
Numer Algor
DOI 10.1007/s11075-016-0098-7

ORIGINAL PAPER

An algorithm to compute the polar decomposition
of a 3 × 3 matrix

Nicholas J. Higham1 ·Vanni Noferini2

Received: 29 September 2015 / Accepted: 8 January 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We propose an algorithm for computing the polar decomposition of a 3×3
real matrix that is based on the connection between orthogonal matrices and quater-
nions. An important application is to 3D transformations in the level 3 Cascading
Style Sheets specification used in web browsers. Our algorithm is numerically reli-
able and requires fewer arithmetic operations than the alternative of computing the
polar decomposition via the singular value decomposition.

Keywords Polar decomposition · 3 × 3 matrix · Singular value decomposition ·
Numerical stability · Quaternions

This work was supported by European Research Council Advanced Grant MATFUN (267526) and
Engineering and Physical Sciences Research Council grant EP/I03112X/1

Electronic supplementary material The online version of this article
(doi: 10.1007/s11075-016-0098-7) contains supplementary material, which is available
to authorized users.

� Vanni Noferini
vnofer@essex.ac.uk
URL: http://www.maths.manchester.ac.uk/∼noferini

Nicholas J. Higham
nick.higham@manchester.ac.uk
URL: http://www.maths.manchester.ac.uk/∼higham

1 School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

2 Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester,
CO4 3SQ, UK

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11075-016-0098-7-x&domain=pdf
http://orcid.org/0000-0001-5956-4976
http://orcid.org/0000-0002-1775-041X
http://dx.doi.org/10.1007/s11075-016-0098-7
http://www.maths.manchester.ac.uk/~noferini
mailto:
http://www.maths.manchester.ac.uk/~higham
mailto:

Numer Algor

1 Introduction

In designing algorithms for dense numerical linear algebra problems we are usu-
ally driven by the need to make the algorithms efficient for large values of the
dimension, n. This leads to certain design principles, such as to prefer an O(n3)

flops algorithm to an O(n4) flops one and to aim to develop algorithms that are
rich in matrix–matrix operations. However, there is another class of problems that is
rarely considered, though practically important: to solve a large number of very small
problems.

For small problems (2 ≤ n ≤ 8, say), the exponent and constant of the highest
order term in the flop count are not necessarily indicative of the cost, since that term
may not dominate, and the prevalence of matrix–matrix or matrix–vector operations
is also of little relevance. These problems therefore need a different approach.

In this work we are concerned with computing the polar decomposition of a 3× 3
matrix. This problem arises in a number of applications, but the main motivation for
our work comes from 3D graphics transformations, where the polar decomposition
provides a convenient way to parametrize and interpolate transformations [22, 28].
In particular, the polar decomposition is of interest for the level 3 specification of the
Cascading Style Sheets (CSS) language that is under development by theWorldWide
Web Consortium (W3C) [31, sect. 20.3]. The requirements are for an implementa-
tion of the polar decomposition that can run in any web browser on any computing
platform (desktop and mobile), runs fast enough to support animation, never fails, is
numerically stable, and has minimal dependence on libraries [27].

Other applications requiring the polar decomposition of a 3× 3 matrix are in clas-
sical continuum mechanics [3], in orthogonalization of approximate direction cosine
matrices in aerospace systems [1, 10, 18], and for modeling soft tissue deformation
in virtual surgery [32].

An obvious question is whether we can compute the polar decomposition of a 3×3
matrix explicitly. Formulae are available for the 2 × 2 case [14, 29], and for com-
panion matrices [30]. In [16] it is explained how to obtain analytic formulae for the
eigendecomposition of a symmetric 3 × 3 matrix. These yield complicated formu-
lae for the singular value decomposition (SVD), and hence the polar decomposition
via the eigendecompositions of ATA and AAT . However, this procedure suffers from
numerical instability.

We are not the first to treat efficient solution of linear algebra problems of small
dimension. An early investigation is that of Pitsianis and Van Loan [24], who focus
on multiple instances of small problems and stack the problems in order to exploit
vector hardware. More recently, Dong et al. [7] have investigated how to imple-
ment LU factorizations of many small matrices on GPUs. Previous work exists on
computing the polar decomposition or SVD of 3×3 matrices A, but none of the algo-
rithms of which we are aware satisfies the requirements listed above. In particular,
some algorithms (such as that in [19]) begin by computing ATA and are numerically
unstable.

In Section 2 we use an argument based on quaternions to explain how the orthogo-
nal polar factor of a 3×3matrix can be obtained from an eigenvector corresponding to
the dominant eigenvalue of a related 4×4 symmetric matrix. This relation is the basis

Numer Algor

of the algorithm that we develop in Section 3. The algorithm of Section 3 is presented
in stages, beginning with the simplest and most practically importance case in which
A has a sufficiently large second largest singular value. The operation counts given
in Section 4 show that the new algorithm generally requires fewer operations than the
alternative that computes the polar decomposition via the SVD. Numerical experi-
ments presented in Section 5 show that the new algorithm has an advantage in speed
over its competitors without sacrificing numerical stability. Concluding remarks are
given in Section 6.

2 Polar decomposition of 3 × 3 matrices and quaternions

We recall that a polar decomposition of a matrix A ∈ R
n×n is a factorization A =

QH , where Q is orthogonal and H is symmetric positive semidefinite [13, Chap. 8].
Clearly, H = (ATA)1/2 is always unique, and when A is nonsingular H is positive
definite and Q = AH−1 is unique.

The polar decomposition can be obtained from the SVD and vice versa. Indeed if
A = U�V T is an SVD then A = UV T · V �V T = QH is a polar decomposition.

We will denote by O(3) the group of 3× 3 orthogonal matrices and by SO(3) the
subgroup of O(3) of orthogonal matrices with determinant 1. The orthogonal polar
factor Q of A ∈ R

3×3 has the trace maximizing property

Q = argmax
Z∈O(3)

traceZT A.

This can be shown using the SVD by noting that trace(ZT A) =
traceZT U�V T = trace�V T ZT U ≤ trace�, and equality is attained at Z =
UV T = Q. Now we consider the sign of the determinant of Q. Note that if detA > 0
then detQ = 1. If detA = 0 it is not hard to show that there is a choice of the
polar decomposition satisfying detQ = 1. If detA < 0 then det(−A) > 0 (since
n is odd), so we have the polar decomposition −A = QH , with detQ = 1, that is,
A = (−Q)H . Hence, defining

η = sign(detA) =
{
1, detA ≥ 0,
−1, detA < 0,

(2.1)

we have

A = (ηQ) · H ⇐⇒ Q = argmax
Z∈SO(3)

η traceZT A, (2.2)

This means that we can look for the matrix Q ∈ SO(3) that maximizes the trace if
detA ≥ 0 and minimizes the trace if detA < 0. The polar factor is equal to ηQ.

