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Abstract 

 

Most research into uncertainty focuses on how people estimate probability magnitude. 

By contrast, this paper focuses on how people interpret the concept of probability and why 

they often misinterpret it. In a weather forecast context, we hypothesized that the absence of 

an explicit reference class and the polysemy of the percentage format are causing incorrect 

probability interpretations and test two interventions to help people make better probability 

interpretation. In two studies (N = 1337), we demonstrate that most people from the United 

Kingdom and the United States do not interpret  probabilities of precipitation correctly. The 

explicit mention of the reference class helped people to interpret  probabilities of 

precipitation better when the target area was explicit; but this was not the case when it was 

not specified. Furthermore, the polysemy of the percentage format is not likely to cause these 

misinterpretations, since a non-polysemous format (e.g., verbal probability) did not facilitate 

a correct probability interpretation in our studies. A Bayes factor analysis supported both of 

these conclusions. We discuss theoretical and applied implications of our findings.  

 

Keywords: Weather forecast; probability of precipitation; probabilistic format, 

probabilistic format preference; Bayes Factor analysis. 

  



Note: This is not the final version of the manuscript (but almost!). To see the final version: 

Journal of Risk Research, Nov. 2014; doi: 10.1080/13669877.2014.983945 

3 

 

Why people do not understand probabilities of precipitation: Effects of forecast formats. 

INTRODUCTION 

 Prior research has focused mainly on probability magnitude perceptions. For instance, 

how people’s characteristics (e.g., white male effect; Olofsson & Rashid, 2011), the 

personality of the speaker (Juanchich, Sirota, & Butler; 2012, Sirota & Juanchich, 2012), or 

different presentation or assessment formats (e.g., Smerecnik, Mesters, Kessels, Ruiter, De 

Vries, & De Vries, 2010; Riege & Teigen, 2013) affect probability perception magnitude. 

This trend of research has been very fruitful and has shown, for example, that white males 

perceive negative outcomes to be less probable than white females or people from ethnic 

minorities (Olofsson & Rashid, 2011), or that people perceive a tactful speaker to convey a 

higher probability of a negative outcome than a plain speaker (Juanchich et al., 2012), or that 

graphic representations of statistical information have a positive effect on probability 

perception accuracy (Smerecnik, et al., 2010).  

This strong emphasis on probability magnitude perception contrasts sharply with a 

lack of investigation into whether people actually understand probabilities correctly. Indeed, 

although people may say that an outcome is likely, findings indicate that they have difficulty 

in assessing what is actually quantified by a probability, especially for single event 

probabilities (e.g., Gigerenzer, Hertwig, van den Broek, Fasolo, & Katsikopoulos, 2005). 

This misinterpretation of probabilities may lead to risk misperception and ill-informed 

decision-making.  Therefore, the focus of the present paper is on how people understand 

probability, and on the possible factors that could drive probability misinterpretation. More 

specifically, because it is one of the most common probabilistic messages, we investigate 

how people understand probability of precipitation. 

Probability of precipitation (PoP) 

 A PoP is the probability that measurable precipitation (more than 0.005 mm) will 

occur at a specific point (i.e., a rain gauge) in a specific period of time (Murphy & al., 1980; 

Rogell, 1972). Probabilities of precipitation are computed, based on the proportion of days 

like tomorrow where a measurable precipitation is observed from a sample of days like 

tomorrow (Gigerenzer et al., 2005; Joslyn, Nadav-Greenberg, Nichols, 2009). Thus the 

correct reference class of a PoP is: "days like tomorrow"(Gigerenzer et al., 2005; Juslyn et 

al., 2009). This interpretation will be thereafter labelled as the Days’ interpretation. A 20% 

probability of rain is thus derived from a sample of days like tomorrow in which 20% of the 

days feature a measurable precipitation. Note that there exists a debate about how to best 
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define probability of precipitation, and that even when meteorologists agree they may use 

different wordings. We chose to use here the definition that appears to generate the strongest 

consensus (Gigerenzer et al., 2005). 

(Mis-)interpretation of probabilities of precipitation 

The financial benefits of probabilistic weather forecasts (e.g., there is a 70% chance 

that it will rain) as opposed to categorical forecasts (e.g., it will rain tomorrow) are now 

commonly accepted (National Research Council, 2003, 2006). Because of their precise 

nature, numerical probabilities are considered the best format to express degrees of certainty 

(Murphy, Lichtenstein, Fischoff, & Winkler, 1980; Winkler, 1990) and their introduction is, 

thus, largely recommended (American Meteorological Society, 2008; National Research 

Council, 2003, 2006). And yet, previous research has consistently shown that PoPs are often 

misunderstood by weather forecast users (Murphy et al., 1980; Sink, 1995; Gigerenzer et al., 

2005; Joslyn, et al., 2009; Morss, Demuth, & Lazo, 2008; Morss, Lazo, & Demuth, 2010). 

