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Brain-Computer Interfaces for Detection and
Localisation of Targets in Aerial Images

Ana Matran-Fernandez and Riccardo Poli

Abstract—Objective. The N2pc event-related potential (ERP)
appears on the opposite side of the scalp with respect to the visual
hemisphere where an object of interest is located. We explored the
feasibility of using it to extract information on the spatial location
of targets in aerial images shown by means of a rapid serial visual
presentation (RSVP) protocol using single-trial classification.
Methods. Images were shown to 11 participants at a presentation
rate of 5 Hz while recording electroencephalographic signals.
With the resulting ERPs we trained linear classifiers for single-
trial detection of target presence and location. We analysed the
classifiers’ decisions and their raw output scores on independent
test sets as well as the averages and voltage distributions of
the ERPs. Results. The N2pc is elicited in RSVP presentation
of complex images and can be recognised in single trials (the
median area under the receiver operating characteristic curve
was 0.76 for left vs right classification). Moreover, the peak
amplitude of this ERP correlates with the horizontal position
of the target within an image. The N2pc varies significantly
depending on handedness, and these differences can be used
for discriminating participants in terms of their preferred hand.
Conclusion and Significance. The N2pc is elicited during RSVP
presentation of real complex images and contains analogue
information that can be used to roughly infer the horizontal
position of targets. Furthermore, differences in the N2pc due
to handedness should be taken into account when creating
collaborative brain-computer interfaces.

Index Terms—Brain-computer interfaces, N2pc, P300, rapid
serial visual presentation, handedness.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) convert signals from the
brain into commands that allow users to control devices
without relying on the usual peripheral pathways. Traditional
BCIs aim at helping people with limitations in their motor
control or their ability to communicate, such as those who
are locked-in. Thus, typical BCI applications are spellers [1],
[2], [3], wheelchair-control interfaces [4] or interfaces for
computer mouse control [5], [6]. However, some forms of
BCIs have recently started to be explored with the able-bodied
population in mind, focusing on the augmentation of human
capabilities [7] or the provision of a new means of control [8].

One of these new forms of BCIs focuses on augmenting
human visual perception capabilities to speed up the process
of finding pictures of interest in large collections of images [9],
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[10], [11], [12], [13], [14]. This problem is particularly
important in counter intelligence and policing, where large
numbers of images are screened in search for threats on a
daily basis [13], [15]. However, other real-life applications of
this technology include the screening of mammograms [16]
and geoscientific images [17] by trained experts.

In these situations, typically, researchers use the Rapid Se-
rial Visual Presentation (RSVP) protocol, in which sequences
of images are shown at high presentation rates over a fixed
area on the screen [18]. Observers are able to detect target
configurations anywhere on the presentation area in the stream
of images and these elicit distinct Event-Related Potentials
(ERPs) in the electroencephalographic (EEG) signals acquired.
In particular, if targets are reasonably rare, a P300 ERP
(a large positive wave typically peaking 300–600 ms after
stimulus onset) is likely to be produced in response to them as
conditions are effectively those of the “oddball” paradigm [9],
[19], [1].

Another ERP of particular interest for this work is the
N2pc, which, in the literature, has predominantly been as-
sociated with selective attention processes [20], [21], [22],
[23]. The N2pc is typically associated with the following
interpretation: the first steps in perception are believed to be
the automatic detection and coding of sensory features (e.g.,
shapes), followed by the first stage of attention shifting, known
as covert attention, where people mentally shift their focus
before/without moving their eyes [24], [25]. If participants
are given a search template or a description of the target, the
sensitivity of covert attention to objects/features that match
this template is increased, so that they will be processed with
higher priority. This shift of covert attention towards high
priority areas is believed to be signalled by the N2pc [26].

Irrespective of what it represents, the N2pc is found in
the presence of at least one distracting item (any non-target
stimulus) apart from the target on the display [20]. It typically
appears 170–300 ms after stimulus onset in contralateral
electrode sites with respect to the visual hemifield where
the target is located, presenting its maximum amplitude at
electrodes PO7/PO8 and P7/P8 [26].

Only a few studies have considered the N2pc (on its own
or together with other ERPs) for controlling a BCI [27], [28].
In [27], the authors found that N2pc components can help
identify popout targets accurately (but with large variations
in classification accuracy across participants) when averaging
signals acquired over three repetitions of stimulus presentation.
Moreover, the N2pc was used together with the P300 ERP
to control a BCI for communication by a disabled partic-
ipant in [28], achieving a classification accuracy of 80%.
The authors also tested this paradigm with healthy users for
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other applications, such as control of a robot and Internet
browsing, achieving perfect classification after 6 repetitions
of the stimuli.

In this paper, we explore the feasibility of using the N2pc to
extract information on the spatial location of targets in stimuli
representing complex real-life scenes for a task of practical
utility (aerial image sifting) presented using an RSVP protocol
through BCIs based on single-trial classification. This is an
exceptionally difficult task for a BCI as: (1) the N2pc is a much
smaller ERP than the P300 in terms of voltage amplitudes,
duration and locations where it can be detected, (2) we use a
single-trial approach, and (3) we use a rapid presentation rate.
To moderate these difficulties we used a presentation rate at
the lower end of the spectrum for RSVP (namely, 5 Hz) and
restricted the target template to a specific airplane (albeit with
variable rotations and positions).