Throughout this paper we use the 2-norm on R
n, ‖x‖2 = (xTx)1/2, and the

Frobenius norm on Rn×n, ‖A‖F = trace(ATA)1/2.
In the rest of this section we develop a relation between the the orthogonal polar

factor of a 3 × 3 matrix and the eigensystem of a related 4 × 4 symmetric matrix.
Most of the results given are essentially known but have not previously been collected
together in this unified and self-contained way.

Numer Algor

2.1 Quaternions and rotations

Our approach to computing a polar decomposition of a 3 × 3 real matrix is based
on the trace maximization property, and it is best explained using quaternions. The
ideas in this subsection about the relation between quaternions and rotations were
mostly known to Cayley [4] and Hamilton [8]. They have also reappeared several
times in the modern literature, for example [5, 15, 17], and are known to experts of
graphic animation: see [19, 22, 28] and the references therein. An excellent reference
on quaternions in linear algebra is the book by Rodman [25].

Let H be the ring of quaternions, with the standard basis {1, i, j, k}. H is a vector
space over the real numbers, so any q ∈ H can be written

q = w + xi + yj + zk, w, x, y, z ∈ R. (2.3)

It is known that algebraically H is an associative normed division algebra. All the
rules for multiplication can be deduced from the defining equations i2 = j2 = k2 =
ijk = −1. In particular, multiplication is not commutative since, for example, ij =
k = −ji. SinceH is isomorphic toR4 through (2.3), we can define a Euclidean norm
on H by |q| = ‖[w x y z]‖2 = √

w2 + x2 + y2 + z2. There is a conjugation defined
by (w + xi + yj + zk)∗ = w − xi − yj − zk (note that |q| = √

qq∗ = √
q∗q).

If w = 0 we say that the quaternion xi + yj + zk is pure imaginary. Moreover, if
there is some 0 �= α ∈ R such that two quaternions q1, q2 satisfy q1 = αq2, we
write q1 ∼ q2. It is easy to check that ∼ is an equivalence relation. Recall that the
quotient space Q := H/ ∼ is defined as the set of equivalence classes of H by ∼.
There are precisely two unimodular quaternions, equal to each other up to sign, in
each equivalence class (except for the equivalence class {0}). Hence, Q \ {0} is one-
to-one with the unit hemisphere inR4, and the latter is precisely the set of all possible
eigenvectors of a 4 × 4 symmetric matrix up to normalization.

The embedding

φ : R3 → H ∼= R
4, v =

⎡
⎣ a1

a2
a3

⎤
⎦
→ φ(v) = a1i + a2j + a3k

can be applied column-by-column to matrices, inducing a mapping

Φ : R3×3 → H
3,

⎡
⎣ a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦
→

⎡
⎣ a11i + a21j + a31k

a12i + a22j + a32k

a13i + a23j + a33k

⎤
⎦

T

.

Moreover we have the mapping

ψ : H → R
3×3,

q
→ ψ(q) =
⎡
⎣ w2 + x2 − y2 − z2 2xy − 2zw 2xz + 2yw

2xy + 2zw w2 + y2 − x2 − z2 2yz − 2xw

2xz − 2yw 2yz + 2xw w2 + z2 − x2 − y2

⎤
⎦ .

(2.4)

Numer Algor

Here are some properties of the mapping ψ in (2.4) that will be useful below. They
are also discussed in [4], [5, sect. 3], [17, sect. 7.1], for example.

Theorem 2.1 The following properties hold.
(a) ψ(q∗) = ψ(q)T and ψ(q) = ψ(−q).
(b) For any v ∈ R

3 and any q ∈ H, qφ(v)q∗ is pure imaginary and qφ(v)q∗ =
φ(ψ(q)v). (Note that the order of the factors in qφ(v)q∗ is important, because H is
not a commutative ring.)

(c) For any q ∈ H, ψ(q)ψ(q∗) = |q|4I3.
(d) The map ψ̂ = ψ(q)

|q|2 : Q \ {0} → SO(3) is a bijection.

Proof (a) Both properties are manifest from the definition.
(b) This can be checked by a direct computation; see also [4, 5, sect. 3], [17,

sect. 7.1].
(c) Observe that the previous property implies φ(ψ(q1)ψ(q2)v) = q1q2φ(v)q∗

2q∗
1 .

Hence for any v ∈ R
3 we have ψ(q)ψ(q∗)v = φ−1(qq∗φ(v)qq∗) = |q|4v, and

therefore ψ(q)ψ(q∗) = |q|4I3.
(d) To see that ψ̂(q) is orthogonal, we may assume |q| = 1 without loss of gener-

ality: then (c) yields ψ(q)ψ(q∗) = ψ(q)ψ(q)T = I3. Moreover, it is evident from a
direct computation that detψ(q) = 1. Furthermore, the proof of (c) shows that ψ̂ is
indeed a group isomorphism (hence, in particular, a bijection): for more details see,
for example, [5, sect. 3].

Note that Theorem 21 (d) implies that there is a bijection between the set of 3× 3
orthogonal matrices of unit determinant and the set of all unit vectors in R

4 (up to
the sign). Indeed, both sets are one-to-one withQ \ {0}. Furthermore, the bijection is
explicitly given by (2.4).

2.2 Polar decomposition via trace maximization

Using Theorem 2.1 (b), for a 3 × 3 matrix A that we partition by columns A =
[a1 a2 a3], we have

ψ(q)A = [φ−1(qφ(a1)q
∗) φ−1(qφ(a2)q

∗) φ−1(qφ(a3)q
∗)] .

Hence, for QT = ψ(q), using the algebra of H and denoting Re(w + ix + jy + zk)

= w,

τ(w, x, y, z) = trace(QT A) = −Re(iqφ(a1)q
∗ + jqφ(a2)q

∗ + kφ(a3)q
∗).

The latter equation defines a function τ : R4 → R. Since ψ in (2.4) maps q ∈ H

with |q| = 1 to some Q ∈ SO(3) by Theorem 2.1 (d), we can now use a Lagrange
multiplier method to solve our constrained maximum problem, by looking for the
stationary points of

f (λ, w, x, y, z) = τ(w, x, y, z) + λ(1 − w2 − x2 − y2 − z2).

Numer Algor

Let v = [w x y z]T and introduce the symmetric matrix

B =

⎡
⎢⎢⎣

a11 + a22 + a33 a23 − a32 a31 − a13 a12 − a21
a23 − a32 a11 − a22 − a33 a12 + a21 a13 + a31
a31 − a13 a12 + a21 a22 − a11 − a33 a23 + a32
a12 − a21 a13 + a31 a23 + a32 a33 − a11 − a22

⎤
⎥⎥⎦ .

