
Embedding in a �nite 2-generator semigroup

Peter M. Higgins

Abstra
t

We augment the body of existing results on embedding �nite semi-

groups of a 
ertain type into 2-generator �nite semigroups of the same

type. The approa
h adopted applies to �nite semigroups the idempo-

tents of whi
h form a band and also to �nite orthodox semigroups.

1 Introdu
tion

In this paper we will be 
on
erned with the possibility of embedding a �nite

semigroup S into a �nite 2-generated semigroup T that shares properties

with S. In parti
ular we show that any �nite orthodox semigroup S may be

embedded in a �nite orthodox semigroup T generated by two group elements

and that any �nite orthodox monoid S1
may be embedded as a semigroup

into a �nite 2-generated orthodox monoid T whose subband of idempotents

satis�es the same semigroup identities. Prior to that we prove that if S1
is a

�nite monoid whose idempotents E(S1) form a subsemigroup, then S1
may

be embedded in a 2-generated �nite monoid T whose idempotents also form

a subsemigroup and belong to the same variety of bands. For ba
kground

on semigroups we refer to standard texts su
h as [4℄ or [5℄.

Any semigroup S may be embedded in the full transformation semigroup

T = TS1 (we shall sometimes write S ≤ T to denote that S is a subsemigroup

of T ). Sin
e this natural `Cayley' embedding preserves �niteness, it follows

at on
e that any �nite semigroup S embeds in the (regular) 3-generator

semigroup Tn, where n = |S1|. We denote the 
orresponding semigroups of

partial transformations on a set X by PTX and if |X| = n we write this as

PTn.
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In 1952 Trevor Evans proved in [2℄ that any 
ountable semigroup embeds

in a 2-generator semigroup although that fa
t is impli
it in the paper [11℄

of Sierpinski published (in Fren
h) in 1935 where it was shown that any


ountably in�nite 
olle
tion of mappings in TX embeds in a 2-generator

subsemigroup of TX . The �rst expli
it proof that a �nite semigroup may be

embedded in a 2-generated �nite semigroup dates from 1960 and is due to

B.H. Neumann [10℄ who employed a wreath produ
t 
onstru
tion. The short

proof of this fa
t re
orded here however is indi
ative of the approa
h of the

present paper.

Theorem 1.1 Any �nite semigroup S may be embedded in a �nite semi-

group T = 〈α, β〉 where α is an idempotent and β is a nilpotent.

Proof Without loss we assume that S = S1 = {α0, α1, · · · , αn−1} with

S ≤ TX for some �nite set X and where we take α0 = ι, the identity

mapping, in this instan
e with domain X. Our semigroup T ≤ PTZ where

Z = X × {0, 1, 2, · · · , n}. We also put αn = ι. The designated generators α
and β are de�ned as follows:

(x, i) · α = (x · αi, 0) (0 ≤ i ≤ n)

(x, i) · β = (x, i+ 1) (0 ≤ i ≤ n− 1).

In parti
ular βn+1 = 0, the empty mapping and α is idempotent:

(x, i) · α2 = (x · αi, 0) · α = (x · αiα0, 0) = (x · αi, 0) = (x, i) · α.

Hen
e T is generated by an idempotent α together with a nilpotent β. Now
put λ = βnα ∈ T . Then dom λ = X × {0} and

(x, 0) · λ = (x, 0) · βnα = (x, n) · α = (x · αn, 0) = (x, 0)

so that λ = ι|X×{0}. Put γi = λβiα (0 ≤ i ≤ n− 1); then dom γi = X ×{0}
and

(x, 0) · γi = (x, 0) · λβiα = (x, 0) · βiα = (x, i) · α = (x · αi, 0).

It follows that the mapping where αi 7→ γi is a monomorphism of S into T ,
as required.

It is not possible however to embed an arbitrary �nite semigroup into a

�nite semigroup generated by two idempotents as it is easy to prove that
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any semigroup (�nite or not) generated by two idempotents has at most six

idempotents and also does not 
ontain a three-element 
hain. A 
omplete

des
ription of semigroups generated by two idempotents has been provided

by Benzaken and Mayr [1℄.

In [7℄ Margolis showed that a �nite semigroup S may be embedded in

a 2-generated semigroup T that is a Rees matrix semigroup M(S) over S
with a 
y
li
 group adjoined as group of units. This allowed the 
on
lusion

that if all the subgroups of S were abelian (nilpotent, solvable, et
.), then

you 
an embed S into a 2-generator semigroup T with T satisfying the same

restri
tion on subgroups as S. The 
onstru
tion idea was used in [6℄ to show

that a 
ompa
t metri
 semigroup may be embedded in a 2-generator 
ompa
t

monoid. Moreover it is impli
it in [7℄ that any (�nite) n-generated semigroup

S may be embedded in a (�nite) semigroup T generated by n+1 idempotents,

from whi
h it follows that any �nite semigroup S may be embedded in a �nite

semigroup generated by three idempotents.

Although not the prin
iple result in their paper, in [8℄ M
Alister, Stephen

and Vernitski obtained a dire
t embedding of Tn into a 2-generator sub-

semigroup of Tn+1. Although they then move on to the question of inverse

semigroups (dis
ussed below), their 
onstru
tion implies the following result.

Theorem 1.3 Any �nite semigroup may be embedded in a 2-generated

semigroup that is �nite and regular.

It is enough to prove the result for Tn(n ≥ 3) and in [8℄ M
Alister et. al.

embed Tn in a semigroup S = 〈α, β〉 ≤ T = Tn+1. We write the idempotent

of defe
t 1 in whi
h i 7→ j (i 6= j) as
(

i
j

)

. Using this notation, the generator

β is the (n + 1)-
y
le β = (1 2 · · · nn + 1) while α = (1 2)
(

n
n+1

)

, a produ
t

of a transposition and an idempotent of defe
t 1. That S 
ontains a 
opy of

Tn then follows from a series of easily veri�ed fa
ts:

• The map ε = α2 =
(

n
n+1

)

is an idempotent of defe
t 1;

• for any γ ∈ εTε, 
onsider the restri
tion γ|{1,2,···,n−1,n+1}: this de�nes

an isomorphism of εTε onto Tn with base set {1, 2, · · · , n− 1, n + 1};

• Tn is generated by the set 
onsisting of the n-
y
le (1 2 · · ·n− 1n+1),
the transposition (1 2) and the idempotent of defe
t 1,

(

n−1
n+1

)

;
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• taking inverse images of these three mappings under the isomorphism

results in a set of three generators of εTε, whi
h are respe
tively κ =
(1 2 · · ·n− 1n+ 1)

(

n
1

)

, α, and the idempotent of defe
t 2, φ =
(

n
n+1

)(

n−1
n+1

)

.