We hypothesise that, if the N2pc can be detected in such a
scenario, it could be exploited, for example, to help circum-
scribe the area of the image where the target is located, thereby
speeding up the job of the person reviewing the potential
targets detected by a BCI. Also, it could help improve target
detection if, for instance, targets too lateral with respect to
an observer’s gaze to cause a fully blown P300 still cause
a detectable shift of attention resulting in an N2pc. To verify
these hypotheses, we also investigated the relative dependency
of target classification on the P300 and the N2pc.1

We should note that our approach is different from the
one used in many other RSVP-based BCI systems for target
detection where participants are required to press a key when
they see a target (sometimes called the behavioural task) [9],
[10], [31], [13], [14], [32], [33], and then use only the trials
in which the target was correctly identified by the participant
(e.g., by including only those trials that were followed by
a key press within a pre-defined time period) when plotting
grand averages and for training a classifier with clean data.
However, this method has several drawbacks [11], including
variations in reaction times (RTs) depending on task difficulty,
presentation rates and other factors, and artefact contamination
in the EEG resulting from the keypress. For these reasons, we
decided against such an approach.

The organisation of this paper is as follows. Section II de-
scribes the experimental setup used for data collection and the
signal processing techniques that were applied to these data.
Section III presents the results of our experiments. We will
start by focusing on the detection of targets in our experiment
by means of the P300. Next, as little to no information is
available in the literature in relation to whether and at what

1The work presented in this paper branches out of preliminary research
where we experimented with collaborative BCIs (cBCIs) for the classification
of aerial images where the outputs of two [29] and three [12] individually-
trained classifiers were averaged in order to improve classification perfor-
mance. In [30] we also checked the presence of the N2pc ERP for different
presentation rates and created a 2-person cBCI for target localisation. The
stimulation protocol and a subset of the participants used for this study were
originally tested in such prior work. However, that work did not study the
ERPs themselves through single-channel grand averages or scalp maps, did
not look at raw classifier-scores and their distributions, did not look at the
issue of predicting the fine-grain location of targets via N2pc and it did not
look at differences in the N2pc based on handedness — all of which we have
done here.

sites the N2pc is elicited in conditions remotely similar to
those adopted in this work, we will explore whether the N2pc
component is present in the EEG signals recorded from our
experiment by means of an ERP analysis. We will then study
whether (and to what extent) a classification system based on
linear Support Vector Machines (SVMs) takes advantage of the
information provided by this (lateralised) component for target
detection. Finally, we will look at the degree to which the N2pc
can be used to estimate the position of a target within the
field of view and study the differences in this ERP that arise
as a consequence of participant’s handedness. We discuss our
findings in section IV and provide conclusions in section V.
Possible avenues for future work will also be considered in
these two sections.

II. METHODS

A. Participants and setup

We gathered data from 11 volunteers with normal or
corrected-to-normal vision (mean±SD = 24.5±3.83 years old,
four females, five left-handed). They all read, understood and
signed an informed consent form approved by the Ethics
Committee of the University of Essex.

Participants were seated at approximately 80 cm from the
LCD screen where the stimuli were presented. EEG data were
acquired with a BioSemi ActiveTwo system with 64 electrodes
following the international 10-20 system, plus one electrode
on each earlobe. The EEG was referenced to the mean of the
electrodes placed on the earlobes. The initial sampling rate was
2048 Hz. Signals were band-pass filtered between 0.15 and
28 Hz with a non-causal FIR filter obtained by convolving
a low-pass filter with a high-pass filter, both designed with
the window method. Data were then downsampled to 64 Hz
before correcting for eye blinks and ocular movements. This
was performed by applying the standard subtraction algorithm
based on correlations to the average of the differences between
channels Fp1–F1, and Fp2–F2 [34].

B. Experimental design

The images for our experiments consisted of 2,400 aerial
pictures of London. All images were converted to grayscale
and their histograms were equalised. Picture size was
640×640 px2 (thus subtending a visual angle of 11.5×11.8
degrees), and pictures were centred on the middle of the LCD
screen. Target (T) pictures were aerial pictures in which a
randomly rotated and positioned airplane had been (photo-
realistically) superimposed (see breakout in Fig. 1). Non-target
(NT) images did not contain airplanes.

Pictures were shown to participants in sequences (or bursts)
of 100 images which were presented at a rate of 5 Hz, with no
gaps between two consecutive stimuli as illustrated in Fig. 1.
Each burst lasted 20 seconds and was preceded by a fixation
cross for 1 second. Ten target pictures were randomly inserted
within each sequence (the remaining 90 being non-targets)
with the only restriction that there had to be at least one NT
image between two target ones. The ratio of target vs non-
target images was 10%.
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Fig. 1. Illustration of the protocol used in our experiments. Images containing
a target were randomly interspersed within a stream of non-target images. For
clarity, target images are highlighted in this figure.