When asked to select an interpretation of a PoP from a list of possible interpretations, more 

than 50% of  people surveyed believed that it referred to a proportion of time or region in 

which it would rain. Most people believed, for example, that a 20% probability of rain meant 

that it would rain 20% of the time (i.e., Time interpretation) or in 20% of the region (i.e., 

Region interpretation; Morss, et al, 2008). Note that, based on the formula of computation of 

PoP, it could be said that the Region interpretation (e.g., “it will rain in 30% of the region”) is 

not always a poor proposition, as it could be correct in a specific situation. Indeed, the Region 

interpretation is true in the case where the probability of rain in an area is 100%. 

Juslyn et al. (2009) investigated formats that would enable a better interpretation of 

PoPs. Their results showed that an iconic representation of PoPs (e.g., a pie chart representing 

rain in 30% of the chart) slightly improved PoP interpretation but not to a statistically 

significant degree (Experiments 1 and 2). A format that did help participants was the mention 

of both the positive and the negative framings of the probability (e.g., there is a 30% chance 

that it will rain; there is a 70% chance that it will not rain). In this format, only 36% of 

participants made a reference class error, whereas 64% made the error with a classical PoP 

(e.g., there is a 30% probability that it will rain). The mention of the two complementary 

probabilities highlights that there is also a probability that it will not rain, which is 

inconsistent with the Region and Time interpretations where rain is certain. Knowing that 

some formats help people to identify the correct reference class of PoP is very useful, but the 

research conducted so far has not informed the reason why PoP is so commonly 

misunderstood. 
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Why do weather forecast users not understand probability of precipitation?  

 We propose to explore two non-exclusive explanations that could account for the 

misinterpretations of PoP (namely, Time and Region misinterpretations). The first 

explanation emphases the ambiguity of the reference class of single event probabilities in 

general, whereas the second explanation focuses on the polysemy of a particular format of 

percentages that triggers the ambiguity of the reference class. 

The ambiguous reference class of single event probabilities. Gigerenzer et al. (2005) 

suggested that PoP misinterpretation arises from the ambiguity of the reference class of single 

event probabilities. In contrast to probabilities of reproducible events, (e.g., die roll), 

probabilities of single events (e.g., probability of rain), are deemed to refer to an ambiguous 

reference class (Gigerenzer et al., 2005). The reference class of a probability refers to the 

class of event that is sampled to produce the probability. Therefore. the perceived reference 

class of a probability determines the perceived meaning and implications of a probability. For 

example, when being told that Prozac has a 20% chance of causing a sexual problem, patients 

need to identify the class of events to which the probability refers  (Gigerenzer, 2002). Some 

patients identify the reference class incorrectly by, for example, thinking that the probability 

refers to the number of sexual encounters. This wrong interpretation leads patients to believe 

that they are very likely to experience sexual problems since they think that they will have a 

sexual problem in 1 in 5 of the times they have  sexual intercourse. Other patients identify the 

reference class correctly as the group of people taking Prozac. This correct interpretation 

leads patients to believe that they have a small chance of having a sexual problem, because 

they recognise that they have only a 1 chance in 5 of experiencing any sexual problems 

because of taking Prozac.  

In the case of PoPs, they are labelled as ambiguous, because people reading a PoP 

believe that its reference class can be a proportion of time (Time misinterpretation), a 

proportion of space (Region misinterpretation) or a number of days like tomorrow (Days – 

correct - interpretation). 

Importantly, explaining the difficulty for people to understand PoPs correctly by the 

ambiguity of their reference class, means that PoPs in general will be misinterpreted, 

whatever the probabilistic format used. This means that whether a PoP is numerical (e.g., 

30%, 3 in 10) or verbal (e.g., unlikely, likely), should not change the ability of people to 

identify the reference class of a probability.  

The polysemy of percentage. In addition to the hypothesis that all single event probabilities 

imply an ambiguous reference class, we suggest that PoP misinterpretations arise because one 
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of the percentage formats used to convey the single event probability is polysemous (i.e., the 

words have different but related meanings).  Indeed, a percentage such as "30%" can be 

commonly used to quantify probabilities, proportions or frequencies. For example, one could 

say, "there is a 30% chance that it will rain", or “tomorrow it will rain in 30% of the area” or 

even “it will rain for 30% of the day”. Note that the polysemous hypothesis does not apply 

only to percentages. For example, ratios can also be commonly used to describe probabilities 

and proportions of time or area (e.g., it will rain in 1/3 of the area). Research into how people 

make sense of polysemous words has shown that the different meanings of the word compete 

and become available in people’s minds (e.g., Rodd, Gaskell, & Marslen-Wilson, 2002). 

According to the polysemy hypothesis, the competitive meanings of percentages as a 

proportion of days, time or region are stored in people’s memories and are all activated when 

a person reads a percentage. The Days, Time and Region interpretations therefore become 

available as valid hypothetical answers. The possibility that the existence of the different 

Days, Time and Region meanings of percentages are all made available when one is reading a 

PoP and that this triggers a high rate of these interpretations is also in line with literature on 

the availability bias, showing that  information that is more available is perceived to be more 

likely than information that is less available (Tversky &Kahneman, 1973). The fact that the 

Days, Time and Region interpretations become available would lead to the perception that 

they are likely to be correct. 

