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In many markets, goods flow from initial producers to final customers traveling through

many layers of intermediaries and information is asymmetric. We study a dynamic model

of bargaining in networks that captures these features. We show that the equilibrium price

demanded over time is non-monotonic, but the sequence of transaction prices declines over

time, with the possible exception of the last period. The price-dynamic is, therefore, remi-

niscent of fire-sale and hot-potato trade dynamic. Traders who intermediate the object arise

endogenously and make a positive profit. The profit-earning intermediaries are not neces-

sarily traders with many connections; for the case of multi-layer networks, they belong to

the path that reaches the maximum number of potential buyers using the minimal number

of intermediaries. This is not necessarily the path of the network that maximises the prob-

ability of consumption by traders who value the most the object (i.e., welfare).
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1. INTRODUCTION

We study strategic intermediation in markets characterised by incompleteness of trading

opportunities, dispersed information, and resale. A finite number of risk-neutral traders
1
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are connected in a network. A trader can bargain with another only if there is a link

between them, and the absence of a link between two traders subsumes prohibitive trading

costs. One arbitrary trader is the producer of a single valuable object. A trader’s valuation

for the object can be either low or high; it is private information and independent

of other traders’ valuations. In each round of trade, the current owner of the object

either consumes it, in which case the game ends, or makes a take-it-or-leave-it offer to

a connected trader that she chooses. The trader who receives the offer either accepts or

rejects it. After this decision is taken, a new round of trade starts.

As a prime example, consider markets for agricultural goods in developing countries.

Local producers access only a limited number of traders, who operate in geographically

close markets; these traders, in turn, access other traders, who operate in markets located

farther away from the original producers. Local producers could access such distant

markets, but the lack of infrastructure and the difficulties of raising capital make such

journeys infeasible. The structure of who can trade directly with whom, the network, is

a technology that can be altered with large investments, like building a bridge or a road.

However, in the short run and as a first approximation, it can be seen as fixed and known

to market participants. Furthermore, negotiations are often bilateral, and products are

exchanged for cash between intermediaries en route from local producers. Finally, each

trader has precise information about the demand of the local market in which they

operate– i.e., they know their valuation for the object. In developing countries, however,

markets are dispersed and the communication infrastructures are poor. The implication

is that asymmetric information among traders about the state of the demand in each

local market is pervasive.1

Incompleteness of trading opportunities, dispersed market information, and resale

are also prominent features of over-the-counter (henceforth, OTC) financial markets.

Products such as foreign currencies, swaps, forward rate agreements, and exotic options

are often traded via bilateral negotiation in OTC markets. These securities are subject

to counter-party risk, and, therefore, bonds of trusts and information flows between

1. This description is a brief summary of the stylised facts of markets in developing countries,

which have been documented in several empirical studies, such as Fafchamps and Minten (1999, 2001),

Jensen (2007), Aker (2010), Svensoon and Yanagizawa (2009), and Allen (2014). These papers focus on

a variety of goods, ranging from non-storable goods, such as fish in Jensen (2007), to highly storable

goods, such as grain in Aker (2010).
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firms/dealers are particularly important. This gives rise to trading costs that can be

heterogeneous across pairs of traders. Furthermore, private observability of customer

order flow and individual liquidity shocks are sources of asymmetric information among

dealers. A large amount of inter-dealer trading is often observed, a phenomenon also

referred to as hot-potato trading.2

Our analysis addresses the following questions: How does the underlying network

structure affect the way market participants set prices? What are the network locations

that provide larger payoffs to traders? What are the main welfare implications of trading

in networks under asymmetric information? In Section 3, we answer these questions for

the class of multi-layer networks. These networks capture environments in which there

is a natural direction of trade from upstream to downstream traders. In the rest of this

introduction, we present the results for general networks (contained in Section 4), and,

when appropriate, we comment on additional insights that are obtained from the analysis

of multi-layer networks.

The set of weak-Markov perfect Bayesian equilibria (henceforth “equilibria”) that

we characterise has a simple structure. A high-value trader who acquires the object

consumes it. In contrast, a low-value trader engages in a sequence of offers to other

connected traders until the object is sold (unless, at some point, her own consumption

value is higher than the discounted resale value of the object). All of her offers except

the last come at prices that only traders with a high value are willing to accept. We refer

to these offers as consumption offers because, once accepted, the object is consumed.

Refused consumption offers are followed by an offer that low and high-value traders

accept. We refer to these offers as resale offers because they come at a price equal to the

expected revenue that the low-value trader obtains from reselling to other traders (i.e.,

their resale value).

We show that the equilibrium sequence of asking prices is non-monotonic in time.

Prices in resale offers are decreasing in time because, as time passes, all traders become

more pessimistic about the total expected demand in the network. However, prices in

2. We refer to Lyons (1997) for a seminal paper on hot-potato trading. Li and Schurhoff (2014)

study the trade of US municipal bonds in the OTC market. They document that bonds move from the

municipality through an average of six inter-dealer trades. They also document that there is systematic

price dispersion across dealers, with earlier dealers maintaining systematically larger margins. We refer

to Allen and Babus (2009) for a survey of networks in financial markets.
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consumption offers spike, as sellers are attempting to exploit their positional power in the

network to appropriate the surplus of connected traders with high value. The equilibrium

price dynamic, then, is reminiscent of fire-sale and hot-potato trade dynamics: a low-value

trader buys the object at a price that equals the expected sale price; if she fails to sell

it at a high price, she is “forced” to sell it at a price lower than the one she paid. The

fact that the game ends, once consumption offers are accepted, and that prices in resale

offer are declining, imply that the realised sequence of transaction prices is also declining,

with the possible exception of the last one.

We then investigate how the network location of a trader affects her payoffs. Only

traders who receive a resale offer can make a positive profit. We call these traders dealers.

Low-value dealers break-even in expected value: they buy at a price which equals their

resale value. High-value dealers make a positive profit: they acquire the object at a

price lower than their consumption value. Dealers arise endogenously, depending on their

network location. In multi-layer networks, the dealers are the traders that lie on the path

of the network that maximises the number of traders connected to the nodes in that

path. In general networks, we show that if a high-value dealer is essential in connecting

the local producer to another trader, then the former obtains a higher expected payoff.3

Finally we show that the equilibrium trading path does not always maximise ex-

ante allocative efficiency. In multi-layer networks, when traders are sufficiently patient,

the owner of the object makes consumption offers to all but one of her trading partners

and, if all these offers are rejected, she makes a resale offer to the remaining partner (the

dealer). The dealer is the trading partner with the highest resale value and, as already

mentioned, is located on the path that maximises the number of traders connected to

it. However, this path does not necessarily maximises the probability that a high-value

trader consumes the object.

A central message in our paper is that the interplay between asymmetric information

and strategic intermediation in networks leads to spatial price dispersion (the object is

priced differently across network locations), and inefficiency. These predictions are in line

with most of the empirical work studying markets in developing countries. Moreover,

recent empirical studies have provided compelling evidence that the introduction of

information technology in developing countries– e.g., the availability of mobile phones–

3. A trader i is essential to connect j to the initial producer if trader i lies in every path from the

initial owner to trader j.
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has reduced asymmetric information across markets and, as a consequence, has decreased

spatial price dispersion and inefficiencies– see e.g., Jensen (2007), Aker (2010), and

Svensoon and Yanagizawa (2009). In our framework, we could think of such an innovation

as leading to a setting in which either the demand of each local market (the private

valuation of the trader) becomes common knowledge among traders, or the initial

producer can directly access all other traders. In both cases, the equilibrium predicts

constant prices across locations, larger profits to the initial producer, and allocative

efficiency.

Understanding how networks affect trade is a central question in economics. A

large literature has focused on buyer-seller networks–see Manea (2015) for a survey of

this literature. A few recent papers have studied strategic intermediation in networks

under complete information. Blume et al. (2009), Choi et al. (2016), Nava (2015), and

Gale and Kariv (2007, 2009) focus on markets in which intermediaries post prices. In

Kotowski and Leister (2014), negotiation occurs via auctions. Manea (2014) studies a

model of bilateral bargaining with random selection of proposer.4 We contribute to this

literature by examining, for the first time, a dynamic model of trade in the presence

of asymmetric information. The prevalence of asymmetric information in decentralised

markets motivates this extension, and, as we discussed above, our results provide novel

predictions that are consistent with existing empirical evidence.5

Our paper also relates to bilateral bargaining models with one-sided asymmetric

information. Some classical papers are Ausubel and Deneckere (1989), Fudenberg and

Tirole (1983), Fudenberg et al. (1985), Gul et al. (1986) and Hart (1989). Most of this

literature focuses on one seller and one buyer; exceptions are Fudenberg et al. (1987)

and De Fraja and Muthoo (2000) in which there are multiple buyers. We extend the

analysis to allow for resale; indeed, both Hart (1989) and De Fraja and Muthoo (2000)

are a special case of our model. The possibility of resale generates new questions. It also

creates new difficulties, as it implies that the continuation value of a trader depends on

4. Other related papers are Siedlarek (2015) and Gofman (2011). See Condorelli and Galeotti

(2015) for a survey of models of strategic intermediation in networks.

5. Our approach, which combines both incomplete information and an explicit network structure,

stands in contrast to recent models of trading that employ the random-matching approach pioneered

by Rubinstein and Wolinsky (1985)– e.g., Duffie et al. (2005), Satterthwaite and Shneyerov (2007), and

Golosov et al. (2014).
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the entire vector of beliefs. As a consequence, some methods of analysis that are used in

the classical bilateral bargaining model are not easily transposed to our setting.

Finally, our paper is related to the literature on the effect of resale on market

outcomes. Calzolari and Pavan (2006) consider a simple seller-intermediary-buyer

architecture. Haile (2003), Garratt and Tröger (2006), Hafalir and Krishna (2008), Jehiel

and Moldovanu (1999) and Zheng (2002) analyse a complete network and their focus on

auctions and inter-bidder resale. We work with a general network and explore a different

set of questions.

2. THE NETWORK TRADING GAME

A trading network is a directed graph G = (N,E), where N = {1, . . . , n} is the set of

traders, and E ⊆ 2N×N is the set of directed edges; edges represent potential trading

relationships. If ij ∈ E, we say that j is a trading partner of i– i.e., trader i can sell to

trader j. The set of i’s trading partners is Ni = {j ∈ N \ {i} : ij ∈ E}.6

There is a single unit of an indivisible good, the object, initially owned by one of

the traders, s0. Each trader i has a private value for the object, vi ∈ {vL, vH}, where

0 < vL < vH . The (common) prior probability that vi = vH is µi ∈ (0, 1), and values are

independently distributed. Without loss of generality, we restrict attention to networks

in which there is at least one (directed) path from s0 to each i 6= s0.

