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Abstract 

A recurring theme in intelligent environments is the intelligent surface composed of 

nanoscale processing units (smart dust). Such a surface (iSurface) can be considered 

an amorphous computer composed of a large array of identical processing units 

(iCells) each with its own sensor/effectors. An important requirement of such a 

surface is the need for a fast, reliable method to determine iCell operation, 

performance and code integrity. Any practical solution must fulfil certain criteria. 

First the impact on intercellular data communication bandwidth must be kept to a 

minimum, this is particularly important in high density, high speed iSurface 

applications such as high resolution video display. Previous work on processor 

profiling offered a possible solution in the form of metrics derived from profiling. 

This thesis describes a method developed to create long (>=32 bit) stable, robust 

metrics using a profiling technique that represents the current operational state of an 

iCell and thus enabling the quick exchange of diagnostics between iCells along with 

data traffic. Key requirements in the development of this system were fast 

acquisition of diagnostic variables, minimal affect on normal operation and the 

possibility of a hardware implementation which could be completely non intrusive in 

operation. 

The hardware developed fulfilled all these criteria in particular a novel method to 

create a stable metric that could determine compromised or incorrectly loaded code 

was developed. The metric of code integrity had both attributes of stability and 

responsiveness to change, something that has proven difficult to attain before. The 

uniqueness of the metrics produced by the hardware was also investigated and was 

determined to be very good and metric bit length was efficiently used. Impact on 

processor performance was also deemed acceptable at 2.31% and the developed 

architecture could theoretically be implemented in ‘system on chip’ (SOC) with zero 

processor overheads. 
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Chapter 1: Introduction 

People’s living space is becoming rich in electronic devices most of which have 

computational capabilities undreamt of a few years ago; indeed even humble devices 

such as the bedroom clock usually utilize embedded systems technology. More often 

such technology will communicate and interact autonomously as protocols are 

implemented and refined. Of particular interest in the near future are printable 

electronics and nanotechnology that open up many new possibilities in pervasive 

computing [1]. Such technology will enable entire surfaces, for example walls to 

become “intelligent” and “aware” of the environment. Assuming Moore’s law is 

maintained so that in future a particular computational power requires less physical 

space and lower power consumption then amorphous computing could be utilized to 

create these intelligent surfaces (iSurface). Typical applications would be full wall 

audio/visual systems offering such things as immersive education, ambiance and 

artistic interaction. The iSurface with its potentially enormous processing power, 

resolution, functionality and inherent pervasive properties could well shape the 

future of intelligent environments. 

1.1 A Structured, Reprogrammable Approach: The iSurface  

A practical implementation of the iSurface would most likely be the construction of 

identical cells (iCells), each with microcontroller (MCU), memory, sensors, 

effectors and communication hardware. Practical issues with power distribution and 

communication along with economic issues such as minimizing costs would favour 

a structured, predefined pattern of iCells as opposed to the more common ad hoc 

approach. Adopting a structured approach to creating the iSurface also lends itself to 

practical methods of construction such as printing and stretchy circuits (flexible 

silicon). Such a structured approach may seem to be at odds with the classic 

undefined amorphic structure, however faults in use or manufacture would require 

an adaptive interconnection and data flow method entirely compatible with that 

needed for an ad hoc arrangement of cells. This structured construction offers the 

opportunity to operate in various or mixed modes. For example each cell could be 

programmed in an identical way with the traditional amorphous properties of each 

cell having no priori knowledge of location or orientation. Other modes could 

involve the propagation of program code as well as data between nodes either 
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directed explicitly from an external controller or by some decision making at the 

cellular level. Certainly the emergent behavior of traditional amorphic components 

is preserved and maybe even enhanced. 

Unlike most “conventional” electronic amorphous computing networks that are 

preloaded with all required programs, it is intended that the iSurface should be 

reprogrammable in situ by propagating programs across the surface utilizing the data 

network. A typical problem with such an approach may well be an error or failure in 

the reprogramming of particular iCells. It would also be of great benefit that any 

proposed solution to the issue of array reprogramming be extendable to determine 

other issues inherent with high density amorphous computing arrays such as sensor, 

effector, and general hardware performance. 

1.1.1 Current Approaches to Node Performance Determination 

Whilst much research and development on self assembly and repair topologies has 

been undertaken, it seems few have addressed the issues of node performance 

determination, in particular partial degradation of a computing node. Determination 

of complete node failure is clearly a requirement with the aforementioned repair 

topologies and consequently there is a real need for a method to monitor node 

performance and propagate that information across the network array. I need to 

develop a method that allows adjacent nodes in a network to be aware of minor 

programming or overall performance issues so that appropriate actions could then be 

performed if necessary, thus providing a very important component of a robust 

amorphous computing array. 

Although there has been limited research conducted in performance monitoring of 

nodes within an amorphous computing array, this is not the case with processor 

performance per se. One of the most common methods involves sampling the 

processor’s status on a regular basis and deriving a statistical profile of the current 

program operation. Whilst this may well form the basis of a method to determine 

operation behavior, its inherent instability due to constant variation in program flow 

makes it a poor candidate for determining program integrity at run time. 
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1.1.2 The Proposed Solution 

The nature of the statistical profile derived from processor sampling suggests the 

possibility of reduction to a unique metric that has the advantages of low bandwidth 

and fast intercellular comparisons to determine odd behavior of a ‘rogue’ iCell. 

This assumes: 

• The iCells are in close proximity and therefore sensor data is similar. 

• The iCells are executing the same program code. 

The first requirement can easily be met and becomes less of a problem as density 

increases and sensor input becomes more homogeneous. The second requirement is 

however fundamental and a prerequisite to allow intercellular behavioral 

comparison. If the program code itself could be uniquely described as a metric in 

much the same way as the dynamic behavior then a very complete description of an 

iCell nodes health could quickly propagate across the iSurface using very low 

bandwidth. 

A problem with the creation of a metric of code integrity would be to have stability 

and also be responsive to program change due to errors in programming, memory 

faults etc. These issues and the fundamental requirement of a method to determine 

code integrity over and above metrics of iCell behavior present a real challenge and 

provide the focus of the research.  

1.2 Aim of this Work 

We believe it should be possible to create a stable profiling metric based on 

monitoring and determining changes in program structure based on branch opcodes, 

that would allow the operation of arrays of processing cells to be observed and 

protected from faulty or unwanted behavior. 

Program structure based on branch addresses should remain static and unchanged in 

memory after programming and therefore be an ideal processor agnostic candidate to 

provide metrics aimed at determining code integrity. Monitoring activity at these 

same locations in memory would likewise be ideal in creating behavioral and 

diagnostic metrics and therefore we consider it important that any system developed 

to create a metric of code integrity should also be easily expanded to cover 

behavioral metrics with little extra hardware overheads. 
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Initial development will be in software at which point evaluation of uniqueness, 

response to code change, complexity, cost, and System On Chip (SOC) 

implementation issues will follow. 

Work will then move to the implementation in hardware with particular a view on 

future migration to SOC. 

The final stage will be an appraisal of software/hardware implementations, 

comparisons, conclusions and considerations of future work. 

A stable metric of code integrity also puts real meaning into the behavioral and 

diagnostic metrics, because as with biometrics, it’s important to know the animal 

you are investigating first. 

1.3 Thesis Layout 

The thesis has a linear layout that closely matches the sequence of research and 

development. Whilst this order may seem a little odd at times, it does reflect the 

logical order of work undertaken and reasoning for this sequence will be justified in 

the various chapters. 

Chapter Two reviews related work and presents a brief overview of various 

approaches to amorphous computing arrays, methods employed to determine health 

of cells and implementations of fault tolerance systems. This is followed by an 

introduction of the iSurface and it’s more particular fault tolerance requirements and 

discusses some ideal world requirements for such systems. 

Chapter Three introduces the proposed system and discusses the early development 

and technical specification of the hardware platform to be used. 

Chapter Four discusses the use of program structure in fault tolerance, how it can be 

defined, determined and stored efficiently. 

Chapter Five details the development, implementation in software and performance 

of the Code Integrity Metric (CIM). There is also a brief discussion about how 

behavioral metrics could be implemented to complement the Code Integrity Metric. 

Chapter Six discusses the development of the iCell and implementation in hardware 

of the Code Integrity Metric. 

Chapter Seven looks at development and implementation of the JTAG control 

system in a Field Programmable Gate Array (FPGA). 

Chapter Eight looks at the implementation of the SRAM based Structure Table and 

I
2
C communication sub-systems in the FPGA. 
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Chapter Nine appraises the hardware implementation and compares performance 

and operation with the earlier software based method. 

Chapter Ten presents conclusions and discusses future work. 

Note that parts of Chapters Three to Five were used in the publication "Stable 

Metrics in Amorphous Computing: An Application to Validate Operation and 

Monitor Behavior" [2] that arose from this research. 
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Chapter 2: Amorphous Computing and Fault Tolerance 

Traditional amorphous computing as described by D. Coore [3], H. Abelson [4] and 

R. Nagpal [5] covers a very wide range of sciences and can be best described as the 

functioning of a multicellular orgasm whether it be biological or electronic in nature. 

Amorphous computing methods have to a large degree been derived from the swarm 

behavior of biological organisms that display a coherent emergent intelligence. This 

would include a swarm of bees, a colony of Ants, the Portuguese Man-of-War or 

even groups of higher level animals including humans. All these examples to some 

degree display complex emergent behavior from the cooperation of many individual 

parts, some of which may not be fully functional. Electronic computing offers a 

wonderful tool for researchers to allow the simulation of various amorphous 

computing models and is by far the most common method employed when studying 

various amorphous cellular systems and network topologies [4]. This has the benefit 

of almost unhindered flexibility in modelling the entire amorphous system, from the 

individual cell up to the environment in which it inhabits. The other less common 

method employs electronic real world hardware using multi-processors 

interconnected by ad-hoc or structured networks. Natural real world examples seem 

to have ad-hoc interconnections but the emergence of coherent behavior suggests 

their dynamics are dependent on rules. For example according to Y. Hu [6] the 

behavior of individual Ants is based on rules that determine response to pheromone 

trails left by other Ants giving rise to swarm intelligence [7]. 

If these natural dynamic network modes could be brought to life in silicon, 

interesting research in emergent behavior would be forthcoming. This requires a 

method of propagating individual’s actions and responses (determined mostly by 

sensor/effectors) across the amorphous network. It would also be beneficial if this 

information exchange could in some way include the health and capabilities of the 

amorphous cell. For example in nature a member or members of an organism may 

well loose some functionality, however that does not exclude them from 

contributing to the colonies emergent behavior. Indeed if that change was a genetic 

mutation and it benefited the organism in some way it may well be beneficial to 

ignore the abnormality promote a possible change to the gene pool. A low 

bandwidth method of inter-cellular information transfer of behavior that intrinsically 
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includes health and capability offers the possibility of enhanced fault tolerance 

beyond the current decisive yes/no methods. 

2.1 Amorphous Computing Fault Tolerance Methods 

Current fault tolerance methods employed tend to vary dependent on processor 

granularity. For example the interesting work done by J. R. Heath [8] and M. 

Hartman [9] involved fault tolerance in amorphous networks that have very simple 

cells based on programmable logic. At the other end of the spectrum there are coarse 

grained networks based on isolated, traditional von Neumann architectural [10] 

computing units. Since this work will be based on a coarse grained network utilising 

standard microcontrollers, further considerations will be confined to that area of 

fault tolerance. 

Considerable work and development of self assembly and repair topologies with 

respect to amorphous computing has been undertaken, for example by R. Nagpal 

[11],[12] and L. Clement [13]. However this work is focused on methods to create a 

functional amorphous computer and how a working network can cope with node 

failure, not on the actual mode of failure. The most common methods employed to 

determine correct processor operation within an amorphous network tend to resolve 

the issue with a decisive yes/no answer. This is typically accomplished by sending 

test data back and forth between nodes and checking for corruption or more 

seriously, a total failure of communication. D. Chu considered node failure using 

such methods [14] and considered the loss of amorphous computer nodes as binary 

stochastic noise. This work of D. Chu demonstrates that whilst communication 

between cells may be unimpaired, incorrect operation due to partially corrupted 

program code or other undetected problem could lead to complete failure of the 

amorphous computer at relatively low levels of noise. The idea of using processor 

profiling or some development of it to determine the health of amorphous computer 

nodes and convey that information in a simplistic form would certainly improve the 

situation. 

Most current profiling techniques are based on two modes of operation, software or 

hardware. The first and probably most common method employs statistical 

sampling, discussed by M. A. Jennifer [15] and J. Whaley [16], where the target 

processor is halted and the current states of various registers are retrieved for 

analysis.  This halting of the processor can be done either under hardware control or 
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by way of software typically using interrupts initiated by in-built timers. Another 

approach commonly used called path profiling [17] employs tracing that would 

typically increment counters at defined points in the program which could then be 

read under interrupt control, perhaps initiated by a serial port communication. This 

approach either has the path monitoring code added to the program source code 

before compilation or the program is modified dynamically at run time by way of 

branch instructions to profiling code. The merits or otherwise of the methods 

described so far are discussed by M. Arnold [18] and either rely on specially written 

in-line code or interrupt subroutines. The use of in-line code is not only intrusive but 

only allows profiling at fixed points in the program, requiring recompilation or some 

other method to alter program code to facilitate reconfiguration of the profiling. The 

intrusive nature of software based profiling was addressed by R. G. Scottow and A. 

