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Abstrat

We augment the body of existing results on embedding �nite semi-

groups of a ertain type into 2-generator �nite semigroups of the same

type. The approah adopted applies to �nite semigroups the idempo-

tents of whih form a band and also to �nite orthodox semigroups.

1 Introdution

In this paper we will be onerned with the possibility of embedding a �nite

semigroup S into a �nite 2-generated semigroup T that shares properties

with S. In partiular we show that any �nite orthodox semigroup S may be

embedded in a �nite orthodox semigroup T generated by two group elements

and that any �nite orthodox monoid S1
may be embedded as a semigroup

into a �nite 2-generated orthodox monoid T whose subband of idempotents

satis�es the same semigroup identities. Prior to that we prove that if S1
is a

�nite monoid whose idempotents E(S1) form a subsemigroup, then S1
may

be embedded in a 2-generated �nite monoid T whose idempotents also form

a subsemigroup and belong to the same variety of bands. For bakground

on semigroups we refer to standard texts suh as [4℄ or [5℄.

Any semigroup S may be embedded in the full transformation semigroup

T = TS1 (we shall sometimes write S ≤ T to denote that S is a subsemigroup

of T ). Sine this natural `Cayley' embedding preserves �niteness, it follows

at one that any �nite semigroup S embeds in the (regular) 3-generator

semigroup Tn, where n = |S1|. We denote the orresponding semigroups of

partial transformations on a set X by PTX and if |X| = n we write this as

PTn.
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In 1952 Trevor Evans proved in [2℄ that any ountable semigroup embeds

in a 2-generator semigroup although that fat is impliit in the paper [11℄

of Sierpinski published (in Frenh) in 1935 where it was shown that any

ountably in�nite olletion of mappings in TX embeds in a 2-generator

subsemigroup of TX . The �rst expliit proof that a �nite semigroup may be

embedded in a 2-generated �nite semigroup dates from 1960 and is due to

B.H. Neumann [10℄ who employed a wreath produt onstrution. The short

proof of this fat reorded here however is indiative of the approah of the

present paper.

Theorem 1.1 Any �nite semigroup S may be embedded in a �nite semi-

group T = 〈α, β〉 where α is an idempotent and β is a nilpotent.

Proof Without loss we assume that S = S1 = {α0, α1, · · · , αn−1} with

S ≤ TX for some �nite set X and where we take α0 = ι, the identity

mapping, in this instane with domain X. Our semigroup T ≤ PTZ where

Z = X × {0, 1, 2, · · · , n}. We also put αn = ι. The designated generators α
and β are de�ned as follows:

(x, i) · α = (x · αi, 0) (0 ≤ i ≤ n)

(x, i) · β = (x, i+ 1) (0 ≤ i ≤ n− 1).

In partiular βn+1 = 0, the empty mapping and α is idempotent:

(x, i) · α2 = (x · αi, 0) · α = (x · αiα0, 0) = (x · αi, 0) = (x, i) · α.

Hene T is generated by an idempotent α together with a nilpotent β. Now
put λ = βnα ∈ T . Then dom λ = X × {0} and

(x, 0) · λ = (x, 0) · βnα = (x, n) · α = (x · αn, 0) = (x, 0)

so that λ = ι|X×{0}. Put γi = λβiα (0 ≤ i ≤ n− 1); then dom γi = X ×{0}
and

(x, 0) · γi = (x, 0) · λβiα = (x, 0) · βiα = (x, i) · α = (x · αi, 0).

It follows that the mapping where αi 7→ γi is a monomorphism of S into T ,
as required.

It is not possible however to embed an arbitrary �nite semigroup into a

�nite semigroup generated by two idempotents as it is easy to prove that
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any semigroup (�nite or not) generated by two idempotents has at most six

idempotents and also does not ontain a three-element hain. A omplete

desription of semigroups generated by two idempotents has been provided

by Benzaken and Mayr [1℄.

In [7℄ Margolis showed that a �nite semigroup S may be embedded in

a 2-generated semigroup T that is a Rees matrix semigroup M(S) over S
with a yli group adjoined as group of units. This allowed the onlusion

that if all the subgroups of S were abelian (nilpotent, solvable, et.), then

you an embed S into a 2-generator semigroup T with T satisfying the same

restrition on subgroups as S. The onstrution idea was used in [6℄ to show

that a ompat metri semigroup may be embedded in a 2-generator ompat

monoid. Moreover it is impliit in [7℄ that any (�nite) n-generated semigroup

S may be embedded in a (�nite) semigroup T generated by n+1 idempotents,

from whih it follows that any �nite semigroup S may be embedded in a �nite

semigroup generated by three idempotents.

Although not the priniple result in their paper, in [8℄ MAlister, Stephen

and Vernitski obtained a diret embedding of Tn into a 2-generator sub-

semigroup of Tn+1. Although they then move on to the question of inverse

semigroups (disussed below), their onstrution implies the following result.

Theorem 1.3 Any �nite semigroup may be embedded in a 2-generated

semigroup that is �nite and regular.

It is enough to prove the result for Tn(n ≥ 3) and in [8℄ MAlister et. al.

embed Tn in a semigroup S = 〈α, β〉 ≤ T = Tn+1. We write the idempotent

of defet 1 in whih i 7→ j (i 6= j) as
(

i
j

)

. Using this notation, the generator

β is the (n + 1)-yle β = (1 2 · · · nn + 1) while α = (1 2)
(

n
n+1

)

, a produt

of a transposition and an idempotent of defet 1. That S ontains a opy of

Tn then follows from a series of easily veri�ed fats:

• The map ε = α2 =
(

n
n+1

)

is an idempotent of defet 1;

• for any γ ∈ εTε, onsider the restrition γ|{1,2,···,n−1,n+1}: this de�nes

an isomorphism of εTε onto Tn with base set {1, 2, · · · , n− 1, n + 1};

• Tn is generated by the set onsisting of the n-yle (1 2 · · ·n− 1n+1),
the transposition (1 2) and the idempotent of defet 1,

(

n−1
n+1

)

;
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• taking inverse images of these three mappings under the isomorphism

results in a set of three generators of εTε, whih are respetively κ =
(1 2 · · ·n− 1n+ 1)

(

n
1

)

, α, and the idempotent of defet 2, φ =
(

n
n+1

)(

n−1
n+1

)

.