• �nally we note that ε = α2, κ = εβε, and φ = βεβ−1ε, and so Tn
∼=

εTε ≤ S.

This 
on
ludes the proof in [8℄ that any �nite semigroup may be em-

bedded in a �nite semigroup that is generated by a pair of group elements.

(Note there are two minor 
orre
tions: the paper says that (n − 1) · κ = n
when it should say that (n− 1) ·κ = n+1 and β is listed as one of the three

generators of εTε when it should say α.)

Proof of Theorem 1.3 To 
omplete the proof we need only observe that

the semigroup S is indeed regular. First note that

εTε ≤ S ⇒ ε2Tε2 ⊆ εSε ⇒ εTε ⊆ εSε ⊆ εTε,

so that

εTε = εSε = α(αSα)α ⊆ αSα = α3Sα3 ⊆ εSε

giving equality throughout and in parti
ular that αSα ∼= Tn is a regular

subsemigroup of S.

Now take any γ ∈ S. Either γ ∈ 〈β〉, and so γ is a (regular) group

element or, sin
e α = α3
, we may write γ = βtσβs

for some σ ∈ αSα
and 0 ≤ t, s ≤ n. Taking any inverse σ′ ∈ V (σ) we may now 
he
k that

β−sσ′β−t ∈ V (γ). Therefore the semigroup S is indeed regular.

Equally, the 
onstru
tion in [7℄ also preserves regularity and so Theorem

1.3 is also impli
it in the Margolis paper. In [3, Theorem 4.1℄, Hall gives a

result of C.J. Ash, whi
h shows that any 
ountable inverse semigroup may be

embedded in an inverse semigroup with two generators and any �nite inverse

semigroup may be embedded in a �nite inverse semigroup that is generated

as an inverse semigroup by two generators. (In [8℄ it is shown that any �-

nite inverse semigroup may be embedded in a �nite inverse semigroup that is

generated as a semigroup by two generators.) The 
onstru
tion we introdu
e

here is inspired by the model of Ash. We have one prin
ipal generator that


ontains 
opies of all the mappings in S, the semigroup to be embedded,

while the se
ond generator is a 
y
le. The domain and range of the prin
ipal
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generator then 
onsists of many 
opies of the base interval, whi
h are dis-

tributed among the 
y
le of intervals in su
h a way that unwanted produ
ts,

whi
h might spoil the embedding, are avoided in the mappings that are to

be simulated.

2 Mian-Chowla property

The base set of the 2-generator transformation semigroup T will 
onsist of a


y
le of a large number of 
opies of the underlying interval on whi
h a
t the

members of the semigroup S, whi
h is to be embedded in T . However, the

a
tion of our prin
ipal mapping α that simulates all the members of S will

be 
on�ned to a relatively small number of sparsely spa
ed intervals. This

will ensure that unwanted produ
ts do not arise in the 
onstru
tion.

To this end, let S = {α1, · · · , αn} be a �nite semigroup with S de�ned

by partial transformations on a �nite base set X. Sin
e we are interested

in embedding S into a 2-generator semigroup T sharing some of the same

properties as S, we may assume that n ≥ 3. Moreover, without loss we may

assume that S does not 
ontain the empty mapping.

In order to make our 
onstru
tion free of unwanted non-zero produ
ts,

we make use of the following sequen
e of numbers, �rst introdu
ed in [9℄.

De�nition 2.1 The Mian-Chowla (MC) sequen
e is the sequen
e of

non-negative integers m0,m1, · · · re
ursively de�ned as follows. Set m0 = 0;
for i ≥ 1 de�ne mi to be the least integer ex
eeding mi−1 su
h that ea
h

di�eren
e between distin
t integers in the sequen
e m0,m1, · · · ,mi is unique.

Remarks 2.2 The re
ursive step of the MC sequen
e is well-de�ned

as by 
hoosing a su�
iently large integer we may �nd some m su
h that

ea
h di�eren
e m − mj has not appeared previously among the di�eren
es

of pairs taken from the sequen
e: indeed it is 
lear that mi ≤ 2mi−1 + 1 so

that mi ≤ 2i − 1. The MC sequen
e begins:

0, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, 122, 147, 181, 203, 251, 289, · · ·

The re
ursive rule of de�nition of the MC sequen
e is often formulated in the

equivalent form that mi is the least integer su
h that the list of all pairwise
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sums, mj +mk for j, k ≤ i, has no repeats. Note that under this alternative

formulation, j = k is not forbidden.

In Se
tion 3 we shall work with this parti
ular sequen
e in our 
onstru
-

tion: mi will denote the member of the MC sequen
e indexed by i. However,
the results will apply to any stri
tly in
reasing sequen
e of integers with the

MC property, meaning that no number appears as a di�eren
e between dis-

tin
t members more than on
e. There are of 
ourse any number of su
h

sequen
es: for example the sequen
e kn, n = 0, 1, 2, · · ·, for any base k ≥ 2
possesses the MC property. Moreover the MC property is inherited by sub-

sequen
es. In Se
tion 4 we shall also 
all upon the following spe
i�
 fa
t.

Lemma 2.3 For i, j, k, l ≤ n, if i ≥ j and k ≥ l then (2i+2j)−(2k+2l) =
2n + 20 implies that i = n, l = 0 and j = k.

Proof If i ≤ n− 1 then 2i + 2j ≤ 2 · 2n−1 = 2n and the equation 
annot

hold. Hen
e i = n, giving 2j − (2k + 2l) = 1. Hen
e j ≥ 2 and sin
e both

sides of the equation are odd, it follows that l = 0, and so j = k.

Remark 2.4 Unfortunately, the MC sequen
e la
ks the 
orresponding

property as for example:

44 + 65 = 109 = 96 + 12 + 1 + 0 ⇔ m7 +m8 = m10 +m4 +m1 +m0

⇔ (m7 +m8)− (m4 +m1) = m10 +m0.