Fig. 2. Example of LVF (left) and RVF (right) target images used in the
experiment. The parameters of the stimuli have been superimposed on the
RVF target image.

To enhance the amplitude of the P300 [35], participants
were assigned the task of mentally counting the planes they
saw within each burst and report the total at the end of a burst
(to encourage them to stay focused on the task). Participants
could rest after bursts and were free to decide when to start
the next burst (by clicking on a mouse button).

C. Lateral targets

Approximately 60% (144 out of 240) of our target images
contained a lateral target (i.e., the target appeared on the left
or right side of the picture). More specifically, we had 59 Left
Visual Field (LVF) target pictures and 85 Right Visual Field
(RVF) target pictures.2

The coordinate of the airplane was established as the x-
coordinate of the centroid of the plane. The origin of x-
coordinates was located on the lower left corner of the image,
as shown in Fig. 2(right). A target was considered to be lateral
if it was positioned at a visual angle ≥ 1.2 degrees on the
horizontal axis (with respect to the centre of the screen).
Examples of an LVF and an RVF target can be seen in Fig. 2.

As we will discuss later, the epochs associated with these
images were analysed with particular attention, as such images
were expected to generate N2pc as well as P300 ERPs.

2The imbalance in the cardinality of the LVF and RVF target sets is due to
a slight undetected bias in the algorithm that was used to position the planes.
This was, however, inconsequential other than it slightly reduced the statistical
significance of some of our findings.

TABLE I
MAIN FEATURES OF THE DATASETS USED IN OUR STUDY. SEE TEXT FOR

MORE DETAILS.

Objective #trials for training* #trials for testing* #foldsClass 1 Class 2 Class 1 Class 2
T vs NT classification 216 1944 24 216 10
LVF vs RVF classification 53 76 6 9 10
Target localisation 780 (LH) or 936 (RH) 420 (LH) or 504 (RH) 1
LH vs RH classification 340 or 425 510 or 425 85 or 0 0 or 85 11

*In each cross-validation fold.

D. Feature selection and classification

We expected both the P300 and the N2pc ERPs to be
rarer (or have a reduced amplitude) in response to non-targets
than in the case of targets. Also, we did not expect them
to be always present together even for targets. Given the
differences in their known characteristics, we used different
sets of features in order to best detect and exploit each ERP.
These will be described below in two corresponding sections.

It is common in BCIs to average signals from several trials
in order to increase the signal-to-noise ratio of ERPs and
improve classification performance. Averaging would slow
down our systems, thereby significantly reducing the range
of applications for which they could be utilised. For this
reason, in this work we will make single-trial decisions for
classification purposes. We will, however, make use of grand
averages for the analysis of ERPs as is customary in BCI,
psychophysiology and neuroscience.

In the following subsections we will describe four uses of
our experimental data, each characterised by a different choice
of training and test sets. Table I summarises such choices to
help readers keep track of these differences.

1) Detection of the P300 component: We expected the
classification of target and non-target images to rely mostly
on the P300 ERP,3 but we wanted to see to what degree the
N2pc could influence it. We extracted epochs that contained
the 300–600 ms interval after stimulus onset. This resulted in
a total of 20 features per electrode.

In an effort to reduce the total number of features used for
the task and minimise the risk of overfitting, we used only
centro-posterior-occipital electrode sites as these are typically
where P300s are most prominent. In one combination (E28)
we used 28 electrodes (see Fig. 3). The second combination
(of 20 electrodes, E20) was identical to the first except that
we omitted electrode sites where the N2pc is most prominent
according to the literature. A third combination (E24) included
the electrodes in E20 plus four electrode differences particu-
larly suitable for the detection of the N2pc (see next section).
So, for the purpose of classification, epochs were represented
with between 400 and 560 features. As before, epochs were
referenced to the average voltage in the 200 ms interval before
stimulus onset.

For each participant, we used 10-fold stratified cross-
validation to train an ensemble of two hard-margin linear SVM
classifiers. The training set of each fold was used itself to

3Unless otherwise stated, in this article, whenever we refer to the P300 we
intend the positive posterior ERP also known in the literature as P3b [35] and
not the earlier more-frontal ERP known as P3a [36].
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Fig. 3. Electrodes used for the different classification tasks. Electrodes in blue
represent the E20 combination. All the highlighted electrodes were used in the
E28 combination. Differences between pairs of electrodes in red were used
for the detection of the N2pc. Combination E24 included the blue electrodes
plus the differences of electrodes used for the N2pc.

find the optimal C parameter (i.e., the misclassification cost,
C ∈ {10−8, 10−7, . . . , 1}) of the classifiers via 10-fold cross-
validation. Each classifier was trained to distinguish between
the T and NT conditions. The optimised ensemble for each
participant was tested on the epochs from the independent test
set.

We recorded the analogue output scores of the SVMs, with
which we then computed the Receiver Operating Characteristic
(ROC) curve for each participant. This indicates the balance
between sensitivity and specificity of a classifier obtained
when a control parameter (typically a threshold) is changed.
Following an established standard, we condensed the informa-
tion contained in each ROC curve into a single performance
figure: the Area Under the Curve (AUC) [37], [38]. The closer
the AUC to 1, the better the classifier. Although there are
no general guidelines, classification systems are considered
acceptable when their AUC is higher than 0.7 [39]. In BCI
applications, a threshold of 0.8 is typically used in order to
obtain a level of performance that guarantees that the time
that it takes to output a symbol (including corrections to errors
made by the system) will not be too long to discourage users
(e.g., [40], [41]).