Importantly, the percentage polysemy hypothesis entails that it is specifically the 

numerical probability format that is causing a high rate of PoP misinterpretation (e.g., 

percentages). In contrast, the use of another probabilistic format that cannot be used 

interchangeably to denote a proportion of time or of space should boost the rate of correct 

interpretations. 

How can we improve the interpretation of PoP? 

The reference class specification solution. To overcome the ambiguity of reference class in 

single event probabilities, the recommendation of Gigerenzer et al. was to specify that a 30% 

probability of rain means that “…3 out of 10 times when meteorologists make this prediction, 

there will be at least a trace of rain the next day” (Gigerenzer et al., 2005, p. 629). This 

research was tailored to test the possible benefits to forecast interpretations of such an 

explanatory procedure, compared with a simple statement of probability of precipitation. It is 

important to note that an explicit mention of the reference class is also expected to prevent 

wrong interpretations based on the polysemy of percentages. Yet, if wrongful interpretations 

are caused by the percentage polysemy, other solutions can be explored.  
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The use of a non-polysemous format. To overcome the postulated negative effect of the 

polysemy of percentages, a non polysemous probabilistic format could be used. Verbal 

probabilities (e.g., there is a chance, it is likely) are linguistic probability quantifiers that 

cannot be used to describe proportions of time or region. Verbal probabilities are thus not 

polysemous. For example, one can say “it is unlikely that it will rain tomorrow” but cannot 

say “it will rain in it is unlikely of the time” nor “it will rain in it is unlikely of the area”. 

According to the polysemy hypothesis, a verbal probability forecast would be interpreted 

more correctly than the traditional percentage PoP.  The use of verbal probabilities has been 

investigated in the past but in studies that suffered from important shortcomings, preventing 

any decisive conclusions concerning the potential benefits of verbal probabilities. For 

example, Murphy et al. (1980) asked participants to interpret both a numerical (i.e., 30%) and 

a verbal forecast (i.e., likely) and found that, with both formats few people chose the correct 

interpretation (39% and 28%). Yet, Murphy et al. did not test whether this difference was 

significant. Further, the cross sectional design does not rule out an order effect to explain the 

differences of performance. Finally, the two probabilities compared vary in more than just 

format, since the two formats also refer to different probability magnitudes: 30% is a small 

probability, whereas ‘likely’ reflects a probability of around 70% (e.g., Wallsten & Budescu, 

1995). 

Based on the polysemy hypothesis, the verbal probability format is expected to enable 

better interpretation. It is nevertheless acknowledged that this format has some drawbacks. 

Indeed, verbal probabilities elicit great variability in their probabilistic meaning between 

individuals and even in the same individual over time (Wallsten & Budescu, 1995).  

The dual format solution. Renooij and Witteman (1999) and Witteman, Renooij and Koele 

(2007) posited that associating verbal probabilities with numerical ones would reduce the 

variability of the probabilistic meaning of linguistic expression, while preserving the ease of 

understanding. This method has the advantage of stabilising the probabilistic meaning of the 

expressions from one context (e.g., prediction of rain) to another (e.g., prediction of storm) 

and to reduce between-subjects variability. Budescu and colleagues (Budescu, Broomell & 

Por 2009; Budescu, Por & Broomell 2012; Budescu, Por, Broomel & Smithson 2014) 

produced evidence of the benefits of this method in climate change risk communication.  

Hypotheses. The aim of the present research is to investigate the reason why probabilities of 

precipitation (PoPs) are so hard to understand. Specifically, we examine whether the absence 

of the ambiguity of the reference class of single event probabilities or the polysemy of 

percentages cause incorrect interpretations. To test these two hypotheses, we have compared 
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weather forecast understanding based on a traditional PoP to a PoP associated with a 

description of the reference class, and to a verbal probability forecast, in three samples, two 

from the United States and one from the United Kingdom.  

Study 1 

Method 

Participants. The total sample was composed of 953 participants from the US and UK, aged 

between 18 and 82 (M = 42.52, SD = 15.40); 55.9% were females. Thirty participants did not 

report their socio-demographic information (16 Americans and 14 British). Given that the 

level of exposure to probabilities of precipitation had an effect on PoP interpretation in the 

past (Gigerenzer, et al., 2005), and that the UK and the US introduced PoPs at different times, 

we present the samples and the data analyses separately.  