There is an infinite number of rounds. Starting with t = 0, each round of trade is

as follows: (i) The current owner of the object, denoted st (i.e., the seller), chooses to

either consume the object or not and, in the latter case, makes a take-it-or-leave-it offer

to one of her trading partners, bt ∈ Nst (i.e., the buyer), at some price pt ∈ R+; (ii) bt

decides whether to accept the offer or reject it. The game ends if st consumes the object.

If st does not consume, the game proceeds to round t + 1 and st+1 = bt if bt accepted

the offer; otherwise, st+1 = st. We assume perfect observation– i.e., all traders observe

all decisions.

The t-period payoff to the seller is vst if she consumes, pt if her offer is accepted,

and 0 otherwise; buyer bt obtains −pt if she accepts, and 0 otherwise. All other traders

get 0. Traders have a common discount factor δ ∈ (0, 1) and maximise their expected

discounted sum of payoffs.

6. The trading network is undirected if ij ∈ E implies that ji ∈ E.
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We call the multi-stage extensive-form game with observed actions, independent

types, and incomplete information that we have described above the network trading

game.

A non-terminal history ht at the beginning of period t is a sequence of offers

made and purchasing decisions up to period t, that is, ht = ((iτ , pτ ), aτ )t−1
τ=0, where

(iτ , pτ ) ∈ N ×R+ is the offer made at period τ and aτ ∈ {a, na} is the decision of trader

iτ whether to purchase the good at price pτ (a stands for “accepted” and na for “not

accepted”). We omit the reference to consumption decisions since the game ends as soon

as a trader consumes the object. We denote by ht ⊕ (it, pt) the history that follows ht if

(it, pt) is played at ht. Behavioral strategies are defined in the usual way, see Fudenberg

and Tirole (1991).

Throughout the paper, we restrict attention to weak-Markov perfect Bayesian

equilibria (henceforth referred to as wMPBE). We refer to section 8.2.3 of Fudenberg

and Tirole (1991) for a formal definition of Perfect Bayesian equilibrium. We impose the

additional restriction that degenerate beliefs are never updated. A wMPBE is a perfect

Bayesian equilibrium in which the consumption decision and the offer made by seller st

at history ht only depend on her private information, the profile of beliefs at ht, and

the offer (it−1, pt−1) made in the previous round, if made by seller st. The acceptance

strategy of buyer bt at history (ht, (bt, pt)) only depends on her private information, the

profile of beliefs at (ht, (bt, pt)), the price asked pt, and the identity of the seller.7

Restricting attention to wMPBE implies that, at the beginning of a period, a seller’s

equilibrium continuation payoff depends only on her private information and the profile

of beliefs.8 We call resale value the continuation payoff of a low-value seller i at the

beginning of a round of trade, and we denote this quantity as Ri, omitting reference to

beliefs. We now present a preliminary result about all wMPBE.

7. In a strong-Markov PBE, the seller’s strategy only depends on the profile of beliefs at every

history. It is well known that strong-Markov PBE do not always exist in bargaining games with

incomplete information. For this reason, the literature has focused on wMPBE, see Fudenberg et al.

(1985), and Fudenberg and Tirole (1983).

8. To see this, consider two histories (ht, h̃t) such that the profile of beliefs and the seller are the

same at both histories. If (it−1, pt−1) = (̃it−1, p̃t−1), the statement follows directly from the definition

of Markov strategies. If (it−1, pt−1) 6= (̃it−1, p̃t−1), the strategies alone do not imply the statement.

However, if the continuation payoffs were different, the seller would have a profitable deviation, namely

to deviate to the strategy that gives her the highest continuation payoff.
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Proposition 1. In every wMPBE:

(1) A high-value seller consumes the object.

(2) A seller never makes an offer to buyer b at a price strictly below her discounted

resale value, δRb. Hence, a low-value trader, with the exception of the initial seller,

makes zero profit.

To understand (1), note that the continuation payoff of a high-value seller must

be at least vH for her to not consume the object immediately. However, the sum of all

continuation payoffs is at most δvH , since the maximal surplus is vH in every period.

Therefore, at least one trader must have a strictly negative continuation payoff. This

is impossible because each trader can always reject all offers and guarantee herself a

zero payoff. This observation greatly simplifies our analysis as it implies that only low-

value sellers bargain with their trading partners. As for (2), note that sellers have, in

equilibrium, correct beliefs about the resale value of their trading partners and, since

they hold all the bargaining power, they never offer the object at prices below discounted

resale values.

Proposition 1 illustrates a number of properties that hold for all wMPBE. To sharpen

the equilibrium analysis, however, we need to impose additional assumptions. In Section

3, we restrict attention to a particular class of networks, construct explicitly a wMPBE

(thus proving existence), and discuss the insights that emerge from our construction. In

Section 4, we show that these insights generalise to arbitrary networks.

3. MULTI-LAYER NETWORKS

In this section, we restrict attention to a particular class of networks, called multi-layer

networks. A multi-layer network is an acyclic network with the additional property that

for every distinct triples (i, j, j′) such that (ij, ij′) ∈ E×E, there is no directed path from

j to j′ or from j′ to j. Directed trees rooted at s0 are examples of multi-layer networks.

An example of a multi-layer network that is not a tree is depicted in Figure 1.

There are two main reasons for paying special attention to multi-layer networks.9

First, these networks capture environments in which there is a natural direction of

9. Multi-layer networks, or variants of them, are assumed in recent models of trading on networks

with resale, e.g., Gale and Kariv (2009), Gofman (2011), Manea (2014) and Kotowski and Leister (2014).
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A multi-layer network.

trade, from upstream to downstream traders, as is typical in most supply chains in

manufacturing, retail, and agriculture. Second, in multi-layer networks, the buyers that

a seller can reach either directly or indirectly– i.e., for which there is a path from the

seller to the buyer– cannot have received offers in the past. This implies that we can

construct wMPBE with the property that the continuation payoff of a low-value buyer

upon accepting an offer (i.e., her discounted resale value) is independent of the offers

that have been made before she acquires the object.

Throughout the section, we assume that µi = µj for all (i, j) ∈ N ×N , so that the

only source of heterogeneity among traders is their location on the trading network. We

also focus the analysis on arbitrarily large discount factors and refer the interested reader

to the appendix for a complete analysis.

3.1. Construction of an equilibrium

We first define an auxiliary game of bargaining between one seller and multiple buyers

and construct an equilibrium (of that game). Second, we return to trading games on

multi-layer networks, define a partition of the traders (the layers), and then construct

an equilibrium recursively, using the equilibrium strategies of the appropriate auxiliary

game.

3.1.1. An auxiliary game: multi-lateral bargaining. There is one seller s,

with value vL, who can bargain with a finite set Ns = {1, ...,m} of buyers. Each buyer
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b ∈ Ns has private valuation vb ∈ {δRb, δvH}, with Rb ∈ [vL, vH), and µ is the common

prior that vb = δvH . Without loss of generality, we assume that R1 ≥ R2 ≥ · · · ≥ Rm.

This auxiliary game is similar to a network trading game in which the traders are {s}∪Ns
and the set of (directed) edges is E = {sb : b ∈ Ns}. Later, we will interpret Rb as the

continuation payoff of buyer b (if she were to buy the object).

We consider two separate cases: R1 > vL and R1 = vL. For each case, we present an

equilibrium path and leave the details of the equilibrium strategies to the appendix.

Lemma 1. Assume that R1 = vL. For all sufficiently large discount factors, there

exists an equilibrium with the following equilibrium path: (i) the seller asks δvH , in

sequence, to each buyer, (ii) high-value buyers accept the offer, whereas low-value buyers

reject it, and (iii) if all offers at δvH have been rejected, the seller consumes the object.

As δ → 1, the seller’s expected payoff converges to (1− (1− µ)m)vH + (1− µ)mvL.

The intuition for Lemma 1 is as follows. Since δR1 < vL for all δ < 1, there are

strictly positive gains from trade only if the seller trades with a high-value buyer (i.e.,

when δvH > vL). As the seller has all the bargaining power, she can then extract the

entire expected surplus by offering δvH , in sequence, to each buyer and consuming the

object if all offers have been rejected. A sufficiently large discount factor guarantees that

the seller is indeed better off offering to all buyers in sequence rather than consuming

immediately.

We now turn our attention to the case R1 > vL (so that δR1 > vL for sufficiently

large δ). A special case is when there is a single buyer; this case is known as the “gap case”

in the bilateral bargaining literature. In what follows, we say that the seller and a buyer

engage in bilateral bargaining if they follow the equilibrium strategies of the bilateral

bargaining game, as characterised in Hart (1989). We review Hart’s construction later

on.

Lemma 2. Assume that R1 > vL. For all sufficiently large discount factors, there

exists an equilibrium with the following equilibrium path: (i) the seller asks, in sequence,

δvH to all buyers b > 1, (ii) all high-value buyers b > 1 accept the offer δvH , whereas

low-value buyers b > 1 reject it, (iii) if all offers at δvH have been rejected, the seller and

buyer 1 engage in bilateral bargaining. As δ → 1, the seller’s expected payoff converges

to (1− (1− µ)m−1)vH + (1− µ)m−1R1.
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The logic behind Lemma 2 is as follows. The seller can guarantee herself δR1 with

an offer at δR1 to buyer 1, since it is accepted with probability one (see Proposition 1).

As a consequence, the seller has no gains to make from trading with low-value buyers,

other than buyer 1. The best the seller can do is therefore to offer δvH to all these buyers.

In the event that all these offers are rejected, it becomes common belief that all buyers

b 6= 1 have a low value and, from that point onward, the seller bargains exclusively with

buyer 1.

We conclude this subsection by reviewing Hart’s equilibrium construction. A reader

familiar with the bargaining literature may skip the review. We already know that the

seller never makes an offer to the buyer below δR1 in equilibrium and, consequently,

the low-value buyer accepts all offers up to δR1 with probability one. Also, the seller’s

belief about the buyer having a high-value must decrease over time. This is known as the

skimming property in the bargaining literature and follows from the observation that a

high-value buyer has a strict incentive to accept all offers that a low-value buyer would

accept. In turn, the skimming property implies that bargaining ends with probability one

at or before T <∞. Indeed, if at period T the seller’s belief µT is less than R1/vH , the

seller finds it profitable to sell the object at price δR1, which is accepted with probability

one, rather than offering a higher price, which would be accepted with probability at

most µT if it is less than δvH (and with probability zero, otherwise). That bargaining

ends in finite time then follows by noting that the seller’s beliefs must decrease at a rate

uniformly bounded from below and thus be less than µT in finite time (See Lemma 3 in

Fudenberg et al. (1985) and Proposition 5 for a generalisation to network trading games.)