2) Detection of the N2pc component: To verify whether
we could detect the N2pc component in single trials in the
conditions of our experiment, we extracted epochs of EEG
signal from approximately 200 ms to 400 ms after stimulus
onset (the temporal window where the N2pc most often occurs
according to the literature). This resulted in 14 samples per
channel at the 64 Hz sampling rate used. The data were
referenced to the mean value of the 200 ms interval before
stimulus onset.

Since the N2pc is a lateralised ERP, it is more easily
revealed when looking at differences between pairs of elec-
trodes corresponding to symmetric positions with respect to
the brain’s median plane than when processing left and right
electrodes independently. Furthermore, it is most prominent
in the posterior and occipital electrodes. Based on this, when
detecting N2pc components in our experiments we used the
set of four differences between electrode pairs: (PO7−PO8),
(P7−P8), (PO3−PO4) and (O1−O2) (see Fig. 3). Concatenat-
ing these electrode differences yields a feature-vector repre-

sentation of epochs including 14× 4 = 56 elements.
With this input representation, we performed 10-fold strati-

fied cross-validation to train an ensemble of two hard-margin
linear SVM classifiers to distinguish between LVF and RVF
targets from our set of 144 lateral target pictures. Again, the
training fold was itself used internally to optimise the misclas-
sification cost of the ensemble via 10-fold cross-validation, and
the performance of the classifiers was measured via the AUC.

3) Target localisation: We hypothesised that the N2pc
could be used to tell to what degree a target is lateral with
respect to the centre of the image. In order to test this
hypothesis, we used a linear predictor which was optimised
by a Particle Swarm Optimiser (PSO) [42]. The representation
used in the PSO included 17 parameters: eight were interpreted
as indices in the 56-dimensional feature vector extracted
from each epoch (see Section II-D2), another eight were the
coefficients for the corresponding features, and one was a
constant term for the linear predictor. The fitness function
optimised by the PSO was multi-objective as we aimed at:
(1) obtaining a correlation, ρpredictor, between actual outputs
and desired outputs (the x coordinate of the target, in pixels, in
the picture corresponding to each epoch) as close as possible
to the correlation, ρreference, obtained by a standard linear
regressor using all the features, and (2) ensuring the regression
line between the desired outputs and the outputs of our linear
predictor has as a slope close as possible to 1.4 Formally, the
fitness function (to be minimised) was:

f = |1− slope|2 + |ρreference − ρpredictor|+ 0.0005× MAE

where slope and MAE are the slope and the mean absolute
error of the linear regression between the desired outputs and
the outputs of our linear predictor, respectively.

The PSO was trained using a random split of 65% of
all target trials for either all left-handed or all right-handed
volunteers, and tested on the remaining trials from the group.
Thus, for the former we had 780 training samples (240 tri-
als/participant × 5 participants × 65%), and 420 test samples,
whereas for the latter the number of training and testing
samples were 936 and 504, respectively.

We separated the participants into left- and right-handed
groups due to differences found in the N2pc depending on the
handedness of the volunteers (more on this below).

4) Handedness detection: Finally, we trained linear SVM
classifiers to perform discrimination of left-handed (LH) vs
right-handed (RH) participants. We performed 11-fold leave-
one-participant-out cross-validation. In each fold, after train-
ing, all the trials from the training set for both classes (each
one represented by the RVF target epochs for either left- or
right-handed participants) were fed to the classifiers, and the
median output score was computed. This value was used as
a threshold for comparing the median output score for the
excluded participant and classify him/her as LH or RH.

4We used this approach to compensate for the tendency of standard
multivariate regression to compress its output range in the presence of strong
noise on its inputs.
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III. RESULTS

In this section we will present the results of our experiments.
More specifically, in Section III-A we will look at grand
averages and scalp maps indicating the presence and timing of
the P300 and N2pc ERPs in our data, while in Section III-B
we will report on the performance of our BCIs for T vs NT
and LVF vs RVF classification. Finally, in Section III-C we
consider differences in perception of lateral targets depending
on the handedness of the participant. Based on these differ-
ences, we study the degree to which a linear predictor can be
used to quantify the eccentricity of a target with respect to the
centre of the image.

A. Analysis of ERPs

Before we look at the ERPs obtained in our experiments,
we should note that, as is common in other BCIs such as
the matrix speller [1], [43], when using very short stimulus
onset asynchrony (SOA), ERPs are significantly deformed with
respect to their “textbook” form found in electrophysiology
and neuropsychology studies (e.g., see [44]). For instance, in
our RSVP experiment, EEG signals contain a large SSVEP
component at the frequency of stimulation (5 Hz) due to the
involuntary response of the visual system. However, as we will
see below, this waveform is modulated by the ERPs selectively
generated by different stimuli.