B. T. Hopkins [19] they proposed an interesting refinement that minimised the 

intrusive in-line code whilst extracting useful profiling information with a processor 

performance hit of just over 0.005%. Another, but less common technique of 

profiling involves monitoring the target processors activity using dedicated hardware 

which eliminates the need for in-line profiling code. A very interesting approach 

which incorporates path profiling and a novel way of pre-processing the profiling 

information was developed by H. Zhang, J Ji, X, Zhou, H. Ma [20]. Unfortunately 

this requires direct access to both the address and data bus, something that is not 

available on almost all microcontrollers. However the idea it uses for profiling paths 

(entry to branch) and reducing the profiling information has similarities to the 

proposed solution outlined in the next chapter. Another method of profiling that may 

have particular relevance to this work, in that it produced unique digital signatures 

from data streams was developed by Hewlett-Packard [21]. 

2.2 Performance Based iCell Fault Tolerance 

The computing power required to simulate an amorphous organism can become 

excessive due to the need to run identical cellular programs and communication and 

interaction. The idea of studying amorphous computing by employing hardware 

based computing cells each with dedicated processors solves the problem of 

processing speed, but issues with reprogramming and adaptive communication 

methods has problems of it own. The iCell’s design goals attempt to solve these 

problems by employing reprogrammability of processor software by propagation 
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across a structured amorphous array. This reprogrammability in an inherently failure 

prone amorphous network raises serious issues of code corruption and therefore 

precludes the use of software based profiling methods since any in-line profiling 

code may well in itself be corrupt. As mentioned in the introduction a practical and 

achievable approach to construct an intelligent surface and one which could be used 

as a means to evaluate the proposed method of fault tolerance would be structured 

and regular in nature unlike the traditional ad hoc amorphous network investigated 

by A. King  [22],[23], W. Butera [24] and others, illustrated in Fig. 1. The easiest 

and simplest two dimensional iSurface would have iCells linked in rows and 

columns as seen in Fig. 2. Diagonal connections were considered, but for practical 

reasons a square iCell structure benefits from a symmetrical iCell to iCell 

interconnect and is sufficient for current work and possible future research into high 

speed network communication. Such a network also lends itself to practical methods 

of construction such as printing J. Chang [25] and stretchy circuits (flexible silicon) 

D. H. Kim [26]. 
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Figure 1: Ad hoc architecture of classic Amorphous Computing. 

Figure 2: Structured architecture of the iSurface. 
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Chapter 3: Behavioral Metrics: The Solution 

In summary, the iCell profiling requirements are: 

• hardware based 

• no program code modification 

• possible SOC implementation 

• simple, low bandwidth method to convey iCell behavior and ‘health’  

The proposed solution can meet all these targets by use of a variant of hardware 

sampling and providing iCell behavioral information by way of metrics. 

The requirement to identify faulty iCells and abnormal behavior within such an 

amorphous surface suggested the need to develop a diagnostic system that could run 

in the background on an iCell, taking little (software based) or no (hardware based) 

processing time. The idea of producing metrics as an iSurface diagnostic tool 

addressed several problems, the first of which was the need to propagate the 

diagnostic data quickly from iCell to iCell. Secondly it would be useful for any 

diagnostic information to include both behavior and code integrity. The creation of 

metrics derived from iCell (MCU) profiling seemed to provide a promising solution. 

The use of metrics to allow adjacent iCells to detect problems, could for example 

initiate local iCell to iCell repair by means of program mirroring. Metrics based on 

profiling have been used to create encryption keys, for example ICMetrics, 

described by Y. Kovalchuk [27] and X. Zhai [28]. However creating stable metrics 

derived from standard profiling methods in an embedded system is a challenge due 

to external events causing the execution of rarely used code. Such method are also 

statistical and accumulative in nature, becoming stable only after long periods of 

time and therefore would be very unresponsive to serious changes in behavior or 

executed program code. These issues could be resolved if an alternative profiling 

method was employed that was inherently unaffected by program flow. This work 

shall refer to any developed profiling method as iProfiling and derived metrics as 

iMetrics. Work by V. Callaghan [29] on program analysis based on program branch 

structure provided more evidence that stable diagnostic metrics could be created. 

3.1 Experimental Platform 

The experimental setup required to determine the viability and stability of the 

diagnostic metrics can be broken down into the following areas: (i) the selection of a 
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suitable hardware target platform; (ii) the selection of a suitable software 

development environment to run on the host PC; (iii) the selection of suitable 

communication channels that will allow control and acquire data for subsequent 

analysis on the host PC. The following subsections describe these areas in more 

detail.  

3.1.1 Hardware Target Platform 

Important hardware requirements deemed necessary to analyze program structure 

and extract metrics included the following features: (i) a flexible interrupt controller 

with timer, thus allowing periodic sampling of processor states (ii) a counter with 

sufficient resolution to time processor clock cycles. (iii) Joint Test Action Group 

(JTAG) interface offers full control including single step operation. (iv) serial port/s 

offering a channel of communication for control and data acquisition. Previous work 

and design experience with ARM processor’s suggested that the Atmel 

AT91SAM7S256 [30], indeed an ARM based board developed for teaching 

purposes using this processor would be the ideal choice to fulfil these requirements. 

Features of the chosen development target board are: 

• AT91SAM7S256 microcontroller 

• 64 kBytes of SRAM 

• 256 kBytes of FLASH 

• 48 MHz clock (typically 1 instruction per clock cycle) 

• 2 serial ports offering up to 115200 baud 

• JTAG interface. 

3.1.2 Software Development Environment 

Important features required from the software development environment were: (i)  C 

and assembler language programming. (ii) debug mode utilizing the processors 

hardware debug module. (iii) hard and soft break points. Previous experience 

suggested a particular combination of open source software development tools 

would be ideal. Components used to build the development system include:  
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• Eclipse [31] is an open source multi language software development 

environment including an IDE. 

• Open On-Chip Debugger (OOCD) [32] is the software interface to the JTAG 

hardware debugger module. 

• GCC C compiler [33]. 

3.1.3 Control and Data Acquisition 

The choice of hardware platform and software development environment offers two 

possible modes of communication. First there are the serial ports and secondly the 

JTAG interface. Serial port communication could use a bespoke protocol preferably 

but not limited to ASCII characters for control and acquisition of data from the 

target processor connected to a host PC or simply be used with a terminal program 

such as PuTTY. JTAG offers the possibility to control the processor using OOCD 

commands via a telnet connection. OOCD has a limited but very useful set of 

commands offering full control over the target processor and allowing access to 

memory, program counter, status and other registers. 
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Chapter 4: Program Structure 

4.1 Structure Definition  

The most problematic metric to extract is one indicating the integrity of the program 

code. This metric should ideally be unique to the loaded program whilst remaining 

stable and unaffected by program flow. A metric based on program structure would 

fulfil this requirement. Program structure as defined in “SAS-an experimental tool 

for dynamic program structure acquisition” [29] will be used. In that paper program 

structure was visualized using ‘structure maps’. An example structure map shown in 

Fig. 3 represents a calibrated portion of the processors memory as a circle with an 

arrow indicating the normal sequential incrementation of the program counter. 

Deviations from the circle caused by branches are depicted as lines with green 

(dashed) indicating a jump forward in memory and red (solid) a jump backwards. 

The other important visualization is execution frequency (the frequency of address 

access) being expressed as variation of intensity of the drawn lines. This 

visualization of program structure and flow will subsequently be used in this thesis 

and any future work as required. 

4.2 Useful Characteristics for Metrics 

When looking at the structure map in Fig. 3 both fixed and dynamic features can be 

seen. Fixed features that may be used to extract metrics such as code integrity are 

branch point source and destination addresses. Dynamic features of the program 

structure that may be used for behavioral diagnostics are the frequencies of 

processor activity at those same source and destination addresses. Whilst looking at 

the structure map it is clear that both source and destination addresses are important 

fixed features that could be utilized to extract metrics unaffected by program flow, 

however frequencies at destination addresses can be derived from the branch source 

and therefore metrics based on frequency analysis need only be concerned with 

branch point memory locations (branch opcodes). 
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Figure 3: Program Structure Map. 

4.3 Considerations 

For experimental purposes, a software based system to determine program structure 

and acquire test data for further analysis was devised. Various options to accomplish 

this were considered and evaluated.  Simple profiling methods such as periodic 

sampling could be achieved by using the OOCD commands via the JTAG interface. 

However the JTAG debug module in most processors, including the 

AT91SAM7S256 are designed primarily to debug software during the development 

phase and also programming/verification of the device which would make 

development and testing problematic. The only other dedicated communication 

channels available were the two serial (UART) ports. Fortunately these ports are 

reconfigurable, quite fast (115200 baud) and the option of setting interrupts on 

receive opened up the possibility of an interrupt driven diagnostic and development 

toolset employing various commands similar to OOCD. 

4.4 Determining Program Structure 

Any method of determining program structure by way of branch address location 

would need to be dynamic due to legitimate reprogramming of some or all of 

program memory. This requirement and that the Code Integrity Metric should be 

stable, led to an approach inspired by Popper’s scientific method of falsification 

[34]. The practical application of this method in determining program structure 
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involves the creation of a metric derived from branch locations in the entire program 

memory space and then the application of runtime checks to disprove the metric. 

Once a change in the structure is determined a new metric is created, thus the metric 

is stable, reflects the current program structure and updates quickly. However, a 

problem with this approach is that the ideal properties of a program structure metric 

would preclude the possibility of verifying program structure on-the-fly. For this 

reason a table dedicated to holding program structure was considered. This Program 

Structure Table (PST) could then be used both for falsification runtime checks and 

provide the source for the variable length Code Integrity Metric. It was not deemed 

important that the scan of program memory to create this table should be particularly 

non-intrusive (a SOC solution would still require memory access) since this would 

occur only when a change of program structure had been detected (a significant 

event), see Fig. 4. 

Runtime methods needed to verify executed branch locations (local program 

structure) against structure information held in the table had to be of a low intrusive 

nature (ideally non-intrusive if SOC). These requirements led to the idea of verifying 

the locations of frequently accessed branch addresses in the first instance. Other 

techniques running at a lower priority could be used to determine the branch 

locations of rarely executed or dormant code. A Programming Structure 

Development Toolkit (PSDT) was developed utilizing one of the UART ports with 

the interrupt controller configured to issue a non-maskable interrupt on reception of 

characters (commands). The associated interrupt routine performs various operations 

returning information via the UART if required. 
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Figure 4: Method to update the Program Structure Table and create the Code Integrity Metric. 

4.5 Locating Branch Points in Software 

Meeting the requirements with a software solution is difficult, indeed the very nature 

of a software solution, i.e., it has to run on the processor, ensures it will in some way 

be intrusive. However, a variation of the industry standard profiling technique called 

‘statistical sampling’ offered a way to approach these ideal requirements without too 

much compromise. A typical implementation of statistical sampling would 

periodically halt the processor and typically retrieve register contents, program 

counter and stack pointer for further analysis. The technique used for branch 

location is an extension of this and has the following sequence of operations:  

• Halt the processor. 

• Note the program counter. 

• Search for the next branch in memory following the program counter address. 

• Note the address of located branch. 

• Use the program counter and branch address to cross check the Program 

Structure Table. 

In this way an almost statistically random memory location being executed by the 

processor is investigated and a check of whether a branch point is located within a 

predetermined number of memory locations in advance of the memory location is 
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is deterministic and if processes on the MCU are also periodic at or multiples of the 

sampling frequency then aliasing of memory locations may skew the results. This is 

indeed true, however in practice the huge difference between the sampling rate 

(20 Hz) and MCU clock (48 MHz) along with an asynchronous sampling clock, 

reduces the problem to such an extent that fixed rate sampling is still the most 

common method used in processor profiling. Note also that the use of sampling as a 

way of checking code integrity is not relying on extreme randomness. However 

future work that may employ the same sampling system to implement behavioral 

metrics may benefit from refinements such as a pseudo random sampling, perhaps 

similar to the method investigated by S. McCanne and C. Torek [35]. 

    The first experimental method used to implement the branch discovery system 

was done by way of an interrupt routine running on the target platform. This 

technique utilized the MCU’s periodic timer to issue system interrupts at a period of 

20 milliseconds. The interrupt halts current program execution and retrieves the 

program counter by way of a modification to the low level interrupt library routine. 

The program counter is then used as the start point in the search for branch 

instructions in program memory. A sufficient branch search is then undertaken to 

cross check a single entry in the Program Structure Table, after which a simple 

routine to falsify the program structure is executed. 
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Figure 5: Method to check program code integrity. 

This interrupt based solution proved viable and provided evidence that program 
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sparse and almost proprietary to processor manufacturers and further development 

would likely rely to some degree on protocol reverse engineering. 

A diagram of the experimental platform and instrumentation required to proceed 
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Figure 6: Software based experimental platform and instrumentation. 
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expensive SOC solution. However in the case of the AT91SAM7S256 processor all 

branch instructions are placed on even addresses as are all instructions due to its 

particular 32-bit architecture. Therefore only one bit of the Program Structure Table 

is required for every two bytes of program memory thus reducing the table 

requirement to 4 kB. The possibility to reduce the table size even further by skipping 

N bytes of the program memory without loosing too much program structure 

accuracy was also explored. 

When looking at assembler code it is quite apparent that branch instructions like 

most other instructions seem to have a somewhat random distribution. To better 

understand the effects of further Program Structure Table reduction, analysis of 

branch distribution was performed. Four basic low complexity software routines 

were employed to ensure representative and comparable results. More specifically 

the test programs were based on algorithms from the automotive package from the 

MiBench suite of benchmark algorithms [36], namely: Angle Conversion, Bit 

Count, Cubic Functions and Random Numbers. A possible approach to obtaining the 

branch addresses needed for analysis would be to perform a simple parse of the 

compiled test programs binaries, noting the addresses of valid branch instructions. 