 The sample of Americans was composed of 339 Mechanical Turk workers who 

completed the 3 minute survey on communication in exchange for 0.10$. Amazon 

Mechanical Turk is recognised as a reliable source of data for research in Social Sciences 

with a pool of participants featuring varied socio-demographic characteristics (e.g., 

Buhrmester, Kwang & Gosling, 2011; Paolacci, Chandler, & Ipeirotis, 2010). Participants 

were aged between 18 and 82 (Mdn = 28) and 56.0% were females. Most of them were 

Caucasian (81.4%) and part of the active work force (66.3%); 27.9% were unemployed and 

5.9% retired. Only 0.3% did not have a formal education, 51.0% had a high school degree 

and 48.7 had a higher education degree. At the time of the data collection, people in the US 

had benefited from probabilistic weather forecasting for 46 years. (1965-2011). 

 The sample from the UK was composed of 614 individuals contacted by a marketing 

agency. British participants were rewarded by a voucher. They were aged between 18 and 82 

(Mdn = 49) and 55.8% were females. Most of them were Caucasian (80.5%) and part of the 

active work force (69.8%); 9.2% were unemployed and 21% retired. Only 6.7% had no 

formal education, 25.5% had a GCSE, 26.3% had a higher school qualification and 41.3% 

had a higher education degree. At the time of the data collection,  people in the UK had 

benefited from probabilistic weather forecasting for 19 years (1992-2011). 

 Age, gender, job and ethnicity did not affect weather forecast interpretation; these 

variables were thus not integrated into further analyses. 

Materials and Procedure. Participants read and accepted a brief informed consent form. 

Then they read one of the four forecasts presented in Table 1 (randomly allocated). The 

verbal probability was pre-tested to communicate a probability of 30% on average in the two 

samples studied (US: N = 56, M = 26.78, SD = 27.86; UK: N = 296, M = 31.11, SD = 24.34). 
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Table 1 

List of the formats of probability of precipitation presented to participants. 

Formats Forecast 

Numerical probability (NP) There is a 30% chance that it will rain tomorrow. 

Numerical probability with 

reference class (NP + RefClass) 

There is a 30% chance that it will rain tomorrow*.  

*This means that in 3 out of 10 times, when meteorologists make 

this prediction, there will be at least a trace of rain the next day. 

Verbal probability It is unlikely that it will rain tomorrow. 

Verbal probability and 

numerical translation 

It is unlikely that it will rain tomorrow * 

*(It is unlikely = 30% chance). 

 

 For the numerical probability format with reference class and the dual format, the additional 

information (the reference class and the numerical probability respectively) was presented as 

a foot note on the forecast page, with an asterisk as shown in Figure 1.  

 

 

Figure 1. 

Example of material used in Study 1 to provide a probability of precipitation and to assess its 

interpretation (experimental condition numerical probability with reference class).  

 

 Participants were asked to imagine that they were wondering about the weather for 

the next day and were then provided with a forecast. After reading the forecast, participants 

read a list of three interpretations taken from Gigerenzer et al. (2005). Participants were 

instructed to select the interpretation of the forecast that was always true from among three 

possibilities as shown in Figure 1. The correct interpretation is the Days’ interpretation 



Note: This is not the final version of the manuscript (but almost!). To see the final version: 

Journal of Risk Research, Nov. 2014; doi: 10.1080/13669877.2014.983945 

10 

 

(second option in Figure 1). The mention ‘always true’ was introduced in the original design 

from Gigerenzer and was kept in our design because the Region forecast can be correct when 

the probability of rain is equal to 100%. The three options were presented in a randomised 

order for each participant. The proposed PoP interpretations were worded exactly as in 

Gigerenzer et al. (2005), which was different from the wording of Murphy et al. (1980). For 

example, in the former, the correct interpretation was phrased as “the occurrence of 

precipitation at a particular point in the forecast area”. Finally, participants reported socio-

demographic information.  

RESULTS 

More than half of the participants interpreted the PoP incorrectly as either a proportion of 

time (i.e., it will rain 30% of the time) or of region (i.e., it will rain in 30% of the region) – 

see Table 2. The Days’ interpretation was nevertheless the most common (i.e., it will rain in 

30% of days like tomorrow) as described in the left panel of Figure 2, which shows the 

proportion of correct Days’ interpretations according to the weather forecast format and in 

the two samples.  

 

 

Figure 2. Proportion of correct interpretation of weather forecasts as a function of the 

precipitation forecast format in Studies 1 and 2. 

Note: Error bars represent 95% confidence intervals. 
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The format of presentation of the probability did not affect the PoP interpretation chosen by 

participants in the American sample nor in the British sample, χ
2
 (6, N = 339) = 3.13, p = 

.793, φ = .10, χ
2
 (6, N = 614) = 5.34, p = .501, φ = .09. Overall (when combining the data 

from the two samples), the explicit mention of the reference class did not improve the 

proportion of correct interpretations of the probability of rain, but acted to the contrary (- 2% 

compared to the simple numerical condition; see last row of the top panel of Table 2).  

Further, in comparison with the forecasts that included a numerical probability, verbal 

probabilistic forecasts elicited a slightly higher rate of correct interpretation (+ 0.5%). 