• �nally we note that ε = α2, κ = εβε, and φ = βεβ−1ε, and so Tn
∼=

εTε ≤ S.

This onludes the proof in [8℄ that any �nite semigroup may be em-

bedded in a �nite semigroup that is generated by a pair of group elements.

(Note there are two minor orretions: the paper says that (n − 1) · κ = n
when it should say that (n− 1) ·κ = n+1 and β is listed as one of the three

generators of εTε when it should say α.)

Proof of Theorem 1.3 To omplete the proof we need only observe that

the semigroup S is indeed regular. First note that

εTε ≤ S ⇒ ε2Tε2 ⊆ εSε ⇒ εTε ⊆ εSε ⊆ εTε,

so that

εTε = εSε = α(αSα)α ⊆ αSα = α3Sα3 ⊆ εSε

giving equality throughout and in partiular that αSα ∼= Tn is a regular

subsemigroup of S.

Now take any γ ∈ S. Either γ ∈ 〈β〉, and so γ is a (regular) group

element or, sine α = α3
, we may write γ = βtσβs

for some σ ∈ αSα
and 0 ≤ t, s ≤ n. Taking any inverse σ′ ∈ V (σ) we may now hek that

β−sσ′β−t ∈ V (γ). Therefore the semigroup S is indeed regular.

Equally, the onstrution in [7℄ also preserves regularity and so Theorem

1.3 is also impliit in the Margolis paper. In [3, Theorem 4.1℄, Hall gives a

result of C.J. Ash, whih shows that any ountable inverse semigroup may be

embedded in an inverse semigroup with two generators and any �nite inverse

semigroup may be embedded in a �nite inverse semigroup that is generated

as an inverse semigroup by two generators. (In [8℄ it is shown that any �-

nite inverse semigroup may be embedded in a �nite inverse semigroup that is

generated as a semigroup by two generators.) The onstrution we introdue

here is inspired by the model of Ash. We have one prinipal generator that

ontains opies of all the mappings in S, the semigroup to be embedded,

while the seond generator is a yle. The domain and range of the prinipal
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generator then onsists of many opies of the base interval, whih are dis-

tributed among the yle of intervals in suh a way that unwanted produts,

whih might spoil the embedding, are avoided in the mappings that are to

be simulated.

2 Mian-Chowla property

The base set of the 2-generator transformation semigroup T will onsist of a

yle of a large number of opies of the underlying interval on whih at the

members of the semigroup S, whih is to be embedded in T . However, the

ation of our prinipal mapping α that simulates all the members of S will

be on�ned to a relatively small number of sparsely spaed intervals. This

will ensure that unwanted produts do not arise in the onstrution.

To this end, let S = {α1, · · · , αn} be a �nite semigroup with S de�ned

by partial transformations on a �nite base set X. Sine we are interested

in embedding S into a 2-generator semigroup T sharing some of the same

properties as S, we may assume that n ≥ 3. Moreover, without loss we may

assume that S does not ontain the empty mapping.

In order to make our onstrution free of unwanted non-zero produts,

we make use of the following sequene of numbers, �rst introdued in [9℄.

De�nition 2.1 The Mian-Chowla (MC) sequene is the sequene of

non-negative integers m0,m1, · · · reursively de�ned as follows. Set m0 = 0;
for i ≥ 1 de�ne mi to be the least integer exeeding mi−1 suh that eah

di�erene between distint integers in the sequene m0,m1, · · · ,mi is unique.

Remarks 2.2 The reursive step of the MC sequene is well-de�ned

as by hoosing a su�iently large integer we may �nd some m suh that

eah di�erene m − mj has not appeared previously among the di�erenes

of pairs taken from the sequene: indeed it is lear that mi ≤ 2mi−1 + 1 so

that mi ≤ 2i − 1. The MC sequene begins:

0, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, 122, 147, 181, 203, 251, 289, · · ·

The reursive rule of de�nition of the MC sequene is often formulated in the

equivalent form that mi is the least integer suh that the list of all pairwise
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sums, mj +mk for j, k ≤ i, has no repeats. Note that under this alternative

formulation, j = k is not forbidden.

In Setion 3 we shall work with this partiular sequene in our onstru-

tion: mi will denote the member of the MC sequene indexed by i. However,
the results will apply to any stritly inreasing sequene of integers with the

MC property, meaning that no number appears as a di�erene between dis-

tint members more than one. There are of ourse any number of suh

sequenes: for example the sequene kn, n = 0, 1, 2, · · ·, for any base k ≥ 2
possesses the MC property. Moreover the MC property is inherited by sub-

sequenes. In Setion 4 we shall also all upon the following spei� fat.

Lemma 2.3 For i, j, k, l ≤ n, if i ≥ j and k ≥ l then (2i+2j)−(2k+2l) =
2n + 20 implies that i = n, l = 0 and j = k.

Proof If i ≤ n− 1 then 2i + 2j ≤ 2 · 2n−1 = 2n and the equation annot

hold. Hene i = n, giving 2j − (2k + 2l) = 1. Hene j ≥ 2 and sine both

sides of the equation are odd, it follows that l = 0, and so j = k.

Remark 2.4 Unfortunately, the MC sequene laks the orresponding

property as for example:

44 + 65 = 109 = 96 + 12 + 1 + 0 ⇔ m7 +m8 = m10 +m4 +m1 +m0

⇔ (m7 +m8)− (m4 +m1) = m10 +m0.

Suppose that M = m0,m1, · · · ,mn is a (stritly inreasing) MC sequene

of non-negative integers and put m = 1 + mn. For any set A ⊆ M and

r ∈ Z, let us write A+ r = {(a+ r) (mod m), a ∈ A}. Suppose that |A| ≥ 3
and A + r ⊆ M with r 6≡ 0 (mod m). Without loss we may assume that

1 ≤ r ≤ m − 1. By hypothesis, for eah mi ∈ A, (mi + r) (mod m) = mj

for some 0 ≤ j ≤ n. It follows that either mj −mi = r or if (mi + r) (mod

m) = mi + r−m, then mj −mi = r−m. Let ma,mb,mc be three pairwise

distint members of A. Consider, modulo m, eah of ma + r,mb + r and

mc+ r. It now follows that for at least two of ma,mb,mc, let us say ma and

mb, there exist mj ,mk ∈ M suh that mj −ma = mk −mb, ontrary to the

MC ondition. Hene we onlude:

Lemma 2.5. Let M = m0,m1, · · · ,mn be a �nite stritly inreasing

sequene of non-negative integers with the MC property and putm = 1+mn.
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Suppose that A ⊆ M is suh that (A + r) (mod m) ⊆ M for some r 6≡ 0
(mod m). Then |A| ≤ 2.

