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ABSTRACT 

Effects of whole essential oils (EOs) and their constituent compounds (EOCs) on the fermentation 

activities of rumen microbes and the biohydrogenation (BH) of n-3 polyunsaturated fatty acids (PUFA) 

were evaluated in four in vitro experiments and one feeding trial. In all the in vitro experiments, rumen 

fluid was collected from Hartline  Texel cross cull ewes. A basal feedstock comprising of 70:30 grass 

hay and concentrate was formulated, milled (1 mm screen) and then supplemented with 32.5 g oil/kg 

(40% oil from ground whole linseed and 60% from fish oil). In the first experiment using 15 EOCs, 

anethole and 4-allyanisole which were the most effective EOCs reduced the BH of 18:3 n-3 by 22.2% and 

26.4%, respectively. But, at 300 mg/L there was a concomitant substantial inhibition of total volatile fatty 

acids (VFA). In the second experiment, out of 10 whole EOs, anise and cassia oils which were the most 

effective EOs reduced the BH of 18:3 n-3 by 58.2% and 54.3%, respectively. However, protection was 

accompanied with significant suppression of VFA at 300 mg/L. In the third experiment using varying 

doses (0, 100, 200 and 300 mg/L) of 4-allylanisole, anethole, anise oil and cassia oil, it was observed that 

at 200, 4-allylanisole, anethole and anise oil maintained best balance between satisfactory protection of n-

3 PUFA and minimal disruption to VFA concentration. In the fourth experiment, six Hartline  Texel 

cross lambs were used. Three of the lambs were randomly assigned to the untreated basal diet (BDG) and 

the remaining three lambs were offered diet with anise oil (AOG). Rumen fluid collected from each of the 

BDG and AOG was used in in vitro batch culture system. The AOG maintained higher concentrations of 

PUFA and lower concentration of stearic acid. Results of these studies indicate that dietary addition of 

selected EOs and EOCs represent a potential effective strategy to optimize the fatty acid composition of 

ruminant food products (to be confirmed). However, whole EOs are more effective than EOCs. 
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 Introduction 

Within the last few decades, remarkable changes in consumption of diets (shifts from the consumption of 

plant based products to mainly products of animal origin) took place in both the developed and the 

developing countries (World Health Organization, WHO, 2003). Increased human population, per capita 

income and urbanization are some of the driving factors of these changes (WHO, 2003). These changes 

have great direct implications for human health and indirect economic impacts. The direct health impacts 

result from the combined increase in consumption and the imbalance in the composition of ruminant 

animal fats, which are traditionally high in saturated fatty acids (SFA) and low in polyunsaturated fatty 

acids (PUFA) (Williams, 2000; Scollan et al., 2006). Increased occurrence of chronic diseases such as 

diabetes, obesity, compromised immune system and cardiovascular diseases (CVD) are some of these 

health challenges (Givens, 2005). These animal food products provide more than 30% of the total 

consumed energy and fat contributes about 50% of this energy (Givens, 2005). In 2003, WHO 

recommended less than 1% of trans FA, less than 10% of SFA and less than 15-30% of total fat to 

constitute the total consumed energy in human diets, because SFA is a risk factor of CVD. Unlike SFA, 

PUFA have among other positive health benefits, the potential to lower blood cholesterol. There is a 

positive relationship between increased intake of n-3 PUFA and reduced risk of coronary heart disease 

(CHD) (Abeywardena and Patten, 2011). These benefits, at least in part, explain why The Department of 

Health (1994) recommended increased intake of dietary n-3 PUFA over SFA. The economic impacts of 

these changes in consumption are due to the expensive nature (direct and indirect costs) of treating 

chronic diseases. The cost of treating CVD is more (over $400 billion) than the combine cost of HIV 

(about $29 billion) and cancers (about $200 billion) (Thom et al., 2006). In 1994, the Department of 

Health reported that 27% of all deaths recorded in the UK were caused by CHD. In about a decade after, 

WHO (2003) reported that approximately 60% of the total 56.5 million global deaths reported in 2001 

were caused by chronic disease. The greater concern is the 75% of global deaths which is projected to 

result from chronic diseases by 2020 (WHO/FAO, 2003). Similarly, intake of animal food products (milk 

and meat) is projected to increase by 2030 (WHO, 2003). This situation is set to worsen the 

aforementioned health and economic impacts of these changes.   
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High content of SFA in ruminant derived food products is caused by hydrolysis of dietary lipids and the 

subsequent hydrogenation of the constituent PUFA by rumen microbes (Kim et al., 2009a). The process 

of biohydrogenation (BH) of C18:2 n-6 and C18:3 n-3 produces various intermediates such as conjugated 

linoleic acid (CLA) and Vaccenic acid (trans-11 18:1) (Harfoot and Hazlewood, 1997; Lee and Jenkins, 

2011), which have been shown to have potential health benefits. The CLA (cis-9 trans-11 18:2 isomer) 

and its precursor (18:1 trans-11) have attracted considerable research attention as anti-carcinogenic, anti-

inflammatory, anti-atherogenic and anti-diabetic agents (Kritchevsky, 2000, Kennedy et al., 2010). 

Identification of additives to reduce biohydrogenation of PUFA would lessen both the health and 

economic impacts of this seemingly inevitable change in consumption pattern. 

A number of animal feeding strategies have been developed over the years to improve the PUFA content 

of ruminant food products through modification of rumen biohydrogenation, but these have been 

considerably inefficient (Fievez et al., 2007; Jenkins and Bridges, 2007).  Formaldehyde treatment of free 

oil and protein mixtures has been described as effective in increasing the flow of 18:3 n-3 to the 

abomasum of goats (Scott et al., 1971), and in reducing the in vitro biohydrogenation of 18:2 n-6 (Gulati 

et al., 1997). However, beside the fact that the use of formaldehyde would potentially be criticized by 

regulatory authorities, the inconsistency of formaldehyde alone to reduce biohydrogenation of either 18:3 

n-3 or 18:2 n-6 was reported by Sinclair et al. (2005). Recently, the potential of plant extracts such as 

essential oils (EOs) or their constituent compounds (EOCs) as rumen modifiers is receiving significant 

attention (Burt, 2004; Calsamiglia et al., 2007; Hart et al., 2008). Plants and their extracts are potential 

alternative because they are natural components of animal feed (Cowan, 1999).  The effects of EOs or 

EOCs on methane production and ammonia nitrogen metabolism have been adequately investigated and 

recently reviewed (Patra, 2011). However, there is a scarcity of information on the effects of EOs or 

EOCs as modifiers of rumen biohydrogenation of PUFA. The aim of this PhD study was to compare the 

potential of EOs and EOCs as feed additives to reduce the extent of rumen biohydrogenation of n-3 

PUFA. 
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 CHAPTER 1 

 1.0. LITERATURE REVIEW 

1.1. Definition and classification of lipids 

Generally, lipids can be defined as a group of naturally occurring organic compounds or chemically 

heterogeneous substances, which are soluble in organic solvents such as benzene, hydrocarbons, ethers, 

alcohols and chloroform, but insoluble in water (Fahy et al., 2009; Fahy et al., 2011). A wide range of 

molecules, such as fatty acids, terpenes, phospholipids, sphingolipids, sterols, etc. possess these chemical 

characteristics. In functional terms, ‘lipid’ refers to a diverse group of compounds possessing different 

fundamental roles in the body such as storage of energy, metabolic fat and as structural components of 

cell membranes (Fahy et al., 2011). The variation in the structure of lipid molecule accounts for their 

diverse roles. The monocarboxylic (COOH) and aliphatic fatty acids are the structural components which 

are common to most lipids (Figure 1.1).  

 

Figure 1.1 Fatty acid carbon atoms (Adapted from Stryer, 1988) 

Lipid can be classified using different classification schemes. These differences are due to the fact that 

lipids are made of heterogeneous collection of molecules from both structural and functional perspectives.  

Lipids include oils, steroids, waxes, fats as well as compounds that are related to them, such as 

petrochemicals and soaps (Campbell, 1995; Fahy et al., 2005). A neutral lipid, such as triacylglycerol is 

formed from a mixture of one molecule of glycerol and three molecule of fatty acids attached together 

(International Union of Pure and Applied Chemists, 1978). The chemical structure of the attached fatty 

acid determines the variation in the physical characteristics of triacylglycerol (Campbell, 1995). A lipid 
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containing phosphoric acid as di-ester or mono-ester is known as a phospholipid (IUPAC, 1978), which is 

the main building block of cell membranes (Webb and O’Neill, 2008). Lipids are further divided into 

simple and complex classes for the convenience of chromatography analysis (Christie, 1983; Christie, 

2007; Fahy et al., 2009).  Detailed and more complex classification of lipids is beyond the scope of this 

review, however, comprehensive update of lipid classification can be found in the review by Fahy et al. 

(2009). 

Simple lipids are those types of lipids that yield at most two kinds of different primary products on 

hydrolysis (Christie, 1983). Acylglycerols (glycerol and fatty acids) are common examples of simple 

lipids (Figure 1.2). Almost all available oils and fats of both plant and animal origin are made completely 

of triacylglycerol (Mu and Hoy, 2004). More details about triacylglycerol is found under functions of 

lipids (section 1.1.1)  

 

 

Figure1.2 Example of simple lipids (Adapted from Christie (2007)). 

 

Complex lipids are those lipids that yield three or more primary products on hydrolysis. Examples of 

complex lipids are glycerophospholipids (Figure 1.3). More details about glycerophospholipids are found 

in section 1.1.2.  
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Figure 1.3 Example of complex lipids (Adapted from Christie (2007)). 

 

1.1.1. Functions of lipids in food 

Dietary lipids have a number of fundamental functions such as structural components of cells, as sources 

of energy, supply of fat-soluble vitamins and sources of essential fatty acids. Lipids in food also enhance 

the palatability of foods (Gurr and Harwood, 1991). 

Lipids serve as storage of energy such as triacylglycerol (Stryer, 1988).   In man and other mammals, 

triacylglycerol constitute the major source of fuel (Gurr and Harwood, 1991). Although the ultimate 

nutritional benefit of triacylglycerol is the provision of metabolic energy, the availability of fat can also 

contribute considerably to diet palatability (Gurr et al., 2002).  Adipose tissue is the largest source of fatty 

acids to provide the long-term energy requirements of human beings. When energy demand of the body is 

limiting, fatty acids are mobilized from adipose tissue through β-oxidation to meet the energy 

requirement (Gurr et al., 2002). A number of factors such as types of dietary components and their 

amounts and hormones, whose secretion is also partly regulated by the diet, are responsible for the release 

of stored energy in the body (Gurr and Harwood, 1991). Although other tissues such as the liver can store 

fat in the form of small globules for short term needs, only adipose tissue can provide fatty acids to meet 

the energy requirement of the body in the long-term. Fatty acids such as stearic, palmitic (saturated) and 

monounsaturated fatty acids such as oleic acid are synthesized by adipose tissue (Gurr and Harwood, 

1991; 2002).  

Structural lipids (cholesterol, phospholipids and glycolipids) form an integral part of biological cell 

membranes, acting as barriers between environments (Doege and Stahl, 2006). Example of such 
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protection in the form of barrier is the skin, which is covered with a layer of protective lipids such as 

mono-, di- and triglycerols, sterol and sterol esters, unsaturated fatty acids (USFA), hydrocarbons and 

wax esters (Gurr and Harwood; 1992). The ability of fat to exclude water is partly one of the roles of fat 

in biological barriers. The chemical feature of part of the fat molecule which is hydrophobic (water 

hating) is the physical characteristic feature which accounts for their insolubility in water (Gurr and 

Harwood, 1991). The physical properties of fat are mainly determined by the nature of the fatty acid 

chain. Therefore, fat is softer when the melting point is low due to larger number of double bonds (degree 

of unsaturation) in the fatty acid chain. Because fats provide the framework on which much of the 

complex chemistry of the cell takes place, fats also occur within the cell (Stryer 1988; Gurr and Harwood, 

1991). Phospholipids and glycolipids are also found in animal cell membranes. Some of the lipids 

required for the growth and development of tissue can be synthesized by the cells. However, FAs such as 

α-linolenic and linoleic acids (known as essential fatty acids) must be supplied in the diet as they cannot 

be synthesized by the cells (Gurr et al., 2002). Once these essential fatty acids are incorporated into cells, 

their elongation or desaturation can lead to the synthesis of long chain PUFA such as C20:5 n-3 and 

C22:6 n-3. 

Lipids such as eicosanoids, steroid hormones and prostaglandins participate in signalling pathways and 

have recently been shown to have the potential for the exhibition of molecular roles such as regulation of 

local hormones and intracellular cell signal transduction (Eyster, 2007). In the structural and storage 

functions of lipids, their ability to associate and interact with each other, such as amphiphilic sheets in 

membranes and as hydrophobic globules in stored fat is their characteristic feature (Gurr and Harwood, 

1991). Stored fats must undergo biochemical transformation for them to become physiologically useful. 

For instance, specific types of unsaturated FAs which are stored in membrane phospholipids can be 

transformed to hormone-like substances (such as eicosanoids) and cholesterol is metabolized in the 

adrenal gland to vitamin D in the skin, to a variety of steroid hormones and to bile acids in the liver (Gurr 

and Harwood, 1991).  Fat soluble vitamins which are involved in metabolic processes can also be called 

metabolic lipids. Fat soluble vitamins which are present in fatty foods are vitamins A, D, E and K. It has 
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long been established that vitamins are key requirements in the diet to maintain health, and sustain normal 

growth and reproductive efficiency of the body (Gurr et al., 2002). 

1.2. Nomenclature of fatty acids 

The nomenclature of FA falls into two principal classes: the common or trivial names and the systematic 

names. The former uses abbreviations as the convenient way of defining fatty acids. According to the 

International Union of Pure and Applied Chemistry (IUPAC, 1977), the nomenclature of n-9, n-6 and n-3 

polyunsaturated fatty acids can be determined by the position of the first double bond on the carbon 

chain. Example, α-linolenic acid (LNA; C18:3 n-3) is an essential fatty acid with n-3 and 18-carbon 

atoms. The n-3 is the position where the first double bond is located on the carbon backbone from the 

methyl end, 3 is the number of double bonds on the chain, and 18 refers to the number of carbon atoms 

present in the structure of the fatty acid. In a similar way, C18:2 n-6 (linoleic acid; LA) is an essential 

fatty acid with the first double bond located at position 6, with two number of double bonds and 18 

number of carbon atoms (Figure 1.4). Oleic acid (C18:1 n-9) has just one double bond located at position 

9. The structure and nomenclature of some polyunsaturated, monoenoic and saturated fatty acids are 

shown in Table 1.1. 

Unsaturated fatty acids can undergo either geometrical or positional isomerization (Gurr and Harwood, 

1996). Geometrical isomers occur when there is a chance of having either trans or cis at the configuration 

of the double bond. In the trans-configuration, the two hydrogen substituents are on the opposite sites of 

the molecule relative to the cis-configuration where they are on same side (Figure 1.5). Therefore, to 

show that C18:2 n-6 is an 18 carbon fatty acid having cis double bonds at carbons 9 and 12 counting from 

the carboxyl end; it is written as cis (Δ) 9, cis (Δ) 12- 18:2 or cis 9, cis 12 18:2-octadecadienoic acid 

(Wahle and James, 1993, Table 1.1). When the double bonds are located at different positions in the 

carbon chain, a positional isomer occurs. For instance, positional isomeric forms could occur in 

palmitoleic, a monounsaturated fatty acid (C16:1) at C7 and C9 which could be written as Δ7 and Δ9. 
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Figure 1.4 Examples of the C18:3 PUFAs and the position of double bonds (Adapted from Christie 

(2007)). 

 

 

 

     Figure 1.5 Example of geometric isomerism in PUFA (Adapted from Christie (2007)). 
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Table 1.1 Nomenclature of Some fatty acids (SFA, MUFA and PUFA) found in plant and animal tissues 

Shorthand name Systemic name Common name Melting point (°C) Occurrence 

Saturated fatty acids 

C2:0 Ethanoic acid Acetic  16.7 Plants and animals 

C6:0 Hexanoic acid Caproic -8.0 Milk fat 

C8:0 Octanoic acid Caprylic 12.7 Part of milk and seed triacylglycerols 

C10:0 Decanoic acid  Capric 29.6 Part of milk and seed triacylglycerols 

C12:0 Dodecanoic acid Lauric 42.2 Part of some seed fats e.g coconut 
C14:0 Tetradecanoic acid Myristic 52.1 widespread 

C16:0 Hexadecanoic acid Palmitic 60.7 Common SFA in plants and animals 

C18:0 Octadecanoic acid Stearic 69.6 Main part of animal fats 
C20:0 Eicosanoic acid Arachidic 75.4 Widespread minor constituents 

C22:0 Docosanoic acid Behenic 80.0 Fairly widespread, minor  

Monoenoic fatty acids 

C16:1(n-7) Cis-9-hexadecenoic acic palmitoleic 1 Main part of some seed oils 
C18:1(n-12) Cis-6-Octadecenoic acid Petroselinic 33 Part of umbelliferous seed oils 

C18:1(n-9) Cis-9-Octadecenoic acid Oleic  16 Animals and plants  

C18:1(n-7) Cis-11-Octadecenoic acid trans-vaccenic 44 Rumen fats via BH of PUFA 
C22:1(n-9) cis-13-docosenoic acid Erucic  24 Mustard and rapeseed oils 

C24:1(n-9) cis-15-tetracosenoic acid Nervonic  - - 

Polyunsaturated fatty acids 
C18:2(n-6) 9,12-Octadecadienoic acid Linoleic -5 Main part of plant lipids 

C18:3(n-6) 6, 9, 12- Octadecatrienoic acid ɣ-linolenic - Minor part of algae and animals 

C18:3(n-3) 9, 12, 15-Octadecatrienoic acid α-linolenic  -11 Part of higher plants 

C20:4(n-6) 5, 8, 11, 14-Eicosatetraenoic acid Arachidonic -49.5 Main part of animal phospholipids 
C20:5(n-3) 5, 8, 11, 14, 17-Eicosapentaenoic acid - - Abundant in fish 

C22:6(n-3) 4, 7, 10, 13, 16, 19-Docosahexaenoic acid - - Abundant in fish 

SFA=Saturated fatty acids; BH=biohydrogenation; MUFA= monounsaturated fatty acids; PUFA= polyunsaturated fatty acids; Compiled from Christie, 1983; 

Gurr et al., 2002). 
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1.2.1. Fatty acids 

 Fatty acids, whether of animal or plant origin, consist of even number of carbons (from C4-C24), 

hydrogen (H) and oxygen (O). These elements are arranged in straight chains with a terminal carboxyl 

group. Fatty acid could be classified on the basis of two fundamental concepts: the degree of 

saturation and the chain length. On the basis of the former, FA could be unsaturated or saturated 

depending on the presence or absence of double bonds in the carbon chain. Unsaturated fatty acids 

(UFA) have double bonds in their chain structure. The number of double bonds in the structure of 

UFA also classifies fatty acids into monounsaturated and polyunsaturated FA. Based on the number of 

double bonds present within the carbon chain, fatty acids in mammalian tissues are categorized as 

polyunsaturated fatty acids (PUFA), monounsaturated fatty acids (MUFA) and saturated fatty acids 

(SFA). On the basis of chain length, FA may have as many as thirty carbons. 

1.2.2. Saturated fatty acids 

A saturated fatty acid is a FA in which the carbon chain is completely hydrogenated (zero double 

bonds). Majority of SFA have straight chain structures with an even number of carbon atoms (Table 

1.1). Although shorter (from 4-14 carbon atoms) chains of SFA occur in milk, the most common fatty 

acids in animal tissues are those containing between C12-C24 (Enser et al., 1984; Table1.1). Myristic 

acid (C14:0) which is a major component of seed oil from myristicaceae family is a minor constituent 

of the animal lipids (Christie, 1983). The commonest SFA in both plant and animal is C16:0 (palmitic 

acid), whilst C18:0 (Stearic acid) is less common compared to C16:0, but may be more abundant than 

palmitic in some cases (Christie, 1983).  Although in fish and bacterial species, large amounts of 

longer chain FAs may occur but are less frequent in animal tissues. SFA longer than 10 carbon atoms 

are comparatively inert chemically and can be subjected to vigorous chemical conditions because of 

the absent of functional groups except the carboxyl group (Christie, 1983; Enser et al., 1984). 

Although SFA are generally considered to be risk factors of coronary heart disease and cancers, stearic 

acid is a neutral fatty acid (Webb and O’Neill, 2008). It has been recommeneded  that saturated fatty 

acids should contribute about 10% of the total 30%  of lipid energy intake that is considered as normal 

for humans (World Health Organization; WHO, 2003). The ratio of polyunsaturated fatty acids to 
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saturated fatty acid (P:S)  in human diets was recommemded to be above 0.4 (WHO, 2003), whilst the 

recommended ratio of n-6/n-3 is a value less than 4 (Webb and O’Neill, 2008). Nowadays ruminant 

meats have been considered to be causing the imbalance in the consumption of fatty acid as they have 

a P:S ratio of about 0.1 (Enser et al., 1996). Both P:S and n-6:n-3 in ruminant meat can be potentially 

improved through dietary manipulation (Wood et al., 2003). 

1.2.3. Monounsaturated fatty acids 

Unlike PUFA, MUFA are the group of FA with just one double bond in the carbon chain. The double 

bond is usually present between carbon atoms 9 and 10 counting from the alpha carbon, but in some 

cases, the double bonds could be between 7 and 8 carbon atoms. Unlike SFA, monoenoic fatty acids 

are more susceptible to chemical attack by oxidising agents (Wahle and James, 1993).  

Palmitoleic acid (C16:1) is a constituent of most animal fats and may be found in significant 

concentrations in some seed oil and fish oils. The most abundant monoenoic acid is oleic acid 

(C18:1n-9), and is present in almost all plant and animal lipids. Although trans vaccenic (C18:1 trans 

11) acid is an intermediate product of rumen biohydrogenation of PUFA, it is found in low 

concentrations in ruminant lipids (Enser et al., 1984). In a single natural lipid, many different 

positional isomers of MUFA may be present. For example, in bovine milk triacylglycerides, eleven 

different trans-octadecenoic acids and five different cis- octadecenoic acids have been reported 

(Christie, 1983). Monoenoic acids of long chain fatty acids (C20 and C22) are present in large 

amounts in fish oils and seed oils such as rapeseed oil. Shorter chain monoenoic acids are found in 

milk but rarely present in appreciable concentrations in other tissues. In bacterial and fish oil lipids, 

odd chain monoenoic acids are found in considerable concentrations but are minor constituents of 

animal lipids (Enser et al., 1984; Table1.1). 
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1.2.4. Polyunsaturated fatty acids   

Polyunsaturated fatty acids are a category of FA with more than one double bond, and could have up 

to six (maximum) double bonds in their carbon chain structures. According to their biosynthetic 

derivation, PUFA of plant and animal lipids can be sub-grouped as n-3, n-6, n-7 and n-9 (Brenner, 

1989). Although the focus of review in this area is on the n-3 and n-6, brief information on n-7 and n-9 

would be provided. The fatty acids in each sub-group have the same terminal structure (-COOH) and 

the carbon chain structures contain two or more cis-double bonds, which are generally separated by a 

single methylene group (-CH2). The higher the double bond in polyunsaturated fatty acids the more the 

susceptibility to oxidative attack (Gurr and Harwood, 1991). 

1.2.4.1. n-3 and n-6 PUFA 

Alpha-linolenic acid (C18:3 n -3) or cis-9, cis-12, cis-15-Octadecatrienoic acid (Table 1.1), which is a 

C-18 PUFA, is rarely found in large amounts in animal lipids but is a major component of plant lipids 

(Christie, 1983). Linolenic acid is an essential fatty acid (EFA) and a precursor of the long chain n-3 

fatty acids such as C20:5 n-3 or eicosapentaenoic acid (5, 8, 11, 14, 17-eicosapentaenoic, EPA) and 

C22:6 n-3 or docosahexaenoic acid (4, 7, 10, 13, 16, 19-Docosahexaenoic acid) in animal lipids 

(Enser, 1984; Barcelo-Coblijn and Murphy, 2009; Figure 1.6). The long chain n-3 PUFA are present 

in significant concentrations in fish oils and are major components of phospholipids in many animal 

tissues (Brenner, 1989).  

Essential fatty acids  perform vital functions in immune response and they are known carriers of the 

fat soluble vitamins such as vitamins A, D, E and K (Webb and O’Neill, 2008). Linoleic acid (cis-9, 

cis-12-octadecadienoic acid, LA) and LNA are the two EFA with 18-carbon atoms, whereas EPA and 

arachidonic acid (C20:4 n-6) which are formed by the desaturation and elongation of linolenic and 

linoleic acids respectively, are the two most important C20 EFA (Smith, 2007).  The importance of 

these FAs in humans was first demonstrated in the early 1980s (Holman et al., 1982). Since it is 

established that some long chain n-3 fatty acids such as EPA and DHA are metabolically synthesized 

from C18:3 n -3 (Figure 1.6), it has been considered as the important precursor of the group of fatty 
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acid commonly known as  omega-3 fatty acids. The family of fatty acids called the n-3 fatty acid is 

known by the location of a double bond at the position 3 of the carbon atom chain starting from the 

methyl end. Due to the lack of the desaturase enzyme (Δ-9 desaturase) necessary to insert a double 

bond more proximal to the methyl end than the 9th carbon atom, mammals cannot synthesize the n-3 

fatty acids de novo. Hence, omega-3 fatty acids have to be provided in the diets.   

As in the case of omega-3 fatty acids, mammals cannot also synthesize another group of fatty acids, 

the n-6 (omega-6) fatty acids, which are metabolically synthesized from linoleic acid (LA; 18:2 n-6). 

Linoleic acid or C18:2 n-6 (cis-9, cis-12-octadecadienoic acid) is the simplest and commonest FA 

found both in animal and plant tissues (Gurr and Harwood, 1996). Arachidonic acid (cis-5, cis-8, cis-

11, cis-14-eicosatetraenoic acid) or C20:4 n-6 is synthesized from C18:2 n-6, low in plant tissues but 

present as major constituent of animal tissues.  In animals, the main precursor for biologically active 

C20 compounds called eicosanoids is arachidonic acid.   

In terms of their synthesis, the omega-6 fatty acids shared the same characteristics to the n-3 fatty 

acids (Barcelo-Coblijn and Murphy, 2009). The omega-6 fatty acids are known by the location of the 

first double bond at position 6 of the carbon chain starting from the methyl end. Due to the fact that 

both omega-3 and omega-6 fatty acids cannot be synthesized de novo by mammals, they are both 

referred to as EFA which must be present in the diet for mammals. This means that LA and LNA are 

the two dietary sources from which the synthesis of the n-6 and n-3 fatty acids can be made through 

elongation and desaturation (Figure 1.6). 

1.2.4.2. n-7 and n-9 PUFA 

Oleic acid can also be the primary precursor of 5, 8, 11-eicosatrienoic acid, whose concentration in 

animal lipid can only be in high amounts when the animal lacks essential fatty acids (Brenner, 1989). 

There is another subclass of PUFA which is derived from C16:1n-7 (Enser, 1984). 
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Figure 1.6 Elongation and desaturation pathways of the n-3 and n-6 fatty acids in the cytoplasm 

(Adapted from Barcelo-Coblijn and Murphy, 2009). LNA=linoleic acid, ALA=alpha linolenic acid, 

ARA=arachidonic acid, EPA=eicosapentaenoic acid, DHA=docosahexaenoic acid 
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1.2.5. Contribution of ruminant food products to global food security 

The main source of milk for human consumption is from ruminant livestock. Milk is rich in energy, 

protein, fat and minerals such as calcium and iron including essential vitamins (National Research 

Council, 1998; Newman et al., 2003; Givens, 2005). Milk contains 3-5% fat, which is responsible for 

many of the manufacturing, sensory and physical properties of dairy products (Kaylegian and Lindsay, 

1995; Jensen, 2002). In the milk fat composition, the proportion of PUFA is insignificant (5%) relative 

to the levels of SFA (70-75%) and 20-25% of MUFA (Lock and Shingfield, 2004). The fatty acid 

composition of milk has both positive and negative implications for the health of consumers 

(Williams, 2000). The high content of SFA which is directly related to the risk of cardiovascular 

disease accounts for the negative implications of milk fat composition (WHO, 2003). In addition, 

increased intakes of SFA may be associated with a higher fasting plasma glucose and insulin 

concentrations and higher risk of impaired glucose tolerance (Parker et al., 1993; Feskens et al., 1995).  

Similarly, beef is enriched with high quality protein, energy, a wide range of minerals such as Fe, Zn 

and a number of essential vitamins including B12, B6, B2 and B1 (De Smet, 2012). In countries with 

limited access to sea and where the consumption of sea food products is reduced, the intake of beef 

can be a direct source of omega-3 PUFA such as 18:3 n-3, 20:5 n-3 and 22:6 n-3. These n-3 fatty acids 

have a number of health benefits (see section 1.2.6). However, the concentrations of SFA (45-55% of 

total FA) and trans-fatty acids (3-10%) in beef are higher than the levels of PUFA (Mapiye et al., 

2015). The consumption of high SFA has been associated with increased risk of several diseases such 

as cardiovascular disease and cancer (Gurr and Harwood, 1991; Salter, 2013).  

In both the developed and developing countries, the roles of milk and beef to the food and nutrition 

security are distinct. In developed countries such as the UK and the US, there is an abundant supply of 

milk and beef and, their accessibility and affordability is not a problem. However, there are concerns 

about the health implications of these foods because they are relatively rich sources of SFA which are 

known to increase the risk of the so called “diseases of affluence” such as cardiovascular diseases and 

obesity (McNeill & Van Elswyk, 2012). By contrast, in the developing countries, the intake of beef 
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provides essential nutrients to complement the nutritionally poor plant food sources (based on one type 

of cereal or root crop) (Mapiye et al., 2015). Therefore, in these countries, the consumption of beef is 

seen as essential in terms of reducing the so called “diseases of poverty” (McNeill & Van Elswyk, 

2012). These diseases of poverty  which are responsible for impaired mental development, increased 

exposure to infection and impairment of growth are the results of deficiencies in bioavailable 

micronutrients such as Zn, Fe, B-vitamins, n-3 PUFA and protein (McNeill & Van Elswyk, 2012). In 

the developing countries, urbanisation, increasing population growth and high purchasing power are 

expected to strongly increase the demand for milk and beef in the coming decades (FAO, 2009). 

The intake of ruminant food products makes a substantial contribution to meeting food and nutrition 

security through the provision of the above mentioned nutrients. However, research to find dietary 

strategies to increase the ratio of PUFA to SFA in beef and milk is necessary as a useful means of 

reducing the risk of ‘diseases of affluence’ and “diseases of poverty” in the developed and the 

developing countries, respectively.  

1.2.6. Nutritional importance of PUFA, CLA and MUFA in human diets 

Alpha linolenic acid, C20:5 n-3 and C22:6 n-3 are the most important n-3 fatty acids. As mentioned 

previously, C18:3 n-3 is synthesized in plants whilst C20:5 n-3 and C22:6 n-3 are predominantly in 

marine products.  Interest in the potential benefits of C18:3 n-3 has been on the increase as it is the 

metabolic precursor of EPA and DHA, which have a number of benefits in human health. 

Physiologically, C18:3 n-3 is as important as its metabolites such as C20:5 n-3 and C22:6 n-3 

(Barcelo-Coblijn and Murphy, 2009). Alpha linolenic acid is converted to C22:6 n-3 through a multi-

step process of desaturation and elongation (Figure 1.6). Through Δ-6 desaturase, C18:3 n-3 is 

desaturated to C18:4 n-3 as the initial step, followed by a carbon chain elongation step i.e. C18:4 n-3 

to C20: 4 n-3, and then Δ-5 desaturase converts C20: 4 n-3 to C20: 5 n-3 (Figure 1.6). The next step is 

the elongation of EPA to form C22: 5 n-3 through elongase-2 (Wang et al., 2005). This is followed by 

the formation of C24: 5 n-3 which is then desaturated by Δ-6 desaturase to produce C24: 6 n-3 
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(Sprecher, 2000). These reactions show that any of the omega-3 fatty acid synthesized in the 

endoplasmic reticulum undergoes either elongation or desaturation to eventually produce C22: 6 n-3.  

Few decades ago, medical specialists recommended that the intake of total fat should be reduced 

(Webb and O’Neill, 2008). This recommendation was made in attempt to control the potential adverse 

effects of fats on coronary heart disease, obesity as well as other health disorders associated with 

excessive intake of fat. Presently, there is a significant shift from fat quantity to fat quality. For 

instance, with regard to reducing the risk of cardiovascular disease (CVD) in middle-aged men, the 

intake of n-3 PUFA and MUFA is more important as a regulator than the intake of total fat (Laaksonen 

et al., 2005). This group of PUFA has potential to reduce the risk of cardiovascular disease by 

regulating the concentrations of blood cytokine (Von Schacky et al., 1999; Von Schacky, 2007; 

Laaksonen et al., 2005; Coates et al., 2009). In addition, the n-3 PUFA have been reported as 

stimulators of endothelial relaxation which leads to anti-arrhythmic and cardioprotective effects on the 

heart (Raheja et al., 1993). 

The development of carcinogenesis has also been shown to be regulated by the consumption of PUFA. 

The intake of long chain n-3 fatty acids has been shown to reduce the risk and inhibit the development 

of cancer (Larsson et al., 2004; Palmquist, 2009), through the following processes: regulation of signal 

transduction pathways, gene expression, transcription factor activity, membrane fluidity and insulin 

sensitivity. In addition, PUFA also cause suppression of eicosanoid biosynthesis from arachidonic 

acid, decreased or increased production of reactive oxygen species and free radicals and modification 

of oestrogen metabolism (Palmquist, 2009).  Following the review of available data on clinical results 

of supplementing fish oil and cancer prevalence, Colomer et al. (2007) inferred that it is beneficial to 

administer n-3 fatty acids particularly C20:5 n-3 and C20:6 n-3 at 1.5 g/d to patients with advanced 

cancer. The benefits include improvement in quality-of-life and both clinical and biological 

parameters.  

In recent times, it is considered that the anti-atherosclerotic effect of n-3 PUFA through decreasing the 

concentrations of tumour necrosis factor-α and proinflammatory cytokines (e.g. interleukins -6, 
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interleukins-Iβ), is attributed to their actions on growth and cytokines factors (Palmquist, 2009). The 

n-3 fatty acids are also known to offer a protective effect on the risk of atherosclerosis by altering the 

concentration of plasma lipids i.e. reducing the concentration of triacylglycerols (Harris, 1997; Sirtori 

and Galli, 2002). EPA and DHA have been reported to possess high potential to lower serum 

triglycerides (WHO, 2003), which suggests that they are capable of reducing coronary heart disease. 

PUFA such as C18:2 n-6 (LA) is a useful structural component required for the synthesis of lipids in 

the tissue and a component of cellular membranes (Simopoulos, 2000; Palmquist, 2009). The benefits 

of n-3 fatty acids on increased glucose metabolism include the potential to reduce low density 

lipoprotein cholesterolemia, positive effects on high density lipoprotein and decreased hyperglycaemia 

(Raheja et al., 1993; Sirtori and Galli, 2002). 

Several reports (Funahashi et al., 2006; Kim et al., 2009) have repeatedly indicated that n-3 fatty acids 

may be responsible for inhibition of tumours growth rate by decreasing the number and size of 

tumours, as well as delaying its appearance. Long chain n-3 PUFA have also been reported to regulate 

chronic inflammatroy disorders through inhibition of the expression of adhesion molecules and 

reduction of the production of cytokines, reactive oxygen species and inflammatory eicosanoids 

(Calder, 2006). 

EPA and DHA are required as key fatty acids in the development and growth of the central nervous 

system in humans (Innis, 2003). The n-3 PUFA, especially C22:6 n-3 (DHA) play an important 

function in the development of  the liver and brain in infants (Martinez and Ballabriga, 1987), hence, 

they are needed as basic requirement for normal development and growth of humans (Simopoulos et 

al., 1991; Salem et al., 1996).  

In addition to the above mentioned health benefits of long chain n-3 PUFA, they also have beneficial 

effects such as antithrombotic and immuno-suppressive effects (Kremmer et al., 1995, Gonzalez, 

1995; Narayan et al., 2006), management and prevention of hypertension (Morris et al., 1994), renal 

disease (Donadio et al., 1994), type 2 diabetes (Connor et al., 1993), rheumatoid arthritis (Kremer, 

1996), and chronic obstructive pulmonary disease (Shahar et al., 1994). Omega-3 PUFA are also 
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implicated in cyclic adenosine monophosphate signal transduction pathways where they function as 

regulators of specific gene transcription, and are also involved as second messengers in gene 

expression (Clark and Jump, 1994; Graber et al., 1994). 

