Lear, "Stable Metrics in Amorphous Computing: An Application to Validate Operation

and Monitor Behavior," in Intelligent Environments (IE), 9th International Conference on, 5-8

Aug 2012, pp.204 – 211.

[3] D. Coore, “Introduction to Amorphous Computing,” Lecture Notes in Computer Science,

Springer Verlag: Berlin, 2005, pp. 99-109.

[4] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, J. Knight, T. F. R. Nagpal, E. Rauch, G.

J. Sussman, and R. Weiss, “Amorphous Computing,” in Communications of the ACM, vol. 43,

no. 5, 2000, pp. 74-82.

[5] R. Nagpal and M. Mamei, “Engineering Amorphous Computing Systems,” in Methodologies

and Software Engineering for Agent Systems, The Agent-Oriented Software Engineering

Handbook, Kluwer Academic Publishing, New York (NY), 2004, pp. 303-320.

[6] Y. Hu, “Swarm Intelligence,” 2012. Available:

http://guava.physics.uiuc.edu/~nigel/courses/569/Essays_Fall2012/Files/Hu.pdf

[7] M. G. Hinchey, R. Sterritt, and C. Rouff, “Swarms and swarm intelligence,” in Computer, vol.

40, no. 4, pp. 111–113, Apr. 2007.

[8] J. R. Heath, P. J. Kuekes, G. S. Snider, R. S. Williams, “A Defect- Tolerant Computer

Architecture: Opportunities for Nanotechnology,” in Science, Jun 1998, pp.1716-1721.

[9] M. Hartmann, F. Eskelund, P. C. Haddow, J. F. Miller, “Evolving Fault Tolerance on an

Unreliable Technology platform,” Proc. Conf. on Genetic and Evolutionary Computation

(GECCO), New York, Jul 2002, pp. 171–177.

[10] J. vonNeumann, “The Fiist Draft of a Report on EDVAC,” 1947, repnnted in Annals of the

History of Computing, vol 15, no 4, 1993.

[11] R. Nagpal, A. Kondacs, C. Chang, “Programming Methodology for Biologically-Inpired Self-

Assembling Systems,” in Computational Synthesis : From Basic Building Blocks to High Level

Fuctionality: Paper from the AAAI Spring Symp, AAAI Press, 2003, pp. 173-180.

[12] R. Nagpal, “Programmable Self-Assembly using Biologically-Inspired Multiagent Control,” 1
st

Int.l conference on Autonomous Agents and Multiagent Systems, Bologna, Italy, Jul 2002.

[13] L. Clement, R. Nagpal, “Self-Assembly and Self-Repairing Topologies,” in Proceedings of the

Workshop on Adaptability in Multi-Agent Systems, RoboCup Australian Open, Jan 2003.

[14] D. Chu, D. J. Barnes, S. Perkins, “Amorphous Computing in the Presence of Stochastic

Disturbances,” in Biosystems, vol. 125, Nov 2014, pp. 32-42.

[15] M. A. Jennifer, et al, ”Continuous Profiling: Where Have All the Cycles Gone?,” in ACM,

1997, pp. 357-390.

 84

[16] J. Whaley, “A Portable Sampling-Based Profiler for Java Virtual Machines.,” in ACM 2000

Java Grande Conference, June 2000.

[17] T. Ball, and J. R. Larus, “Efficient path profiling,” in Proceedings of the 29th Annual

International Symposium on Microarchitecture (MICRO-29), Paris, 1996, pp.46-57.

[18] M. Arnold and D. Grove, “Collecting and Exploiting High-Accuracy Call Graph Profiles in

Virtual Machines,” in International Symposium on Code Generation and Optimization, March

2005.

[19] R. G. Scottow and A. B. T. Hopkins, “Instrumentation of Real-Time Embedded System for

Performance Analysis,” in Proc. IEEE IMTC, Sorrento, Italy, Apr. 2006, pp. 1307–1310.

[20] H. Zhang, J. Ji, X. Zhou, H. Ma and C. Wang. “Design and Implementation of a Configurable

Hardware Profiler Supporting Path Profiling and Sampling,” International Conference on

Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC 2009), Zhangjiajie,

China, Oct 2009, pp.325-330.

[21] R. A. Frohwerk, "Signature analysis: A new digital field service method," Hewlett-Packard J.,

May 1977, pp.2-8.