3 Embedding in a semigroup generated by a nilpo-

tent and a yle

In this setion we onstrut a general embedding of a �nite semigroup S
into a 2-generated �nite semigroup T , whih preserves the property that the

idempotents form a subsemigroup.

We will make use here of the easily proved result that in the presene

of the band identity x = x2, any heterotypial identity φ (one in whih a

variable appears on one side only) implies the identity x = xyx. It follows

that any band satisfying φ is a retangular band.

Let S be a �nite semigroup S = {α1, α2, · · · , αn}. We shall take S to be

a subsemigroup of PTX , where X is a �nite base set. We may also assume

that the domain of eah αi is not empty. In the following onstrution we

ould replae the set of mappings {αi} by any generating set of S but for

simpliity of notation we work with S as the generating set for S.

Let {mi}i≥0 denote the MC sequene and let Z = X×{0, 1, 2, · · · ,m2n−1}.
Taking addition modulo m = 1 +m2n−1, we take one generator of our on-

taining 2-generator semigroup T to be β where:

(x, i) · β = (x, i+ 1) (0 ≤ i ≤ m2n−1) (1)

Sine β is a yle, the notation βr
is meaningful for all integers r. We next

speify the domain and range of our seond generator α: dom α is ontained

in the union of the n opies of X, Yi = X ×{mi} (n ≤ i ≤ 2n− 1) while the
range Zα is a subset of a seond union of another n opies of X: X × {mi}
(0 ≤ i ≤ n−1). We de�ne the ation of α on the interval Yn+j = X×{mn+j}
as we shall all it as:

(x,mn+j) · α = (x · αj ,mj) (0 ≤ j ≤ n− 1) (2)

De�nition 3.1 Let T = 〈α, β〉, with α, β de�ned as in (1) and (2).
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Lemma 3.2 The generators α and β of T satisfy α2 = 0 and βm = ι,
where m = 1 +m2n−1. For eah γ ∈ T and 0 ≤ i ≤ n − 1 there exists some

0 ≤ j ≤ n−1 suh that (X×{i})γ ⊆ X×{j}; moreover if (x, i)·γ, (x′, i′)·γ ∈
X × {j} then i = i′.

Proof The �rst two fats follow respetively from (2) for α and from

(1) for β. The laims in the seond sentene follow for γ = α, β as eah

mapping is one-to-one on seond omponents whene, by indution on the

length of the produt, the same follows for an arbitrary produt γ of these

two generators.

Lemma 3.3 Let γ ≤J αβrα. Then dom γ ⊆ X × {i} for some i suh
that 0 ≤ i ≤ m− 1.

Proof First suppose that γ = ρλσ with dom λ ⊆ X × {j} say and that

(x, i) ∈ dom ρλ so that (x, i) · ρ ∈ X × {j}. It follows from Lemma 3.2

applied to ρ that dom ρλ ⊆ X × {i} and then sine dom ρλσ ⊆ dom ρλ,
we obtain dom γ ⊆ X × {i}. Therefore it is enough to prove the laim for

a mapping γ of the form γ = αβrα. Sine dom γ ⊆ dom α, it follows that
eah member of dom γ has the form (x,mn+j) for some 0 ≤ j ≤ n− 1. We

then obtain:

(x,mn+j) · αβ
rα = (x · αj,mj) · β

rα = (x · αj , (mj + r) (mod m)) · α (3)

Again by de�nition of α we infer that mj + r ≡ mn+l (mod m) for some

0 ≤ l ≤ n − 1. Now suppose that (x′,mn+j′) ∈ dom γ; by (3) we dedue

that mj′ + r ≡ mn+l′ (mod m) say, so that mn+l′ −mj′ ≡ mn+l −mj ≡ r
(mod m). Sine 0 ≤ mj,mj′ < mn+l,mn+l′ ≤ m − 1, it follows that these
ongruenes imply the orresponding equalities and that r 6≡ 0 (mod m). By

the MC property however we onlude that j = j′ and l = l′. In partiular,

dom γ ⊆ X × {mn+j}, giving the required onlusion.

Lemma 3.4 De�ne the mapping λ0 = (βmnα)2. Then λ0 = ι|X×{0}.

Proof From the de�nition of λ0 we obtain

(x, 0) · λ0 = (x, 0) · (βmnα)2 = (x,mn) · αβ
mnα = (x · α0,m0) · β

mnα =

(x, 0) · βmnα = · · · = (x, 0).

The result now follows from this together with Lemma 3.3.
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Lemma 3.5 The semigroup T = 〈α, β〉 ontains eah of the mappings

λi,j,k = λ(αi, j, k) where dom λi,j,k ⊆ X × {j}, ran λi,j,k ⊆ X × {k} and

(x, j) · λi,j,k = (x · αi, k) (0 ≤ i ≤ n− 1, 0 ≤ j, k ≤ m− 1).

Proof We verify that λ(αi, j, k) = β−jλ0β
mn+iαβk−mi

. Consider (x, t)
with t 6≡ j (modm). Then (x, t)·β−j = (x, t−j) 6∈ X×{0} so that by Lemma

3.4, (x, t− j) 6∈ dom λ0. It follows that dom β−jλ0β
mn+iαβk−mi ⊆ X ×{j}.

Next take (x, j) ∈ X × {j}:

(x, j)·β−jλ0β
mn+iαβk−mi = (x, 0)·λ0β

mn+iαβk−mi = (x, 0)·βmn+iαβk−mi =

= (x,mn+i) · αβ
k−mi = (x · αi,mi) · β

k−mi = (x · αi, k).

Therefore λ(αi, j, k) ∈ T .

Theorem 3.6 (Struture of T )

(i) The monoid T has two H-lasses and these are also D-lasses: Hβ =
{βr : 0 ≤ r ≤ m − 1} of ardinal m, whih is the group of units of T
and Hα = {βrαβs : 0 ≤ r, s ≤ m − 1} of ardinal m2

and Hα <J Hβ.