The main dietary source of conjugated linoleic acid (CLA) in the human diet is milk fat (Lawson et 

al., 2001). CLA are known as the collective term for a mixture of geometric and positional isomers of 

C18:2 n-6 having conjugated double bonds. Although there are many isomers of CLA, cis-9 trans- 11 

is the major isomer (approximately 90%) in milk (Parodi, 1977). A range of health benefits such as 

antimutagenic, antidiabetic, antiobesity, antiatherogenic, immunomodulation and modulation of bone 

growth and anticarcinogenic effects have been attributed to cis-9 trans- 11 CLA in different biological 

models (Banni et al., 2001; Corl et al., 2003). In a Swedish Mammography cohort where records of 60 

000 women were analysed, the intake of CLA from dairy products was shown to be inversely related 

to the risk of colorectal cancer (Larsson et al., 2005). For more information about CLA refer to section 

1.7.3. 

The main MUFA in milk fat are vaccenic acid (C18:1 trans 11) and oleic acid (C18:1 n-9). The former 

is the major trans fatty acid in milk and has been linked with improvement in cholesterol levels, lower 

rates of cancer and cardiovascular disease (Kris-Etherton et al., 1999; Banni et al., 2001). Based on 

endogenous conversion of vaccenic acid to cis-9 trans-11 18:2 CLA through the delta 9 desaturase in 

the mammary gland, C18:1 trans 11 has been reported to have anticarcinogenic properties (Banni et 

al., 2001). The endogenous conversion of C18:1 trans 11 to cis-9 trans-11 18:2 CLA is as important 

for prevention of cancer as the dietary supply of CLA (Corl et al., 2003).  

Despite the above nutritional benefits of PUFA, their concentration in ruminant food products is low; 

hence, there is a need to device a means of increasing the content of PUFA in ruminant food products. 

This would lessen the negative effects of high SFA and improve the accessibility of other nutritional 

benefits derivable from ruminant food products.  
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1.3.0. Dietary sources of lipids for ruminants 

The main dietary sources of lipids for ruminants are forage, oilseeds and fish oils. The lipid content 

and fatty acid composition are significantly different among the different sources of dietary lipids. In 

this section these main dietary sources of lipid for ruminants would be discussed. 

1.3.1. Forage and grass lipids 

Generally, ruminants are provided with considerable amounts of lipids from the forage component of 

their dietary daily allowance. These lipids which consist of high content of glycolipids and 

phospholipids are mainly of leaf origin, comprising between 6-8% of the dry matter content of the leaf 

(Harfoot, 1978). Glycolipids are the most abundant form of lipids, consisting between 70-80% of the 

available lipid content, whilst phospholipids, cholesterol esters and triacylglycerides represent the less 

(20-30%) abundant lipids (Christie, 1978). 

Plant lipids are comprised of high levels of USFA, predominantly C18:2 n-6 (linoleic acid) and C18:3 

n-3 (linolenic acid) and some smaller amounts of oleic acid (Palmquist and Jenkins, 1980). Majority of 

these lipids, which account for about 22-25% of the lipid on dry matter basis, are found in the 

chloroplast of leaf tissue (Harfoot, 1978). Of this lipid content, about 80% is 

monogalactosyldiglycerides and digalactosyldiglycerides (Harfoot, 1978). The fatty acid composition 

of monogalactosyldiglycerides from Lucerne (alfalfa) was reported to contain C18:3 n-3 (95%), C16:0 

(2.7%) and C18:2 n-6 (1.7%) on a weight basis (O’Brien and Benson, 1964). The C18:3 n-3 

concentrations in other legumes such as clover depend on both the species and the season of growth 

(Collins et al., 2002; Loor et al., 2003; Table 1.2). Consequently, glycolipids and phospholipids are 

the predominant lipids present in the forage consumed by ruminants. 

Alpha linolenic acid, the precursor for the long chain n-3 PUFA, is high in fresh grass, consisting 

between 0.50-0.75 g/g of the total fatty acids (Hawke, 1973). However, the concentration of C18:3 n-3 

in fresh grass depends on grass species (Dewhurst and Scollan, 1997) and the stage of maturity 

(Bauchart et al., 1984). Drying and storage of forages can result in significant losses in the content of 
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C18:3 n-3 and corresponding increases in the concentration of palmitic acid (Noble, 1981). Therefore, 

it can be inferred that fresh grass or Lucerne would have higher content of C18:3 n-3 than grass hay. 
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Table 1.2 Profile of fatty acids of common fatty acid sources (g/100 g total fatty acids) 

Fatty acid sources C16:0 C18:0 C18:2 n-6 C18:3 n-3 References 

Grass Silage 24.0 2.90 14.5 46.2 French et al. (2000) 

Grass 20.8 3.29 14.0 49.2 French et al. (2000) 

White Clover 33.0 4.1 28.2 34.7 Collins et al. (2002) 

Red Clover spring 24.2 4.35 19.1 45.9 Loor et al. (2003) 

Red Clover autumn 31.1 4.81 21.4 33.6 Loor et al. (2003) 

Linseed 5.0 2.5 15.0 63.5 Karleskind (1996) 

Cottonseed 24.0 2.0 47.0 1.0 Karleskind (1996) 

Soybean 11.0 3.5 56.0 7.5 Karleskind (1996) 

Rapeseed 3.5 1.2 13.8 9.1 Karleskind (1996) 

Corn 11.0 2.0 58.5 2.0 Karleskind (1996) 
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1.3.2. Oilseeds 

Concentrates, which are feedstuffs with high energy content, are conventionally added to ruminant diets 

to improve the energy density of the diet, especially for lactating animals (Palmquist, 1984). These 

concentrate feeds which are processed to prevent negative effect on digestion of fibre in the rumen, 

contain large amounts of crushed cereal grains, crushed oil seeds or their extracts (Palmquist, 1988). The 

addition of concentrate supplements to ruminant feed can also help to manipulate the digestion and 

absorption of nutrients, in addition to increasing the energy value of the diet (Palmquist, 1984; Palmquist, 

1988). Rumen acidosis or reduced milk fat content due to low fibre diet or high carbohydrate diets can be 

limited by addition of fats to the diet (Palmquist, 1984). In addition, the fatty acid composition of 

ruminant food products can be manipulated to increase their desirability by food industries and for human 

consumption through addition of concentrates (Grummer, 1991). 

Although grass and forages contain high concentration of C18:3 n-3 as a proportion of the total fatty 

acids, the content of C18:2 n-6 is higher in most commonly used oil seeds (Christie, 1983; Enser, 1984; 

Gurr and Harwood, 1996; Table 1.2). However, a significant concentration of C18:3 n-3 is found in a few 

number of oil seeds such as linseed oil, where C18:3 n-3 accounts for more than 50% of the total fatty 

acids (Sim, 1990; Table 1.2).  

The long chain n-3 fatty acids such as C20:5 n-3 and C22:6 n-3 are completely absent in oils of higher 

plants. However, there is some evidence that substantial concentration of C20:5 n-3 can be found in lower 

land plants such as ferns and mosses (MAFF, 1997). Certain technologies such as the development of 

transgenic plants which expresses the desaturase gene could be used to produce higher concentration of 

C20:5 n-3 and C22:6 n-3 in higher plants (Kyle et al., 1990). Similar technology has been successfully 

used with tobacco to cause accumulation of gamma-linolenic acid (Reddy and Thomas, 1996). 
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1.3.3. Fish oil 

There is a marked difference between the fatty acid composition of higher plants and marine organisms, 

with the latter containing significant concentrations of C20:5 n-3 and C22:6 n-3 (Nettleton, 1991). 

Relative to land animals, the unsaturated fatty acid content of fish oil is higher because fish like 

monogastric animals, absorb and deposit a wide range of available fatty acids from their diet (Sargent, 

1997). The fatty acid composition of marine zooplanktons is substantially determined by the fatty acid 

composition of the phytoplanktons which serve as their main source of food (Sargent, 1996). 

Triacylglycerides or wax esters (fatty alcohols esterified to fatty acids) represent the oil reserves of 

zooplanktons. Marine zooplanktons in the polar latitudes deposit wax esters as an adaptation to extreme 

light regimes because the condition is characterized by limited supply and seasonal availability of 

phytoplanktons (Sargent, 1997). Under such extreme weather conditions, more than 50% of the dry 

weight of zooplanktons is oils, composed of wax esters, whereas zooplanktons in lower latitudes 

accumulate much lower oils with high levels of phospholipids and insignificant concentration of wax 

esters.  

In the lower latitude where the zooplanktons contain negligible levels of waxes, fish such as sardines, 

anchovy and pilchards, consuming the zooplanktons have higher proportion of n-3 PUFA and lower body 

triacylglycerides than high altitude fish oils (Sargent, 1997). By contrast higher altitude fish such as 

herring, sprats, capelin and mackerel consuming zooplanktons containing high levels of wax esters can 

digest, absorb and transform the waxes to triacylglycerol. Thus, high altitude fish contains low levels of 

n-3 PUFA and relatively high concentration of C20:1 n-9 and C22:1 n-11 (Sargent, 1997).   
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 1.4.0. Fatty acid metabolism in animals 

1.4.1. Metabolism of lipid in non-ruminants 

The pattern of lipid digestion by the animal, whether ruminant or non-ruminant, substantially regulates 

the transfer of fatty acids from the diet to the products derived from that animal. In non-ruminants, unlike 

ruminant animals, the small intestine is the main site for the digestion of ingested dietary lipids. The 

dietary lipids (triacylglycerols) are broken down by pancreatic lipase to mainly free fatty acids and 2-

monoacylglycerols with absorption aided by the formation of micelles (Woods and Fearon, 2009). Then, 

lipoprotein lipase enzyme which is distributed widely around the body mediates the uptake of lipid in the 

jejunum. In the non-ruminant animal, relative to the ruminant animal, lipids in the diet are absorbed 

without transformation before their integration into the tissue lipids. Because dietary lipids are absorbed 

unchanged in non-ruminant animal, sources of dietary lipids have a determining and predictable effect on 

the fatty acid composition of human food products from poultry and pigs (Chesworth et al., 1998). The 

supply of UFA to tissue in non-ruminants could therefore be increased by simply increasing their dietary 

supply. 

1.4.2. Hydrolysis and biohydrogenation of PUFA in ruminants 

It is well established that lipolysis is a prerequisite for the occurrence of biohydrogenation of unsaturated 

fatty acid in the rumen (Dawson et al., 1977). Lipolysis is the process which hydrolyses ester linkages of 

esterified lipids to non-esterified fatty acids in the rumen and occurs rapidly after ingestion (Garton et al., 

1958; Dawson et al., 1977). Lipolysis precedes biohydrogenation because the availability of a free 

carboxyl moiety is an important requirement for biohydrogenation to proceed (Harfoot and Hazlewood 

1997; Jenkins and Bridges, 2007). 

The non-esterified unsaturated fatty acids which are the products of lipolysis have a relatively short half-

life, hence, they are rapidly hydrogenated after being adsorbed unto bacterial surfaces in the rumen 

(Keeney, 1970). The rational for the saturation of unsaturated fatty acid is still controversial. It has been 

suggested that ruminal biohydrogenation of UFA would be predictably manipulated if the reason as to 

why microbial population saturate unsaturated fatty acid is established (Jenkins et al., 2008). This implies 
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that understanding the basis for biohydrogenation of unsaturated fatty acid is the principal starting point 

for the development of suitable nutritional approaches to regulate its extent. To-date, two main 

hypotheses have been put forward to explain the rational for the biohydrogenation of unsaturated fatty 

acid. Initially, since biohydrogenation serves as hydrogen sink, it was thought that saving hydrogen from 

been re-channelled into other processes is the reason why this undesirable process occurs (Lennarz, 

1966). However, the weakness of this hypothesis is that an inconsequential amount of hydrogen has been 

estimated to be saved during the process of biohydrogenation of unsaturated fatty acid in the rumen 

(Czerkawski, 1972). Kemp and Lander (1984) have also suggested another reason for biohydrogenation 

as the process of detoxifying unsaturated fatty acid. The suggestion by these authors is based on the 

understanding that polyunsaturated fatty acids are toxic to some rumen bacteria. More recently, studies 

have observed that the growth of pure bacterial strains recognized to be producers of C18:0 was inhibited 

by PUFA (Maia et al., 2007; 2010). These studies are confirming that PUFA are indeed toxic to some 

microbes, especially, cellulolytic bacteria. The production of trans-18:1 intermediate from incomplete 

biohydrogenation has been suggested to be a ruminal microbial mechanism to deal with stressor such as 

excess lipid (Bessa et al., 2000).  

1.4.2.1. Ruminal Pathways of lipolysis and biohydrogenation 

Previous studies have clearly established the pathways of biohydrogenation of linolenic and linoleic acids 

(Harfoot and Hazlewood, 1997; Palmquist et al., 2005; Jenkins et al., 2008; Figure 7). In those studies, 

the pathways for the biohydrogenation of C18:2 n-6 and C18:3 n-3 indicating how esterified dietary lipids 

are hydrolysed, followed by isomerization of non-esterified FA, and hydrogenation of free fatty acids to 

saturated FA was established. Triglycerides, galactolipids and phospholipids are the main dietary lipids 

entering the rumen (Jenkins et al., 2008). As mentioned previously, long chain omega-3 PUFA, 

particularly DHA (C22:6 n-3) and EPA (C20: 5 n-3) are the major fatty acids in fish oil and algae (marine 

products). By contrast, forages, oil seeds and cereals contain α-linolenic acid (C18:3 n-3) and linoleic acid 

(C18:2 n-6) as their major fatty acids (Chillard et al., 2007). In the rumen, these fatty acids are 

extensively biohydrogenated by microorganisms and a number of primary and secondary intermediates 

are produced (Harfoot and Hazlewood, 1997; Palmquist et al., 2005). Recently, it has been indicated that 
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great variety of monounsaturated and polyunsaturated isomers, particularly conjugated and trans-fatty 

acids are formed before the final product of biohydrogenation (C18:0) is produced in the rumen (Mosley 

et al., 2002; Chillard et al., 2007; Figure 1.8). In these studies, other intermediates of biohydrogenation 

that were not considered in the pathways reviewed by Harfoot and Hazlewood (1997) are discussed. 

Figure 1.8 is therefore a confirmation of earlier report by Keeney (1970) who recognized that a great 

variety of trans- and cis-18:1 isomers are contained in rumen bacteria and digesta. However, the 

pathways of the biohydrogenation of C20:5 n-3 and C22:6 n-3 and the respective intermediates products 

are not indicated in Figure 1.8 because their pathways are not yet clearly established. It would not be 

assumed that all inter-conversions among the isomers of C18:1 and all putative fatty acids are shown in 

Figure 1.8 because metabolism of a specific polyunsaturated fatty acid under some dietary conditions can 

produce certain intermediates (Chilliard et al., 2007). 

As discussed previously, lipolysis hydrolyses the ester linkages resulting in the release of free fatty acids 

(FFA). This is the first process to occur when dietary lipids enters the rumen (Kim et al., 2009; Buccioni 

et al., 2012). This leads to the availability of free carboxyl moieties which is an important requirement for 

biohydrogenation to proceed (Jenkins and Bridges, 2007). Following the production of FFA, 

isomerization reaction converts cis-12 double bond to a trans-11 isomer producing conjugated linolenic 

acid (CALA) and conjugated linoleic acid (CLA) depending on whether linolenic acid or linoleic acid is 

involved (Jenkins et al., 2008; Kim et al., 2009; Buccioni et al., 2012). The next step after isomerization 

is the hydrogenation of unsaturated double bond leading to the production of single bond. For the LNA 

and LA, this involves the action of a microbial reductase. In the case of  linoleic acid, linoleic acid 

isomerase (LA-I), which is the lipase that is involved in the first biohydrogenation step of linoleic acid, 

converts linoleic acid to rumenic acid, called CLA (Figures 1.7; 1.8). This is followed by the activity of 

the rumenic acid enzyme (reductase enzyme) to hydrogenate the rumenic acid to trans-11 18:1 (vaccenic 

acid; VA), which is then subsequently hydrogenated to stearic acid (C18:0) as the last step of C18:2 n-6 

biohydrogenation. The biohydrogenation of α-linolenic acid starts with its isomerization to cis-9 trans 11 

cis-15 C18:3. The hydrogenation of cis-9 trans 11 cis-15 C18:3 leads to the formation of cis-15, trans-11 

C18:2 by the reduction of cis-9 double bond. This is then followed by the hydrogenation of cis-15 trans-
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11 18:2 to produce either cis-15 18:1 or trans-11 cis-13 18:2, or trans-11 18:1 (vaccenic acid). The 

production of C18:0 results from further hydrogenation of trans-11 18:1, as the final step in the ruminal 

biohydrogenation of C18:3 n-3.  
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Figure 1.7 Biohydrogenation pathways of linolenic and linoleic acid in the rumen (Adapted from Harfoot 

and Hazlewood, 1997); CLA= conjugated linoleic acid 
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Figure 1.8 Biohydrogenation pathways of the main secondary and primary intermediates of C18:2 n-6 

and C18:3 n-3 in the rumen (Adapted from Chilliard et al., 2007). Thin arrows represent other possible 

secondary pathways whereas thick arrows represent the primary pathways.  
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1.4.2.2. Biohydrogenation intermediates 

Although major intermediates of biohydrogenation have been discussed previously (section 1.4.2.1), it is 

important to emphasis some of the key intermediates, particularly those with known human health 

benefits. The process of biohydrogenation produces various intermediates; the most important of these 

intermediates recognized in human health are conjugated linoleic acid (CLA) and its precursor, vaccenic 

acid (VA, 18:1 trans-11). Cis-9 trans-11 CLA isomer is one of the most important transient intermediates 

of RBH of UFA because of its anti-carcinogenic, anti-atherogenic, anti-diabetic and anti-inflammatory 

effects (Kritchevsky, 2000, Jenkins et al., 2008; Kennedy et al., 2010; Crumb, 2011). However, a wide 

range of other positional and geometrical fatty acid isomers including modified FA (keto and hydroxyl 

derivatives) are produced during the biohydrogenation of C18:2 n-6 in the rumen (Jenkins et al., 2008; 

Figure 1.8). Absorption and incorporation of these BH intermediates into milk fatty acid differs 

depending on their concentrations. But, their production can be influenced under experimental conditions 

using specific diets (Harvatine and Bauamn, 2006).  

Conjugated linoleic acid is the collective name for a series of geometric and positional isomers of 18:2 n-

6 possessing conjugated double bonds.  There has been a surge in interest in the study of cis-9 trans 11 

CLA in the last decade. This increased interest is due to the health benefits of cis-9 trans 11 CLA as 

discussed previously (Belury, 2002; section 1.2.6). Ruminant food products are the natural and richest 

dietary sources of CLA available for human consumption. The isomer, cis-9, trans-11 CLA accounts for 

more than 90% of the total CLA present in ruminant milk fatty acid composition (Piperova et al., 2002; 

Kay et al., 2004; Savoini et al., 2010). The cis-9, trans-11 CLA in milk fatty acid can possibly result from 

two sources: firstly, it is the product of ruminal incomplete biohydrogenation of 18:2 n-6 by 

microorganisms. Secondly, cis-9, trans-11 CLA originates endogenously from the mammary gland by the 

action of Δ-⁹ desaturase enzyme which converts vaccenic acid (VA, trans-11 18:1) to cis-9, trans-11 

(Griinari et al., 2000). The latter represents more than 70% of the total CLA present in milk fat of 

ruminant origin (Bauman et al., 2006; Santora et al., 2000; Piperova et al., 2002). This suggests that 

major proportion of the total CLA content of milk results from desaturation of VA and means that 

increasing the ruminal concentration of VA would have a proportional effect on the level of CLA. 
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Although CLA in the rumen is synthesized only during the ruminal biohydrogenation of linoleic acid, 

biohydrogenation of both linolenic and linoleic acids generates VA (Bauman et al., 2003; Figure 1.7& 

1.8).  

It is a paradox that ruminant products which have long been blamed for their high contents of saturated 

fatty acids, and as such, potential risk factors of chronic disease, are also rich sources of nutraceutical 

component such as CLA. Nevertheless, as conjugated linoleic acid is a fatty acid, there is reduced 

concentration of this fatty acid in foods due to the renewed interest in the production of reduced-fat or fat-

free ruminant products (Webb and O’Neill, 2008). The established importance of CLA and its reduced 

concentration in ruminant products has necessitated exploration of dietary approaches to modify ruminal 

biohydrogenation so as to enhance its amounts in ruminal products. Studies have indicated that the 

concentration of CLA in ruminant derived products can be increased through dietary manipulation of 

ruminant feeding (Lawson et al., 2001). See section 1.4.2.1 for other major intermediates of 

biohydrogenation.  
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1.4.2.3. Factors affecting biohydrogenation 

The major sources of lipids used by ruminant nutritionists in the formulation of diets are marine origin 

(algae and fish oil) and plants (Kim et al., 2009). Lipolysis of unprotected oils has been suggested to be in 

the range of 85-95% (Doreau and Ferlay, 1994; Dewhurst et al., 2006). By contrast, lower lipolysis has 

been proposed for the structural plant lipids because of the requirement for the removal of the 

surrounding matrices before the occurrence of lipolysis (Doreau and Ferlay, 1994; Dewhurst et al., 2006). 

This indicates that lipids in oils are more degraded than forage lipids and suggest that a number of factors 

regulate the extent of ruminal biohydrogenation of PUFA. Lipolysis is a rate limiting step for 

biohydrogenation (Harfoot and Hazlewood, 1997). Forage maturity (Gerson et al., 1986), particle size 

(Gerson et al., 1988) and diet composition (Gerson et al., 1983; Gerson et al., 1985) are among the 

different factors responsible for altering in vitro rate of lipolysis. 

Ruminal biohydrogenation of unprotected linoleic and linolenic acids across a range of different types of 

diets is in the mean range of 85 and 93% respectively (Fievez et al., 2007; Jenkins et al., 2008). Glasser et 

al. (2008) concluded from a meta-analysis of the ruminal metabolism of C18 fatty acids with database of 

294 treatments in 77 experiments that a number of factors are responsible for the extent of 

biohydrogenation in the rumen. These factors are the forage: concentrate ratio, fish oil supplementation, 

ruminal pH and level of feed intake. When the forage content of the diet is higher than the proportion of 

concentrate, higher extent of biohydrogenation is more likely because of the likelihood of cellulolytic 

bacteria to dominate such diets. However, when concentrate is higher, other alternative pathways of 

biohydrogenation occur, with the formation of some trans fatty acids (Chilliard et al., 2007). It was 

observed that C18:3 n-3 and C18:2 n-6 were considerably protected at low ruminal pH than at high pH 

(Glasser et al., 2008). Increased feed intake causes a corresponding increase on the extent of linoleic and 

linolenic acid biohydrogenation, especially if the forage proportion of the diet is high.  

The extent of biohydrogenation of PUFA in the rumen can also be determined by the amount and type of 

fat added to the diet. For instance, the extent of biohydrogenation of constituent PUFA in diet 

supplemented with marine oils which contain EPA and DHA as the main fatty acids would be lower than 

the biohydrogenation of C18 PUFA found in oilseeds such as linseed, sunflower or soybean. This 
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inability of microbes to hydrogenate the fish oil fatty acids is not due to the difference in the lipase 

activities but because microbes lack the enzymes necessary to hydrogenate the long chain n-3 PUFA 

(Ashes et al., 1992). Advance maturity of forage and forage which has been thoroughly ground before 

added to the diet can also influence the biohydrogenation of PUFA in the rumen (Buccioni et al., 2012). 

In the latter, it can be speculated that grinding forage to produce fine particles would reduce the 

adherence of bacteria to feed particle and increase the rate of passage of food material through the rumen. 

Increased passage rate would consequently reduce the resident time and microbial activities, hence, 

decreased biohydrogenation of PUFA. Biohydrogenation has also been shown to be influenced by plant 

secondary metabolites such as tannins, protein bound phenols (PBP) and fatty acid oxidation (Cabiddu et 

al., 2010). 

1.4.2.4. Microorganisms involved in lipolysis and biohydrogenation 

Lipases responsible for lipolysis are from both microbial and dietary origin. However, the actual 

contribution of dietary and microbial lipases to these processes is not clear (Lourenco et al., 2010). About 

74 strains of microbial lipases in the rumen have been reported, all with varied lipolytic activity (Fay et 

al., 1990). The lipolytic activity of Butyrivibrio fibrisolvens and Anaerovibrio lipolytica has been 

extensively studied and reported (Harfoot, 1978). Hespell and O’Bryan-Shah (1988) examined the 

lipolytic activities of 30 strains of Butyrivibrio fibrisolvens and observed that there is wide variation 

among strains of Butyrivibrio fibrisolvens.  Anaerovibrio lipolytica hydrolysed triglycerides less rapidly 

than diglycerides; however, they did not hydrolyse galactolipids and phospholipids (Henderson, 1971). 

The production of saturated fatty acids require first, the hydrolysis of dietary esterified lipids by plant 

(Lee et al., 2004) and microbial (Harfoot, 1978) lipases to release the constituent fatty acids. A well-

recognized ruminal lipolytic bacterium (Anaerovibrio lipolytica) (Hungate, 1966) produces an 

extracellular lipase that has the potential for hydrolysing diglycerides more readily than triglycerides. 

Galactolipids and phospholipids are not however, affected by these lipases (Kim et al., 2009). Latham et 

al. (1972) identified bacteria with the same morphology like those of the genus Butyrivibrio having the 

capacity to hydrolyse triglycerides. A Butyrivibrio strain known as LM8/1B and Butyrivibrio fibrisolvens 

have also been observed to carry out phospholipase activity (Hazlewood and Dawson, 1975).  
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Hydrolysis of ingested esterified plant lipids has also been linked with the activity of ciliated rumen 

protozoa. In the early 1960s and 1970s; the activity of protozoa in lipolysis was reported (Wright, 1961; 

Latham et al., 1972). Wright (1961) suggested that protozoa, particularly, Epidinium spp. could contribute 

about 40% of the total lipolysis occurring in the rumen. This observation emerged after it was observed 

that ruminal lipolysis was reduced when cultures were treated with penicillin. Harfoot and Hazlewood 

(1988) proposed that the engulfment of lipases in the chloroplasts by protozoa could be responsible for 

the lipolytic activity in protozoa. The ruminal fungi have not been linked with the hydrolysis of esterified 

lipids in the rumen; however, there is evidence that they are involved in biohydrogenation (Nam and 

Garnsworthy, 2007). 

Biohydrogenation of FFA has been exclusively attributed to rumen bacteria (Lourenco et al., 2010). The 

main microbes which are responsible for biohydrogenating PUFA are the surface-associated bacteria 

(Lough, 1970). This is because the released PUFA are absorbed to the surface of plant material by means 

of hydrophobic interactions (Harfoot et al., 1973). Initially, the biohydrogenating bacteria were grouped 

into group A and group B (Kemp and Lander, 1984). The group A bacteria are generally seen as bacteria 

with the ability to reduce PUFA to form vaccenic acid, whilst, group B bacteria have the ability to 

biohydrogenate UFA to stearic acid.  The main group A bacteria have been recognized as Butyrivibrio 

fibrisolvens, whereas Fusocillus spp has been known as the main group B bacteria (Kemp et al., 1975; 

Harfoot and Hazlewood, 1997). More recent studies have shown that the C18:0 producers are clustered 

together and strains are so similar to Clostridium proteoclasticum (van de Vossenberg and Joblin, 2003; 

Wallace et al., 2006). These biohydrogenating bacteria are generally recognized as cellulolytic bacteria 

(Kepler and Tove, 1967), particularly, the Butyrivibrio group which are the most active group (Durmic et 

al., 2008). Although the bacterium that was called Clostridium proteoclasticum (Kemp et al., 1975; Maia 

et al., 2007) which is now re-classified as Butyrivibrio proteoclasticus (Moon et al., 2008), is the only 

bacteria capable of converting VA to C18:0, all bacteria in the Butyrivibrio group are capable of 

producing CLA from linoleic acid. Hudson et al. (1998) observed that Streptococcus bovis has the ability 

to cause hydration of linoleic acid to 13-hydroxy-9-octadecenoic acid, hence diverting it from the 

biohydrogenation course. This early study provide evidence that other facultative ruminal bacteria 
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including Lactobacillus, Staphyloccous, Pediococcus and Enterococcus have the ability to hydrate 

linoleic acid (Hudson et al., 2000). In addition, a concurrent increase in Megasphera elsdenii within the 

rumen has been identified with increased concentrate feeding (Counotte et al., 1981). Biohydrogenation 

of linoleic acid to the trans-10, cis-12 CLA has been linked to the activity of Megasphera elsdenii (Kim 

et al., 2002). There is limited evidence whether there are many more bacteria involved in 

biohydrogentaion due to the time-consuming nature and the high cost of isolating such bacteria (Huws et 

al., 2006). Available evidence suggests that other bacteria such as ruminococcaceae, Anaerovoax, 

Prevotella as well as other clostridiales that have not been identified could also play a role in 

biohydrogenation pathways (Huws et al., 2006, Huws et al., 2011). 

Although BH of PUFA has been exclusively attributed to bacteria, biohydrogenating activity has been 

reported from both protozoal and bacterial fractions of rumen contents (Wright, 1959; 1960).  This 

suggests a potential role of protozoa in the saturation of PUFA. However, further study suggests that the 

rumen protozoa act as hosts for bacteria in a commensal relationship (Dawson and Kemp, 1969). 

Therefore, the role of protozoa in biohydrogenation was at this time questioned. An experiment 

conducted at the Rowett Research Institute shows that the concentration of CLA in protozoa was higher 

than in bacteria (Devillard et al., 2006). Protozoa were not shown to have delta-9 desaturase activity, 

suggesting that they preferentially incorporate VA and CLA produced by bacteria. Or-Rashid et al. 

(2007) also carried out an in vivo study and the data showed that the concentrations of PUFA and CLA in 

protozoa were higher than their concentrations in bacteria. Nam and Garnsworthy (2007) reported that 

fungi also have the potential to biohydrogenate PUFA, but at a rate lower than bacteria, even though there 

are not known to be involved in lipolysis. 
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 1.5.0. Methods for protecting lipids from biohydrogenation in the 

rumen  

Various technologies have been developed over the years to either protect ruminal fermentation against 

the negative effects of dietary lipids or to protect the constituent PUFA against biohydrogenating 

microorganisms in the rumen. These technologies include hydrogenation or saponification of fatty acids 

and crystallization of fat (Jenkins and Palmquist, 1984), formaldehyde treatment of whole oilseeds and 

encapsulation of lipids in a formaldehyde-treated protein sources (Scott et al., 1970). Natural protection 

of dietary fat from ruminal biohydrogenation can also be achieved through inclusion of whole oilseeds 

with intact seed coat in ruminant diets instead of oils (St John et al., 1978; Solomon et al., 1991; Ekeren 

et al., 1992). 

A biologically effective technology to protect lipid from biohydrogenation is expected to have some 

essential features such as:  

a. The technology should have minimal adverse effect on general fermentation 

b. The protection mechanism should be inert in the rumen 

c. The flow of unsaturated fatty acids to the duodenum should be predictable and consistent 

d. There is sufficient release and absorption of unsaturated fatty acids in the duodenum by the 

technology. 

A number of methods are available to test the effectiveness of protected lipid mechanisms (Ashes et al., 

1979). For in vitro and in vivo testing mechanisms, a 60% and 70% protection respectively is considered 

satisfactory (McDonald and Scott, 1977).  

1.5.1. Formaldehyde protein-lipid supplements 

These mechanisms which were first developed over four decades ago involved the emulsification of 

polyunsaturated vegetable oils with plant proteins or casein at 70°C with pH 6.8 (Scott et al., 1970; 

Figure 1.9a). After forming emulsion, formalin was introduced as a fine mist during the drying process of 

the spray dried emulsion. The interaction of formaldehyde and amino groups resulted to inter and 
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intramolecular methylene linkages which reduced the susceptibility of the protein to ruminal degradation. 

When the supplements were fed, the proteins were solubilized in the abomasum and pancreatic lipase 

hydrolysed the lipids before absorption in the small intestines (Scott et al., 1970).   

It was observed that high amount of dietary fats in the form of protected lipids did not have any 

deleterious effects on rumen fermentation (Palmquist and Jenkins, 1980). This observation stimulated 

extensive study into lipid utilization by ruminants (Palmquist and Jenkins, 1980). The proportion of 

protected lipid supplement in vitro was observed to be closely related to the levels of formalin added 

(Ashes et al., 1979). Similarly, the concentration of formalin in protected lipid supplement fed to goats 

was also proportional to the milk fatty acid response in the animals (Ashes et al., 1979).  A significant 

correlation between resistance to ruminal hydrolysis and resistance to ruminal biohydrogenation was 

reported (n=6, r2=0.96). The formaldehyde treatment of vegetable oils was modified by Scott and Cook 

(1973) to enable the use of natural oilseeds as the source of both protein and oil. However, protein which 

is required for efficient emulsification and subsequent protection of polyunsaturated oils was low in some 

oilseeds such as sunflower. Therefore, the addition of small amounts of casein (5-10%) or the mixture of 

soybean meal or seeds and sunflower (about 30 -70 parts, respectively) was used to overcome this 

deficiency. Knight et al. (1978) reported that oilseeds treated directly with formalin only offered partial 

protection from hydrolysis and biohydrogenation in the rumen. The physical breakdown of the product 

during mastication and insufficient control of the manufacturing process was suggested as the cause of 

this partial protection (Ashes et al., 1979). Notwithstanding the incomplete protection, the feeding of 

steers with formaldehyde protected canola and cotton seeds increased unsaturation in the subcutaneous 

adipose tissue (Scott and Ashes, 1993). In addition, the concentrations of C18:3 n-3, C18:2 n-6 and 

C18:1n-9 in milk was significantly increased after feeding protected canola supplements to lactating dairy 

cows (Ashes et al., 1992). The content of C18:2 n-6 in tissues of cattle (Garrett et al., 1976) and sheep 

(Faichney et al., 1973; Hogan and Hogan, 1976) was increased between 18-25% and 50-60, respectively, 

when lipids were treated with formaldehyde. To date, the only documented protection method with 

increased proportion of the absorbed PUFA is the formaldehyde treatment. Other encapsulation methods 
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have not been very effective, such as those that involve encapsulation using calcium alginate (Ekeren et 

al., 1992). 

However, beside the fact that the use of formaldehyde would potentially be criticized by regulatory 

authorities, the inconsistency of this approach to reduce biohydrogenation of either C18:3 n -3 or C18:2 n 

-6 was reported by Sinclair et al. (2005). The use of linseed, a natural source of C18:3 n -3 (Givens et al., 

2001), which was treated with formaldehyde and fed to sheep produced an insignificant increase in the 

flow of C18:3 n-3 to the lower digestive tract (Chikunya et al., 2004). The result of this investigation led 

Sinclair et al. (2005) to assume that pre-treatment with sodium hydroxide and formic acid prior to treating 

with formaldehyde could improve the flow of C18:3 n-3 to the small intestine. Therefore, linseed was 

pre-treated with sodium hydroxide and formic acid then treated with formaldehyde in an in vitro batch 

culture (Sinclair et al., 2005). This approach offered a better protection (about 45% and 31% for sodium 

hydroxide and formic acid respectively) of C18:3 n-3 from biohydrogenation compared with treatment 

with formaldehyde alone (8%). However, the use of formaldehyde may not be allowed by some 

regulatory bodies, therefore, this method has not been commercially accepted and used (Scollan et al., 

2014). 
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Figure 1.9 Techniques for protecting dietary fat (Adapted from Scott and Ashes, 1993). Ca=calcium, R1-

R3= Methylene linkages, showing binding sites. 
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1.5.2. Saponification (Calcium soaps) 

Saponification technique which involved the addition of calcium chloride to molten sodium salts of the 

lipid was proposed by Jenkins and Palmquist (1984; Figure 1.9b). After adding the calcium chloride, 

calcium salts precipitated and the soap was air dried before milling and added to diets.  The authors 

proposed this means of protecting PUFA from ruminal biohydrogenation because calcium soaps 

dissociated in the acidic environment of the abomasun but were insoluble in the rumen.  

Wu et al. (1991) reported 49% biohydrogenation (51% protection) by using calcium salt of palm oil to 

reduce microbial degradation in the rumen compared with 80% biohydrogenation for the control diets. 

