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Abstract - Selecting the most suitable local invariant feature 

detector for a particular application has rendered the task of 

evaluating feature detectors a critical issue in vision research. No 

state-of-the-art image feature detector works satisfactorily under 

all types of image transformations. Although the literature offers 

a variety of comparison works focusing on performance 

evaluation of image feature detectors under several types of 

image transformation, the influence of the scene content on the 

performance of local feature detectors has received little 

attention so far. This paper aims to bridge this gap with a new 

framework for determining the type of scenes, which maximize 

and minimize the performance of detectors in terms of 

repeatability rate. Several state-of-the-art feature detectors have 

been assessed utilizing a large database of 12936 images 

generated by applying uniform light and blur changes to 539 

scenes captured from the real world. The results obtained 

provide new insights into the behaviour of feature detectors. 
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I.  INTRODUCTION 

Local feature detection has been a challenging problem for 
the computer vision community for a long time. A large 
number of different approaches have been proposed so far, thus 
turning evaluation of image feature detectors into an active 
research topic in the last decade or so. Most of the evaluations 
available in the literature focus mainly on characterizing 
feature detectors’ performance under different image 
transformations without analysing in detail the effects of the 
scene content. In [1], the feature tracking capabilities of some 
corner detectors are assessed utilizing static image sequences 
of a few different scenes. Although the results permit us to 
infer a dependency of the detectors’ performance on the scene 
content, the methodology followed is not intended to highlight 
and formalize such a relationship as no classification is 
assigned to the scenes. The comparison work in [2] gives a 
formal definition for textured and structured scenes and shows 
the repeatability rates of six feature detectors. The results 
provided by [2] show that the content of the scenes influences 
the repeatability but the framework utilized and the small 
number of scenes included in the datasets employed [3] do not 
provide a comprehensive insight into the behaviour of the 
feature detectors with different types of scenes. In [4], the 
scenes are classified by the complexity of their 3D structures in 
complex and planar categories. The repeatability results reveal 
how detectors perform for those two categories. The limit in 

the generality of the analysis done in [4] is due to the small 
number and limited variety of the scenes employed, whose 
content are mostly human-made.  

This paper proposes a new approach to estimate the effect 
of the scene content on the performance of local image feature 
detectors by introducing a metric to measure their bias towards 
a scene with particular characteristics. The methodology 
proposed utilizes the improved repeatability criterion presented 
in [5] as a measure of the performance of feature detectors, and 
the large database [6] of images consisting of 539 different 
real-world scenes containing a wide variety of different 
elements. The reminder of the paper is organized as follows. 
Section II provides an overview of the related work in the field 
of feature detector evaluation and scene taxonomy. In Section 
III, the proposed evaluation framework is introduced. Section 
IV describes the image database employed. In Section V, the 
results obtained utilizing the proposed framework are presented 
and discussed. Finally, the conclusions are given in Section VI. 

II. RELATED WORK 

The contributions to the evaluation of local feature 
detectors are numerous and vary based on: the metric used for 
quantifying the detector performance, the methodology 
followed and the image database used. Repeatability is a 
desirable property for feature detectors as it measures the grade 
of independence of the feature detector from changes in the 
imaging conditions. For this reason, it is frequently used as a 
measure of performance of local feature detectors. A definition 
of repeatability is given in [7] where, together with the 
information content, it is utilized as a metric for comparing six 
feature detectors. A refinement of the definition of repeatability 
is given in [8], and used for assessing six state-of-the-art 
feature detectors in [2] under several types of transformations 
on textured and structured scenes. Two criteria for an improved 
repeatability measure are introduced in [5] that provide results 
which are more consistent with the actual performance of 
several popular feature detectors on the widely-used Oxford 
datasets [3]. Moreover, repeatability is used as a metric for 
performance evaluation in [9] and [4] that utilize non-planar, 
complex and simple scenes. The performance of feature 
detectors has also been assessed employing metrics other than 
repeatability. The performance measure in [10] is 
completeness, while feature coverage is used as a metric in 
[11]. The feature detectors have also been evaluated in the 
context of a specific application, such as in [1], where corner 



detectors are assessed in the context of point feature tracking 
applications. 