We now show how to construct an equilibrium. Assume that bargaining ends at

or before period T (to be determined later). At the last period, the seller must offer

p0 = δR1. Any higher offer would be rejected by the low-value buyer; the seller would then

find it profitable to make another offer next period, contradicting that bargaining ends

at that period. Any lower offer clearly decreases the seller’s payoff. For future reference,

let µ0 = 0 and V0(µ̂) = δR1 for all µ̂ ∈ [µ0, 1].

At the second to last period, the seller must offer a price p1 that makes the high-value

buyer indifferent between accepting and rejecting the offer, i.e., δvH − p1 = δ(δvH − p0).

Any higher offer is rejected, which leads to a payoff of δ2R1 to the seller; the seller

would be better off offering δR1. Any lower offer clearly decreases the seller’s payoff.

Moreover, the high-value buyer must accept the offer p1 with probability one for the
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seller’s maximisation problem to have a solution. The seller’s expected payoff is therefore

µ̂p1 + δ(1− µ̂)p0, where µ̂ is the seller’s current belief. Observe that we can rewrite the

seller’s expected payoff as

V1(µ̂) =
µ̂− µ0

1− µ0
p1 +

1− µ̂
1− µ0

δV0(µ0),

for all µ̂ ∈ [µ0, 0]. Finally, for the seller to indeed have an incentive to offer the sequence

(p1, p0) instead of (p0) when her current belief is µ̂, we need that V1(µ̂) ≥ V0(µ̂). This is

equivalent to µ̂ ≥ µ1, with µ1 the unique solution to V1(µ1) = V0(µ1).

Continuing inductively, given the triple (pk, Vk, µk), we define the triple

(pk+1, Vk+1, µk+1) as follows. First, pk+1 makes the high-value buyer indifferent between

accepting and rejecting the offer, i.e., δvH−pk+1 = δ(δvH−pk). Second, for all µ̂ ∈ [µk, 1],

Vk+1(µ̂) is the seller’s expected payoff when her current belief is µ̂, her next period belief

is µk, and bargaining continues for an additional k + 1 periods, i.e.,

Vk+1(µ̂) =
µ̂− µk
1− µk

pk+1 +
1− µ̂
1− µk

δVk(µk).

Third, the threshold µk+1 makes the seller indifferent between bargaining for an

additional k+ 1 periods and k periods, i.e., µk+1 is the unique solution to Vk+1(µk+1) =

Vk(µk+1).10 Note that we have µk+1 > µk, and Vk+1(µ̂)− Vk(µ̂) ≥ 0 for all µ̂ ≥ µk+1.

Finally, we determine T as the solution to µT+1 > µ ≥ µT . The following proposition

summarises the equilibrium construction (with a slight abuse of notation, we let µT = µ).

Proposition 2 (Hart (1989)). The bilateral bargaining game has a (generi-

cally) unique equilibrium, where (i) bargaining ends on or before period T with probability

one, (ii) at each period t, the seller offers pT−t, (iii) at each period t ≤ T − 1, the high-

value buyer accepts the offer pT−t with probability (µT−t−µT−t−1)/((1−µT−t−1)µT−t),

and (iv) the low-value buyer accepts the offer p0 with probability one. As δ → 1, the

seller’s expected payoff converges to R1.

3.1.2. Layers and equilibrium construction. We construct the following sets,

called the layers, recursively. First, we define L0 = {i ∈ N : Ni = ∅}; then, for k ≥ 1,

we define Lk = {i ∈ N \ ∪k−1
`=0L` : Ni ⊆ ∪k−1

`=0L`}. Since G is a multi-layer network,

10. Note that Vk+1(1) − Vk(1) = pk+1 − pk > 0, Vk+1(µk) − Vk(µk) = (δ − 1)Vk(µk) < 0. Thus,

the existence and uniqueness of a solution follows from the linearity of µ̂ 7→ (Vk+1(µ̂)− Vk(µ̂)), which is

increasing.
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there exists k∗ <∞ such that {L0, . . . , Lk∗} is a partition of N and Lk∗ = {s0}.11 This

partition creates an ordering of traders based on their resale opportunities. Traders in L0

have no resale opportunities (we refer to them as end-traders); traders in Lk can resell

only to subsets of traders belonging to ∪k−1
`=0L`. In Figure 1, we have that k∗ = 3, and

L0 = {3, 5, 6, 7}, L1 = {4}, L2 = {1, 2} and L3 = {s0}.

Suppose that trader it ∈ Lk acquires the object at some history ht⊕(it, pt). If k = 0,

trader it consumes and we set Rit = vL. If k = 1, in view of Proposition 1, high-value

trader it consumes at the beginning of period t+1. Low-value trader it may bargain with

her trading partners b ∈ Nit ⊆ L0. Since high-value trader it consumes, it is common

belief that trader it has a low-value if she makes an offer. Hence, trader it and her trading

partners b ∈ Nit face a multi-lateral bargaining game, with Rb = vL for all b ∈ Nit . We

assume that trader it and her trading partners b ∈ Nit follow the equilibrium strategies of

Lemma 1, regardless of the history ht⊕(it, pt) at which trader it has acquired the object.

We let Rit be the continuation payoff of trader it if she acquires the object. If k > 1,

having defined Ri for all i ∈
⋃
k′<k Lk′ , we complete the construction of the equilibrium

by proceeding recursively in the layer structure, appealing to the equilibrium strategies

of Lemma 2 between trader it and her trading partners Nit ⊆
⋃
k′<k Lk′ .

To recap, in equilibrium, the current owner of the object makes a sequence of offers

at δvH to all her trading partners but the one with the highest resale value. If all these

offers are rejected, the owner engages in bilateral bargaining with her trading partner

having the highest resale value. (If there are multiple trading partners with the highest

resale value, choose one arbitrarily.) Thus, a trader receives either no offers, or offers at

her discounted resale value, which we call resale offers, or offers that makes the high-value

trader indifferent between accepting and rejecting, which we call consumption offers.12

As we shall see later, these are general features of what we call regular equilibria in

Section 4. In the rest of the paper, we call dealers the traders who, along the equilibrium

path, receive a resale offer with positive probability.

11. See Lemma 1, p. 513, of Renou and Tomala (2012) for a proof.

12. Strictly speaking, an offer is a pair (i, p). With a slight abuse of terminology, we refer to the

price associated with an offer as the offer itself.
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3.2. Dealers, payoffs and price dynamic

The next proposition characterises the set of dealers, their payoffs, and the price dynamic,

as traders becomes infinitely patient.

For a directed path (i1, . . . , im) from trader i1 to trader im, we let s((i1, . . . , im)) :=∑
k |Nik | be the sum of outgoing edges and l((i1, . . . , im)) the length of the path (i.e.,

m − 1). Note that s((i1, . . . , im)) is the number of traders who are potentially offered

the good if trader i1 owns the good, should the trading route be (i1, . . . , im). Let

κ((i1, . . . , im)) := s((i1, . . . , im)) − l((i1, . . . , im)). It is worth noting that n − 1 ≥

κ((i1, . . . , im)) ≥ 0 for all paths; the lower bound obtains when the network is a line,

whereas the upper bound obtains when the network is a star, with i1 as the center.13 In

Figure 1, s((s0, 1, 4)) = 7, s((s0, 2, 4)) = 6, and l((s0, 1, 4)) = l((s0, 2, 4)) = 2.

Proposition 3. Assume that there exists a unique path (i∗1, . . . , i
∗
m) that

maximises κ among all paths (i1, . . . , im) from the seller to traders in layer L1 (i.e.,

(i1, im) ∈ {s0} × L1). As δ → 1, the sequence of equilibria we have constructed satisfies

the following at the limit:

(i) The sequence of dealers converges to (i∗2, . . . , i
∗
m).

(ii) The resale offer to dealer i∗k, k ≥ 2, converges to vH − (1− µ)κ((i∗k,...,i
∗
m))(vH − vL).

(iii) The payoff of the initial seller converges to vH − (1− µ)κ((i∗1 ,...,i
∗
m))(vH − vL), and

the payoff of high-value dealer i∗k, k ≥ 2, converges to

(1−µ)

(∑
`<k |Ni∗` |

)
−1

(1−µ)κ((i∗k,...,i
∗
m))(vH−vL) = (1−µ)κ((i∗1 ,...,i

∗
m))+k−2(vH−vL).

As an illustration of Proposition 3, the unique maximising path is (s0, 1, 4) in Figure

1. The resale offer to trader 1 converges to vH − (1 − µ)4(vH − vL), which is higher

than trader 4’s resale offer of vH − (1 − µ)3[vH − vL]. High-value trader 1’s expected

payoff is (1− µ)5[vH − vL], which is higher than high-value trader 4’s expected payoff of

(1− µ)6[vH − vL].

A number of insights emerge from the above characterisation. As we show in Section

4, these insights are not limited to the equilibrium we have constructed, nor are they to

multi-layer networks.

13. The length of the empty path is normalised to zero.
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First, the path (i∗1, . . . , i
∗
m) maximises the number of traders who potentially receive

a consumption offer. Along that path, the initial seller and the dealers are able to price-

discriminate most. Note, however, that the path (i∗1, . . . , i
∗
m) is not necessarily one of the

paths that maximise the likelihood of a high-value trader consuming the good and, thus,

the expected surplus. For an illustration, consider the multi-layer network in Figure 2.