1) P300: Let us start by looking at the grand averages of
the ERPs for the T and NT conditions. These, together with
their difference, are shown in Fig. 4 (left) for electrode site
Pz, while the scalps in Fig. 4 (right) show the grand-averaged
spatial distributions at 297 and 515 ms after stimulus onset.

Due to the above-mentioned SSVEP modulation, there
appear to be two peaks on the difference waveform of
Fig. 4 (left), one at about 300 ms and a second one around
600 ms, both referred to stimulus onset. However, this double
peak, which is also present in the grand average waveform for
the target trials, should not appear on the P3b [35], [45], [46].
We thus believe that the pronounced decrease is due to this
SSVEP modulation, whose effects are also manifested in the
scalp maps reported on Fig. 4 (right).

To see if the observed peak differences were statistically
significant, we defined the peak amplitude of the P3’ as the
mean voltage amplitude in the time intervals 300–400 ms after
stimulus onset, and the peak amplitude of the P3” as the
mean voltage amplitude 500–600 ms after stimulus onset for
T and NT trials. We applied a Kruskal-Wallis test (a one-way,
non-parametric, analysis-of-variance test) [47], [48] to test for
differences between the T and NT conditions for electrode
sites Cz, CPz and Pz for both peaks. We found that all such
differences are highly significant at the tested electrodes (p
values <3×10−4) except for the P3” amplitudes in Cz, which
are not statistically different.

2) N2pc: To verify the presence of the N2pc ERP, in Fig. 5
we show grand averages for lateral targets. The “contralateral”
line in the figure represents the grand average of participant
averages that were computed by averaging the epochs recorded
from channel PO7 (on the posterior-occipital left region of
the scalp) for all RVF targets with the epochs recorded from

channel PO8 (on the posterior-occipital right region of the
scalp) for all LVF targets. Similarly, the “ipsilateral” line
represents grand averages where we averaged the epochs
recorded from channel PO7 for LVF targets with the epochs
recorded from channel PO8 for all RVF targets. We adopted
these ipsilateral and contralateral grand averages, following
the conventions of the N2pc literature, as these emphasise left-
right asymmetries that would otherwise be lost with standard
averages. Following the same conventions, we plotted these
data using an inverted ordinate axis (so higher means more
negative). To further illustrate the differences between the two
conditions, in the figure we also report the difference between
the contralateral and ipsilateral grand averages (line labelled
as “N2pc”).

As we can see from the figure, the ipsilateral and con-
tralateral ERPs start to deviate markedly from each other at
250 ms after stimulus onset, with their difference peaking at
approximately 340 ms. The shape and sign of the deflection
is consistent with those of the N2pc reported in the literature,
even though in our experiment its latency was slightly longer
than in other studies, presumably because attention (both
covert and overt) is also attracted (and, thus, divided) by
features of the constant stream of distractors (non-targets) used
in our experiments5.

Fig. 6 shows snapshots of the temporal evolution of the
grand averages across the scalp between approximately 310 ms
and 375 ms after the presentation of images containing a lateral
target. Looking at the grand averages for LVF targets (top), the
voltages at several contralateral posterior and occipital elec-
trodes (e.g., PO4, PO8, P8) start becoming more negative than
those in corresponding ipsilateral channels (e.g., PO3, PO7,
P7) from around 300 ms after stimulus onset. This difference
increases over time. The same effect can be observed in the
grand averages for RVF targets (bottom), where the voltages
at left posterior electrodes (i.e., the contralateral channels) are
more negative than the corresponding voltages of the right
(i.e., ipsilateral) channels in the same time interval6.

This figure shows a pattern of activation in the frontal
lateral electrodes (e.g., FT7, FT8), showing that there are eye
movements in the horizontal axis in response to lateral targets.
However, their amplitude is much smaller than that shown in
Fig. 5, so the horizontal component of the electrooculogram
alone cannot account for the differences observed.

We measured the N2pc “peak” amplitudes (computed as
the mean value of the voltage difference between pairs of
contralateral and ipsilateral electrodes in the time interval 280–
380 ms after stimulus onset) for LVF and RVF targets. The
medians of these amplitudes across all participants and trials
are reported in Table II for electrode differences PO7−PO8,
P7−P8, PO3−PO4 and O1−O2. The table also reports the
p values obtained from the Kruskal-Wallis test applied to these
data. As one can see, the voltage asymmetries we documented

5Unfortunately, there is not enough information in the literature to know
whether the filters used in each article are causal or not, and, thus, it is not
possible to ascertain whether the differences in latency are due to our non-
causal filter [49] or to the different paradigm used in this work.

6Of course, there are asymmetries of brain function in the left and right
hemispheres and, so, we cannot expect perfectly symmetric scalp maps.
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Fig. 6. Grand-averaged ERP scalp distributions between 312 ms and 375 ms
after the onset of LVF (top row) and RVF targets (bottom row).

in these channels where the N2pc is typically found are highly
statistically significant.

B. Single-trial classification

In this section we will look at the performance and be-
haviour of the two BCIs considered in this work: one for the
classification of T vs NT images and one for the classification
of LVF vs RVF for images that are already known to contain
a target.