[22] A. King, V. Callaghan, G. Clarke, “Using An Amorphous Computer For Visual Display

Applications In Intelligent Environments,” IET 4
th

 International Conference on Intelligent

Environments, Seattle, WA, USA, Jul 2008.

[23] A. King, “Deus Ex Machina: Engineering Emergence in an Amorphous Computer,”

International Workshop on Intelligent Environments, Colchester, UK, Jun 2005.

[24] W. Butera, “Programming a Paintable Computer,” PhD Thesis, MIT Media Lab, Feb 2002.

[25] J. Chang, T. Ge, E. Sanchez-Sinencio, "Challenges of Printed Electronics on Flexible

Substrates," in Circuits and Systems (MWSCAS), IEEE 55th International Midwest Symposium

on, 5-8 Aug 2012, pp.582,585.

[26] D. H. Kim, et al, “Epidermal Electronics,” in Science, vol 333, Aug 2012, pp. 838-843.

[27] Y. Kovalchuk, G. Howells, and K. D. McDonald-Maier, “Overview of ICMetric Technology –

Security Infrastructure for Autonomous and Intelligent Healthcare System,” in International

Journal of u- and e- Service, Science and Technology, vol. 4, no. 3, Sep 2011, pp. 49-60.

[28] X. Zhai, K. Appiah, S. Ehsan, H. Hu, D. Gu, K. McDonald-Maier, W. M. Cheung, and G.

Howells, “Application of ICmetrics for Embedded System Security,” in Emerging Security

Technologies (EST), 2013 Fourth International Conference on, 2013, pp. 89–92.

[29] V. Callaghan and K. Barker, “SAS-an Experimental Tool for Dynamic Program Structure

Acquisition and Analysis,” Journal of Microcomputer Applications, vol. 5, 1982, pp. 209–223.

[30] AT91SAM ARM-based Flash MCU (doc6175.pdf), Atmel Corporation – Microcontrollers, San

Jose, CA, USA, 2012.

[31] Eclipse Official Website: http://www.eclipse.org

[32] Online OpenOCD User’s Guide: http://openocd.sourceforge.net/doc/html/index.html#

[33] GCC Official Website: http://gcc.gnu.org/

 85

[34] K. R. Popper, “Science as Falsification,” Conjectures and Refutations, Routledge and Keagan

Paul: London, 1963, pp. 30-39.

[35] S. McCanne, C. Torek, “A Randomized Sampling Clock for CPU Utilization Estimation and

Code Profiling,” in Proc. of the Winter USENIX Conf, San Diago, CA, USA, Jan 1993, pp 387-

394.

[36] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,

“MiBench: A Free, Commercially Representative Embedded Benchmark Suite,” Proceedings of

the International Workshop on Workload Characterization, 2001, pp. 3-14.

[37] Lattice MachXO Family Data Sheet:

http://www.latticesemi.com/~/media/LatticeSemi/Documents/DataSheets/MachXO23/MachXO

FamilyDataSheet.pdf

[38] F. Leens, “An Introduction to SPI and I2C Protocol,” IEEE Instrumentation and Measurement

magazine, February 2009.

[39] I. Zinovik, Y. Cherbiryak and D. Kroening, “Computing Binary Combinatorial Gray Codes Via

Exhaustive Search with Sat Solvers,” in IEEE Transactions on Information Theory, 2008,

pp.1819-1823.

[40] EIA standard RS-232-C: Interface between Data Terminal Equipment and Data

Communication Equipment Employing Serial Binary Data Interchange, Washington: Electronic

Industries Association. Engineering Dept, 1969.

[41] The I2C-bus specification and user manual, Rev. 6 – 4, NXP Semiconductors N.V., San Jose,

CA, USA, 2014.

 86

Appendices

Figure 46: iCell schematic (MCU section).

 87

Figure 47: iCell schematic (FPGA section).

 88

Table 7: FPGA JTAG sequences.