Tallow calcium soaps allowed a normal fibre digestibility of 50%, whilst tallow fatty acids caused a 

decrease in fibre digestibility from 51% (control cows) to 45% (Jenkins and Palmquist (1984). The 

negative effects of calcium soaps based on palm oil were not observed by Elmeddah et al. (1991). This 

was attributed to the low dissociation of calcium salts at a normal rumen pH of 6-7 (Sukhija and 

Palmquist, 1991). However, subsequent studies reported extensive biohydrogenation of calcium salts, 

especially those of USFA at pH less than 6.0 (Ferlay et al., 1993; Enjalbert et al., 1994). The rapid 

decline in pH upon feeding the calcium soaps was suggested to be responsible for the extensive 

biohydrogenation. Subsequent in vitro studies confirmed the effects of rumen pH on calcium soaps (Van 

Nevel and Demeyer, 1996). The flow of unsaturated fatty acids to the duodenum was not affected when 

calcium linoleate was fed to sheep (Fotouhi and Jenkins, 1998). Therefore, it was suggested that 

protection of unsaturated fatty acids from ruminal microbial break-down is only possible if an insoluble 

matrix of saturated calcium salts is used for the encapsulation. This suggests that protection is only likely 

at low concentration of unsaturated fatty acid content, thereby limiting the extent to which alteration of 

the unsaturated fatty acid composition of milk and meat can be achieved (Jenkins and Bridges, 2007). The 

report by Enjalbert et al. (1997) supported this suggestion where the feeding of calcium salts of palm oil 

fatty acids resulted in higher flow of linoleic acid to the duodenum than the feeding of calcium salts of 

rapeseed fatty acid. When a commercial product based on calcium salts of soyabean oil was used to 

replace soyabean oil (Oliveira et al., 2012), the concentration of 18:2 n-6 was observed to increase in the 
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muscle of beef cattle. However, experimental application of this process to linseed oil did not protect 

PUFA from ruminal biohydrogenation (Oliveira et al., 2012).  

1.5.3. Prilling (prilled fatty acids) 

A dried prilled fatty acid supplement which is inert in the rumen environment is obtained by liquefying a 

mixture of fatty acids containing high levels of saturated fatty acid and passing the fatty acid mixture 

under pressure into a cooled atmosphere (Figure 1.9c). Prilling can therefore be defined as the process in 

which fatty acids are crystallized together in a matrix through a rapid cooling process resulting in the 

production of small spherical beads (Schauff and Clark, 1989; Figure 1.11). Because prilled fat 

supplements are inert in the rumen, nutrient digestion is not affected when the supplement is added at 

3.5% or less in the diet. Calcium salts of palm oil fatty acids and a relatively saturated fat source (C18:1, 

12.8%; C18:0, 35.1% and C16:0, 48.6%) were compared by Grummer (1988). When the rumen pH is 

maintained at above 6.0, hydrolysed saturated fatty acids react more readily with metal ions resulting in 

the formation of salts that are insoluble in the rumen (Palmquist, 1984). In in vitro experiment to assess 

the efficiency of fat supplements for ruminants, Gulati et al. (1997) observed that there was 90% and 65% 

biohydrogenation for the control and prilled fat supplement respectively. However, the potential of 

prilling to protect PUFA from biohydrogenation was not observed in other studies. For example, 

Harvatine and Allen (2006) reported that prilling did not affect milk fat concentration and the fatty acid 

profile of milk fat obtained from animals fed prilled fat supplement was similar to the control. 

1.5.4. Fatty acyl amides 

Fatty acyl amides which resist microbial breakdown in the rumen are formed by reacting fatty acids with 

amines (Fotouhi and Jenkins, 1992a; Jenkins, 1995). The amide bond which results from the primary 

amine group and the fatty acid carboxyl group is digestible in the small intestine, but undegradable in the 

rumen (Langar et al., 1978). Biohydrogenation of linoleic acid by rumen microorganisms was observed to 

be higher than that of linoleoyl methionine (Fotouhi and Jenkins, 1992b). The duodenal flow of linoleic 

acid increased when small quantities of linoleoyl methionine were added directly to the rumen of sheep 

compared with a free linoleic acid supplement (Fotouhi and Jenkins, 1992b; Jenkins, 1995). Addition of 

soybean oil amide derivates to a diet for lactating cows increased the concentration of 18:2 n-6 in plasma 



43 
 

from 54.3% (control) to 59.0% (Jenkins et al., 1996). However, this protection technique is not 

commercially available yet. In addition, Jenkins (1998) reported that addition of oleamide to the diet for 

dairy cows negatively affected dry matter intake compared with the control.  

1.5.5. Oil seeds 

Polyunsaturated fatty acids in dietary fats can be naturally protected from ruminal biohydrogenation 

through the supplementation of whole oilseeds with intact seed coat in ruminant diets instead of oils. This 

has been observed to elevate the concentration of USFA in muscle tissue (St John et al., 1978; Solomon 

et al., 1991; Ekeren et al., 1992). However, the efficiency of this technique can be reduced during 

processing and mastication, which disrupts the intact seed coat. For efficient post-ruminal digestion, it has 

been generally accepted that oilseeds or grains for ewes and cattle should be rolled or coarse ground 

before feeding. This form of processing would disrupt the seed coat consequently exposing the lipids to 

microbial transformation in the rumen. Orskov et al. (1974) suggested that there is no advantage in 

processing oil seeds because sheep masticate their feed efficiently.   

In summary, comparison of the ruminal fatty acid protection potential for some of the available protection 

technologies was made by Lundy et al. (2003). In that study, the authors offered three equal amounts of 

soybean fatty acids to cows as amides, unprotected and as calcium salts. The C18:2 ruminal 

disappearance as a proportion of intake was 92.4%, 94.8 and 92.2 for the amides, the unprotected oil and 

the calcium salts, respectively. This clearly demonstrates a non-substantial difference between the control 

and the two protection technologies. In addition, de Veth et al. (2005) conducted a study to evaluate the 

effect of formaldehyde and calcium salts protected forms of a trans-10, cis-12 CLA. It was observed that 

the mean transfer of the CLA isomer to milk fat was 3.2 and 7.0 for the calcium salts and formaldehyde 

treatments, respectively. This compared with approximately 20% transfer effectiveness for abomasal 

infusion of the same CLA. This indicates less rumen protection efficiency by both calcium salts and 

formaldehyde treatments. However, protection was better with formaldehyde treatment than calcium 

salts.  
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As discussed above, inhibition of ruminal biohydrogenation is not consistent with any of the available 

protection technology and none of these technologies meets all the essential features of any supplement to 

protect ruminal biohydrogenation of PUFA. Therefore, in the recent times, considerable attention has 

been given to evaluation of plant secondary metabolites and how they influence ruminal 

biohydrogenation of PUFA. These compounds which possess antimicrobial activities are thought to 

inhibit lipases involved in hydrolysis of fat.  

 1.6. Plant Bioactive Compounds and rumen Biohydrogenation  

Plant secondary metabolites (PSM) refer to a wide range of chemical compounds which are produced by 

plants but are not a requirement for the primary biochemical processes involved in growth, reproduction 

and development of the plant (Calsamiglia et al., 2007; Patra, 2012). The primary functions of these PSM 

in plants are that they act as protective agents against invasion from a wide range of foreign particles such 

as pathogenic microorganisms (Calsamiglia et al., 2007).     

The use of plant bioactive compounds (PBC) such as tannins, saponins and essential oils to modify 

ruminal biohydrogenation is quite a recent development. Over many decades in the past, the main aim of 

evaluating plants (trees, bushes or forages) which are high in secondary compounds was to ascertain their 

suitability as feeds in livestock farming such as their effects on digestion of feeds, performance and 

growth, reproduction and health of animals (Vasta and Bessa, 2012). But, the interest in evaluating the 

influence of PBC on the fatty acid composition of meat was developed only in the last few years (Vasta et 

al., 2013). In this review, only the effects of essential oils on rumen fermentation and biohydrogenation 

would be considered. However, the effects of other PBC on rumen fermentation and biohydrogenation of 

PUFA can be found in the recent review by Patra (2012). The effects of essential oils or their constituent 

compounds on VFA and methane production and ammonia nitrogen metabolism have been adequately 

investigated and recently reviewed (Patra, 2011; Vasta and Bessa, 2012). However, there is a scarcity of 

information on the potential of EOs or EOCs as modifiers of rumen biohydrogenation of PUFA and 

concentrations of BH intermediates such as CLA and VA. The aim of this PhD study was to compare the 

potential of EOs and EOCs as feed additives to reduce the extent of rumen biohydrogenation of n-3 
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PUFA. This would potentially enable the optimization of the fatty acid composition of ruminant food 

products with the use of either of these substances as feed additive. 
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 1.7.0. Essential oils (the proposed technique) 

1.7.1. Definition of Essential oil 

Essential oils which are also known as volatile oils are aromatic (relating to the smell and taste) oily 

liquids (Guenther, 1948; Burt, 2004). The presence of EOs in plants determines the unique smell of plants 

due to the different smells and aroma produced by different EOs (Szumacher-Strabel and Cieslak, 2012). 

These complex compounds are produced as secondary metabolites from aromatic plants, particularly, 

spices and herbal plants (Bakkali et al., 2008; Patra, 2011). Contrary to what the name suggests, these oils 

are not oils or lipids, but mainly volatile aromatic compounds extracted from different parts of a plant 

such as the seeds, flowers, herbs, leaves, wood, bark, buds, roots and twigs (Burt, 2004; Hart et al., 2008). 

Naturally, the existence of EOs in a plant may provide protection for the plant against external invasion 

from organisms such as fungi, virus, bacteria and insects, as well as reducing the appetite of herbivores 

for such plant (Greathead, 2003; Bakkali et al., 2008). The term ‘essential oil’ is derived from ‘Quinta 

essentia’, a name which was first used by Paracelsus Von Hohenheim, a Swiss reformer of medicine, in 

the 16th century (Guenther, 1948). This term ‘essential’ coins from essence, is meant to relate to the 

property (smell or taste) of these materials in which the primary function is to provide specific odours or 

flavours to the parent plant (Calsamiglia et al., 2007). Although there are several methods of obtaining 

these oils from the plant, such as expression, extraction and fermentation, steam distillation is the most 

widely used method for the commercial production of EO (Gershenzon and Croteau, 1991; Van de Braak 

and Leijten, 1999). Steam distillation, which was initially developed and used in the Middle Ages by 

Arabs, is popularly used to extract EOs to prevent compositional changes due to the volatile nature of 

these oils (Simon, 1990; Greathead, 2003; Bakkali et al., 2008). Because of their volatile nature, EOs are 

usually stored in airtight jars in dark areas to prevent compositional changes.  The quantity and quality of 

EOs may vary depending on the soil composition, climatic condition, vegetative stage, age and the plant 

organ from which the oil is extracted (Masotti et al., 2003; Angioni et al., 2006).  

Naturally, EOs have a range of properties such as antifungal, insecticidal and antibacterial, and they have 

been used based on those properties (Thormar, 2011). Generally, about three thousand EOs are known, 
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but only around 300 have been commercially described by the fragrant and flavour companies (Van de 

Braak and Leijten, 1999). The usefulness of the described (referring to the 300 above) EOs have been 

shown in different industries like agriculture, sanitary, pharmaceutical, perfume, food, and cosmetic 

(Calsamiglia et al., 2007; Bakkali et al., 2008). They are also used as mixtures of vegetal oil used for 

massages, in aromatherapy and baths (Thormar, 2011). Some essential oils have been suggested to 

possess potential for the cure and prevention of systemic malfunction and organ dysfunction due to 

certain medicinal properties (Perry et al., 2003; Silva et al., 2003).  

1.7.2. Composition of EO 

EOs have a wide range of activities due to the diverse nature of their chemical composition. 

Compositional analyses of EOs have indicated that essential oils are a mixture of about 20-100 individual 

constituent compounds (EOCs) at different proportions (Senatore, 1996; Russo et al., 1998, Pengelly, 

2004; Dung et al., 2008). The composition of the profile of EO can be determined either by gas 

chromatography or mass spectrometry (Juliano et al., 2000; Delaquis et al., 2002). The estimated 

proportion of the major components of EOs are around 20-85%, whilst trace amounts of other minor 

components account for about 15% of the total (Senatore, 1996; Bauer et al., 2001). For instance, the 

main components of Coriandrum sativum essential oil is linalool (68%); thymol (27%) and carvacrol 

(30%) are the main components of Origanum compactum essential oil; menthone (19%) and menthol 

(59%) are of Menthe piperita; and 1,8-cineole (50%) is the main component of the essential oil of 

Cinnamomum camphora (Calsamiglia et al., 2007; Bakkali et al., 2008). The antimicrobial properties of 

essential oils are predominantly determined by the major active compounds. However, other minor or 

trace compounds can also contribute either synergistically or antagonistically to the activities of the main 

components (Burt, 2004).  

Structurally, EOs are complex mixtures of a diverse range of chemical compounds having terpenoids 

(monoterpenoids and sesquiterpenoids) and phenylpropanoids as the most active forms (Calsamiglia et 

al., 2007).  A variety of low molecular weight aliphatic hydrocarbons, aldehydes, alcohols, lactones or 

acyclic esters and acids may also exist (Dorman and Deans, 2000). These two most active compounds, 

terpenoids and phenylpropanoids, are derived from different precursors of the primary metabolism, and 
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are synthesized from two separate pathways of metabolism (Gershenzon and Croteau, 1991; Calsamiglia 

et al., 2007). Based on these classifications, terpenoids are the most important and more abundant (about 

15,000 compounds have been described) compounds in herbs and spices compared to the 

phenylpropanoids (Gershenzon and Croteau, 1991). 

Terpenoids, which are synthesized from mevalonate metabolic pathways, are derived from a basic 

structure of C-5 isoprene units, and the number of these units in its skeleton determines the classification 

of terpenes (Calsamiglia et al., 2007). Predominantly, terpenes occur as monoterpenes (C₁₀) and 

sesquiterpenes (C₁₅), but other categories such as diterpenes (C20), sesterterpenoids (C25), triterpenes 

(C30) and tetraterpenes (C40) may also exist (Gershenzon and Croteau, 1991; Thormar, 2011; Patra, 

2012). The monoterpenes, which are the most abundant form of terpenes, are made from the linkage of 

two isoprene units; hence, they have 10 carbon atoms (Calsamiglia et al., 2007). As the most common 

form of terpenes, monoterpenes have a diverse range of structural composition, and constitute about 90% 

of EOs constituent compounds (Bodas et al., 2012). Types of monoterpenes (acyclic, bicyclic etc.) and 

their examples are shown in Table 1.3.  

Sesquiterpenes are formed from the combination of three isoprene units (C₁₅). Different structures of 

sesquiterpenes are formed from the extension of the preceding chain, leading to increases in the number 

of cyclization (Thormar, 2011). In terms of functions and structures, sesquiterpenes are similar to 

monoterpenes (Bakkali et al., 2008; Thormar, 2011). Some types of sesquiterpenes and their examples are 

shown in Table 1.4. A number of plants such as Juniper, caraway, citronella, angelica, mandarin, pine, 

eucalyptus, lemon, thyme, bergamot, coriander, lemongrass, lavender, rosemary, mint, sage, peppermint, 

lavandin, celery, orange and geranium, contain these compounds (Bakkali et al., 2008). 

The second most abundant form of EOCs is the Phenylpropanoids. Relative to the terpenoids, 

phenylpropanoids do not exist in high proportions in EOs, however, in some plants; their concentration 

may be significant (Calsamiglia et al., 2007). Phenylpropanoids are derived from phenylalanine, and are 

synthesized through the shikimate pathway, a process which is only functional in plants and 

microorganisms (Sangwan et al., 2001). Phenylpropanoids are compounds with a side chain of C3 which 
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is bound to an aromatic ring of six carbons (C6) (Calsamiglia et al., 2007). Types of phenylpropanoids 

and their examples are shown in Table 1.5.  The main plant sources of this group of compounds are clove, 

sassafras, fennel, cinnamon, tarragon, nutmeg, anise, and some of the botanical families from which these 

plants belong are Rutaceae, Lamiaceae, Apiaceae and Myrtaceae (Thormar, 2011).  

Some plants also contain sulphur and nitrogen containing compounds such as isothiocyanate or 

glucosinolates derivatives (mustard and garlic oils) (Dorman and Deans, 2000). 

In terms of antimicrobial potency, essential oil constituent compounds can be grouped into the following 

in order of descending potential: phenols > cinnamic aldehyde > alcohols > aldehydes (ketones > ethers > 

hydrocarbons) (Kalemba et al., 2012). 

 

As mentioned previously, although steam distillation is widely used for commercial production of EOs, 

obtaining these oils by means of liquid carbon dioxide under high pressure and low temperature is also 

available (Moyler, 1998). However, this CO2 method is more expensive but produces oil with more 

natural organoleptic composition relative to steam distilled oils (Moyler, 1998). These two methods of 

extracting EOs are responsible for the difference in the composition of essential oil profile (Burt, 2004).  

The difference in the antimicrobial properties of EOs and their compounds is also attributed to the method 

used during extraction (Burt, 2004). This difference in antimicrobial properties have been shown where 

the steam distilled EOs exhibit lower antimicrobial activity compared to the antimicrobial potential of 

herb EOs extracted by hexane (Packiyasothy and Kyle, 2002).  

The antimicrobial properties of EOs have been suggested to be influenced mainly by the phenolic 

components (Cosentino et al., 1999). In such phenolic compounds, the hydroxyl group and the dislocated 

electrons permeate the interaction with water through hydrogen bridges, enabling phenolic compounds to 

be very active against wide range of microorganisms (Griffin et al., 1999; Davidson and Naidu, 2000; 

Dorman and Deans, 2000; Cox et al., 2001). Table 1.6 shows the main components of a number of EOs 

and their individual proportion. The structural formulas of different major chemical components of EOs 

are presented in Figure 1.10.  It has been indicated that minor components produce some synergistic 
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effect with other major components, suggesting their possible function in determining the antimicrobial 

potential of EOs (Burt, 2004). This suggestion has been confirmed in several studies for some species of 

Thymus (Lattaoui and Tantaoui-Elaraki, 1994; Marino et al., 1999), Oregano (Paster et al., 1995) and 

sage (Marino et al., 2001). 

In addition to the method of extracting EO as a factor responsible for the difference in composition and 

antimicrobial potential, the profile of EOs can also be influenced by geographical/environmental location 

and harvesting seasons of the parent plant (McGimpsey et al., 1994; Cosentino et al., 1999; Marino et al., 

1999; Juliano et al., 2000). This can partly be understood by the formation of some antibacterial 

substances from their parent materials in a particular environment. As reported by many studies 

(Cosentino et al., 1999; Jerkovic et al., 2001; Ultee et al., 2002), the precursors of thymol (5-methyl-2-(1-

methylethyl)phenol) and carvacrol (2-methyly-5-(1-methylethyl)-phenol) are γ-terpinene (1-methyl-4-(1-

methylethyl)-1,4-cyclohexadiene) and ρ-Cymene (1-methyl-4-(1-methyl)-benzene). The specimens 

obtained from different environmental locations in Greece have been shown to contain the four 

compounds in equal amounts to the proportion found in Greek oregano plants (Kokkini et al., 1997). 

Similar report has been shown for Thymus vulgaris from Italy (Marino et al., 1999). This supports the 

theory that the four compounds are functionally and biologically related (Kokkini et al., 1997). In general, 

the strongest antimicrobial activity has been reported to be exhibited by EOs extracted from herbs which 

are harvested immediately after flowering or during flowering (McGimpsey et al., 1994; Cosentino et al., 

1999; Marino et al., 1999). Different degree of antimicrobial potency has also been shown by different 

enantiomers of EOCs (Lis-Balchin et al., 1999). The essential oil composition of cilantro, which is 

obtained from the immature leaves of coriander (Coriandrum sativum), has been shown to have a 

different profile from the EO obtained from the seeds of the same coriander (Delaquis et al., 2002). This 

indicates that there can be wide variation between the compositions of EOs obtained from different parts 

of the same plant. 
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Table 1.3 Some types of monoterpenes essential oil compounds and their common examples (Adapted from Bakkali et al., 2008). 

Type of monoterpenes Examples  

Alcohols  Monocyclic: carveol, menthol, α-terpineol, etc. 
 

Acyclic:        linalool, lavandulol, citronellol,        nerol, geraniol, etc. 

 
Bicyclic:       fenchol, thuyan-3-ol, borneol, chrysanthenol, etc. 

  

Aldehydes  Acyclic:        neral, citronellal, geranial, etc. 
  

Carbures  Monocyclic: p-cymene, terpinenes, phellandrenes, etc. 

 
Acyclic:        ocimene, myrcene, etc. 

 

Bicyclic:       -3-carene, sabinene, pinenes, camphene, etc. 

  

Ethers  Menthofurane, 1,8-cineole, etc. 

  
phenols Carvacrol, thymol, etc. 

  

Esters  Monocyclic:  α-terpinyl acetate or menthyl, etc. 

 
Acyclic:          citronellyl acetate, propionate or linalyl acetate, etc. 

 

Bicyclic:      pinocarvone, fenchone camphor, pinocamphone, thuyone,        
ombellulone, etc. 

  

Peroxydes  Ascaridole, etc. 
  

Ketones  Monocyclic: carvone, piperitone, menthones, pulegone, etc. 
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 Table 1.4 Some types of sesquiterpenes essential oil compounds and their examples (Adapted from Bakkali et al., 2008). 

Types of sesquiterpenes Examples  

Alcohols  β-nerolidol, β-santalol, carotol, patchoulol, farnesol, bisabol, viridiflorol, etc. 

  

Carbures  Elemenes, azulene, zingiberene,  β-bisabolene, farnesenes, curcumenes, 
cadinenes, logifolene, β-caryophyllene, etc. 

  

Epoxide  Humulene epoxides, caryophyllene oxide, etc. 

  

Ketones Nootkatone, β-vetinone, germacrone, turmerones, cis-longipinan-2,7-dione, 

etc. 

 

Table 1.5 Some types of phenylpropanoids essential oil compounds and their common examples (Adapted from Bakkali et al., 2008). 

Types of phenylpropanoids Examples  

Phenols eugenol, chavicol 

  

Aldehyde cinnamaldehyde 

  

Methylene dioxy compounds safrole, apiole, myristicine 

  

Alcohol cinnamic alcohol 

  
Methoxy derivatives elemicine, methyleugenols, anethole, estragole 
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Table 1.6 EOs and their major components which exhibit antimicrobial activities (adopted from Burt, 2004) 

Botanical name Common name Major compound Composition (%) References 

Coriandrum sativum (immature leaves) Cilantro Linalool,  

E-2-decanal 

26% 

20% 

Delaquis et al. (2002) 

Syzygium aromaticum Clove (bud) Eugenol,  

eugenal acetate 

75-85% 

8-15% 

Bauer et al. (2001) 

Coriandrum sativum (seeds) Coriander Linaloo,  

E-2-decanal 

70% 

- 

Delaquis et al. (2002) 

Origanum vulgare Oregano Carvacrol 

ρ-Cymene 

γ-terpinene 

Thymol 

Trace-80% 

Trace-52% 

2-52% 

Trace-64% 

Prudent et al. (1995) 

Marino et al.(2001) 

Russo et al. (1998) 

Charai et al. (1996) 

Thymus vulgare Thyme Thymol 

ρ-Cymene 

γ-terpinene 

Carvacrol 

10-64% 

10-56% 

2-31% 

2-11% 

Lens-Lisbonne et al. (1987); McGimpsey et 

al.(1994); Marino et al.(2001); Juliano et al 

(2000) 

Rosmarinus officinalis Rosemary α-pinene 

1,8-cineole 

Camphor 

Bornyl acetate 

2-25% 

3-89% 

2-14% 

0-17% 

Pintore et al. (2002) 

Cinnamomum zeylandicum Cinnamon Trans-cinnamaldehyde 65% Lens-Lisbonne et al. (1987) 

Salvia officinalis L. Sage 1,8-cineole 

 β –pinene 

α-tujone 

Camphor 

α -pinene 

6-14% 

2-10% 

20-42% 

6-15% 

4-5% 

Marino et al.(2001) 
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Figure 1.10 Chemical structures of different components of EOs (Adapted from Patra, 2102) 
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1.7.3. Mechanism of actions of EOs 

Considering the large number of EOs and the diverse chemical compounds in them, it is unlikely that 

there would be one specific mode of antimicrobial action or that there is one specific target site for their 

actions (Skandamis et al., 2001; Carson et al., 2002). As indicated in Figure 1.11, a number of sites are 

thought to be affected by the action of EOCs in different ways. However not all the sites are affected by 

one   action, some sites are affected as the consequence of the action of EOCs in another site (Burt, 2004). 

In brief, EOCs alter microbial activities through a number of ways: degrading microbial cell wall 

(Thoroski et al., 1989; Helander et al., 1998; Figure 1.11), damage to membrane proteins (Ultee et al., 

1999; Figure 1.11), depletion of the proton motive force (Ultee et al., 1999; Ultee and Smid, 2001) and by 

damaging the cytoplasmic membrane (Ultee et al., 2002; Figure 1.11). They also achieve alteration of 

microbial populations by causing leakage of the cell contents (Cox et al., 2000; Lambert et al., 2001) and 

cytoplasmic coagulation (Gustafson et al., 1998). 

Hydrophobicity of EOs and EOCs which enables them to partition in the phospholipid bilayer of 

microbial mitochondria and cell membrane, causing damage to the structure and increasing the 

permeability of the cell contents, is an important characteristic for the success of their mechanisms 

(Sikkema et al., 1994). Because of the increased permeability of microbial cell, leakage of its contents 

becomes possible (Helander et al., 1998; Skandamis et al., 2001; Ultee et al., 2002). Although death of 

microbial cell can result from loss of critical cell contents (ions and molecules) or extended loss of 

cellular materials, leakage of a certain amount of cellular contents may be tolerated with no adverse effect 

on the viability of the cell (Denyer and Hugo, 1991). This tolerance could be achieved by diverting large 

amounts of energy into ionic pumps to counterbalance the effect of the lost material, and this 

consequently slows down bacterial growth (Ultee et al., 1999; Cox et al., 2001). These mechanisms of 

actions are less effective against Gram-negative bacteria, where the cell membrane cannot interact 

directly with the hydrophobic compounds in EOs. This is because the external cell wall around the Gram-

negative bacteria is hydrophilic, and therefore, not able to penetrate substances that are lipophilic in 

nature (Calsamiglia et al., 2007). In contrast, because Gram-positive bacteria in which the cell membrane 

can interact directly with the hydrophobic compounds of EOs, the described mechanism of action is more   
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Figure 1.11 Mechanisms and sites in the microbial cell considered to be the locations of actions for EOCs 

(Adapated from Burt, 2004). 
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effective against Gram-positive bacteria (Calsamiglia et al., 2007). Hence, Gram-positive bacteria are 

more susceptible to the hydrophobicity of EOs and their compounds than Gram-negative bacteria which 

have surface layer surrounding the membrane (Chao and Young, 2000; Cimanga et al., 2002; Bencharr 

and Greathead, 2011).  This difference is due to the variation in the microbial cell wall composition 

between the two groups of bacteria. It is this susceptibility of Gram-positive bacteria to the antimicrobial 

effects of essential oil compounds that makes them potential target. However, because the external 

membrane of Gram-negative bacteria is not completely impermeable, it can be penetrated by some EOCs 

that have low molecular weight such as thymol and carvacrol (Cox et al., 2001; Calsamiglia et al., 2007). 

This means that the described mechanism of action does not apply to the low-molecular weight 

molecules.  These low-molecular weight compounds can penetrate the outer cell wall and interact with 

membrane lipid of bacteria by reacting with H₂O through hydrogen bridges, and can diffuse slowly 

through protein membrane or lipopolysaccharide layer (Griffin et al., 1999; Dorman and Deans, 2000; 

Calsamiglia et al., 2007). In addition, destruction of the external cell wall of Gram-negative bacteria 

leading to an increased penetration of the cytoplasmic membrane and the release of lipopolysaccharides 

by the ability of some aromatic hydrocarbons found in essential oils have been reported (Helander et al., 

1998). It can be stated from the above mechanisms of EOCs with low-molecular weight that their 

selection for use in practice (animal nutrition) is limited due to their practical effectiveness against both 

the Gram-negative and Gram-positive bacteria. This non-selective effect of the low molecular weight 

compounds does not have a beneficial implication in animal nutrition as the use of EOs or EOCs is to 

cause selective inhibition of certain group of bacteria. 

EOs containing high proportion of phenolic compounds such as thymol, carvacrol and eugenol (2-

methoxy-4-(2-propenyl)phenol as components of their chemical structure exhibit the strongest 

antimicrobial properties against food borne pathogens (Cosentino et al., 1999; Juliano et al., 2000; 

Lambert et al., 2001). It is considered that other phenolic compounds are likely to exhibit similar 

antibacterial characteristics to the above. The mechanisms of action of phenolics are thought to generally 

include disruption of proton motive force (PMF), coagulation of cell contents, disturbance of cytoplasmic 

membrane and disrupting active transport and electron flow (Sikkema et al., 1995; Davidson, 1997).  
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The antibacterial activity and specific mode of action of an individual EO is influenced by the chemical 

structure of EO components (Dormans and Deans, 2000). The presence of hydroxyl group in the chemical 

structure of phenolics appears to be very vital for their high degree of antibacterial activities. The vital 

role of the hydroxyl ring in the antimicrobial activity of phenolics was confirmed in previous studies 

(Dormans and Deans, 2000; Ultee et al., 2002). However, the position of the -OH group on phenolic 

compounds has not been reported to influence the antibacterial activity of EOC to any great extent. For 

example, the action of carvacrol against Pseudomonas aeruginosa, Staphylococcus aureus and B. cereus 

seems comparable to the mechanisms of thymol against the same set of organisms (Lambert et al., 2001; 

Ultee et al., 2002). Nevertheless, Dorman and Deans (2000) reported that thymol and carvacrol behaved 

differently in their action against Gram-negative and Gram-positive bacteria. The lack of activity of 

menthol relative to carvacrol in the study by Ultee et al. (2002) appears to shed more light on the 

importance of the phenolic ring itself (destabilized electrons) in determining the degree of antibacterial 

activity. For the non-phenolic components of EOs, the antimicrobial strength has been associated with the 

type of alkyl group, with alkenyls such as limonene, where the alkenyl substituents are incorporated into 

non-phenolic ring, shown to express greater antimicrobial activity than alkyl group such as p-cymene 

(Burt, 2004). This suggests that the stereochemistry and the structure of EOCs have great impact on the 

antimicrobial characteristics of the compound or its parent oil. This has been confirmed in previous study 

where limonene (1-methyl-4-(1-methylethenyl)-cyclohexene) was reported to exhibit greater antibacterial 

potency than ρ-Cymene (Dorman and Deans, 2000). The stereochemistry of EOs had also shown that 

trans-isomers are more active relative to cis-isomers; β-isomers like nerol and geraniol are more active 

compared to α-isomers like α–pinene; the most active compounds are those with methyl-isopropyl 

cyclohexane rings; and the antibacterial activity is highest in unsaturated cyclohexane such as 

terpineolene, terpineol or terpinolene (Dorman and Deans, 2000). 

The cell proteins found in the cytoplasm of bacterial cell membrane is another site thought to be affected 

by the mechanisms of action of EOCs (Knobloch et al., 1989). Lipid molecules are known to have 

boundaries with cytoplasmic membrane and the cell membrane is also known to contain enzymes such as 

ATPases. Direct interaction of the lipophilic compounds with the hydrophobic components of protein and 
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accumulation of lipophilic hydrocarbons in the lipid bilayer leading to distortion of the lipid-protein 

interaction have been suggested as two possible ways through which cyclic hydrocarbons could act on  

this site (Juven et al., 1994; Sikkema et al., 1995). Components of EOs have also been suggested to 

influence the synthesis of structural components involved in the enzymes responsible for energy 

regulation (Conner and Beuchat, 1984). Inhibition of amino acid decarboxylases in Enterobacter 

aerogenes was shown for cinnamon oil and the active components of the oil (Wendakoon and Sakaguchi, 

1995). 

Effect of EO on stimulation or inhibition of rumen microbes depends on the chemical composition of an 

essential oil (Dorman and Deans, 2000), and the part of the plant species from which the compound is 

extracted (Patra and Saxena, 2009). The inhibition of the growth of microbes by different EOCs is 

mediated by different mode of action due to the variety of EOCs (Calsamiglia et al., 2007). As 

cinnamaldehyde penetrate into the periplasm through porin proteins of the external membrane of 

microbial cell by its carbonyl group (Nikaido, 1994; Helander et al., 1998), carvacrol exchanges its 

hydroxyl proton with a cation like K+ by acting as a membrane carrier of monovalent cations (Bodas et 

al., 2012). This mode of action by carvacrol eventually results in bacterial cell death due to the reduction 

of ATP synthesis (Ultee et al., 2002; Busquet et al., 2006). The antimicrobial activity of anethol is due to 

the ether group of the aromatic ring (Davidson and Naidu, 2000). Membrane-active biocide broad 

spectrum activity is exhibited by some compounds in the tea tree oil (Davidson and Naidu, 2000).  

The main effects and mode of action of essential oil compounds tend to be focused on their toxicity to cell 

membranes (Calsamiglia et al., 2007) as described above. However, this is possibly not the only mode of 

action exhibited by EOCs since other mechanisms have also been reported. Coagulation of certain 

components of bacterial cell membrane through denaturation of protein is another possible way through 

which the effect of EOCs can be exerted on microorganisms (Gustafson and Bowen, 1997). Components 

of essential oil can cause damage to the proteins and lipids (Ultee et al., 2002; Burt, 2004) and can cause 

coagulation of the cytoplasm (Gustafson et al., 1998). The leakage of macromolecules and lysis can 

consequently result from bacterial membrane and cell wall damage (Juven et al., 1994; Cox et al., 2000; 

Oussalah et al., 2006). These would result ultimately to inactivation of microbial enzymes (Benchaar et 
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al., 2008; Patra and Saxena, 2010). In addition, the potential of some non-phenolic and phenolic EOCs to 

interact with bioactive molecules like enzymes and to interact with chemical groups of proteins have been 

reported (Juven et al., 1994). Non-phenolic compounds have been suggested to interact with protein by a 

mode of action such as interaction with the carbonyl group of cinnamaldehyde (Outtara et al., 1997). By 

contrast, the reaction of phenolic compounds with protein is through hydrophobic interaction or reaction 

with ion and hydrogen bridges (Outtara et al., 1997; Prescott et al., 2004; Calsamiglia et al. (2007). 

Interaction with proteins and nucleic acids leading to their inactivation through alkylation or crossed 

bridges could be the mode of actions by other aldehyde compounds (Prescott et al., 2004). For instance, it 

was reported that the enzymatic activity of Enterobacter aerogenes could be inhibited through protein 

binding by the constituents of clove and cinnamon essential oils (Wendakoon and Sakaguchi, 1995). 

Compared with most other essential oil compounds, the essential oil of garlic is a special case as most 

compounds of garlic oil are not found in the entire plant, but only made from thiosulfates when the plant 

is treated with steam (Pentz and Siegers, 1996). Their activities against a large variety of both gram-

negative and gram-positive bacteria, viruses, fungi and parasites have been reported (Reuter et al., 1996). 

Inhibiting the synthesis of proteins of the cell, DNA and RNA are the various modes of actions that have 

been proposed to substantiate the anti-microbial activity of these compounds (Feldberg et al., 1988). The 

ability to interact with the sulfhydryl groups (-SH) of other active compounds has been suggested as the 

principal anti-microbial mechanism for the constituents of garlic oil (Reuter et al., 1996; O’Gara et al., 

2000). Several studies (Reuter et al., 1996; Ross et al., 2001; Busquet et al., 2005b) have reported that 

each additional S atom increases the antimicrobial activity of allyl sulphur compounds of garlic oil. These 

authors also reported that the antimicrobial action of individual main compounds of garlic oil is less 

powerful than the activity of garlic oil, indicating that there is synergy among the different constituents of 

the oil.  
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1.7.4. Antagonism and synergism between EOCs  

The chemical configuration of EOCs, their interactions with one another and their individual proportions 

are key factors that determine the inherent activity of essential oils (Dorman and Deans, 2000; Marino et 

al., 2001; Delaquis et al., 2002). Constituents of EOs could interact in many ways such as synergism, 

antagonism or additivity. Synergism between EOCs is observed when the effect of an individual 

component is lesser than the combined effects of the substances (Davidson and Parish, 1989). 