Suppose that M = m0,m1, · · · ,mn is a (stri
tly in
reasing) MC sequen
e

of non-negative integers and put m = 1 + mn. For any set A ⊆ M and

r ∈ Z, let us write A+ r = {(a+ r) (mod m), a ∈ A}. Suppose that |A| ≥ 3
and A + r ⊆ M with r 6≡ 0 (mod m). Without loss we may assume that

1 ≤ r ≤ m − 1. By hypothesis, for ea
h mi ∈ A, (mi + r) (mod m) = mj

for some 0 ≤ j ≤ n. It follows that either mj −mi = r or if (mi + r) (mod

m) = mi + r−m, then mj −mi = r−m. Let ma,mb,mc be three pairwise

distin
t members of A. Consider, modulo m, ea
h of ma + r,mb + r and

mc+ r. It now follows that for at least two of ma,mb,mc, let us say ma and

mb, there exist mj ,mk ∈ M su
h that mj −ma = mk −mb, 
ontrary to the

MC 
ondition. Hen
e we 
on
lude:

Lemma 2.5. Let M = m0,m1, · · · ,mn be a �nite stri
tly in
reasing

sequen
e of non-negative integers with the MC property and putm = 1+mn.
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Suppose that A ⊆ M is su
h that (A + r) (mod m) ⊆ M for some r 6≡ 0
(mod m). Then |A| ≤ 2.

3 Embedding in a semigroup generated by a nilpo-

tent and a 
y
le

In this se
tion we 
onstru
t a general embedding of a �nite semigroup S
into a 2-generated �nite semigroup T , whi
h preserves the property that the

idempotents form a subsemigroup.

We will make use here of the easily proved result that in the presen
e

of the band identity x = x2, any heterotypi
al identity φ (one in whi
h a

variable appears on one side only) implies the identity x = xyx. It follows

that any band satisfying φ is a re
tangular band.

Let S be a �nite semigroup S = {α1, α2, · · · , αn}. We shall take S to be

a subsemigroup of PTX , where X is a �nite base set. We may also assume

that the domain of ea
h αi is not empty. In the following 
onstru
tion we


ould repla
e the set of mappings {αi} by any generating set of S but for

simpli
ity of notation we work with S as the generating set for S.

Let {mi}i≥0 denote the MC sequen
e and let Z = X×{0, 1, 2, · · · ,m2n−1}.
Taking addition modulo m = 1 +m2n−1, we take one generator of our 
on-

taining 2-generator semigroup T to be β where:

(x, i) · β = (x, i+ 1) (0 ≤ i ≤ m2n−1) (1)

Sin
e β is a 
y
le, the notation βr
is meaningful for all integers r. We next

spe
ify the domain and range of our se
ond generator α: dom α is 
ontained

in the union of the n 
opies of X, Yi = X ×{mi} (n ≤ i ≤ 2n− 1) while the
range Zα is a subset of a se
ond union of another n 
opies of X: X × {mi}
(0 ≤ i ≤ n−1). We de�ne the a
tion of α on the interval Yn+j = X×{mn+j}
as we shall 
all it as:

(x,mn+j) · α = (x · αj ,mj) (0 ≤ j ≤ n− 1) (2)

De�nition 3.1 Let T = 〈α, β〉, with α, β de�ned as in (1) and (2).
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Lemma 3.2 The generators α and β of T satisfy α2 = 0 and βm = ι,
where m = 1 +m2n−1. For ea
h γ ∈ T and 0 ≤ i ≤ n − 1 there exists some

0 ≤ j ≤ n−1 su
h that (X×{i})γ ⊆ X×{j}; moreover if (x, i)·γ, (x′, i′)·γ ∈
X × {j} then i = i′.

Proof The �rst two fa
ts follow respe
tively from (2) for α and from

(1) for β. The 
laims in the se
ond senten
e follow for γ = α, β as ea
h

mapping is one-to-one on se
ond 
omponents when
e, by indu
tion on the

length of the produ
t, the same follows for an arbitrary produ
t γ of these

two generators.

Lemma 3.3 Let γ ≤J αβrα. Then dom γ ⊆ X × {i} for some i su
h
that 0 ≤ i ≤ m− 1.

Proof First suppose that γ = ρλσ with dom λ ⊆ X × {j} say and that

(x, i) ∈ dom ρλ so that (x, i) · ρ ∈ X × {j}. It follows from Lemma 3.2

applied to ρ that dom ρλ ⊆ X × {i} and then sin
e dom ρλσ ⊆ dom ρλ,
we obtain dom γ ⊆ X × {i}. Therefore it is enough to prove the 
laim for

a mapping γ of the form γ = αβrα. Sin
e dom γ ⊆ dom α, it follows that
ea
h member of dom γ has the form (x,mn+j) for some 0 ≤ j ≤ n− 1. We

then obtain:

(x,mn+j) · αβ
rα = (x · αj,mj) · β

rα = (x · αj , (mj + r) (mod m)) · α (3)

Again by de�nition of α we infer that mj + r ≡ mn+l (mod m) for some

0 ≤ l ≤ n − 1. Now suppose that (x′,mn+j′) ∈ dom γ; by (3) we dedu
e

that mj′ + r ≡ mn+l′ (mod m) say, so that mn+l′ −mj′ ≡ mn+l −mj ≡ r
(mod m). Sin
e 0 ≤ mj,mj′ < mn+l,mn+l′ ≤ m − 1, it follows that these

ongruen
es imply the 
orresponding equalities and that r 6≡ 0 (mod m). By

the MC property however we 
on
lude that j = j′ and l = l′. In parti
ular,

dom γ ⊆ X × {mn+j}, giving the required 
on
lusion.

Lemma 3.4 De�ne the mapping λ0 = (βmnα)2. Then λ0 = ι|X×{0}.

Proof From the de�nition of λ0 we obtain

(x, 0) · λ0 = (x, 0) · (βmnα)2 = (x,mn) · αβ
mnα = (x · α0,m0) · β

mnα =

(x, 0) · βmnα = · · · = (x, 0).

The result now follows from this together with Lemma 3.3.
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Lemma 3.5 The semigroup T = 〈α, β〉 
ontains ea
h of the mappings

λi,j,k = λ(αi, j, k) where dom λi,j,k ⊆ X × {j}, ran λi,j,k ⊆ X × {k} and

(x, j) · λi,j,k = (x · αi, k) (0 ≤ i ≤ n− 1, 0 ≤ j, k ≤ m− 1).

Proof We verify that λ(αi, j, k) = β−jλ0β
mn+iαβk−mi

. Consider (x, t)
with t 6≡ j (modm). Then (x, t)·β−j = (x, t−j) 6∈ X×{0} so that by Lemma

3.4, (x, t− j) 6∈ dom λ0. It follows that dom β−jλ0β
mn+iαβk−mi ⊆ X ×{j}.

Next take (x, j) ∈ X × {j}:

(x, j)·β−jλ0β
mn+iαβk−mi = (x, 0)·λ0β

mn+iαβk−mi = (x, 0)·βmn+iαβk−mi =

= (x,mn+i) · αβ
k−mi = (x · αi,mi) · β

k−mi = (x · αi, k).

Therefore λ(αi, j, k) ∈ T .