No Length Sequence

0 3 TAP State 3-2-2

1 3 Reserved

2 4 Exit DR Enter DR

3 4 Reserved

4 6 Exit DR Enter DR

5 6 Reserved

6 7 Write Watchpoint 0 Control Value

7 7 Set TAP State C

8 8 Write Debug Control

9 8 Exit DR Enter DR

10 9 Read Debug Comms Control Register

11 9 Reserved

12 10 RESTART

13 10 SCAN_N

14 10 Reserved

15 10 Reserved

16 11 Read Debug Status

17 11 Write Debug Control

18 11 Write Watchpoint 0 Address Mask

19 11 Exit DR Enter DR

20 11 Exit DR Exit DR Enter DR

21 11 Exit DR Enter DR

22 11 Write Watchpoint 0 Data Mask

23 11 Exit DR Enter DR

24 32 0x00000000

25 32 Return spsr

26 32 0x00000100

27 32 0x00000009

28 32 0x00000009

29 32 0x00000009

30 32 0x00000005

31 32 Reserved

32 32 Scan Chain 2, INTEST

33 32 Scan Chain 2, INTEST

34 32 Scan Chain 1, INTEST

 89

35 32 Reserved

36 32 Reserved

37 32 Reserved

38 32 Reserved

39 32 Reserved

40 32 0x000000F7

41 32 MRS

42 32 MRS Rd SPSR

43 32 MOV r8 r8

44 32 STR

45 32 STM r1

46 32 STM r0, r1, sp_svc, pc

47 32 STM r0

48 32 STM pc

49 32 STM r0 r1

50 32 LDM r1

51 32 B

52 32 0xFFFFFFFF

53 32 Reserved

54 32 Reserved

55 32 Reserved

56 32 Return r0

57 32 Return r1

58 32 Return pc + 24

59 32 Return Data

60 32 Restore r0

61 32 Restore r1

62 32 Restore pc - 24

63 32 Set Address

Table 8: FPGA JTAG Halt sequences.

No Length Sequence

7 7 Set TAP State C

33 32 Scan Chain 2, INTEST

52 32 0xFFFFFFFF

18 11 Write Watchpoint 0 Address Mask

52 32 0xFFFFFFFF

 90

22 11 Write Watchpoint 0 Data Mask

26 32 0x00000100

6 7 Write Watchpoint 0 Control Value

2 4 Exit DR Enter DR

40 32 0x000000F7

6 7 Write Watchpoint 0 Control Mask

2 4 Exit DR Enter DR

29 32 0x00000009

16 11 Read Debug Status

27 32 0x00000009

10 9 Read Debug Comms Control Register

2 4 Exit DR Enter DR

30 32 0x00000005

17 11 Write Debug Control

24 32 0x00000000

6 7 Write Watchpoint 0 Control Value

34 32 Scan Chain 1, INTEST

4 6 Exit DR Enter DR

46 32 STM r0, r1, sp_svc, lr_svc, pc

23 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

56 32 Return r0

19 11 Exit DR Enter DR

57 32 Return r1

19 11 Exit DR Enter DR

25 32 Return spsr

19 11 Exit DR Enter DR

25 32 Return spsr

19 11 Exit DR Enter DR

58 32 Return pc + 24

19 11 Exit DR Enter DR

41 32 MRS Rd CPSR

19 11 Exit DR Enter DR

44 32 STR

 91

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

25 32 Return spsr

19 11 Exit DR Enter DR

42 32 MRS Rd SPSR

19 11 Exit DR Enter DR

44 32 STR

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

25 32 Return spsr

9 8 Exit DR Enter DR

Table 9: FPGA JTAG Read memory sequences.

No Length Sequence

0 3 TAP State 3-2-2

47 32 STM r0

23 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

63 32 Set Address

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

43 32 MOV r8 r8

21 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

50 32 LDM r1

20 11 Exit DR Exit DR Enter DR

 92

13 10 SCAN_N

33 32 Scan Chain 2, INTEST

28 32 0x00000009

16 11 Read Debug Status

27 32 0x00000009

10 9 Read Debug Comms Control Register

34 32 Scan Chain 1, INTEST

4 6 Exit DR Enter DR

45 32 STM r1

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

59 32 Return Data

19 11 Exit DR Enter DR

41 32 MRS Rd CPSR

19 11 Exit DR Enter DR

44 32 STR

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

25 32 Return spsr

9 8 Exit DR Enter DR

Table 10: FPGA JTAG Resume sequences.

No Length Sequence

0 3 TAP State 3-2-2

49 32 STM r0 r1

23 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

60 32 Restore r0

 93

19 11 Exit DR Enter DR

61 32 Restore r1

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

48 32 STM pc

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

62 32 Restore pc - 24

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

43 32 MOV r8 r8

21 11 Exit DR Enter DR

43 32 MOV r8 r8

19 11 Exit DR Enter DR

51 32 B

20 11 Exit DR Exit DR Enter DR

32 32 Scan Chain 2, INTEST

24 32 0x00000000

8 8 Write Debug Control

12 10 RESTART