TABLE II
MEDIANS AND KRUSKAL-WALLIS p VALUES FOR THE PEAK AMPLITUDES

OF THE VOLTAGE DIFFERENCES BETWEEN CONTRALATERAL AND
IPSILATERAL CHANNELS FOR LVF AND RVF TARGETS.

N2pc: median peak amplitude
Electrode difference LVF RVF p value
PO7− PO8 1.646 µV -1.950 µV 2.2× 10−16

P7− P8 1.897 µV -1.301 µV 8.5× 10−10

PO3− PO4 1.559 µV -1.813 µV 3.3× 10−16

O1−O2 0.868 µV -0.902 µV 1.2× 10−4

1) Target vs non-target classification: As described in
section II-D1, for the classification of T vs NT trials we
tested several different combinations of electrodes: one basic
combination of centro-parietal electrodes where the P300 ERP
is most prominent (E28), a second one that did not include
those electrodes that were used for the detection of the N2pc
(E20), and finally a third combination (E24) that used the
features from the electrodes in combination E20 plus the
four pairs of electrode differences used for N2pc detection.
We obtained median AUC values of 0.873, 0.856 and 0.858,
respectively. A one-sided paired Wilcoxon rank test comparing
the participant-by-participant results revealed that the small
difference in medians for combinations E28 and E20 is sta-
tistically significant (p value=7 × 10−3), as is the difference
between combinations E28 and E24 (p value=7× 10−3). This
confirms that there is a consistent, albeit small, advantage in
integrating channels where the N2pc is typically present with
those where P300s are most prominent for the purpose of
detecting targets. However, comparisons between E20 and E24

(p value=0.5) revealed no statistically significant differences.
Moreover, the median Information Transfer Rate (ITR)

across all folds and participants for the T vs NT classification
task in the E28 configuration, using the entropy formula [50]
was 41.03 bpm.

To gain more information about the reliance of the T vs NT
classifiers on the N2pc and their behaviour in the presence
of different types of stimuli, we estimated the probability
density functions (pdfs) for the SVM output scores obtained
for T vs NT classification using the E28 and E20 electrode
combinations. Since we wanted to distinguish between the
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Fig. 7. Probability density functions of the SVM normalised scores in the
T vs NT classification for non-targets, lateral targets and central targets
using combinations E28 (left) and E20 (right) electrodes, computed via R’s
Gaussian-kernel-based density estimator. Vertical lines represent the mean of
each distribution.

cases where an N2pc is expected from those where it is
unlikely to be elicited, we computed separate (conditional)
pdfs for lateral and central targets as well as the (total) pdf
for all non-targets. Fig. 7 shows the results. To provide a
common reference and make it possible to appreciate relative
differences between classes, the pdfs were normalised by
subtracting the mean of the non-target scores and were then
scaled by the standard deviation of the same class (so the
non-target pdf has zero mean and unitary standard deviation).

As shown in the figure, the pdfs for targets and non-
targets are reasonably well separated (as also highlighted by
our earlier AUC analysis). However, both for E28 and E20

we see that the pdfs for central and lateral targets differ to
some degree, with the central targets achieving higher scores
than the lateral targets (approximately 1.67 vs 1.33 for E28

and 1.50 vs 1.27 for E20, respectively). To verify if these
differences are statistically significant, we performed a one-
sided Mann-Whitney test to compare the medians of these
distributions across participants [51], [52]. The results show
that the score shifts of lateral targets with respect to central
ones are highly statistically significant for combinations E28

(p value = 3.9 × 10−5), E20 (p value = 0.001) and E24 (p
value = 0.002).

As we discussed in section II-C, we expected that P300s
would be different for lateral targets than for central ones. The
observed shift in the distributions for lateral targets is likely
to be a manifestation of this.

2) LVF vs RVF classification: As shown in Section III-A2,
there are marked asymmetries in the posterior-occipital lateral
regions of the scalp in the interval 200–400 ms after stimulus
presentation when comparing the ERPs generated by lateral
targets. We, therefore, expected that the four electrode differ-
ences listed in Section II-D2 when computed in this interval
would allow an SVM classifier to distinguish between LVF
and RVF lateral targets. The mean and standard deviations of
the AUCs across all folds for each participant can be seen in
Table III.

This table shows, consistently with the literature [27], that
there are large variations in performance across participants,
with AUCs ranging between 0.67–0.88. Notably, the AUC
median, 0.76, is reasonably high, which is very encouraging

TABLE III
MEAN AND STANDARD DEVIATIONS OF THE AUC VALUES OBTAINED FOR

LVF VS RVF CLASSIFICATION FOR EACH PARTICIPANT, ACROSS ALL
FOLDS.

Participant AUC (Mean ± standard deviation)
1 0.75 ± 0.13
2 0.88 ± 0.07
3 0.81 ± 0.17
4 0.81 ± 0.08
5 0.81 ± 0.11
6 0.76 ± 0.17
7 0.67 ± 0.17
8 0.71 ± 0.17
9 0.80 ± 0.16
10 0.67 ± 0.16
11 0.70 ± 0.13

Median 0.76

considering the amplitude of the N2pc and the small scalp
regions where the it can be detected.