Theorem 3.6 (Stru
ture of T )

(i) The monoid T has two H-
lasses and these are also D-
lasses: Hβ =
{βr : 0 ≤ r ≤ m − 1} of 
ardinal m, whi
h is the group of units of T
and Hα = {βrαβs : 0 ≤ r, s ≤ m − 1} of 
ardinal m2

and Hα <J Hβ.

All members γ = βrαβs
of Hα are not regular; dom γ ⊆ {X × (mn+i −

r) (mod m) (0 ≤ i ≤ n− 1)} with dom γ meeting ea
h spe
i�ed interval and

ran γ ⊆ {X×(mi+s) (mod m) (0 ≤ i ≤ n− 1)} with ran γ similarly meeting

ea
h spe
i�ed interval.

(ii) T1 = {λ(αi, j, k) : 0 ≤ i ≤ n−1, 0 ≤ j, k ≤ m−1}∪{0} is isomorphi


to the Rees matrix semigroup M = M0[S,m,m, Im], where Im is the m×m
identity matrix. Moreover T1 is isomorphi
 to (S × B)/I, where B is the

m×m 
ombinatorial Brandt semigroup and I is the ideal S×{0} of S×B.

For ea
h j ∈ Zm, the set T1,j = {λ(αi, j, j) : 0 ≤ i ≤ n−1} is a subsemigroup

of T isomorphi
 to S.

(iii) For any γ ∈ T , with dom γ ∩ (X × {j}) 6= ∅, γ|X×{j} = λi,j,k for

some 0 ≤ i ≤ n− 1, 0 ≤ k ≤ m− 1.

(iv) T = T1 ∪Hα ∪Hβ, and the union is a disjoint union. Moreover T1

is an ideal of T and if S is regular then so is T1.

(v) The set of idempotents E(T ) =
⋃m

i=1Ei∪{0, ι}, where Ei = {λ(e, i, i) :
e ∈ E(S), 0 ≤ i ≤ m−1}. Moreover all produ
ts of non-identity idempotents
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equal 0 ex
ept those within some Ei. In parti
ular if E(S) is a band then so

is E(T ).

Proof (i) The powers of β are exa
tly the members of T with range (and

domain) Z, and by Lemma 3.2 〈β〉 is a 
y
li
 group, the group of units of T ,
when
e it follows that Dβ = Hβ = 〈β〉 and by de�nition |Hβ| = m.

The set A = {βrαβs : r, s ≥ 0} ⊆ Hα. By Lemma 3.3, any δ ≤J γ, where
γ ∈ T \ (A ∪ Hβ) has domain within some single interval of Z. If γ ∈ Dα

we would have α ≤J γ, when
e dom α is 
ontained in a single interval of Z,
whi
h 
ontradi
ts the de�nition of α. It follows that Dα ⊆ A ⊆ Hα ⊆ Dα,

giving equality throughout and Hα <J Hβ.

Next take γ = βrαβs
so that

dom γ = dom βrαβs = {(x, (j − r) (modm) : (x, j) ∈ domα}.

Sin
e dom α ⊆ {(X,mn+i) : (0 ≤ i ≤ n−1)} and dom α meets ea
h of these

intervals, it follows that dom γ ⊆ {(X, (mn+i − r) (mod m) (0 ≤ i ≤ n− 1)}
as stated and that dom γ meets ea
h of these intervals. Sin
e α maps the

members of its domain in the interval (X,mn+i) into the interval (X,mi),
the 
laim for ran γ now follows in the same way.

Suppose that γ = βr1αβs1 , δ = βr2αβs2
and that γ = δ. We wish to show

that βr1 = βr2
and βs1 = βs2

. By 
an
elling powers of β in the equation

of any 
ounter example to this 
laim we would obtain a 
ounter example

where γ = βrαβs
and where δ = α, (0 ≤ r, s ≤ m− 1) so let us assume this


ase. However sin
e |S| ≥ 3 we have by Lemma 2.5 and our statement on

domains that dom γ = dom α implies that r = 0 and similarly we have ran

γ = ran α implies s = 0, as required. We 
on
lude that all produ
ts βrαβs

(0 ≤ r, s ≤ m− 1) are pairwise distin
t and |Hα| = m2
as 
laimed.

If any member ofDα were regular, the same would be true of α. However,
by Lemmas 3.2 and 3.3, for any γ ∈ T we have αγα 6∈ Dα, so in parti
ular

α = αγα is impossible in T and hen
e Dα is not a regular D-
lass.

(ii) From Lemma 3.5 and the de�nitions of α and β we have the following

formulae:

λ(αi1 , j1, k)λ(αi2 , k, k2) = λ(αi1αi2 , j1, k2) (4)

λ(αi1 , j1, k1)λ(αi2 , j2, k2) = 0 if k1 6= j2 (5)

10



βλ(αi, j, k) = λ(αi, j − 1, k), λ(αi, j, k)β = λ(αi, j, k + 1) (6)

αλ(αi,mj, k) = λ(αjαi,mn+j, k) (0 ≤ j ≤ n− 1) (7)

αλ(αi, j, k) = 0 if j 6∈ {mt : 0 ≤ t ≤ n− 1} (8)

λ(αi, j,mn+k)α = λ(αiαk, j,mk) (9)

λ(αi, j, k)α = 0 if k 6∈ {mn+t : 0 ≤ t ≤ n− 1} (10)

From (4) and (5) we see that produ
ts in T1 are indeed those of the Rees

matrix semigroup M , whi
h is then isomorphi
 to (S ×B)/I. The diagonal
H-
lasses of M are ea
h 
opies of our monoid S.

(iii) The 
laim is 
learly true for γ = α, β as

α|X×{mn+i} = λ(αi,mn+i,mi) and β|X×{i} = λ(α0, i, i+ 1).

The result now follows by indu
tion on the length of γ (taken as a produ
t

in the generators α and β): let γ = ρµ say, where µ ∈ {α, β}. Then

(ρµ)|(X×{j}) = ρ|X×{j}µ but by indu
tion we may write this produ
t as

λ(αi, j, k1)µ say. By formulae (6),(9), and (10) this in turn may be written

as λ(αl, j, k)|X×{j} = λ(αl, j, k) for some 0 ≤ l ≤ n − 1 and 0 ≤ k ≤ m− 1,
as required.

(iv) Sin
e the domains of members of T1 are ea
h 
ontained within a single

interval and those of Hα ∪Hβ are not, we have by this and part (i) that the

three sets are pairwise disjoint. It remains to verify that if γ ∈ T \(Hα∪Hβ)
then γ ∈ T1. However, by Lemma 3.3 we have dom γ ⊆ X × {j} say and so

by part (iii) we have either γ = 0 or γ = γ|X×{j} = λi,j,k for some i, k. In

other words, γ ∈ T1. From equations (6 - 10) it follows that T1 is an ideal of

T . Finally for any non-zero λ = λ(αi, j, k) ∈ T1 we have λ(α′
i, k, j) ∈ T1 is

an inverse of λ in T1 for any 
hoi
e of α′
i ∈ V (αi).