(2.5)
Only a few simple algebraic manipulations are needed to see that

τ(w, x, y, z) = vT Bv, f (λ, w, x, y, z) = vT Bv + λ(1 − vT v). (2.6)

Therefore the condition for a stationary point, ∇f = 0, is equivalent to the equations

Bv = λv, ‖v‖2 = 1.

Now we derive some properties of B. Recall that the adjugate of a matrix A, denoted
adjA, is the matrix whose (i, j) element is (−1)i+j times the minor obtained by
deleting the j th row and the ith column of A. Here, and throughout, ‖A‖F =
trace(ATA)1/2 is the Frobenius norm.

Lemma 2.2 For B ∈ R
4×4 in (2.5), defined in terms of A ∈ R

3×3,

det(xI − B) = x4 − 2‖A‖2F x2 − 8 det(A)x + ‖A‖4F − 4‖ adj(A)‖2F .

Proof The proof is by direct verification.

For the following results we denote the singular values of A by σ1, σ2, σ3, with
σ1 ≥ σ2 ≥ σ3 ≥ 0. Recall that η is defined in (2.1). Expressing the various norms in
terms of the singular values yields an alternative expression for the determinant.

Corollary 2.3 det(xI − B) = x4 − 2(σ 2
1 + σ 2

2 + σ 2
3)x2 − 8ησ1σ2σ3x + σ 4

1 + σ 4
2 +

σ 4
3 − 2(σ 2

1 σ 2
2 + σ 2

1 σ 2
3 + σ 2

2 σ 2
3).

The next theorem gives the spectrum of B in terms of the SVD of A. It has
been previously proved by Mackey [17, Prop. 6], also using the connection with
quaternions.

Theorem 2.4 The set of eigenvalues of B in (2.5) is

{η(σ1 + σ2 + σ3), η(σ1 − σ2 − σ3), η(σ2 − σ1 − σ3), η(σ3 − σ1 − σ2)}.
In particular, if rankA ≤ 1 the set of eigenvalues is {σ1, σ1, −σ1, −σ1} and if
rankA = 2 it is {σ1 + σ2, σ1 − σ2, σ2 − σ1, −σ1 − σ2}.
Proof The result can be obtained directly, by solving the quartic equation of
Corollary 2.3.

Recall that a dominant eigenvalue is an eigenvalue whose absolute value is maxi-
mal. Theorem 2.4 shows that the dominant eigenvalue of B is always (up to sign) the
trace (or nuclear) norm of A, which we denote by

μ = σ1 + σ2 + σ3.

Numer Algor

Any eigenvector v of B, normalized so that it has unit norm, gives a stationary point
for the trace, via the mapping ψ . However, it must be a dominant eigenvector in order
to give a global maximum for η trace(QT A) = ητ . Here and below, by a “domi-
nant eigenvector” we mean an eigenvector, normalized to have unit norm, associated
with a dominant eigenvalue μ. If there is a unique dominant eigenvalue, we will
correspondingly speak about “the” dominant eigenvector.

To check the statement above, observe that as long as w, x, y, z lie on the unit
sphere ‖v‖ = 1 then τ(w, x, y, z) is equal to the Rayleigh quotient vT Bv/(vT v),
by (2.6). Therefore, if λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the eigenvalues of B we have λ4 ≤
τ(x, y, w, z) ≤ λ1. Hence, when η = 1 the maximum of τ(w, x, y, z) is λ1 = μ,
and it is achieved when v = [w x y z]T is a corresponding (dominant) eigenvector.
Similarly if η = −1 then the maximum of −τ(w, x, y, z) is equal to −λ4 = μ, and
this maximum is achieved when v is a corresponding (dominant) eigenvector. Note
that the maximum is achieved at a unique vector (up to sign) if and only if detA �= 0.

We summarize the analysis in the following theorem, where we simplify the for-
mula for Q by using the normalization v21 + v22 + v23 + v24 = 1. Recall also the
transpose in (2.2), which corresponds to a conjugation, by Theorem 2.1 (a).

Theorem 2.5 Let A ∈ R
3×3 and let B ∈ R

4×4 be defined as in (2.5). Let v be
the dominant eigenvector of B when A is full rank, or any vector in any dominant
eigenspace when A is rank deficient, normalized to have unit norm. Then a polar
decomposition A = QH is given by

Q = ψ(v1 − iv2 − jv3 − kv4)

=
⎡
⎣ 1 − 2(v23 + v24) 2(v2v3 + v1v4) 2(v2v4 − v1v3)

2(v2v3 − v1v4) 1 − 2(v22 + v24) 2(v3v4 + v1v2)

2(v2v4 + v1v3) 2(v3v4 − v1v2) 1 − 2(v22 + v23)

⎤
⎦ (2.7)

and H = QT A.

The next result has not previously appeared, and will be needed below.

Lemma 2.6 Let p(x) = det(xI − B) be the characteristic polynomial of B and μ

an eigenvalue of B with largest absolute value. Then |p′(μ)| = 8(σ1 + σ2)(σ1 +
σ3)(σ2 + σ3).

Proof From Corollary 2.3 we have that p′(x) = 4x3−4(σ 2
1 +σ 2

2 +σ 2
3)x−8ησ1σ2σ3.

Observe that for η ∈ {+1, −1} it holds p′(ηx) = ηp′(x), and hence |p′(ηx)| =
|p′(x)|.

Suppose first σ3 > 0. By Theorem 2.4, μ = η(σ1 + σ2 + σ3). Now write p′(x) =
4x(x2 − σ 2

1 − σ 2
2 − σ 2

3) − 8σ1σ2σ3. When x = μ = σ1 + σ2 + σ3, this yields
p′(μ)
8 = μ(σ1σ2 + σ1σ3 + σ2σ3) − σ1σ2σ3 = (σ1 + σ2)σ3μ + σ1σ2(μ − σ3) =

(σ1 + σ2)(σ1σ2 + σ1σ3 + σ2σ3 + σ 2
3) = (σ1 + σ2)(σ1 + σ3)(σ2 + σ3).

If rankA = 2, then μ = ±(σ1 +σ2) (any possible choice of the sign is allowed by
the statement) and p′(x) = 4x(x2 − σ 2

1 − σ 2
2), and hence |p′(μ)| = 8σ1σ2(σ1 + σ2).

Numer Algor

Finally, if rankA ≤ 1, then μ = ±σ1, and p′(x) = 4x(x2 − σ 2
1), implying

|p′(μ)| = 0.

Finally we note a bound for the eigenvalue of B of largest absolute value, derived
via standard inequalities on matrix norms. We may assume without loss of generality
that η = 1. Then the largest eigenvalue λ1 is nonnegative and satisfies

‖A‖F ≤ λ1 ≤ √
3‖A‖F . (2.8)

3 Algorithms for the polar decomposition

The theoretical analysis in Section 2 suggests an algorithm to compute the polar
decomposition of A ∈ R

3×3: form the matrix B, approximate its dominant eigenvec-
tor v, form the polar factor Q via Theorem 2.5, and finally compute H = QT A. The
most basic implementation of the idea is to compute a complete eigendecomposition
of B via any reliable eigensolver, such as the QR algorithm.