Antagonism as another form of interaction occurs when the effect of individual substances is greater than 

the resultant effect of combining one or more compounds. An effect is observed to be additive when the 

sum of the individual effect is not different from the combined effect of compounds (Burt, 2004). The 

antibacterial potential of the whole EOs have been reported to be greater than the effects of mixing their 

major active individual components (Gill et al., 2002; Mourey and Canillac, 2002). This suggests that the 

minor components of the oil are equally involved in determining the antibacterial activity of the oil and 

may have a synergistic effect with the major components (Burt, 2004).  

An additive effect of thymol and carvacrol, the two structurally similar main compounds found in the EO 

of oregano, was observed in a study with P. aeruginosa and Staphylococcus aureus (Lambert et al., 

2001).  

Carvacrol and its precursor (ρ-Cymene) have been shown to exhibit synergistic effect when tested against 

vegetative cells of B. cereus. It seems that carvacrol with a weak potential to swell bacterial cell 

membranes, relies on ρ-Cymene with a weak antibacterial but greater potential to swell microbial cell 

membranes (Burt, 2004). By this mode of action, the transport of carvacrol into the cell is probably 

enabled by ρ-Cymene, so that when the two compounds are mixed together synergism is easily achieved 

(Ultee et al., 2000). 

A number of effects of interactions such as antagonism, synergism and additivity have been shown when 

mixing various combinations of coriander, eucalyptus, cilantro and dill EOs, each containing different 

chemical composition (Delaquis et al., 2002). The growth of some microbes such as Enterobacter sp., 

Micrococcus sp., Staphylococcus sp. and Bacillus sp. was inhibited when 250 ug /mL of cinnamaldehyde 
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and 500 ug/mL of eugenol were mixed together as opposed to individual application of these compounds 

(Moleyar and Narasimham, 1992). 

1.7.5. Effects of EOs on feed intake, digestion and VFA production 

The use of EOs and their constituent components in ruminant nutrition impacts feed intake and digestion 

in different ways, depending on the dose and type of EO or EOC. Feed intake was not affected by feeding 

2 g of juniper berry EO, containing   α –pinene (35%) to cows (Yang et al., 2007), a mixture of EO (2 g 

or 0.75 g) to dairy cattle (Benchaar et al., 2007a) and 250 mg/day of oregano EO to sheep (Wang et al., 

2009a). But, feed intake was negatively affected by feeding 500 mg/day of cinnamaldehyde (Busquet et 

al., 2003), and a mixture of eugenol (90 mg/day) plus 180 mg/day of cinnamaldehyde (Cardozo et al., 

2006). It is possible that problems of diet palatability was associated with the reduction of feed intake, 

suggesting that encapsulation of these substances might improve feed intake (Calsamiglia et al., 2007). 

By contrast, feed intake and fermentation were increased when 1 g/day of capsicum extract (containing 

15% of capsaicin) was added to a concentrate based-diet for beef cattle (Cardozo et al., 2006). There was 

increased (by 13%) ruminal digestibilities of dry matter (DM) when 2 g/cow/day of juniper berry 

essential oil was added to forage (40%) and barley-based concentrate (60%) in Holstein cows (Yang et 

al., 2007). The digestibilities of different nutrients in dairy goats were not affected by the inclusion of 

monoterpene blend (0.43 g/kg diet) containing α-pinene (16.0%), β-pinene (2.2%), p-cymene (36.7%) and 

linalool (45.2%) to the diet (Malecky et al., 2009).  As opposed to reduced digestibility of diet reported 

by Busquet et al. (2005) and Agarwal et al. (2009), other studies observed no effect on digestibility of 

nutrients (Sallam et al., 2009; Wang et al., 2009a). The differences in the intake and digestibility of DM 

due to the addition of EOs or EOCs could be attributed to different doses and types of compounds.  

Volatile fatty acids such as acetic, butyrate and propionate are the fundamental sources of energy for 

ruminants. The digestibility of the nutrients in a used feed is reflected by the concentration of these 

volatile fatty acids in the rumen (Szumacher-Strabel and Cieslak, 2012). Acetic acid is required for the 

synthesis of fatty acids, whereas other short-chain FA such as valeric, isovaleric and isobutyric acids are 

necessary to initiate the synthesis of these fatty acids (Wu and Huber, 1994).  As reported by several 

studies, the effects of EOs and EOCs on total volatile fatty acids (TVFA) and molar proportion of acetic 
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to propionic ratio  have mixed results (Busquet et al., 2005; Chaves et al., 2008; Kamel et al., 2008; Patra 

et al., 2010). There was a slight increase in the concentration of total VFA in the rumen when 750 mg/day 

of a mixture of EOs was added to alfalfa silage (Benchaar et al., 2007a). However, the concentration of 

total VFA in the rumen was reduced when the same mixture and same dose of EOs was added to a feed 

ration based on corn silage. This suggests that the effects of EOs or EOCs on VFA could depend on the 

type of diet. The amount of EOs or EOCs has also been demonstrated to influence the concentrations of 

total and molar proportions of individual volatile fatty acids in the rumen. The addition of increasing 

doses (0, 3, 30, 300 and 3000 mg/L) of a wide range of EOs such as anise, tea tree  and cade oils and 

EOCs such as anethole, carvacrol and eugenol did not affect the concentrations of total and molar 

proportions of individual VFA in rumen fluid (Busquet et al., 2006). In that study, only the addition of 

3000 g/L (the highest dose) of the substances to rumen fluid reduced the concentration of total VFA in the 

rumen. From the nutritional perspective, a reduction in ruminal concentration of VFA which is due to 

decreased production of the same fatty acids is an undesirable results because it reflects reduced 

utilization of dietary energy from structural carbohydrates (Szumacher-Strabel and Cieslak, 2012). 

Addition of EOs or EOCs is expected to change the molar proportion of VFA towards increasing 

propionic concentrations and reducing acetic acid without affecting the total VFA. The pattern of VFA 

production was shifted towards increased proportion of butyrate and reduced concentration of propionate 

in the rumen when phenolic compounds such as thymol, carvacrol and eugenol were used (Benchaar et 

al., 2007b). Furthermore, Castillejos et al. (2006) reported reduced concentration of propionate without 

affecting the total VFA when 500 mg/L of eugenol was used. In another in vitro experiment, 

supplementation of two EOCs (anethole and p-cymene) and three EOs (juniper berry, cinnamon leaf and 

garlic oils) did not affect the concentration of total VFA but the molar proportion of propionate was 

reduced by garlic and cinnamon leaf oils (Chaves et al., 2008). 

The pH of the rumen has also been suggested as another factor which regulates the effects of EOs and 

EOCs. The pH of the rumen fluid was reported to influence the effects of EOs on the concentration of 

VFA (Cardozo et al., 2005). In that study, cinnamon oil increased the ratio of acetate to propionate at pH 

7.0 and decreased the same ratio when the pH was 5.5. In a similar study, Spanghero et al. (2008) 



64 
 

reported that at lower pH, a blend of EO changed the end-products of fermentation, particularly, reduced 

molar proportions of acetate: propionate ratio and proportion of acetate.  

In general, from the aforementioned paragraphs, it seems that supplementing diet with EOs and/or EOCs 

may reduce feed nutrient digestion with concomitant suppression of VFA at high doses or no change at 

low doses. The pH of the rumen is also a determinant of the effects of EOs or EOCs on VFA production. 

It has been observed that, in some long-term in vitro culture experiments, benefits associated with 

essential oils and their constituents compounds may decline over time due to possible adaptation of 

individual microbial species to EOs or EOCs or shifts in microbial population (Benchaar et al., 2008; 

Patra and Saxena, 2009a).  

1.7.6. Effects of essential oil compounds on ammonia production 

The symbiotic relationship between the ruminal microbial population and the ruminant animal enables 

ruminants to synthesize biologically high quality protein from non-protein sources of nitrogen (Benchaar 

et al., 2008). Ruminants are able to synthesize proteins for deposition in meat and milk from the 

microbial protein containing good profile of amino acids (Benchaar et al., 2008). Nevertheless, this 

symbiotic relationship does not provide sufficient microbial protein to synthesize amino acids required by 

high producing ruminant animals (Benchaar et al., 2008; Szumacher-Strabel and Cieslak, 2012). 

Therefore, extra supplementary protein sources are required to correct the deficits in amino acids 

requirement. However, due to inefficient utilization of excess protein, ruminant excrete waste materials 

which are rich in ammonia which causes environmental pollution (Benchaar et al., 2008; Szumacher-

Strabel and Cieslak, 2012). Therefore, modulation of rumen activities towards improved protein 

utilization would benefit both the environment and enhance ruminant animal production.  

Many in vitro studies have been conducted to evaluate the potential influence of essential oils and EOCs 

to regulate protein utilization by ruminants. EOs and EOCs affect volatile fatty acid (VFA) and ammonia 

production by altering the activity and population of rumen bacteria, fungi and protozoa (Bodas et al., 

2012).  Therefore, using whole EOs and or their constituent compounds could decrease ruminal NH₃-N 

production leading to improvement in the efficiency of protein absorption by ruminants (Wallace et al., 
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2002; Spanghero et al., 2008). Reduced production of ammonia results from the decrease in the 

degradation of feed proteins (Hervas et al., 2000; Alexander et al., 2008). Some studies suggest that the 

effects of essential oil compounds on the ruminal production of ammonia are presumably the 

consequences of a reduction in the population of protozoa (Newbold et al., 1997). This is due to the 

understanding that protozoa are mainly responsible for the degradation of feed protein in the rumen 

(Jouany, 1996). It has been suggested that added EOs or their individual active components inhibit the 

break-down of protein to NH3-N through two mechanisms. These mechanisms are the direct inhibition of 

hyper ammonia-producing bacteria (HAP) and their deaminase activities, and a reduction in the 

degradation of protein to peptides (Mclntosh et al., 2003; Newbold et al., 2004). The reduced production 

of peptides from the decreased protein degradation suggest reduced peptidolytic activity and explains why 

some plant extracts like clove bud decrease the concentration of large peptides with no effect on ammonia 

production (Busquet et al., 2005). The HAP bacteria consist only about 1% of the rumen however; they 

have high potential for deamination (Wallace et al., 2004). This suggests that inhibition of the activity of 

HAP bacteria would impair deamination.  There was 9% reduction in the rate of amino acid deamination 

when casein hydrolysate was incubated (in vitro 48 h) with rumen fluid from cows that were offered a 

silage-based diet with 1 g/day  of an added blend of commercial EOCs (Crina ruminants; Akzo Surface 

Chemistry Ltd., Herfordshire, UK) (Mclntosh et al., 2003). The supplemented commercial mixture 

contained 100-300 g/kg of phenolic compounds such as thymol, eugenol, resorcinol, guaiacol and cresol. 

Decreased NH₃-N concentrations were reported by Cardozo et al. (2005) when oregano (30 and 300 

mg/L) and cinnamon oil (0.3 to 300 mg/L) were used. Similarly, cinnamaldehyde (3000 mg/L) reduced 

the concentration of NH₃-N in the rumen (Busquet et al., 2006). Bacterial deaminative activity was 

reduced (25%) when casein hydrolysate and ruminal fluid from sheep offered diets supplemented with 

110 mg of mixture of essential oil compounds were incubated together for 24 h in vitro (Newbold et al., 

2004). It was observed that there was 9% (Mclntosh et al., 2003) and 24% (Newbold et al., 2004) 

reduction in deamination activities with no effects on the proteolytic and peptidolytic activities.  

Despite the above reports on the potential of EOs and EOCs to cause reduction of ruminal ammonia 

concentrations, several in vitro short term studies with different EOCs report no effect on the 
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concentrations of NH₃-N in culture (Castillejos et al., 2007; Spanghero et al., 2008). The use of carvone 

and carvacrol (300 mg/L) and anethol (3000 mg/L) in in vitro studies had no effects on the concentrations 

of NH₃-N (Busquet et al., 2006). Busquet et al. (2006) observed that biologically active components of 

essential oils such as carvacrol, cinnamaldehyde, anethol, eugenol, benzyl salicylate and the whole 

essential oil themselves (capsicum oil, bud oil, tea tree oil, ginger oil, anise oil, oregano oil) at 3 mg/l 

showed lack of effect on the concentration of NH₃-N and considerable reduction in NH₃-N concentration 

at 3000 mg/l. Generally, time, dose and the chemical structure of essential oil have been known as the 

basic factors determining the effect of the supplemented compound on the concentration of NH₃-N. 

Variable effects on the ruminal concentration of ammonia N have been observed due to variation in the 

chemical configuration of essential oil active compound. The potential of the chemical structure of EOCs 

as a contributing factor to determining their effect on ammonia production has been shown (Castillejos et 

al., 2006; Benchaar et al., 2008). It was observed in those studies that limonene (500 mg), guaiacol (5, 50, 

500, 5000 mg/L) and, another phenolic compound eugenol (5, 50 and 500 mg/L) substantially reduced the 

concentration of NH₃-N in culture. However, the concentration of NH₃-N in culture was not affected by 

inclusion of vanillic aldehyde (5, 50 and 500 mg/L).  

A number of in vivo studies where the inclusion of EOs or EOCs did not affect the concentration of NH₃-

N have also been reported. Castillejos et al. (2005) reported that adding 1.5 mg/l of a mixture of essential 

oil compounds for 8 days with the pH kept constant did not affect the concentration of NH₃-N. These 

authors also reported that the degradation of crude protein, concentration of bacteria, dietary nitrogen 

flow and synthesis of microbial protein were not affected. The lower concentration of the mixture of 

EOCs (1.5 mg/l) used in that study was suggested as the reason for lack of effect on the metabolism of 

nitrogen. Nevertheless, when the experiment was repeated for 9 days with the same blend of EOCs at 

higher doses (5, 50, and 500 mg/l), the effect of the blended mixture of EOCs on nitrogen metabolism 

(small peptides and amino acid, concentration of NH₃-N and large peptides) was still not observed 

(Castillejos et al., 2007). Mclntosh et al. (2003) suggested that the above 35 mg/l is the required 

concentration of mixture of EOCs in rumen fluid to enhance effective transformation of ruminal protein.  

There was no change in nitrogen digestibility, retention and NH₃-N concentration when 2 g or 0.75 g of a 
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mixture of essential oil was supplemented per day in a diet for lactating dairy cows (Benchaar et al., 

2006b; 2007). This lack of effect on the concentration of NH₃-N in in vivo studies due to supplementation 

of EOCs may suggest a number of possibilities: rapid ruminal metabolism of the active components of 

essential oil to a less active form, microbial adaptation to EO or shift in the population of individual 

microbial species (Patra, 2011). The benefits of using EOs or EOcs to modulate protein metabolism 

include among others, selective inhibition of amino acid degradation due to a selective inhibition of hyper 

ammonia producing bacteria (HAPB) (Hart et al., 2008; Patra and Saxena, 2009a). 

1.7.7. Effects of EOs and EOCs on rumen methanogenesis 

Methane is considered to be a potent greenhouse gas. Therefore reducing CH4 emissions from domestic 

ruminants is receiving worldwide attention because its release into the atmosphere is directly linked with 

ruminant production (Benchaar et al., 2008). Ruminants have the capability (abundant fibre degrading 

microbes in the rumen, caecum and colon, which help in anaerobic oxidation of feed) to convert non-

utilizable feed sources such as lignocellulosic agro-industrial by-products to utilizable form (Kamra et al., 

2012).  During the fermentation of ingested feed, a huge number of microbial populations such as 

bacteria, protozoa and fungi are involved. These microorganisms act on the food in the rumen to produce 

VFA, predominantly, acetate, propionate and butyrate, and a number of gases such as CO2 and H2 as the 

end-products of their combined activities (Buddle et al., 2011). The VFAs which are absorbed across the 

rumen wall are used by the animal as the primary source of energy (Kamra et al., 2012).  Hydrogen (H2) 

which results from the fermentation of the feed is used by methanogens as their important source of 

energy to reduce CO2 to CH4 (Hungate, 1967), and may be used by biohydrogenating bacteria to 

hydrogenate FAs (Chesworth et al., 1998). Although formate and methanol are also produced and used by 

methane producing bacteria, they are not considered as the main sources of energy (Buddle et al., 2011). 

Shown in Figure 1.12 are some of the major sources of methane (H2 and CO2, formate, methanol and 

acetate) synthesis in the rumen. Of these, methane generation from acetate accounts for the highest 

portion of gas production (Chesworth et al., 1998).  

 The basis for the formation of methane in the rumen is that accumulation of high concentration of H2 

potentially reduces microbial activities and lowers the rate of fermentation, resulting in slow conversion of 
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feed to VFAs (McAllister and Newbold, 2008). Therefore, ruminal fermentation of feed proceeds more 

rapidly through the activity of the H2-consuming methanogens which reduces the concentration of H2 to 

about 1 μM of dissolved H2 (Rees et al., 1995; Morvan et al., 1996; Buddle et al., 2011). This increased 

fermentation of feed within a given time implies that the animal gains more VFA during that time (Wolin, 

1979). However, in this process of methane formation in the rumen, around 5-15% of gross energy 

consumed in the diet by ruminants is lost (Johnson and Johnson, 1995). Under the prevailing anaerobic 

conditions of the rumen, CO2 cannot be oxidized to release energy once it has been reduced to CH4 

(Kamra et al., 2012). Therefore, expected benefits from the use of EOs and their constituent compounds, 

like any other substance, is to save this loss of energy in order to economically produce livestock in a 

friendly environment. 

I. Methane production from acetate 

           CHᴣCOOH                                    CH4 + CO2 

II. Methane production from formate 

4 H-COOH                                   CH4 + 3CO2 + 2H2O 

III. Methane production from methanol 

4 CH3OH                                     3CH4 + CO2 + 2H2O 

IV. Methane production from Hydrogen and carbon dioxide 

4H2 + CO2                                    CH4 + 2H2O 

Figure 1.12 Four separate pathways for the production of methane (Adapted from Chesworth et al., 

1998). 

As reported by Kamra et al. (2012), inhibition of methane formation by plant bioactive compounds such 

as EOs may be achieved through the following actions: 

a. Because EOs have antimicrobial activities against a wide range of microbes, they could directly 

inhibit methanogens. 

b. Indirect reduction in the number of methanogens could result from the anti-protozoal activity of 

EOs. Because of the ecto-symbiotic relationship between methanogens and ciliate protozoa, EOs 



69 
 

might cause the death of ciliate protozoa causing the former to lose its symbiotic relationship and 

hydrogen supply, leading to decreased production of methane. 

c. Since EOs exhibit antimicrobial actions, this might decrease microbial numbers (bacteria and 

fungi) which results in reduction in the digestibility of feed. Because methane production and 

feed degradation are directly related to each other, the lower digestibility of feed would directly 

reduce methanogenic activities.      

It was first reported that EO may reduce methane production in rumen cultures when the effect of pinene 

and limonene on methanogenesis was examined (Crane et al., 1957). In that study the inhibitory effect of 

limonene on methane synthesis was more than that of pinene, suggesting that all terpenes do not have the 

same toxic effect. After this report, it seems no other information was published on the effect of EO or its 

compounds until the early 2000s. 

The main active compound of Oreganium and Thymus plants, thymol at 0.4 g/L strongly inhibited in vitro 

methane production (Evans and Martin, 2000). Similarly, 6 mM concentration of Thymus vulgare and its 

principal compounds, thymol, had 99% reduction of methane (Macheboeuf et al., 2008). In another 

report, Eugenol which possesses strong antibacterial effect against both Gram-positive and Gram-

negative bacteria was observed to have the potential of influencing rumen fermentation with beneficial 

effects (Calsamiglia et al., 2007). Anethole (86-88%) has been reported as one of the main compounds in 

mature fennel seeds (Telci et al., 2009). In an in vitro study, anethole (20 mg/L) reduced methane 

production (Chaves et al., 2008). Although Wang et al. (2009) reported that methane production in sheep 

was inhibited by inclusion of a mixture of EO (0.25 g/day) from oregano plants for 15 days; McGinn 

(2006) observed no effect of adding 1 g/day of EO to beef cattle diet on methanogenesis when the 

supplement was used for 21 days. This difference in effect could be due to different dose, time or duration 

of experiment and type of EO or animal.  

About 58% of methane inhibition was reported when eucalyptus oil was used at 1.66 ml/L (Kumar et al., 

2009), 90.3% at higher (2 ml/L) dose (Sallam et al., 2009) and at 0.33 g, α-cyclodextrin-eucalyptus oil 

complex induced 70% inhibition of methane (Tatsuoka et al., 2008). P-Cymene, one of the components of 
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eucalyptus oil (Bhatti et al., 2007), at the concentration of 20 mg/L decreased methane synthesis by 29% 

(Chaves et al., 2008). However, there was no effect of α-cyclodextrin cineole (up to 0.33 g/L) on 

methanogensis (Tatsuoka et al., 2008). There was strong inhibition of methane synthesis when oil of 

peppermint (Tatsuoka et al., 2008), and juniper berry and cinnamon oils (Chaves et al., 2008) were used. 

Macheboeuf et al. (2008) reported 94% reduction of methanogenesis with 5 mM concentration of 

cinnamaldehyde, the main component of cinnamon oil. In a batch culture study, Busquet et al. (2005) 

observed 69 and 74% reduction in CH4 production when 300 mg/L each of diallyl disulphide and garlic 

oil respectively, were used. It was suggested in that study that direct inhibition of rumen methanogenic 

archaea was the mode of action through which the compounds reduced methane production. Furthermore, 

other studies observed that there was 19% reduction in CH4 production in steers without effect on feed 

digestibility or protozoal numbers with 20 g/kg DM intake of encapsulated horseradish oil (Mohammed et 

al., 2004). In general, effects of essential oils and their constituent compounds on methanogenesis depend 

on the dose and the type of substance, with the phenolic compounds or EOs containing them, showing 

greater antimicrobial potential. In addition, it seems that there is a potential to select EO or EOC to 

selectively inhibit CH4 production if the dose is optimized. 

1.7.8. Effects of EOs and EOCs on biohydrogenation of PUFA 

The n-3 PUFA such as EPA and DHA have been reported as important regulators of chronic diseases 

such as coronary heart disease. As discussed previously, α- linolenic acid (LNA) and linoleic acid (LA), 

the two metabolic precursors of the long chain n-3 fatty acids (20:5n-3 and 22:6n-3), are naturally, the 

predominant fatty acids in ruminant feedstuff (Morrison, 1977). In the rumen, microbes convert these 

UFA to different intermediates through the process known as biohydrogenation (BH). Therefore, 

manipulation of biohydrogenation (BH) is receiving significant attention within the scientific community. 

During BH, PUFA are converted to saturated fatty acid (SFA) through the following sequence of 

reactions: hydrolysis, isomerization and reduction before hydrogenation of the free UFA to SFA. 

Increasing the amounts of the n-3 in ruminant food products has been difficult due to the problem of 

ruminal biohydrogenation of dietary PUFA. Biohydrogenation is carried out by a group of bacteria 

recognized as cellulolytic bacteria (Kepler and Tove, 1967), particularly, the Butyrivibrio group which are 
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the most active group (Durmic et al., 2008). Although Clostridium proteoclasticum as it was formerly 

called (Kemp et al., 1975; Maia et al., 2007), before it is re-classified as Butyrivibrio proteoclasticus 

(Moon et al., 2008), is the only known bacteria capable of converting VA to 18:0, all bacteria in the 

Butyrivibrio group are capable of producing CLA from linoleic acid. Identification of substances with 

potential to selectively inhibit the activity of Butyrivibrio proteoclasticus, the undesirable 

microorganisms, would increase both PUFA and BH intermediates (CLA and VA) in ruminant food 

products (meat and milk).  

As mentioned previously, essential oils and EOCs have a wide range of antimicrobial effects against both 

Gram-positive and Gram-negative bacteria, and ruminal biohydrogenation involves several groups of 

Gram-positive bacteria (Harfoot and Hazlewood, 1988). Therefore, EOs may potentially modify the 

process of biohydrogenation through selective inhibition of biohydrogenating bacteria.   

There is a scarcity of information on the effects of EOs and EOCs on ruminal biohydrogenation of 

unsaturated fatty acids. Available data do not show clear effects of EOs and EOCs on biohydrogenation 

due to the complex chemical composition of EOs. In addition, in vitro and in vivo data appear not to agree 

in terms of effects on ruminal biohydrogenation of PUFA. 

There was a substantial (58%) inhibition of ruminal biohydrogenation when cinnamaldehyde (500 mg/L) 

was used in a dual-flow continuous culture fermenter system (Lourenco et al., 2008). However, there was 

minor (6%) inhibition of biohydrogenation when 250 mg/L of eugenol was supplemented. In the same 

study, the inclusion of 500 mg/L of cinnamaldehyde caused higher accumulation of biohydrogenation 

intermediates such as trans-11, cis-15 C18:2 and trans-10 C18:1, trans-10, cis-12 C18:2 compared with 

untreated cultures, suggesting that  biohydrogenation of linolenic (C18:3) and linoleic (C18:2) acids was 

affected. However, it is not clear whether the concentrations of the compounds (500 or 250 mg/L) or the 

type of EOCs (eugenol or cinnamaldehyde) was responsible for this effect. The inclusion of citronella oil 

(125, 250 and 500 mg/L), Siberian fir needle oil (500 mg/L), rosemary oil (250 and 500 mg/L) and sage 

oil (500 mg/L) significantly reduced the concentration of stearic acid, the end product of 

biohydrogenation of C18:2 n-6 and C18:3 n-3, in a batch culture in vitro study (Gunal et al., 2013).  In 

the same study, at the doses mentioned, the concentration of C18:2 n-6 was not affected suggesting that 
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accumulation of C18:0 could be due to inhibition of the last step of biohydrogenation (conversion of 

C18:1 to C18:0) or that other biohydrogenation intermediates were produced in that study. In another 

study (Durmic et al., 2008), the selective inhibitory potential of selected EO and plant extracts from 

Australian plants was shown against Butyrivibrio fibrisolvens and Butyrivibrio Proteoclasticus, the two 

most recognized groups of bacteria responsible for ruminal biohydrogenation of UFA. 

However, the above dramatic inhibition of biohydrogenation reported by Lourenco et al. (2008) was not 

confirmed in a number of in vivo studies. The fatty acid composition of milk was not affected by the 

addition of a monoterpene blend (0.43 g/kg diet) containing α-pinene, β-pinene, p-cymene and linalool to 

the diet (Malecky et al., 2009). Similarly, cinnamaldehyde (1 g/kg) added to the diet of dairy cattle also 

did not affect the profile of milk fatty acids (Benchaar and Chouinard, 2009).  

The fatty acid profile of milk obtained from dairy cows offered 0.75 g/cow/day of a mixture of essential 

oils and compounds (Crina ruminants; CRINA S.A., Gland, Switzerland) was not affected (Benchaar et 

al., 2007a). The Crina ruminants’ mixture contains eugenol, thymol, limonene, guaiacol and vanillin 

(McIntosh et al., 2003; Castillejos et al., 2005). It is possible that there was microbial adaptation or shift 

in microbial populations due to essential oil mixture as the animals were exposed to the experimental 

treatment for a period of one month (28 days). Nevertheless, the concentration of CLA (cis-9, trans-11 

18:2) in milk fatty acids was increased when the same mixture of essential oil compounds was added at 

higher concentration (2 g/cow/day) (Benchaar et al., 2006a). Chaves et al. (2008) reported that 

supplementing garlic, juniper berry and cinnamaldehyde at 200 mg/kg of dry matter to growing lambs did 

not modify the fatty acid profile of back and liver fat. In a different study, monoterpenes blend consisting 

of β-pinene, linalool, α-pinene, p-cymene offered at 0.43 g/kg of dry matter intake did not change the 

fatty acid profile of milk (Malecky et al., 2009). Supplementing the diet of dairy cows with 1 g/day of 

cinnalmaldehyde did not affect the fatty acid composition of milk (Benchaar et al., 2007b).  Benchaar et 

al. (2006; 2007) observed that supplementing the diet of dairy cows with EO did not alter the FA profile 

of milk, but the extent of ruminal biohydrogenation was reduced and cis-9 trans-11 CLA concentration 

was increased by EO rich in monoterpenes such as carvone and limonene (Lourenco et al., 2009). This 

suggests that these compounds have some effects on biohydrogenating bacteria. This suggests that the 
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effect of EOCs and whole EOs on the modification of ruminal biohydrogenation of PUFA depends on the 

type, time or duration of experiment and concentration of essential oil compounds.  

As observed by Vasta and Bessa (2012), the lack of agreement between in vitro and in vivo results on the 

profile of fatty acids suggests that it is discouraging to use these compounds to modulate ruminal 

biohydrogenation. However, the great diversity in the composition of these compounds and the huge 

number of commercially available EOs suggests that more results are required to reach conclusion and 

conclusions should be drawn with caution.  

In addition to altering the fatty acid composition of ruminant food products, there are other potential 

nutritional and organoleptic benefits associated with using EOs in ruminant feeding. Supplementation of 

ruminant diets with essential oil compounds could allow the compounds or their derived products to be 

present in meat or milk. The presence of essential oil compounds or their metabolic products could 

enhance the value of ruminant products by enriching them with nutritional and organoleptic properties 

(Chion et al., 2010).  Carvone and limonene (the main components of caraway essential oil) were 

reported to be present in the milk when camomile and caraway seeds were fed to goats (Molnar et al., 

1997). Similarly, a number of  reports have shown that different monoterpenes such as sabinene, 3-

carene, α-pinene, limonene, β-mircene, camphene and β-pinene were detected in the milk of cows grazing 

pasture predominated by Alpine (Noni and Battelli, 2008; Chion et al., 2010). 

1.7.9. Effects of essential oil compounds on rumen microbes 

As mentioned earlier, essential oil compounds can cause inhibition of amino acid deamination by 

inhibiting the growth of hyper ammonia-producing bacteria which are bacteria involved in the production 

of NH₃-N (Mclntosh et al., 2003; Newbold et al., 2004; Wallace, 2004; Patra and Saxena, 2009). 

Mclntosh et al. (2003) reported that while some hyper ammonia-producing bacteria such as Clostridium 

aminophilus were less sensitive to the effect of EOCs, others, such as Peptostreptococcus anaerobius and 

Clostridium sticklandii were highly sensitive. Although the population of HAP was not affected when 

high protein diet was offered to sheep, about 77% of the number of hyper ammonia-producing bacteria 

was decreased when sheep were offered a low protein diet supplemented with 100 mg/day of EOC 
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(Wallace, 2004). This could suggest that effect of essential oil compounds on HAP may also be diet 

dependent. At 90 mg/L, the growth of Selenomonas ruminantium was selectively inhibited without 

affecting the activity of Selenomonas bovis (Evans and Martin, 2000). However, including 400 mg/L 

caused complete microbial inhibition.  This suggests a selective inhibition of HAP bacteria by essential 

oil compounds at low doses, and a complete microbial inhibition at higher doses. The peptidolytic activity 

of ruminal bacteria can also be reduced by essential oil compounds (Busquet et al., 2005).  

Antiprotozoal activity has also been exhibited by some essential oil compounds (Hristov et al., 2003). But 

there are contrasting reports of these activities. Some studies have reported that essential oil compounds 

have no effect on the population of protozoa (Mclntosh et al., 2003; Newbold et al., 2004; Benchaar et 

al., 2007a; b). Ruminal protozoal numbers were not affected when a blend of essential oil compound 750 

mg/day (Benchaar et al., 2007a) and 110 mg/day (Newbold et al., 2004) were fed to dairy cows and sheep 

respectively. In another study, Patra et al. (2010) found lack of effect of fennel extract on the population 

of protozoa. Similarly, Patra et al. (2010) observed that the concentrations of large entodiniomoph in the 

presence of clove extract were not affected. By contrast, a stimulatory effect on the population of 

protozoa was observed with EO (Patra and Saxena, 2009). The mode of action by which some studies 

reported stimulatory effect of EOCs on rumen protozoa is not clear. Other studies (Ando et al., 2003; 

Cardozo et al., 2006; Fandino et al., 2008) have observed reduction in the concentrations of holotrich, 

entodiniomorph and total protozoa number due to the antiprotozoal effect of essential oil compounds. 

Yang et al. (2010b) observed that feeding lower concentrations of cinnamaldehyde (0.4-1.6 g/day) has no 

effect on protozoa, whereas, when 2 g/day of anise containing 100 g/kg of anethol was offered, the 

numbers of entodiniomorph and holotrich reduced (Cardozo et al., 2006).   The mechanism of action 

through which the reported reduction of protozoal population is achieved may be due to the lipophilic 

nature of EOCs enabling them to penetrate protozoal membrane; however, the actual means of inhibition 

is not clearly known (Cardozo et al., 2006). Generally, there is no conspicuous effect of essential oil 

compounds on protozoa. There is limited evidence on the effects of essential oil compounds on fungi 

(Bodas et al., 2012). The general effect of EOCs on fungi has been suggested to be the inhibition of their 

growth (Mclntosh et al., 2003). 
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1.7.10. Microbial adaptation to EOs and compounds 

Several factors have been suggested to be responsible for the variation in bacteria’s sensitivity to the 

effects of essential oil compounds, and by extension, the period of time during which the antimicrobial 

property of EO can be exhibited. Gram-negative bacteria are less sensitive than Gram-positive bacteria 

which have high susceptibility to the effect of EOCs (Cox et al., 2001). It has been indicated that 

molecules such as phenolic compounds with hydroxyl and carbonyl groups on their structures are more 

toxic to bacteria (Griffin et al., 1999), suggesting that the chemical composition of the essential oil 

compound is another factor that determine the sensitivity of bacteria to them. In addition, as mentioned 

previously, the concentration of the compound is also a determining factor of the influence of essential oil 

and their compounds on bacteria. Broudiscou et al. (2007) reported that rumen microorganisms in goat 

degraded β-ocimene, sabinene, α-copaene, α-pinene, myrcene. The same study reported that thymol and 

camphene were not degraded by the same microbes. This suggests that ruminal microbes can degrade 

some monoterpenes and some sesquiterpenes to their less active form. Ruminal microbes have the 

potential to adapt to the effect of essential oil and their compounds over-time (Busquet et al., 2005), 

suggesting that the actual effect of EOCs may not be shown on results obtained from short-term exposure 

of ruminal microbial population to EO compounds. Chaves et al. (2008) reported that supplementing 

garlic, juniper berry and cinnamaldehyde at 200 mg/kg of dry matter to growing lambs did not modify the 

fatty acid profile of back and liver fat. Furthermore, monoterpenes blend consisting of β-pinene, linalool, 

α-pinene, p-cymene at 0.43 g/kg of dry matter intake did not change the fatty acid profile of milk 

(Malecky et al., 2009). In a separate study, supplementing the diet of dairy cows with 1 g/day of 

cinnalmaldehyde did not affect the fatty acid composition of milk (Benchaar et al., 2007b).  These results 

are compelling evidence that more studies are require to ascertain the potential of EOs and EOCs as 

potential feed additives in animal nutrition. The unchanged fatty acid profile of animal tissues following 

the inclusion of essential oil compounds suggest that ruminal microbes can both alter the chemical 

structure and adapt to some essential oil compounds (Malecky and Broudiscou, 2009). 

Specific blend of EO containing limonene, guaiacol and thymol as major constituents was reported to 

alter ruminal metabolism of nitrogen by inhibiting deamination (Mclntosh et al., 2003; Newbold et al., 
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2004). Contradictory result was reported by Castillejos et al. (2005) where the addition of a blend of EO 

to two different diets (high concentrate with high forage) for a period of eight days in a continuous culture 

fermentation system did not modify the metabolism of nitrogen but increased the concentration of total 

VFA. Few changes were made to this last experiment relative to the original study. The dose of the blend 

of EOCs in the latter experiment was 5 times less and the adaptation time was equally 4 times less than 

the time in the previous studies (Mclntosh et al., 2003; Newbold et al., 2004). About twenty eight days of 

ruminal microbial adaptation was suggested by some of these studies as the minimum period of time 

required to establish the actual effects of blend of EOs (Mclntosh et al., 2003; Newbold et al., 2004). 

Therefore, it becomes clear that the short adaptation time (eight days) and the low dose (1.5 mg/l) in the 

study by Castillejos et al. (2005) were the main factors why there was no change in ruminal nitrogen 

metabolism. Castillejos et al. (2007) observed that addition of a blend of EO at 5 mg/l appears to be the 

tolerant level for normal ruminal function. An adaptation time of more than 6 days was suggested as 

minimum amount of time required for the blends of EOs to modify ruminal metabolism of nitrogen. 

Addition of 400 mg/l of thymol by Evans and Martin (2000) decreased the total VFA, however, increased 

the acetate to propionate ratio, and indicates that the dose was too toxic to ruminal microbes. 