We have that L0 = {3, 4, 7}, L1 = {1, 6}, L2 = {5}, L3 = {2}, L4 = {s0}, the unique

maximising path is (s0, 1), and κ((s0, 1)) = 3, whereas κ((s0, 2, 5, 6)) = 2. Therefore,

for sufficiently high discount factor, there exists an equilibrium in which trader 1 is the

dealer. Since s((s0, 1)) = 4, the ex-ante expected total surplus generated converges to

vH − (vH − vL)(1 − µ)4, as δ goes to one. However, the ex-ante total surplus is higher

if the object flows from s0 to 7 along (s0, 2, 5, 6) with a consumption offer to 1; it is

vH − (vH − vL)(1−µ)5. Although along the path (s0, 2, 5, 6), there is a higher number of

traders that can receive an offer relative to (s0, 1), the dealers 5 and 6 have a single resale

opportunity each. This results in a low resale value for trader 2. The alternative path

(s0, 1) is short, but each dealer has two resale opportunities, leading to a higher resale

value for trader 1. We can, indeed, rank networks based on the expected surplus they

generate at the equilibrium described in Proposition 3. Let (i∗1, ..., i
∗
m)G be the path that

maximises κ among all paths (i1, ..., im) from the seller to traders in layer L1 in network

G. Then, as δ goes to one, the equilibrium expected surplus in G is higher than in G′

whenever s((i∗1, ..., i
∗
m)G) > s((i∗1, ..., i

∗
m)G′ ). For example, fixing the number of nodes,

both the star and line networks maximise the equilibrium expected surplus.14

Second, resale offers are declining as the object flows from the initial seller to end-

traders through the path (i∗1, . . . , i
∗
m). Since κ((i∗k, . . . , i

∗
m)) = |Ni∗k |−1+κ((i∗k+1, . . . , i

∗
m)),

we have that Ri∗k = (1− (1− µ)
|Ni∗

k
|−1

)vH + (1− µ)
|Ni∗

k
|−1

Ri∗k+1
≥ Ri∗k+1

(see Equation

(1) for a generalisation to arbitrary networks). Resale offers reflect the expected surplus

that future trade generates; these surpluses decrease as the object flows from the initial

seller to end-traders because later dealers have fewer resale opportunities. Moreover,

the sequence of offers is of the form (vH , . . . , vH , Ri∗2 , vH , . . . , vH , Ri∗k , vH , . . . ) and is, in

14. Manea (2014) studies a model of bilateral bargaining on acyclic networks. He assumes complete

information and that offers are made either by the buyer or the seller; the proposer is randomly selected.

His characterisation relies on a decomposition of the network in a sequence of layers. In his model, traders

in the same layer face a similar downstream competition. This contrasts with our model where traders

in the same layer face similar resale opportunities. Like us, Manea shows how strategic intermediation

in networks can lead to inefficient outcomes.
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Inefficiency.

general, non-monotonic. As mentioned in the introduction, this is reminiscent of fire-sale

and hot-potato trade dynamics. If dealer i∗k fails to sell the good at price vH to one of her

trading partners, she ends up selling the good at price Ri∗k+1
to dealer i∗k+1, thus making

a loss. Yet, the sequence of prices at which transactions take place is decreasing, with

the possible exception of the last one. Indeed, as soon as a consumption offer is accepted,

the game ends next period and, consequently, transaction prices must be resale offers,

with the possible exception of the last one.

Third, Proposition 3 states that the initial seller as well as high-value dealers expect

a positive profit. No other traders make a positive profit. To see this, note that if trader

i receives no offers, her payoff is zero. Next, assume that trader i receives consumption

offers only, and focus on the last consumption offer that trader i receives (this offer exists

because the game ends in finite time). Since, by definition, consumption offers make high-

value traders indifferent between accepting and rejecting them, the last consumption offer

to trader i must come at a price of vH .15 This implies that all previous offers (if any)

must be at a price of vH , as well. Trader i’s payoff is, therefore, zero.16 Turning to dealers,

all low-value dealers obtain zero profit by Proposition 1.

Fourth, the payoff of high-value dealers is declining with their distance from the

initial seller. The payoff of a high-value dealer is determined by the probability of receiving

15. More precisely, it comes at a price of δvH , which converges to vH as δ converges to 1.

16. It is worth noting that, in addition to resale offers, dealers receive consumption offers too, when

they engage in bilateral bargaining.
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her first resale offer as well as its price. Since resale offers decline along the equilibrium

path, conditional on receiving a resale offer, earlier high-value dealers acquire the object at

a higher price than later high-value dealers (i.e., Ri∗k > Ri∗
k′

for k < k′). However, earlier

high-value dealers have a higher probability of receiving the resale offer than latter high-

value dealers (i.e., (1−µ)

(∑
`<k |Ni∗` |

)
−1

> (1−µ)

(∑
`<k′ |Ni∗` |

)
−1

for k < k′). The second

effect dominates the former. Intuitively, the decline in resale offers offsets the expected

demand of the traders that receive consumption offers, but it does not incorporate the

possibility that dealers consume the object. As a consequence, the difference in resale

values between later and earlier high-value dealers does not compensate for the decrease

in the probability of obtaining the offer.

Finally, the payoff of the initial seller increases with a change in the network that

increases κ((i∗1, . . . , i
∗
m)). It is the minimum in the line, where κ((i∗1, . . . , i

∗
m)) = 1, and

maximum in the star, where κ((i∗1, . . . , i
∗
m)) = n− 1.

4. EQUILIBRIA IN GENERAL TRADING NETWORKS

The equilibrium we have constructed for the multi-layer network trading game satisfies

two key properties: (i) the skimming property and (ii) that every equilibrium offer

above the discounted resale value of a trader makes the high-value trader indifferent

between accepting and rejecting it. We now show that all network trading games have

an equilibrium satisfying these two properties. Most importantly, these two properties

imply the results on pricing and payoffs that we have already emphasised in the previous

section.

Definition 1. A wMPBE is regular if it satisfies the following conditions:

a. Skimming: For all periods t, for all histories ht ⊕ (it, pt), if the low-value trader it

accepts the offer pt with positive probability, then the high-value trader it accepts pt

with probability one.

b. Indifference: For all periods t, for all histories ht, let p∗it(h
t) be the highest

(supremum) price that trader it accepts with probability one over all histories

{ht ⊕ (it, p) : p ∈ R+}. If p∗it(h
t) is higher than trader it’s discounted resale value

at ht, then the high-value trader it is indifferent between accepting and rejecting

p∗it(h
t).
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Proposition 4. A regular equilibrium exists for every network trading game.

As discussed in Section 3, the existence of an equilibrium is proved by induction on

beliefs in classical bilateral bargaining problems. This logic may not extend to network

trading games. Indeed, with multiple buyers and resale, the acceptance strategy of a

buyer as well as the offers a seller makes depend on the profile of beliefs of all traders, a

multi-dimensional object. So, instead of doing an induction on the profile of beliefs, we

do an induction argument on time, a one-dimensional object. First, we prove that each

network trading game with a finite horizon has a regular equilibrium. Then, using the fact

bargaining ends in finite time in all regular equilibria (see Proposition 5), we complete the

proof by an argument analogous to that of Chatterjee and Samuelson (1988). Despite

its simple logic, the proof is fraught with technical difficulties and relegated to online

Appendix A.

We now discuss our definition of regularity. The skimming property ensures that,

for each buyer, the common belief that she has high-value decreases as she rejects offers.

This, in turn, is key to proving that the game ends in finite time, a result that we use

throughout. As already mentioned, the skimming property holds in classical bilateral

bargaining problems. Unfortunately, we have not been able to prove that it also holds in

network trading games. The main difficulty is that resale values change over time as the

profile of beliefs changes, which implies that the valuation a low-value trader has for the

object changes over time, possibly non-monotonically. This sharply contrasts with the

classical model, where the valuation is fully persistent (given by the consumption value).

The indifference condition allows us to prove that, in every regular equilibrium,

offers are at a price that makes either the low-value or the high-value buyer indifferent

between accepting and rejecting. The indifference property is satisfied in classical bilateral

bargaining problems. It is guaranteed by the fact that the buyer’s equilibrium payoff

correspondence is monotonic in her belief. However, when a seller faces multiple buyers

and buyers can resell, a buyer’s continuation payoff depends on the entire profile of beliefs,

and we cannot guarantee that her equilibrium payoff correspondence is monotonic in her

own belief. As a consequence, we cannot rule out equilibria in which the high-value buyer

accepts up to a price that gives her a strictly positive payoff, but rejects with probability

one any slightly higher price. The indifference condition allows us to tie consumption

offers with continuation payoffs and, thus, with future offers. Without this property, it
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is doubtful whether one could say anything meaningful about the price dynamic.

To sum up, we have neither been able to prove that all wMPBE are regular nor that

there exist non-regular wMPBE. We focus on regular equilibria as it allows us to obtain

sharp results thanks to the following proposition.

Proposition 5. In a regular equilibrium:

(1) There exists T ∗ < ∞ such that consumption takes place before round T ∗ in any

on-path terminal history.

(2) Each offer made to trader i is either a resale offer at price δRi, or a consumption

offer.

4.1. Price dynamics and payoffs

Regular equilibria retain most of the features of the equilibrium we have constructed

for multi-layer networks. A high-value trader who acquires the object consumes it. A

low-value trader who acquires the object makes a sequence of consumption offers to her

trading partners and, in the event that all these offers are rejected, makes a resale offer,

which is accepted (unless, at some point, the discounted resale value of the object is lower

than her own consumption value). Hence, in equilibrium, any on-path terminal history

of the game can be summarised by a list of consumption offers and resale offers, ending

with consumption.

Fix a regular equilibrium. For an arbitrary on-path terminal history, let ps`

indicate the `-th consumption offer that the s-th seller makes, rs−1
s indicate

the resale offer that the (s − 1)-th seller makes to the s-th seller, and

(ps
0

1 , p
s0

2 , . . . , r
s0

s1 , . . . , r
s−1
s , ps1, . . . , p

s
k, r

s
s+1, p

s+1
1 , . . . ) be the sequence of consumption and

resale offers. If sellers do not randomise, the resale offer that seller s − 1 makes to s is

given by

rs−1
s = δRs (4.1)

= δ
[
α1p

s
1 + δ(1− α1)α2p

s
2 + ...+ Πk

`=1(1− α`)δk−1rss+1

]
,

where α` indicates the probability that the consumption offer ps` is accepted, and k the

number of consumption offers seller s makes.17 In words, the discounted resale value of a

17. In general, a seller could be indifferent between different offers, in which case there may be

equilibria at which the seller randomises. In these equilibria, the sequence of consumption and resale
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trader who acquires the object equals, in equilibrium, the expected discounted sale price.

A similar formula already appeared in Section 3 (see Proposition 3 and its discussion).

The following proposition generalizes Proposition 3 to arbitrary trading networks.

Proposition 6. In a regular equilibrium, the following conditions hold:

(1) Along all terminal histories, discounted resale offers are decreasing in time – i.e., if

rt is the resale offer at t and rt′ is the resale offer at t′, with t′ > t, then δtrt ≥ δt
′
rt′ .

(2) Along all terminal histories, any consumption offer is greater than the first ensuing

resale offer – i.e., if pt is the consumption offer at t and rt′ is the resale offer at

t′ > t, and every offer from t+ 1 to t′ − 1 is a consumption offer, then pt > rt′ .

(3) The initial seller and high-value dealers have a positive expected payoff; all other

traders have a zero payoff. Moreover, if all offers to trader j are always preceded by

a resale offer to dealer i, then the expected payoff of high-value dealer i is strictly

greater than the expected payoff of trader j.