This idea is very simple, but it is clearly overkill: only one eigenvector of B is
needed, but Algorithm 3.1 computes all four of them. A method that computes only
a dominant eigenvector, such as the power method, inverse iteration, or the Rayleigh
quotient iteration, could be cheaper. However, the linear convergence of the power
method and inverse iteration can make them too slow. The cubically convergent
Rayleigh quotient method, or the conjugate gradient method used for instance in [3],
have a different disadvantage: they do not guarantee convergence to the dominant
eigenvector, at least if we do not have a good initial guess.

To overcome these difficulties, we will first compute a cheap estimate λ̃1 of λ1, the
dominant eigenvalue of B. Then we will apply inverse iteration to the shifted matrix
Bs = λ̃1I − B.

Both for the analysis, and in the algorithm, it is convenient to scale A to have unit
Frobenius norm; thus the algorithm preprocesses A ← A/‖A‖F . Hence throughout
this section we assume that σ 2

1 +σ 2
2 +σ 2

3 = 1. We will see below that there are three
different regimes, depending on the estimated magnitude of σ2, the second largest
singular value of A. However, our algorithm turns out to be very simple when σ2 is
large enough, and so we discuss this case first.

Numer Algor

3.1 Main branch of the algorithm

For simplicity of the exposition, we begin by presenting Algorithm 3.2, which is
intended for the case where σ2 is large enough. In practice, most inputs satisfy this
criterion. Algorithm 3.2 is the main branch of Algorithm 3.5, which handles the
general case.

In the factorization on line 7 the pivot at each stage is chosen as the largest element
in absolute value on the diagonal. The factorization exists in view of Bs having three
positive eigenvalues.

In the next subsections we explain in more detail how Algorithm 3.2 works. As
indicated above, the basic strategy is to first approximate λ1 and then to apply inverse
iteration to the shifted matrix Bs .

3.1.1 Computing the characteristic polynomial of B

The cheapest way to estimate the dominant eigenvalue λ1 is via the characteristic
polynomial of B. Of course, this is not always a numerically stable approach, but it
provides a cheap estimate that in some circumstances can be reasonably good. The
first ingredient is the computation of the constant term in the characteristic polyno-
mial of B, which is equal to the determinant of B. The latter can be computed with
various methods: Leibniz’s formula (forB ∈ R

n×n: detB = ∑
σ∈S sign σ

∏n
i=1 ai,σi

,
where the sum is over all permutations of the set {1, 2, . . . , n}), or as 1−4‖ adj(A)‖2F
(by Lemma 2.2), with each element of adj(A) computed as a determinant of a 2 × 2
matrix, or via an LU factorization. As the last method requires the fewest flops, this
is our choice.

We now assume that b = detB (on line 2) has been computed with an absolute
forward error cu with u the machine precision and c a moderate constant.

We then need to compute detA, which is done via an LU factorization of A

with partial pivoting. In principle, a computation via Leibniz’s formula would be

Numer Algor

less expensive.1 However, it is important to obtain the correct sign of detA, as the
code uses this information to decide whether the dominant eigenvalue of B is posi-
tive or negative: if detA < 0 then we preprocess B ← −B. A careless evaluation
of sign detA could result in instability in the computation of the polar decomposi-
tion. However, by the analysis in [23] the computation of a determinant via Gaussian
elimination yields the correct sign unless the smallest singular value is a moderate
multiple of u, and in this case it can be shown that either sign is acceptable. There-
fore, from now on we may assume without loss of generality that detA ≥ 0 and that
d = detA has been computed with a small absolute forward error.

3.1.2 Estimating λ1

At this point, we need to compute λ1. As described by the pseudocode below, the
default strategy is to use an exact formula to solve the quartic equation in Lemma 2.2.
The algorithm below is based on a slight modification of the general method given
in [26, sect. 1].

We now analyze the analytic formulae to spot potential dangers. One comes from
the potential ill conditioning of the scalar root-finding problem. In the approach dis-
cussed above, a potential danger is obvious a priori: Algorithm 3.3 computes the
dominant eigenvalue of a symmetric matrix (whose condition number is 1) as the
dominant root of a scalar quartic equation (whose condition number can potentially
be large). This may be inadvisable when λ1 and λ2 are close, i.e., λ1 is a near mul-
tiple root. The bigger the gap between λ1 and λ2 the more we can trust our cheap
estimate of λ1 and hence the less work is needed to obtain the dominant eigenvector.

1In spite of its O(n!) asymptotic cost, for n ≤ 3 using the explicit formula is cheaper than performing an
LU factorization!

Numer Algor

In Section 3.1.3, we will see that the simple logical test 1 − b > τ2, where τ2 is a
tolerance, implies

λ1 − λ2 >
√

τ2. (2.9)

In the more sophisticated Algorithm 3.5, this condition is actually checked. Although
we will not explicitly use this fact, it is worth noting that, in view of Theorem 2.4 or
Lemma 2.6, λ1 and λ2 are close precisely when σ2 + σ3 is small, i.e., the numerical
rank of A is 1.

A subtler pitfall lies within the intermediate computations in Algorithm 3.3. The
quantity α = δ1/δ

3/2
0 cannot be stably computed when δ0 is small, i.e., b ≈ −1/3.

To explain why, we interpret the quantities involved as bivariate functions of real
variables. Let us parametrize σ1 = cos θ , σ2 = sin θ cosφ, σ3 = sin θ sinφ, with
0 ≤ φ ≤ π

4 and 0 ≤ θ ≤ arctan(1/ cosφ). It is not difficult to show that, when
b = 1 − 4 sin2 θ(cos2 θ + sin2 θ sin2 φ cos2 φ) is close to −1/3, then necessarily
(θ, φ) is close to (arctan

√
2, π/4), or in other words, σ1 ≈ σ2 ≈ σ3 ≈ 1/

√
3. This

in turn implies that d = cos θ sin2 θ sinφ cosφ must be close to 1/
√
27. Clearly, this

implies that, for any sequence (θn, φn) → (arctan
√
2, π/4), one has δ0(θn, φn) → 0

and δ1(θn, φn) → 0. Unfortunately, α is not continuous at (θ, φ) = (arctan
√
2, π/4).

One way to see this is to compare the Taylor expansions of δ20 and δ31 to show
that α2 is not continuous, and hence α cannot be either. However, it is not hard to
show that 0 ≤ α2 ≤ 1, and hence cos(13 arccosα) remains bounded, implying that√

δ0 cos(13 arccosα) → 0. Numerically, we cannot expect any correct significant dig-
its from the intermediate computation of α in this scenario. Therefore, the analytic
method is best avoided when δ0 is small, i.e., b is close to −1/3. In Algorithm 3.3, we
check whether b+1/3 is smaller than a tolerance τ1. If this happens, instead of using
the analytic formula we employ the more expensive but numerically safer Newton’s
method (Algorithm 3.4).