Different mechanisms through which bacteria become insensitive to the effect of supplemented essential 

oil compounds have been suggested. Spanghero et al. (2008) suggested that shift in microbial population 

is one of the actions that reduce the sensitivity of ruminal microbial population to essential oil compound. 

The extent of this microbial shift depends on both the concentration and the period of exposure of these 

compounds to ruminal microbes (Bodas et al., 2012). Chizzola et al. (2004) suggested that ruminal 

microbes adapt to essential oil compounds through degrading the active components of these compounds 

to their less active form. Other authors have proposed that evolution of mechanisms to tolerate the effect 

of essential oil compounds by ruminal microbes is another mode of action for microbial adaptation to EO 

(Jouany and Morgavi, 2007). 

1.7.11. Legal and safety issues with the use of EOs and EOCs in food 

The application of a number of EOs and EOCs as flavourings in foods has been approved and registered 

by the European commission. The registered components are thought to present zero risk to human health 
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(Burt, 2004). Some of these flavourings are cinnamaldehyde, limonene, carvacrol, eugenol, menthol, 

carvone, thymol, citral and ρ-Cymene. About 15 years ago, methyl eugenol and estragole were removed 

from the list of flavourings approved by the European commission because they were reported to be 

genotoxic (Commission Decision of 23 January, 2002). New components of EO can only be evaluated for 

registration and inclusion into the list of flavouring agents after metabolic and toxicological studies have 

been conducted (Commission Decision of 23 February, 1999; Commission Regulation (EC) No. 

1565/2000; Commission Regulation (EC) No.622/2002; Regulation (EC) No.2232/96). 

The flavouring agents in the list of European Commission is also part of the list of everything added to 

Food in the US (EAFUS), which means,  the Food and Drug Administration of the United States of 

America has equally recognized those substances as generally recognized as safe (GRAS) food additives 

in the US (Burt, 2004).  

In other countries of the world, these substances may be recognized as new food additives if their 

inclusion in food is for any purpose other than for the purpose of adding flavour to the food. As would be 

expected in those countries, addition to the list of food additives would only be approved after several 

expensive studies of their potential metabolic and safety issues, and may equally involve prohibitive cost. 

For those countries, it would be better to consider the use of whole EO or herb or whole spice instead of 

individual components for economic reasons (Smid and Gorris, 1999).  

The Federal Food Drug and Cosmetic Act (FFDCA) recognizes that naturally occurring substances in 

food should have a different and lower safety standard relative to other ingredients which are intentionally 

added to food (Smith et al., 2005). According to the Act (21 CFR 172.30), the realistic standard for 

naturally occurring substances is that the substances must ‘not ordinarily render the food injurious to 

health’. However, for added substances, the Act applies a much higher standard which says ‘the food is 

adulterated if the added substance may render the food injurious to health.  

As EOs are considered neither a food nor a direct food additive, no current standard can be easily applied 

to their safety evaluation (Smith et al., 2005).  In the Act standards, EOs occupy an intermediate position 
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as they are comprised of naturally occurring substances which are intentionally added as individual 

chemical substances to food (Smith et al., 2005).  

Essential oils are considered to be safe based on the documented long history of their application in foods 

and other wide range of human exposures with no known adverse effects (NAS, 1965; 1970; 1975; 1981; 

1982; 1987; 21 CFR 172.510). Because of these documented safety history, one may presume with a high 

degree of confidence that EOs derived from food are likely to be safe (Smith et al., 2005).  

In terms of actual application in foods, different concentrations (from 0.05% to more than 1% v/w) of 

whole EOs or their constituent compounds have been reported to present no issues for concern. For 

instance, treating beef fillets with 0.8% v/w of oregano oil was found to improve the acceptability of the 

flavour after storage (50C) and cooking (Tsigarida et al., 2000). Skandamis and Nychas (2001) reported 

that treating minced beef with 1% v/w of oregano oil enhanced the odour, flavour and colour during 

storage under modified atmosphere packing and vacuum (50C). These authors reported that oregano was 

almost not detected after cooking. Oragno and thyme oils (0.05%, v/v) have been found to impart an 

herbal odour when spread on Asian sea bass (Harpaz et al., 2003). There were no ill effects on either 

appearance or flavour of cooked shrimps when thyme oil (0.9%, v/w) was added to a coating compared to 

considerable reduction in the acceptability of the shrimps when the concentration was increased to 1.8% 

in the coating (Ouattara et al., 2001). Carvacrol and cinnamic acid (1 mM) have been reported to delay 

spoilage and also maintain the organleptic properties of honeydew melon and kiwifruit (Roller and 

seedhar, 2002).   

Although a great number of EOCs are considered as approved food flavourings in the EU and recognized 

as GRAS in the US, toxicity and irritation have been reported in some studies (Burt, 2004). For example, 

in root canal treatment, irritation of mouth tissues has been reported following application of thymol, 

menthol and eugenol. Manabe et al. (1987) observed that the cytotoxicity results of these EOCs indicate 

that lipid solubility and membrane affinity could be part of the tissue penetration and that irritation of the 

gum may be caused by surface activity and membrane lysis. Although carvone, cinnamaldehyde and 

carvacrol appear not to have significant effect in in vivo studies, results of in vitro studies suggest that at 

the cellular levels, they exhibit mild to moderate toxicity. At the current level of use, gene-toxicity data 
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seem not to raise issues for concern (Stammati et al., 1999). For people who use EOs and EOCs 

frequently, allergic contact dermatitis has been observed. However, if these substances are to be used at a 

very large scale, preventive measures are necessary to ensure that the health condition of workers is not 

compromised (Carson and Riley, 2001; Bleasel et al., 2002). At the above current low levels of intake as 

flavouring substances, EOs or their compounds have no known or are not expected to pose any significant 

risk to human health (Smith et al., 2005).  
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 1.8. Justification and approach taken in this PhD research 

Ruminant derived meat and milk, and their products which constitute a major part of human diets, are 

characterized by low concentration of long chain n-3 PUFA such as C20:5 n-3 and C22:6 n-3 and high 

content of SFA. The intakes of these long-chain PUFA are considered to be linked with reduced risk of 

coronary heart diseases, whilst SFA have been associated with increased risk of cardiovascular diseases.  

Ruminal biohydrogenation of dietary PUFA results in the production of SFA at the expense of CLA, VA 

and PUFA. The key to improving the fatty acid profile of milk and meat is dietary manipulation of 

ruminal biohydrogenation. In order to achieve this dietary modification and optimize the concentration of 

PUFA in ruminant food products, ruminant nutritionists have been evaluating the suitability of various 

possible strategies to manipulate the process of biohydrogenation. This manipulation, if it is successfully 

achieved, would lead to the production of ruminant meats and milk with a high level PUFA, CLA and a 

lower content of SFA which is of great value for consumer health. Increasing the concentrations in meat 

or milk, of PUFA such as C20:5n-3 and C22:6n-3, which have proven human health benefits, would 

represent an excellent means of increasing their intake by humans. In order to avoid the use of chemicals 

such as formaldehyde to protect PUFA due to their potential implications for animal product quality and 

consumer health, and to provide alternative to other protection techniques which are largely inefficient, 

livestock nutritionists have been evaluating the suitability of plant bioactive compounds such as EOs as 

modifiers of rumen biohydrogenation of PUFA. The majority of studies with EOs have been focused on 

their effects on VFA concentration, methane and ammonia production, whilst little attention has been 

given to their effects on biohydrogenation of PUFA. This modification is carried out by a direct or 

indirect interaction of these compounds and ruminal microorganisms involved in rumen fermentation. In 

this PhD study, the potential of EOs and their active compounds (EOCs) as feed additives to reduce the 

extent of rumen biohydrogenation of n-3 PUFA is evaluated.  To achieve this objective, a number of 

experiments were conducted as follows: 

Experiment 1 

In this study, the effects of fifteen EOCs on the metabolism of n-3 PUFA by rumen microorganisms were 

evaluated in vitro.   



81 
 

This study found that some EOCs such as anethole, menthol, 4-allylanisole and p-cymene have the 

potential to reduce the extent of ruminal biohydrogenation of PUFA. However, they also equally caused 

significant reduction of total VFA. The whole essential oils have a number of attractions compared with 

the individual EOCs. The whole EOs have been used by man since antiquity in the area of aromatherapy 

and food industries, hence, are likely to encounter less regulatory hassles compared to individual EOCs.  

In addition, the synergistic effect between the minor and major components in the whole oils is expected 

to improve the effectiveness of the whole oils against biohydrogenating bacteria over the individual 

constituent compounds. These considerations led to the second experiment using the parent whole oils of 

the ten most effective EOCs in experiment 1. 

Experiment 2  

In this experiment, the effects of ten whole essential oils on rumen fermentation and biohydrogenation of 

n-3 polyunsaturated fatty acids by rumen microorganisms were examined in vitro. This study was 

conducted to establish whether the parent oils in which some of the individual EOCs (in experiment 1) 

showing potential are the predominant compounds, are equally as effective at inhibiting the 

biohydrogenation of PUFA. This study found that some of the whole oils such as anise and cassia oils had 

the highest potential to reduce the biohydrogenation of n-3 PUFA. But, they, like EOCs used in 

experiment 1, equally caused significant reduction of total VFA in the rumen.  

Because the concentration of volatile fatty acids in the rumen reflects the fermentation of nutrients in  

feed, it was thought that the inclusion of either 300 mg/L of EOCs (experiment 1) or 300 mg/L of whole 

EOs (experiment 2) reduced the digestibility of feed, hence, decreased ruminal concentration of total 

VFA. Therefore, to achieve satisfactory inhibition of ruminal biohydrogenation of PUFA without 

significant suppression of VFA, further in vitro study was conducted to establish optimal doses for the 

two most effective EOCs (experiment 1) and EOs (experiment 2). This led to the next in vitro experiment, 

the third experiment, which screened graded doses of both EOCs and whole EOs. 
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Experiment 3 

This experiment examined the effects of graded doses (0, 100, 200 and 300 mg/L) of two EOCs (4-

allylanisole and anethole), and two whole EOs (anise oil and cassia oil) on the fermentation and 

biohydrogenation of n-3 polyunsaturated fatty acids by rumen microorganisms in vitro. This study found 

that at 200 mg/L or less, all substances except cassia oil did not reduce the concentration of total VFA 

relative to the control treatment.  

In the literature, there is disagreement between in vitro and in vivo effects of EOs or EOCs on metabolism 

of n-3 PUFA. Continuous culture studies and long term in vivo studies suggest that the benefits associated 

with the use of essential oil as feed additive may decline due to two possibilities: (1) adaptation of 

individual microbial species to the use of EO or, (2) shifts in microbial species composition following 

long-term use of essential oil (Gladine et al., 2007). Therefore, the last study (semi in vivo, experiment 4) 

was conducted to examine the possibility of microbial adaptation time to anise oil, the most effective EO 

at 200 mg/L. 

 Experiment 4 

In this experiment, the potential of rumen microbes to adapt to anise oil over 4 weeks on rumen 

fermentation and metabolism of n-3 PUFA was investigated. Six lambs were grouped into two and given 

similar diet plus anise oil (100 mg/L equals 2.4 g/sheep/day) supplementation for one of the groups for a 

period of one month. Then, the sheep were slaughtered and ruminal fluids from the two groups of sheep 

were used in in vitro study. The study was a 2   2 factorial design experiment (details found in Chapter 

6). The study observed that the PUFA content of feeds incubated in rumen fluid extracted from the group 

of sheep fed anise oil was maintained at higher concentrations compared to the control sheep. 
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 Chapter 2 

 2.0. General material and methods 

In this chapter the general methods, materials and techniques which are similar in all the experiments are 

discussed. Modifications of the procedures for specific experiments are discussed in the respective 

chapters. 

2.1. Animal management, feeding and collection of rumen fluid 

In all the experiments similar breed of sheep (Hartline  Texel cross) were used as rumen fluid donors.  

The sheep were housed in groups of three or two per pen (depending on whether six or four sheep were 

used) and straw bedding. Grass hay (Lolium perenne) supplied by Patterns Farm, Chelmsford, UK and 

concentrate (Lamb finisher cubes) from W & H Marriage & Sons LTD, Chelmsford, Essex, were the 

main feed ingredients.  The rumen fluid donor sheep were offered water and hay ad libitum and 

supplemented with additional 400 g/sheep/day of concentrate. The total amount (400 g) of lamb finisher 

cubes offered per sheep/day was divided into two equal parts (200 g) and fed at 08.00 hours and 16.00 

hours. The sheep were placed on the experimental feed for 14 days before slaughter. 

Feed was withdrawn from the ewes at 18.00 hours on the eve of the day of slaughter. Sheep were taken to 

the abattoir (Humphreys and Sons, Chelmsford-Essex) at 07.00 hours in the morning and were 

slaughtered at 07.30 hours. Whole rumens were then collected and immediately sealed in tough plastic 

bags to prevent oxygen entry and transported in insulated boxes to maintain rumen temperature to the 

Lordship Science laboratory. The rumens were incised with a scalpel blade and rumen contents were 

scooped and the liquor strained through 2 layers of cheesecloth. After straining, the remaining solids were 

mixed with a volume of buffer (Table 2.1) equal to the rumen liquor removed, and homogenized using a 

kitchen blender for about 45 seconds to detach rumen microbes attached to solids. The mixture was re-

strained with 2 layers of cheesecloth and the filtrate added to the rumen fluid to constitute the buffer 

rumen fluid mixture as the final inoculum. The mixed fluid was held in a water bath maintained at 39⁰C 

and was flushed with CO₂ to expel oxygen before being dispensed into the in vitro incubation flasks.  
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2.2. Anaerobic buffer  

The anaerobic buffer used for all in vitro incubations was made by mixing five different solutions (Table 

2.1) using the method described by Theodorou et al. (1994). The solutions that were mixed to obtain the 

buffer are macro-mineral solution, buffer solution, micro-mineral solution, reducing solution and 

anaerobic indicator (resazurin). The solutions were prepared separately then mixed together thoroughly in 

a 50 litre capacity tank. In order to make a litre of buffer, the individual solutions were measured using a 

measuring cylinder and mixed together in the proportions shown in Table 2.1. The buffer solution was 

then sterilized using a Boxer autoclave (LAB3 Ltd, Northampton, UK). The autoclave was pre-set to 

commence sterilization of buffer at 121⁰C for 80 minutes, and then cooled down to 80⁰C. The autoclaved 

buffer was cooled under CO₂ in running cold water. 

 

2.3. The basal diet for in vitro incubation 

The basal feedstock used throughout the experiments was made from the mixture of a 70:30 rye- grass 

(Lolium perenne, Patterns Farm, Chelmsford, UK) and lamb finisher concentrate (W & H Marriage & 

Sons LTD, Chelmsford, Essex), respectively. The ingredients, chemical composition and fatty acid 

content of the basal feedstock used in incubations are shown in Table 2.2. A 70: 30 mixture of the grass 

hay and concentrate respectively was formulated and milled through 1 mm screen (Glen Creston Ltd, 

Stammore, England). This diet was supplemented with 32.5 g oil/kg from a mixture on an oil basis, of 

60% of fish oil (Sigma-Aldrich Co. Ltd., UK) and 40% of ground linseed (NBTY Europe LTD, Burton-

Upon-Trent), as extra sources of n-3 PUFA. Linseed was used as a major source of C18:3 n-3 and fish oil 

was included as the main source of C20:5n -3 and C22:6n -3. In order to make 1 kg of the basal feedstock 

used in incubations, 700 g of hay, 250 g of concentrate, 30 g of ground linseed and 20 g of fish oil were 

mixed together as shown in Table 2.2.  The composition of the concentrate used according to the supplier 

(W & H Marriage & Sons LTD, Chelmsford, Essex) was a mixture of wheat (19.6%), wheatfeed (40.1%), 

molasses (3%), palm kernel extract (12%), sunflower extract (5%), limestone flour (2%), salt (0.8%), 

mixer oil (0.5%), millspec molasses (6%), spray oil (0.5%), ammonium chloride (0.3%) and malt nuts 

(10%). 
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2.4. Incubation, sample collection and storage 

Into 125 ml clear glass type 1 serum bottles (R & L Slaughter Ltd, Essex, UK), 1 g of feed substrate, 80 

ml anaerobic buffer (Table 2.1), 20 ml inoculum and 300 or less mg/L of either EOs or EOCs (actual 

amount depends on the objective of the experiment described in each chapter). The bottles were then 

sealed with rubber cork and incubated at 39⁰C using Genlab incubator (Genlab Ltd, Cheshire, UK).  

Gas pressure in the bottles during incubation was measured from all the replicates at various times (3, 6, 

9, 12, 24, 36 and 48 h) using a pressure transducer (Bailey and Mackey Ltd., Birmingham, UK) which 

was connected to a digital read-out voltmeter. The pressure was read on the transducer and then the gas 

was released to return the head-space gas pressure to zero. The bottles were agitated by shaking before 

returning to the incubator. Fermentation was stopped (at 12, 24 and 48 h) by freezing the contents of 

incubation bottles at -20⁰C for 5 mins. After 5 mins serum bottles were brought to room temperature, then 

3 replicates of each treatment were taken to determine ammonia (5 ml) and volatile fatty acids (VFA, 4 

ml). The remaining fluid of these replicates was used for determining pH using a pH meter (Hanna 

instrument Ltd., UK). The aliquots for ammonia were preserved by mixing 5 ml sample with 5 ml of 1M 

HCL. Volatile fatty acid samples (4 ml) were mixed with 1 ml of a deproteinising solution (2.5.6) and 

frozen (-20⁰C). The remaining 3 replicates of each treatment were mixed with 250 ul of BHT in ethanol 

(2.5.7) then emptied into plastic tubs and frozen (-20⁰C) for subsequent fatty acid analysis. 

The individual head-space pressure (psi) was converted to volume of gas (ml) using the following 

equation: 

V= [(4.899*p)-0.1817]  

Where V is the volume of gas produced (ml) and p is the amount of head-space pressure (psi).  
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Table 2.1 Anaerobic buffer used for in vitro incubation according to Theodorou et al. (1994) 

Compounds Proportions/litre 

Macro-mineral solution (g/1000 ml)  

di-sodium hydrogen ortho-phosphate (Na₂HPO₄.12H₂O           9.45g 

Potassium di-hydrogen ortho-phosphate (KH₂PO₄)                     6.20g 

Magnesium sulphate 7-hydrate (MgSO₄.7H₂O)                           0.60g 

Buffer solution (g/1000 ml)  

Ammonium hydrogen carbonate (NH₄HCO3)   4.0g 

Sodium hydrogen carbonate (NaHCO₃)    35.0g 

Micro-mineral solution (g/100 ml)  

Calcium chloride (CaCl₂.2H₂)                                   13.2g 

Manganese chloride (MnCl₂.4H₂O)                        10.0g 

Cobalt chloride (CoCl₂.6H₂O)                                  1.00g 

Iron chloride (FeCl₃.6H₂O                                        8.00g 

Reducing solution (g/100 ml)  

Cysteine HCl.1H₂O                                                                            0.625g 

Anaerobic indicator (g/100 ml)  

Resazurin  1tablet 

 

Proportions of individual solutions for making 1 litre of anaerobic buffer 

Macro-mineral solution  200 ml 

Buffer solution  200 ml 

Reducing solution  40 ml 

Micro-mineral solution  0.1 ml 

Anaerobic indicator  1 ml 

Deionized water 559 ml 
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Table 2.2 The ingredients, chemical composition and fatty acid content of the basal feedstock used in 

incubations  

Components composition 

Feed ingredient (g/kg fresh)  

Hay 700.0 

1Concentrate 250.0 

Linseed 30.0 

Fish oil 20.0 

Chemical composition of basal feedstock (g/kg DM)  

Dry matter 921.0 

Crude protein 123.6 

Neutral detergent fibre 405.2 

Acid detergent fibre 219.5 

Ether extract 54.3 

Fatty acid composition (g/100 g TFA)  

Linolenic (C18:3 n-3) 21.9 

Linoleic (C18:2 n-6) 12.9 

Palmitic (C16:0) 12.4 

Oleic (C18:1 n-9) 10.0 

Eicosapentaenoic (C20:5 n-3) 4.9 

Myristic (C14:0) 4.3 

Palmitoleic (C16:1) 4.0 

Docosahexaenoic (C22:6 n-3) 3.7 

Stearic (C18:0) 2.5 

Vaccenic  (C18:1) 1.6 

Arachidonic (C20:4 n-6) 0.1 

Remaining fatty acids 21.6 

Total fatty acids (mg/g) 59.1 
1Concentrate= W & H Marriage & Sons LTD, Chelmsford, Essex 
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2.5. ROUTINE CHEMICAL ANALYSIS 

2.5.1. Dry matter 

Sub-samples of ground (1 mm screen, Glen Creston Ltd, Stammore, England) mixed feed were weighed 

into porcelain crucibles (Fisher Scientific, Leicestershire, UK) that were previously pre-heated in the oven 

at 105°C and cooled. Samples were dried to a constant weight in the oven (105°C). After drying, samples 

were taken out of the oven into a desiccator to avoid absorption of moisture and were allowed to cool 

down. After cooling, the weight of the dried feed and the crucible was then taken together. The dry matter 

content was determined as follows: 

1

1000

(g)ght     Wet wei

(g) Dry weight
=>(g/kg)matter Dry              

2.5.2. Ether Extract 

The fat content of the feed was determined using the FOSS Soxtec Extraction system according to the 

method described by AOAC 920.39 and AACC 30-25. 

Approximately 2 g of the basal feedstock was weighed into the extraction thimble of known weight in 

triplicate. A thin layer of fat-free cotton was placed on the top of the sample and the thimbles were 

attached to the metal adapters before placing the thimbles and the adapter onto the thimble stand. A 

previously cleaned and dried aluminium extraction cup was taken from the desiccator and weighed.  

Using a measuring cylinder, exactly 45 ml of petroleum ether (40-600C, Sigma-Aldrich Co. Ltd., UK) 

was added to the aluminium cup and the cup was placed in the cup holder. The thimbles were attached to 

the magnetic holder in the Soxtec extractor and the extraction cups were inserted before running the 

extraction programme. The control unit of the Soxtec extractor was preset as follows: boiling time (15 

minutes), boiling temperature (900C), rinsing time (30 minutes) and 10 minutes for the recovery time. The 

resulting fat residue was dried at 105°C to constant weight and the fat content was then determined 

gravimetrically using the following formula: 
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1

1000

sample of   weight 

extract ofweight 
=>(g/kg)Fat        

2.5.3. Feed total Nitrogen analysis 

Total nitrogen of basal feedstock was determined using the Kjeldahl digestion procedure. Approximately 

1 g of feed was weighed (in triplicate) into clean Kjeldahl tube (Fisher Scientific, Leicestershire, UK) and 

digested at 400°C for 2 hours using 20 ml of concentrated H2SO4. After cooling to room temperature, the 

residue was made alkaline through automatic addition of NaOH then the NH3-N was distilled into a 

solution of boric acid (4%). This was then titrated with 0.1 M HCL. The sample weight and the volume of 

hydrochloric acid required to neutralize the ammonia were then used to calculate the nitrogen content of 

the feed as follows: 

  1 ml of 0.1 HCl = 0.0014 g of Nitrogen 

1

1000

(g) weight sample   

HCL of volume  0.0014
=>(g/kg)Nitrogen 


            

Crude protein was determined as follows: Nitrogen in feed × 6.25 

 

2.5.4. Ammonia analysis  

The concentration of NH3-N in digesta was determined using the method described by Weatherburn 

(1967) adapted for use on the plate reader.  

2.5.4.1. Reagents 

A Standard solution (Ammonium chloride) 

The standard solution was made by weighing 0.535 g of dried ammonium chloride and dissolving same in 

100 ml distilled water to make 100 mM of ammonium chloride solution. From this solution (100 mM of 

ammonium chloride), 10 ml was pipetted into a 1000 ml volumetric flask and made up to the mark with 

distilled water. This solution was then stored in the fridge and used for making dilutions. Range of 

standard dilutions in 1 ml eppendorf is shown in Table 2.3. 
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B  Phenol and sodium nitroprusside 

In order to make this solution, 5 mg of sodium nitroprusside and 1 g of phenol (both from Sigma Aldrich) 

were separately dissolved in about 30 ml of distilled water. The two solutions were then mixed together 

and made up to 100 ml with distilled water. Solution was stored in dark bottles at 4°C and used within 4 

weeks from the date of constitution. 

C Alkaline hypochlorite solution, 14.99% 

Sodium hydroxide and sodium hypochlorite were used to make this solution. Half a gram (0.5 g) of 

NaOH was dissolved in about 30 ml of dH₂O and 0.28 ml of sodium hypochlorite (14.99%) was added. 

The solution was transferred and made up to 100 ml in volumetric flak. Solution was stored in dark 

bottles at 4°C and used within 4 weeks from the date of constitution. 

2.5.4.2. Analytical procedure 

Samples were thoroughly mixed using a vortex mixer for 25 seconds before transferring about 1ml into 

labelled eppendorf tubes. The tubes were then centrifuged for 15 minutes at 20,000g. The supernatant was 

then used to make dilutions.  Into a new labelled eppendorf tubes 100 uL of sample and 900 uL of dH₂O 

were added and mixed using vortex mixer for 25 seconds.  

After dilutions, 20 uL of standard solution (2.5.4.1A) or sample was added to the 96 wells plate (Table 

2.4) in duplicate using 20 uL Gilson pipette (Fisher Scientific, Leicestershire, UK). To each of the wells, 

100 uL of reagent B (2.5.4.1B) and 80 uL of reagent C (2.5.4.1C) were sequentially added using a multi-

channel pipette before mixing the contents of the wells using an electric shaker. The plate was then 

incubated at 39°C for 15 minutes to obtain a green to blue-like colour in the wells. In order to obtain a 

uniform colour in the wells before taking reading, the plate was manually shaken after incubation. Then 

absorbance reading was taken immediately at 650 nm using the plate reader (Molecular Devices Ltd, 

Berkshire, UK) with Spetra Max 90 software at room temperature. 

Ammonia concentration (mM) was then determined by multiplying the mean result by the dilution factor.   
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Table 2.3 Range of standard dilutions in 1 ml Eppendorf 

Distilled water (ml) Ammonium chloride (ml) 

1 0 

1 0 

0.800 0.200 

0.800 0.200 

0.600 0.400 

0.600 0.400 

0.400 0.600 

0.400 0.600 

0.200 0.800 

0.200 0.800 

0 1 

0 1 

 

Table 2.4 Sample of 96 well plates 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 0 0 0.20 0.20 0.40 0.4 0.6 0.6 0.80 0.8 1.0 1.0 

B Sample 

1 

Sample 

1 

Sample 

2 

Sample 

2 

Sample 

3 

Sample 

3 

Sample 

4 

Sample 

4 

Sample 

5 

Sample 5 Sample 

6 

Sample 

6 

C             

D             

E             

F             

G             

H             

NB: Row A1-A12 is standard. 
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2.5.5. Neutral and acid detergent fiber (NDF and ADF)  

The neutral detergent fiber (NDF) and acid detergent fiber (ADF) content of the basal feedstock were 

determined using the methods of Goering and Van Soest (1970).  

Reagents 

NDF solution:  

Into a 1 litre capacity beaker containing 500 ml of distilled water, 18.61 g of disodium ethylene tetra-

acetate dihydrate (EDTA), 6.81 g di-Sodium tetraborate, 30 g of 90% sodium lauryl sulphate and 10 ml 

triethylene glycol mixed and 4.56 g disodium hydrogen orthophosphate were added. The mixture was 

then mixed by stirring with a magnetic stirrer then made up to 1L and pH was adjusted to 7. 

ADF solution:  

Exactly 49.04 ml of 1N H2SO4 was added to 1000 ml volumetric flask containing 400 ml of distilled 

water and this was made up to the mark with distilled water before adding 20 g of cetyl 

trimethylammonium bromide, CTAB. 

Procedure: 

Approximately 1 g of dried feed was weighed into preweighed sintered crucibles (Fisher Scientific, 

Leicestershire, UK) which were previously cleaned, dried (105°C) and cooled in a desiccator. Exactly 0.5 

g of sodium sulphite was added to the crucibles containing the feed sample. The feed was then digested 

for 60 minutes using the Fibertech apparatus (Fibertech 1020 System M-Tecator) with 100 ml of NDF 

solution and 100 ml of ADF solution. Drops of octanol were added to each column before the heater and 

the timer were turned on.  At the end of 60 minutes, the digest was washed (three times) with about 50 ml 

of hot water (100°C) and the column drained. Crucibles were then transferred to the cold extraction unit 

using the clip carrier and were placed in the same manner as with the fibertec. Each crucible was then 

rinsed with acetone (about 20 ml) and drained. The crucibles with the sample were then oven dried 

(105°C) overnight and cooled in a desiccator. After cooling, sample and crucible was weighed before 

ashing at 500°C for 5 hours using Carbolite AAF1100 furnace. The crucible and the ash were then 
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reweighed after cooling the crucibles in a desiccator.  The NDF and ADF content of the feed were 

calculated as shown below: 

1000
(g) weight Sample   

(g) weight NDF
 =>DM) (g/kg NDF          

 

1000
(g) weight Sample   

(g) weight ADF
 =>DM) (g/kg ADF          
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2.5.6. Volatile fatty acid analysis 

The volatile fatty acids content of rumen fluid were determined using the method of Ottenstein and 

Bartley (1971). 

2.5.6.1. Reagents  

A deproteinising solution (DPS) containing 2-ethylbutyric acid as an internal standard was prepared by 

adding 581 mg of 2-ethylbutyric acid and 50 ml of ortho-phosphoric acid into 250 ml volumetric flask.  

This solution was then made up to the mark with distilled water and stored at 4°C. In vitro fermentation 

digests (4 ml) were mixed with 1 ml of the DPS and frozen (minus 180C) ready for subsequent fatty acid 

analysis. 

2.5.6.2. Sample preparation and analysis 

The frozen samples were thawed at 40C and transferred to 30 ml Oak Ridge tube (Fisher Scientific, 

Leicestershire, UK) and centrifuged at 20 000 g for 15 mins at 40C. Sub sample of 1.0 ml (the 

supernatant) was then transferred to a labelled eppendorf tube and frozen at minus 180C ready for GC 

analysis.  

Volatile fatty acids sample was removed from the freezer, defrosted and 150 uL was transferred to GC 

vial and analysed by GC. The operating conditions of the GC (Agilent 6890 with autosampler) were: 

column (HP-FFAP 10M x 0.53 mm with 1 metre retention gap), injection liner (4mm straight liner with 

phosphoric acid treated quartz fibre centre packing), carrier gas (Helium), head pressure 35kPa (5psi), 

column flow (approx. 24 ml/min), temperature (70°C x 1 min. and 70°C x 4 min. for initial and final 

respectively). 

Determination of total fatty acids (mM) was done by simple addition of the individual volatile fatty acids 

that were identified. Molar proportion of individual volatile fatty acids was calculated as a proportion 

(mM/mol TVFA) of the total. 
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2.5.7. Fatty acid analysis 

In order to protect fat from oxidation before and during analysis, butylated hydroxyl-toluone (BHT) was 

added at 0.05% of fat by dissolving 100 mg of BHT in 1 litre of 100% ethanol. Immediately after 

fermentation was stopped, 250 ul of BHT in ethanol was added to in vitro incubation digests before 

samples were frozen (-20⁰C). 

Direct saponification method (Enser et al., 1998) was used to extract fatty acids initially from both feed 

samples and in vitro incubation residues. Then these non-esterified fatty acids (NEFA) were methylated 

using 1% sulphuric acid in excess methanol (Christie, 2007) and the composition of methyl ester was 

analysed by gas chromatographic analysis (Folch et al., 1957). 

2.5.7.1. Reagents 

A  Butylated hydroxyl-toluone (BHT) 

Into a 100 ml volumetric flask, exactly 1 g of BHT was weighed and made up to the mark with 

chloroform. 

B Internal standard (C₂₁) 

Into a 10 ml volumetric flask approximately 150 mg of Heneicosanoic acid (C₂₁) was weighed and 50 μl 

of BHT (2.5.7.2A) was added. The mixture was made up to the mark with chloroform. The solution was 

then thoroughly mixed and stored in the freezer (-20⁰C).). 

C  Saponification mixture (5M potassium hydroxide-KOH) 

Into a 500 ml measuring cylinder, 280.6 g of KOH was weighed and quickly dissolved in 400 ml of 

distilled water before capping the cylinder and cooled to room temperature under running cold water. The 

solution was made up to 500 ml with distilled water after cooling. Quinol (1 g) was weighed into a 200 ml 

beaker and dissolved in about 50 ml of methanol and subsequently transferred to a 500 ml volumetric 

flask. This was made up to the mark with methanol. The two solutions were then transferred into IL 

volumetric flask and thoroughly mixed together to create the saponification mixture. 
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2.5.7.2. Extraction of fatty acid content of basal feedstock 

The FA content of basal diet was extracted by weighing 0.4 g of dried ground samples in duplicate into 

30 ml Pyrex tubes. This quantity (0.4 g) was estimated (Wachira et al., 2000) to give around 20-25 mg of 

fat for an accurate peak in chromatographic analysis. To each sample in the tube was added 0.7 ml of 

distilled water, 6 ml of 5M saponification mixture (2.5.7.1C), 100 μl of internal standard (2.5.7.1B) and 

50 μl BHT (2.5.7.1A; as antioxidant). The tubes were incubated at 60⁰C in a water bath for 3 h with 

shaking at 15 minutes intervals for about 30 seconds to completely hydrolyse and saponify the 

triglycerides in the sample. After incubation, tubes were taken out of water bath and allowed to cool down 

before adding 3 ml of 10N sulphuric acid then followed by further 1 h incubation to reform free fatty 

acids.  

After incubation 12 ml of distilled water and 5 ml of petroleum spirit (40-60⁰C) were added to the tube 

and manually shaken vigorously before centrifuging at 1000 g (2300 rpm) for 2 minutes. Absolute 

ethanol was added drop by drop to clear the gel and the top layer (supernatant) was transferred using a 

Pasteur pipette into a new soveril tube. This procedure was repeated twice making 3 times. In order to 

neutralize excess acid and to remove excess water from the fat sample, small amount of sodium hydrogen 

carbonate was added using small spatula until fizzing subsided then followed by adding some amount of 

anhydrous sodium sulphate until the power fell through. The tube was then centrifuged at 1000 g for 5 

minutes before transferring the supernatant using Pasteur pipette to a clean new 10 ml quick fit tube and 

stored under oxygen-free nitrogen in the freezer (minus 18⁰C) till the samples were methylated. 

2.5.7.3. Extraction of fatty acid content of in vitro fermentation residues (digesta) 

Into a 30 ml Pyrex tube, exactly 0.6 g of well mixed dried digesta was weighed followed by addition of 

0.7 ml of distilled water, 6 ml of 5M saponification mixture (2.5.7.1C) and 100 μl of internal standard 

(2.5.7.1B). The sample was then saponified at 60⁰C in a water bath for 2½ h with 15 minutes interval of 

regular shaking for about 30 seconds to completely hydrolyse the sample. Into each tube was added 12 ml 

of distilled water and 5 ml of petroleum spirit (40-60⁰C) then shaken vigorously before centrifuging for 3 

minutes at 1000 g. Absolute ethanol was added in drops to clear the gel before discarding the top layer 

and the procedure was repeated for 2 more times. Then 3 ml of 10N H₂SO₄ and 5 ml of petroleum spirit 
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were added followed by vigorous manual shaking of the tubes before centrifuging at 1000 g for 2 

minutes. The top layer was transferred into another clean tubes using Pasteur pipette and this process was 

repeated 2 more times, such that there were three top layers collected into a new tube. In order to 

neutralize excess acid and to remove excess water from the fat sample, small amount of sodium hydrogen 

carbonate was added using small spatula until fizzing subsided then followed by addition of some amount 

of anhydrous sodium sulphate until the power fell through. The tube was then centrifuged at 1000 g for 5 

minutes before transferring the supernatant using Pasteur pipette to a clean new quick fit tube and stored 

under oxygen-free nitrogen in the freezer (minus 18⁰C) till the samples were methylated. 

2.5.7.5. Methylation of extracted fatty acids samples (feed and digesta) 

2.5.7.5.1. Reagents 

Reagents used and their preparations for methylation are described below: 

A  5% Sodium chloride 

Into a 500 ml volumetric flask 25 g of sodium chloride was added and then made up to 500 ml using 

distilled water to the mark. 

B 1% Sulphuric acid/methanol mixtures 

Exactly 1 ml of concentrated sulphuric acid was added to a 100 ml volumetric flask containing about 40 

ml of methanol and thoroughly mixed. The solution was then made up to the mark using methanol. NB. 

This mixture was made daily when required. 