As illustrated in Section 3, in multi-layer networks, resale offers decline over time

primarily because later dealers have fewer resale opportunities. This is not necessarily

true in arbitrary networks, where many dealers may have the same resale opportunities

(e.g., if the network is a wheel). To understand the first part of Proposition 6, consider

two consecutive resale offers, the first at period t and the second at period t′ > t. The

trader who receives the resale offer at t′ knows that all consumption offers from period

t+ 1 to period t′ − 1 have been rejected. When a trader rejects a consumption offer, all

other traders update downward their belief that she has a high consumption value; thus,

the trader who receives the resale offer at period t′ is more pessimistic than the trader

who receives the resale offer at period t. Hence, in our bargaining game where sellers

make all the offers, resale offers, evaluated at a given fixed date, decline over time.

Turning to the second part of Proposition 6, the result that consumption offers are

above the ensuing resale offers reflects the ability of sellers to use their local bargaining

power to demand a high price from some of their trading partners, before passing the

object to another dealer.

offers, along the equilibrium path, follows a stochastic process determined by the sellers’ equilibrium

strategies. Equation (4.1) must hold for every possible sequence of offers.
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Finally, the third part of Proposition 6 follows from the very same logic as in Section

3. Yet, we note that a resale offer is never at a price higher than δ2vH , since the resale

value of every trader is bounded from above by δvH . Thus, although we do not have an

explicit formula for the payoff of high-value dealers, a high-value dealer must obtain at

least δvH(1− δ) > 0, if she accepts a resale offer.

Proposition 6 has two immediate implications. First, prices demanded over time are

non-monotonic, a fact we already pointed out in Section 3. This follows by combining

two observations: (i) equilibrium discounted resale values decline over time (part 1 of

Proposition 6) and (ii) in equilibrium, the discounted resale value of a trader equals the

expected discounted price at which she will sell the object (Equation 4.1).

Second, there is a clear relationship between the location of traders on the trading

network and their payoffs, as shown in the next corollary. We say that trader j is essential

for trader i if j belongs to every (directed) path from the initial seller to trader i. Trader

i is an end-trader if ij /∈ E for all j (e.g., in a multi-layer network traders in L0 are

end-traders).

Corollary 1. In a regular equilibrium:

1) Every end-trader has a zero payoff.

2) If trader j is essential for trader i, then high-value trader j obtains a higher expected

payoff than high-value trader i.

The corollary points out the importance of the location of a trader in a trading

network. It emphasises that traders who are essential in connecting other traders to the

initial owner obtain a payoff advantage. Among the essential traders, the ones who are

located more upstream in the network (i.e., closer to the seller) enjoy higher surplus.

4.2. Trading cycles

In multi-layer networks, a trader does not have the opportunity to buy back the object,

so that the object cannot cycle. This is no longer true in general trading networks. We

illustrate the possibility of a cycle with the help of the following example. Consider the
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An example of trading cycle.

network in Figure 3, and assume that 1 > µ3 ≥ µ4 > 0 and µ2 = µ1 = 0, i.e., traders 1

and 2 have valuation vL with probability one.18

If trader 2 acquires the good, she can obtain a payoff µ4δvH + (1 − µ4)δvL by

offering δvH to trader 4 and consuming upon rejection. Thus, trader s0 can obtain at

least δ(µ4δvH+(1−µ4)δvL), extracting the entire surplus from trader 2. However, trader

s0 can do better by first offering the object to trader 1, with the implicit promise to buy

it back later in case trader 1 does not sell the object to trader 3.

More formally, for δ sufficiently high, there exists a regular equilibrium with the

following equilibrium path. Initially, trader s0 makes a resale offer to trader 1 at price

δ2µ3vH + δ5(1− µ3)(µ4vH + (1− µ4)vL).

Trader 1 accepts the offer and makes a consumption offer to trader 3 at price δvH . If the

offer is rejected, trader 1 resales the object to trader s0 at price δ3(µ4vH + (1− µ4)vL).

Trader s0 accepts and makes a resale offer to trader 2 at price δ2(µ4vH + (1 − µ4)vL).

Trader 2 buys and, in turn, makes a consumption offer to trader 4 at price δvH . Finally,

if the offer is rejected, trader 2 consumes the object.

The intuition as to why cycling occurs is that, for sufficiently large discount factors,

the consumption value of a low-value seller is lower than the resale value of her trading

partners who can resell to traders, still believed to have a high-value with positive

18. The same equilibrium outcome obtains if µ1 and µ2 are positive, but arbitrarily small. A full

specification of the equilibrium strategy of the example is in on-line Appendix B.
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probability. Hence, the object tends to move toward traders whose value is still uncertain.

We thus conjecture that, in a strongly connected network, as traders become fully patient,

the object will indeed cycle until it becomes a common belief that all traders in the

network have low value – at which point the current owner consumes.

5. CONCLUDING DISCUSSION

Our model is an abstraction of many decentralised markets in which trade proceeds from

a producer to a final customer, traveling through many possible layers of intermediation.

We have shown that: (i) the sequence of prices at which the object is exchanged is not

constant over time, (ii) the seller does not extract the entire surplus; dealers extract some

of the surplus too, (iii) the allocation is not necessarily efficient, and (iv) the object may

cycle. The assumptions that we employ are all relatively standard in the literature, and

were chosen to build the simplest possible model that incorporates resale and asymmetric

information. Nonetheless, a few of them deserve further discussion.

To start with, we assume incomplete information. This assumption is obviously

natural and essential for our results. Indeed, assume complete information, i.e., µi ∈ {0, 1}

for all i ∈ N . It is not difficult to see that the following properties hold in equilibrium:

(i) the sequence of prices at which the object is exchanged is constant over time, (ii)

the seller extracts all the entire surplus, (iii) the outcome is allocative efficient, and (iv)

the object never cycles in the network, e.g., a trader receives at most one offer. These

properties differ sharply from the one we have highlighted.

We assume that actions are perfectly observable. This assumption is at odds with the

idea that information is dispersed across traders, but relaxing it would entail considerable

technical difficulties. Suppose that only the buyer who received the offer could observe

it. Then, as the game proceeds, two traders may end up with different beliefs about the

value of a third trader. For instance, if seller s has made an offer to buyer b1, she may

have a belief about the value of buyer b1 different than the one held by buyer b2, who

may not be certain whether buyer b1 has received an offer yet. Higher-order beliefs would

then start to play a non-trivial role in the analysis.

The assumption that each trader has only two possible values assures that bargaining

takes place under one-sided asymmetric information. This is necessary to progress in

the analysis, given the additional intricacies that the resale opportunities introduce, see
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Zheng (2002). However, a minimal feasible generalisation of our information structure

consists in assuming that traders are heterogeneous with regard to their low value (i.e.,

vi ∈ {viL, vH} with viL < vH for all i ∈ N). Note that, in our model, the willingness to

pay of a low-value buyer is max{δvL, δRb} and since resale values are generally different

across traders, our current analysis already deals with such heterogeneity.

For the sake of tractability, we also assume that the seller makes all the offers:

allowing buyers to make offers alters their signalling possibilities. We acknowledge that

some of our results hinge on this assumption.19 Nonetheless, we expect our results to be

robust in giving a certain amount of bargaining power to buyers. In fact, the fundamental

force toward price decline that we have uncovered (i.e., the decrease in everybody’s resale

value as consumption offers are being made and rerejected) would still be present with

alternating-offer bargaining.

Finally, in our model, any two traders have the same information about the valuation

of any third trader. An alternative assumption would be that each trader knows her

valuation and, in addition, the valuation of her closest trading partners, but remains

uncertain about the valuation of all other traders. For multi-layer networks, we can

slightly modify the construction derived in Section 3.1.1 to characterise an equilibrium

in this environment. To see this, consider Figure 1 and assume that δvH > vL. Low-value

trader 4 can ask and get δvH if one of her trading partner has high value; otherwise,

she consumes, and gets vL. Suppose that low-value trader 1 has the object. Again, if

either trader 3 or 4 has a high value, then trader 1 obtains δvH . If they both have a

low value, then trader 1 faces a bargaining game where trader 3 has valuation δvL with

probability one, whereas trader 4 has valuation δvL with probability (1 − µ)3 and has

valuation δvH otherwise. By deriving the equilibrium in this subgame in the standard

way, we can compute how much the initial seller s expects low-value trader 1 to be willing

to pay in the event that all of trader 1’s trading partners have a low value. The method

to construct the equilibrium then follows the same logic that we developed in Section

3.1.1.

19. Suppose the game has alternating-offer and an initial seller s is facing a single buyer b. Let

vL = 0. If s is sufficiently pessimistic about the value of b, then she will bargain exclusively with the

low-value b, and will only extract a share of the available gains from trade (e.g., δRb/(1 + δ) assuming

Rubinstein’s bargaining game). Hence, for a sufficiently high discount factor, s’s resale value will be

lower than the discounted resale value of b. Also note that the payoff of s could be lower than that of b.

See Ausubel et al. (2002) for the analysis of the buyer-seller game.
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APPENDIX

A. MULTI-LAYER NETWORKS

Proposition A characterises an equilibrium for the auxiliary game introduced in Section

3. Lemma 1 and Lemma 2 follow directly from Proposition A. For a given strategy profile

and belief system, let h` be an history in which µ1 ≤ µ, there are ` ≥ 0 buyers i 6= 1 with

µi = µ and the remaining buyers with µi = 0. The set of all such histories is denoted by

Ĥ. As we shall show below, in the equilibrium that we characterise, all histories are of

type h`, with ` ≥ 0. We also denote by Π1s(µ̂, δ) and Πs1(µ̂, δ) the payoff of the buyer

and seller, respectively, in the unique equilibrium of the bilateral bargaining game with

prior µ̂ summarised in Proposition 2.

Proposition A. Consider the auxiliary network trading game. The following is an

equilibrium. At every history h` with ` ≥ 0:

1. Buyers i 6= 1 and low-value buyer 1 accept all offers at a price p ≤ δvi, and reject

all other offers.

2. Suppose δR1 ≤ vL. High-value buyer 1 accepts p ≤ δvH . If ` = 0, the seller

consumes if vL ≥ δ[µ1vH + (1 − µ1)vL], otherwise asks δvH to buyer 1. If ` > 0,

the seller consumes if vL ≥ δ[µvH + (1 − µ)vL], otherwise asks δvH to the highest

index buyer i 6= 1 with µi = µ.

3. Suppose δR1 > vL and R1 ≥ µvH + (1 − µ)δR1. High-value buyer 1 accepts

p ≤ δvH(1− δ) + δ2R1. The seller offers δR1 to buyer 1.