III. THE PROPOSED EVALUATION  FRAMEWORK 

The proposed framework has been designed by keeping in 
mind the objective of evaluating the influence of scene content 
on the performance of a wide variety of state-of-the-art feature 
detectors. A proper application of such a framework requires a 
large image database (�) organized in a series of � datasets. 
Each dataset needs to contain images from a single scene with 
different amounts of an image transformation. The images 
included in such a database should be taken from a large 
variety of different real-world scenarios. The proposed 
framework consists of the steps discussed below. 

A. Repeatability data 

The repeatability rates required by the proposed framework 
are computed utilizing the criterion described in [5], whose 
consistency with the actual performance of a wide variety of 
feature detectors has been proved across well-established 
datasets [3]. As proposed in [5], the repeatability rate is defined 
as ��������	
	�� = ��� ���⁄ , where ���  is the total 

number of repeated features and ��� is the number of interest 

points in the common part of the reference image. Let � and � 
be the sets of indices representing the � discrete amounts of 
transformation and the scenes respectively. 

 � = {1,2,3, …… ,�} (1) 
   

 � = {1,2,3, …… , �} (2) 
 

where � corresponds to the maximum amount of 
transformation and 1 relates to the reference image (zero 
transformation); � is the total number of scenes and each scene 
is utilized to build one separate dataset, thus finally resulting in 
�  datasets in total. Let ���  be the set of repeatability rates 

computed for step  ∈ �  (corresponding to  "#  image 
transformation amount) for a feature detector $  across � 
datasets (which implies repeatability values for � scenes): 

 ��� = {�%�� , �&�� , …… , �'��} (3) 
 

Each set  ���  contains � repeatability ratios, one for each 
dataset. 

B. Scene Rankings 

The top and lowest rankings for each detector $ are built 
selecting the ( highest and the lowest repeatability scores at the 

amount   of image transformation. Let )��(() and ,��(() the 
sets containing the indices of the scenes whose repeatability 
falls in the top and lowest ranking respectively: 

)��(j) = ./��(%), /��(&), …… , /��(0)1 (4) 
  

,��(j) = ./��('), /��('2%), …… , /��('203%)1		 (5) 
 

where /��(5) ∈ �  is the scene index corresponding to the 	"# 

highest repeatability score obtained by the detector $ for the 
scene under the amount   of transformation. Thus, accordingly 

with this notation, /��(%)  is the scene for which the detector 

scored the best repeatability score, /��(&)  corresponds to the 

second highest repeatability rate, /��(6) to the third highest and 

so on, until /��(')which is for the lowest one. 

C. Scene classification 

 The scenes are attributed with three labels on the basis of 
human judgement. As described in Table 1, each label is 
dedicated to a particular property of the scene and has been 
assigned independently from the others. These attributes are: 
the location type (7 ) which may take the label outdoor or 
indoor, the type of the elements contained (8) which may take 
the label natural or human-made, and the perceived complexity 
of the scene (ℎ) which may take the label simple or complex. 
Figure 1 shows a sample of the scenes from the image database 
[6] utilized for the experiments. Scene 169 is tagged as outdoor 
and, along with scene 76 and 356, contains natural elements. 
The scenes 343, 88 and 55 are labelled as human-made and the 

Table 1 Classification labels and criteria. 

Location Type 
non- Outdoor 

Indoor scene and close-up of a single 
or of a few objects. 

Outdoor The complement of above. 

Object Type 
Human-made Elements are mostly artificial. 

Natural Elements are mostly natural. 

Complexity 

Simple 
A large number of edges with 
fractal-like shapes. 

Complex 
A large number of edges with 
fractal-like shapes. 

Figure 2. Trait indices expressed in percentage for uniform light reduction
at three amounts of transformation. For both the top (green, left half) and 

lowest (red, right half) twenty rankings are shown the outdoor (F), 

human-made (G) and simple (H) indices. 