C 2% Potassium hydrogen carbonate 

Into a 500 ml volumetric flask 10 g of potassium hydrogen carbonate was weighed and dissolved in 

distilled water, then made up to the indicated mark using distilled water.  

2.5.7.5.2. Methylation procedures 

Frozen samples were taken out of the freezer to defrost in room temperature before drying under Oxygen-

free Nitrogen on hot plate maintained at 50⁰C. Then 1 ml of hexane was added to the tube to resuspend 
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the sample followed by brief vortexing. To the sample tube was added 1 ml of the 1% sulphuric 

acid/methanol mixture (2.5.7.5.1B) before flushing the sample with nitrogen then glass stopper was 

immediately attached.  Tubes were incubated for 1 hour in a water bath maintained at 50⁰C. After 

incubation 2.5 ml of the 5% sodium chloride (2.5.7.5.1A) was immediately added followed by brief 

vortexing. Then 1 ml of hexane was added and vortexed briefly. Sample tube was allowed to settle in 

order to form clear layers before transferring the upper section (hexane portion) with a Pasteur pipette to a 

new clean 10 ml quick fit glass tube and repeating the procedure twice (i.e. addition of 1 ml of hexane 

plus vortexing). To the tube containing the hexane fraction (supernatants) 1.5 ml of the prepared 2% 

potassium hydrogen carbonate (2.5.7.5.1C) was added followed by brief vortexing. When two layers were 

clearly formed, the top layer (hexane fraction) was transferred into clean quick fit tube then dried under 

nitrogen with temperature maintained at 50⁰C. Fatty acid methyl Esters (FAMES) were at last re-

suspended by dissolving the dried samples in 500 uL of hexane plus brief vortexing. The re-suspended 

FAMES was then transferred into vial with insert, capped and then stored at minus 18 till gas 

chromatogram analysis (GCA).  

The GC (HP 6890+, Agilent Technologies, UK Ltd) with a flame ionization detector and fitted with a 100 

m fused silica capillary column (Varian CP-7489) of 0.2 µm film thickness and 250 µm diameter was 

used. Approximately 1 uL of fatty acid samples in hexane were injected at 160⁰C (initial temperature of 

the column) and held at that temperature for 15 minutes. Then the temperature increased at 1.5/minute to 

240⁰C, and was held at that temperature until the run was completed (at 87 minutes, when the C22:6 n-3 

was peaked). Helium at a flow rate of 1.2 ml/min was used as the carrier gas.  The chromatograms were 

recorded and processed by a computer installed with Productivity Chemstation Software connected to the 

GC. Methyl heneicosanoic (C₂₁:₀, Sigma-Aldrich Co. Ltd., UK) which was added prior to saponification 

was used as an internal standard. Fatty acid methyl ester standard mixture (Thames Restek UK) of 

conjugated linoleic acid (CLA) was used as the standard for identification of peaks. The major peaks were 

identified by comparing the retention times with the corresponding retention times of known standards. 

 

The concentration of individual fatty acid in sample was determined as follows:  
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(g) weight sample   

standard) of areastandard/  of(amount  acidfatty  of Area
=>(mg) acidFatty 


     

1

100

TFA   

(mg/g) acidfatty 
=>TFA) g (g/100 acidFatty     

Rumen biohydrogenation was calculated as the change in the proportion of individual FA such as 18:3 n-

3 and 18:3 n-2, in the feed relative to the amount left in incubation vessels at a given time as follows:  

100
added acidfatty  dunsaturate ofamount  Initial   

incubationafter amount  -FA  dunsaturate ofamount  Initial
g) (g/100nation Biohydroge     

Calculations of sum of fatty acids are shown as follows: 

∑SFA = C14:0+C16:0+C18:0 

∑SFA-C18 = C14:0+C16:0 

∑MUFAs = C16:1+C18:1 n-9+18:1 trans 11 

∑PUFAs = C18:2 n-6+18:2 cis-9 trans 11 CLA+C18:3 n-3+C20:4 n-6+C20:5 n-3 and C22:6 n-3  

∑n-6/∑n-3 

P/S = ∑PUFAs/∑SFAs 
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 CHAPTER 3  

 Effects of Fifteen Compounds from Essential Oil Extracts on the Metabolism 

of Polyunsaturated Fatty Acids by Rumen Microorganisms in vitro 
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ABSTRACT 

The effects of fifteen EOCs on the fermentation activities of rumen microbes and the biohydrogenation 

(BH) of PUFA were examined in vitro using a batch culture system. Rumen fluid was collected from Six 

Hartline  Texel cross cull ewes offered grass hay (Lolium perenne) ad libitum and supplemented with 

additional 400 g/sheep/day of lamb finisher cubes. A basal feedstock comprising of 70:30 grass hay and 

concentrate was formulated and milled (1 mm screen) then supplemented with 32.5 g oil/kg (40% from 

ground whole linseed and 60% from fish oil). Serum bottles were incubated at 39⁰C; each bottle 

contained 1 g of feed substrate, 80 ml buffer, 20 ml inoculum, then supplemented with 300 mg/l of EOCs 

and repeated twice. There were 16 treatments with six replicates per treatment as follows: Control (CON), 

3-carene (CAR), 4-Allylanisole (ALA), trans-anethole (ANE), (-)-α-bisabolol (BIS), (-)-borneole (BOR), 

(-)-trans-caryophyllene (CPY), trans-cinnamaldehyde (CIN), (S)-(-)-β-citronellol (CIT), eucalyptol 

(EUC), (R)-(+)-limonene (LIM), menthol (MEN), myrtenol (MYT), P-cymene (CYM), (-)-α-thujone 

(THU) and vanillin (VAN). Gas measurement was taken at 3, 6, 9, 12, 24, 36 and 48 h and fermentation 

was stopped at 12, 24 and 48 h. Samples were collected to analyse NH3-N, total volatile fatty acids (VFA) 

and molar proportions of individual VFA; and concentration of individual PUFA including intermediates 

of BH. Relative to the control, ANE and LIM reduced (P<0.001) ammonia concentration by a magnitude 

of 27%, whilst the other EOCs maintained similar ammonia levels. With the exception of VAN, the 

addition of all EOCs decreased (P<0.001) TVFA compared to the control, with MEN being the most 

inhibitory compound, inducing an approximately 20% reduction. The concentrations of 18:3 n-3 or 18:2 

n-6 increased significantly in response to EOCs in the sequence: ALA and ANE, MEN and CIT > 3-CAR 

and BOR, CIN, LIM, MYT, CYM and THU > BIS and EUC > CPY and VAN. The addition of ALA 

maintained highest the concentrations of C20:5 n-3 and C22: 6 n-3. These results showed that the 

phenylpropanoid EOCs (ALA and ANE) and monoterpene alcohols (MEN) had the greatest potential to 

reduce the disappearance of PUFA and suggest that their use could enhance the concentrations of n-3 

PUFA in ruminant food products if these effects are confirmed in vivo. However, this needs to be 

balanced against their effects on VFA.  
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3.1. Introduction 

As discussed in section 1.5 of Chapter 1, several technologies such as encapsulation of marine and plant 

oils in formaldehyde, formation of fatty acids amides and the use of calcium salts of fatty acids have been 

developed over the years to protect PUFA from ruminal biohydrogenation (BH). However, the majority 

of these strategies have not satisfactorily protected PUFA from BH. Therefore, there is still an on-going 

search for a strategy that would satisfactorily protect PUFA from ruminal disappearance.  Herbal plants 

and their extracts have been evaluated as possible alternative since they are natural components of animal 

feed (Cowan, 1999). The possibility of using whole essential oils and or their bioactive constituent 

compounds to modify rumen fermentation parameters such as protein break down, VFA and methane 

production (Calsamiglia et al., 2007; Benchaar et al., 2008; Hart et al., 2008; Patra, 2011) has been 

widely studied (see section 1.7). Nevertheless, there is a scarcity of information in the literature on the 

effects of either EOs or EOCs as potential modifiers of rumen biohydrogenation of PUFA. The 

antimicrobial effects of EOs have been shown against a wide range of both Gram-positive and Gram-

negative bacteria, viruses and fungi (Dean and Ritchie, 1987; Sivropoulou et al., 1996; Chao et al., 2000) 

and the possibility that they might be used as feed additives to selectively inhibit rumen microbes 

responsible for BH of fatty acids needs further investigation. In a recent study, Sgwane et al. (2013) 

evaluated the effects of 20 EOCs (at 300 mg/L) on the metabolism of PUFA in vitro and found that some 

compounds such as linalyl acetate, pinene and pulegone reduced the extent of ruminal BH of PUFA.  

It has been established that effects of EOCs depends on the chemical type or structural configuration of 

the compound (Chapter 1.7). The diverse nature and number of commercially available EOCs warrants 

further screening. Hence, the aim of this study was to widen the range of EOCs screened in the study of 

Sgwane et al. (2013) at the same dose (300 mg/L). As ruminal biohydrogenation of PUFA involves 

several groups of Gram-positive bacteria (Harfoot and Hazlewood 1988), some EOCs used in this study 

were selected based on either their previous effects or the effects of their parent whole oils on Gram-

positive bacteria (Table 3.1). In addition, as both biohydrogenation and methanogenesis depend on the 

availability of hydrogen (H2) from feed digestion; other EOCs used were selected based on their previous 

effects on methanogenesis (Table 3.1). A number of other compounds were also chosen because they 

belong to the same chemical group as others which were previously reported to be effective (Table 3.1). 
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Table 3.1 Selected essential oil compounds used in this study and examples of microbes or process inhibited in previous studies  

EOC Microbes/process  inhibited  Reference 

P-cymene Bacillus subtilis, Salmonella, typhi, Staphylococcus aureus, Pseudomonas 

aeruginosa etc  

Methanogenesis 

Roengsumran et al. (1997);  

 

Chaves et al., 2008 

Cinnamaldehyde Staphylococcus aureus, E. coli and monocytogenes 

Methanogenesis 

(Oussalah et al., 2007) 

Chaves et al., 2008; Macheboeuf et al. 

(2008 

Menthol  Camphylobacter jejuni, Listeria monocytogenes and Staphylococcus 

aureus 

oil of peppermint rich in menthol inhibited methanogenesis 

Smith-Palmer et al. (1998);  

 

Tatsuoka et al., 2008 

borneol Pseudomonas aeruginosa, Bacillus subtilis, Klebsiella pneumoniae and 

Proteus vulgaris,  

Prabuseenivasan et al. (2006) 

4-allylanisole Staphylococcus epidermidis, S. aureus Singh et al., 2002 

Limonene Gram-positive and Gram- negative bacteria Espina et al., (2011) 

β-caryophyllene, 1,8-cineole Listeria monocytogenes, Staphylococcus aureus, Camphylobacter jejuni, 

E. coli 

Kalemba et al., 2012; Smith-Palmer et 

al. (1998) 

Anethole Methanogenesis Telci et al., 2009 

Eucalyptol  Eucalyptus oil rich in eucalyptol inhibited methanogenesis Kumar et al., 2009 

Thujone, myrtenol, citronellol Same chemical class as P-cymene (Table 3.3) Table 3.3 

Bisabolol Same chemical class as caryophyllene (Table 3.3) Table 3.3 

3-carene Same chemical class as borneol and pinene (Table 3.3) Sgwane et al. (2013); Table 3.3 
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3.2. Materials and methods  

3.2.1. Animal management and collection of rumen fluid/sampling 

In this experiment, six Hartline  Texel cross cull ewes (mean weight 50 ± 9.9 kg) were used as rumen 

fluid donors.  Details of animal housing, experimental diet, feeding, duration of adaptation and collection 

of rumen fluid are as described in the general materials and methods (see section 2.1).  

3.2.2. Basal feedstock, treatments and in vitro incubation 

The basal feedstock was a mixture of good quality rye-grass hays (Lolium perenne), lamb finisher 

concentrate, whole ground linseed and fish oil. See section 2.3 for a detail description of the basal 

feedstock used in this in vitro incubation. The ingredients, chemical and fatty acid composition of the diet 

are shown in Table 2.2. 

The effects of 15 essential oil constituent compounds were evaluated using the in vitro gas production 

batch culture method described by Theodorou et al. (1994). All EOCs used were purchased from Sigma-

Aldrich Co. Ltd., UK and were stored at the required temperatures as specified on delivery notes prior to 

use. The description of the EOCs as purchased from Sigma-Aldrich is shown in Table 3.2. All the EOCs 

purchased and used had purity from 95% and above (Table 3.2). The typical parent whole oils from which 

the EOCs can be extracted are shown in Table 3.3.  

There were 16 treatments and six replicates as follows: 3-carene (CAR), 4-Allylanisole (ALA), trans-

anethole (ANE), (-)-α-bisabolol (BIS), (-)-borneole (BOR), (-)-trans-caryophyllene (CPY), trans-

cinnamaldehyde (CIN), (S)-(-)-β-citronellol (CIT), eucalyptol (EUC), (R)-(+)-limonene (LIM), menthol 

(MEN), myrtenol (MYT), P-cymene (CYM), (-)-α-thujone (THU) and vanillin (VAN). 

Incubation was done in 125 ml clear glass type 1 serum bottles (R & L Slaughter Ltd, Essex, UK) for 48 h 

in each run and repeated twice. In each run 432 serum bottles were incubated, each bottle contained 1 g of 

feed substrate, 300 mg/l of EOC, 80 ml anaerobic buffer (see Table 2.1) and 20 ml inoculum and the 

bottle sealed with rubber cork before incubation. 
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Table 3.2 Description of the essential oil compounds (EOCs) used in this experiment 

Name of EOCs Abbreviation Catalog number Purity Density Form of EOC 

3-carene  CAR 94415 ≥98.5% 0.864  g/mL Liquid 

4-Allylanisole  ALA A29208 ≥98% 0.961 g/mL Liquid 

Trans-anethole ANE 10368 99.50% 0.988 g/mL Liquid 

(-)-α-bisabolol  BIS 14462 95% 0.92 g/mL Liquid 

(-)-borneole  BOR 15598 99% 1.011 g/mL Powder 

(-)-trans-caryophyllene  CPY 22075 98.5% 0.902 g/mL Liquid 

trans-cinnamaldehyde  CIN 239968 95% 1.05 g/mL Liquid 

(S)-(-)-β-citronellol  CIT W509205 99% 0.856 g/mL Liquid 

Eucalyptol EUC C80601 99% 0.921 g/mL Liquid 

(R)-(+)-limonene LIM 183164 99% 0.842 g/mL Liquid 

Menthol MEN M2772 99% 0.89 g/mL Solid 

Myrtenol MYT W343900 95+ 0.954 g/mL Solid 

P-cymene CYM 30039 ≥99.5% 0.86 g/mL Liquid 

(-)-α-thujone  THU 89231 96% 0.914 g/mL Liquid 

Vanillin VAN V1104 99%  1.06 g/mL Solid 

Supplier of EOCs: Sigma-Aldrich Co. Ltd., UK 
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Table 3.3 Typical parent whole oils from which the EOCs used in this study can be extracted from  

Common name Source of EOC Typical content in EO Chemical class
1
  References 

3-carene Turpentine oil 70% Bicyclic monoterpene Mahboubi and Kazempour (2012) 

4-Allylanisole Basil oil 58.3% phenylpropanoids Chalchat and Ozcan (2008) 

Trans-anethole  Anise oil 82.7% phenylpropanoids Soher et al. (2014) 

(-)-α-bisabolol Artemisia ordosica  27% Sesquiterpene  Yang et al. (2012) 

(-)-borneole Cymbopogon olivieri 26% Bicyclic monoterpene Mahboubi and Kazempour (2012) 

(-)-trans-caryophyllene Clove 14% Bicyclic sesquiterpene Kalemba et al. (2012); EP 5 

trans-cinnamaldehyde Cassia oil 70-90 phenylpropanoids EP 5; Kalemba et al. (2012) 

(S)-(-)-β-citronellol Citronella oil 31.5% Monoterpene Pandu et al. (2014) 

Eucalyptol Eucalyptus oil 68% Monoterpene (ethers) Elaissi et al. (2011) 

(R)-(+)-limonene Mandarin oil 75% Monoterpene Yu et al. (2007), EP 5 

Menthol Cornmint oil 30-55% Monoterpene alcohol EP 5; Patra (2012) 

Myrtenol Astartea 26% Monoterpene EP 5, Lowe et al. (2004) 

P-cymene Thyme oil 56% Monoterpenoid  Juliano et al. (2000), EP 5; Kalemba 

et al., 2012 

(-)-α-thujone Sage oil 42% Monoterpene  Marino et al. (2001) 

vanillin Vanilla oil Main  Phenolic aldehyde López-Malo et al. (2000) 

1= Source of chemical class= Bakkali et al. (2008); Table 1.5.  
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3.2.3. Sample collection and preservation 

The procedures for gas pressure measurement, fermentation stopping times, collection and storage of 

samples are described in the general material and methods (see section 2.4). 

3.2.4 Chemical analysis 

The concentration of NH3-N in digesta was analysed using the phenol-hypochlorite method 

(Weatherburn, 1967; Broderick and Kang, 1980) adapted for use on the plate reader as described in 

general materials and methods (see section 2.5.4).  

 

The concentration of volatile fatty acid (VFA) was determined by gas chromatography (GC) as described 

by Ottenstein and Bartley (1971). Details of this method are found in the general materials and methods 

(see section 2.5.6). 

 

The concentrations of fatty acids in feed and in freeze dried samples of effluent of in vitro digests were 

extracted by direct saponification method described by Enser et al. (1998).  Details of this method are 

outlined in the general materials and methods (see section 2.5.6). 

3.2.5. Experimental design and statistical analysis 

The objective was to examine the effects of fifteen EOCs on the extent of rumen biohydrogenation of n-3 

PUFA in vitro, including their effects on fermentation parameters (gas production, NH3-N concentration 

and on concentrations of TVFA and molar proportions of individual VFA. The null hypothesis was that 

inclusion of 300 mg/L of EOCs would have no effect on fermentation and biohydrogenation data. The 

alternative hypothesis was that the EOCs would affect (decrease or increase) fermentation activities.  

This study was a completely randomized design (CRD) experiment with 16 treatments randomly 

allocated to fermentation flask as outlined in section 3.2.2. Data were analysed by analysis of variance 

(ANOVA) using GenStat 15th edition (VSN international Ltd, Registered to: Writtle College) with 

experimental runs as a blocking factor. Differences between treatments were declared by least 
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significance difference (LSD) and significance was declared at P< 0.05. Data were analysed separately 

for each time point (12, 24 and 48 h). 

3.3. RESULTS 

3.3.1. In vitro fermentation parameters 

The effects of EOCs on cumulative gas production (ml/g OM), NH₃-N concentration and pH of 

fermentation vessels are shown in Table 3.4.  

Except for VAN and LIM which maintained total gas production levels similar to the control (118.6 ml/g 

OM), the addition of most EOCs significantly (P<0.001) reduced total gas production at 12 h, with CIN 

(65.5 ml/g OM) being the most inhibitory EOC, inducing approximately 45% reduction of total gas. At 24 

and 48 h, VAN had similar effects to the control (175.1 and 220 ml/g OM for 24 and 48 h respectively), 

whilst the rest of the treatments reduced gas production relative to the control, with the lowest reductions 

in gas production found in vessels with MEN and MYT (means 120.4 and 146.8 for 24 and 48 h, 

respectively). 

The concentration of NH₃-N in cultures increased as the time of incubation progressed (lowest at 12 and 

highest at 48 h). There were no effects of treatments on the concentration of ammonia N in cultures at 12 

h. After 24 h ANE and LIM caused a 27% mean reduction of NH₃-N concentration relative to the control. 

At 48 h, only ANE and CIN significantly decreased (P<0.001) NH₃-N concentration (mean decrease 5.5 

mM) compared with the control, other treatments maintained NH₃-N levels similar to the control (6.9 

mM).   

The pH of cultures at 12 h was not affected by the addition of all EOCs except in cultures with added 

BOR which increased it (7.0) relative to the control (6.7). Relative to the control, the pH of cultures was 

significantly (P<0.001) increased with the addition of all EOCs at both 24 and 48 h (average 6.8 for both 

24 and 48) except VAN (both 24 and 48) and CPY (24 h only) which had similar pH to the control (6.7 

for both 24 and 48 h). 

 The concentration of total TVFA (mM) and molar proportions of individual VFA (mM/mol TVFA) are 

presented in Table 3.5. The average concentration of TVFA was highest in the control and VAN (63.8 
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and 71.0 mM for 24 and 48 h, respectively) and low (P<0.001)  in the remaining treatments, with the 

lowest level observed in MEN (53.7 and 54.1 mM for 24 and 48 h, respectively). At 24 h the average 

molar proportion of acetate was lowest in vessels supplemented with MEN (67.2 mM/mol TVFA) and 

was highest in cultures with CIT (71.4 mM/mol TVFA), relative to the control (68.1 mM/mol TVFA). 

After 48 h the cultures with the lowest molar proportion of acetate was CIN (63.9 mM/mol TVFA), an 

approximately 2% reduction in acetate compared to the control, whilst CIT (69.0) had the highest molar 

proportion of acetate. Propionate was not affected by VAN (24 h), but was increased by EUC and VAN at 

48 h (average increase of 10%), and was reduced by other compounds with CIT inducing the greatest 

reduction (20 % and 21 % for 24 and 48 h, respectively). Whilst VAN, EUC, CAR, CPY and BIS (48 h) 

had no effect on the proportion of butyrate, other compounds reduced the proportion of butyrate with 

MEN expressing the greatest reduction (21 and 34 % reduction at 24 and 48 h respectively). Although 

CIN, EUC and VAN had no effect on the acetate: propionate ratio, other EOCs increased (P<0.001) it 

with the highest increase recorded in vessels with CIT (about 35 % average increase at 24 and 48 h). 
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Table 3.4 Effects of EOCs on cumulative gas production (ml/g OM), pH and ammonia concentration (mM) in cultures during 48 h in vitro incubation 
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Gas  12 118.6a 97.1bc 95.5b 100.7bc 106.7c 96.9b 96.5b 65.5d 84.2e 102.9bc 113.4a 81.8e 82.6e 105.2c 91.4b 115.2a 5.14 0.001 

 24 175.1ᵃ 130.4ᵇᵈ 132.5ᵇᵈ 137.9ᵇᵈ 148.6ᶜᵈᵉ 137.7ᵇᵈ 138.2ᵇᵈ 126.9ᵇ 128.1ᵇ 148.3ᶜᵈᵉ 151.5ᶜ 119.1ᵇ 121.7ᵇ 140.7ᶜᵈᵉ 130.1ᵇ 172.0ᵃ 6.72 0.001 

 48 220.0ᵃ 153.4ᵇᶜ 154.5ᵇᶜ 158.0ᵇ 174.7ᵇ 163.4ᵇ 171.3ᵇ 168.9ᵇ 167.9ᵇ 182.0ᵇ 177.4ᵇᵈ 141.4ᶜ 152.2ᵇᶜ 165.8ᵇ 152.4ᵇᶜ 215.7ᵃ 7.80 0.001 

                    

NH₃-N 12 4.3 4.3 4.7 4.1 4.0 4.7 3.3 5.5 3.4 3.7 4.7 4.9 5.3 4.0 4.8 3.8 0.72 NS 

 24 5.7ᵃ 5.2ᵃᵇ 4.9ᵃᵇ 4.2ᵇ 5.6ᵃ 5.1ᵃᵇ 7.5ᶜ 4.53ᵃᵇ 5.3ᵃᵇ 5.2ᵃᵇ 4.1ᵇ 5.6ᵃ 5.3ᵃᵇ 4.5ᵃᵇ 5.4ᵃᵇ 4.8ᵃᵇ 0.67 0.002 

 48 6.9ᵃᶜᵉ 6.1ᵃᵇᵈ 6.0ᵃᵇᵈ 5.5ᵇ 8.0ᵉ 5.8ᵇᵈ 6.4ᵃᵇᶜ 5.4ᵇ 5.9ᵇᵈ 6.5ᵃᵇᵈ 5.9ᵇᵈ 6.8ᵃᵈᶜ 6.9ᵃᶜᵉ 5.9ᵇᵈ 7.3ᶜᵉ 6.3ᵃᵇᶜ 0.57 0.001 

                    

pH 12 6.7a 6.8a 6.8a 6.8a 6.8a 7.0b 6.8a 6.9ab 6.9ab 6.8a 6.8a 6.9ab 6.8a 6.8a 6.8a 6.7a 0.06 0.001 

 24 6.7ᵃ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.7ᵃ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.7ᵃ 0.03 0.001 

 48 6.7ᵃ 6.8ᵇ 6.9ᶜ 6.9ᶜ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.8ᵇ 6.9ᶜ 6.8ᵇ 6.8ᵇ 6.9ᶜ 6.7ᵃ 0.05 0.001 

Means within row with different superscripts letters are different (P<0.05); CON, control; CAR, 3-carene; ALA,  4-Allylanisole; ANE,  trans-anethole; BIS,  (-)-α-bisabolol; 

BOR,  (-)-borneole; CPY,  (-)-trans-caryophyllene; CIN,  trans-cinnamaldehyde; CIT,  (S)-(-)-β-citronellol; EUC,  eucalyptol; LIM,  (R)-(+)-limonene; MEN,  menthol; MYT,  

myrtenol; CYM,  P-cymene; VAN,  (-)-α-thujone; vanillin; EOCs= essential oils compounds. 
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Table 3.5 Effects of EOCs on concentration of total (mM) and molar proportions of individual volatile fatty acids (mM/mol TVFA) in cultures during 48 h in 

vitro incubation 
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F
A

 

T
im

e 
(h

) 

C
O

N
 

3
-C

A
R

 

A
L

A
 

A
N

E
 

B
IS

 

B
O

R
 

C
P

Y
 

C
IN

 

C
IT

 

E
U

C
 

L
IM

 

M
E

N
 

M
Y

T
 

C
Y

M
 

T
H

U
 

V
A

N
 

se
d

 

P
-v

a
lu

e
s 

TVFA 24 64.6ᵃ 55.6ᵇᵈ 54.4ᵇᵈ 54.7ᵇᵈ 58.7ᶜᵉ 55.9ᵇ 61.1ᶜᶠ 54.5ᵇᵈ 55.0ᵇᵈ 60.5ᶜ 55.9ᵇ 53.7ᵈ 57.5ᵉ 54.5ᵇᵈ 57.0ᵉ 63.0ᵃᶠ 0.97 0.001 

 48 71.7ᵃ 59.3ᵇᶠ 56.6ᵇᵈ 57.4ᵇᵈᶠ 63.5ᶜᵉᶠ 58.8ᵇᶠ 71.8ᵃ 60.6ᵇᶜᶠ 66.4ᵉ 67.5ᵉ 60.8ᵇᶜᶠ 54.1ᵈ 61.0ᶠ 58.8ᵇᶠ 58.5ᵇᶠ 70.3ᵃᵉ 2.10 0.001 

                    

Acetate 24 68.1ᵃᵈ 69.6ᵇ 69.2ᵇ 69.1ᵇ 68.5ᵃ 67.9ᵃᶜ 68.5ᵃ 68.2ᵃ 71.4ᵉ 67.5ᶜᵈ 69.6ᵇ 67.2d 68.5ᵃ 69.8ᵇ 67.9ᵃᶜ 68.2ᵃ 0.34 0.001 

 48 65.1ᵃ 67.8ᵇ 67.3ᵇ 68.0ᵇᵈ 66.9ᵇ 65.6ᵃ 67.3ᵇ 63.9ᶜ 69.0ᵈ 64.3ᵃ 67.5ᵇ 65.5ᵃ 66.7ᵇ 67.9ᵇ 65.7ᵃ 65.0ᵃ 0.54 0.001 

                    

Propionate 24 20.2ᵃ 18.3ᶜ 17.6ᵈ 17.6ᵈ 18.5ᶜ 18.6ᶜᵈ 18.5ᶜ 19.4ᵇ 16.1ᵉ 19.5ᵇ 18.1ᶜᵈ 17.9ᵈ 17.8ᵈ 17.5ᵈ 18.2ᶜᵈ 20.0ᵃ 0.29 0.001 

 48 21.6ᵃ 18.6ᵇ 18.0ᵇᶜ 17.8ᶜ 19.2ᵇ 19.9ᵈ 19.9ᵈ 20.7ᵉ 17.1ᶠ 22.3ᵍ 18.4ᵇ 18.3ᵇ 18.3ᵇ 17.8ᶜ 19.4ᵇ 22.0ᵍ 0.34 0.001 

                    

Butyrate 24 9.3ᵃ 9.5ᵃᶜ 10.4ᵈᵉ 10.1ᵉᶠ 9.7ᵇᶜ 10.6ᵈ 9.9ᵇᶠ 10.0ᵇᵉ 9.7ᵇᶜ 9.6ᵃᶜ 9.7ᵇᶜ 11.2ᶠ 10.2ᵉᶠ 10.0ᵇᵉ 10.4ᵈᵉ 9.3ᵃ 0.17 0.001 

 48 9.3ᵃ 9.9ᵃ 11.0ᵇᶜ 10.7ᵇ 9.8ᵃ 10.7ᵇ 9.0ᵃ 11.8ᶜ 10.3ᵇ 9.6ᵃ 10.0ᵃᵇ 12.5ᶜ 10.8ᵇ 10.5ᵇ 10.9ᵇ 9.2ᵃ 0.42 0.001 

                    

A:P 24 3.4ᵃ 3.8ᵇᶜᵈ 4.0ᵇ 4.0ᵇ 3.7ᶜᵈ 3.7ᵇᵉ 3.8ᵈ 3.5ᵃᵉ 4.5ᶠ 3.5ᵃᵉ 3.9ᵈ 3.8ᵈ 3.9ᵇᵈᵍ 4.0ᵇᵍ 3.8ᵈ 3.4ᵃ 0.09 0.001 

 48 3.0ᵃᵍ 3.7ᵇ 3.8ᵇᶜ 3.9ᶜ 3.5ᵇᵉ 3.3ᵈ 3.4ᵈᵉ 3.1ᵃ 4.1ᶠ 2.9ᵃ 3.7ᵇ 3.7ᵇ 3.7ᵇ 3.9ᶜ 3.4ᵈᵉ 3.0ᵃ 0.09 0.001 

Means within row with different superscripts are different (P<0.05); TVFA, total volatile fatty acid; A/P, acetate to propionate ratio.  CAR, 3-carene; ALA,  4-Allylanisole; ANE,  

trans-anethole; BIS,  (-)-α-bisabolol; BOR,  (-)-borneole; CPY,  (-)-trans-caryophyllene; CIN,  trans-cinnamaldehyde; CIT,  (S)-(-)-β-citronellol; EUC,  eucalyptol; LIM,  (R)-

(+)-limonene; MEN,  menthol; MYT,  myrtenol; CYM,  P-cymene; VAN,  (-)-α-thujone; vanillin; fatty acid; EOCs= essential oils compounds 
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3.3.2. Effects of EOCs on fatty acid metabolism 

The effects of EOC treatments on concentrations of selected C14 and C16 fatty acids are presented in 

Table 3.6. The mean concentrations of C14:0 at 12 h was 5.0 g/100 g TFA and was similar for all EOCs 

except BIS and CYM which decreased the level (P<0.001; average 4.0 g/100 g TFA). Relative to the 

control, the fermentation vessel concentrations of C14:0 were not affected by the addition of 3-CAR, BIS, 

CPY, CIN, LIM and VAN at 24 h, but it was significantly higher (P<0.001) in cultures in which the rest 

of the treatments were added (mean values 5.0 g/100 g TFA). After 48 h the addition of all EOCs did not 

change the levels of C14:0 in the cultures except with ALA, CPY, EUC, MEN, THU and VAN which 

increased it (average 5.0 g/100 g TFA) relative to the control (4.0 g/100 g TFA). 

After 12 h, the concentration of C16:0 was lowest (P<0.001) in vessels supplemented with BIS and CIT 

(mean values 14.0 g/100 g TFA) and highest in cultures in which the control, VAN, CPY and LIM were 

added (mean values 16.0 g/100 g TFA).  Although the levels of C16:0 were not affected by treatments at 

24 h, after 48 h it was lowest (P<0.001) in the cultures where BIS and MEN were added (mean values 

14.1 g/100 g TFA). This level was approximately 12% and 7% lower than the concentrations found in the 

control (16.0 g/100 g TFA), and in ALA and ANE (mean values 15.2), respectively. 

At 12 h the levels of C16:1 were highest (P<0.001) in cultures supplemented with BOR, CIT and MYT 

(average 2.7 g/100 g TFA), this was followed by ALA and THU (mean values 2.5 g/100 g TFA), and 

lowest in vessels with the control, BIS and VAN (average 2.1 g/100 g TFA). However, after 24 h, CPY 

had the lowest concentration of C16:1 (1.7 g/100 g TFA), followed by the control, 3-CAR, ANE, CIN, 

LIM, CYM and VAN (mean values 1.9 g/100 g TFA), whilst the highest levels of C16:1 was observed in 

vessels with added BOR and MYT (average 2.6 g/100 g TFA). At 48 h, BOR and MYT maintained the 

highest levels of C16:1 (means 2.7 g/100 g TFA) relative to the control (1.7 g/100 g TFA), which had 

similar concentration of C16:1 to 3-CAR, LIM, CYM and VAN. 

 The concentrations of selected C18 fatty acids in response to supplementation with EOCs are shown in 

Table 3.7. Relative to the control, CIT elicited an approximately 14% reduction in the concentration of 

C18:0 at 12 h, whilst the remaining EOCs maintained C18:0 at level similar to the control (14.0 g/100 g 



114 
 

TFA). The mean concentration of 18:0 was increased (P<0.001) by the addition of CYM, LIM and CIT to 

fermentation cultures at 24 h (average 14.6 g/100 g TFA), after 48 h, C18:0 was reduced (P<0.001) in the 

vessels where BOR, BIS, CIT, EUC, MEN, MYT and THU were added (11.4 g/100 g TFA) compared to 

the control (12.9 and 13.6 g/100 g TFA for 24 and 48 h respectively). The remaining treatments 

maintained similar levels of 18:0 to the control at both 24 and 48 h. 

At 12 h, the average concentrations of C18:1 n-9 in cultures with added CIN, LIM, CPY and MEN was 

7.0 g/100 g TFA, which exceeded (P=0.015) the mean values recorded in vessels with the control, BIS, 

BOR, CIT, EUC and VAN (6.3 g/100 g TFA). After 24 h, CIT caused about a twofold increase in the 

concentration of C18:1 n-9 relative to the control (P=0.015), whilst the levels were intermediate in the 

rest of the other EOCs. Supplementation with ALA, BIS, CIT, MEN and THU doubled the vessel content 

of C18:1 n-9 (mean values 5.3 g/100 TFA) relative to either the control or VAN (average 2.7 g/100 TFA) 

after 48 h.  

No dietary treatment effect on the vessel content of C18:1 trans 11 was observed after 12 h. However, 

C18:1 trans 11 was increased by the addition of all EOCs at both 24 and 48 h with the exception of VAN. 

The greatest increases were found in cultures with MEN and BOR (mean values 1.2 and 1.3 g/100 g TFA 

for 24 and 48 h, respectively) compared to the control (average 1.0 for both 24 and 48 h). 

The use of all EOCs did not affect the levels of 18:2 cis-9 trans-11 CLA at all incubation time points 

except for 48 h. After 48 h MEN, BOR and BIS caused marginal but significant (P=0.002) increases on 

the level of CLA (mean values 0.14, 0.11, 0.11 and 0.08 g/100 g TFA for MEN, BOR, BIS and control 

respectively).  

The content of 18:2 n-6 decreased with time, being highest at 12 h and lowest at 48 h, in both the control 

and across all cultures supplemented with EOCs. At 12 h the vessel content of 18:2 n-6 increased 

significantly  in response to EOCs in the sequence: CIT (4.7 g/100 g TFA) > ALA, ANE, CIN, MEN, 

MYT (average 4.2 g/100 g TFA) > 3-CAR, BOR, CPY, LIM, CYM and THU (mean values 3.4 g/100 g 

TFA) > VAN and the control (means 2.5 g/100 g TFA). The concentration of 18:2 n-6 at 24 h decreased 

significantly in response to EOCs in the order: control, CPY and VAN (1.4 g/100 g TFA) < BIS and EUC 
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(1.7 g/100 g TFA) < 3-CAR, BOR, CIN, LIM, MYT, CYM and THU (2.2 g/100 g TFA) < ALA, ANE, 

CIT and MEN (2.7 g/100 g TFA). After 48 h, the average level of 18:2 n-6 in cultures with the most 

effective EOCs (ANE and ALA) was more than doubled relative to the control, whilst the concentration 

was intermediate with the addition of the rest of the treatments. 