At first sight, one might think that Newton’s method is a good idea in general. In
fact, by (2.8) the dominant eigenvalue of B must lie in the interval I := [1, √3],
and since det(xI − B) is a convex function on I, the method is guaranteed to con-
verge quadratically and monotonically from above if we use

√
3 as a starting point.

However, Newton’s method is much more expensive than the analytic formula when
many more than a couple of iterations are required for convergence. Fortunately,
the scenario when the analytic formula might suffer from numerical instability is

Numer Algor

favorable to Newton’s method. Indeed, (θ, φ) ≈ (arctan
√
2, π/4) implies that

λ1 = cos θ + sin θ(cosφ + sinφ) ≈ √
3, and, since the starting point is

√
3, New-

ton’s method is guaranteed to converge within only a few iterations (with the current
choice of tolerance τ1 in Algorithm 3.3, one iteration suffices).

3.1.3 Obtaining the dominant eigenvector

Finally, we need to use the approximation of the dominant eigenvalue λ1 of B to
obtain the dominant eigenvector v. Suppose that 1 − b > τ2. Then, τ2 < 4σ 2

1 (σ 2
2 +

σ 2
3)+4σ 2

2 σ 2
3 ≤ 4σ 2

1 (σ 2
2 +σ 2

3)+(σ 2
2 +σ 2

3)2 = 4 sin2 θ −3 sin4 θ , where we have used
the fact that for any x, y > 0, (x +y)2−4xy = (x −y)2 ≥ 0 and the parametrization
of the previous subsection. This yields

sin2 θ > 2
1 −

√
1 − 3τ2

4

3
>

τ2

4
.

Therefore λ1 − λ2 = 2(σ2 + σ3) ≥ 2 sin θ >
√

τ2. So we are guaranteed that the
dominant eigenvalue is well separated, and hence inverse iteration will be fast to
converge.

Furthermore, 1 − b > τ2 implies by Lemma 2.6 that the absolute value of the
derivative of the characteristic polynomial of B, evaluated at λ1, is at least β =
4
3
√

τ2+ 2√
3
τ2, giving the upper bound 1/β for the condition number of λ1 as a root of

the characteristic polynomial. In Algorithm 3.5, to be described in the next section,
we check the condition 1 − b > τ2, with a current choice of tolerance τ2 = 10−4.
Here and below, we denote by λ̂1 := λ1 + 2ε the computed value, as opposed to the
exact value λ1, of the dominant eigenvalue of B. We assume that the forward error,
2|ε|, is of order the unit roundoff u times a moderate constant. (The factor 2 in the
definition is just for notational convenience in the following).

At this point, Algorithm 3.2 computes an LDLT factorization with diagonal piv-
oting of a 4× 4 symmetric matrix Bs of numerical rank 3 whose smallest eigenvalue
is bounded below by −2ε. Indeed, recall from (2.9) that the third largest eigenvalue
of Bs is λ1 − λ2 >

√
τ2. The analysis in [11, 12, Chap. 10] can be applied to argue

that the computed L̂ and D̂ satisfy ‖Bs − L̂D̂L̂T ‖F ≤ θu, with θ a moderate con-
stant. In particular θ is the sum of two terms: the bound in the error analysis of the
Cholesky factorization for a semidefinite matrix (note that the right hand side of
[12, eq. (10.19)] is

√
21 for n = 4 and rank 3), plus another term coming from the

approximation of λ1.
From Theorem 2.4, we see that inverse iteration converges linearly with rate |λ̂1 −

λ2|/|λ̂1 − λ1| > γ for some constant γ ≈ √
τ2/(2|ε|). Had we computed both

λ1 and the LDLT factorization of Bs in exact arithmetic then we would have had
d44 = 0. (In floating point arithmetic, we have |d44| ≤ θu, and in practice |d44|
is usually much smaller). This suggests that v := L̂−T e4/‖L̂−T e4‖2 is already a
good estimate of the dominant eigenvector of B. Indeed, for the residual we have
‖Bsv‖2 ≤ ‖Bs − L̂D̂L̂T ‖F ‖v‖2 + ‖L̂D̂L̂T v‖2 ≤ θu(1 + ‖L−T e4‖−1

2) ≤ 2θu. The
vector v can be easily computed directly, using the exact formula for the inverse of a
unit lower triangular 4 × 4 matrix.

Numer Algor

3.2 Complete algorithm for the general case

Now we give the complete algorithm, which is applicable to any A ∈ R
3×3.

Numer Algor

We now explain the computations in Algorithm 3.5 when b ≥ 1 − τ2. In this
case we need to estimate σ2 in order to decide whether to apply inverse iteration or
subspace iteration on a 4 × 2 matrix.

Recall that we have defined ε = 1
2 (λ̂1−λ1). Then the convergence ratio of inverse

iteration is ∣∣∣∣∣
λ̂1 − λ2

λ̂1 − λ1

∣∣∣∣∣ =
∣∣∣∣σ2 + σ3 + ε

ε

∣∣∣∣ .
On the other hand the convergence ratio for subspace iteration with a two-
dimensional subspace is ∣∣∣∣∣

λ̂1 − λ3

λ̂1 − λ2

∣∣∣∣∣ =
∣∣∣∣σ1 + σ3 + ε

σ2 + σ3 + ε

∣∣∣∣ .
However, if subspace iteration is chosen, we do not really care that our ansatz 4 × 2
matrix V completes its convergence towards an invariant subspace (corresponding to
the dominant and second dominant eigenvectors): for our goals it suffices that a good
approximation of the dominant eigenvector lies in V . This happens with a potentially
faster rate, ∣∣∣∣∣

λ̂1 − λ3

λ̂1 − λ1

∣∣∣∣∣ =
∣∣∣∣σ1 + σ3 + ε

ε

∣∣∣∣ .
We want to make a decision on what choice to make according to the maximum
number of iterations that we expect from either method. Let ω = − log10 σ2 and
suppose 2 < ω < 8 so that σ2 � ε. The absolute condition number of the polynomial
root finding problem p(x) = 0 is |p′(λ)|−1 for the root λ. Observe that

1 − b = 4(σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3) ≥ 4σ 2
1 (1 − σ 2

1).

Thus, τ2 ≥ 1 − b implies that

σ 2
1 ≥ 1 + √

1 − τ2

2

and therefore σ 2
1 > 0.99997 (for τ2 = 10−4). Hence, we can estimate the forward

error in λ̂1 via Lemma 2.6:

2|ε| � u

8(σ1 + σ2)(σ1 + σ3)(σ2 + σ3)
<

u

8σ 2
1 σ2

<
u

7.99979σ2
.