4. Suppose δR1 > vL and R1 < µvH + (1− µ)δR1. High-value buyer 1 accepts every

price p ≤ δvH − δ`+1(1 − µ)`Π1s(0, δ), rejects every price p ≥ δvH − δk+1(1 −

µ)`Π1s(µ1, δ), and, every other price is accepted with probability λ(p), which is

a left-continuous function such that δvH − p = δ`+1(1 − µ)`Π1s(µ
′
1, δ), where

µ′1 = (1 − λ(p))µ1/(1 − λ(p)µ1). If ` = 0, the seller makes an offer to buyer 1

following the strategy defined in Hart (1989). If ` > 0, the seller asks δvH to the

highest index player i 6= 1 with µi = µ.

5. Beliefs are updated according to Bayes’ rule whenever possible. Otherwise, we

assume that beliefs are passive.

Proof of Proposition A. We first note that given the strategy profile specified in

part 1-4, and given that beliefs are updated according to part 5, all equilibrium histories
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belong to Ĥ. Furthermore, starting from h ∈ Ĥ, if a buyer deviates by accepting an offer,

the game ends. If, starting from h ∈ Ĥ, a buyer deviates by rejecting an offer, given the

above strategy we will enter a new history h′ ∈ Ĥ. Finally, if starting from h ∈ Ĥ the

seller deviates, part 5 implies that we remain in Ĥ. Hence, we can focus, without loss

of generality, on the set Ĥ. We now prove each part of the proposition maintaining the

assumption that we are in history h` ∈ Ĥ with ` ≥ 0.

Part 1. It is immediate, given seller’s strategy defined in parts 2-4, to verify the

optimality of the strategy of buyers i 6= 1 and the optimality of low-value buyer 1’

strategy, both defined in part 1.

Part 2. It is also immediate to check the optimality of high-value buyer 1’s strategy

in part 2. We now establish the optimality of seller’s behaviour. Since δR1 ≤ vL and since

high-value buyers accept every offer up to δvH , the seller either asks δvH or consumes at

h`, for ` ≥ 0. Next, when ` = 0, making an offer at δvH to buyer 1 is optimal if and only

if vL < δ[vHµ1 + (1 − µ1)vL]. Suppose we are at h` with ` > 0. If the seller consumes

she gets vL. If it is optimal to make an offer δvH , since µ1 ≤ µ, the seller must make an

offer to buyer i 6= 1 with µi = µ. Moreover, if this offer is rejected, then we enter h`−1.

If `− 1 > 0, because of stationarity, then it will still be optimal to make an offer at δvH

to a buyer i 6= 1, with µi = µ. So, if the seller does not consume, her expected payoff is

P (`) := vHδµ

`−1∑
j=0

(1− µ)jδj + (1− µ)`δ` max{vL, δ[vHµ1 + (1− µ1)vL]}.

Note that P (1) = δ[µvH + (1 − µ) max{vL, δ[vHµ1 + (1 − µ1)vL]}] and that P (`) =

δ[µvH + (1 − µ)P (` − 1)] for all ` ≥ 1. Furthermore, if vL ≥ δ[µvH + (1 − µ)vL], then,

because µ1 ≤ µ, we have that vL ≥ P (1) and that P (`) ≤ δvL. Hence, it is a best reply

for the seller to consume. If, on the other hand, vL < δ[µvH +(1−µ)vL], then P (`) > δvL

and it is optimal for the seller to ask δvH to the highest index i with µi = µ.

Part 3. The proof of part 3 follows the same logic of the proof of part 2, and

therefore is omitted.

Part 4. Consider that high-value buyer 1 receives an offer. If she accepts, she gets

δvH−p. If buyer 1 rejects it, we enter history h` ∈ Ĥ with µ′1 ∈ [0, µ1] and the seller asks,

in sequence starting with the highest index, δvH to all buyers i 6= 1 with µi = µ. From

part 1, only high-value buyers accept, and, upon accepting they consume. If all these offers

are rejected, we enter history h0, and the equilibrium payoff of 1 is Π1s(µ
′
1, δ). Hence, the

continuation payoff upon rejection for buyer 1 is (1− µ)`δ`+1Π1s(µ
′

1, δ). Given buyer 1’s
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strategy, if high-value buyer 1 rejects p ≤ δvH − δ`+1(1 − µ)`Π1s(0, δ), then, by part 5,

µ′1 = 0 and therefore it holds that accepting such an offer p is a best reply. Analogously, if

player 1 rejects p ≥ δvH − δ`+1(1−µ)`Π1s(µ1, δ), then, by part 5, µ′1 = µ1, and therefore

it holds that rejecting such an offer p is a best reply. For all other offers, Hart (1989)

assures that there exists a left-continuous function in p, λ(p), such that if player 1 accepts

p with probability λ(p), player 1 is indifferent between accepting and rejecting.20

We now show that the prescribed strategy is optimal for the seller. We focus on the

case where ` = 1 and call 2 the player i 6= 1, with belief µ. The seller expected payoff by

following the strategy is

V s := δ[vHµ+ (1− µ)Πs1(µ, δ)]. (A.1)

The seller does not wish to deviate by asking a lower price to 2. So, suppose the seller

makes an offer to 1 at p, and, if rejected, follows the equilibrium strategy. Note that we

use the one-shot deviation principle, hence we look at deviations followed by equilibrium

play. We call pµ2
(µ′) the highest price that, if rejected by buyer 1, induces belief µ′ ≤ µ

about player 1, when the prior about buyer 2 is µ2. We say that µ′ is implementable from

µ if there exists such a price pµ(µ′). The fact that the acceptance strategy of high-value

buyer 1 is left continuous implies that there is a finite set of µ′ that are implementable.

The payoff of the seller from a deviation that asks the price pµ(µ′) is

V sd := pµ(µ′)
µ− µ′

1− µ′
+

1− µ
1− µ′

δ2[vHµ+ (1− µ)Πs1(µ′, δ)], (A.2)

where µ−µ′
1−µ′ is the unconditional probability of buyer 1 accepting the price pµ(µ′).

Next, given high-value buyer 1’strategy, the set of beliefs µ′ that are implementable

from µ does not depend on µ2 ∈ {0, µ}. Hence, since in the history in which µ2 = 0 and

µ1 = µ, we have postulated that the seller and buyer plays according to the equilibrium

of Hart (1989), the seller’s pricing must be optimal, which implies that

Πs1(µ, δ) ≥ p0(µ′)
µ− µ′

1− µ′
+

1− µ
1− µ′

δΠs1(µ′, δ). (A.3)

20. This follows from the result in Hart (1989) that the high-value buyer 1’s equilibrium payoff

correspondence as µ1 varies has a closed graph, it is weakly decreasing and single valued except at a

finite number of points.
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This allows us to relate the seller’s payoff by following the strategy, expression A.1, to

her deviating payoff, expression A.2, as follows:

V s = δ[vHµ+ (1− µ)Πs1(µ, δ)] ≥ δvHµ+ (1− µ)δ

[
p0(µ′)

µ− µ′

1− µ′
+

1− µ
1− µ′

δΠs1(µ′, δ)

]
= µδvH

[
1− 1− µ

1− µ′
δ

]
+ (1− µ)δp0(µ′)

µ− µ′

1− µ′
− pµ(µ′)

µ− µ′

1− µ′
+ V sd

where the first inequality is obtained by replacing Πs1(µ, δ) with its lower bound defined

in inequality (A.3), and the second equality follows by using equation (A.2) that relates

Πs1(µ′, δ) with V sd . To show that the strategy of the seller is a best reply, i.e., V s ≥ V sd ,

it is, then, sufficient to show that

V s − V sd = µδvH

[
1− 1− µ

1− µ′
δ

]
+ (1− µ)δp0(µ′)

µ− µ′

1− µ′
− pµ(µ′)

µ− µ′

1− µ′
≥ 0 (A.4)

Finally, note that pµ(µ′) makes high-value buyer 1 indifferent between accepting pµ(µ′)

or rejecting it. The indifferent condition is therefore δvH − pµ(µ′) = (1− µ)δ2Π1s(µ
′, δ).

Analogously, p0(µ′) must solve δvH − p0(µ′) = δΠ1s(µ
′, δ). Substituting the expressions

for pµ(µ′) and p0(µ′), and after some algebra, condition (A.4) becomes δvH(1− δ)µ′(1−

µ)/(1− µ′) ≥ 0, which is always satisfied. �

Proof of Proposition 3. For a seller i, let b∗ = arg maxb∈Ni Rb. We first show that

there exists δ̄ < 1 such that for all δ ∈ [δ̄, 1) there is an equilibrium in which the resale

values are

Ri =


vL, if i ∈ L0,

δvHµ
∑|Ni|
k=1(1− µ)k−1δk−1 + (1− µ)|Ni|δ|Ni|vL, if i ∈ L1,

δvHµ
∑|Ni|−1
k=1 (1− µ)k−1δk−1 + (1− µ)|Ni|−1δ|Ni|−1Πib∗ if i ∈ Lk, k ≥ 2.

(A.5)

First select i ∈ L1 and consider the auxiliary game in which i ∈ L1 is the seller. Note

that, for each j ∈ Ni, Rj = vL, and therefore part 2 of Proposition A applies. Note also

that, when δ is sufficiently high, vL < δ[µvH + (1− µ)vL]. Hence, i makes a sequence of

offers at δvH to all her buyers, each of these offers is accepted with probability µ, and

if all the offers are rejected, i consumes. This gives an expected payoff to i which equals

expression A.5. We can use the same logic to construct the resale value of i ∈ Lk, for all

k > 1.

From Hart (1989) we know that Πib∗(µ, δ) is continuous in δ and, as δ goes to one,

the expected payoff of seller i bargaining with buyer b∗ converges to the resale value of
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b∗, i.e., limδ→1 Πib∗(µ, δ) = Rb∗ . It follows that Ri is continuous in δ for each i ∈ Lk,

k = 0...k∗ and that, as δ goes to one, resales converges to

Ri =


vL, if i ∈ L0

vH − (1− µ)|N1|[vh − vL], if i ∈ L1

vH − (1− µ)|Ni|−1[vH −maxj Rj ] if i ∈ Lk, k ≥ 2

(A.6)

When δ = 1, one can recursively construct the equilibrium path by selecting, for each

i ∈ Lk, k = 1...k∗, the trading partner with the highest resale, who must be on the path

(i∗0, . . . , i
∗
m) that maximizes κ. Since it is unique (by assumption) and since resale values

are continuous in δ, (i∗0, . . . , i
∗
m) is indeed the trading path for sufficiently high δ. The

rest of the proposition follows by simple algebra. �

B. OTHER PROOFS

Proof of Proposition 1.