The pattern of effects of treatments on the vessel content of 18:3 n-3 at all incubation times (12, 24 and 48 

h) were similar to the reported effects of treatments on the levels of 18:2 n-6 above. After 12 h the vessel 

content of 18:3 n-3 increased significantly  in response to EOCs in the sequence: CIT (7.0 g/100 g TFA) 

> ALA, ANE, CIN, MEN, MYT (average 6.2 g/100 g TFA) and lowest in cultures supplemented with  

VAN and the control (means 3.1g/100 g TFA). The values of 18:3 n-3 at 24 h decreased significantly in 

response to EOCs in the order: control and VAN (1.7 g/100 g TFA) < BIS and EUC (2.2 g/100 g TFA) < 

3-CAR, BOR, CIN, LIM, MYT, CYM and THU (3.0 g/100 g TFA) < ALA, ANE and MEN (3.9 g/100 g 

TFA). After 48 h, the average level of 18:3 n-3 in cultures with the most effective EOCs (ANE and ALA) 

tripled the concentration observed in the control, whilst the concentration was intermediate with the 

addition of the rest of the treatments. 

The effects of treatments on the concentration of selected C20 fatty acids are presented in Table 3.8. No 

effect of treatment was found on the concentration of C20:4 n-6 in cultures at all times of incubation.  

The levels of C20:5 n-3 decreased with time, being highest at 12 h and lowest at 48 h, in both the control 

and in cultures with added EOCs. The effect of EOCs on the concentration of C20:5 n-3 at 12 h can be 

ranked in ascending order as follows: control and VAN (2.1) < 3-CAR, BIS, CPY, LIM and CYM (2.3 

g/100 g TFA) < ALA, ANE, CIN and EUC (2.6 g/100 g TFA) < BOR, CIT, MEN, MYT and THU (2.7 

g/100 g TFA). After 24 h, the effects of EOCs on the concentration of C20:5 n-3 in a descending order 

can be ranked as follows: ALA, ANE, BOR, EUC, MEN, MYT and THU (2.3 g/100 g TFA) > 3-CAR, 

BIS, CPY, CIN, CIT, LIM and CYM (1.8 g/100 g TFA) > the control and VAN (1.7 g/100 g TFA). 

Nevertheless, at 48 h period, the content of C20:5 n-3 in cultures with BOR (2.3 g/100 g TFA), followed 

by ALA, ANE, EUC, MEN, MYT and THU (average 2.0 g/100 g TFA) were more than doubled and 

doubled, respectively, relative to the control (1.0 g/100 g TFA).  
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The pattern of effects of treatments on the levels of C22:6 n-3 in vessels at all incubation times (12, 24 

and 48 h) were similar to the reported effects of treatments on the levels of C20:5 n-3 above, with ALA, 

ANE and BOR among the most effective compounds to maintain the highest levels of C22:6 n-3. 

The concentrations of the sums of fatty acids (g/100 g TFA) and content of total fatty acid (mg/g) are 

presented in Table 3.9. No effect of treatments was observed on the concentrations of remaining fatty 

acids after 12 h except in cultures with added BIS and EUC, which increased it relative to the control. At 

24 and 48 however, ALA, ANE, CIT, LIM, MEN and THU reduced the levels of RFA in cultures 

compared to the control. 

At 12 h the ∑SFA was significantly reduced by supplementation with CIT, BIS, BOR, CIN EUC, MEN, 

MYT and THU (average 32.4 g/100 g TFA) relative to the control (35.0 g/100 g TFA).  No effect of 

treatment on ∑SFA was observed after 24 h. However, there was about 11% reduction of ∑SFA in 

cultures with added BOR, CIT, MEN, MYT and THU compared to the control after 48 h. The effects of 

EOCs on ∑SFA-18:0 was similar to the reported effects on ∑SFA; however, CYM which did not affect 

∑SFA at 48 h caused 5% reduction in the content of ∑SFA-18:0 after 48 h relative to the control. 

The content of ∑MUFA in cultures was reduced (P<0.001) with the addition of all EOCs at 12 except in 

cultures with CPY and VAN, being lowest in cultures supplemented with CIT (10.7 g/100 g TFA) 

relative to the control vessels (13.5). At 24 h, ∑MUFA concentration was highest in cultures with added 

CIT (10.8 g/100 g TFA) compared to the control (6.6 g/100 g TFA), which was not different from VAN. 

Except in vessels supplemented with CIN and VAN which had levels of ∑MUFA similar to the control, 

the rest of the treatments increased ∑MUFA after 48 h. 

The content of ∑PUFA decreased as incubation time increased (i.e. highest at 12 h and lowest at 48 h). At 

24 h, the content of ∑PUFA in cultures were in the following decreasing order of significant magnitude: 

ALA, ANE, CIT and MEN (average 10.9 g/100 g TFA) > 3-CAR, LIM, MYT, CYM and THU (9.5 g/100 

g TFA) > BOR, BIS, CPY and EUC (8.0 g/100 g TFA) > VAN and the control (6.7 g/100 g TFA). After 

48 h, the levels of   ∑PUFA observed in cultures with ALA, ANE and MEN (9.1 g/100 g TFA), which 
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were the most effective EOCs, was more than double the concentration found in cultures with the control 

(4.5 g/100 g TFA).  

No effect of inclusion of VAN and CIN was found on TFA at 12, 24 and 48 h. However, all other EOCs 

reduced (P<0.001) TFA relative to the control, with CPY, MEN and CYM (12 h), CIT, EUC and MYT 

(24 h), and ALA and ANE (48 h), being the EOCs that elicited the greatest reduction of TFA compared to 

the control (Table 3.9).  

As indicated in Table 3.10, although no effect of treatments on ∑n-6/∑n-3 was observed at 12 h, it was 

consistently reduced (P<0.001) in cultures with BIS, BOR, EUC, MYT, THU and VAN (mean values 

0.3) at both 24 and 48 h relative to the control (average 0.4). 

The ratio of PUFA to SFA (P: S) in cultures decreased with time of incubation. At both 12 and 24 h, the 

P/S was increased (P<0.001) by all EOCs except EUC and VAN relative to the control (Table 3.10). At 

48 h of incubation, the ratio of P/S in cultures with ALA, ANE, BOR, MEN, MYT and THU (EOCs with 

the highest levels of P/S) tripled (0.3) the content of P/S in the control (0.1). 

The biohydrogenation (g/100 g) of 18:2 n-6 and n-3 PUFA are presented in Table 3.11. The extent of 

biohydrogenation of linoleic acid in the fermentation vessels increased as the time of incubation 

progressed; being lowest at 12 h and highest at 48 h. At 12 h the disappearance of 18:2 n-6 from vessels 

supplemented with EOCs can be ranked in the following increasing order: ALA, CIN, MYT and CIT 

(52.1 g/100 g) > ANE, BOR, MEN, CYM and THU (61.3%) > LIM, EUC, CPY, BIS, 3-CAR, VAN and 

the control (70.4). At 24 h, the biohydrogenation of 18:2 n-6 increased significantly in response to EOCs 

(P<0.001) in the sequence: ALA (70.2 g/100 g) >ANE and CYM (73.1 g/100 g) > THU, MYT, MEN 

(75.8 g/100 g) > 3-CAR, BOR, CIN and LIM (78.1 g/100 g) > CPY, EUC, VAN and the control (84.7 

g/100 g). At 48 h, the protection of 18:2 n-6 from ruminal disappearance was least in the control, VAN 

and CPY (average 89.3 g/100 g), highest in cultures with ALA (74.4 g/100 g) followed by ANE and 

CYM (78.6), whilst rates were intermediate in the remaining EOCs.  

The pattern of effects of EOCs on biohydrogenation of 18:3 n-3 was similar to their reported effects on 

the disappearance of vessel content of 18:2 n-6 at all incubation times. After 12 h the biohydrogenation of 
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18:3 n-3 from vessels supplemented with EOCs can be ranked in the following increasing order: ALA, 

CIN,  and CIT (57.3 g/100 g) > ANE, BOR, MEN, CYM, MYT and THU (67.0%) and highest in the rest 

of the treatments such as LIM, EUC, CPY, BIS, 3-CAR, VAN and the control (70.4). The 

biohydrogenation values for 24 h in increasing response were: ALA (73.6 g/100 g) >ANE and CYM 

(77.1 g/100 g) > THU, MYT, MEN (80.1 g/100 g) and levels were intermediate in the rest of the other 

EOCs but highest in CPY, EUC, VAN and the control (84.7 g/100 g). At 48 h, the protection of 18:3 n-3 

from ruminal disappearance was least in the control, VAN and CPY (average 94.3 g/100 g), highest in 

cultures supplemented with ALA (79.0 g/100 g) followed by ANE and CYM (82.2 g/100 g), whilst it was 

intermediate in the remaining EOCs. 

The extent of disappearance of 20:5 n-3 in vessels increased as the time of incubation advanced, being 

lowest at 12 h and highest at 48 h (Table 3.11). Biohydrogenation of C20:5 n-3 at 12 h of incubation in 

increasing magnitude was as follows: ALA, MYT, CIT, CIN, BOR and THU (27.5 g/100 g) < ANE, BIS, 

MEN and CYM (37.2 g/100 g) < 3-CAR, CPY, LIM, VAN and the control (46.5 g/100 g). After 24 h, 

biohydrogenation increased significantly in response to EOCs (P<0.001) in the progression: control, 3-

CAR, CPY, CIN, LIM and VAN (46 g/100 g) and was highest in ALA, BOR, MYT and THU (62.9 g/100 

g), with potential being intermediate in the other EOCs. After 48 h, biohydrogenation of C20:5 n-3 was 

lowest in vessels with added ALA and THU (42 g/100 g) relative to the control (71.4 g/100 g). 

The trend of biohydrogenation in the vessel content of C22:6 n-3 was similar to the reported trend in the 

biohydrogenation of C20:5 n-3, with ALA, BOR and THU showing the highest (P<0.001) potential to 

reduce the disappearance of C22:6 n-3 after 24 and 48 h, whilst 3-CAR, CPY and LIM, had the lowest 

degree of protection of C22:6 n-3 from biohydrogenation relative to the control. 

  



119 
 

Table 3.6 Effects of EOCs on selected C14 and C16 fatty acids concentration (g/100 g total fatty acids) in cultures at 12, 24 and 48 h in vitro incubation 

  EOCs  
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C14:0 12 5.01a
 5.00a

 5.02a
 5.01a

 4.01b
 5.00a

 5.02a
 5.00a

 5.01a
 4.99a

 5.01a
 5.01a

 5.00a
 4.03b

 5.01a
 5.02a

 0.20 0.001 

 24 4.02a
 4.03a

 5.03b
 5.02b

 4.03a
 5.01b

 4.01a
 4.03a

 5.00b
 5.02b

 4.02a
 4.98b

 5.01b
 5.01b

 5.02b
 4.01a

 0.20 0.001 

 48 4.01a
 4.02a

 5.00b
 4.01a

 4.00a
 4.01a

 5.01b
 4.02a

 4.00a
 5.01b

 4.01a
 4.99b

 4.01a
 4.00a

 5.01b
 5.01b

 0.10 0.001 

                    

C16:0 12 16:0a
 15.0b

 15.0b
 15.0b

 14.0c
 15.0b

 16.0a
 15.0b

 14.0c
 15.0b

 16.0a
 15.0b

 15.0b
 15.0b

 15.0b
 16.0a

 0.40 0.001 

 24 15.2 14.5 14.6 14.6 14.4 14.7 13.6 14.3 15.5 15.5 15.0 14.8 14.7 15.3 14.9 14.9 0.62 NS 

 48 16.0a 15.5a
 15.2b

 15.2b
 14.3c

 14.9bc
 15.5b

 15.2b
 13.8c

 15.5b
 15.6b

 13.9c
 14.8bc

 15.0b
 14.8bc

 16.1a
 0.39 0.001 

                    

C16:1 12 2.00a
 2.10ad

 2.40be
 2.30b

 2.10a
 2.70c

 2.10a
 2.20d

 2.70c
 2.30b

 2.20d
 2.60ce

 2.70c
 2.00a

 2.50e
 2.10a

 0.100 0.001 

 24 1.90a
 1.80ad

 2.20b
 2.00a

 2.10b
 2.60c

 1.70d
 1.80ad

 2.30b
 2.30b

 1.90a
 2.30b

 2.50c
 1.90a

 2.30b
 1.90a

 0.100 0.001 

 48 1.70ad
 1.70ad

 2.20b
 2.00b

 2.10b
 2.60c

 1.90a
 1.60d

 2.00b
 2.20b

 1.70ad
 2.20b

 2.70c
 1.70ad

 2.20b
 1.80ad

 0.110 0.001 

Means within row with different superscripts letters are different (P<0.05); CON, control; CAR, 3-carene; ALA,  4-Allylanisole; ANE,  trans-anethole; BIS,  (-)-α-bisabolol; 

BOR,  (-)-borneole; CPY,  (-)-trans-caryophyllene; CIN,  trans-cinnamaldehyde; CIT,  (S)-(-)-β-citronellol; EUC,  eucalyptol; LIM,  (R)-(+)-limonene; MEN,  menthol; MYT,  

myrtenol; CYM,  P-cymene; VAN,  (-)-α-thujone; vanillin; FA= fatty acids. Values with extreme similarity are given in two decimal places 
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Table 3.7 Effects of EOCs on selected C18 fatty acids composition (g/100 g total fatty acids) in cultures at 12, 24 and 48 h in vitro incubation 
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C18:0 12 14.0ab 15.0a 14.0ab 15.0a 13.0bc 14.0 ab 14.0 ab 14.0 ab 12.0c 13.0 bc 15.0 a 13.0 bc 13.0 bc 15.0 a 13.0 bc 14.0 ab 0.60 0.001 

 24 12.9ᵃ 13.4ᵃ 13.0ᵃ 13.8ᵃᵇ 13.1ᵃ 12.6ᵃ 12.4ᵃ 13.3ᵃ 15.0ᵇ 13.2ᵃ 14.0ᵇ 13.4ᵃ 12.8ᵃ 14.7ᵇ 13.0ᵃ 12.7ᵃ 0.65 0.006 

 48 13.6ᵃᶜ 14.1ᵃ 12.3ᵇᶜ 13.2ᵃᶜ 11.0ᵇ 11.4ᵇ 12.1ᵇᶜ 14.1ᵃ 11.7ᵇ 11.6ᵇ 14.6ᵃ 11.5ᵇ 11.4ᵇ 13.3ᵃᶜ 11.4ᵇ 13.0ᵃᶜ 0.78 0.001 

                    

C18:1 n-9 12 6.3a 6.8ab 6.7ab 6.6ab 6.3a 6.3a 6.9b 7.0b 6.3a 6.2a 7.0b 6.9b 6.6ab 6.6ab 6.6ab 6.3a 0.27 0.015 

 24 3.7a 6.0bf 5.7bc 5.7bc 5.5bc 5.2c 5.3cd 5.9bd 7.2e 5.4bc 6.4f 6.1bf 5.7bc 6.2bf 5.8bd 4.0a 0.35 0.001 

 48 2.5a 4.3bd 5.3c 4.2bd 5.3c 4.8b 3.9d 3.1a 5.3c 4.3bd 4.6b 5.1c 5.0c 4.0bd 5.3c 2.8a 0.42 0.001 

                    

C18:1 tr 11 12 1.1 1.2 1.2 1.2 1.1 1.4 1.2 1.3 1.3 1.2 1.2 1.4 1.5 1.1 1.4 1.1 0.60 NS 

 24 1.0ᵃ 1.1ᶜ 1.1ᶜ 1.0ᵃ 1.1ᶜ 1.2ᵈ 1.0ᵃ 0.9ᵇ 1.2ᵈ 1.1ᶜ 1.1ᶜ 1.2ᵈ 1.2ᵈ 1.1ᶜ 1.1ᶜ 1.0ᵃ 0.05 0.001 

 48 1.0ᵃ 1.1ᶜ 1.1ᶜ 1.1ᶜ 1.1ᶜ 1.2ᵈ 1.1ᶜ 0.9ᵇ 1.1ᶜ 1.1ᶜ 1.1ᶜ 1.3ᵉ 1.2ᵈ 1.0ᵃ 1.1ᶜ 1.0ᵃ 0.05 0.001 

                    

C18:2 CLA 12 0.20 0.21 0.22 0.25 0.22 0.18 0.20 0.21 0.23 0.20 0.20 0.23 0.23 0.22 0.24 0.20 0.030 NS 

 24 0.14 0.16 0.18 0.19 0.14 0.15 0.22 0.14 0.19 0.15 0.15 0.15 0.16 0.14 0.15 0.17 0.027 NS 

 48 0.08 0.07 0.1 0.1 0.11ᵃ 0.11ᵃ 0.08 0.08 0.08 0.1 0.07 0.14ᵃ 0.1 0.08 0.1 0.09 0.016 0.002 

                    

C18:2 n-6 12 2.4a 3.3b 4.1cd 4.0c 2.8a 3.3b 3.1b 4.6cd 4.7d 2.8a 3.5b 4.2cd 4.1cd 3.5b 3.5b 2.5a 0.33 0.001 

 24 1.3ᵃ 2.2ᵇ 2.7ᶜ 2.7ᶜ 1.6ᵈ 2.0ᵇ 1.5ᵃ 2.0ᵇ 2.8ᶜ 1.7ᵈ 2.2ᵇ 2.6ᶜ 2.2ᵇ 2.4ᵇ 2.2ᵇ 1.4ᵃ 0.14 0.001 

 48 0.9ᵃ 1.7ᶜᵍ 2.3ᵈ 2.1ᵈᵉ 1.3ᵇᶠ 1.6ᶜ 1.2ᵇ 1.3ᵇᶠ 1.4ᵇᶜ 1.2ᵇ 1.6ᶜ 2.0ᵉ 1.5ᶜᶠ 1.9ᵉᵍ 1.6ᶜ 1.0ᵃ 0.11 0.001 

C18:3 n-3 12 3.0a 4.5bf 5.8c 5.7cf 3.7a 4.6bf 4.0b 6.8de 7.0d 3.7a 4.7bf 6.1e 5.7cf 4.7bf 4.9f 3.2a 0.45 0.001 

 24 1.6ᵃ 3.1ᶜ 4.0ᵈ 3.9ᵈ 2.3ᵉ 2.8ᵇ 2.0ᵉ 2.7ᵇ 3.6ᵈ  g 2.1ᶠ 3.1ᶜ 3.9ᵈ 2.9ᵇᶜ 3.4ᶜ 3.0ᵇᶜ 1.8ᵃᶠ 0.19 0.001 

 48 1.1ᵃ 2.2ᶜ 3.2ᵈ 3.0ᵈᵉ 1.7ᵇᶠ 2.1ᶜ 1.5ᶠ 1.6ᵇᶠ 2 1.4ᵃᵇᶠ 2.2ᶜ 2.7ᵉ 1.9ᵇᶜ 2.7ᵉ 2.2ᶜ 1.2ᵃᶠ 0.16 0.001 

Means within row with different superscripts letters are different (P<0.05); FA= fatty acids; CON, control; CAR, 3-carene; ALA,  4-Allylanisole; ANE,  trans-anethole; BIS,  (-)-α-bisabolol; BOR,  (-)-borneole; CPY,  (-)-

trans-caryophyllene; CIN,  trans-cinnamaldehyde; CIT,  (S)-(-)-β-citronellol; EUC,  eucalyptol; LIM,  (R)-(+)-limonene; MEN,  menthol; MYT,  myrtenol; CYM,  P-cymene; VAN,  (-)-α-thujone; vanillin; FA= fatty acid 
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Table 3.8 Effects of EOCs on selected long chain fatty acids composition (g/100 g total fatty acids) in cultures at 12, 24 and 48 h in vitro incubation 

  EOCs  
F

A
 

T
im

e 
(h

) 

C
O

N
 

3
-C

A
R

 

A
L

A
 

A
N

E
 

B
IS

 

B
O

R
 

C
P

Y
 

C
IN

 

C
IT

 

E
U

C
 

L
IM

 

M
E

N
 

M
Y

T
 

C
Y

M
 

T
H

U
 

V
A

N
 

se
d

 

P
-v

a
lu

e
s 

 12 0.30 0.32 0.20 0.21 0.31 0.20 0.22 0.20 0.22 0.20 0.21 0.22 0.21 0.30 0.30 0.31 0.02 NS 

C20:4 n-6 24 0.31 0.33 0.31 0.30 0.33 0.31 0.43 0.30 0.32 0.30 0.31 0.32 0.30 0.30 0.31 0.31 0.03 NS 

 48 0.31 0.30 0.29 0.31 0.30 0.28 0.31 0.31 0.30 0.32 0.29 0.29 0.20 0.31 0.30 0.28 0.02 NS 

                    

 12 2.0a 2.2b 2.6cd 2.6cd 2.3b 2.7ce 2.2b 2.5d 2.7ce 2.5d 2.3b 2.7ce 2.8e 2.3b 2.7ce 2.1a 0.08 0.001 

C20:5 n-3 24 1.6ᵃ 1.8ᵇᶜ 2.2ᵉ 2.2ᵉ 1.9ᶜ 2.4ᵈ 1.8ᵇᶜ 1.8ᵇᶜ 1.9ᶜ 2.2ᵉ 1.9ᶜ 2.3ᵈᵉ 2.3ᵈᵉ 1.8ᵇᶜ 2.3ᵈᵉ 1.7ᵃᵇ 0.07 0.001 

 48 1.0ᵃ 1.4ᵇ 2.0ᵈ  g 1.9ᵈᵉ 1.8ᵉ 2.3ᶜ 1.4ᵇ 1.3ᵇ 1.3ᵇ 2.0ᵈ  g 1.4ᵇ 2.0ᵈ  g 2.1  g 1.6ᶠ 2.1  g 1.3ᵇ 0.1 0.001 

                    

 12 1.6a 1.7ac 1.9bd 1.9bd 1.8bc 2.0d 1.6a 1.8bc 1.8bc 1.9bd 1.8bc 2.0d 2.1d 1.8bc 2.1d 1.7a 0.08 0.001 

C22:6 n-3 24 1.5ᵃᵇ 1.6ᵇ 1.8ᵈᵉ 1.8ᵈᵉ 1.7ᵈ 2.0ᶜ 1.7ᵉ 1.4ᵃ 1.5ᵃᵇ 1.8ᵈᵉ 1.6ᵇ 1.8ᵈᵉ 1.9ᵈ 1.5ᵃᵇ 1.9ᵈ 1.6ᵇ 0.08 0.001 

 48 1.0ᵃ  g 1.1ᵃ 1.7ᵈᵉ 1.6ᵈ 1.8ᵉᶠ 2.0ᶜ 1.3ᵇ 1.0ᵃ  g 0.9  g 1.8ᵉᶠ 1.1ᵃ 1.7ᵈᵉ 1.9ᶜᶠ 1.2ᵇ 1.9ᶜᶠ 1.2ᵇ 0.08 0.001 

Means within row with different superscripts letters are different (P<0.05); CON, control; CAR, 3-carene; ALA,  4-Allylanisole; ANE,  trans-anethole; BIS,  (-)-α-bisabolol; 

BOR,  (-)-borneole; CPY,  (-)-trans-caryophyllene; CIN,  trans-cinnamaldehyde; CIT,  (S)-(-)-β-citronellol; EUC,  eucalyptol; LIM,  (R)-(+)-limonene; MEN,  menthol; MYT,  

myrtenol; CYM,  P-cymene; VAN,  (-)-α-thujone; vanillin; FA= fatty acids. Values with extreme similarity are given in two decimal places. 
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Table 3.9 Effects of EOCs on the concentration of sums of fatty acids (g/100 g TFA) and content of total fatty acids (mg/g) in cultures at 12, 24 and 48 h in vitro 

incubation 
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RFAs 12 35.5a 33.4a 32.2a 32.9a 39.0b 34.6a 33.3a 32.3a 35.0a 37.0b 31.8c 33.2ac 33.8ac 34.9a 35.4a 36.1a 1.73 0.005 

 24 43.0a 39.1a 38.2b 37.9b 40.4ab 39.8ab 43.9a 41.2ab 32.4c 38.7ab 37.3b 35.9c 38.8ab 36.1cb 38.0b 43.0a 2.37 0.001 

 48 43.2ac 38.8b 37.8b 39.3bc 41.9cd 41.1cd 41.3c 43.9ac 43.2a 41.8ab 38.3b 40.8d 41.1cd 40.1d 40.1d 43.0ac 1.16 0.001 
                    

∑SFA 12 35.0a 35.2a 34.6a 34.8a 31.5b 33.7c 35.0a 33.6c 31.4b 32.9b 36.0a 32.2b 32.2b 34.1a 32.0b 34.6a 0.97 0.001 

 24 32.3 32.1 32.2 33.1 31.8 32.0 29.9 31.9 35.3 33.4 33.3 32.9 32.1 34.5 32.7 32.1 1.48 NS 

 48 34.0ᵃᵈ 34.1ᵃᵈ 32.1ᵃᶜᵈ 32.9ᵃᶜᵈ 29.6ᵇᵉ 30.7ᶜᵉ 32.3ᵃᶜᵈᵉ 33.4ᵃᵈ 29.8ᵇᵉ 31.8ᵃᵉ 34.6ᵈ 30.0ᵉ 30.7ᵉ 32.8ᵃᶜᵈ 30.8ᵉ 33.6ᵃᵈ 1.2 0.001 
                    

∑SFA-18:0 12 20.7a 20.3ac 20.3ac 20.2ac 18.4b 20.1ac 20.9a 19.8c 19.6c 19.8c 20.5ac 19.6c 19.6c 19.3c 19.4c 20.6a 0.52 0.001 

 24 19.5 18.7 19.2 19.3 18.8 19.4 17.5 18.6 20.3 20.3 19.3 19.5 19.3 19.9 19.7 19.4 0.78 NS 

 48 20.5a 20.0a 19.8ac 19.7ac 18.6b 19.3c 20.2a 19.2c 18.1b 20.2a 20.0a 18.5b 19.3c 19.5c 19.4c 20.6a 0.46 0.001 
                    

∑MUFA 12 13.5a 12.5bc 11.7cd 11.1de 12.2bc 12.5bc 13.5a 11.0de 10.7e 12.6bc 12.5bc 12.3bc 12.1bc 11.7cd 12.3bc 13.1a 0.46 0.001 

 24 6.6a 8.9b 9.0b 8.8b 8.8b 9.1b 8.0b 8.6b 10.8c 8.8b 9.3b 9.6b 9.4b 9.1b 9.3b 6.9a 0.47 0.001 

 48 5.2a 7.1b 8.6c 7.2b 8.6c 8.6c 6.8d 5.6a 8.4c 7.6b 7.3b 8.6c 8.9c 6.8d 8.7c 5.6a 0.52 0.001 

                    

∑PUFA 12 9.5a 12.2b 14.8c 14.6c 11.1b 13.0d 11.2b 16.2e 16.5e 11.3b 12.7b 15.5e 15.2e 12.7b 13.7d 9.9a 0.83 0.001 

 24 6.4a 9.2b 11.1c 11.0c 8.0d 9.5b 7.6d 8.3d 10.3c 8.2d 9.1b 11.0c 9.7b 9.5b 9.7b 7.0a 0.6 0.001 

 48 4.5a 6.8b 9.5c 9.0c 7.0d 8.4d 5.7e 5.5e 5.9e 6.7e 6.7e 8.9c 7.6d 7.8d 8.2d 5.1a 0.45 0.001 
                    

TFA 12 47.8a 44.6a 46.9a 47.7a 44.3a 47.1a 38.0b 46.8a 46.9a 40.7b 44.3ab 39.5b 39.5b 39.5b 40.4ab 47.6a 2.63 0.001 

 24 62.3ᵃ 56.3ᵃ 57.7ᵃ 56.8ᵃ 53.8ᵇ 56.6ᵃ 52.3ᵇ 57.1ᵃ 40.5ᶜ 47.0ᵈ 54.7ᵇ 48.0ᵈ 46.8ᵈ 48.5ᵈ 47.3ᵈ 57.5ᵃ 3.28 0.001 

 48 58.1ᵃᶜ 50.3ᵇ 49.6ᵇ 49.8ᵇ 61.5ᵃ 51.4ᵇ 52.4ᵃᵇ 52.1ᵃᵇ 53.4ᵇᶜ 56.9ᶜ 50.5ᵇ 51.4ᵇ 54.2ᵇᶜ 52.8ᵃᵇ 55.2ᶜ 53.6aᵇ 3.17 0.017 

∑SFA = sum of saturated fatty acids, MUFA= monounsaturated fatty acids, PUFA= polyunsaturated fatty acids, TFA= total fatty acids; FA= fatty acids; Means within row with different 
superscripts letters are different (P<0.05); CON, control; CAR, 3-carene; ALA,  4-Allylanisole; ANE,  trans-anethole; BIS,  (-)-α-bisabolol; BOR,  (-)-borneole; CPY,  (-)-trans-caryophyllene; CIN,  
trans-cinnamaldehyde; CIT,  (S)-(-)-β-citronellol; EUC,  eucalyptol; LIM,  (R)-(+)-limonene; MEN,  menthol; MYT,  myrtenol; CYM,  P-cymene; VAN,  (-)-α-thujone; vanillin  
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Table 3.10 Effects of EOCs on fatty acid ratios n-6/n-3 and P:S in cultures at 12, 24 and 48 h in vitro incubation 
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n-6/n-3 12 0.401 0.400 0.402 0.401 0.403 0.402 0.401 0.400 0.403 0.400 0.403 0.401 0.401 0.403 0.402 0.401 0.020 NS 

 24 0.401a 0.400a 0.400a 0.401a 0.301b 0.302b 0.301b 0.400a 0.401a 0.300b 0.401a 0.401a 0.301b 0.400a 0.302b 0.301b 0.010 0.001 

 48 0.402a 0.401a 0.402a 0.402a 0.300b 0.301b 0.400a 0.402a 0.401a 0.301b 0.401a 0.302b 0.301b 0.403a 0.301b 0.302b 0.020 0.001 

                    

P:S 12 0.302a 0.301a 0.402b 0.400b 0.401b 0.402b 0.303a 0.501c 0.503c 0.300a 0.403b 0.502c 0.501c 0.401b 0.400b 0.302a 0.030 0.001 

 24 0.201a 0.300b 0.301b 0.301b 0.302b 0.301b 0.302b 0.303b 0.303b 0.202a 0.300b 0.302b 0.301b 0.300b 0.302b 0.203a 0.020 0.001 

 48 0.101a 0.202b 0.302c 0.300c 0.201a 0.300c 0.201b 0.203b 0.200b 0.202b 0.203b 0.301c 0.302c 0.201b 0.300c 0.200b 0.020 0.001 

Means within row with different superscripts letters are different (P<0.05); CON, control; CAR, 3-carene; ALA,  4-Allylanisole; ANE,  trans-anethole; BIS,  (-)-α-bisabolol; 

BOR,  (-)-borneole; CPY,  (-)-trans-caryophyllene; CIN,  trans-cinnamaldehyde; CIT,  (S)-(-)-β-citronellol; EUC,  eucalyptol; LIM,  (R)-(+)-limonene; MEN,  menthol; MYT,  

myrtenol; CYM,  P-cymene; VAN,  (-)-α-thujone; vanillin; n-6/n-3= sum of n-6 divided by sum of n-3 fatty acids, P/S= sum of PUFA divided by sum of SFA; FA= 

fatty acids.  
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Table 3.11 Effects of EOCs on the biohydrogenation (g/100 g) of PUFA in cultures at 12, 24 and 48 h in vitro incubation 
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C18:2 n-6 12 73.4a 68.4a 54.2be 61.8c 68.9a 63.9c 70.1a 47.8e 50.1e 71.8a 66.4a 60.1c 56.1bc 60.6c 60.0c 73.8a 3.67 0.001 

 24 85.5ᵃ 78.6ᵇ 69.7ᶜ 73.2ᵈ 81.3ᵉ 77.6ᵇ 85.3ᵃ 77.4ᵇ 70.6ᶜ 82.9ᵃ 78.9ᵇ 75.3ᵈᶠ 76.9ᶠ 72.9ᵈ 75.3ᵈᶠ 85.2ᵃ 1.59 0.001 

 48 90.0ᵃ 83.8ᵇᵈ 74.4ᶜ 79.4ᵈ 85.4ᵇ 82.2ᵈ 88.3ᵃ 85.7ᵇ 85.1ᵇ 87.7ᵃ 84.2ᵇ 81.2ᵈ 84.4ᵇ 77.8ᵈ 81.4ᵈ 89.6ᵃ 1.31 0.001 

                    

C18:3 n-3 12 80.4a 75.0b 60.9ce 67.8d 74.2b 69.2d 77.8b 56.3e 54.7e 78.0b 73.6b 67.0d 64.2d 67.2d 66.8d 79.6a 2.49 0.001 

 24 89.7ᵃ 82.5ᵇ 73.6ᶜ 77.8ᵇᵈ 84.3ᵇ 81.7ᵇ 88.8ᵃ 82.9ᵇ 76.9ᵈ 87.7ᵃ 82.7ᵇ 78.7ᵈᵉ 82.1ᵇᵉ 76.4ᵈ 79.5ᵉ 88.9ᵃ 1.36 0.001 

 48 92.8ᵃ 87.6ᵇᵉ 79.0ᶜ 82.9ᵈ 88.5ᵇ 86.1ᵉ 91.7ᵃᶠ 90.0ᶠ 87.3ᵇᵉ 91.8ᵃᶠ 87.9ᵇᵉ 85.2ᵉ 88.3ᵇ 81.4ᵈ 85.4ᵉ 92.3ᵃ 1.11 0.001 

                    

C20:5 n-3 12 45.2a 48.5a 27.7b 38.7c 35.4c 24.2b 50.7a 33.3bc 28.9b 40.0a 46.1a 38.8c 26.1b 35.9c 25.0b 42.2a 3.75 0.001 

 24 56.5ᵃ 57.7ᵃ 39.2ᵇ 48.9ᶜ 44.8ᵇᶜ 33.8ᵇ 59.5ᵃ 52.6ᵃᶜ 50.0ᶜ 47.2ᶜ 56.7ᵃ 49.4ᶜ 39.0ᵇ 49.0ᶜ 36.4ᵇ 52.9ᵃᶜ 3.12 0.001 

 48 71.4ᵃ 67.5ᵃᵉ 43.9ᵇ 54.8ᶜ 47.5ᵇ 35.9ᵈ 68.0ᵃᵉ 66.6ᵃᵉ 65.2ᵃᵉ 51.7ᶜ 67.1ᵃᵉ 54.5ᶜ 44.0ᵇ 56.3ᶜ 40.0ᵇ 63.2ᵉ 3.29 0.001 

                    

C22:6 n-3 12 29.8a 32.6a 11.3b 26.9c 14.6b 7.4b 36.0a 17.6b 25.6c 22.0c 33.5a 22.5c 8.7b 18.7b 6.1b 25.3b 5.21 0.001 

 24 34.4ᵃᵈ 38.1ᵃ 15.8ᵇᶜ 32.5ᵃ 17.2ᵇ 8.5ᶜ 36.0ᵃ 33.9ᵃᵈ 37.9ᵃ 23.6ᵇᵈ 40.4ᵃ 29.5ᵈ 14.4ᵇᶜ 32.8ᵃ 8.3ᶜ 28.8ᵈ 5.17 0.001 

 48 54.1ᵃ 56.9ᵃ 22.1ᵇ 39.2ᶜ 20.1ᵇ 9.4ᵈ 51.1ᵃ 54.0ᵃ 62.1ᵃ 26.3ᵇ 58.1ᵃ 33.4ᶜ 18.8ᵇ 44.2ᵉ 8.8ᵈ 44.5ᵉ 4.73 0.001 

Means within row with different superscripts letters are different (P<0.05); CON, control; CAR, 3-carene; ALA,  4-Allylanisole; ANE,  trans-anethole; BIS,  (-)-α-bisabolol; 

BOR,  (-)-borneole; CPY,  (-)-trans-caryophyllene; CIN,  trans-cinnamaldehyde; CIT,  (S)-(-)-β-citronellol; EUC,  eucalyptol; LIM,  (R)-(+)-limonene; MEN,  menthol; MYT,  

myrtenol; CYM,  P-cymene; VAN,  (-)-α-thujone; vanillin; FA= fatty acids 
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3.5.0. Discussion  

3.5.1. In vitro fermentation parameters 

In the present study, the findings are consistent with a number of previous in vitro studies for example, 

Benchaar et al. (2007) observed that inclusion of carvacrol and thymol (with similar chemical structure to 

ALA, ANE, CIN) in in vitro batch incubation impaired gas production, and Martinez et al. (2006) showed 

that in vitro DM degradability of ration (concentrate to hay ratio of 70: 30 DM basis) was decreased by 

addition of thymol and carvacrol (1.35 microliter/ml). Thymol and carvacrol (phenolic compounds) are in 

the same chemical group as ALA and ANE which are among the most inhibitory in this study. In 

addition, the supplementation of different doses (150, 300, 450 and microgram/ml) of oil of Zataria 

multiflora, which is rich in thymol and carvacrol and Siberian fir needle oil (125, 250 and 500 mg/L) 

proportionally reduced total gas production (Talebzadeh et al., 2012; Gunal et al., 2013). Macheboeuf et 

al. (2008) reported that more than 80% decrease in gas production was observed when EO of Origanum 

vulgare   (with carvacrol and thymol as main constituents) was added to in vitro culture. The results also 

corroborate previous in vivo studies where 500 mg/day of cinnamaldehyde (Busquet et al., 2003; 

Calsamiglia et al., 2007), and a mixture of eugenol (90 mg/day) plus 180 mg/day of cinnamaldehyde 

(Cardozo et al., 2006) negatively affected VFA. Results of this experiment suggest that the EOCs used 

might have modified microbial species composition in the cultures resulting in decreased fermentation of 

substrates, consequently producing less gas relative to the control, however to different degrees. 