Hence, setting u = 1.1×10−16, i.e., assuming an implementation in double precision
floating point arithmetic, we get log10 |ε| � ω − 16.86.

Assume without loss of generality that ε > 0. A pessimistic bound for the con-
vergence ratio of inverse iteration is ρI = (σ2 − ε)/ε; similarly, a pessimistic
bound for the convergence of the dominant eigenvector within subspace iteration is
ρS = (σ1 − ε)/ε. Subspace iteration costs at least twice as much per iteration, plus
some extra fixed costs. Heuristically, we estimate the cost of subspace iteration as
about three times that of inverse iteration. Hence, we do not wish to employ sub-
space iteration unless ρ3

I < ρS . From the above, we have log10 ρI � 16.86 − 2ω

Numer Algor

and log10 ρS � 16.86 − ω. Hence, 3 log10 ρI < log10 ρS corresponds (approxi-
mately) to ω > 6.74. In practice, as we have no access to ω, we use complete
pivoting in P1AP2 = LU and evaluate ω̂ = − log10 |u22|. A discussion of why
LU with complete pivoting is a reliable rank revealing factorization can be found
in [12, sect. 9.12], and we note that the key constant n2n−1 appearing there is 12
for n = 3.

If ω̂ < 7.18, we use inverse iteration, otherwise we use subspace iteration. (7.18
is approximately the value corresponding to 6 inverse iterations). If ω̂ < 7.18 we
also estimate the number of inverse iterations needed for convergence, with the for-
mula nit = �15/(16.86 − 2ω̂)�. Note that this is equivalent to setting a tolerance
10−15, and that it yields 1 ≤ nit ≤ 6. The reason to estimate a priori the num-
ber of iterations is to avoid having to evaluate a stopping criterion, thus saving
flops.

Assuming now ω̂ < 7.18, we compute the LDLT factorization of Bs . We then
apply inverse iteration for nit steps, with starting vector L̂−T e4.

It remains to complete the analysis to include the possibility ω̂ ≥ 7.18. In this case,
given the analysis above, due to efficiency issues we resort to subspace iteration, with
starting guess V = L−T [e3 e4]. Within the subspace iteration we orthonormalize at
each step, for two steps. We also expect potential loss of accuracy in approximating
λ1, because the latter is close to being a double root of the characteristic polynomial.
We can expect an accuracy ε of order

√
u, and now we are in the regime ε � σ2.

Hence a lower bound for the convergence rate is |(λ̂1 − λ3)/(λ̂1 − λ1)| � | 2−
√
3τ2

ε
|.

Thus, we expect convergence after about −15/ log(
√

u) ≈ 2 steps. This justifies the
fact that we implement a fixed number of steps (equal to 2) without checking against
any stopping criterion.

At this point, we project onto the 2 × 2 symmetric matrix H = V T BV and com-
pute the dominant eigenvector w of H via an analytic expression. The dominant
eigenvector of B is then computed as v = V w.

4 Flop counts

Here we give a brief discussion of the operation count of Algorithm 3.5. A detailed
breakdown of the operation count can be found in the Supplementary Materials.

The most advantageous situation occurs when Algorithm 3.5 calls Algorithm 3.2.
It is also the most common scenario in graphics applications, where the input matri-
ces are typically well conditioned [27]. Assuming that the analytic formula is used
to estimate λ1 in Algorithm 3.3 the total cost of Algorithm 3.5 is 250 flops (if New-
ton’s method is used instead then not many iterations are needed and hence this has
little effect on the flop count). This is comparable to the number of flops needed to
compute the polar decomposition by applying the analytic method in [16] to diago-
nalize AAT . If Algorithm 3.2 cannot be applied then within Algorithm 3.5 the LU

factorization of A is performed with complete pivoting in order to obtain an order of
magnitude estimate of σ2. As explained in Section 3.2, this is done by testing whether
the quantity ω̂ is large enough or smaller than a certain threshold. In the former case,

Numer Algor

inverse iteration is applied. The cost for this case is between 314 and 524 flops,
according to how many iterations are needed. Finally, if ω̂ is small we employ sub-
space iteration, for which the cost is at most 540 flops. Hence the proposed algorithm
typically requires about 250 flops and in the worst case about 550 flops.

This should be compared against the standard method employing an SVD. With
this approach, one first computes an SVD (including the singular vectors) of A. Then
the polar factor is computed via one matrix multiplication (costing 27M+18A, where
M denotes a multiplication and A an addition) and the Hermitian factor is recovered
from its eigendecomposition (cost 36M + 18A). So the total cost is that of an SVD,
which clearly dominates, plus a further 99 flops for postprocessing.

What is the cost of an SVD? It costs 119 flops to bidiagonalize a 3 × 3 matrix
(employing Householder reflectors), including the cost of storing the information
that is needed to recover the singular vectors. Concerning the iterative part, LAPACK
implements the Demmel–Kahan QR iteration [6] until one singular value (usually the
smallest) has converged. Then the SVD of the deflated 2× 2 bidiagonal is computed
directly. The cost of a step of the Demmel–Kahan iteration, excluding the computa-
tion of a shift (if any), is 108 flops (36 for the singular values plus 72 to update the
singular vectors). Since shifted QR is eventually cubically convergent, one can argue
that a “typical” sequence for a superdiagonal element is O(10−1) → O(10−3) →
O(10−9) → converged, which means 3 iterations. Indeed, we have run the iteration
on a sample of random bidiagonal matrices of Frobenius norm 1, observing on aver-
age about 2.7 iterations for convergence. As a result of the above observation and of
the experiments, we feel that it is fair to assume that at least 1 and at most 4 itera-
tions will be required. Finally, the SVD of the 2 × 2 matrix is computed via a direct
method, and it costs 35 flops to determine the singular values and further 36 flops for
updating the singular vectors. In total the SVD approach thus costs about 400 flops
in the best case and about 700 flops in the worst case, depending on the number of
iterations required for convergence.