All members γ = βrαβs
of Hα are not regular; dom γ ⊆ {X × (mn+i −

r) (mod m) (0 ≤ i ≤ n− 1)} with dom γ meeting eah spei�ed interval and

ran γ ⊆ {X×(mi+s) (mod m) (0 ≤ i ≤ n− 1)} with ran γ similarly meeting

eah spei�ed interval.

(ii) T1 = {λ(αi, j, k) : 0 ≤ i ≤ n−1, 0 ≤ j, k ≤ m−1}∪{0} is isomorphi

to the Rees matrix semigroup M = M0[S,m,m, Im], where Im is the m×m
identity matrix. Moreover T1 is isomorphi to (S × B)/I, where B is the

m×m ombinatorial Brandt semigroup and I is the ideal S×{0} of S×B.

For eah j ∈ Zm, the set T1,j = {λ(αi, j, j) : 0 ≤ i ≤ n−1} is a subsemigroup

of T isomorphi to S.

(iii) For any γ ∈ T , with dom γ ∩ (X × {j}) 6= ∅, γ|X×{j} = λi,j,k for

some 0 ≤ i ≤ n− 1, 0 ≤ k ≤ m− 1.

(iv) T = T1 ∪Hα ∪Hβ, and the union is a disjoint union. Moreover T1

is an ideal of T and if S is regular then so is T1.

(v) The set of idempotents E(T ) =
⋃m

i=1Ei∪{0, ι}, where Ei = {λ(e, i, i) :
e ∈ E(S), 0 ≤ i ≤ m−1}. Moreover all produts of non-identity idempotents
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equal 0 exept those within some Ei. In partiular if E(S) is a band then so

is E(T ).

Proof (i) The powers of β are exatly the members of T with range (and

domain) Z, and by Lemma 3.2 〈β〉 is a yli group, the group of units of T ,
whene it follows that Dβ = Hβ = 〈β〉 and by de�nition |Hβ| = m.

The set A = {βrαβs : r, s ≥ 0} ⊆ Hα. By Lemma 3.3, any δ ≤J γ, where
γ ∈ T \ (A ∪ Hβ) has domain within some single interval of Z. If γ ∈ Dα

we would have α ≤J γ, whene dom α is ontained in a single interval of Z,
whih ontradits the de�nition of α. It follows that Dα ⊆ A ⊆ Hα ⊆ Dα,

giving equality throughout and Hα <J Hβ.

Next take γ = βrαβs
so that

dom γ = dom βrαβs = {(x, (j − r) (modm) : (x, j) ∈ domα}.

Sine dom α ⊆ {(X,mn+i) : (0 ≤ i ≤ n−1)} and dom α meets eah of these

intervals, it follows that dom γ ⊆ {(X, (mn+i − r) (mod m) (0 ≤ i ≤ n− 1)}
as stated and that dom γ meets eah of these intervals. Sine α maps the

members of its domain in the interval (X,mn+i) into the interval (X,mi),
the laim for ran γ now follows in the same way.

Suppose that γ = βr1αβs1 , δ = βr2αβs2
and that γ = δ. We wish to show

that βr1 = βr2
and βs1 = βs2

. By anelling powers of β in the equation

of any ounter example to this laim we would obtain a ounter example

where γ = βrαβs
and where δ = α, (0 ≤ r, s ≤ m− 1) so let us assume this

ase. However sine |S| ≥ 3 we have by Lemma 2.5 and our statement on

domains that dom γ = dom α implies that r = 0 and similarly we have ran

γ = ran α implies s = 0, as required. We onlude that all produts βrαβs

(0 ≤ r, s ≤ m− 1) are pairwise distint and |Hα| = m2
as laimed.

If any member ofDα were regular, the same would be true of α. However,
by Lemmas 3.2 and 3.3, for any γ ∈ T we have αγα 6∈ Dα, so in partiular

α = αγα is impossible in T and hene Dα is not a regular D-lass.

(ii) From Lemma 3.5 and the de�nitions of α and β we have the following

formulae:

λ(αi1 , j1, k)λ(αi2 , k, k2) = λ(αi1αi2 , j1, k2) (4)

λ(αi1 , j1, k1)λ(αi2 , j2, k2) = 0 if k1 6= j2 (5)
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βλ(αi, j, k) = λ(αi, j − 1, k), λ(αi, j, k)β = λ(αi, j, k + 1) (6)

αλ(αi,mj, k) = λ(αjαi,mn+j, k) (0 ≤ j ≤ n− 1) (7)

αλ(αi, j, k) = 0 if j 6∈ {mt : 0 ≤ t ≤ n− 1} (8)

λ(αi, j,mn+k)α = λ(αiαk, j,mk) (9)

λ(αi, j, k)α = 0 if k 6∈ {mn+t : 0 ≤ t ≤ n− 1} (10)

From (4) and (5) we see that produts in T1 are indeed those of the Rees

matrix semigroup M , whih is then isomorphi to (S ×B)/I. The diagonal
H-lasses of M are eah opies of our monoid S.

(iii) The laim is learly true for γ = α, β as

α|X×{mn+i} = λ(αi,mn+i,mi) and β|X×{i} = λ(α0, i, i+ 1).

The result now follows by indution on the length of γ (taken as a produt

in the generators α and β): let γ = ρµ say, where µ ∈ {α, β}. Then

(ρµ)|(X×{j}) = ρ|X×{j}µ but by indution we may write this produt as

λ(αi, j, k1)µ say. By formulae (6),(9), and (10) this in turn may be written

as λ(αl, j, k)|X×{j} = λ(αl, j, k) for some 0 ≤ l ≤ n − 1 and 0 ≤ k ≤ m− 1,
as required.

(iv) Sine the domains of members of T1 are eah ontained within a single

interval and those of Hα ∪Hβ are not, we have by this and part (i) that the

three sets are pairwise disjoint. It remains to verify that if γ ∈ T \(Hα∪Hβ)
then γ ∈ T1. However, by Lemma 3.3 we have dom γ ⊆ X × {j} say and so

by part (iii) we have either γ = 0 or γ = γ|X×{j} = λi,j,k for some i, k. In

other words, γ ∈ T1. From equations (6 - 10) it follows that T1 is an ideal of

T . Finally for any non-zero λ = λ(αi, j, k) ∈ T1 we have λ(α′
i, k, j) ∈ T1 is

an inverse of λ in T1 for any hoie of α′
i ∈ V (αi).