However this method would result in many false positives due to data areas being 

parsed as well. The solution employed was to direct the compiler to produce 

comprehensive listings that included branch addresses. A program was then written 

to extract the branch memory locations from these listings and then perform the 

analysis. This was done for all four programs and the results can be seen in Fig. 7. It 

can be seen immediately that no branches are closer than 12 addresses apart, so a 

single bit in the Program Structure Table could represent the presence or absence of 

a branch for every 12 bytes of program memory without loss of resolution. The 

rather curious similarity between the 4 test programs distribution is due to common 

library routines used by all 4 programs. This reduction would bring the Program 

Structure Table size down to 5462 bits or 683 bytes assuming 64 kB of program 

memory. The sharp rise in the number of branches 16 bytes apart is quite apparent 

from the graphs. Calculations show that choosing to further reduce the Program 

Structure Table and increase granularity by assigning 1 bit to 16 memory locations 

results in an average loss of 10% program structure detail, in other words 10% of the 

branches in the program memory space would not be represented in the Program 

Structure Table. Further processing of the data used to produce the branch 
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distribution graph (Fig. 7) allowed a graphical look at the relationship between the 

Program Structure Table size (granularity) and loss of program structure detail, see 

Fig. 8. This was achieved by plotting the percentage of entries already plotted 

against the total entries in the data set whilst proceeding from the shortest to the 

longest branch distribution entries. In this way the graph shows the percentage of 

program structure detail (closer branch distributions) not represented in the Program 

Structure Table. The effects of a less than optimal Program Structure Table size of 

683 bytes are investigated further later in this work, however the optimal size of 683 

bytes is perfectly acceptable for use as a means to check code integrity of iCells 

within the iSurface. It should be noted that locating branches for the building of the 

Program Structure Table can implement the much more simple approach of parsing 

and checking the entire program memory space for branch instructions, since false 

positives found in data areas will not be encountered when checked for falsification 

at runtime. 

The merits of a second table like the first but being based on branch destination 

addresses will be evaluated if more program structure detail is deemed necessary. 

4.7 Summary 

A method to define and store ‘program structure’ was developed in software that can 

later be implemented in hardware. The program structure was defined as locations of 

branch instructions in program memory. Due to the distribution of the branch 

instructions, single bit flags could be used to indicate their presence in a Program 

Structure Table at an optimal 1 bit per 16 bytes of program memory. 
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Figure 7: Branch distribution. 

Figure 8: Loss of program structure detail due to program structure granularity.….. 
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Chapter 5: Code Integrity Metric 

The Code Integrity Metric is derived from the Program Structure Table and should 

ideally have the following properties: 

• Can be created quickly in software or SOC. 

• Retains the uniqueness of the Program Structure Table. 

• Variable length (bits). 

To maintain the uniqueness of the Program Structure Table it was clear that all bits 

in the Program Structure Table must in some way be used in the creation of the 

Code Integrity Metric, i.e., any bit change in the table would result in a change of 

the metric. Whilst there are many possible approaches to meet these goals it was 

decided to investigate the simplest and most obvious which is to XOR the bits in the 

Program Structure Table in such a way as to create the new reduced length bit 

pattern of the Code Integrity Metric. A decision on how best to XOR the bits of the 

Program Structure Table and maintain the structure information of particular 

programs was needed since quite similar programs may produce the same Code 

Integrity Metric. Two simple XOR bits reduction patterns were chosen to be 

evaluated for the uniqueness quality of various lengths of metric created from the 4 

test programs.  Table 1 and Table 2 show these 2 patterns of XOR bit reductions 

from a small 32-bit (4 byte) Program Structure Table to a 4-bit metric. Whilst these 

examples are of little practical use due to size, this visualization may allow us to 

deduce properties of both before we perform tests.  

If we examine the first method shown in Table 1, it will be noticed that sequential 

bits in the Program Structure Table are XORed together to create a single bit of the 

Code Integrity Metric. This sequence length can be calculated using the following 

formula: 

Sequence Length = Table Length / Metric Length 

 

where ‘Sequence Length’ is the number of sequential bits XORed  together, ‘Table 

Length’ is the total number of bits in the Program Structure Table, and ‘Metric 

Length’ is the bit length of the Code Integrity Metric. This method which we shall 

call ‘Type 1’ will reflect the characteristics of the Program Structure Table and 

hence the position of the branches in the program memory and could therefore be 

used to identify roughly where in memory the metric doesn’t match with the 
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expected one. However a disadvantage is that small local changes that you find with 

minor alterations in code may not show as a change in the Code Integrity Metric. 

This could be a major issue if the design of the iCell required the independent 

loading of small programs. The reason being, that a section of program memory 

could be reprogrammed with legitimate code and that change could be entirely 

reduced to 1 bit of the Code Integrity Metric. Since that single bit was created by an 

XOR process, there is a 50:50 chance the variation will not show as a change to the 

Code Integrity Metric. 

The second method shown in Table 2, (Type 2) sources the bits required for XORing 

across the entire Program Structure Table in a stepwise fashion with each step being 

the length of the Code Integrity Metric in bits. Such a distribution results in the loss 

of any direct relationship between the program structure and the Code Integrity 

Metric, however the uniqueness of the Code Integrity Metric with similar programs 

should be greater than that using the Type 1 XOR pattern. The uniqueness with both 

XORing patterns will also be related to the length of the Code Integrity Metric, as 

clearly the fewer bits used and the granularity becomes coarse, there is less 

opportunity for the Code Integrity Metric to express unique metrics for different 

programs. With this in mind, tests were performed to determine the uniqueness of 

the Code Integrity Metric using the 4 test programs with a range of metric lengths 

with both types of XOR pattern.  

5.1 Uniqueness of the Code Integrity Metric 

It was possible to extract the uniqueness data entirely on a PC. The 4 test program 

were compiled using the Eclipse development environment and the binaries intended 

for loading into the targets (AT91SAM7S256) SRAM were then used as input files 

to an analysis program developed and running on a PC. 

First the SRAM files were scanned for branch locations using simple binary 

comparisons at each memory location. Then the Program Structure Table was built 

using the branch location data. The Program Structure Table was 8192 bits (1024 

bytes) in length which works out at 1 bit for every 8 bytes of program memory 

(64 kB). A conservative size for the Program Structure Table was used to maximize 

structure detail since the object of these tests is centred on the Code Integrity Metric. 

With the Program Structure Tables complete, the various Code Integrity Metrics 

were created using both Type1 and 2 XOR patterns and bit lengths ranging from 4 to 
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32. With just 4 test programs it seemed unreasonable to go beyond 32 bits unless the 

results showed otherwise. Fig. 9 and Fig. 10 show results of program uniqueness 

utilizing XOR patterns Type 1 and 2 respectively. Note that the resulting Code 

Integrity Metric value was scaled due to the variable bit length. Maximum shown in 

the graphs represents the maximum numerical value possible for the various Code 

Integrity Metric bit lengths. Also note that for clarity matching values have been 

circled. 

When viewing the results of the analysis utilizing the Type 1 XOR pattern (Fig. 9) it 

will be noticed that as expected the ability of the Code Integrity Metric to 

differentiate between programs suffers to a greater degree as the granularity 

becomes coarser compared to that of the Type 2 XOR pattern (Fig. 10). The ability 

of the Code Integrity Metric based on the Type 2 XOR pattern to differentiate 4 

similar programs with a metric length of only 6 bits (64 possible values) seems a 

good result. The iCells will operate with metric lengths of 128 to 256 bits, so 

program integrity checks using this system should produce unique metrics for any 

program. 

Table 1: Table to metric XOR Type 1. 

 

Table 2: Table to metric XOR Type 2. 

 

 

 

32 Bit Table (4 Bytes) 4 Bit Metric 

0 ^^ 1 ^^ 2 ^^ 3 ^^ 4 ^^ 5 ^^ 6 ^^ 7 = 0 

8 ^^ 9 ^^ 10 ^^ 11 ^^ 12 ^^ 13 ^^ 14 ^^ 15 = 1 

16 ^^ 17 ^^ 18 ^^ 19 ^^ 20 ^^ 21 ^^ 22 ^^ 23 = 2 

24 ^^ 25 ^^ 26 ^^ 27 ^^ 28 ^^ 29 ^^ 30 ^^ 31 = 3 

32 Bit Table (4 Bytes) 4 Bit Metric 

0 ^^ 4 ^^ 8 ^^ 12 ^^ 16 ^^ 20 ^^ 24 ^^ 28 = 0 

1 ^^ 5 ^^ 9 ^^ 13 ^^ 17 ^^ 21 ^^ 25 ^^ 29 = 1 

2 ^^ 6 ^^ 10 ^^ 14 ^^ 18 ^^ 22 ^^ 26 ^^ 30 = 2 

3 ^^ 7 ^^ 11 ^^ 15 ^^ 19 ^^ 23 ^^ 27 ^^ 31 = 3 
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Figure 9: Uniqueness of the Code Integrity Metric (Type 1). 
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Figure 10: Uniqueness of the Code Integrity Metric (Type 2). 
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Program Structure Table. Once a mismatch is detected, the program code is falsified 

and a new scan of program memory is initiated to create a new Program Structure 

Table and Code Integrity Metric. In conclusion, a SOC solution would meet all ideal 

requirements. 

At this stage of the research a slight enhancement to falsification of code integrity 

was made. Whilst proceeding with the search for a branch instruction, cross 

checking with the Program Structure Table entries at each location was introduced. 

This small change would speed up the average falsification of the program structure 

with no extra overheads.  

5.3  Speed of Falsification 

Initial use of the Code Integrity Metric within the iSurface will be a determination of 

correctly loaded program code in each iCell. Therefore an experiment to determine 

average time taken for the system to respond to a change of program in SRAM 

would provide useful information and help system optimization and future 

development. Speed of falsification of program structure would likely be related to 

the granularity of the Program Structure Table, so this experiment offered the chance 

to try all permutations of reloading the SRAM with the test programs and varying 

the table size (bits per program memory bytes). The results of these tests can be seen 

in Fig. 12 to Fig. 15.     

Each graph shows the results of the 4 test programs replacing the others in program 

memory. For example, Fig. 12 shows results of the ‘Angle Conversion’ program 

replacing ‘Bit Count’, ‘Cubic Functions’, and ‘Random Numbers’ in program 

memory. The granularity of the Program Structure Table is shown along the x-axis 

as program bytes assigned to each bit. The x-axis shows the average (mean) attempts 

required to determine that the program is not current and has been replaced by 

another in program memory. Average speed of falsification ‘time’ taken to falsify 

the program structure can be calculated by multiplying the average number of 

attempts by the interrupt timer period. For example, an average number of attempts 

of 1.5 would take an average time of 30 milliseconds, assuming an interrupt period 

of 20 milliseconds.    

It will be noticed that speed of falsification is more dependent on the replacement 

programs structure rather than what it replaced which is to be expected since 

falsification by branch determination will depend on the current structure detail. In 
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particular ‘Bit Count’ requires more detail (finer granularity) in the Program 

Structure Table to determine a change of program. Which can be explained by the 

more simple nature of this program. The binary count program is very short (16 

branches in the main program) and therefore there is less opportunity to locate detail 

variations from the program structure stored in the Program Structure Table. These 

results provide more evidence that the Program Structure Table requires the detail 

afforded by the fine granularity of a Program Structure Table of at least 1 bit for 

every 16 bytes of program memory. It should also be noted that even large programs 

contain small routines that could be executed for long periods of time, particularly 

so in small embedded systems such as the iCell. Fig. 11 illustrates the program 

structure maps for the 4 test programs. 

Figure 11: Program structure maps. 

These maps only show structure detail relevant to the developed system and as such 

are a visualisation of the Program Structure Table. Although the test programs are 

not complex and range from 3 kB to 27 kB in length, to maintain clarity the structure 

maps were limited to 8 kB requiring the Cubic Functions map to be cut short. It will 

be noticed that the start of memory is identical for all 4 test programs due to 

common structures such as vector tables. 
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This optimal table size of 512 bytes (1 bit for 16 bytes of program locations) for a 

64 kB system, works out at 1.28% of the total SRAM space, making a SOC 

implementation for other uses such as secure communications commercially viable. 

Another possibility to reduce SOC costs is to dual use the existing JTAG interface 

pins. In this scenario the JTAG pins can be reconfigured as an external 512 byte 

serial SRAM interface whilst in run mode, thus a simple redesign of the internal 

JTAG interface logic could provide a code integrity and behavioral metrics without 

significant cost penalties to the MCU, whilst retaining 100% electrical and physical 

compatibility. 

Figure 12: Average code integrity checks required to determine that ‘Angle Conversion’ has 

replaced the other 3 test programs in program memory. 
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Figure 13: Average code integrity checks required to determine that ‘Bit Count’ has replaced the 

other 3 test programs in program memory. 

Figure 14: Average code integrity checks required to determine that ‘Cubic Functions’ has replaced 

the other 3 test programs in program memory. 
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Figure 15: Average code integrity checks to determine that ‘Random Numbers’ has replaced the 

other 3 programs in program memory. 

5.4 Behavioral Metric 

As mentioned earlier in this thesis the primary goal was the implementation of a 

stable metric of code integrity programmed in an FPGA. However the original idea 

was complimenting this metric with one of behavior. These two metrics could then 

be ‘spliced’ together like RNA and read as a single variable length binary bit pattern 

to describe the functional nature of the iCell (program running) and its dynamic 

behavior (what its doing). It would be rewarding although not essential to implement 

a simplified version of a behavioral metric as ‘proof of concept’ that the idea of a 

combined metric of code integrity and behavior has merit. With this goal in mind, 

determination of the ideal method to create the behavioral metric will be considered 

‘future work’ (see relevant section at the end of this thesis). 

There are many possible ways of implementing a metric of dynamic behavior 

reflecting current activity that compliments the stable metric of code integrity. 