Figure 1. The images (a-f) show a sample of the scenes in the database 

used for the experiments. 



first one is also classified as indoor. The scene 88 is 
categorized as a simple scene as it includes a few edges 
delimiting well contrasted areas. Although main structures 
(broccolis’ borders) can be identified in scene 76, the rough 
surface of the broccolis is information rich so results in 
labelling this scene as complex. 

D. Ranking traits indices 

The labels of the scenes included in the rankings, (4) and 
(5), are examined in order to determine the dominant types of 
scenes. For each ranking )��(j)  and ,��(j) , the ratios of 
scenes classified as outdoor, human-made and simple are 
computed. Thus, three ratios are associated with each ranking 
where higher values mean a higher share of the scene type 
associated: 

∀/5 ∈ )��:	)�� . =>, ?, @A =
∑/5 . =7, 8, ℎA

(
 (6) 

∀/5 ∈ ,��:	,�� . =>, ?, @A =
∑/5 . =7, 8, ℎA

(
 (7) 

These vectors contain three measures, which represent the 
extent of the bias of detectors. For example, if a top ranking 
presents > = 0.1, ? = 0.25 and @ = 0.8, it can be concluded 
that the detector, for the given amount of image transformation, 
works better with scenes whose elements are mostly natural 
(low ?), with simple edges (high @) and that are not outdoor 
(low >). As opposed to that, if the same indices were for a 
worst ranking, it could be concluded that the detector obtains 
its worst results for non-outdoor (>) and natural (?) scenes 
with low edge complexity (@). 

IV. THE IMAGE DATABASE 

The image database used for the experiment is discussed in this 
section and is available at [6]. It contains a large number of 
images from real-world scenes which are representative of a 
wide variety of different environment and natural elements. 
Each of the datasets belonging to the database, includes a 
reference image of a single scene and several images generated 
by applying a transformation at several discrete steps of 
amounts which are 9 for Gaussian blur and 13 for uniform light 
change. Thus, each scene has been used for generating two 
datasets, one for each of the transformations utilized, for a total 
of 539 x 2 datasets. Several well-established datasets, such as 
[3], are available for evaluating local feature detectors but are 
not suitable for use with the proposed framework due to the 
relatively small number and less variety of scenes included. 
Among the Oxford datasets [3], Leuven offers images under 
uniform light changes but the number of images in that dataset 
is only six. Although the database employed in [12] for 
assessing several feature detectors under different light 
conditions contains a large number of images, the number of 
scenes are limited to 60. Moreover, these scenes were captured 
in a highly controlled environment and do not capture real-
world scenarios completely. The images included in the 
database utilized for this work have a resolution of 717 × 1080 
pixels and consist of 539 real-world scenes. Each 
transformation is applied in several discrete steps to each of the 
scenes. The Gaussian blur amount is varied in 10 discrete steps 
from 0 to 4.5σ while the amount of light is reduced from 100% 

to 10%. Thus, the database includes a dataset of 10 or 14 
images for each of the 539 scenes and transformation type for a 
total of 12936 images.  

V. RESULTS 

The proposed framework has been applied for producing 
the top and bottom rankings for a set of several feature 
detectors which are representative of a wide variety of different 
approaches [13] and includes the following: Edge-Based 
Region (EBR) [14], Harris-Affine (HARAFF), Hessian-Affine 
(HESAFF) [15], Maximally Stable External Region (MSER) 
[16], Harris-Laplace (HARLAP), Hessian-Laplace (HESLAP) 
[8], Intensity-Based Region (IBR) [17], SALIENT [18], Scale-
invariant Feature Operator (SFOP) [19] and Speeded Up 
Robust Feature (SURF) [20]. The repeatability data is obtained 
for each transformation type utilizing the image database 
discussed in Section IV. This data is collected using the 
authors’ original programs with control parameter values 
suggested by them. The feature detector parameters could be 
varied in order to obtain a similar number of extracted features 
for each detector. However, this has a negative impact on the 
repeatability of a detector [8] and is therefore not desirable for 
such an evaluation. The top and lowest rankings for various 
transformation amounts are built by considering the top and the 
lowest twenty scenes (( = 20) respectively and finally their trait 
indices are computed. Due to space constraints, only a sample 
of the results obtained is shown by selecting three particular 
amounts of image transformation for each considered type. 
Figure 2 is dedicated to the traits indices obtained from the 
uniform light change datasets while Figure 3 shows results 
from Gaussian blur datasets.  