Finally, the presence of both numerical and verbal formats was associated with the highest 

rate of correct interpretation (+ 4.6 compared to the simple numerical condition). However, 

the effect of the format of presentation of the probability did not have a statistically 

significant effect, χ
2
 (6, N = 953) = 6.51, p = .368, Cramer’s V = .08.  

When we compare the findings of Murphy et al. (1980) with the present ones, we can 

conclude that in 30 years the rate of correct interpretation in America has increased 

substantially: + 6% in the numerical probability condition (39% to 45%) and + 30% in a 

verbal probability condition (28% to 58%). However, the difference in the rate of correct 

interpretation could also be due to methodological (e.g., the use of a different question 

formulation, the use of a different set of response options) or statistical  (e.g., high sampling 

errors given a small sample size, N = 78) reasons. The method we used was the same as 

Gigerenzer et al. (2005) who collected their data in 2002 in both Europe and the US. By 

contrast with their findings, the present findings also indicate an increase in the rate of correct 

interpretations of 8% in the last 12 years (37% to 45%). 
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Table 2.  

Probability of precipitation interpretations as a function of the format of the probability in 

Studies 1 and 2. The formats were the following: numerical probability - NP, numerical 

probability with explicit mention to the reference class- NP + RefClass, verbal probability – 

VP and verbal probability with numerical translation - VP + NP.  

Study 1 NP NP + RefClass VP VP + NP Total 

UK sample (N = 614)      

Time 27.7% 34.7% 28.9% 31.9% 30.9% 

Region 29.7% 26.6% 32.2% 22.7% 27.9% 

Days  44.7% 42.7% 45.2% 49.3% 45.3% 

US sample (N = 339)      

Time 29.5% 33.7% 26.9% 29.3% 30.1% 

Region 21.8% 16.8% 15.4% 14.6% 17.1% 

Days  48.7% 49.5% 57.7% 56.1% 52.8% 

Total (N = 953)      

Time 28.3% 34.3% 28.3% 30.9% 30.6% 

Region 27.0% 23.0% 26.5% 19.7% 24.0% 

Days  44.7% 42.7% 45.2% 49.3% 45.3% 

Study 2 - UK (N = 384) NP NP + RefClass VP VP + NP Total 

Rain      

Time 32.7% 26.5% 34.4% 24.5% 29.4% 

Region 13.3% 10.2% 17.8% 15.3% 14.1% 

Days  34.7% 57.1% 40.0% 49.0% 45.3% 

Other 19.4% 6.1% 7.8% 11.2% 11.2% 

Hail      

Time 40.8% 29.6% 36.7% 30.6% 34.4% 

Region 13.3% 15.3% 27.8% 14.3% 17.4% 

Days  27.6% 49.0% 30.0% 41.8% 37.2% 

Other 18.4% 6.1% 5.6% 13.3% 10.9% 

Snow      

Time 37.8% 29.6% 35.6% 35.7% 34.6% 

Region 8.2% 10.2% 15.6% 10.2% 10.9% 

Days  34.7% 53.1% 36.7% 42.9% 41.9% 

Other 19.4% 7.1% 12.2% 11.2% 12.5% 
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Note: The proportions of correct weather forecast interpretation are in italics. In Study 2 the 

weather forecast events were presented in within-subjects. 

 

 The traditional statistical analyses as conducted here do not assess the extent to which 

the data supports the null effect of format on PoP interpretations. Therefore, to quantify 

support for the null effect hypothesis, we conducted a Bayes Factor analysis. This type of 

analysis is now recommended in psychology in general, especially when establishing support 

for null hypotheses (Rouder, Speckman, Sun, Morey & Iverson, 2009;  Wagenmakers, 

Wetzels, Borsboom & van der Maas, 2011). In our analysis, the Bayes factor provides the  

ratio of marginal likelihood of the data, given that there is no effect of format, (H0) to the 

probability of the data, given that formats affect the interpretation of PoPs, (H1). A Bayes 

factor greater than 1 (BF01 > 1) indicates supporting evidence for H0, whereas a Bayes factor 

lower than 1 (BF01 < 1) indicates supporting evidence in favour of H1. Further, a greater 

departure from 1 indicates stronger evidence (Wetzels, Matzke, Lee, Rouder, Iverson, & 

Wagenmakers, 2011). For example, a Bayes Factor ranging from 1/100 to 1/30 indicates the 

existence of very strong evidence in favour of H1 whereas a Bayes Factor ranging from 30 to 

100 indicates very strong evidence in favour of H0 (cf. Wetzels et al, 2011).  

 The Bayes factor analysis for the proportion of correct PoP interpretation yielded 

substantial evidence supporting the null hypothesis that the formats manipulated here did not 

affect the PoP interpretation, BF01 = 96.9 (assuming a uniform distribution prior; see Albert, 

2009). This result means that the data are almost 97 times more likely under H0 (assuming a 

null effect of formats) than H1 (assuming any effect of formats). Such evidence is considered 

to provide very strong support for the null hypothesis (Wetzels et al, 2011).   