(v) By (i), ι is the unique idempotent in Hα ∪ Hβ. Hen
e any other

non-zero idempotent ε belongs to T1 and in parti
ular dom ε ⊆ X × {i}
say. Sin
e ε is a non-zero idempotent, it follows that ∅ 6= Zε ⊆ X × {i}.
Hen
e by (iv) we obtain ε = λ(e, i, i) for some e ∈ S, and 
learly e = e2 so

that ε ∈ Ei, as 
laimed. The 
laims regarding produ
ts of idempotents now

follows. This 
ompletes the proof of the theorem.

Corollary 3.7 Let S be a �nite monoid su
h that E(S) is a subsemigroup

of S. Then S may be embedded in a �nite monoid T su
h that E(T ) is a
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submonoid of T and T is generated as a semigroup by a set of two generators

{α, β} where β is a group element and α is nilpotent of index 2. Moreover

if |E(S)| ≥ 2, then E(T ) satis�es the same semigroup identities as E(S).

Remark 3.8 If |E(S)| ≤ 1 then, sin
e S is a monoid and every member

of S has an idempotent power, it follows that S is a �nite group. We may

then embed S in the �nite symmetri
 group T = GS , whi
h is two-generated

and then E(S) and E(T ) are both trivial and so satisfy every semigroup

identity.

Proof Take T = 〈α, β〉 as in Theorem 3.6. It remains only to verify that

if φ : p = q is a semigroup identity satis�ed by E(S) then φ is satis�ed by

E(T ), the 
onverse impli
ation being 
lear as E(S) is embedded in E(T ). If
one side of φ, the word p say, had a variable y that did not appear in q, then
substituting all other variables in φ by ι gives the identity y = 1, when
e it

follows that the monoid E(S) is trivial, 
ontrary to hypothesis. Hen
e ea
h

variable x of φ appears in both p and q.

By Theorem 3.6(v), all produ
ts of non-identity idempotents within E(T )
equal 0 unless they take pla
e within some Ei = {λ(e, i, i) : e ∈ E(S), 0 ≤
i ≤ m − 1}. Hen
e if, under some substitution from E(T ), one side of φ, p
say, is not 0, then all variables of φ have been substituted by either ι or by
members of some subsemigroup Ei of E(T ). By repla
ing ι with the identity

of Ei as required, we express the produ
ts p and q as produ
ts of members

of Ei while retaining the same values. However, sin
e Ei
∼= E(S), it follows

that p = q is satis�ed in Ei as well and so the produ
ts p and q in Ei are

equal. It follows that E(T ) also satis�es the identity φ.

Remark 3.9 In the 
ase of a �nite semigroup S that is not a monoid

we may work with S1
. If E(S) forms a band then so does E(S1) and the

previous 
onstru
tion then yields a �nite 2-generated monoid T 
ontaining

S1
(and so 
ontaining S) su
h that E(T ) is also a band.

4 Orthodox semigroups

We next use the 
onstru
tion of Se
tion 3 to provide another proof of Theo-

rem 1.3 and to show that if the original semigroup S is orthodox, the same is

12



true for the 2-generated 
ontaining semigroup T . We will however now put

mi = 2i, i = 0, 1, 2 · · · , 2n − 1 so our modulus used for our 
y
le β be
omes

m = 1 + 22n−1
. Let S = {α0, α1, · · · , αn−1} now denote a �nite regular

monoid with α0 = ι and S ≤ PTX for some �nite base set X as before. We

may also assume that the domain of ea
h mapping αi is not empty.

For ea
h αi ∈ S 
hoose and �x an inverse α′
i ∈ V (αi) (there is no assump-

tion that the mapping (′) on S is one-to-one). The 
y
le β is just as before

and its a
tion is given by (1). Similarly, the a
tion (2) remains appli
able

to our se
ond generator α. However we augment the domain of α to in
lude

all the intervals X ×{mi} (0 ≤ i ≤ n− 1), the union of whi
h 
ontained the

range set of α but previously lay outside of the domain of α. De�ne:

(x,mi) · α = (x · α′
i,mn+i) (0 ≤ i ≤ n− 1) (11)

Remarks 4.2 It will be 
onvenient to also denote α′
i by αi+n, in whi
h


ase the de�nition of the a
tion of α is en
apsulated by:

(x,mt) · α = (x · αt±n,mt±n) (0 ≤ t ≤ 2n− 1) (12)

where the signs asso
iated with the ± signs in (12) are not independent but

are equal to ea
h other: the sign on the subs
ripts is + or − a

ording as

0 ≤ t ≤ n − 1 or n ≤ t ≤ 2n − 1. Although α is no longer a nilpotent (see

Lemma 4.3) it is still the 
ase that any γ ∈ T a
ts in a one-to-one fashion

on the se
ond entries of the pairs (x, i) ∈ dom γ (as shown in the proof of

Lemma 3.2) and γ maps intervals into intervals as this holds for ea
h of the

generators α and β. We next prove the 
ounterpart of Lemma 3.3.

Lemma 4.3

(i) The mappings α and β of T satisfy β = βm
and α = α3

.

(ii) Let γ = βrαεβs
for ε ≥ 1. Then

dom γ ⊆ {X × {(mt − r) (mod m), (0 ≤ t ≤ 2n− 1)} and dom γ has non-

empty interse
tion with ea
h of these intervals. Similarly ran γ ⊆ {X×(mt+
s) (mod m) (0 ≤ t ≤ 2n − 1)} with ran γ meeting ea
h of these intervals.

(iii) Let γ ≤J αβrα where r 6≡ 0 (mod m). Then dom γ ⊆ X × {i} for

some 0 ≤ i ≤ m− 1.
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Proof (i) That β = βm
is true as before. For any (x,mn+i) ∈ dom α we

have by (12) that

(x,mn+i) · α
3 = (x · αi,mi) · α

2 = (x · αiα
′
i,mn+i) · α

= (x · αiα
′
iαi,mi) = (x · αi,mi) = (x,mn+i) · α,

and in the same way we obtain (x,mi) · α
3 = (x,mi) · α, thus showing that

α = α3
. Note also that by �niteness it follows that α|

ran α is a permutation

and so dom α = dom α2
and ran α = ran α2

.