(v) By (i), ι is the unique idempotent in Hα ∪ Hβ. Hene any other

non-zero idempotent ε belongs to T1 and in partiular dom ε ⊆ X × {i}
say. Sine ε is a non-zero idempotent, it follows that ∅ 6= Zε ⊆ X × {i}.
Hene by (iv) we obtain ε = λ(e, i, i) for some e ∈ S, and learly e = e2 so

that ε ∈ Ei, as laimed. The laims regarding produts of idempotents now

follows. This ompletes the proof of the theorem.

Corollary 3.7 Let S be a �nite monoid suh that E(S) is a subsemigroup

of S. Then S may be embedded in a �nite monoid T suh that E(T ) is a
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submonoid of T and T is generated as a semigroup by a set of two generators

{α, β} where β is a group element and α is nilpotent of index 2. Moreover

if |E(S)| ≥ 2, then E(T ) satis�es the same semigroup identities as E(S).

Remark 3.8 If |E(S)| ≤ 1 then, sine S is a monoid and every member

of S has an idempotent power, it follows that S is a �nite group. We may

then embed S in the �nite symmetri group T = GS , whih is two-generated

and then E(S) and E(T ) are both trivial and so satisfy every semigroup

identity.

Proof Take T = 〈α, β〉 as in Theorem 3.6. It remains only to verify that

if φ : p = q is a semigroup identity satis�ed by E(S) then φ is satis�ed by

E(T ), the onverse impliation being lear as E(S) is embedded in E(T ). If
one side of φ, the word p say, had a variable y that did not appear in q, then
substituting all other variables in φ by ι gives the identity y = 1, whene it

follows that the monoid E(S) is trivial, ontrary to hypothesis. Hene eah

variable x of φ appears in both p and q.

By Theorem 3.6(v), all produts of non-identity idempotents within E(T )
equal 0 unless they take plae within some Ei = {λ(e, i, i) : e ∈ E(S), 0 ≤
i ≤ m − 1}. Hene if, under some substitution from E(T ), one side of φ, p
say, is not 0, then all variables of φ have been substituted by either ι or by
members of some subsemigroup Ei of E(T ). By replaing ι with the identity

of Ei as required, we express the produts p and q as produts of members

of Ei while retaining the same values. However, sine Ei
∼= E(S), it follows

that p = q is satis�ed in Ei as well and so the produts p and q in Ei are

equal. It follows that E(T ) also satis�es the identity φ.

Remark 3.9 In the ase of a �nite semigroup S that is not a monoid

we may work with S1
. If E(S) forms a band then so does E(S1) and the

previous onstrution then yields a �nite 2-generated monoid T ontaining

S1
(and so ontaining S) suh that E(T ) is also a band.

4 Orthodox semigroups

We next use the onstrution of Setion 3 to provide another proof of Theo-

rem 1.3 and to show that if the original semigroup S is orthodox, the same is

12



true for the 2-generated ontaining semigroup T . We will however now put

mi = 2i, i = 0, 1, 2 · · · , 2n − 1 so our modulus used for our yle β beomes

m = 1 + 22n−1
. Let S = {α0, α1, · · · , αn−1} now denote a �nite regular

monoid with α0 = ι and S ≤ PTX for some �nite base set X as before. We

may also assume that the domain of eah mapping αi is not empty.

For eah αi ∈ S hoose and �x an inverse α′
i ∈ V (αi) (there is no assump-

tion that the mapping (′) on S is one-to-one). The yle β is just as before

and its ation is given by (1). Similarly, the ation (2) remains appliable

to our seond generator α. However we augment the domain of α to inlude

all the intervals X ×{mi} (0 ≤ i ≤ n− 1), the union of whih ontained the

range set of α but previously lay outside of the domain of α. De�ne:

(x,mi) · α = (x · α′
i,mn+i) (0 ≤ i ≤ n− 1) (11)

Remarks 4.2 It will be onvenient to also denote α′
i by αi+n, in whih

ase the de�nition of the ation of α is enapsulated by:

(x,mt) · α = (x · αt±n,mt±n) (0 ≤ t ≤ 2n− 1) (12)

where the signs assoiated with the ± signs in (12) are not independent but

are equal to eah other: the sign on the subsripts is + or − aording as

0 ≤ t ≤ n − 1 or n ≤ t ≤ 2n − 1. Although α is no longer a nilpotent (see

Lemma 4.3) it is still the ase that any γ ∈ T ats in a one-to-one fashion

on the seond entries of the pairs (x, i) ∈ dom γ (as shown in the proof of

Lemma 3.2) and γ maps intervals into intervals as this holds for eah of the

generators α and β. We next prove the ounterpart of Lemma 3.3.

Lemma 4.3

(i) The mappings α and β of T satisfy β = βm
and α = α3

.

(ii) Let γ = βrαεβs
for ε ≥ 1. Then

dom γ ⊆ {X × {(mt − r) (mod m), (0 ≤ t ≤ 2n− 1)} and dom γ has non-

empty intersetion with eah of these intervals. Similarly ran γ ⊆ {X×(mt+
s) (mod m) (0 ≤ t ≤ 2n − 1)} with ran γ meeting eah of these intervals.

(iii) Let γ ≤J αβrα where r 6≡ 0 (mod m). Then dom γ ⊆ X × {i} for

some 0 ≤ i ≤ m− 1.
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Proof (i) That β = βm
is true as before. For any (x,mn+i) ∈ dom α we

have by (12) that

(x,mn+i) · α
3 = (x · αi,mi) · α

2 = (x · αiα
′
i,mn+i) · α

= (x · αiα
′
iαi,mi) = (x · αi,mi) = (x,mn+i) · α,

and in the same way we obtain (x,mi) · α
3 = (x,mi) · α, thus showing that

α = α3
. Note also that by �niteness it follows that α|

ran α is a permutation

and so dom α = dom α2
and ran α = ran α2

.