However it made little sense not to use data already obtained from the 

implementation of the metric of code integrity which meant the best option was 

utilizing standard processor profiling techniques such as the commonly used 

program counter sampling [15],[16]. The profiling technique chosen acquires the 
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program counter on a regular basis (sampling), thus the address of the current 

operation code is known. This is repeated at a precise frequency (50 Hz), which is a 

typical frequency used for processor profiling by way of sampling and also happens 

to be the rate used by the metric of code integrity. The collected data from such a 

system can be analyzed to determine approximately how often different memory 

addresses are accessed over a period of time. In our application a relatively simple 

variable length metric must be derived from the sampling data so setting a single bit 

when a short range of addresses is accessed should suffice. After a predefined 

number of samples are taken the resulting table of bits would then be converted to a 

metric of behavior. Interestingly Type 1 XOR pattern evaluated earlier in this thesis 

would likely be an ideal candidate for the table to metric conversion. The reason 

being is that the state of each resulting bit in the metric would be dependent on the 

processor’s access to a linear continuous section of program memory. 

Due to the primary goal of the research being the development of the stable metric 

of code integrity and time constraints it was decided that only a proof of concept was 

required. The simple metric of behavior was developed using a software approach 

utilizing the same embedded ARM platform used in the early stages of the research. 

The results were technically very promising but since no analysis of the behavioral 

metric was undertaken, all that can be concluded is that this approach could be 

implemented with little overhead in terms of FPGA area over and above the metric 

of code integrity since it shares many similarities in construct and architecture. 

Certainly this is a prime candidate for further research. Please see “Future Work”, 

chapter 10.1. 

5.5 Summary 

A method to create a metric of code integrity derived from the Program Structure 

Table was developed. A simple XORing of the Program Structure Table (PST) bit 

pattern was considered a logical method of reduction to create the metric of code 

integrity, the reason being that any single bit change of the table will alter the 

resulting metric. Experiments were then performed that determined the optimal 

XORing method to produce the most unique metric of code integrity for similar 

running programs. Further tests followed to determine the optimum size for the PST 

that ensured responsive falsification of altered program code. 
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Chapter 6: iCell Hardware Development 

6.1 Considerations on the iCell architecture.   

Research up to this point has established a method to create a metric of code 

integrity and briefly outlined a likely method to implement a metric of behaviour. 

The goal in this second phase of the research is to implement what has been done in 

software totally in hardware as to be totally transparent to any software running on 

the processor being analyzed. The importance of a non intrusive method of analysis 

is primarily to allow any software to run as expected, even poorly written code 

relying on processor cycle dependent timing loops. The second reason is a possible 

future use to determine deliberately compromised code and the need to be 

undetectable by said code. As mentioned in the previous chapters we have kept a 

mind on a hardware architectural solution whilst developing and evaluating the 

software based implementations. 

A simplified overview of the iCell hardware architecture can be seen in Fig. 16, 

where it will be noted there are three main sections making up the hardware. The 

iCell’s main processor (MCU) that determines the functionality of the iCell can be 

seen at the top left. This is connected to the FPGA whose primary functions are high 

speed inter iCell communications and fault tolerance by way of iMetrics developed 

in this research. It will be noted that the on-board sensor/effectors are routed to the 

MCU through the FPGA. This does to a degree future proof the design and allows 

for preprocessing/protocol conversion of sensor data or the possibility of direct 

sensor access by the iSurface network using inter iCell communication links. Note 

that some sensors are connected directly to the MCU and cannot be routed through 

the FPGA due to the use of the I2C serial bus which is open drain.   
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Figure 16: Simplified iCell hardware architecture. 

6.1.1 Processor (MCU) 

The obvious choice of processor was that which was used previously on the 

development board during the first phase of this research. Firstly the use of this 

processor will allow much closer comparisons between the earlier software and the 

later hardware based methods of creating metrics of behavior. Secondly valuable 

information and understanding of the JTAG communication of that particular 

processor could be gleaned by examining the data waveforms of the development 

board and much knowledge of its operation and nuances had been learnt, thus 

making the design process that much easier. 

MCU specifications for the iCell are: 

• AT91SAM7S256 microcontroller 

• 64 kBytes of SRAM 

• 256 kBytes of FLASH 

• 48 MHz clock (typically 1 instruction per clock cycle) 

• 2 serial ports offering up to 115200 baud 

• JTAG interface 

6.1.2 FPGA and SRAM 

As with the choice of processor, previous hands on use of the MachXO FPGA’s 

[37], manufactured by Lattice makes use of them here a sensible choice. A very nice 

feature is they benefit from both the complexity of an FPGA but also have the 

guaranteed pin to pin timing of a CPLD (Complex Programmable Logic Device). 

The primary task of the FPGA will be the control of the MCU by way of the JTAG 

interface. Until work is done in understanding this communication control protocol 

it is difficult to determine the complexity of the task and evaluate the likely required 
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number of logic gates. Therefore it was prudent to err on the safe side and select one 

of the largest FPGA’s available in the MachXO range, thus the 1200 LUT (Look Up 

Table) device was chosen. It should also be noted that a larger pin compatible device 

was available thus reducing the risk of unexpected logic design complexity. 

Other fundamental design decision was to route all general purpose IO 

(Input/Output) pins on the processor though the FPGA. First of all this approach 

allowed flexibility on processor pin linkage to sensors and effectors with the option 

of extra intermediate interface logic and secondly it offered great flexibility to the 

fast four port iCell communication network design. 

FPGA specifications for the iCell are: 

• LCMXO1200 FPGA 

• 1200 LUT’s 

• 48 MHz clock. 

A minor part of the iCell architecture is the need for non-volatile memory to store 

the Program Structure Table. Since it was determined in 5.3 Speed of Falsification, 

that the optimal table size was 4096 bits (512 bytes or 4 Kbit), it was decided that 

this would be used in the hardware implementation and be the mode of operation 

when comparing the hardware version of the iCell with the earlier software based 

system. Although hard coded in the FPGA it could be made selectable at a later date 

if required. Fortunately a low cost serial SRAM that utilized an SPI (Serial 

Peripheral Interface) [38] interface was found to be quite suitable with a sequential 

write mode that would make implementation of the Program Structure Table much 

easier.  Although only 4 Kbit of SRAM memory was required, a popular larger 

64 Kbit version of this device was selected due to availability and cost. The 

additional memory space that this device offered would also allow for future 

development, supporting perhaps larger tables or more importantly, data space to 

create metrics of behavior. 
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SRAM specifications for the iCell are: 

• 23K640 Serial SRAM 

• 64 kb 

• 12 MHz clock. 

6.1.3 Sensors and Effectors 

A broad range of sensor and effectors were chosen to give the iCell good 

functionality and allow a wide range of experiments to be carried out including 

determination of sensor/effector failure or subtle changes in performance by way of 

metrics. When possible the interfaces were routed through the FPGA to allow 

hardware data sniffing and augmented functionality. The analogue nature of the 

ambient light sensor and microphone required a direct connection to the analogue 

inputs of the processor and the open drain I
2
C interface of the 3-axis accelerometer 

needed direct connections as well.  

 

Sensors/Effectors for the iCell are: 

• ambient light sensor 

• RGB LED light emitter 

• microphone 

• loudspeaker 

• capacitance proximity sensor 

• 3-Axis accelerometer 

• temperature sensor 

6.1.4 Communications 

Whilst the current research is targeting fault tolerance and in particular a method 

utilizing metrics, it would be diligent to consider inter-cell communication 

requirements thus current hardware can be used in future work. The intended 

structure of the iCell architecture of rows and columns was outlined and discussed in 

the introduction. With this in mind, each iCell would be square in shape requiring 4 

communication ports situated on all 4 sides. To maintain maximum bandwidth each 

port should have at least separate data and clocks both in and out. Also physical 

simulation of linkage failure requires removable jumpers on serial data lines. 
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Another useful communication link is a generic bidirectional infrared system that 

can be used with smart devices, tablets, phones or maybe hand held remote control 

units.    

Communications for the iCell are: 

• 4 high speed serial iCell to iCell bidirectional communication links. 

• bidirectional infrared communication link. 

6.2 Theoretical Hardware Operation 

6.2.1 The Advantages of Parallel Operation  

Here we consider operations required and how they may be implemented in the 

FPGA. One huge advantage of a hardware implementation is the inherent parallel 

nature of logic found in programmable devices such as an FPGA. For example the 

Code Integrity Metric needs only be determined when the Program Structure Table 

is created. In the software solution the Program Structure Table was first created by 

parsing processor memory and then the Code Integrity Metric was created by 

parsing the Program Structure Table. However the parallel nature of the FPGA 

means both can be created simultaneously, see Fig. 17. Time saving was not actually 

the big advantage with this approach, it did however reduce the amount of logic 

considerably and is a good example of how operationally different the hardware and 

software solutions proved to be. 

Figure 17: Simultaneous updating of the Structure Table and creation of the Code Integrity Metric. 

With parallel solutions that the FPGA could offer in mind, a simplified operational 

flow diagram was drawn up to aid the design process. The final revision of that flow 
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diagram can be seen in Fig. 18. Although the FPGA design process hit many 

problems at the lower subsystem levels the higher level flow diagram proved sound 

and required minimal changes.  

6.2.2 State Counters 

It was decided that the best approach to implementing the rather complex FPGA 

design was to use a hierarchy of state machines. From previous experience this 

should result in a reduction of logic and result in easier development due to the more 

manageable modular nature of the subsystems. Referring to the operational flow 

diagram shown in Fig. 18, it will be noted that each block represents the highest 

level state machine and each has a hexadecimal number showing the 4-bit state 

counter. 

It was considered that the state counters should if possible use a gray code count 

[39]. However it was soon determined that it would not be possible in all instances 

due to state machine flow restrictions and the registered nature of the design would 

offer no advantage anyway. 

All state counters are reset at power-on to known states. This is accomplished by 

using the MCU’s hardware reset output. The MCU has internal circuitry that 

monitors power supply voltages and issues an internal reset on power-on and pulls 

an external line low for other devices. It will be noted that there are two possible 

states at power-on. The first was implemented merely for development use to allow 

test equipment to be set up ready to trigger and capture signal waveforms and data. 

The state machine would continually loop in state ‘F’ waiting for a button to be 

pressed, at which point it would proceed to state ‘C’. State ‘C’ is the normal 

power-on state if not in development mode. As with the software based development 

system, the profiling technique used is activated every 20 ms (50 Hz) and therefore a 

50 Hz timing clock was implemented. The state machine stays in state ‘C’ until a 

trigger pulse from the timing clock is detected, at which point the state machine 

counter changes to state ‘8’. 

State ‘8’ halts the processor so memory and register can be accessed. This is done by 

sending a sequence of commands serially to the MCU’s JTAG interface. Whilst this 

is being done there is plenty of free time to setup the serial SRAM ready for 

subsequent use. This makes use of the parallel nature of the FPGA so JTAG 

communication to the MCU and SRAM setup is done simultaneously. SRAM setup 
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is straightforward and places it into sequential access mode. Also a flag that 

determines whether subsequent access is read or write, is set to read. Once the 

processor is halted the state counter changes to ‘9’. 

State ‘9’ in conjunction with the decision making state ‘D’ forms the key operation 

of cross-checking the program memory with the Program Structure Table, thus 

determining code integrity. This operation can be seen in more detail in Fig. 19. It 

will be noted that because each bit of the Program Structure Table represents 16 

bytes of program memory, adjustment to a 16-byte boundary is first performed. 

State ‘9’ also sets two flags, the first (‘Bra’) is reset low and the other (‘SRAMBra’) 

is determined by the Program Structure Table held in SRAM. It can been seen in 

Fig. 19 that 16 bytes must be read from program memory for each cross-check of the 

Program Structure Table therefore state ‘9’ performs a total of 4 reads and sets the 

‘Bra’ flag if a branch instruction is found. State ‘D’ then evaluates the flags. If both 

‘Bra’ and ‘SRAMBra’ are low then there is correlation between the Program 

Structure Table and program memory, but no branch found. In this case the state 

machine returns to state ‘9’ and performs another check for program integrity on the 

next 16 bytes of program memory. If however both flags are set high then there is 

both correlation and the detection of a branch instruction which as with the software 

development version requires and exit from the check on code integrity. Thus the 

state machine moves to state ‘A’ which sends JTAG commands and data to the 

processor that restores registers to resume operation in a transparent way. Finally a 

flag mismatch would indicate a change in program memory and loss of program 

integrity. On detection of this situation the state machine moves to state ‘3’. 

6.2.3 Rebuild Program Structure Table and Create Metric of Code Integrity. 

State ‘3’ sets the SRAM into sequential write mode ready to accept the Program 

Structure Table data stream and clearing the Metric of Code Integrity before moving 

on to state ‘1’. 

State ‘1’ in conjunction with the decision making state ‘6’ forms another key 

operation of updating the Program Structure Table and in parallel creating the metric 

of code integrity. This operation can be seen in more detail in Fig. 20.  It can been 

seen that 16 bytes must be read from program memory for each write of the Program 

Structure Table therefore state ‘1’ performs a total of 4 reads and writes a logic high 

to the SRAM if a branch instruction is found. As mentioned earlier in this section, 
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the parallel nature of the programmable logic used in the FPGA allows the Metric of 

Code Integrity to be created simultaneously with the SRAM write operation. The 

Code Integrity Metric being quite short can be stored in the FPGA. Although the 

initial research suggested uniqueness was quite good and divergent with a low Code 

Integrity Metric bit count it was decided that the Metric of Code Integrity be made 

variable up to 128 bits to allow possible future use in security research. A single bit 

is selected from the stored Metric of Code Integrity using a counter following the 

Type 2 XOR pattern discussed early and seen in Table 2. That selected bit is then 

XORed with the bit being written to the Program Structure Table. State ‘6’ loops 

back to continue the operation through the entire processor memory, in this case 

64 kB. When the last address is detected the state machine moves to state ‘A’ which 

resumes normal processor operation. It must be noted that the time taken to rebuild 

the Program Structure Table and create the Metric of Code Integrity takes several 

seconds (4.9 s) and cannot in anyway be considered non-intrusive, however this 

operation would only occur when there is a change of code in the processor memory 

which would likely be a highly intrusive event anyway. It should also be noted that a 

SOC version would only require a single processor 48 MHz clock cycle per 32-bit 

program memory location to complete this operation thus a scan of 64 kB would 

take 341.33 µs. 
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Figure 18: Code Integrity Metric operational flow / high level state machine. 
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Figure 19: Detailed method to check program code integrity. 
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Figure 20: Detailed method to update the Program Structure Table and create the Code Integrity 

Metric. 