5 Numerical experiments

5.1 Timings

For timing purposes, we have implemented in Julia [2] the main branch of Algo-
rithm 3.5, i.e., Algorithm 3.2, and compared it with several alternative algorithms,
also implemented in Julia. The other algorithms are the standard method of obtain-
ing the polar decomposition from the SVD (the implementation makes calls to the

Table 1 Timings (seconds) for 105 calls to Julia implementations of several algorithms

Algorithm 3.1 Algorithm 3.2 SVD Newton QDWH

Random inputs 2.86 1.41 2.07 3.57 12.0

Matrix (5.1) 2.62 1.38 1.89 3.48 8.35

Numer Algor

Table 2 Relative forward errors in U for various algorithms, for input (5.2)

y2 Condition number Algorithm 3.2 Algorithm 3.5 polar svd

1 1 2.64e-16 2.64e-16 2.42e-16

10−4 = τ2 57.7 3.62e-14 3.62e-14 2.74e-16

10−8 5.77e3 2.38e-10 3.53e-14 4.46e-14

10−12 5.77e5 2.82e-6 2.37e-11 1.61e-11

10−16 5.77e7 4.84e-2 1.47e-9 2.83e-9

LAPACK algorithms for the SVD), the Newton iteration [13, Alg. 8.20], and the
QDWH algorithm [20, 21]. The experiments were done on a MacBook Pro with a 2.5
GHz Intel Core i5 processor. Table 1 gives the timings for 105 calls to the different
algorithms for normally distributed random inputs. For reproducibility, we have also
tested the algorithm for a specific (well conditioned) input:

A =
⎡
⎣ 0.1 0.2 0.3
0.1 −0.1 0
0.3 0.2 0.1

⎤
⎦ . (5.1)

The experiments show a clear advantage in execution time for Algorithm 3.2 over
the other algorithms. We observe that the ratio of timings between Algorithm 3.2 and
the method based on the SVD is very close to the theoretical value expected from the
flop count.

5.2 Accuracy

Here we report some tests of accuracy based on a MATLAB implementation of
Algorithm 3.5. We compare with the code polar svd from the Matrix Function
toolbox [9], which applies the standard method of obtaining the polar decomposition
from the SVD.

First, we provide a simple test to illustrate that Algorithm 3.2 can be inaccurate
if the condition 1 − b > τ2, where b = detB, is not satisfied. Consider the matrix,
parametrized by y ∈ [0, 1],

A = 1

1275

⎛
⎝

⎡
⎣ 720 −650 710
396 −145 178
972 610 −529

⎤
⎦ y +

⎡
⎣ −25 300 300

70 −840 −840
−10 120 120

⎤
⎦

⎞
⎠ . (5.2)

Table 3 Singular values prescribed to be equal to 1, 10−1, and 10−2. Here we are sure that Algorithm 3.5
calls Algorithm 3.2. The condition number of U is κU ≈ 10.6.

Algorithm 3.1 Algorithm 3.5 polar svd

Forward error in H 3.3e-15 9.7e-16 1.7e-15

Forward error in U 7.3e-15 6.0e-15 8.1e-15

Backward error 5.5e-15 1.3e-15 2.1e-15

Numer Algor

Table 4 Singular values prescribed to be equal to 1, 10−5, and 10−12. Here, σ2 is too small for
Algorithm 3.2 to work properly. However, ω is small enough that inverse iteration will be applied by
Algorithm 3.5. The condition number of U is κU ≈ 1.15 × 105

Algorithm 3.1 Algorithm 3.5 polar svd

Forward error in H 2.3e-15 6.0e-15 9.4e-16

Forward error in U 8.6e-11 1.6e-11 3.3e-11

Backward error 5.2e-15 1.6e-15 1.6e-15

We generated this example as A = Q1 diag(1, y, y)Q2 for certain rational orthog-
onal matrices Q1 and Q2. Hence, for this input, 1 − b = 4y2. Therefore, we
expect Algorithm 3.2 to struggle when y2 � τ2. (For y2 ≥ τ2, Algorithm 3.5 calls
Algorithm 3.2, and hence the experimental results coincide.) From [13, Thm. 8.9],
the relative condition number of the polar factor U is

κU =
2
√

σ 2
1 + σ 2

2 + σ 2
3√

3(σ2 + σ3)
, (5.3)

which for this particular input is

κU =
√
1 + 2y2

3y2
.

Table 2 reports the relative forward errors ‖Û−U‖F /‖U‖F = ‖Û−U‖F /
√
3, where

Û is the computed orthogonal factor in the polar decomposition of A while U is a
reference result obtained by running the SVD algorithm in high precision arithmetic.
The results show that, unlike Algorithm 3.2, Algorithm 3.5 and polar-SVD exhibit
forward stable behaviour for all y.

We have performed further experiments comparing the accuracy of Algorithm 3.1,
Algorithm 3.5, and polar svd on random matrices with specified singular value
distributions. Each experiment was repeated on a sample of 10000 matrices. The
results are shown in Tables 3, 4, 5, 6. In each case the first line in the table reports
the worst-case relative error ‖Ĥ − H‖F /‖H‖F in the computed symmetric positive
semidefinite factor Ĥ for the three codes, where H is a reference result. Note that H
is always a well conditioned function of A [13, Thm. 8.9]. The second line (included
in all but the last experiment) reports the worst-case relative error for the computed
orthogonal polar factor Û , ‖Û − U‖F /‖U‖F = ‖Û − U‖F /

√
3. Depending on the

conditioning of the problem, given by (5.3), the forward error in U may be large even

Table 5 Singular values prescribed to be equal to 1, 10−10, 10−13. Here, ω = 10, and Algorithm 3.5 will
need to apply subspace iteration. The condition number of U is κU ≈ 1.15 × 1010

Algorithm 3.1 Algorithm 3.5 polar svd

Forward error in H 2.0e-15 1.7e-15 9.6e-16

Forward error in U 8.3e-6 1.4e-6 2.9e-6

Backward error 4.2e-15 1.6e-15 1.8e-15

Numer Algor

Table 6 Singular values prescribed to be equal to 1, 0, 0 (rank 1 matrix). Here, U is not uniquely defined
so we do not report any forward error for its computation

Algorithm 3.1 Algorithm 3.5 polar svd

Forward error in H 2.8e-15 4.0e-15 1.1e-15

Backward error 4.7e-15 2.4e-15 1.8e-15

for a backward stable method. The last line reports the worst-case backward error
‖A − ÛĤ‖F /‖A‖F . We observed that, for each of the measures that we analyzed,
the average case error was typically 5 to 10 times smaller than the worst case error
for each code.

From the results of the experiments we may conclude that the proposed approach
yields results of comparable accuracy to polar svd, with an advantage in compu-
tation time in the most common situation of an input with large σ2.

6 Conclusions

The standard algorithms in numerical linear algebra are designed to be efficient for
large matrices and are not necessarily optimal for small ones. Moreover, standard
software relies on libraries such the Basic Linear Algebra Subprograms and LAPACK
that are not necessary for small dimensions. Our new algorithm for computing the
polar decomposition of a 3 × 3 real matrix, Algorithm 3.5, exploits a connection
between orthogonal matrices and quaternions to reduce the problem to computing the
dominant eigenvector of a 4 × 4 symmetric matrix. The algorithm has a flop count
generally lower than the alternative of obtaining the polar decomposition from the
SVD and it is faster than the SVD approach, as well as several other alternatives, in
our numerical experiments. Moreover, the algorithm does not rely on library routines
for computing eigenvalues or singular values. The algorithm therefore satisfies all the
requirements of the Web CSS application that motivated this work, and in the usual
case in this application in which the matrix is well conditioned the algorithm reduces
to the simpler form of Algorithm 3.2.