(ii) Let us write (for the purposes of this part only)

Dγ = {i : (X × {i}) ∩ dom γ 6= ∅} and Rγ = {i : (X × {i}) ∩ ran γ 6= ∅}.

Observe that for any ε ≥ 1, Dαε = Rαε = {mt : 0 ≤ t ≤ 2n − 1}. Also note

that for any γ ∈ T we haveDβrγβs = (Dγ−r) (modm) and Rβrγβs = (Rγ+s)
(mod m). Applying these fats to γ = αε

then proves the laims of (ii).

(iii) As in the proof of Lemma 3.3, it is enough to onsider the ase

represented by γ = αβrα. Sine dom γ ⊆ dom α, it follows that eah

member of dom γ has the form (x,mt) for some 0 ≤ t ≤ 2n− 1 and so

(x,mt)·αβ
rα = (x·αt±n,mt±n)·β

rα = (x·αt±n,mt±n+r (mod m))·α (13)

This implies that mt±n + r ≡ mk (mod m) for some 0 ≤ k ≤ 2n − 1. Now

suppose that (x′,mt′) ∈ dom γ; by (13) we dedue that mt′±n + r ≡ mk′

(mod m) for some 0 ≤ k′ ≤ 2n− 1, whih yields:

mt±n −mk ≡ mt′±n −mk′ ≡ −r (mod m) (14)

where the signs taken in the ± symbols ourring in (14) are not neessarily

equal to eah other. If the �rst ongruene in (14) is equality then sine

r 6≡ 0 (mod m), we have that mt±n 6= mk and mt′±n 6= mk′ and so by the

MC property mt±n = mt′±n (and mk = mk′). It follows either that t = t′ or

((t− n = t′ + n) or (t+ n = t′ − n)) ⇒ |t− t′| = 2n.

However, sine 0 ≤ t, t′ ≤ 2n − 1, the latter is not possible and so t = t′.
Otherwise the ongruene in (14) is not equality whene:

(mt±n +mk′)− (mt′±n +mk) = ±(1 +m2n−1) (15)
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By multiplying throughout by −1 and interhanging t and t′ if neessary, we
may take the + sign in (15). Sine r 6≡ 0 (mod m) we have that mt±n 6= mk

and mt′±n 6= mk′ . However, by Lemma 2.3, one term in the �rst braket

equals m2n−1, one term in the seond braket equals 1 and the other two

terms anel eah other.

Hene either mt±n = 22n−1, mt′±n = 1 and mk = m′
k, or m′

k = 22n−1,
mk = 1 and mt±n = mt′±n. However mk = mk′ implies (by (14)) that

mt±n = mt′±n and so t = t′ is the onlusion. Similarly the latter possibility

one again gives t = t′. Therefore dom γ ⊆ X × {mt}.

Lemmas 3.4 and 3.5 are valid for our extended onstrution, the proofs

being unhanged from the originals. Moreover the desription of the mapping

λi,j,k of Theorem 3.6(ii) ontinues to hold in our monoid T urrently under

onsideration, as do the formulae (4 - 6). The full set of orresponding

formulae for T (additions and subtrations taken mod m) are as follows:

βλ(αi, j, k) = λ(αi, j − 1, k), λ(αi, j, k)β = λ(αi, j, k + 1) (16)

αλ(αi,mj, k) = λ(αjαi,mj±n, k) (+ if 0 ≤ j ≤ n− 1, − if n ≤ j ≤ 2n− 1)
(17)

αλ(αi, j, k) = 0 if j 6∈ {mt : 0 ≤ t ≤ 2n− 1} (18)

λ(αi, k,mj)α = λ(αiαj±n, k,mj±n) (+ if 0 ≤ j ≤ n− 1, − if n ≤ j ≤ 2n− 1)
(19)

λ(αi, j, k)α = 0 if k 6∈ {mt : 0 ≤ t ≤ 2n− 1} (20)

Proposition 4.4 Let T = 〈α, β〉.

(i) For any γ ∈ T , with dom γ ∩ (X ×{j}) 6= ∅, γ|X×{j} = λi,j,k for some

0 ≤ i ≤ n− 1, 0 ≤ k ≤ m− 1;

(ii) T is regular.

Proof (i) The laim is learly true for γ = α, β as

α|X×{mi} = λ(αi±n,mi,mi±n) andβ|X×{i} = λ(α0, i, i+ 1).

The result now follows as in Theorem 3.6 (iii) by indution on the length of

γ (taken as a produt in the generators α and β), together with formulae

(16 - 20).
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(ii) Take an arbitrary produt p = βr1αβr2α · · · βrt−1αβrt ∈ T with (1 ≤
t, 0 ≤ ri ≤ m − 1). If t = 1, then p = βr1

is a group element and so p
is regular. Sine α = α3

it follows that all mappings of the form βrαεβs

(ε = 1, 2) are ontained in the regular D-lass Dα of T . This deals with the

ase where t = 2 and the ase (t = 3 and r2 = 0). The remaining ases

are where t ≥ 3 and p has one of the two forms p = βr1αβr2αβr3 · · · or
p = βr1α2βr2αβr3 · · · with r2 66= 0 in both instanes. It follows from Lemma

4.3(iii) that dom p ⊆ X × {j} say. Of ourse if p = 0 then p is regular.

Otherwise by (i) p = p|X×{j} = λi,j,k for some 0 ≤ i ≤ n− 1, 0 ≤ k ≤ m− 1.
By Theorem 3.6(ii), p is a member of a subsemigroup of T isomorphi to

(S ×B)/I, and in partiular p is a regular member of T .

Proposition 4.4 shows that any �nite semigroup may be embedded in a

�nite regular semigroup T generated by two group elements, thereby provid-

ing a new proof of Theorem 1.3. However, the semigroup T preserves the

idempotent struture of S in that E(T ) onsists of opies of E(S) together
with the onjugates under β of α2

.

Theorem 4.5 (Struture of T )

(i) Hβ is the group of units of T , whih is yli of order m. Moreover

Dα <J Hβ and Dα = {βrαεβs : ε = 1, 2}.

(ii) The monoid T has an ideal T1 with γ <J α for all γ ∈ T1 where

T1 = {λi,j,k} ∪ {0} (0 ≤ i ≤ n− 1, 0 ≤ j, k ≤ m− 1).

(iii) T = Hβ ∪Dα ∪ T1 with the union a disjoint union.