 

Study 2 

This study aimed to test the robustness of the findings of Study 1 in an improved 

experimental design and to extend previous findings to two new precipitation events (snow 

and hail) and two new probability magnitudes (medium and high). An additional goal was to 

test which format participants would prefer to receive when seeking weather forecast 

information. 

 

The design of Study 2 overcomes two methodological limitations of Study 1: the force choice 

setting and the fact that in Study 1 the area for which the forecast was formulated was not 

described (e.g., it is likely that it will rain – but where?).  
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Indeed, in Study 1, participants had to choose between three options which might or 

might not have matched their subjective interpretations of the forecast. The forced choice 

may have contributed to our findings that the different formats did not affect participants’ 

interpretations of a probability of precipitation. Perhaps participants had in mind a correct 

interpretation but did not recognise it in one of the three provided options. In turn, some 

participants may have chosen an interpretation that they did not really believe in, creating 

some variability. In study 2, we gave participants the possibility of providing their own 

personal interpretation. This should provide a better setting to test the possible benefits of our 

interventions (providing an explicit reference class and using a verbal probability), as it 

should reduce this source of variability and increase the data validity. 

 

A second limitation of study 1 was that participants received a forecast without a clear 

definition of the area to which the forecast applied (i.e., target area). Therefore, participants 

had to imagine the area that the forecast focused on, which could have created variability in 

data. For example, a participant could have thought about her village, another about her State. 

This variability may have had an impact on people’s interpretations, by, for example, 

affecting the rate of selection of the Region interpretation, more relevant if one thinks about a 

big area like a state than a very small one like a village. Specifying the target area of the 

forecast should decrease this source of variability and increase the validity of the data. 

 

Method 

Participants. The final sample consisted of 384 Amazon Mechanical Turk workers who 

completed the 3-minute survey on weather forecast in exchange for 0.30$. The sample size 

was determined in two steps. First, based on a power calculation, we determined an initial 

sample of 341 participants would be needed to detect a small effect w = 0.2, assuming df = 6, 

α = 0.5 and power (1-β) = 0.8. Second, we increased the initial sample size by + 10% to 

account for potential participant attrition to reach the final sample size of 384. Participants 

were aged between 18 and 72 (Mdn = 28) and 33.6% were females. Most of them were 

Caucasian (77.3%) and part of the active work force (80.2%); 17.7% were unemployed and 

2.1% retired. Only 0.5% did not have a formal education, 32.3% had a high school degree 

and 67.2% had at least a College degree. At the time of the data collection in the US, people 

had benefited from probabilistic weather forecasting for 49 years at the time of the data 

collection (1965-2014). 
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Design, Procedure and Materials. The format was manipulated in a between-subjects 

design in three vignettes describing different precipitation forecasts: a low probability of 

snow, a medium probability of rain and a high probability of hail. Participants therefore read 

the three weather forecast vignettes and, for each, selected the interpretation that was correct. 

The interpretation selection task featured the same three interpretations as in Study 1 (Time, 

Region and Days) which were presented in a randomised order for each participant. Along 

with those three interpretations, participants had the option to specify a personal 

interpretation in case none of the above-mentioned appeared satisfactory. Then participants 

indicated their format preferences when looking for three probabilities of precipitation events 

(i.e., rain, hail and snow). For each PoP event, participants could select among five format 

options: numerical, numerical with explanation, verbal, verbal-numerical or other. Each 

format was provided with an example featuring a low probability of occurrence of the 

precipitation in question. For example: “Numerical format. E.g., there is a 30% chance that it 

will rain”. The option ‘I prefer another format’ gave the possibility for participants to specify 

their own preference in a text box. Each question appeared on a different page and the order 

of the different forecast interpretations and the order of the format preference questions were 

randomly presented for each participant. Finally, participants reported basic socio-

demographic characteristics. 

Results 

Overall 

Participants interpreted correctly only 41% of the precipitation forecasts across the 

different precipitation conditions (snow, rain and hail). Overall, the most frequent answer was 

the Days interpretation (41%), followed by the Time interpretation (33%) and the Region 

interpretation (14%). The Other interpretation was the least common answer (11%). Most 

personal interpretations consisted of a reformulation of the weather forecast. There were 

different types of personal interpretations. The first type of personal interpretation consisted 

in reformulating the forecast very closely but specifying the quantity of precipitation 

expected (“30% chance it will snow at all”; “70% chance it will hail at all”). The second 

type of interpretation consisted in reformulating the probability quantifier (i.e., replacing the 

term ‘chance’ by ‘probability’ or ‘likelihood’ – e.g., “30% likelihood that it will snow in 

Wales tomorrow, if the conditions stay the same as today”). The third type of personal 

interpretation consisted in swapping the forecasted precipitation for its alternative outcome 

(e.g., reframing a low probability of snow by a high probability of no snow; e.g., “it will most 

likely not snow”) or complementing the forecasted precipitation with its alternative outcome 
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(There is a 30% chance that snow will fall in Wales tomorrow, 70% chance it will not). In a 

few instances, the personal interpretation was a mix of several types of interpretation: for 

example, a mix of quantifier adaptation and framing (e.g., likelihood is 50% chance of rain, 

50% chance of no rain at all”; “I assume it to mean there is a 70% likelihood that it will hail, 

while there is a 30% chance of none”). 