6.3 JTAG interface 
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J6, the FPGA takes control and can access the processor. In this mode it is essential 

that any JTAG programmer interface has been removed. 

Figure 21: iCell JTAG interface. 

6.4 Physical Design 

6.4.1 Circuit Schematics 

The physical design of the iCell was dictated by the need to connect several together 

in a structured array allowing bi-directional communication on all 4 sides. The 

physical size for these experiments due to the low number of devices would it seem 

not be particularly important, however future work may well require larger arrays to 

be constructed, thus a minimal profile is preferred. The 2 main components, both in 

physical size and functionality are the FPGA and MCU which required a large 

number of interconnects between them. It was decided that mounting these coaxially 

on opposite sides of the printed circuit board (PCB) was the best approach to solve 

this problem and would also minimize the physical profile. A schematic was first 

devised which incorporated all the desirable sensors and effectors, the JTAG 

interconnect and inter iCell communication links. The schematics of the MCU 

section can be seen in Appendices, Fig. 46 and the FPGA, Fig. 47. Fortunately 

interconnect between the MCU and FPGA offered lots of freedom due to the 
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reprogrammable nature of the FPGA, thus the schematics were only finalised after 

the PCB was routed. 

An important consideration was power supply voltage and method of distribution 

across the iSurface. All devices used in the iCell required 3.3V. Diligent design 

would suggest supplying a somewhat higher voltage across the iSurface and regulate 

down on each individual iCell to the required 3.3V. However this iCell was 

constructed at a macro scale purely for practical reasons with components selected 

that would allow scaling to sub 1 cm
2
 size. A smaller scale would preclude the use 

of an efficient switching regulator and a linear one would cause thermal issues. For 

this reason the 3.3V supply is routed directly across the iSurface along with the high 

speed data links. Use of good decoupling and ferrite beads should suffice to provide 

a reliable power supply.   

6.4.2 Printed Circuit Board 

The bare PCB can be seen in Fig. 22. The final revision reduced the footprint down 

to 38mm x 38mm without compromising the desired specification. It will be noted 

that even with the coaxially mounted MCU and FPGA there is still a good ground 

plane on the bottom side. Also of note is the use of a reasonable size moving coil 

loudspeaker (diameter 23mm) mounted on the lower side above the MCU. Although 

this small size restricts the low frequency response on each individual iCell, larger 

arrays would enhance performance at  lower frequencies with a proportional 

improvement to the audio output quality. Clearly it would be of benefit to mount the 

loudspeaker on the top side of the PCB, however that would restrict attachment of 

test equipment to many of the signal lines. Note that the design does allow for 

loudspeaker fitment on the top if required. 

Although not directly relevant to this research it should be mentioned that Fig. 22 

also shows to the right hand side a smaller board that is used for capacitive 

proximity detection. This sensor relies on capacitance change in a resistor and 

capacitor (RC) network. This takes advantage of the very high input impedance of 

the FPGA to measures change in capacitance by timing the charge and discharge 

times when fed with a slow clock. 

6.4.3 Fully Assembled iCell 

The completed fully populated iCell can be seen in Fig. 23.  



 48 

Although only 2 iCells were constructed, Fig. 24 is included to illustrate the way 

they physically interlock. The example shows what an array of 16 would look like in 

a basic 4 by 4 configuration. Note that external power and high speed iSurface data 

would be connected by means of a common multi-connector PCB strip along one of 

the edges. 

Figure 22: iCell Printed Circuit Board (PCB). 

Figure 23: Completed iCell. 
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Figure 24: iSurface. 

6.5 Summary 

With a software based implementation of the metric of code integrity developed and 

optimized, the hardware design requirements could be finalized. Primary 

components of the iCell were the MCU, FPGA, SRAM and various sensor/effectors. 

The MCU provided the functionality of the iCell, whilst the FPGA and SRAM the 

behavioral metrics. Flexibility on MCU pin usage and functionality was provided by 

routing the sensor/effector interface lines through the FPGA. The 4 high speed inter 

iCell communication ports are not required in the current research, however use for 

FPGA development diagnostics would be possible. 

It was decided that the FPGA operation would be based on a hierarchy of state 

machines, resulting in a complex sequence of logic controlling the MCU by way of 

the JTAG interface at the lowest levels. 

Circuit schematics were drawn up and PCB design files sent off for manufacture. 
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Chapter 7: Utilizing JTAG to Create Metrics 

7.1 JTAG an Overview 

A key part of the hardware implementation is the control and access to the MCU by 

the FPGA using the JTAG interface. Despite extensive searches for previous work in 

this area, it seems control and profiling analysis by way of dedicated programmable 

hardware in its entirety is a new concept, so this part of the research proved to be 

interesting as well as challenging. 

7.1.1 The JTAG Serial Bus 

The JTAG serial bus or interface is designed both for determining the logic state of 

pins and for debugging purposes. Debugging involves read/write access to program 

memory and controlling specially designed debug modules which are usually vendor 

dependant. The debug module of the AT91SAM7S256 used in the iCell like most 

allows access to internal registers and memory by way of JTAG loaded machine 

code instructions placed directly into the core pipeline. 

The physical interface is comprised of 5 serial lines, 4 of which are inputs and 1 

output. The pins are: 

1. TCK (Test Clock) 

2. TMS (Test Mode Select) 

3. TDI (Test Data In) 

4. TDO (Test Data Out) 

5. TRST (Test Reset) is optional and is left unconnected in the iCell design. 

7.1.2 The TAP State Machine 

The AT91SAM7S256 processor uses the ARM7TDMI core and its internal 

JTAG/debug architecture can be seen in Fig. 25. It will be noticed that both the TCK 

and TMS signals enter the Test Access Port (TAP) controller. The TAP controller as 

seen in Fig. 26 is a state machine that uses the TMS signal as the navigation control 

and TCK as the transition clock. It will be noticed that the controller has both an 

instruction (IR) and a data register (DR). The instruction register is 4 bits in length 

and the data register varies dependent on selected use. The instruction register for 

the ARM7TDMI core has 10 public instructions of which SCAN_N, INTEST and 

RESTART should be sufficient to implement the required iProfiler functions, 
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however this isn’t certain so for completeness and clarity all instructions can be seen 

in Table 3. 

Figure 25: ARM7TDMI JTAG/Debug details. 
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Figure 26: JTAG TAP State machine. 

Referring to the TAP state machine shown in Fig. 26, it will be noticed that there are 

16 states determined by a 4-bit state counter that is set to hexadecimal 0xF (Test-

Logic-Reset) on power-on reset. On each positive going edge of the TCK clock 

there is a state transition that is dependent on the polarity of TMS (shown at the 

bottom of each state). For example if TMS stayed high the state would simply 

loopback and remain in Test-Logic-Reset, however if low it would transition on to 

state 0xC (Run-Test-Idle).  
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Table 3: ARM7TDMI  Debug Public Instructions. 

7.1.3 Analysis of the Software Based iProfiler JTAG Signals  

Although there is sufficient technical information to determine the hierarchy of 

commands and data, it was decided that the complex nature of the problem could be 

minimised by a more rigorous analysis of the JTAG transfers between PC and target 

processor using the software based experimental platform first shown in Fig. 6.  The 

three main JTAG operations required to implement the FPGA based iProfiler are 

Halt (acquire program counter), read memory and Resume. These operations were 

initiated by sending commands to OpenOCD by way of a PuTTY telnet terminal. 

The Halt command halts the processor and returns the complete set of internal 

registers r0 - r12, sp_svc, lr_svc and pc. These registers values are required to return 

the processor to its pre-debug state when resuming normal operation since they may 

well be used or altered whilst in debug mode. The read memory (mdw) command 

reads a 32-bit value from any location in the address space including SRAM and 

FLASH. Finally the Resume command restores the registers to their pre-debug state 

and exits debug mode. 

Inspection of the JTAG bus using a 4 channel logic analyser confirmed much of 

what was gleaned from various sources about the protocol and gave confidence in 

what was required to develop a working hardware based iProfiler, indeed some 

sequences of JTAG signals captured by the logic analyzer could form the basis of 

the initial FPGA design.  

Instruction Binary Hexdecimal 

EXTEST 0000 0x0 

SCAN_N 0010 0x2 

SAMPLE/PRELOAD 0011 0x3 

RESTART 0100 0x4 

CLAMP 0101 0x5 

HIGHZ 0111 0x7 

CLAMPZ 1001 0x9 

INTEST 1100 0xC 

IDCODE 1110 0xE 

BYPASS 1111 0xF 
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7.1.4 TAP and Chain Initialization Preamble 

The independence of the FPGA based iProfiler to the target processor was 

considered important so that serious processor problems such as a system reset or 

JTAG reconnection whilst ‘live’ were manageable. To fulfil that aim an 

initialization preamble was developed that placed the targets TAP controller in a 

know state at the start of every JTAG sequence of commands. A description of this 

process here is an ideal opportunity to explain the JTAG communication process at a 

low level. 

Referring to Fig. 27 all 4 JTAG signal lines are shown along with the current state of 

the TAP controller. It will be noticed that the initial state of the 3 output lines (TCK, 

TMS and TDI) from the FPGA iProfiler are logic low. The return signal from the 

target processor happens to be high in this example but depending on the last 

operation this may not be the condition. The first requirement is to set the TAP 

controller state machine to a known state. This can be achieved by applying a logic 

high to the TMS line for at least 5 cycles of the TCK clock. Looking at TAP state 

machine in Fig. 26 it can be seen that not matter what initial state was present after 5 

clock cycles with the TMS line high ensures a return to state 0xF (Test-Logic-

Reset). Next the correct scan chain must be selected. As noted in Fig. 25 the 

processors ARM7TDMI core has 3 scan chains. 

Scan chain 0 is 105 bits in length and provides serial access to both the data and 

address buses. Scan chain 1 is 33 bits in length and is a subset of scan chain 0, 

providing access to the to the data bus (D[31:0]) and the breakpoint bit 

(BREAKPT). This can be used to place and execute a processor instruction onto the 

data bus. Scan chain 2 is 38 bits in length and provides access to the embedded in 

circuit emulation (EmbeddedICE) macrocell registers. The scan chain places 32-bit 

values into a set of watchdog registers and comparators to initiate a breakpoint 

condition. The watchdog register and comparator select address is 5 bits in length 

plus a read/write bit. 

The first action of the iProfiler is to the halt the processor; therefore scan chain 2 

needs to be selected. It will be noticed that TMS is used to transition the TAP state 

machine from 0xF to 0xA which allows loading of the SCAN_N instruction into the 

4-bit TAP instruction register. Note the data is mirrored (big-endian) due to the least 

significant bit being loaded first. Once loaded the state machine is transitioned to 

0x2 which allows loading of the scan chain number, in this case 0x2 (big-endian). 
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Figure 27: JTAG Communication. 

7.1.5 Robust Detection of a Microcontroller on the JTAG Interface 

Determination of an active (powered) microcontroller present on the JTAG interface 

can be achieved be monitoring the TDO JTAG serial line during the TAP and Chain 

initialization preamble procedure. Referring again to Fig. 27 it will be noticed that 

the TDO line is logic high up until the point that the FPGA drives the TDI high, at 

which point the MCU pulls the TDO low. Without a processor connected or a 

problem with communication due to other hardware faults the TDO would not react 

in this way. This test during JTAG initialization was used to provide a reliable 

method to either carry on the JTAG sequence or abort and reattempt at the next 

sample (20 ms later). This proved to be an incredibly reliable method of determining 

the status of the JTAG communication during the critical initialization without 

adding any communication overheads, moreover it crucially does nothing more than 

attempt to set up the TAP and Chain so any break in communication at this point 

will be fully recoverable on the next sample. 

7.2 Implementing a JTAG Controller in an FPGA 

By far the most complex part of the FPGA iProfiler is the JTAG controller. As 

mentioned earlier in Section 6.2.2 it was decided that the best design strategy was a 

hierarchy of state machines. Although the top level state machine was already 

thought out and a top-down design path may seem reasonable, no functionality 

TMS (test mode select)

TCK (clock)

TDI (test data in)

TDO (test data out)

select scan chain 2set debug tap
state machine to F

DBGTAPSM[3:0] (tap controller state machine)

XX X X X F C 7 4 E A A A A 9 D C 7 6 2 2 2 2 1 5 C 7 4 E

0 0 01 0 0 01

SCAN_N Scan Chain 2
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would be possible without some sort of real access to the JTAG. Therefore a bottom-

up path was chosen. This would allow test JTAG sequences to be developed and 

checked for accuracy using a logic analyser. 