(ii) Let us write (for the purposes of this part only)

Dγ = {i : (X × {i}) ∩ dom γ 6= ∅} and Rγ = {i : (X × {i}) ∩ ran γ 6= ∅}.

Observe that for any ε ≥ 1, Dαε = Rαε = {mt : 0 ≤ t ≤ 2n − 1}. Also note

that for any γ ∈ T we haveDβrγβs = (Dγ−r) (modm) and Rβrγβs = (Rγ+s)
(mod m). Applying these fa
ts to γ = αε

then proves the 
laims of (ii).

(iii) As in the proof of Lemma 3.3, it is enough to 
onsider the 
ase

represented by γ = αβrα. Sin
e dom γ ⊆ dom α, it follows that ea
h

member of dom γ has the form (x,mt) for some 0 ≤ t ≤ 2n− 1 and so

(x,mt)·αβ
rα = (x·αt±n,mt±n)·β

rα = (x·αt±n,mt±n+r (mod m))·α (13)

This implies that mt±n + r ≡ mk (mod m) for some 0 ≤ k ≤ 2n − 1. Now

suppose that (x′,mt′) ∈ dom γ; by (13) we dedu
e that mt′±n + r ≡ mk′

(mod m) for some 0 ≤ k′ ≤ 2n− 1, whi
h yields:

mt±n −mk ≡ mt′±n −mk′ ≡ −r (mod m) (14)

where the signs taken in the ± symbols o

urring in (14) are not ne
essarily

equal to ea
h other. If the �rst 
ongruen
e in (14) is equality then sin
e

r 6≡ 0 (mod m), we have that mt±n 6= mk and mt′±n 6= mk′ and so by the

MC property mt±n = mt′±n (and mk = mk′). It follows either that t = t′ or

((t− n = t′ + n) or (t+ n = t′ − n)) ⇒ |t− t′| = 2n.

However, sin
e 0 ≤ t, t′ ≤ 2n − 1, the latter is not possible and so t = t′.
Otherwise the 
ongruen
e in (14) is not equality when
e:

(mt±n +mk′)− (mt′±n +mk) = ±(1 +m2n−1) (15)
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By multiplying throughout by −1 and inter
hanging t and t′ if ne
essary, we
may take the + sign in (15). Sin
e r 6≡ 0 (mod m) we have that mt±n 6= mk

and mt′±n 6= mk′ . However, by Lemma 2.3, one term in the �rst bra
ket

equals m2n−1, one term in the se
ond bra
ket equals 1 and the other two

terms 
an
el ea
h other.

Hen
e either mt±n = 22n−1, mt′±n = 1 and mk = m′
k, or m′

k = 22n−1,
mk = 1 and mt±n = mt′±n. However mk = mk′ implies (by (14)) that

mt±n = mt′±n and so t = t′ is the 
on
lusion. Similarly the latter possibility

on
e again gives t = t′. Therefore dom γ ⊆ X × {mt}.

Lemmas 3.4 and 3.5 are valid for our extended 
onstru
tion, the proofs

being un
hanged from the originals. Moreover the des
ription of the mapping

λi,j,k of Theorem 3.6(ii) 
ontinues to hold in our monoid T 
urrently under


onsideration, as do the formulae (4 - 6). The full set of 
orresponding

formulae for T (additions and subtra
tions taken mod m) are as follows:

βλ(αi, j, k) = λ(αi, j − 1, k), λ(αi, j, k)β = λ(αi, j, k + 1) (16)

αλ(αi,mj, k) = λ(αjαi,mj±n, k) (+ if 0 ≤ j ≤ n− 1, − if n ≤ j ≤ 2n− 1)
(17)

αλ(αi, j, k) = 0 if j 6∈ {mt : 0 ≤ t ≤ 2n− 1} (18)

λ(αi, k,mj)α = λ(αiαj±n, k,mj±n) (+ if 0 ≤ j ≤ n− 1, − if n ≤ j ≤ 2n− 1)
(19)

λ(αi, j, k)α = 0 if k 6∈ {mt : 0 ≤ t ≤ 2n− 1} (20)

Proposition 4.4 Let T = 〈α, β〉.

(i) For any γ ∈ T , with dom γ ∩ (X ×{j}) 6= ∅, γ|X×{j} = λi,j,k for some

0 ≤ i ≤ n− 1, 0 ≤ k ≤ m− 1;

(ii) T is regular.

Proof (i) The 
laim is 
learly true for γ = α, β as

α|X×{mi} = λ(αi±n,mi,mi±n) andβ|X×{i} = λ(α0, i, i+ 1).

The result now follows as in Theorem 3.6 (iii) by indu
tion on the length of

γ (taken as a produ
t in the generators α and β), together with formulae

(16 - 20).
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(ii) Take an arbitrary produ
t p = βr1αβr2α · · · βrt−1αβrt ∈ T with (1 ≤
t, 0 ≤ ri ≤ m − 1). If t = 1, then p = βr1

is a group element and so p
is regular. Sin
e α = α3

it follows that all mappings of the form βrαεβs

(ε = 1, 2) are 
ontained in the regular D-
lass Dα of T . This deals with the


ase where t = 2 and the 
ase (t = 3 and r2 = 0). The remaining 
ases

are where t ≥ 3 and p has one of the two forms p = βr1αβr2αβr3 · · · or
p = βr1α2βr2αβr3 · · · with r2 66= 0 in both instan
es. It follows from Lemma

4.3(iii) that dom p ⊆ X × {j} say. Of 
ourse if p = 0 then p is regular.

Otherwise by (i) p = p|X×{j} = λi,j,k for some 0 ≤ i ≤ n− 1, 0 ≤ k ≤ m− 1.
By Theorem 3.6(ii), p is a member of a subsemigroup of T isomorphi
 to

(S ×B)/I, and in parti
ular p is a regular member of T .

Proposition 4.4 shows that any �nite semigroup may be embedded in a

�nite regular semigroup T generated by two group elements, thereby provid-

ing a new proof of Theorem 1.3. However, the semigroup T preserves the

idempotent stru
ture of S in that E(T ) 
onsists of 
opies of E(S) together
with the 
onjugates under β of α2

.

Theorem 4.5 (Stru
ture of T )

(i) Hβ is the group of units of T , whi
h is 
y
li
 of order m. Moreover

Dα <J Hβ and Dα = {βrαεβs : ε = 1, 2}.

(ii) The monoid T has an ideal T1 with γ <J α for all γ ∈ T1 where

T1 = {λi,j,k} ∪ {0} (0 ≤ i ≤ n− 1, 0 ≤ j, k ≤ m− 1).

(iii) T = Hβ ∪Dα ∪ T1 with the union a disjoint union.