Acknowledgments We thank Ken Shoemake for introducing us to the Cascading Style Sheets applica-
tion and Weijian Zhang for his help with the Julia implementation of Algorithm 3.2.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bar-Itzhack, I.Y.: New method for extracting the quaternion from a rotation matrix. J. Guidance 23(6),
1085–1087 (2000)

http://creativecommons.org/licenses/by/4.0/

Numer Algor

2. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: A fast dynamic language for technical
computing (2012). http://arxiv.org/abs/1209.5145

3. Bouby, C., Fortuné, D., Pietraszkiewicz, W., Vallée, C.: Direct determination of the rotation in the
polar decomposition of the deformation gradient by maximizing a Rayleigh quotient. Z. Angew. Math.
Mech. 85(3), 155–162 (2005)

4. Cayley, A.: On certain results relating to quaternions. Philos. Mag. 26(171), 141–145 (1845)
5. Coxeter, H.S.M.: Quaternions and reflections. Amer. Math. Monthly 53(3), 136–146 (1946)
6. Demmel, J.W., William, K.: Accurate singular values of bidiagonal matrices. SIAM J. Sci. Statist.

Comput. 11(5), 873–912 (1990)
7. Dong, T., Haidar, A., Luszczek, P., Harris, J.A., Tomov, S., Dongarra, J.: LU factorization of small

matrices: Accelerating batched DGETRF on the GPU. In: 2014 IEEE International Conference
on High Performance Computing and Communications, 2014 IEEE 6th International Symposium
on Cyberspace Safety and Security, and 2014 IEEE 11th International Conference on Embedded
Software and Systems, IEEE Computer Society, pp. 157–160 (2014)

8. William Rowan Hamilton: On quaternions. Proc. Royal Irish Academy 3, 1–16 (1847)
9. Higham, N.J.: The Matrix Function Toolbox., http://www.maths.manchester.ac.uk/∼higham/

mftoolbox
10. Higham, N.J.: Computing the polar decomposition—with applications. SIAM J. Sci. Statist. Comput.

7(4), 1160–1174 (1986)
11. Higham, N.J.: Analysis of the Cholesky decomposition of a semi-definite matrix. In: Reliable Numer-

ical Computation, M. G. Cox and S. J. Hammarling, editors, Oxford University Press, pp. 161–185
(1990)

12. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. Second edition, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2002. xxx+680 pp. ISBN 0-89871-521-0

13. Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2008. xx+425 pp. ISBN 978-0-898716-46-7

14. Horn, R.A., Piazza, G., Politi, T.: Explicit polar decompositions of complex matrices. Electron. J.
Linear Algebra 18, 693–699 (2009)

15. Johnson, C.R., Laffey, T., Li, C.-K.: Linear transformations on Mn(R) that preserve the Ky Fan k-
norm and a remarkable special case when (n, k) = (4, 2). Linear and Multilinear Algebra 23(4), 285–
298 (1988)

16. Kopp, J.: Efficient numerical diagonalization of Hermitian 3× 3 matrices. Int. J. Mod. Phys. C 19(3),
523–548 (2008)

17. Mackey, N.: Hamilton and Jacobi meet again: Quaternions and the eigenvalue problem. SIAM J.
Matrix Anal. Appl. 16(2), 421–435 (1995)

18. Mao, J.: Optimal orthonormalization of the strapdown matrix by using singular value decomposition.
Computers Math. Applic. 12A(3), 353–362 (1986)

19. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., Sifakis, E.: Efficient elasticity
for character skinning with contact and collisions. ACM Trans. Graph. 11(4), 37:1–37 (2011)

20. Nakatsukasa, Y., Bai, Z., Gygi, F.: Optimizing Halley’s iteration for computing the matrix polar
decomposition. SIAM J. Matrix Anal. Appl. 31(5), 2700–2720 (2010)

21. Nakatsukasa, Y., Higham, N.J.: Stable and efficient spectral divide and conquer algorithms for the
symmetric eigenvalue decomposition and the SVD. SIAM J. Sci. Comput. 35(3), A1325–A1349
(2013)

22. Ochiai, H., Anjyo, K.: Mathematical basics of motion and deformation in computer graphics. SIG-
GRAPH 2014 course notes. In: ACM SIGGRAPH 2014 Courses, SIGGRAPH ’14, 2014, pages
19:1–19:47

23. Pan, V.Y., Yu, Y.: Certification of numerical computation of the sign of the determinant of a matrix.
Algorithmica 30(4), 708–724 (2001)

24. Pitsianis, N., Van Loan, C.F.: Vectorization of multiple small matrix problems. Technical Report
CTC 94 TR172, Advanced Computing Research Institute, Cornell Theory Center, Cornell University,
Ithaca, New York, March 1994. 13 pp

25. Rodman, L.: Topics in Quaternion Linear Algebra. Princeton University Press, NJ (2014). xii+363 pp.
ISBN 978-0-691-16185-3

26. Shmakov, S.L.: A universal method of solving quartic equations. Int. J. Pure Appl. Math. 71(2), 251–
259 (2011)

27. Shoemake, K.: Private communication (2014)

http://arxiv.org/abs/1209.5145
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://www.maths.manchester.ac.uk/$\sim $higham/mftoolbox

Numer Algor

28. Shoemake, K., Duff, T.: Matrix animation and polar decomposition. In: Proceedings of the Conference
on Graphics Interface ’92, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992, pages
258–264

29. Uhlig, F.: Explicit polar decomposition and a near-characteristic polynomial: The 2 × 2 case. Linear
Algebra Appl. 38, 239–249 (1981)

30. van Den Driessche, P., Wimmer, H.K.: Explicit polar decomposition of companion matrices. Electron.
J. Linear Algebra 1, 64–69 (1996)

31. World Wide Web Consortium (W3C). CSS transforms module level 1. W3C working draft, 26 (2013).
http://www.w3.org/TR/css3-transforms

32. Ye, X., Zhang, J., Li, P.: A hybrid rotational matrix extraction method for soft tissue deformation mod-
eling. In: Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation,
pp. 727–732 (2015)

http://www.w3.org/TR/css3-transforms

	An algorithm to compute the polar decomposition of a 3 3 matrix
	Abstract
	Introduction
	Polar decomposition of 3 3 matrices and quaternions
	Quaternions and rotations
	Polar decomposition via trace maximization

	Algorithms for the polar decomposition
	Main branch of the algorithm
	Computing the characteristic polynomial of B
	Estimating 1
	Obtaining the dominant eigenvector

	Complete algorithm for the general case

	Flop counts
	Numerical experiments
	Timings
	Accuracy

	Conclusions
	Acknowledgments
	Open Access
	References