If we now divide all targets into left and right targets
according to whether their centroid falls in one or another half
of the image, rather than following the visual angle convention
described in section II-C, we can calculate the ITR of the
system as if it was a 3-class problem in the following scenario.
Each trial was first passed to the T vs NT classifier. If this first
system labelled it as an instance of class T, then it was passed
to the LVF vs RVF classifier. This resulted in three classes:
LVF target, RVF target and non-target. Using this approach,
we obtained a median ITR of 49.73 bpm. A paired one-
sided Wilcoxon signed-rank test comparing the participant-
by-participant ITRs for the two-class (see Section III-B1) vs
the three-class scenarios showed that this difference is not
statistically significant (p value = 0.05).

C. Target Localisation, Handedness and the N2pc

After initially trying to predict target localisation and ob-
taining promising results, we noticed some differences in the
ERPs produced by left- and right-handed participants7. Given
the approximate balance between LH and RH individuals
in our pool of participants, we then started to look at the
differences in the N2pc ERP in the two groups, finding
important differences.

1) Target localisation: Fig. 8 (left) shows the contralateral
minus ipsilateral grand averages across all lateral targets
for LH and RH participants. This plot also shows the p
values from a one-sided Mann-Whitney test comparing ERP
amplitudes over time. As shown, there are highly significant
differences between the N2pc in LH and RH participants (i.e.,
values of p above the horizontal line), especially in the tail of
the ERP in the time window 280–400 ms after the onset of
the stimuli.

The scalp maps shown in the right side of Fig. 8 highlight
the spatial differences between left- and right-handed partic-
ipants when observing LVF (top) and RVF targets (bottom).

7By “handedness” we refer to the self-reported handedness of the partic-
ipants in the study. More specifically, we asked volunteers to tell us their
preferred hand for writing. Since we did not expect there would implications
of our study on handedness research, we did not perform the standard tests that
are routinely used to more objectively verify the handedness of participants.
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Fig. 9. Predicted x-coordinate for the target vs actual target position (in
pixels) for all target images in the test set (lateral or not), using only LH
participants. The regression line is also shown.

Given the differences in the N2pc depending on handedness,
we decided to separate groups of users depending on their
self-reported preferred hand when training the PSO predictor.
Moreover, since the differences across the left- and right-
handed groups were greater in the set of RVF targets, we
also chose to use only this set to classify between left- and
right-handed people.

As hypothesised, the amplitude of the N2pc can also be
used to determine the distance of the target from the centre of
the picture. Fig. 9 shows the coordinates of the target output
by our PSO-optimised linear predictor (trained as explained
in Section II-D3) vs the actual coordinates of the target for
the group of left-handed participants. A similar plot (not
reported) was obtained for RH participants. In all cases, the
eight features selected by the PSO represent the amplitude of
the N2pc in electrode differences between PO7-PO8, P7-P8
and PO3-PO4.

The correlation between the predictor’s output and the actual
x-coordinate of the target on the test set for this group is
ρ=0.42 (and ρ=0.39 for the RH group). These correlations are
significantly higher than those obtained individually by each
participant, showing that there is an advantage in using the
collaborative approach when trying to locate a target within
an image.

2) Handedness classification: Finally, in terms of left-
vs right-handed classification (LH vs RH), we achieved a
classification accuracy of 100% with the method described in

Section II-D4, showing that there is information in the N2pc
that can be used to discriminate participants in terms of their
preferred hand.

Considering that there are quicker alternatives to assess the
handedness of a participant (e.g., the Edinburgh Handedness
Inventory test [53]), we are not suggesting the use of our
RSVP-BCI method to determine whether a participant is
left- or right-handed. Rather, we want to point out that the
differences in the N2pc due to handedness should be taken
into account when working with this component. This applies
to collaborative BCIs, especially if EEG signals from the
individuals that compose a group are averaged directly [12],
but also when doing grand averages and studies of attention.

IV. DISCUSSION

One of the objectives of our experiments was to understand
whether the N2pc ERP was present during rapid presentation
of real-world images by means of our RSVP paradigm.

Results indicate that the N2pc is evoked and can reliably be
detected in the conditions of our experiments. For instance, we
were able to obtain a median AUC value of 0.76 for single-
trial LVF vs RVF classification (i.e., based on N2pc detection),
with the top quartile of our participants showing AUCs of 0.81
or above. This range of AUCs is typically considered to be
acceptable in the field of BCI. We also found that the form of
the N2pc that is elicited in response to lateral targets differs for
RH and LH participants. By analysing the correlation between
horizontal position and scores, we revealed that the N2pc can
not only be used to distinguish between LVF and RVF targets,
but it can also tell to what degree a target is lateral.