The first important decision was the JTAG clock speed. The earlier software based 

experiments using OpenOCD had a rather sedate speed of 1 MHz and even then the 

host PC could not keep up and spurious gaps were apparent in the command and 

data transfers. Information on the maximum debug clock speed for the ARM7TDMI 

core was difficult to locate and sometimes contradictory. An expanded and updated 

version of the AT91SAM7S range of devices was located which gave a maximum 

TCK speed of 9.8 MHz [30], however specifications found in the Atmel AT91SAM-

ICE user guide indicated a maximum emulation speed of 12 MHz. Since this is the 

official USB JTAG controller from Atmel it was decided that the TCK clock speed 

for the iProfiler would also be 12 MHz with the option of falling back to 10 MHz 

should there be reliability problems. The FPGA itself has a master clock that needs 

to run at least twice that speed to raise and lower the TCK clock at 12 MHz. The 

diagram, Fig. 28 illustrates critical timing that must be adhered to for reliable JTAG 

operation. It will be noticed data both from the processor and FPGA changes on the 

rising edge of the 12 MHz TCK clock and is read on the falling edge. This timing 

would indicate that an operational 24 MHz clock to the FPGA would suffice, 

however access to the SRAM based Program Structure Table may require more 

operations per TCK clock so a 48 MHz clock was initially chosen. The TCK falling 

to TDO valid (Tbsod) timing shown in Fig. 28 was also not located in official 

documents, however analysis of the signals whilst using OpenOCD gave a figure of 

14 ns, well within the planned sample time of 2 FPGA clock cycles (41.66 ns). 
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Figure 28: Relevant JTAG data transfer timing. 

7.2.1 JTAG Repeated Sequences 

When observing the JTAG control signals whilst issuing OpenOCD commands it 

became apparent that there were many repeated sequences and the idea of coding a 

state machine at the lowest level to generate those sequences seemed a way a 

reducing the logistics to manageable level. For example each access the software 

based iProfiler made to the processor every 20 ms required 3,791 TCK clock cycles 

with complex defined states for both the TMS and TDI signals. Since the sequences 

created by the software based iProfiler had more functionality than required it was 

decided that the entire Halt, Read memory and Resume sequences should be 

documented in tabular form. This process was completed and a short program was 

written that could locate and extract repeated instruction sequences. There were 2 

main types of sequences. The first and usually smaller sequences controlled the TAP 

state machine and the others were mostly 32-bit ARM machine instructions to be 

executed by the processor. It proved convenient that when a 32-bit limit was set to 

sequence length, the number of unique sequences was also slightly lower that 32. 

TMS (Test Mode Select)

TCK (Test Clock)

TDO (Test Data Out)

TDI (Test Data In)

Ftck
MCU reads
TMS & TDI

Tbsod

FPGA reads
TDO
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This meant that a 5-bit binary counter running at 12 MHz could serialize the 

sequences being sent out of the FPGA and the sequence selector need only be 5-bits 

as well. Appendices Table 7 lists all sequences required and Appendices Table 8 to 

Table 10 list the order those sequences are selected to implement the iProfiler’s 

JTAG control system. 

Each sequence controls the iProfiler’s JTAG TMS and TDO output pins and must be 

hard coded into the FPGA. This presented a problem since the preferred 

programming language PALASM had no support for data arrays or any other 

structures. However it proved fairly straightforward to write a small program to 

import the sequence data and generate PALASM equations that could be imported to 

the design files. A significant benefit of coding the sequences into equation code 

rather than using fixed arrays in FPGA FLASH was the large reduction of logic 

requirements due to the compilers efficient logic optimisation and minimization. 

7.2.2 Halt and Read MCU Registers Operation 

The first operation to be implemented in the FPGA serves albeit with minor 

modifications much the same function to the software based OpenOCD Halt 

command. The first deviation from the OpenOCD implementation is the addition of 

the preamble discussed in Section 7.1.4. 

A fundamental requirement with OpenOCD and the iProfiler is the restoration of all 

processor program registers when issuing the Resume command. In the case of 

OpenOCD this is accomplished by having the Halt command provide a complete 

processor register dump that are saved so the Resume command can restore them 

and allow the processor to continue seamlessly from where normal operation was 

halted. Whilst OpenOCD has to cope with the possibility of any or all registers 

being modified during debug mode that is not the case with the iProfiler which has a 

defined operation that requires the use of only the program counter, registers r0 and 

r1. This allows a simplified Halt sequence which can be considerably shorter than 

the OpenOCD implementation. 

For clarity the sequences were grouped and referred to as iProfiler instructions, the 

order of which to halt the processor can be seen in Table 4. It will be noticed the 

table also includes the clock cycles for each instruction. With the total cycle count 

being 1,190 and each clock cycle at 12 MHz having a period of 83.33 ns results in a 

total period of 99.166 µs. It will be noticed that the rather curious processor 
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instruction MOV r8,r8 is to be seen. The ARM processor is a Reduced Instruction 

Set Computing (RISC) processor and saves an opcode by making use of the MOV 

instruction to perform a No Operation (NOP) by moving a register to itself, in this 

case r8, but any register could be used for this purpose. No Operations in this case 

are required to push instructions into the ARM7TDMI 3-stage pipeline.  

Fig. 29 shows a timeline of important events within the 99 µs period. Note that 

JTAG controller operations are shown in blue. The first operation highlighted is the 

initialization of the SRAM into sequential access mode. This does not play a part in 

halting the processor, but is a separate initialization done in parallel and shown due 

to being within the iProfiler’s halt timeframe. Next is the reading of the processor 

registers r0 and r1, followed by the program counter. Note that due to pipelining the 

program counter value is 24 bytes ahead of the instruction currently being processed. 

When the processor is instructed to resume operation the pipelining look-ahead 

buffer is cleared and the program counter address must reflect this, which means 24 

must be subtracted before it is restored. This adjusted value is also used by the 

iProfiler to search for branches in the quest to falsify code integrity. This adjustment 

is highlighted in green and like the SRAM initialization is also performed in parallel. 
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Table 4: iProfiler Halt detailed order of instructions. 

 

Clock Cycles 

@ 12 MHz JTAG Instructions 

7 Set TAP State C 

32 Scan Chain 2, INTEST 

43 Write 0xFFFFFFFF to Watchpoint 0 Address Mask 

43 Write 0xFFFFFFFF to Watchpoint 0 Data Mask 

43 Write 0x00000100 to Watchpoint 0 Control Value 

43 Write 0x000000F7 to Watchpoint 0 Control Mask 

43 Read Debug Status 

45 Read Debug Comms Control Register 

43 Write 0x00000005 to Debug Control 

39 Write 0x00000000 to Watchpoint 0 Control Value 

38 Scan Chain 1, INTEST 

43 STM r0, r1, sp_svc, lr_svc, pc 

43 MOV r8 r8 

43 MOV r8 r8 

43 Return r0 

43 Return r1 

43 Return spsr 

43 Return spsr 

43 Return pc + 24 

43 MRS Rd CPSR 

43 STR 

43 MOV r8 r8 

43 MOV r8 r8 

43 Return spsr 

43 MRS Rd SPSR 

43 STR 

43 MOV r8 r8 

43 MOV r8 r8 

40 Return spsr 
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Figure 29: Halt operation timeline. 

7.2.3 Read MCU Memory Operation 

The iProfiler instructions to perform a processor memory read can be seen in Table 

5. Of note is the ‘Set Address’ and ‘Return Data’ where a 32-bit memory address is 

sent and the 32-bit read data is returned. The entire operation has a total cycle count 

of 895 which results in a total period of 74.5833 µs. 

Fig. 30 and Fig. 31 both illustrate the timeline of the iProfiler memory read and 

various other operations performed in parallel. The memory read operation 

highlighted in blue is identical in both instances and as mentioned in the diagram is 

repeated 4 times to determined whether a branch instruction is present in within a 

16-byte block. 

7.2.3.1 State ‘9’ Parallel Operations 

The secondary parallel operations shown in Fig. 30  are performed when the high 

level code integrity state machine seen in Fig. 18 is at state ‘9’. The first is the 

clearing of the single bit ‘Bra’ flag. As noted on the diagram this is only done once 

at start of the 4 repeated memory reads. 

Next, highlighted in red is the reading the Program Structure Table held in the serial 

SRAM ready for comparison in state ‘D’ of the code integrity state machine. 

Immediately after the return from the processor of the 32-bit data from the memory 

read, a comparison is made to determine the presence of a branch instruction which 

if present will cause the ‘Bra’ flag to be set. 

Finally the memory read address in incremented by 4, ready for the next read 

operation. 

Initialize SRAM
to sequential

Store r0
from MCU

Store r1
from MCU

Store pc
from MCU

Subtract 24 from
Stored pc

Set address to adjusted stored pc
and align to 16-byte boundry
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Table 5: iProfiler Read Memory order of instructions. 

7.2.3.2 State ‘1’ Parallel Operations 

This memory read operation is performed whilst reading the entire processor 

memory for the purpose of Rebuilding the Program Structure Table and creating a 

new Code Integrity Metric. Apart from reading of processor program memory the 

other parallel operations involve SRAM write access. As with the parallel operations 

described for state ‘9’, the ‘Bra’ flag is again cleared at the start and set if a branch is 

detected. Referring to Fig. 31, it can be seen highlighted in pink that the SRAM is 

placed into write mode. This is actually initiated on exit from state ‘3’ but executes 

in state ‘1’. The SRAM’s serial data input (SI) is then set to reflect the state of the 

‘Bra’ flag ready to be written into the SRAM which is then completed by the 

strobing of the SRAM clock pin with a high going single pulse. Note that as shown 

in the diagram, the SRAM write only occurs at the end of the 4 repeated operations. 

 

Clock Cycles 

@ 12 MHz JTAG Instructions 

46 STM r0 

43 MOV r8 r8 

43 MOV r8 r8 

43 Set Address 

43 MOV r8 r8 

43 MOV r8 r8 

43 MOV r8 r8 

43 LDM r1 

42 Scan Chain 2, INTEST 

43 Read Debug Status 

41 Read Debug Comms Control Register 

38 Scan Chain 1, INTEST 

43 STM r1 

43 MOV r8 r8 

43 MOV r8 r8 

43 Return Data 

43 MRS Rd CPSR 

43 STR 

43 MOV r8 r8 

43 MOV r8 r8 

40 Return spsr 
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Figure 30: Read MCU and read SRAM operation timeline. 

Figure 31: Read MCU and write SRAM operation timeline. 

7.2.4 Restore MCU Registers and Resume Operation 

The last iProfiler instructions take the target processor out of debug mode and 

resumes normal operation. The instructions can be seen in Table 5 and the timeline 

in Fig. 32. The iProfiler resume restores registers r0 and r1, both of which were used 

in the memory read operation. Also restored is the already adjusted program counter. 

The final debug command ‘RESTART’ returns the processor to normal operation. 

The entire cycle count for resume operation is 764 which results in a total period of 

63.66 µs. 

Read branch
table bit

in SRAM

Note: This operation is repeated
4 times within State ‘9’

Set ‘Bra’ flag if data
is branch instruction

Add 4 to memory
read address

Clear ‘Bra’ flag. 
Note: Only on

the first of the 4
repeat operations

Send program
memory read

address to MCU

Store program
memory data
from MCU

Note: This operation is repeated
4 times within State ‘1’

Place SRAM
into write mode.

Note: This is
initiated in State ‘3’

Send program
memory read

address to MCU

Store program
memory data
from MCU

Clear ‘Bra’ flag. 
Note: Only on

the first of the 4
repeat operations

Set ‘Bra’ flag and
SRAM Serial In (SI) if

data is branch instruction

Add 4 to memory
read address

Strobe SRAM clock
(SCK) to write ‘Bra’ flag.

Note: Only on the last
of the 4 repeat operations
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Table 6: iProfiler Resume order of instructions. 

Figure 32: Resume operation timeline. 

 

7.2.5 Complete JTAG Instruction Sequence 

In normal operation the iProfiler would on boot up determine very quickly a 

mismatch between the Program Structure Table and the program structure found in 

the target processor. This would result in a program memory scan to rebuild the 

Program Structure Table and create a new Code Integrity Metric. Once settled all 

three iProfiler operations (Halt, Memory Read and Resume) would be executed 

sequentially every 20 ms. The total clock cycles would be Halt cycles (1,190) + 

Read cycles (895 * 4 * n) + Resume cycles (773), where ‘n’ is the average number 

of read cycles required to locate a branch within program memory and verify 

program structure. Referring back to section 5.3, a typical value of n with the 

Clock Cycles 

@ 12 MHz JTAG Instructions 

46 STM r0 r1 

43 MOV r8 r8 

43 MOV r8 r8 

43 Restore r0 

43 Restore r1 

43 MOV r8 r8 

43 STM pc 

43 MOV r8 r8 

43 MOV r8 r8 

43 Restore pc 

43 MOV r8 r8 

43 MOV r8 r8 

43 MOV r8 r8 

43 MOV r8 r8 

43 MOV r8 r8 

43 B 

32 Scan Chain 2, INTEST 

40 Write 0x00000000 to Debug Control 

10 RESTART 

Restore r0
to MCU

Restore r1
to MCU

Restore pc
to MCU
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optimal 1 bit per 16 bytes structure table is around 1.6 which results in a total clock 

cycle count of 7691. With a continuous JTAG TCK clock frequency of 12 MHz 

(83.33 ns), this results in a total iProfiler period of 0.641 ms every 20 ms or 

3.3204% of the target processors average runtime. Note the hardware iProfiler has 

different modes of operation including an option that fixes the value of n to 1 (one 

read cycle). Although operating in such a single read cycle mode would certainly 

take more samples to identify a potential problem with code integrity, it does have 

the advantage of a fixed penalty on processor performance. This mode of operation 

and others will be investigated and discussed later in this thesis. 

The design of the iProfiler’s JTAG controller was a significantly more complex 

problem than first imagined and utilized most of the LCMXO1200 FPGA’s logic 

resources. For this reason the device was removed and upgraded to the larger, pin 

compatible LCMXO2280. Final utilization for this upgraded device used 1,893 of 

the available 2,280 look up tables (LUTs), leaving 17% free space for future 

development and work. 

7.3 Summary 

The first and most difficult requirement to implement the metric of code integrity in 

hardware was a full understanding of the JTAG low level communication protocol. 