(iv) The set of idempotents of T is given by E(T ) = E ∪ F ∪ {ι, 0},
where E = {λ(e, i, i) : e ∈ E(S), 0 ≤ i ≤ m − 1} and F = {βjα2β−j : 0 ≤
j ≤ m − 1}. Moreover ea
h ρ ∈ E(T ) maps identi
ally on its se
ond entry,

meaning that (X × {i})ρ ⊆ X × {i}.

(v) The prin
ipal fa
tor Dα ∪ {0} of T is of 
ardinal 1 + 2m2
and is a

Brandt semigroup M0[Z2,m,m, Im].

Proof (i) As in Se
tion 3, Hβ is the group of units of T of 
ardinal m.

Also γ <J β for any γ ∈ SαS and so Dα <J Hβ. By Lemma 4.3(i),

α = α3
and so A = {βrαεβs : ε = 1, 2} ⊆ Dα. Conversely, if α ≤J γ with
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γ ∈ T \ (A ∪Hβ) then α ≤J γ ≤J αβrα for some r 6≡ 0 (mod m) and by

Lemma 4.3(iii), it would follow that dom α was 
ontained in a single interval

of T , 
ontrary to the de�nition of α. Hen
e A = Dα, thus establishing (i).

(ii) As in the proof of Lemma 3.5, we have that T1 ⊆ T and that T1 is

an ideal of T follows from the formulae (16 - 20). From Lemma 3.5 we have

that γ 6∈ Hβ when
e γ ≤J α and that the inequality is stri
t follows from

Proposition 4.4(i) and the fa
t that, unlike domγ, dom α is not 
ontained in

a single interval.

(iii) It follows from parts (i) and (ii) that Hβ ∪ Dα ∪ T1 ⊆ T and the

union is a disjoint union. Conversely take any γ ∈ T \ {Hβ ∪Dα}. By part

(i), Lemma 4.3(iii) applies to γ when
e by Proposition 4.4(i) it follows that

γ ∈ T1, as required.

(iv) Clearly all the members listed in E(T ) are indeed idempotents. For

any λ = λi,j,k ∈ T1 we have λ2 = 0 unless k = j, in whi
h 
ase λ2 = λ if and

only if αi = e ∈ E(S) and so λ = λ(e, j, j) ∈ E. From part (iii) it follows

that all other members p ∈ E(T ), other than 0 and ι, lie in Dα and so have

the form p = βjαεβk
where (ε ∈ {1, 2}). We next 
he
k that if j + k ≡ 0

(mod m) then p = p2 if and only if ε = 2. The reverse impli
ation just says

that all members of F are idempotents, whi
h has already been noted, so let

us suppose that, 
ontrary to our 
laim, ε = 1 and we have p = βjαβ−j
with

that p = p2. Then βjαβ−j = βjα2β−j
, whi
h in turn implies that α = α2

,

whi
h is false as X × {mn} is an interval that meets dom α = dom α2
but

(X × {mn})α ⊆ X × {m0}, (X × {mn})α
2 ⊆ X × {mn}.

Let us therefore examine the 
ase where j + k 6≡ 0 (mod m) for some

0 ≤ j, k ≤ m− 1. Sin
e p = p2 and the produ
t p2 
ontains a fa
tor of the

form αβtα with t 6≡ 0 (mod m), it now follows by Lemma 4.3(iii) and the

fa
t that p = p2 that both dom p and ran p are 
ontained in X × {i} say.

However, sin
e dom α = dom α2 = X×{mt}0≤t≤2n−1, it follows from Lemma

4.3(ii) that dom p = dom βjαεβk = X × {mt − j}0≤t≤2n−1 (ε ∈ {1, 2}). In

parti
ular, dom p is not 
ontained within a single set of the form X × {i}
and this 
ontradi
ts the assumption that p ∈ E(T ). Therefore the set E(T )
is as des
ribed. The �nal assertion is 
learly true for idempotents 0 and ι
and those in T1. By above, any idempotent ρ ∈ F satis�es dom ρ ⊆ X ×{i}
say and sin
e any idempotent maps identi
ally on its range it follows that

(X × {i})ρ ⊆ X × {i} from whi
h the 
laim follows.
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(v) There are 2m2
expressions of the form βrαεβs : (ε ∈ {1, 2}, 0 ≤ r, s ≤

m− 1) and so the 
ardinality 
laim will follow by showing they are pairwise

distin
t. If not, we would have an equality of the form αε1 = βrαε2βs = γ
say, for some ε1, ε2 ∈ {1, 2}. By Lemma 4.3(ii), dom γ ⊆ {X × {(mt −
r) (mod m), 0 ≤ t ≤ 2n − 1} and dom γ has non-empty interse
tion with

ea
h of these intervals. Sin
e |S| ≥ 3 it follows by Lemma 2.5 that r = 0
and in the same way we infer likewise that s = 0 as well.

Sin
e Dα is a regular D-
lass, the prin
ipal fa
tor P = Dα ∪ {0} is

a 
ompletely 0-simple semigroup. By part (i) and Lemma 4.3 parts (ii)

and (iii) we see that for γ = βrαεβs ∈ Dα we have Rγ = {βrαεβt; ε ∈
{1, 2}, 0 ≤ t ≤ m − 1}, Lγ = {βtαεβs, ε ∈ {1, 2}, 0 ≤ t ≤ m − 1} and

so Hγ = {βrαεβs : ε ∈ {1, 2}}. In parti
ular Hα = {α,α2} ∼= Z2. By the

previous paragraph it follows that there are m R-
lasses and m L-
lasses of
Dα, so that P ∼=M0[Z2,m,m,M ] is the Rees matrix form of this prin
ipal

fa
tor for some m × m matrix M . To 
omplete the proof we only need to

know that the idempotents of P form a semilatti
e, for then P is a regu-

lar 0-simple semigroup with 
ommuting idempotents, whi
h is ne
essarily

a Brandt semigroup, when
e M 
an be taken to be the identity matrix.

However, the produ
t of any two distin
t idempotents e = βjα2β−j
and

f = βkα2β−k
is βjα2βk−jα2βk

and sin
e k 6≡ j (mod m) it follows from (i)

above together with Lemma 4.3(iii) that ef 6∈ Dα so that in the prin
ipal

fa
tor Dα ∪ {0}, the produ
t of any two distin
t idempotents is 0 and in

parti
ular E(Dα ∪ {0}) is a semilatti
e, as required.

Theorem 4.6 (a) Any �nite orthodox semigroup S may be embedded

in a �nite orthodox semigroup T generated by two group elements.