First part. We first note that, at each round t, the total t-period payoff (i.e., sum

of payoffs over all players) is vi if there is consumption by player i and 0, otherwise.

Consequently, regardless of the realisation of types, the maximal discounted sum of total

payoffs from period t+1 onwards is δt+1vH (i.e., when consumption takes place at period

t+ 1).

Next, assume, in contradiction with the proposition, that there exists an equilibrium

where player i owns the object at period t, his type is vH , and she does not consume. To

be an equilibrium, it must be that player i’s equilibrium payoff from period t onwards

is at least δtvH , since she can consume the object at period t. However, given that the

total payoff at period t is 0 (since player i does not consume the object) and the maximal

discounted sum of total payoffs from period t+ 1 onwards is δt+1vH , it must be that at

least one type of some player expects a strictly negative equilibrium payoff from period

t onwards. This is impossible, as each type of each player can guarantee herself a payoff

of at least 0 by rejecting all offers.

Second part. In what follows, for a given equilibrium, V Hi (h) (or V Li (h)) represents

the continuation payoff of player i with value vH (or vL) at history h. Furthermore, we

denote by µi(h) the (common) probability that i has high-value at (public) history h;

µ(h) = (µ1(h), . . . , µn(h)) is the (common) profile of beliefs.
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We show that in a wMPBE, at any history h where s is a seller, s never makes an

offer (i, p), to some i ∈ Ns, such that p < V Li (h ⊕ (i, p) ⊕ a). The following lemma is

instrumental in proving this result.

Lemma 3. In a wMPBE, if trader i is not the current owner at h and µi(h) = 1,

then V Li (h) = V Hi (h) = 0.

Proof of Lemma 3. We show that no seller will ask to i a price strictly below δvH

starting from h. Take a seller starting from h and suppose that she has a high-value. In

light of the first part of Proposition 1, the seller can obtain δvH by consuming in the

next round and therefore she will make no offer below δvH (unless such offer was refused

with probability one, which can’t happen in a wMPBE).

Next, we consider low-value sellers. Let p be the infimum price that is ever offered

to i from h onward at both on-path and off-path histories. We show that p = δvH .

By way of contradiction, suppose that p < δvH . By definition of p, there must exists

an history h′ such that i is offered p′ ∈ [p, δvH − δ(δvH −p)). Note that δvH − δ(δvH −p)

is the price that makes high-value player i indifferent between accepting that price

and consume tomorrow, or rejecting and accept p tomorrow and then consume. By

construction of δvH − δ(δvH − p), it is a strict best response of high-value player i

to accept the offer at p′. Therefore the seller that makes offer (i, p′) obtains an expected

payoff of p′ because she anticipates that the offer is accepted with probability one, and

that i consumes the object; recall that µi(h) = 1 and therefore µi(h
′) = 1 because

degenerate beliefs are never updated. But note that the seller can strictly increase her

profits by making offer (i, p′ + ε), with p′ + ε < δ(δvH − p); in fact, player i has also a

strict incentive to accept this offer. �

For a player i ∈ N we define H(i) as the set of histories, including off-path histories,

such that: (a) player i receives an offer at h ∈ H(i) and (b) no prior (observable) deviation

has taken place at the consumption stage. It is important to note that at any history

h ∈ H(i), the seller that makes the offer to i, say s, has µs(h) = 0. This holds by

combining: part (b) in the definition of H(i), high-value owners are always expected to

consume (from part 1 of Proposition 1), and degenerate beliefs are never updated.

Let p(h) be the price asked in h, and let u = suph∈H(i)

{
V Li (h⊕ (i, p(h))⊕ a)− p(h)

}
be the maximal payoff attainable by the low-value player i from accepting an offer. We
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show that u = 0. By way of contradiction, assume that u > 0. Note that the maxi-

mal payoff attainable by i by refusing some offer is at most δu. Second, observe that

by definition of u as a supremum, there exists h ∈ H(i) and offer (i, p(h)) such that

δV Li (h⊕ (i, p(h))⊕ a)− p(h) ∈ (δu, u).

We next argue that V Li (h⊕ (i, p)⊕a) = V Li (h⊕ (i, p(h))⊕a) for any p. This follows

because the continuation payoff of the low-value i in h ⊕ (i, p) ⊕ a only depends on the

beliefs over traders different from i. In fact, if she consumes, her payoff is vL. If she does

not consume, the belief of the other traders with regard to i becomes degenerate (because

of part 1 Proposition 1) and, therefore, it stays constant in any future on-path history.

Furthermore, since h ∈ H(i), we have that µs(h) = 0, and therefore this belief is not

affected by the seller posting a different price.

Hence, there exists p′ ∈ (p(h), V Li (h ⊕ (i, p(h)) ⊕ a) − δu), which is accepted with

probability one by the low-value plater i, as it provides a payoff larger than δu. It follows

that p(h) and p′ are also accepted by the high-value player i with probability one, as

refusal would imply µi(h ⊕ (i, p(h)) ⊕ na) = 1 and provide zero payoff to i in light of

Lemma 3.

But then the seller can strictly increase her payoff at h if she makes offer (i, p′),

instead of the postulated optimal offer (i, p(h)). This is the case because both p′ and

p(h) are accepted with probability one by player i, and the continuation payoff of the

seller, following acceptance of (i, p(h)) or following acceptance of (i, p′) must be the same.

In fact, in a wMPBE the continuation payoff of the seller following an offer to i which

is accepted can only depend on i (i.e., the new seller) and on the state of beliefs at the

moment in which i acquires the object. We have already argued that the belief about

the seller cannot change following the two different offers because µs(h) = 0. The belief

about i is identical in both cases because i accepts with probability one both offers. �

Proof of Proposition 5

First part. The proof of this part follows closely the proof for an analogous

statement in Fudenberg et al. (1985), Lemma 3. For a related proof in the case of a

seller bargaining with multiple buyers, see Lemma 2 in De Fraja and Muthoo (2000).

By way of contradiction, assume that there is a set H∞ of infinite public histories

that has strictly positive probability in the support of the equilibrium.

First, note that if at some generic beginning-of-period history h we have µi(h) = 0
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∀i ∈ N , then the game ends at h with probability one. Consumption takes place at h

since the maximum attainable continuation payoff for any type in any equilibrium in

which there is no consumption at h is equal to δvL.

Then, for any h ∈ H∞, define {h0(h), h1(h), . . . } as the beginning-of-period sub-

histories of h (i.e., h0(h) = ∅ and ht(h) is an history which includes all events that

took place in h from period 0 up until and including the acceptance decision in round

t − 1). The skimming property implies that µi(h
t(h)) is weakly decreasing in t. By the

argument above, and remembering that degenerate beliefs never change, for any h ∈ H∞,

there exists (maximal) non-empty Z(h) ⊂ N such that ∀i ∈ Z(h) and t ≥ 1, we have

µi(h
t(h)) > 0.

Fix h ∈ H∞ and i ∈ Z(h), then ∀(ε, k) with k ≥ 1 and ε > 0 there exists thi (ε, k)

such that ∀t > thi (ε, k), µi(h
t+k(h))−µi(ht(h)) < ε. If this was not the case, there would

exist a time period T ∗i such that µi(h
T∗i ) = 0 (for details see De Fraja and Muthoo

(2000), page 863). Then, let t∗(ε, k) = suph∈H∞ supi∈Z(h){thi (ε, k), t̃h}, where t̃h is the

period such that, for all t ≥ t̃h we have µj(h
t(h)) = 0 for all j 6= Z(h). If the supremum

is not finite, we select t∗(ε, k) arbitrarily large, in such a way that the effect on expected

payoffs of histories that exceed the bound is made negligible. Without loss of generality

assume that there are only infinite histories lasting beyond t∗(ε, k).

Next, let Z = ∪h∈H∞Z(h) and suppose that all offers to i ∈ Z between t > t∗(ε, k)

and t + k along h come at prices above the resale value of the low-value. (Otherwise

by the skimming property high-value player i would accept with probability one and

consume, contrary to the stated assumption). Note that then the probability with which

the high-value i accepts an offer between k and t+ k along h ∈ H∞ is less than or equal

to µi(h
t+k(h)) − µi(h

t(h)). This follows from Bayesian updating given that the offers

must come at price that the low-value refuses with probability one.

We are now ready to conclude the proof by contradiction. We now argue that for any

h ∈ H∞ there exists a period at which the owner of the good consumes (i.e., consumption

almost surely takes place, hence the set H∞ has zero probability). In fact, suppose that

at some node ht
∗(ε,k)(h) in history h ∈ H∞, the seller’s continuation payoff is bounded

from above by δvH(1− (1− ε)z) + δkvH where z is the numbers of traders in Z. Then for

all ε small and k large enough this continuation would be strictly lower than vL which is

the payoff from consuming. (Given that there is discounting and equilibrium per-period

payoffs are bounded, this follows even in case t∗(ε, k) has been selected arbitrarily large).
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A contradiction to the hypothesis that the game continues beyond t∗(ε̂, k̂)(h).

To conclude the proof we now verify that the payoff of the seller is bounded above

by δvH(1− (1−ε)z)+δkvH . To see this observe that: (i) any offer that high-value traders

accept with some probability, between between t∗(ε, k) and t∗(ε, k) + k, regardless of the

history, comes at a price at most equal to δvH ; (ii) the probability that such offers are

accepted is at most ε for each i ∈ Z between t∗(ε, k) and t∗(ε, k) + k, regardless of the

history; (iii) offers to a low-value traders, if any, come to traders with low-value with

probability one and at a price equal to the continuation payoff of such traders, which can

only make the bound less tighter.

Second part. First recall that, along the path, a seller never makes an offer that

is rejected with probability one. Next, note that part 2 of Proposition 1 implies that if

the seller makes an offer to i, then she will ask either her discounted resale value, or

a strictly higher price. If she asks the discounted resale value, then, by definition, low

value trader i is indifferent between accepting and rejecting the offer. If the seller asks a

price strictly higher than i’s discounted resale, then the low-value trader i rejects it with

probability one. Since the seller never makes offers that are rejected with probability

one, the high-value trader i must accept the offer with strictly positive probability. If the

high-value trader accepts with probability one, then the indifference property of regular

equilibria guarantees the result. If the high-value buyer mixes between acceptance and

rejection, then the result is true in light of the indifference condition for mixing. �

Proof of Proposition 6. Part 1. Part (1) follows from part (2) and equation (4.1)

from the main text.

Part 2. The proof is by induction. We discuss the base case and then move to the

induction step. We focus on histories that terminate with consumption in finite time.