Due to lack of comprehensive information and in particular useful documentation on 

the ARM7TDMI debug interface, it was decided that a degree of reverse engineering 

using a logic analyzer would be the best approach. Using the information gleaned 

from this signal analysis coupled with the available documentation resulted in an 

optimized method to perform the all the required functions needed to create the 

iMetrics in hardware. These functions were: halting of the MCU and retrieving the 

program counter address, reading data from program memory space, then finally 

resuming normal MCU operation. 
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Chapter 8: SRAM Program Structure Table and I
2
C 

Communications 

8.1 Using Serial SRAM to Implement the Program Structure Table 

The selection process for the 64 Kbit 23K640 Serial SRAM was discussed in 

Section 6.1.2 and here we take the opportunity to look at how it functions as the 

Program Structure Table in more detail. 

8.1.1 SRAM Transfer Timing 

Fig. 33 illustrates the relevant transfer timing when using a serial clock (SCK) with a 

50:50 mark/space ratio. 

To ease the logic design process it would be useful if the device could operate at the 

same clock rate as the JTAG, detailed in the previous chapter. In fact referring to 

both transfer diagrams it will be seen that the clocking and relative transfer 

sequences are almost identical. The chosen memory chip has a maximum clock 

speed rating of 20 MHz, so 12 MHz operation is well within its limits. As with the 

JTAG, data is read on the rising clock edge and data out made valid on the falling, 

thus the FPGA’s 48 MHz clock is more than adequate to implement the SRAM 

control interface. The only other possible timing issue is output valid from clock 

low, indicated in the diagram as ‘Tv’ which in the case of the selected chip is 32 ns. 

With the FPGA running at 12 MHz the worst case period between the falling 

(request data) and rising edge (read data) will be 41.66 ns, resulting in a good 

9.66 ns safety margin. 
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Figure 33: Relevant SRAM data transfer timing. 

8.1.2 SRAM Initialization 

The serial SRAM as used in the iProfiler requires well defined modes of read/write 

access. The device is only written to when the Program Structure Table is being 

rebuilt. In this mode, data is written sequentially through the entire process without 

interruption. Fortunately the chip has a sequential mode of operation that only 

requires the data being set on the serial data input pin followed by a strobing of the 

clock pin. This however is not the default mode when powered up, so initialization 

is needed. 

Fortunately initialization in the selected device is fairly straightforward with the 

sequence needed to achieve this illustrated in Fig. 34. When the chip select (CS) 

goes active low the SRAM expects an 8-bit instruction. The instruction ‘Write 

STATUS register’ is sent, followed by the 0x81 which sets the device into 

sequential mode. Finally the chip select is deselected. 

SI (Serial data In)

CS (Chip Select)

SO (Serial data Out)

Tv Tdis

SCK (Serial Clock)

Fsck
FPGA reads

SO
SRAM reads

SI
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Figure 34: SRAM Sequential mode operation. 

8.1.3 SRAM Write Access Operation 

As described in the previous section, the SRAM writing requirements of the 

hardware based iProfiler are quite straightforward in that only a simple clock pulse 

is required for every bit written into memory. However although the device is 

initialized into sequential mode, it still requires an instruction to start the process. 

This procedure can be seen in Fig. 35. Again the chip select is made active and the 

8-bit instruction to initiate a serial write is clocked in followed by the 16-bit start 

address, which in this case is zero. The SRAM is now set up to allow sequential 

writes, which can continue indefinitely whilst the chip select is held low. 

The subsequent writing operation is illustrated in Fig. 36, where it can be seen that 

the data on the serial input (SI) is made valid immediately after the branch detection 

which is followed by a single high going clock 3.54166 µs later. This continues until 

the Program Structure Table has been rebuilt at which point the chip select is raised 

to terminate the sequential write operation.  

 

SCK (Serial Clock)

SO (Serial data Out)

SI (Serial data In)

data to status register8 bit instruction

CS (Chip Select)
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Figure 35: SRAM Write mode operation. 

Figure 36: SRAM Write bit operation. 

8.1.4 SRAM Read Access Operation 

Whilst single bits can be written into the SRAM, the situation is slightly different 

when reading. Although each read requires only 1 bit to determine program code 

integrity, it will be noticed in Fig. 37 that a whole byte must be read out. First the 

byte read instruction is sent (0x03) followed by the address location. The 8-bit data 

is then read out and the lower 3 bits of the Program Structure Table selects the 

required bit to cross check with program structure found in processor memory. 

 

SO (Serial data Out)

SI (Serial data In)

set address to zero8 bit instruction

CS (Chip Select)

SCK (Serial Clock)

SCK (Serial Clock)

SO (Serial data Out)

CS (Chip Select)

SI (Serial data In)

A=$7ff bit0A=$7ff bit1A=$7ff bit2
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Figure 37: SRAM Read byte operation. 

8.2 Reading Metrics 

8.2.1 Interface Options 

The intended use of behavioral metrics in amorphous computing is manyfold and 

could well spawn new avenues of research. However the hardware aims of the 

current work require only the creation of the Code Integrity Metric for performance 

comparison with the initial software implementation. Having said that, it would be 

nice to implement an interface that allowed control over the metric parameters and 

could allow the iCell processor to access it own metrics. It would also be preferable 

that the interface was not obvious should the iCell software not require access. Note 

the metrics may well stay in the domain of the FPGA in some implementations, 

since inter-iCell communication links are also at that level. 

There are three common interfaces that could be used to implement such an 

interface. The first is serial RS232 (Recommended Standard-232 [40]. This is a 

rather simple standard with a long history dating back 1962. Most microcomputers 

support it and although PC’s don’t usually have a built in port, USB adapters are 

available. The main problem with RS232 is synchronization and quite often buffer 

requirements which make implementation in an FPGA troublesome. Also it would 

rob the processor of a potentially valuable communication port, since only one 

device can be connected at a time. The next possibility is SPI [38], a form of which 

is used by the Program Structure Table SRAM. This serial interface has the 

advantage of supporting several devices, thus does not place limitations on the 

processor. However SPI devices are daisy chained, and any data has to traverse and 

pass though all devices, requiring software modification to access other devices even 

SCK (Serial Clock)

SO (Serial data Out)

D D D D D D D D
7 6 5 4 3 2 1 0

SI (Serial data In)

A A A A A A A A A A A
7 6 5 4 3 2 1 010 9 8

CS (Chip Select)

8 bit data out11 bit address select8 bit instruction
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if metric data is not required at the processor level. Lastly there is the I
2
C [38] serial 

bus option. This bus like SPI is serial, but differs in that devices are connected in 

parallel rather than in series. Individual device selection is accomplished by giving 

each device type a unique identifier in the form of a 7-bit address. For control and 

access to the iProfiler’s metrics this interface type seems ideal due to its 

transparency when connected, assuming device address clash is avoided. 

8.2.2 I
2
C Metrics Interface 

Fortunately the I
2
C protocol allows flexibility on data length which meant no 

compromises were necessary on the rather straight forward interface. The need to 

modify or control the creation of the Code Integrity Metric is entirely optional and 

depending on application, parameters could be hard coded into the FPGA or SOC 

implementation. However various modes of operation are required to complete a 

comprehensive analysis and performance comparisons with the software 

implementation which will require a minimal number of control settings. The first of 

these would be the setting of the metric length. The ability to initiate a metric update 

on demand would also be useful as a diagnostic and development aid. 

The control registers functionality could be accommodated in less than 8 bits thus a 

simple 8-bit I
2
C write cycle would suffice with bits [2:0] selecting the metric length 

and bit 3 initiating a metric update cycle when high. The 8 possible metric lengths 

are: 2,4,8,16,32,64,128 and 24. Note that the 24-bit selection was only implemented 

for purposes of comparison with the earlier software implementation. 

The I
2
C multiple-byte read is perfectly suited to read back variable length metrics. 

It should be noted that the LCMXO2280 FPGA has no native I
2
C as some other 

chips do, requiring additional work to design the interface in its entirety. This 

however has the advantage of a no-compromise solution to the interface. 

8.2.3 I
2
C Transfer Timing 

The relevant timing can be seen in Fig. 38. Although more complex than the JTAG 

or SRAM interfaces the bus is quite slow and raises few problems in terms of critical 

timing. The I
2
C serial bus has a clock (SCL) and data wire (SDA). The clock 

frequency has a standard operational mode of 100 kHz and a fast mode of 400 kHz. 

The specification [41] was enhanced in 1998 to allow bit rates up to 3.4 Mbits/s, 

however few if any microprocessors support such speeds so they can be ignored. 
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The clock timing period (Fscl) at 400 kHz would be 2.5 µs or 120 FPGA clock 

cycles at 48 MHz. Although clock speed isn’t an issue, the I
2
C bus has some 

idiosyncrasies that need to be considered.  It will be noticed in Fig. 38, that data 

changes only whilst the clock is low (ignoring start/stop conditions). This is to allow 

data to be read by master or slave while clock is high. Clearly synchronization is 

important and clock edges are normally used to capture data, but here the original 

specification was unclear. Previous experience has revealed that most 

implementations tend to clock data on the rising edge and change on the falling. 

More importantly this mode of operation does not violate the timing diagram, where 

Tsu;dat must be greater than 10 ns and Thd;dat can be 0 ns.  

 

Figure 38: Relevant I
2
C Data Transfer Timing. 

8.2.4 I
2
C Protocol 

A typical I
2
C read/write cycle is illustrated in Fig. 39. An important feature of the 

I
2
C serial bus is that any device, be it master or slave can only pull the clock or data 

lines low and resistors must be used to pull the signals high. The iProfiler is a slave 

device so the clock will be provided by the master which could well be the iCell 

processor itself or for development purposes some sort of adapter to allow capturing 

of the created metrics by a PC or some other monitoring system. 

The start condition is identified by a falling edge on the data line whilst clock is 

allowed to remain high and stop on a rising edge. Both of these conditions are 

controlled by the master.   

S

start

P

stopchange
of data
allowed

SCL (Serial CLock)
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The master follows the start condition with a 7-bit slave address and a read/write bit 

which indicates a write cycle if low. A responding slave that matches the address 

then pulls the data low to indicate acknowledgement. The slave address chosen for 

the iProfiler is 0x11 (read) and 0x10 (write).  

This is followed by single or multiple data bytes, also with acknowledgement bits. 

Figure 39: I
2
C Communication. 

8.2.5 I
2
C Read Access Operation 

The iProfiler’s variable length metric requires a read multiple operation which can 

be seen in Fig. 40 where the transmissions from master to slave are shaded. The 

multiple read is actually identical to the single byte read with the number of bytes 

being transferred determined by acknowledgments from the master. For each byte 

sent back from the slave device the master responds with an acknowledgment as 

seen in the diagram Fig. 40. An acknowledgment indicates that the master expects 

another byte of data and its absence is a request to terminate the read operation. An 

early implementation had the termination of the read multiple operation determined 

by the stop condition, however it became apparent that the absence of acknowledge 

was the correct way to do this and the stop condition in a read access is most likely 

superfluous. 

 

Figure 40: I
2
C Read multiple operation. 

8.2.6 I
2
C Write Access Operation 

The I
2
C write byte operation is fairly straightforward and can be seen in Fig. 41. As 

with the read operation, the master first sends the slave address followed by the 
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read/write bit set low (0x10). If the sent address matches that of the slave, a response 

in the form of an acknowledgment in sent back to the master. This is followed by a 

single data byte from the master which is also acknowledged. Finally the master 

sends the stop condition. Although the stop condition could well be ignored, it is 

used to reset the iProfiler’s I
2
C transfer state machine to cope with any 

communication errors. 

Figure 41: I
2
C Write byte operation. 
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data transfered
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Chapter 9: FPGA iProfiler Operation and Performance 

9.1 Initial iProfiler Operational Checks 

Throughout the development of the iProfiler rigorous checks at each stage of the 

design process were instigated to ensure operation was as expected. This verification 

process was vindicated by the reliable operation of the final design. Such checks 

included forcing the hierarchy of state machines into unused modes and ensuring 

safe recovery back to normal operation. Although this is unlikely to happen during 

normal operation, it does provide some protection against a noisy or fluctuating 

power supply. This current work conveniently left the iCell’s network 

communication links unused, thus providing a useful way to break out and 

instrument the internal operational states of the iProfiler in the FPGA. 

The hardware based iProfiler, although difficult to implement proved very robust in 

operation and easy to control and obtain a stable but responsive metric of code 

integrity. The iProfiler never failed in operation over a period greater than 6 month 

and always recovered from deliberate electrical interruptions to its power and target 

processor JTAG link connections. Also such actions never caused a non-recoverable 

system failure although sometimes it would result in a recoverable reset of the target 

processor. Power cycling the iProfiler or the target processor together or alone 

always resulted in correct operation. Performance was excellent, predictable and 

fulfilled all the design goals. 

Unfortunately due to the unexpected complexity of the JTAG control interface, the 

chosen FPGA was too low on space to implement both metric of code integrity and 

behavior in the same device running simultaneously. However all low level 

functions to implement a basic behavioral metric in FPGA already exist in the 

current design and have been proven to operate as specified. 

9.2 Comparison with Software Implementation 

Once the I
2
C communication interface was finalised, further checks could be 

performed at a higher level. The first was confirming that the hardware iProfiler was 

producing the same metrics of code integrity as the earlier software based version. 

When this was performed with all 4 test programs at metric lengths of 2, 4, 8, 16, 32, 

64, and 128, total correlation was found. This rather simple test verified much of the 

iProfiler’s hardware design, including the following systems/sub-systems: 
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1. Halt the target processor (JTAG). 