Our ERP analysis also revealed that the N2pc components
evoked using our paradigm had a greater latency than has
previously been reported in the literature. In part, this may be
due to the greater complexity of the stimuli used in our study
in comparison to the simple stimuli traditionally used in the
literature. However, we suspect that the stimulus presentation
technique we used (i.e., RSVP) is the prominent reason for
the greater latency. In typical N2pc-evoking experiments,
participants are shown an array of objects or symbols either
for a short amount of time (usually <300 ms) with a generous
inter-stimulus interval (>1.5 s), or until they find the target.
However, in the RSVP paradigm of our experiment, images
follow each other very quickly, and, thus, a target image
is immediately followed by one or more non-targets. We
hypothesise that these effectively act as masks for the target
picture, thus resulting in a significant increase in the cognitive
load of the task and in diverting attentional resources away
from it. Because of this, in our in our experiments the N2pc
precedes the P300 by less than in other setups.

RSVP-based BCIs pose a very attractive alternative for the
development of gaze-independent systems that are suitable for
severely locked-in people with no gaze control [54], [55], [28].
Thus, we believe that the study presented can help improve
BCIs aimed at communication systems by the disabled, e.g.,
by investigating whether the explicit use of the N2pc can help
determine which column the user is focusing on. Moreover,
the fact that the N2pc is present in people with no gaze
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control makes them suitable to operate systems such as the
one presented in this work, thus potentially increasing their
employability.

An advantage of using the RSVP protocol for controling a
BCI is the capability to increase the ITR of the system, which
is another reason why these systems are particulary interesting
in applications of BCI for disabled people. Moreover, we
have shown in this work that we can increase the ITR of
our system by dividing the “target” class into two subclasses,
depending on the laterality of the target, even if the left vs right
classification task is performed after a trial has been classified
by the T vs NT system as a target (i.e., we have a sequential
system).

We also showed that differences in the N2pc due to
handedness can effectively be used to discriminate between
left- and right-handed participants. We did not perform a
handedness test on our volunteers, and as such, these results
should be taken as a preliminary result. Although there is
previous evidence of the dependence between handedness and
memory [56], handedness and brain morphology [57], [58] and
EEG signals being different depending on handedness [59], to
the best of our knowledge, these differences have not been
exploited to assess the handedness (or preferred hand) of a
person.8 As we said in Section III-C2, we do not believe that
our method to determine the handedness of a person should be
instead of the already existing ones. The important message
behind our result is the fact that the differences found due
to handedness should be taken into account in studies based
on this ERP, such as those that use the N2pc as a marker of
attention shifts, which are currently mostly based on right-
handed participants.

This same suggestion applies to the field of collaborative
BCIs, specially in the case where the (raw or pre-processed)
EEG signals are directly averaged across multiple users. Just
as different latencies of a given ERP extracted from several
participants affect (possibly decreasing) the performance of the
BCI trained from those signals, the samemight happen if there
are differences in the ERPs that arise from the handedness of
the participant. This is a matter that people in the field of
collaborative BCI should take into account and which might
be useful to create high performance systems.

In our analysis of ERPs and classifier outputs in the T vs NT
classification task, we found that targets produce significant
P300 components that are not present in the non-targets,
making the classes even better separable than in the LVF
vs RVF task. We showed that the raw outputs of the T vs
NT classifiers are (statistically significantly) smaller for lateral
targets than for central ones, suggesting that a link between
P300 and eccentricity exists in our setup. While the difference
is small compared with the that between targets and non-
targets, it still means that the BCI misses more lateral targets
than central ones. Symmetrically, the LVF vs RVF classifier

8The only article that we are aware of that touches upon this subject is [60].
However, we felt that there are a number of flaws in the methodologies and
inconsistencies in the results, including setting the threshold for classification
based on the test data, contradictions in whether or not the participants from
the second experiment (whose results are never reported) were left-handed,
and forgetting to include the results claimed in (their) Section 4.5.

selectively responds to lateral targets with a clear negative or
positive response, but does not respond (producing a near-zero
score) for central targets and, in preliminary tests, also non-
targets.

All of these effects suggest that there could be ways of
exploiting handedness and lateralisation (as emphasised by
the N2pc) to build even better performing integrated T vs
NT and LVF vs RVF classification systems. Further radical
improvements in these systems can also be obtained by
integrating neural evidence from multiple observers to improve
the accuracy of classification systems, as we did in [12], [29].
We will explore both these research avenues in the future.

V. CONCLUSIONS

In this paper, we looked at the possibility of exploiting the
P300 and N2pc ERPs in a BCI which automatically detects
targets in aerial pictures of urban environments and one that
approximately establishes the horizontal position of the target
within pictures known to contain one. To the best of our
knowledge, this is the first attempt to analyse and exploit the
N2pc with stimuli representing complex real-life scenes and
for a task of real practical utility.

Our classification results for target detection are aligned
with results obtained by equivalent single-trial BCIs utilising
RSVP protocols at our rate of presentation. Interestingly,
however, the results of LVF vs RVF classification based
on the N2pc electrode-sites and time-window are also very
encouraging, producing a median AUC of almost 0.80.

By studying the N2pc ERP, we have been able to find
a significant correlation between its features (as represented
by this ERP’s amplitude and time course) and the horizontal
position of targets within images, which suggests a whole
spectrum of possible BCI applications for this ERP in the
future. FInally, we also showed differences in the N2pc due to
participant’s self-reported preferred hand, which can be useful
for other studies that rely on this component, and for cBCIs.
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