(b) Any �nite orthodox monoid S1
may be embedded as a semigroup

into a �nite 2-generated orthodox monoid T whose subband of idempotents

satisfy the same semigroup identities.

Proof (a) From Proposition 4.4, we need only 
he
k that, given that S
is orthodox, the idempotents of our 
ontaining semigroup T form a band.

Consider E(T ) = E∪F∪{0} as des
ribed in Theorem 4.5. Produ
ts involving

0 are 0 and the produ
t of any two members of E is also 0 unless they have

identi
al se
ond and third 
o-ordinates j say. In this 
ase we have a produ
t

of idempotents in the semigroup T1,j
∼= S by Theorem 3.6(ii): in parti
ular

the produ
t is itself an idempotent as S is orthodox.
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Next, let ρ = βjα2β−j
and µ = βkα2β−k

be two distin
t members of F .
Sin
e the produ
t ρµ has the fa
tor αβ−j+kα with k − j 6≡ 0 (mod m), it

follows from Theorem 4.5 (iii) and (v) that either ρµ = 0 or dom ρµ ⊆ X×{i}
say. Routine 
al
ulation then gives that, if de�ned, (x, i) · ρµ = (x · ef, i)
for some idempotents e, f ∈ E(S). Sin
e ef ∈ E(S) it follows that ρµ =
λ(ef, i, i) ∈ E(T ). In detail we have, working modulo m with i + j ≡ mt

(mod m) say:

(x, i) · ρ = (x, i) · βjα2β−j = (x,mt) · α
2β−j = (x · αt±n,mt±n) · αβ

−j

= (x · αt±nαt,mt)β
−j = (x · αt±nαt, i);

now αt is inverse to αt±n, so this �nal produ
t 
an be written as (x·e, i),
where e = αt±nαt ∈ E(S). By the same token, applying this 
al
ulation

now to (x · e, i) · µ yields the required expression (x · ef, i) where ef ∈ E(S)
as 
laimed previously. Hen
e ρµ = λ(ef, i, i) ∈ E.

Finally let λ = λ(e, i, i) ∈ E and ρ = βjα2β−j ∈ F as above. If λρ 6= 0
then λρ has the form λρ = (ef, i, i) ∈ E(T ) as E(S) is a band. On the other

hand ρλ 6= 0 implies that (x, i) · ρλ = (x · fe, i, i) for some f ∈ E(S) when
e
ρλ ∈ E(T ). In detail the relevant 
al
ulations are as follows. If λρ 6= 0 then

dom λρ ⊆ X × {i}, i+ j ≡ mt (mod m) say and

(x, i) ·λρ = (x ·e, i) ·βjα2β−j = (x ·e,mt) ·α
2β−j = (x ·eαt±n,mt±n) ·αβ

−j =

(x · eαt±nαt,mt) · β
−j = (x · eαt±nαt, i)

and, as before, αt±nαt = f ∈ E(S) and so ef ∈ E(S) as S is orthodox.

Hen
e (x, i) · λρ = (x · ef, i) and it follows that λρ = λ(ef, i, i) ∈ E.

Now 
onsider ρλ and suppose that ρλ 6= 0. We have by Lemma 3.2

applied to ρ that dom ρλ ⊆ X × {k} say. However (X × {k})ρ meets dom

λ ⊆ X × {i} and sin
e ρ is idempotent we have that ρ maps ea
h interval

X × {k} into itself and we dedu
e that k = i. Now we have i+ j ≡ mt(mod

m) say and we obtain:

(x, i) ·ρλ = (x, i) ·βjα2β−jλ = (x,mt) ·α
2β−jλ = (x ·αt±n,mt±n) ·αβ

−jλ =

(x · αt±nαt,mt)β
−jλ = (x · αt±nαt, i) · λ = (x · fe, i)

where f = αt±nαt ∈ E(S) as before and again fe ∈ E(S) as S is orthodox.

Therefore ρλ = λ(fe, i, i) ∈ E, as required to 
omplete the proof.
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(b) Following Remark 3.8, only the 
ase where |E(S1)| ≥ 2 is of interest.

As in the proof of Corollary 3.7, we may take a typi
al semigroup identity

φ : p = q satis�ed by S1
to be homotypi
al, meaning that ea
h variable in

φ appears in both p and q. Sin
e we are 
onsidering identities on bands, we

may assume that φ has more than one variable. We need to 
he
k is that

E(T ) also satis�es φ.

By Lemma 4.3(iii) it follows that any produ
t uv of two distin
t members

u, v ∈ F = E(T ) ∩Dα falls out of Dα and lies in T1. It follows, again from

Lemma 4.3(iii), that either uv = 0 (the empty map) or dom(uv), ran(uv)
are 
ontained in some interval Yi say. In the latter 
ase uv = (u|Yi)(v|Yi).
Sin
e the restri
tions ui = u|Yi and vi = v|Yi ea
h belong to Ei = {λ(e, i, i) :
e ∈ S}, the produ
t uv = uivi is equal to a produ
t of two idempotents in

Ei.

Now let us 
onsider the words p(x1, · · · , xt) and q(x1, · · · , xr)(r ≥ 2) of
the identity φ and let us substitute elements of E(T ) to obtain produ
ts

P = p(t1, · · · , tr) and Q = q(t1, · · · , tr). We need to verify that P = Q.

Sin
e ea
h produ
t involves at least 2 members of E(T ), it follows from

the argument of the previous paragraph that ea
h tj may be repla
ed by

a member of E(T1) without 
hanging the value of either of the produ
ts

P and Q, so without loss we may assume that t1, · · · , tr ∈ E(T1). Hen
e

ea
h tj ∈ Ei for some i that depends on j. Consider the set of subs
ripts

I = {i : tj ∈ Ei}. If |I| = 1 then both P and Q are produ
ts of idempotents

in some Ei
∼= E(S) and so P = Q as E(S) satis�es φ. On the other hand,

if |I| ≥ 2 then P = Q = 0 as ea
h of P and Q 
ontains a produ
t of the

form uv with u ∈ Ei, v ∈ Ej with i 6= j. In either event, it follows that φ is

satis�ed by E(T ) also, thus 
ompleting the proof of Theorem 4.6(b).

Spe
ialising to the 
ase where E(S) is a semilatti
e and noting that

E(S) is a semilatti
e if and only if the same is true of E(S1) gives the main


orollary (Corollary 2.2) of the 
onstru
tion of [8℄ that the �nite symmetri


inverse semigroup In embeds in a 2-generator inverse susbsemigroup of In+2.

Corollary 4.7 (M
Alister, Stephen and Vernitski) Every �nite inverse

semigroup may be embedded in a �nite 2-generated semigroup that is an

inverse semigroup.
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