Participants interpreted the different precipitation forecasts similarly as there was no 

significantly statistical  differences between scenarios, Friedman’s χ² (2, N = 383) = 1.09, p = 

.580. 

 

Effect of the format 

For the three precipitation forecasts, participants were more likely to select the correct 

interpretation when they read the forecast in a numerical probability format with an explicit 

mention to the reference class (See Table 2). The format also seemed to affect the tendency to 

select a personal interpretation. Participants were twice as likely to propose their own 

interpretation when they received a numerical probability forecast. The format of presentation 

of the probability of a precipitation had a statistically significant effect on the interpretation 

of the forecast for the Rain and Hail vignettes, χ² (9, N = 384) = 19.66, p = .020, Cramer’s V 

= .13 and χ² (9, N = 384) = 27.49, p = .001, Cramer’s V = .27, respectively. In the Snow 

vignette, the effect of format was not statistically significant, χ² (9, N = 384) = 14.43, p = 

.108, Cramer’s V = .11. 

Similarly as in Study 1, we have conducted a Bayes factor analysis for the proportion 

of correct PoP interpretations for all three precipitation conditions (assuming a uniform 

distribution prior, Albert, 2009). The Bayes Factor analysis provided strong evidence 

supporting the hypothesis postulating the effect of the format on the PoP interpretation in two 

out of the three precipitation conditions. The Bayes factors indicated strong evidence for the 

effect of the format in the rain and in the hail scenario, respectively, BF01 = 0.25 and BF01 = 

0.16 and  anecdotal support for the null hypothesis (i.e., format does not affect interpretation) 

in the snow scenario, BF01 = 1.42. 

Format preference 

Most participants reported that they preferred the simple numerical probability format (see 

Table 3). Participants’ second favourite was the numerical probability featuring an 

explanation, whereas the two verbal probability formats earned less than 10% of the 

preference. The type of precipitation forecasted did not have an effect on preference, 

Friedman’s χ² (2, N = 383) = 1.09, p = .580. Two participants consistently preferred  
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providing their own format preference. The two formats they described were similar to one of 

the options presented but with the information presented in a different order.  One described a 

numerical probability (“chance of rain: 30%”) and the second a dual format introducing the 

numerical probability first (“ 30% chance, unlikely it will rain”). 

 

Table 3. Preferred probability of precipitation format. 

 

 NP NP + RefClass VP VP + NP Other 

Snow 54.4% 31.3% 3.9% 9.9% 0.5% 

Rain 57.0% 30.5% 4.7% 7.3% 0.5% 

Hail 50.8% 33.3 5.7% 9.4% 0.5% 

 

 

The effect of the format was different between studies 1 and 2. In study 1, participants 

interpreted the weather forecast  most frequently when provided with a verbal probability 

format and least often when provided with a numerical format with a reference class 

explanation. However, this trend was not statistically significant. In study 2, participants 

interpreted the weather forecast correctly most often when provided with a numerical 

probability and an explicit mention of the reference class. Findings of study 2 are in line with 

the expectations of Gigerenzer et al. (2005) who suggested that this intervention would help 

people identify correctly the reference class of probabilities of precipitation. 

Results between studies 1 and 2 may differ because in study 1 the forecasted area was not 

defined, whereas it was defined in Study 2 (Wales, Surrey and Scotland for the low 

probability of rain, medium probability of snow and high probability of hail respectively). 

Together, findings of studies 1 and 2 indicate that the presence or absence of the target area in 

a forecast could interact with the format of the probability to determine the interpretation of 

the forecast.  

 

DISCUSSION 

 The present research investigated the interpretation of probabilities of precipitation 

(PoPs) as a function of its format of presentation. Overall, less than half of the 1337 

participants correctly understood a PoP. Taken together with previous research, this finding 

indicates that the interpretation of PoPs has not improved significantly in the last 30 years. 
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Overall, in the numerical probability conditions, 38% of the participants gave a correct 

interpretation, in 2011 and 2014, and 39% did so in 1980 (Murphy et al.) and on average 

around 37% in 2002 (Gigerenzer et al., 2005). This result clearly calls for a greater attention 

to examining how people understand probabilities instead of just focusing on people’s 

subjective probability magnitude. Probability interpretation and probability perception are 

entangled and it is thus necessary to learn how people actually understand probabilities to 

comprehend the meaning of their subjective probability perceptions. For example, a person 

reporting a 30% chance of rain, may in fact be sure that it will rain – the uncertainty being 

when or where. The consequences of probability misinterpretations should be further 

investigated in the weather forecast area but also in other contexts where the 

misunderstanding of probabilities can have critical consequences, such as in legal and 

medical contexts.  