A. Uniform light reduction 

Under uniform light reduction, most state-of-the-art feature 
detectors achieve their highest repeatability rates with scenes 
labelled as simple and human-made. Some good examples are 
EBR, HARAFF, HARLAP, HESAFF, HESLAP and MSER 
that show such a bias. Indeed, they are characterized by high 
values of ? and @ (≥ 70%) on the top twenty scenes and much 
lower values on the lowest twenty (≤ 50%). An exception to 
this trend is represented by SFOP and SALIENT whose bias is 
towards natural and complex scenes. Only IBR, MSER, SFOP 
and SALIENT manifest an explicit preference for non-outdoor 

Figure 3. Trait indices expressed in for Gaussian blur at three amounts of 

transformation (H). For both the top (green, left half) and lowest (red, 
right half) twenty rankings are shown the outdoor (F), human-made (G) 

and simple (H) indices. 



scenes. The other detectors perform worst on non-outdoor 
scenes as can be concluded by observing the values of > for the 
lowest twenty scenes, which are frequently below 40%. 
Finally, the indices vary little with light reduction amount 
increasing. Indeed, not in a single case, the scene type 
preference of any detector is inverted along the range of the 
amount variation. 

B. Blur changes 

Under Gaussian blurring, the top twenty scenes are those 
containing artificial elements and simple edges. Indeed, all the 
detectors present very high values for @ (in most cases 80% or 
above) in the top twenty rankings and very low in the lowest 
rankings (mostly below 40%). IBR and MSER show an 
inclination towards non-indoor scenes and artificial objects. 
SALIENT and SFOP achieve a particularly high share (70% or 
above) of outdoor images in their lowest rankings at each 
amount of transformation. From the observation of the data, a 
direct relationship between @ value and the blur amount in the 
top rankings can be inferred. Indeed, Gaussian blur is a type of 
transformation which soften the edges by smoothening the 
higher frequencies component of images. Thus, the edges 
become more difficult to detect and those belonging to the 
smallest details of images may be masked completely with a 
consequent reduction of repeatability rates. 

C. Discussion 

The results show that the biases of some detectors are 
affected by the type and the amount of transformation. For 
example, the biases of SALIENT, the only entropy-based 
detector [18], resulted particularly variable with the 
transformation type. On the other hand, MSER [16] which is a 
segmentation-based detector, presented the most stable scene 
type share in both groups of rankings, top and lowest, across all 
the types and amounts of transformation. 

VI. CONCLUSIONS 

For several state-of-the-art feature detectors, the 
dependency of the repeatability from the input scene type has 
been investigated utilizing a large database composed of 
images from a wide variety of human-classified scenes under 
uniform light reduction and Gaussian blur transformations. 
Although the utilized human-based classification method 
includes just three independently assigned labels, it is enough 
to prove that the feature detectors tend to score their highest 
and lowest repeatability scores with a particular type of scene 
and how such a tendency is strong. The proposed framework is 
intended to help visual system designers in maximizing the 
performance of the applications which utilize local image 
feature detectors. Indeed, the framework can be employed for 
identifying the detectors that perform better with the type of 
scene most common in an application before any further task-
oriented evaluation (e.g. [1]) which, at that point, it would be 
carried out on a smaller set of local feature detectors. For 
example, for an application which deals mainly with indoor 
scenes, the detectors should be short-listed are MSER, IBR and 
SFOP that have been proven to achieve their highest 
repeatability rates with non-outdoor scenes under both light 
reduction and blurring. On the other hand, if an application is 
intended for working in an outdoor environment, EBR should 
be one of the considered local feature detectors, especially 

under light reduction. In brief, the framework proposed permits 
us to characterize the feature detector by scene content and, at 
the same time, represents a useful tool for facilitating the 
design of those visual applications, which utilize a local feature 
detector stage.  
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