2. Read program memory of the target processor (JTAG). 

3. Resume operation of the target processor (JTAG). 

4. Create the Code Integrity Metric. 

Correct operation of these systems was already determined by careful observation of 

internal state machines and external signals lines during development however 

conformation was welcome. 

To perform a more in depth analysis and comparison of the iProfiler to the earlier 

software based system, some instrumentation features were added to the FPGA 

design. This involved incorporating a test mode selected by one of the iCells unused 

communication ports. Referring back to Fig. 18, the 50 Hz timer was disabled and 

triggering was instead initiated by an I
2
C write to the iProfiler control register. Also 

during this mode all write operations to the Program Structure Table held in SRAM 

were disabled and finally the I
2
C returned the SRAMBra and Bra flags rather than 

the Code Integrity Metric. With these minor changes, the speed of falsification tests 

could be duplicated in hardware, thus verifying operational replication of the earlier 

software based iProfiler. The analysis involves loading one of the test programs into 

the target processor and running the iProfiler in normal mode, thus the Program 

Structure Table reflects the structure of the loaded test program. Then the iProfiler is 

placed into its new test mode and a second test program is loaded into the target 

processor. In this mode the target processor’s program structure does not match the 

Program Structure Table stored in the SRAM and due to the disabling of the write 

access to the SRAM, this situation is maintained. A small data gathering program on 

a PC then continually triggers the iProfiler and determined whether the processors 

resident running program has been falsified by checking the Bra and SRAMBra 

flags. In this way average falsifications checks required to determine a program code 

change can be calculated and compared with the original data gathered in the earlier 

work detailed in Chapter Five  The data matched to greater than 3 decimal places 

and displayed convergence, thus verifying the hardware was operating in the same 

manner as the software version. 

9.3 Modes of Operation 

The existing operation of the iProfiler searches in processor memory for the next 

branch instruction from the current program counter location and along the way 
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cross checks the encountered program structure with that recorded in the Program 

Structure Table held in SRAM. Whilst it was felt this was a fairly optimal method to 

verify structure in terms of response time it was by no means certain and for this 

reason consideration of other operating modes was required. An alternative method 

is to fix the number of entries cross checked in the Program Structure Table, again 

starting at the current program counter location. 

Due to the rather more time consuming hardware setup needed for data collection it 

was decided to return to the software version to determine the optimal method of 

program structure verification. The software method also has the advantage of 

returning the number of program structure entries read whilst running in the 

dynamic mode used so far, which will allow computation of the average iProfiler 

samples required to falsify code integrity. 

Fig. 42 illustrates average falsification times with a range of Program Structure 

Table entry checks per iProfiler sample. This graph was the result of all 4 test 

programs being replaced by each other in program memory with 500,000 samples in 

each configuration. It will be noticed that there is a significant drop in average 

iProfiler samples required to falsify code integrity when more than one Program 

Structure Table entries are cross checked, with two entries showing the greatest 

improvement. However the longer sample period would offset this gain to some 

degree so this must be taken into account to determine the optimal solution. The 

average period of processor time in milliseconds to falsify the exchanged program 

code was computed and can be seen in Fig. 43. It will be noticed that the longer 

sample periods required to check multiple structure table entries outweighs the gain 

of the reduced samples seen in Fig. 42, thus a fixed length iProfiler sample utilizing 

a single Program Structure Table entry check would seem to be the optimal solution. 

This method also has the advantage of a relatively easy fit into a SOC solution due 

to processor instructions needed for comparison with the Program Structure Table 

being held in the instruction pipeline. The ARM7TDMI core has a 3 instruction 

pipeline, which would require either a core change to 4 instructions or the more 

practical solution of adopting 12 bytes per structure table entry.  

Comparison with the dynamic variable period branch search method would be useful 

so a single plot of the average entries and period to falsification is shown in red. 

Although the average period of 0.7736 ms is faster than the 0.8607 ms found with 

the fixed single entry check, the advantage of a constant, deterministic performance 
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hit on the target processor would outweigh the slight gain of 11.26% in falsification 

speed. Processor speed degradation with the single entry check performed every 

20 ms (50 Hz) is 2.3096%. 

Figure 42: Average checks required to falsify program structure dependent on Program Structure 

Table entries used. 

The iProfiler sampling frequency is directly related to the processor performance hit 

and the average period of falsification. This relationship based on the test program 

falsification results can be seen in Fig. 44 and were calculated using the following 

formulas. 

Sampling Frequency = 1 / (Average Period to Falsify * Average Samples to Falsify) 

Where the average samples to falsify using the single entry check is 1.8634251. 

Processor Hit = Sampling Frequency * Period Per Active Sample 

Where the period per active sample using the single entry check is 0.4619166 ms. 

 

Perhaps in some situations a slower response time to determine code integrity would 

be quite adequate. For example an average response time of 10 seconds would result 

in an iProfiler sample rate of 0.186342 Hz and an almost unperceivable performance 

slow down of 0.008607% which is acceptable in most real-time systems. 
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Figure 43: Average processor period in ms required to determine change in structure dependent on 

Program Structure Table entries used. 

Figure 44: Processor performance hit and iProfiler sampling frequency determined by the average 

period to falsify. 
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Since the fixed program structure entry check and other modes of operation were 

considered worthy of investigation early in the hardware development, the FPGA 

design already had a working implementation. This mode of operation requires an 

alteration of the Code Integrity Metric state machine previously seen in Fig. 18. This 

modification for single entry check can be seen here in Fig. 45, where it will be 

noted it’s actually a simplification of the original design and confined to state ‘D’. 

Figure 45: Change of the Code Integrity Metric state machine to implement a simpler single entry 

check of the Program Structure Table. 

SRAMBra =
Bra

Bra<>
SRAMBra

IF:
D

A
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Chapter 10: Conclusions 

A requirement a large amorphous computing array such as the iSurface for quick 

inter-iCell diagnostics is clear and I argue that this can be fulfilled by the use of 

stable metrics based on program structure. Further, behavioral metrics can only have 

any real meaning when a metric based on program code is available. Traditional 

methods to produce such metrics rely on the idea of accumulating data during run 

time using various profiling techniques. However, creating something stable derived 

from the inherently dynamic process of program activity is a serious problem and 

likely unresolvable. The idea of turning this process ‘on its head’ and using similar 

profiling techniques to disprove a metric created by program structure has been 

shown to possess the ideal properties of responsiveness to code change, stability and 

the possibility of a low cost SOC implementation. 

Although security was not the intended application for the Code Integrity Metric, it 

does offer a way to remotely monitor a single processor installation. One scenario 

would be the installation of an iProfiler dongle being plugged into the monitored 

processor’s JTAG socket. Such a dongle would either continuously stream the CIM 

or send an alarm on a change in CIM over an encrypted link, for example GPRS. 

Behavioral metrics could also be used to trip an alarm if straying beyond defined 

parameters. 

Further work on behavioral metrics is already underway and will be addressed in a 

follow-up paper to “Stable Metrics in Amorphous Computing: An Application to 

Validate Operation and Monitor Behavior” [2]. 

A stable metric of code integrity also puts real meaning into the behavioral and 

diagnostic metrics, because as with biometrics, it’s important to know the animal 

you are investigating first. 

10.1 Future Work 

The work done so far has been based on the determination of incorrect loaded 

program code in its entirety and not on the smaller differences caused by corruption 

or external compromisation. In this respect it would be important to look at possible 

benefits of fixed or variable multiple structure table entry checks to determine such 

small changes. 
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Whilst sampling data in the current system it was noted that sometimes aliasing 

seemed to occur, in other words the sampling period matched the time taken for the 

target processor’s running code to perform a set of operations and return to the same 

address in memory. This is a fairly well known profiling problem when sampling 

and can be solved by various methods including the randomization of the sampling 

period. It would be interesting to investigate the improvement such enhancements 

would have when employed in the iProfiler system. 

Initial preliminary work on the creation of a behavioral metric to complement the 

Code Integrity Metric showed great promise and further development will certainly 

be pursued in this direction. 

The original research plan was to develop a method that harnessed the two layer 

FPGA/MCU infrastructure to solve the problem of fast inter-iCell data 

communication, thus allowing directed, parallel propagation across the iSurface. 

This however raised the issue of fault tolerance in such a topology which resulted in 

the work presented in this thesis. To continue back on track with the original 

concept, along with a developed method of fault tolerance would seem a logical next 

step. 

To conclude, the technology developed in this work has potential far beyond the 

initial research goals, particularly in security of embedded systems and offers many 

opportunities for further research. 
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Appendices 

Figure 46: iCell schematic (MCU section). 
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Figure 47: iCell schematic (FPGA section). 
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Table 7: FPGA JTAG sequences. 

No Length Sequence 

0 3 TAP State 3-2-2 

1 3 Reserved 

2 4 Exit DR Enter DR 

3 4 Reserved 

4 6 Exit DR Enter DR 

5 6 Reserved 

6 7 Write Watchpoint 0 Control Value 

7 7 Set TAP State C 

8 8 Write Debug Control 

9 8 Exit DR Enter DR 

10 9 Read Debug Comms Control Register 

11 9 Reserved 

12 10 RESTART 

13 10 SCAN_N 

14 10 Reserved 

15 10 Reserved 

16 11 Read Debug Status 

17 11 Write Debug Control 

18 11 Write Watchpoint 0 Address Mask 

19 11 Exit DR Enter DR 

20 11 Exit DR Exit DR Enter DR 

21 11 Exit DR Enter DR 

22 11 Write Watchpoint 0 Data Mask 

23 11 Exit DR Enter DR 

24 32 0x00000000 

25 32 Return spsr 

26 32 0x00000100 

27 32 0x00000009 

28 32 0x00000009 

29 32 0x00000009 

30 32 0x00000005 

31 32 Reserved 

32 32 Scan Chain 2, INTEST 

33 32 Scan Chain 2, INTEST 

34 32 Scan Chain 1, INTEST 
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35 32 Reserved 

36 32 Reserved 

37 32 Reserved 

38 32 Reserved 

39 32 Reserved 

40 32 0x000000F7 

41 32 MRS 

42 32 MRS Rd SPSR 

43 32 MOV r8 r8 

44 32 STR 

45 32 STM r1 

46 32 STM r0, r1, sp_svc, pc 

47 32 STM r0 

48 32 STM pc 

49 32 STM r0 r1 

50 32 LDM r1 

51 32 B 

52 32 0xFFFFFFFF 

53 32 Reserved 

54 32 Reserved 

55 32 Reserved 

56 32 Return r0 

57 32 Return r1 

58 32 Return pc + 24 

59 32 Return Data 

60 32 Restore r0 

61 32 Restore r1 

62 32 Restore pc - 24 

63 32 Set Address 

 

Table 8: FPGA JTAG Halt sequences. 

No Length Sequence 

7 7 Set TAP State C 

33 32 Scan Chain 2, INTEST 

52 32 0xFFFFFFFF 

18 11 Write Watchpoint 0 Address Mask 

52 32 0xFFFFFFFF 
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22 11 Write Watchpoint 0 Data Mask 

26 32 0x00000100 

6 7 Write Watchpoint 0 Control Value 

2 4 Exit DR Enter DR 

40 32 0x000000F7 

6 7 Write Watchpoint 0 Control Mask 

2 4 Exit DR Enter DR 

29 32 0x00000009 

16 11 Read Debug Status 

27 32 0x00000009 

10 9 Read Debug Comms Control Register 

2 4 Exit DR Enter DR 

30 32 0x00000005 

17 11 Write Debug Control 

24 32 0x00000000 

6 7 Write Watchpoint 0 Control Value 

34 32 Scan Chain 1, INTEST 

4 6 Exit DR Enter DR 

46 32 STM r0, r1, sp_svc, lr_svc, pc 

23 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

56 32 Return r0 

19 11 Exit DR Enter DR 

57 32 Return r1 

19 11 Exit DR Enter DR 

25 32 Return spsr 

19 11 Exit DR Enter DR 

25 32 Return spsr 

19 11 Exit DR Enter DR 

58 32 Return pc + 24 

19 11 Exit DR Enter DR 

41 32 MRS Rd CPSR 

19 11 Exit DR Enter DR 

44 32 STR 
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19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

25 32 Return spsr 

19 11 Exit DR Enter DR 

42 32 MRS Rd SPSR 

19 11 Exit DR Enter DR 

44 32 STR 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

25 32 Return spsr 

9 8 Exit DR Enter DR 

 

Table 9: FPGA JTAG Read memory sequences. 

No Length Sequence 

0 3 TAP State 3-2-2 

47 32 STM r0 

23 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

63 32 Set Address 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

21 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

50 32 LDM r1 

20 11 Exit DR Exit DR Enter DR 
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13 10 SCAN_N 

33 32 Scan Chain 2, INTEST 

28 32 0x00000009 

16 11 Read Debug Status 

27 32 0x00000009 

10 9 Read Debug Comms Control Register 

34 32 Scan Chain 1, INTEST 

4 6 Exit DR Enter DR 

45 32 STM r1 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

59 32 Return Data 

19 11 Exit DR Enter DR 

41 32 MRS Rd CPSR 

19 11 Exit DR Enter DR 

44 32 STR 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

25 32 Return spsr 

9 8 Exit DR Enter DR 

 

Table 10: FPGA JTAG Resume sequences. 

No Length Sequence 

0 3 TAP State 3-2-2 

49 32 STM r0 r1 

23 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

60 32 Restore r0 
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19 11 Exit DR Enter DR 

61 32 Restore r1 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

48 32 STM pc 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

62 32 Restore pc - 24 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

43 32 MOV r8 r8 

21 11 Exit DR Enter DR 

43 32 MOV r8 r8 

19 11 Exit DR Enter DR 

51 32 B 

20 11 Exit DR Exit DR Enter DR 

32 32 Scan Chain 2, INTEST 

24 32 0x00000000 

8 8 Write Debug Control 

12 10 RESTART 

 