(iv) The set of idempotents of T is given by E(T ) = E ∪ F ∪ {ι, 0},
where E = {λ(e, i, i) : e ∈ E(S), 0 ≤ i ≤ m − 1} and F = {βjα2β−j : 0 ≤
j ≤ m − 1}. Moreover eah ρ ∈ E(T ) maps identially on its seond entry,

meaning that (X × {i})ρ ⊆ X × {i}.

(v) The prinipal fator Dα ∪ {0} of T is of ardinal 1 + 2m2
and is a

Brandt semigroup M0[Z2,m,m, Im].

Proof (i) As in Setion 3, Hβ is the group of units of T of ardinal m.

Also γ <J β for any γ ∈ SαS and so Dα <J Hβ. By Lemma 4.3(i),

α = α3
and so A = {βrαεβs : ε = 1, 2} ⊆ Dα. Conversely, if α ≤J γ with
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γ ∈ T \ (A ∪Hβ) then α ≤J γ ≤J αβrα for some r 6≡ 0 (mod m) and by

Lemma 4.3(iii), it would follow that dom α was ontained in a single interval

of T , ontrary to the de�nition of α. Hene A = Dα, thus establishing (i).

(ii) As in the proof of Lemma 3.5, we have that T1 ⊆ T and that T1 is

an ideal of T follows from the formulae (16 - 20). From Lemma 3.5 we have

that γ 6∈ Hβ whene γ ≤J α and that the inequality is strit follows from

Proposition 4.4(i) and the fat that, unlike domγ, dom α is not ontained in

a single interval.

(iii) It follows from parts (i) and (ii) that Hβ ∪ Dα ∪ T1 ⊆ T and the

union is a disjoint union. Conversely take any γ ∈ T \ {Hβ ∪Dα}. By part

(i), Lemma 4.3(iii) applies to γ whene by Proposition 4.4(i) it follows that

γ ∈ T1, as required.

(iv) Clearly all the members listed in E(T ) are indeed idempotents. For

any λ = λi,j,k ∈ T1 we have λ2 = 0 unless k = j, in whih ase λ2 = λ if and

only if αi = e ∈ E(S) and so λ = λ(e, j, j) ∈ E. From part (iii) it follows

that all other members p ∈ E(T ), other than 0 and ι, lie in Dα and so have

the form p = βjαεβk
where (ε ∈ {1, 2}). We next hek that if j + k ≡ 0

(mod m) then p = p2 if and only if ε = 2. The reverse impliation just says

that all members of F are idempotents, whih has already been noted, so let

us suppose that, ontrary to our laim, ε = 1 and we have p = βjαβ−j
with

that p = p2. Then βjαβ−j = βjα2β−j
, whih in turn implies that α = α2

,

whih is false as X × {mn} is an interval that meets dom α = dom α2
but

(X × {mn})α ⊆ X × {m0}, (X × {mn})α
2 ⊆ X × {mn}.

Let us therefore examine the ase where j + k 6≡ 0 (mod m) for some

0 ≤ j, k ≤ m− 1. Sine p = p2 and the produt p2 ontains a fator of the

form αβtα with t 6≡ 0 (mod m), it now follows by Lemma 4.3(iii) and the

fat that p = p2 that both dom p and ran p are ontained in X × {i} say.

However, sine dom α = dom α2 = X×{mt}0≤t≤2n−1, it follows from Lemma

4.3(ii) that dom p = dom βjαεβk = X × {mt − j}0≤t≤2n−1 (ε ∈ {1, 2}). In

partiular, dom p is not ontained within a single set of the form X × {i}
and this ontradits the assumption that p ∈ E(T ). Therefore the set E(T )
is as desribed. The �nal assertion is learly true for idempotents 0 and ι
and those in T1. By above, any idempotent ρ ∈ F satis�es dom ρ ⊆ X ×{i}
say and sine any idempotent maps identially on its range it follows that

(X × {i})ρ ⊆ X × {i} from whih the laim follows.
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(v) There are 2m2
expressions of the form βrαεβs : (ε ∈ {1, 2}, 0 ≤ r, s ≤

m− 1) and so the ardinality laim will follow by showing they are pairwise

distint. If not, we would have an equality of the form αε1 = βrαε2βs = γ
say, for some ε1, ε2 ∈ {1, 2}. By Lemma 4.3(ii), dom γ ⊆ {X × {(mt −
r) (mod m), 0 ≤ t ≤ 2n − 1} and dom γ has non-empty intersetion with

eah of these intervals. Sine |S| ≥ 3 it follows by Lemma 2.5 that r = 0
and in the same way we infer likewise that s = 0 as well.

Sine Dα is a regular D-lass, the prinipal fator P = Dα ∪ {0} is

a ompletely 0-simple semigroup. By part (i) and Lemma 4.3 parts (ii)

and (iii) we see that for γ = βrαεβs ∈ Dα we have Rγ = {βrαεβt; ε ∈
{1, 2}, 0 ≤ t ≤ m − 1}, Lγ = {βtαεβs, ε ∈ {1, 2}, 0 ≤ t ≤ m − 1} and

so Hγ = {βrαεβs : ε ∈ {1, 2}}. In partiular Hα = {α,α2} ∼= Z2. By the

previous paragraph it follows that there are m R-lasses and m L-lasses of
Dα, so that P ∼=M0[Z2,m,m,M ] is the Rees matrix form of this prinipal

fator for some m × m matrix M . To omplete the proof we only need to

know that the idempotents of P form a semilattie, for then P is a regu-

lar 0-simple semigroup with ommuting idempotents, whih is neessarily

a Brandt semigroup, whene M an be taken to be the identity matrix.

However, the produt of any two distint idempotents e = βjα2β−j
and

f = βkα2β−k
is βjα2βk−jα2βk

and sine k 6≡ j (mod m) it follows from (i)

above together with Lemma 4.3(iii) that ef 6∈ Dα so that in the prinipal

fator Dα ∪ {0}, the produt of any two distint idempotents is 0 and in

partiular E(Dα ∪ {0}) is a semilattie, as required.

Theorem 4.6 (a) Any �nite orthodox semigroup S may be embedded

in a �nite orthodox semigroup T generated by two group elements.