 We tested the suggestion of Gigerenzer et al.'s (2005) that the mention of the 

reference class would improve the interpretation of probabilities of precipitation. We used the 

reference class suggested by Gigerenzer et al.: “… in 3 out of 10 times when meteorologists 

make this prediction, there will be at least a trace of rain the next day” (pp. 629). Findings 

indicate that, under specific circumstances, weather forecasts featuring this explanation can 

indeed improve the correct understanding of precipitation forecasts. This was the case when 

the forecasted area was explicitly described and when participants were given the possibility 

of providing their own personal interpretation (Study 2), whereas it was not the case when the 

target area was not specified and in a forced choice setting (Study 1). Importantly, findings 

show that even with an explicit reference class, single event probabilities remained difficult 

to understand, with only 53% of the participants selecting the correct interpretation of a 

precipitation forecast featuring an explicit mention to the reference class. The explicit 

mention to the reference class in PoP, as suggested by Gigerenzer et al. (2005), should 

therefore be further scrutinised and possibly adapted before being used as a tool to enhance 

people's understanding of PoP.  

 Moreover, our results also show that the verbal probability forecast – preventing the 

polysemous ambiguity – did not provide a statistically significant better understanding than 

the traditional numerical probability forecast.  

Taken together, the effect of formats on single event probability’s interpretations 

indicate that the polysemy of percentage is not a driver of erroneous interpretations and that 

the reference class of single event probabilities might well be inherently hard to identify, 

whatever the format of presentation of the probability (e.g., numerical or verbal). To better 
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understand why it is so hard for people to identify the reference class of PoPs, further 

research could focus on why the presence of the double framing of numerical probabilities 

improved this matter (Juslyn et al., 2009). 

The measuring of the weather forecast interpretations by a presentation of three 

options followed that of Gigerenzer et al. (2005). In study 2, participants were given the 

opportunity to provide their personal interpretations of the forecast. However, this gave little 

insight into the reference class that people identify, as the personal interpretations mainly 

consisted in a reformulation of the weather forecast. This was also the case in previous 

research as in Murphy et al. (1980) who asked what a numerical probability of rain meant. 

Further, it is possible that people do not understand the interpretation question as intended  by 

scientists. Indeed, when they gave their personal interpretations, participants did not seek to 

identify the reference class of the probabilities, but rather to clarify the nature of uncertainty 

(e.g., likelihood? probability?) or the alternative outcomes that might or might not occur 

(chance of rain and chance of no rain). Subsequent research should investigate the perceived 

reference class of probabilities of precipitation by asking participants more explicitly about 

the source of information that is used to form the forecast. Future investigations could also 

extend the number of interpretations provided as possible answers or could use a free 

response format, as recommended by Morss et al. (2008). 

The pattern of the format preference found in Study 2 replicated the preference for 

numerical probabilities observed in the past, whereas verbal probabilities received few votes 

(Wallsten, Budescu, Zwick, & Kemp, 1993) and so confirmed the occurrence of this 

preference in a weather forecast context. Findings on format preference illuminate two 

important and novel facts. First, participants preferred the simple numerical probability 

format over the numerical format including an explicit mention to the reference class. This 

means that participants do not recognise this format as helping them understand the forecast 

better. Perhaps participants preferred the numerical probability format, because it was simpler 

and shorter than the one including reference class and it required less effort to process. 

Second, only a few participants expressed a preference for the dual (verbal/numerical) 

format. Considering that verbal probabilities fit better with how people think about 

uncertainty whilst nevertheless preferring to receive numerical probabilities, it has been 

suggested that the dual format could represent the best of both worlds – a verbal probability 

providing a ‘natural’ feeling of uncertainty and a numerical one providing a precise estimate 

of uncertainty (Budescu, et al., 2009; Budescu, et al., 2012; Budescu, Por, Broomel & 

Smithson, 2014). However, our data indicate that less than one in ten people wish to receive a 
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probabilistic forecast in this format. It is interesting to consider that the format that was best 

understood was not the favourite one. One participant stated that a better format would be a 

dual numerical/verbal format instead of the verbal/numerical one, suggesting swapping the 

order of the two elements of the dual format (e.g., there is a 30% chance – it is unlikely).  

 At a more general level, the present manuscript, featuring non-significant effects 

(Study 1), represents an endeavor to decrease the publication bias observed in psychology 

where non-significant results are left "in the drawer" (Francis, 2012). By reporting both 

statistically significant and non-statistically significant findings, we contribute to the validity 

of meta-analyses and the estimation of overall size effects (van Assen, van Aert,  Nuijten, & 

Wicherts, 2014). We strongly believe that null results may have a high informative value if 

researchers harness appropriate research methods and conduct relevant data analyses (e.g., 

well powered study and Bayes factor analysis). 

  Results indicate that specifying the reference class can improve the interpretation of 

probabilities of precipitation when the target area is specified. Findings indicate that using a 

verbal probability format (assumed to be non-polysemous) does not improve the 

interpretation of probabilities of precipitation.   
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