As our induction base case, we show that there exists t∗ such that the statement is

true for any offer made from round t∗ onward. By part 1 of Proposition 5 there exists

a T ∗ that is the maximum round in which consumption takes place. Let t∗ + 1 < T ∗

be the latest round in which a resale offer is made in equilibrium. Let r∗ be the price

asked in the unique resale offer made in that round. (The argument is analogous if (i)

the seller randomises among different resale offers in t∗ + 1 or (ii) there are multiple

on-path histories on which a resale offer is made in the t∗ + 1 period.) We show that,

along the equilibrium path, for all consumption offers the price p∗ asked in round t∗ must
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be strictly greater than r∗. Assuming that p∗ is followed by r∗ with probability one (the

conclusion holds a fortiori otherwise), there are two possibilities. First, the offer in t∗

goes to a player j which is different than the player that receives offer at price r∗; in this

case, p∗ = δvH because player j is indifferent between accepting and rejecting and there

are no further resale offers after t∗+1; therefore p∗ = δvH > r∗ = δR∗, because vH > R∗.

Second, the offer in t∗ goes to the same player that receives the offer at price r∗; in this

case, since p∗ is a consumption offer, by part 2 of Proposition 5 the indifference condition

for the high-value dictates that δvH − p∗ = δ(δvH − r∗). To see this point observe that,

by the skimming property, an high-value player must accept a resale offer. We conclude

that p∗ = δvH(1− δ) + δr∗ > r∗, given that δvH > r∗ = δR∗.

The induction step, consists in showing that the statement is valid for any

consumption offer (i, p) in round t made by some seller s after some history ht, given that

it is true for any consumption offer made from round t+ 1 onward. Note that since (i, p)

is a consumption offer, consumption by the high-value follows acceptance. Henceforth,

to simplify the exposition, we focus on the case in which no other consumption offer is

made to i following a rejection of offer (i, p) and consumption offers are accepted with

probability one, but with extra notational burden the proof extends to this case as well.

The following notation is used in the rest of the proof. Starting with the rejection of

offer (i, p) made by seller s and, restricting attention to the equilibrium path, consider

all the different sequences of offers leading to a resale offer being made by s. In those

cases in which there are on-path terminal histories where s makes more than one resale

offer, then we construct a single sequence, truncating it at the first resale offer that s

makes. The set of all such sequences is denoted Σ. For a given σ ∈ Σ, call r(σ) the price

quoted in the last offer of σ (which is a resale offer), t(σ) the length of the sequence, and

call 1 − β(σ) the probability that the resale offer r(σ) occurs in equilibrium, evaluated

conditional on refusal of offer (i, p).21

Analogously, we denote by Σi the set of sequences of offers starting with the rejection

of offer (i, p) and terminating with a resale offer to i. In those cases in which there are

21. To fix ideas, suppose that after (i, p) is refused, s consumes with probability x1 and otherwise

makes an offer (j, p); that such offer is accepted with probability x2 and otherwise refused; that in case

of refusal s makes offer (j′, p′) with probability x3 and offer (j′′, p′′) with the remaining probability, and

that both of these offers are resale offers, both accepted with probability one. Then Σ = {σ1, σ2} where

σ1 = {(j, p), (j′, p′)} and σ2 = {(j, p), (j′′, p′′)}, t(σ1) = t(σ2) = 2, and 1− β(σ1) = (1− x1)(1− x2)x3,

1− β(σ2) = (1− x1)(1− x2)(1− x3).
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on-path terminal histories where i receives more than one resale offer, then we construct

the set Σi truncating each sequence at the first resale offer to i. For any given σ ∈ Σi

we call ri(σ) the price of the resale offer to i that ends the sequence, we call t(σ) the

length of the sequence, and we call (1 − β(σ)) the probability that the offer that ends

the sequence occurs according to the equilibrium, evaluated after the refusal of (i, p).

Observe that both Σ and Σi are either empty or well defined, given that the game ends

in finite time.

We can begin the analysis, by noting that if Σ is empty then the statement is trivially

true. Similarly, if Σi is empty, then trader i, upon rejecting (i, p), does not receive any

further offer and obtains a continuation of 0. The indifference condition with respect to

consumption offer (i, p) implies, then, that p = δvH . Since δvH > r(σ) for all σ ∈ Σ, we

obtain that p > r(σ) for all σ ∈ Σ.

For the case in which Σi is non empty, the induction argument is concluded by means

of the two following lemmas. Lemma 4 provides a lower bound of the price p associated to

consumption offer (i, p). This lower bound is obtained by using the indifference property

of regular equilibria. Lemma 5 provides an upper bound of the first resale offer following

refusal of (i, p). This uses our induction hypothesis.

Lemma 4. There exists σ̂ ∈ Σi such that p > δvHβ(σ̂) + (1− β(σ̂))ri(σ̂)

Proof of Lemma 4. In a regular equilibrium, the high-value trader i is indifferent

between accepting and rejecting the consumption offer (i, p). Therefore, recalling that

the high-value i must accept any resale offer with probability one and that his payoff is

zero whenever she does not receive a resale offer (as in that case he only obtains offers

at δvH), we have

δvH − p =

∫
Σi

(1− β(σ))δt(σ)(δvH − ri(σ))dσ.

We conclude that there exists σ̂ ∈ Σi such that:

δvH − p ≤ δ(1− β(σ̂))δt(σ̂)(δvH − ri(σ̂)). (B.1)

and therefore

p ≥ δvH − δ(1− β(σ̂))δt(σ̂)(δvH − ri(σ̂))

> δvH − (1− β(σ̂))(δvH − ri(σ̂)).
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where the first inequality is a rewriting of inequality (B.1), and the second inequality

follows by replacing δt(σ̂) < 1 with 1. �

Lemma 5. For all σ ∈ Σ, we have r(σ) ≤ δvHβ(σ̂) + (1 − β(σ̂))ri(σ̂), where

σ̂ ∈ Σi is derived from Lemma 1.

Proof of Lemma 5. For any σ ∈ Σ, let V Ls (σ) be the continuation payoff of the seller

following rejection of (i, p), computed assuming that when each of her offer is refused she

makes offers according to σ.22

It is immediate to observe that V Ls (σ) = V Ls (σ′) for any σ, σ′ ∈ Σ (recalling that Σ

only contains sequences of on-path offers). In fact, the low-value seller s expects no further

surplus in the continuation game ensuing after any of her offer is accepted and both r(σ)

and r(σ′) are accepted with probability one. Hence, if, by contradiction, V Ls (σ) > V Ls (σ′),

the seller would strictly prefer to implement the sequence of offers σ, and therefore σ′

could not be part of the equilibrium.

Next, by the induction hypothesis, every price that s offers, following the rejection

of offer (i, p) until her resale offer r(σ), is a consumption offer and is strictly larger than

r(σ). Therefore, V Ls (σ) ≥ r(σ).

We can then conclude that for all σ ∈ Σ we have

r(σ) ≤ V Ls (σ) = V Ls (σ̂) ≤ δvHβ(σ̂) + (1− β(σ̂))ri(σ̂),

where the last inequality follows because we have computed the upper bound of V Ls (σ̂)

by assuming that if acceptance of an offer (or consumption by s) takes place along σ̂

then the highest possible and undiscounted surplus is collected by s. �

The two lemmas imply that p > r(σ) for every σ ∈ Σ and conclude the induction

step and the proof of part (2) of the Proposition. �

Part 3. We maintain the definition of Σi which has been introduced above, with the

proviso that the set is now defined at the empty history (beginning of the game) with an

initial seller denoted s with s = s0. For σ ∈ Σi, the definitions of ri(σ), (1 − β(σ)) and

t(σ) are as above.

22. To pursue the example in the previous footnote, V L
s (σ1) = x1vs+(1−x1)x2p+(1−x1)(1−x2)p′

and V L
s (σ2) = x1vs + (1− x1)x2p+ (1− x1)(1− x2)p′′.
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In addition, we need the following notation. For each σ ∈ Σi, define the set Γj(σ) to

include all the sequences of offers that start after the resale offer (i, ri(σ)) and that end

with a resale offer to player j (again, focus on the first resale offer to j). Note that Γj(σ)

may be empty for some σ ∈ Σi. For any γ ∈ Γj(σ) call rjσ(γ) the resale offer received

by j at the end of the sequence γ, let tσ(γ) be the length of the sequence and 1− βσ(γ)

be the probability, evaluated after the acceptance of ri(σ), that the game reaches offer

rjσ(γ).

We can now write the interim utility of the high-value i as

V Hi (∅) =

∫
Σi

(1− β(σ))δt(σ)(δvH − ri(σ))dσ. (B.2)

Similarly, noting that all offers received by j must originate through some sequence

σ ∈ Σi, we can write:

V Hj (∅) =

∫
Σi

(1− β(σ))δt(σ)

(∫
Γ(σ)

(1− βσ(γ))δtσ(γ)(δvH − rjσ(γ))dγ

)
dσ. (B.3)

Note that we are implicitly ignoring consumption offers that i and j may receive along

the various sequences of offers in virtue of the indifference property.

Next, we observe that, for any σ ∈ Σi and γ(σ) ∈ Γj(σ):

ri(σ) < βσ(γ)δvH + (1− βσ(γ))δtσ(γ)rjσ(γ). (B.4)

This inequality follows by exploiting two facts. First, every seller intermediating the

object between the initial resale offer and the final resale offer must be indifferent

between the different sequences of offers that she may implement by randomisation (see

the discussion in the proof of proposition 6). Second, the right hand side of the above

expression is (more than) the total expected surplus that can be generated along the

sequence γ(σ). The strictness of the inequality is guaranteed by the fact that when i

receives her first resale offer she will accept and consume, which happens with positive

probability. (The proposition will hold a fortiori in the case in which the high-value i has

accepted a previous consumption offer with probability one.)

For every σ ∈ Σi and any γ ∈ Γj(σ), using inequality (B.4) we can write:

δvH − ri(σ) > (1− βσ(γ))(δvH − δtσ(γ)rjσ(γ))

> (1− βσ(γ))δtσ(γ)(δvH − rjσ(γ)),

where the first inequality follows from subtracting δvH to both sides of inequality (B.4),

and the second by multiplying δvH by the factor δtσ(γ) < 1.
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Using expression (B.2) for V Hi (∅), expression (B.3) for V Hj (∅) and δvH − ri(σ) as an

upper bound, we obtain the desired conclusion

V Hj (∅) =

∫
Σi

(1− β(σ))δt(σ)

(∫
Γ(σ)

(1− βσ(γ))δtσ(γ)(δvH − rjσ(γ))dγ

)
dσ

<

∫
Σi

(1− β(σ))δt(σ)

(∫
Γ(σ)

(δvH − ri(σ))dγ

)
dσ ≤ V Hi (∅).
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