(b) Any �nite orthodox monoid S1
may be embedded as a semigroup

into a �nite 2-generated orthodox monoid T whose subband of idempotents

satisfy the same semigroup identities.

Proof (a) From Proposition 4.4, we need only hek that, given that S
is orthodox, the idempotents of our ontaining semigroup T form a band.

Consider E(T ) = E∪F∪{0} as desribed in Theorem 4.5. Produts involving

0 are 0 and the produt of any two members of E is also 0 unless they have

idential seond and third o-ordinates j say. In this ase we have a produt

of idempotents in the semigroup T1,j
∼= S by Theorem 3.6(ii): in partiular

the produt is itself an idempotent as S is orthodox.
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Next, let ρ = βjα2β−j
and µ = βkα2β−k

be two distint members of F .
Sine the produt ρµ has the fator αβ−j+kα with k − j 6≡ 0 (mod m), it

follows from Theorem 4.5 (iii) and (v) that either ρµ = 0 or dom ρµ ⊆ X×{i}
say. Routine alulation then gives that, if de�ned, (x, i) · ρµ = (x · ef, i)
for some idempotents e, f ∈ E(S). Sine ef ∈ E(S) it follows that ρµ =
λ(ef, i, i) ∈ E(T ). In detail we have, working modulo m with i + j ≡ mt

(mod m) say:

(x, i) · ρ = (x, i) · βjα2β−j = (x,mt) · α
2β−j = (x · αt±n,mt±n) · αβ

−j

= (x · αt±nαt,mt)β
−j = (x · αt±nαt, i);

now αt is inverse to αt±n, so this �nal produt an be written as (x·e, i),
where e = αt±nαt ∈ E(S). By the same token, applying this alulation

now to (x · e, i) · µ yields the required expression (x · ef, i) where ef ∈ E(S)
as laimed previously. Hene ρµ = λ(ef, i, i) ∈ E.

Finally let λ = λ(e, i, i) ∈ E and ρ = βjα2β−j ∈ F as above. If λρ 6= 0
then λρ has the form λρ = (ef, i, i) ∈ E(T ) as E(S) is a band. On the other

hand ρλ 6= 0 implies that (x, i) · ρλ = (x · fe, i, i) for some f ∈ E(S) whene
ρλ ∈ E(T ). In detail the relevant alulations are as follows. If λρ 6= 0 then

dom λρ ⊆ X × {i}, i+ j ≡ mt (mod m) say and

(x, i) ·λρ = (x ·e, i) ·βjα2β−j = (x ·e,mt) ·α
2β−j = (x ·eαt±n,mt±n) ·αβ

−j =

(x · eαt±nαt,mt) · β
−j = (x · eαt±nαt, i)

and, as before, αt±nαt = f ∈ E(S) and so ef ∈ E(S) as S is orthodox.

Hene (x, i) · λρ = (x · ef, i) and it follows that λρ = λ(ef, i, i) ∈ E.

Now onsider ρλ and suppose that ρλ 6= 0. We have by Lemma 3.2

applied to ρ that dom ρλ ⊆ X × {k} say. However (X × {k})ρ meets dom

λ ⊆ X × {i} and sine ρ is idempotent we have that ρ maps eah interval

X × {k} into itself and we dedue that k = i. Now we have i+ j ≡ mt(mod

m) say and we obtain:

(x, i) ·ρλ = (x, i) ·βjα2β−jλ = (x,mt) ·α
2β−jλ = (x ·αt±n,mt±n) ·αβ

−jλ =

(x · αt±nαt,mt)β
−jλ = (x · αt±nαt, i) · λ = (x · fe, i)

where f = αt±nαt ∈ E(S) as before and again fe ∈ E(S) as S is orthodox.

Therefore ρλ = λ(fe, i, i) ∈ E, as required to omplete the proof.
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(b) Following Remark 3.8, only the ase where |E(S1)| ≥ 2 is of interest.

As in the proof of Corollary 3.7, we may take a typial semigroup identity

φ : p = q satis�ed by S1
to be homotypial, meaning that eah variable in

φ appears in both p and q. Sine we are onsidering identities on bands, we

may assume that φ has more than one variable. We need to hek is that

E(T ) also satis�es φ.

By Lemma 4.3(iii) it follows that any produt uv of two distint members

u, v ∈ F = E(T ) ∩Dα falls out of Dα and lies in T1. It follows, again from

Lemma 4.3(iii), that either uv = 0 (the empty map) or dom(uv), ran(uv)
are ontained in some interval Yi say. In the latter ase uv = (u|Yi)(v|Yi).
Sine the restritions ui = u|Yi and vi = v|Yi eah belong to Ei = {λ(e, i, i) :
e ∈ S}, the produt uv = uivi is equal to a produt of two idempotents in

Ei.

Now let us onsider the words p(x1, · · · , xt) and q(x1, · · · , xr)(r ≥ 2) of
the identity φ and let us substitute elements of E(T ) to obtain produts

P = p(t1, · · · , tr) and Q = q(t1, · · · , tr). We need to verify that P = Q.

Sine eah produt involves at least 2 members of E(T ), it follows from

the argument of the previous paragraph that eah tj may be replaed by

a member of E(T1) without hanging the value of either of the produts

P and Q, so without loss we may assume that t1, · · · , tr ∈ E(T1). Hene

eah tj ∈ Ei for some i that depends on j. Consider the set of subsripts

I = {i : tj ∈ Ei}. If |I| = 1 then both P and Q are produts of idempotents

in some Ei
∼= E(S) and so P = Q as E(S) satis�es φ. On the other hand,

if |I| ≥ 2 then P = Q = 0 as eah of P and Q ontains a produt of the

form uv with u ∈ Ei, v ∈ Ej with i 6= j. In either event, it follows that φ is

satis�ed by E(T ) also, thus ompleting the proof of Theorem 4.6(b).

Speialising to the ase where E(S) is a semilattie and noting that

E(S) is a semilattie if and only if the same is true of E(S1) gives the main

orollary (Corollary 2.2) of the onstrution of [8℄ that the �nite symmetri

inverse semigroup In embeds in a 2-generator inverse susbsemigroup of In+2.

Corollary 4.7 (MAlister, Stephen and Vernitski) Every �nite inverse

semigroup may be embedded in a �nite 2-generated semigroup that is an

inverse semigroup.
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