However, there are no microbial data to substantiate this claim. The differences in these EOCs to 

influence the amount of gas production could be due to the variation in the chemical structure of the 

isoprene unit which is known to play a vital role in influencing the antimicrobial activity of terpenes 

(Griffin et al., 1999). In terms of their effectiveness to modify microbial population, the phenolic 

compound (CIN) had the greatest inhibition of total gas production at 12 h, although its potency was not 

sustained to 24 and 48 h, suggesting a possibility of either the gradual degradation of the active molecules 

of the compound or microbial adaptation to the compound (Chizzola et al., 2004; Brodiscou et al., 2007). 

Other phenolics such as ALA, ANE and monoterpene alcohol (MEN) sustained inhibition throughout 

incubation period whilst the aldehyde (VAN) was shown to have the least potential to modify 
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fermentation. These findings are consistent with previous reports which ranked the antimicrobial potency 

of EOCs in the following descending order: phenols > cinnamic aldehyde > alcohols > aldehydes 

(Kalemba et al., 2012). The tendency for the phenolic compounds to elicit greatest inhibition of gas 

production could be attributed to the possession of hydroxyl group whose acidic characters are speculated 

to inhibit both the attachment of bacteria to insoluble fractions of feed and the digestion of the soluble 

components of feeds (McAllister et al., 1994; Aharoni et al., 1998). The results observed with VAN is 

also consistent with previous observation by Castillejos et al. (2006) who reported that vanillin (5, 50, 

500 and 5000) did not affect rumen fermentation. It could be suggested in this study that at the dose 

administered,  normal activity of some ruminal micro-organisms responsible for feed digestion were 

inhibited by majority of the EOC tested. In general, total gas was significantly reduced due to the 

inclusion of EOCs, which suggests impaired microbial activity. 

The concentration of NH₃-N in cultures was considerably reduced by ANE and LIM after 24 h. After 48 

h ANE and CIN substantially decreased NH₃-N concentration in cultures whilst other treatments 

maintained NH₃-N concentration similar to the control.  Results of this study agree with a number of 

previous studies such as Cardozo et al. (2005), where eugenol (300 mg/l), whose chemical structure is 

similar to ANE and CIN  reduced NH₃-N concentration in in vitro batch culture; where limonene (500 

mg/L), guaiacol (5, 50, 500, 5000 mg/L) and eugenol (5, 50 and 500 mg/L) substantially reduced linearly 

the concentration of NH₃-N in culture (Castillejos et al., 2006; Benchaar et al., 2008), and Castillejos et 

al.(2006) and Benchaar et al. (2008), where  the concentration of NH₃-N in culture was not affected by 

inclusion of vanillic aldehyde (5, 50 and 500 mg/L). It has been established that the hydroxyl groups in 

the chemical structures of phenolic compounds are vital constituent responsible for their high and 

broadest antimicrobial activity (Burt, 2004). In the current study, the reduced concentration of ammonia-

N in cultures supplemented with ANE and CIN could be due to the inhibition of hyper ammonia 

producing bacteria (HAP) or proteolytic bacteria which are responsible for amino acid deamination 

(Chapter 1). Previous reports indicate that hyper ammonia producing bacteria, proteolytic bacteria and 

protozoa are the major groups of microbes involved in NH₃-N production (Mclnotch et al., 2003; Bach et 

al., 2005). Therefore, reduced activities of these predominant organisms could be speculated as the 
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consequence of the lower concentration of ammonia N in some cultures. Indeed, some EOCs have been 

reported to reduce the activities of HAP (Mclnotch et al., 2003). 

The pH of ruminal cultures was increased by all EOCs at 24 and 48 h except VAN. Similar result was 

obtained by Chaves et al. (2008) who reported higher ruminal pH following inclusion of anethole, juniper 

berry, garlic, and cinnamon oils in culture.  

The average concentration of TVFA was highest in the control and VAN, and significantly low in the 

remaining treatments, with the lowest concentration of TVFA observed in cultures receiving MEN, ALA, 

ANE and 3-CAR. These results are consistent with earlier studies where the addition of thyme oil (125, 

250 and 500 mg/l) and citronella oil (125, 250 and 500 mg/l) rich in citronella, citronellol and limonene 

decreased TVFA (Gunal et al., 2013; Pandu et al., 2014). In the current study, VAN and CPY did not 

alter TVFA and did not change the pH of the fluid, hence, it could be suggested that the high TVFA 

concentration in cultures supplemented with VAN reduced the pH of rumen fluid. However, it can be 

speculated that the activities of cellulolytic bacteria may have been impaired by EOCs not pH given that 

ruminal pH was not reduced since cellulolytic bacteria are sensitive to low (< 6.0) rumen pH (Weimer, 

1993). Therefore, reductions in TVFA could be attributed to decreased digestibility of feed which is 

influenced by the chemical configuration of the EOCs used. In the current study, the same set of EOCs 

such as ALA and ANE (phenolics) and monoterpene alcohol (MEN) were observed to cause the highest 

reductions of both the concentrations of TVFA and cumulative gas production. Reduced digestion of feed 

which is reflected by decreased production of gas can be accompanied by less production of hydrogen, 

CH4 and volatile fatty acids plus a lower A/P ratio (Boggs et al., 1987). The significant decrease in TVFA 

due to supplementation of EOCs in cultures shows that at the dose used in this experiment, EOC had non-

selective and general antimicrobial activity against a broad spectrum of rumen micro-organisms. As 

ruminants derive over 70% of their required energy from VFA (Bergman, 1990), a reduction of VFA of 

the magnitude observed (over 10% average reduction) with all EOCs except CPY and VAN, would 

suggest a significant reduction of rumen fermentation.  A reduction in VFA would suggest that if similar 

effect is exerted in vivo, growth of animal would also be affected since VFA are the major sources of 

energy. Addition of EOC may decrease (at high doses) or have no effect (at low doses) on VFA 
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production (Patra and Saxena, 2010).  Effects of EOC on VFA are determined by the dose, type of EO 

used (Bustquet et al., 2006), and the pH of the rumen (Cardozo et al., 2005).  

In this study the concentration of acetate was generally increased and the levels of propionate were 

concomitantly reduced plus high A/P ratios with all EOCs relative to the control except CIN and MEN 

(which reduced acetate at 24 h), and VAN and CPY (no effect). This suggests that the inclusion of CIN 

and MEN in cultures could potentially modify rumen fermentation towards decreased methanogenesis 

(Demeyer and Van Nevel, 1995). In the rumen, anaerobic fermentation of proteins and soluble 

carbohydrates tends to shift fermentation towards higher propionate production and results in reduced 

acetate and methanogenesis (Demeyer and Van Nevel, 1995), since the predominant producers of acetate 

and methane are cellulolytic microbes. In agreement with the current study, Spanghero et al. (2008) 

observed that a blend of EO shifted the end products of fermentation toward a reduction in the A/P ratio 

and acetate proportion only at lower pH.  

The results of the current study on rumen fermentation profiles showed that EOCs could be selected to 

manipulate rumen fermentation if the dose is optimized. In general, the degree of using EOCs to 

manipulate rumen fermentation activities (such as ammonia, VFA and gas production) seems to be in the 

following decreasing sequence: phenolic compounds such as ALA, ANE, and CIN > the monoterpene 

alcohols example, MEN > aldehydes such as VAN, had the least potential. 

3.5.2. Effect of EOC on fatty acid metabolism 

The concentrations of C14:0 were reduced in cultures where BIS and CYM were added. The EOCs ALA, 

ANE, BIS and MEN reduced the levels of C16:0 in cultures relative to the control. A reduction in the 

content of these saturated fatty acids (C14:0 and C16:0) is beneficial as they are known to have the 

capacity of raising plasma cholesterol through suppression and saturation of low-density lipoprotein 

(LDL) receptors in the blood (Keys et al., 1995). This suggests that a reduction in the concentration of 

C14:0 and C16:0 in the current study with the inclusion of those EOCs could possibly decrease the 

plasma levels of low-density lipoprotein (LDL) if this observation is also repeated in vivo. 
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Stearic acid (the end-product of the biohydrogenation of C18:1 n-9, C18:3 n-3 and C18:2 n-6) was 

reduced in cultures receiving CIT at 12 h whilst the remaining EOCs maintained C18:0 at levels similar to 

the control. The mean concentration of C18:0 tended to be increased with the addition of CYM, LIM and 

CIT to cultures at 24 h, and reduced in the cultures with added BOR, BIS, CIT, EUC, MEN, MYT and 

THU after 48 h compared to the control. The remaining treatments maintained similar levels of C18:0 to 

the control at both 24 and 48 h. The reduced concentration of C18:0 in cultures receiving CIT, BOR, BIS, 

EUC, MEN, MYT and THU is not consistent with the observed high accumulation of VA in this study. 

This observation suggests that these EOCs could have impaired the activity of Clostridium 

proteoclasticum (Kemp et al., 1975; Maia et al., 2007), renamed (Moon et al., 2008) as Butyrivibrio 

proteoclasticus, the bacteria responsible for converting VA to C18:0. It is uncertain why the high 

accumulation of C18:3 n-3 and C18:2 n-6 in vessels receiving ALA, ANE, CIN, LIM and CYM in this 

study was not accompanied with a reduction of C18:0, since C18:0 is the end product of 

biohydrogenation. However, the high levels of C18:0 in cultures with those EOCs despite high content of 

PUFA in their vessels are in agreement with previous studies with EOs (Vasta et al., 2013). The 

accumulation of PUFA (C18:3 n-3 and C18:2 n-6) without major effects on the final end product of 

biohydrogenation could suggest three possibilities: firstly, that other unidentified biohydrogenation 

intermediates were produced in these cultures (Gunal et al., 2013); secondly, that the observed 

accumulation of PUFA could be due to reduced lipolytic activities. Buccioni et al. (2012) suggested that 

if small amounts of PUFA in the diet reach the duodenum, it might be arising from a reduction in 

lipolysis. This suggests that these EOCs might inhibit the activities of Butyrivibrio fibisolvens and 

Anaerovibrio lipolytica or their lipases, which are responsible for hydrolysing the ester bonds of dietary 

glycolipids and triglycerides (Buccioni et al. 2012), potentially reducing lipolysis and isomerization of 

fatty acids. Thirdly, the accumulation of C18:0 in the current study despite maintenance of high levels of 

PUFA could be due to the concomitant higher concentrations of C18:1 n-9 in cultures with added ALA, 

ANE, CIN, LIM and CYM, as C18:0 may also result from C18:1 n-9. Jenkins et al. (2006) reported that 

about 70% of C18:1 n-9 in rumen culture was converted to C18:0 and only 30% was transformed to 

ketostearic acid and hydroxystearic acid. Stearic acid (C18:0) is a saturated fatty acid but without any 

harmful effects on human health (Grundy, 1994; Pariza, 2004; Webb and O’Neill, 2008), therefore, 
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stearic acid should not be included with other saturated fatty acids such as C14:0 and C16:0, in attempt to 

control the levels of plasma cholesterol through dietary manipulations (Cobb, 1992). 

The formation of C18:1 trans-11 (vaccenic acid; VA) from the rumenic acid (cis-9 trans 11 CLA) is 

aided by  the activity of the rumenic acid enzyme, the reductase enzyme (Jenkins et al., 2008; Kim et al., 

2009; Buccioni et al., 2012). In this study, the concentration of C18:1 trans 11 was increased with the 

addition of all EOCs at 24 and 48 except for VAN, with the greatest increase recorded in cultures with 

MEN and BOR compared to the control. Increased concentration of C18:1 trans 11 in this study is in 

agreement with previous reports where EOCs were observed to maintain high levels of C18:1 trans 11 

(Lourenco et al., 2009). In this study, EOCs such as MEN and BOR were among the additive type with 

the lowest concentration of C18:0, implying that the concomitant high concentrations of C18:1 trans 11 

could have resulted from reduced conversion of C18:1 trans 11 to C18:0. This might indicate that these 

EOCs potentially have the capacity to cause decrease activity of Clostridium proteoclasticum (Kemp et 

al., 1975; Maia et al., 2007), renamed (Moon et al., 2008) as Butyrivibrio proteoclasticus, the bacteria 

that is responsible for converting VA to C18:0. It could also mean that inclusion of these EOCs might 

have stimulated the activity of the reductase enzyme which facilitates the production of trans-11 18:1 

(vaccenic acid; VA) from cis-9 trans 11 18:2 CLA. These results imply that the inclusion of these EOCs 

could also potentially increase the concentration of cis-9 trans 11 18:2 CLA since vaccenic acid is the key 

substrate for endogenous synthesis of CLA in animal tissues (Griinari et al., 2000). It is established that 

about 90% of cis-9 trans-11 CLA in cow’s milk and tissues resulted from the desaturation of trans-11 

18:1 through the Δ-9 desaturase enzyme (Piperova et al., 2002; Kay et al., 2004).  

In the present study, no effect of supplementing EOCs was observed on the levels of cis-9 trans 11 18:2 

CLA at all times of incubation except for 48 h where MEN, BOR and BIS significantly increased cis-9 

trans 11 18:2 CLA. The increased effects of MEN, BOR and BIS on the levels of cis-9 trans 11 18:2 

CLA, relative to the control, is consistent with previous studies (Whitney et al., 2011). As mentioned 

previously, cis-9 trans 11 18:2 CLA is formed in the first step during the transformation of cis-9, cis-12 

18:2 by the linoleic acid isomerase (LA-I) (Jenkins et al., 2008; Kim et al., 2009; Buccioni et al., 2012). 

Results of the current study suggest that all but MEN, BOR and BIS at 48 h could have impaired the 
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activities of the linoleic acid isomerase which facilitates the formation of cis-9 trans 11 18:2 CLA from 

cis-9, cis-12 18:2.  

The content of C18:2 n-6 rapidly decreased with time, being highest at 12 h and lowest at 48 h, in both 

the CON and in the presence of all EOCs. The biohydrogenation of C18:2 n-6 was comparable to, but 

slightly lower than that of C18:3 n-3, and in line with results of previous in vitro (Beam et al., 2000) and 

in vivo (Wachira et al., 2000) studies. The effects of the added EOCs on the biohydrogenation of C18:2 n-

6 was similar to their effects on the biohydrogenation of C18:3 n-3 (discussed later), with ALA, ANE, 

CIT and MEN being the most effective EOCs to reduce the extent of biohydrogenation of C18:2 n-6. 

In the current study, the content of C18:3 n-3 rapidly decreased with time, being highest at 12 h and 

lowest at 48 h, in both the CON and in all EOCs, evidently reflecting the biohydrogenation of C18:3 n-3 

in cultures over time. This rapid biohydrogenation of C18:3 n-3 from ground linseed which exceeded 80 

g/100 g at 24 h agrees with previous in vivo studies (Wachira et al., 2000; Scollan et al., 2001, Wang et 

al., 2002; Chikunya et al., 2004) and in vitro studies (Sinclair et al., 2005). Relative to the control, within 

the EOCs, the concentration of C18:3 n-3 was highest in ALA, ANE, MEN and CIT and consistently 

lowest in VAN and CPY during the first 24 h. At 48 h, the highest levels of C18:3 n-3 were still found in 

cultures with ALA and ANE. In this experiment, the EOCs which possess phenolic moieties in their 

chemical structures such as ALA and ANE known to express the broadest antimicrobial effects, caused 

high accumulation of C18:2 n-6 and C18:3 n-3. This is consistent with previous report by Vasta et al. 

(2013) who added Artemisia EO (containing phenolic compounds such as thymol and carvacrol), and 

Lourenco et al. (2008) who used cinnamaldehyde (500 mg/L). The antibacterial activity and specific 

mode of action of an individual EOC is influenced by the chemical structure of the compound (Dormans 

and Deans, 2000). Although, CIN (another phenolic compound) had the highest content of C18:3 n-3 and 

C18:2 n-6 at 12 h, its potency was not sustained to 24 and 48 h, suggesting the possibility of gradual 

degradation of the active molecules of the compound or microbial adaptation to the compound (Chizzola 

et al., 2004; Brodiscou et al., 2007). The possibility of ALA and ANE to exert the greatest antimicrobial 

characteristic by maintaining higher levels of C18:3 n-3 than other EOCs could be due to the possession 

of hydroxyl group whose acidic characters are speculated to have broad inhibition of microbial activities. 
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This could suggest that ALA and ANE probably had higher capacity to reduce the biohydrogenation of 

C18:3 n-3 and C18:2 n-6 compared to the rest of the treatments leading to high accumulation of PUFA in 

their cultures. EOs containing high proportion of phenolic compounds such as thymol, carvacrol and 

eugenol (2-methoxy-4-(2-propenyl)phenol as components of their chemical structure exhibit the strongest 

antimicrobial properties against food borne pathogens (Cosentino et al., 1999; Juliano et al., 2000; 

Lambert et al., 2001). The mechanisms of action of phenolic compounds are thought to generally include 

disruption of proton motive force (PMF), coagulation of cell contents, disturbance of cytoplasmic 

membrane and disruption of active transport and electron flow (Sikkema et al., 1995; Davidson, 1997).  

In the literature, formaldehyde treatment of fat sources has been described as effective in increasing the 

flow of C18:3 n-3 to the abomasum of goats (Scott et al., 1971), and in reducing the in vitro 

biohydrogenation of C18:2 n-6 (Gulati et al., 1997). However, beside the fact that the use of 

formaldehyde would potentially be criticized by regulatory authorities, the inconsistency of using it to 

reduce the biohydrogenation of either C18:3 n-3 or C18:2 n-6 was reported by Sinclair et al. (2005). 

These authors reported that formaldehyde treatment of whole linseed alone slightly reduced the 

biohydrogenation of either C18:3 n-3 or C18:2 n-6. Hence, they proposed that pre-treatment of whole 

linseed with  NaOH and formic acid could be more effective because about 443 and 307 g/kg of C18:3n -

3 were protected from biohydrogenation when whole linseed was pre-treated with NaOH and formic acid 

respectively, prior to treatment with formaldehyde. In the current study the content of C18:3 n-3 or C18:2 

n-6 at 24 h decreased significantly in response to EOCs in the progression: ALA and ANE 

(phenylpropanoids), MEN (monoterpene alcohol) and CIT (monoterpene) > 3-CAR and BOR (bicyclic 

monoterpenes), CIN (phenylpropanoid), LIM, MYT, CYM and THU (monoterpenes) > BIS 

(sesquiterpene) and EUC (monoterpene ethers) > CPY (bicyclic sesquiterpene) and VAN (aldehydes). 

These findings are consistent with previous reports ranking the antimicrobial potency of EOCs in the 

following descending order: phenols > cinnamic aldehyde > alcohols > aldehydes (Kalemba et al., 2012). 

The extent of disappearance of C20:5 n-3 and C22:6 n-3 in vessels increased as the time of incubation 

progressed, being lowest at 12 h and highest at 48 h. After 48 h, the quantity of the content of C20:5 n-3 

and C22:6 n-3 in vessel which disappeared was highest in the control, with only 28.6 g/100 g and 45.9 
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g/100 g of C20:5n -3 and C22:6n -3 respectively, remaining in vessels. These findings support previous 

reports from in vivo studies where the biohydrogenation of C20:5 n-3 and C22:6 n-3  in fish oil range 

from 72 to 93 g/100 g TFA (Wachira et al., 2000; Scollan et al., 2001; Chikunya et al., 2004), and 

contrast in vitro reports where the biohydrogenation of C20:5 n-3 and C22:6 n-3 was less than 50 g/100 g 

(Ashes et al., 1992; Sinclair et al., 2005). Within the EOCs, the extent of inhibition of the 

biohydrogenation of C20:5 n-3 and C22:6 n-3 differs and can be ranked in the following decreasing 

order: ALA, MYT, CIT, CIN, BOR and THU > ANE, BIS, MEN and CYM > 3-CAR, CPY, LIM, VAN. 

In general, the biohydrogenation of the fish oil fatty acids (C20:5 n-3 and C22:6 n-3) was less compared 

to the ruminal disappearance of C18 fatty acids (C18:3 n-3 and C18:2 n-6). This inability of microbes to 

hydrogenate the fish oil fatty acids is not due to the difference in the lipase activities but because 

microbes lack the enzymes necessary to hydrogenate the long chain n-3 PUFA (Ashes et al., 1992). It 

should be remembered that the biohydrogenation pathways of C20:5 n-3 and C22:6 n-3 are not yet fully 

established (section 1.7.8). 

No effect of treatment on ∑SFA was found after 24 h. Therefore a further calculations of ∑SFA without 

18:0 (i.e. ∑SFA-18:0) was made but results were similar to the reported effects on ∑SFA. The lack of 

difference on the content of ∑SFA and (∑SFA-C18:0) could be due to the reported high levels of C18:0 

which possibly results from the metabolism of oleic acid. However, there was reduction on the ∑SFA in 

cultures with added BOR, CIT, MEN, MYT and THU compared to the control after 48 h. These 

reductions in the content of ∑SFA in these EOCs coincided with the high levels of trans-11 18:1 and 

decreased concentration of 18:0 and oleic acid in those cultures. 

The content of ∑PUFA decreased with increase in the time of incubation (i.e. highest at 12 h and lowest 

at 48 h). After 48 h, the levels of   ∑PUFA observed in cultures with ALA, ANE and MEN, which were 

the most effective EOCs, was more than doubled the concentration observed in cultures with the control. 

The decrease in the levels of ∑PUFA with time is understood from the fact that the concentration of 

individual PUFA also decreased with time. The highest content of ∑PUFA in cultures treated with ALA, 

ANE and MEN is also expected as the highest levels of individual PUFA were also observed in those 
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EOCs. The aim of increasing the content of ∑PUFA in diet is to reduce the risks of coronary heart 

diseases in humans (as described in Chapter 1). 

In the report presented here no effect of inclusion of VAN and CIN was recorded on TFA at 12, 24 and 

48 h. However, all other EOCs reduced TFA relative to the control. Reduction of TFA could suggest that 

the reported decrease in TVFA and ammonia concentration had reduced the microbial de novo fatty acids 

synthesis (Sauvant and Bas, 2001), leading to reductions in the levels of TFA. The strength of this 

conclusion lies in the fact that VAN which did not affect the TFA concentration also did not change the 

TVFA and ammonia concentrations in cultures in this study. 

The content of ∑n-6/∑n-3 was consistently reduced in cultures with BIS, BOR, EUC, MYT, THU and 

VAN at both 24 and 48 h relative to the control. In this study, the major thrombotic fatty acid (C20:4 n-6; 

Kinsella et al., 1990) was not affected by treatments. 

The ratio of PUFA to SFA (P: S) in cultures decreased with time of incubation, and it was increased with 

the addition of all EOCs except EUC and VAN relative to the control at 12 and 24 h. At 48 h of 

incubation, the ratio of P/S in cultures with ALA, ANE, BOR, MEN, MYT and THU (EOCs with the 

highest levels of P/S) tripled the content of P/S in the control. In this study, only the inclusion of ALA, 

ANE, BOR, MEN, MYT and THU in cultures at 12 h had P/S of 0.40 which is close to the value of 0.45 

recommended in the guidelines of the Department of Health (1994). 

 

3.6. Conclusion 

In the current study, the content of C18:3 n-3 or C18:2 n-6 at 24 h increased significantly in the 

progression: ALA and ANE (phenylpropanoids), MEN (monoterpene alcohol) and CIT (monoterpene) > 

3-CAR and BOR (bicyclic monoterpenes), CIN (phenylpropanoid), LIM, MYT, CYM and THU 

(monoterpenes) > BIS (sesquiterpene) and EUC (monoterpene ethers) > CPY (bicyclic sesquiterpene) and 

VAN (aldehydes). These results showed that the phenylpropanoids (ALA and ANE) and monoterpene 

alcohols (MEN) had the greatest potential compared to the rest of the EOCs to reduce the disappearance 
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of n-3 PUFA and suggest that their use could enhance the concentrations of n-3 PUFA in ruminant food 

products if this is confirmed in vivo. However, this needs to be balanced against their effects on VFA. It is 

also worthwhile to investigate the mechanism of action and the stability of these EOCs in the rumen.  

In the event of introducing these substances to the public or to livestock industries, the whole essential 

oils might stand a better chance of acceptance compared with the individual EOCs. The whole EOs have 

been used by man since antiquity in the area of aromatherapy and food industries, hence, are likely to 

encounter less regulatory hassles compared to individual EOCs.  In addition, the synergistic effect 

between the minor and major components in the whole oils is expected to improve the effectiveness of the 

whole oils against biohydrogenating bacteria over the individual constituent compounds. These 

considerations would lead us to the second experiment using the parent whole oils of the ten most 

effective EOCs. Therefore, the next experiment (discussed in Chapter 4) is to evaluate the potential of the 

whole oils on rumen fermentation and biohydrogenation of PUFA. 
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 Chapter 4 

 Effects of ten whole essential oils on rumen fermentation and 

biohydrogenation of n-3 polyunsaturated fatty acids by rumen 

microorganisms in vitro  
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Abstract  

The effects of ten whole essential oils (EO) on the fermentation activities of rumen microbes and the 

biohydrogenation (BH) of n-3 polyunsaturated fatty acids (PUFA) were evaluated in vitro using batch 

culture system. Rumen fluid was collected from four Hartline  Texel cross cull ewes offered grass hay 

(Lolium perenne) and water ad libitum and supplemented with additional 400 g/sheep/day of lamb 

finisher cubes. A basal feedstock comprising of 70:30 grass hay and concentrate was formulated.  Serum 

bottles were incubated at 39⁰C; each bottle contained 1 g of feed substrate, 80 ml buffer, 20 ml inoculum, 

then supplemented with 300 mg/l of EOCs and repeated twice. There were 11 treatments, with six 

replicates per treatment as follows: control (CON), whole oils of anise (ANO), cassia (CSO), citronella 

(CTO), clove (CLO), cornmint (CMO), eucalyptus (ETO), juniper berry (JPO), lavender (LVO), 

mandarin (MDO) and rosemary (RMO). Fermentation was stopped at 12, 24 and 48 h, and samples were 

collected to analyse ammonia N, total VFA and molar proportions of individual VFA; and concentration 

of PUFA including intermediates of BH. Relative to the control, CSO was the only EO that reduced 

(P<0.001) ammonia concentration in culture by a magnitude of 33%, whilst others maintained similar 

ammonia levels. With the exception of ETO and LVO, the addition of all EO decreased (P<0.001) total 

VFA compared to the control, with CSO being the most inhibitory, inducing a 27% reduction. The 

concentrations of C18:2 n-6 and n-3 PUFA (C18:3 n-3, C20: 5n-3 and C22: 6n-3) were maintained at 

higher levels (P<0.001) with addition of all EO, and were highest (P<0.001) in cultures where ANO and 

CSO were added.  Except for CTO and CLO, the inclusion of EO did not affect the concentration of 18:2 

cis-9 trans 11. The levels of C18:1 trans 11 were significantly increased (P<0.001) by supplementing 

with either CSO, CTO, CMO or RMO. There was no effect of EOs inclusion on C18:0 except for CSO 

(12 h) and RMO (24 h) which reduced (P<0.001) the level of C18:0. The potential of whole EOs used in 

this study to inhibit BH at 24 h can be ranked as follows: ANO and CSO > MDO and CMO > CTO and 

RMO > JPO, LVO, CLVO and ETO. These results suggest that the use of CSO and ANO have the 

greatest potential to enhance the concentrations of n-3 PUFA in ruminant food products if this is also 

confirmed in vivo. However, optimum doses are needed to balance their effects on VFA. 
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4.1. Introduction 

The health benefits of n-3 PUFA such as C18:3 n-3, 20:5 n-3 and 22:6 n-3 have been described (see 

section 1.2.2). Briefly, this category of fatty acids has been reported to have positive effects such as 

reducing the risk of coronary heart disease in humans (Department of Health, 1994; de Lorgeril et al., 

1999). These health benefits of n-3 PUFA have raised the need to increase the levels of these fatty acids 

in ruminant food products such as meat and milk. Because the fatty acid composition of ruminant food 

products depends on the metabolism of dietary lipids in the rumen (Kim et al., 2009); the manipulation of 

rumen biohydrogenation of PUFA has received significant attention within the scientific community 

(Scollan et al., 2001, Wachira et al., 2000; Wang et al., 2002; Chikunya et al., 2004; Scollan et al., 2006; 

Shingfield and Griinari, 2007; Gunal et al., 2013).  

The possibility of using whole EOs and their constituent compounds (EOCs) in ruminant fermentation 

have also been examined previously (Calsamiglia et al., 2007; Benchaar et al., 2008; Hart et al., 2008; 

Chapter 1). The huge number (3000) of commercially available EOs makes it practically impossible to 

evaluate the effects of EOs all by in vivo trials. Therefore, the use of in vitro experimental models to 

investigate effects of EOs and consequently predict their in vivo effects has become a common 

phenomenon for researchers. In our previous in vitro study (Chapter 3; Eburu and Chikunya, 2014), the 

effects of 15 EOCs on the metabolism of PUFA was evaluated. The study found that some individual 

EOCs such as anethole, menthol, 4-allylanisole and p-cymene have the potential to reduce the extent of 

ruminal biohydrogenation of PUFA. In another in vitro study, Sgwane et al. (2013) reported that the 

EOCs pinene, linalyl acetate, L-menthone and pulegone reduced the extent of ruminal biohydrogenation 

of PUFA. However, the use of whole essential oils as opposed to individual EOCs has a number of 

attractions. They have been used by man since antiquity in the area of aromatherapy and food industries, 

hence, are likely to encounter less regulatory hassles compared to the EOCs.  In addition, the potential 

synergistic action between the minor and major constituents in the whole oils might improve the 

effectiveness of the whole oils against biohydrogenating bacteria over the individual constituent 

compounds. The aim of this study was therefore to establish whether the parent oils from which some of 

the individual EOCs showing potential are the predominant compounds, are equally as effective at 
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inhibiting the biohydrogenation of PUFA and increasing the accumulation of biohydrogenation 

intermediates. 

 

4.2. Materials and methods  

4.2.1. Animal management and collection of rumen fluid 

In this experiment, four cull-ewes (Hartline  Texel cross, mean weight 41.5 ±1.7kg) were used as rumen 

fluid donors.  Details of animal housing, experimental diets, feeding regime, duration of adaptation and 

collection of rumen fluid are as described in section 2.1.  

4.2.2. Basal feedstock, treatments and in vitro incubation 

The basal feedstock was mixtures of good quality rye-grass hay (Lolium perenne), lamb finisher 

concentrate, whole ground linseed and fish oil. Details of the basal feedstock used in this in vitro 

incubation are as described in the general material and methods (see section 2.3). The ingredients, 

chemical and fatty acid composition of the diet are shown in Table 2.2. 

The effects of 10 whole essential oils were evaluated using the in vitro gas production batch culture 

method described by Theodorou et al. (1994), which is outlined in section 2.4 of the general materials and 

methods.  

All EOs used were purchased from Sigma-Aldrich Co. Ltd., UK and were stored at the required 

temperatures as specified on delivery notes prior to use. The description of the EOs as purchased from 

Sigma-Aldrich is shown in Table 4.1. The typical constituent component composition of the whole 

essential oils used in this study is shown in Table 4.2.  

There were 11 treatments and six replicates as follows: Control (CON), anise oil (ANO), cassia oil 

(CSO), citronella oil (CTO), clove oil (CLO), cornmint oil (CMO), eucalyptus oil (ETO), juniper berry 

oil (JPO), lavender oil (LVO), mandarin oil (MDO) and rosemary oil (RMO). 

Incubation was done in 125 ml clear glass type 1 serum bottles (R & L Slaughter Ltd, Essex, UK) for 48 h 

in each run and repeated twice. In each run 268 (11 x 6 +4) serum bottles were incubated, each bottle 
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contained 1 g of feed substrate, 300 mg/l of EO, 80 ml anaerobic buffer (see Table 2.1) and 20 ml 

inoculum and the bottle sealed with rubber cork before incubation.  



142 
 

Table 4.1 Description of the essential oils used in this experiment as purchased from Sigma-Aldrich 

Name of EO Abbreviation Catalogue number Type  Density 

Anise oil ANO 10521 Anise seed oil, natural identical 0.980 g/ml 

Cassia oil CSO W225800 Cassia oil 1.058 g/ml 

Citronella oil CTO W230812 Java natural, 85/35% 0.888 g/ml 

Clove oil CLO W232300 Clove bud oil, natural (US), FCC, FG 1.05 g/ml 

Cornmint oil CMO W521604 Natural Chinese type - 

Eucalyptus oil ETO W246611 80-85%, FG 0.909 g/ml 

Juniper berry oil JPO W260401 FCC type 0.863 g/ml 

Lavender oil LVO 61718 Oil from Lavandula angustifolia 0.879 g/ml 

Mandarin oil MDO W265713 Italian FC type 0.846 g/ml 

Rosemary oil RMO W299200 FCC type 0.908 g/ml 

Supplier: Sigma-Aldrich Co. Ltd., UK; FCC = food chemicals codex; FG = food grade 
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Table 4.2 Typical constituent component composition of the whole essential oils used in this study 

Common name Botanical name Composition (%) of major constituent compounds  References 

Anise oil P. anisum Trans-anethole (82.7%), carryophyllene (3.8%), limonene (2.3%) Soher et al. (2014) 

Cassia oil C. cassia Trans-cinnamaldehyde (70-90%), trans-2-methoxycinnamaldehyde (3-

5%), cinnamyl acetate (1-6%), eugenol (0.5%) 

EP 5; Kalemba et al. (2012) 

Citronella oil Cymbopogon winterianus Citronella (31.5%), geraniol (19.2%), citronellol (5.4%), limonene 

(2.2%) 

Pandu et al. (2014) 

Clove oil Eugenia caryophyllus Eugenol (75-85%), eugenal acetate (8-15%) Bauer et al. (2001) 

Cornmint oil - Menthol (30-55%), menthone (14-32%), methyl acetate (2.8-10%), 

menthofuran (1-9%) 

EP 5; Kalemba et al. (2012) 

Eucalyptus oil Eucalyptus citriodora Hook 1, 8-cineole (68%), α –pinene (3.7%), p-cymene (1.7%) Elaissi et al. (2011) 

Juniper berry oil Juniperus oxycedrus spp α –pinene (39.8%), manoyl oxide (10.2%) Sofia et al. (2002) 

Lavender oil Lavandula angustifolia Linalool (42.74%), linalyl acetate (23.25%), camphor (8.03%), borneol 

(7.1%) 

Danh et al. (2012) 

Mandarin oil Citrus reticulate Blanco Limonene (75%), linalool (5.1%), γ- terpinene (2.1%) Yu et al. (2007); EP 5 

Rosemary oil Rosmarinus officinalis 1, 8-cineole (3-89%), α-pinene (2-25%), camphor (2-14%), Bornyl 

acetate (0-17%) 

Pintore et al. (2002) 
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4.2.3. Sample collection and preservation 

Experimental details relating to gas pressure measurement, stopping times, collection and storage of 

samples are as described in the general material and methods (see section 2.4). 

4.2.4. Chemical analysis 

The concentration of NH3-N in digesta was analysed using the phenol-hypochlorite method 

(Weatherburn, 1967; Broderick and Kang, 1980) adapted for use on the plate reader as described in 

general materials and methods (see section 2.5.4).  

 

The concentration of volatile fatty acid (VFA) was determined by Gas chromatography (GC) as described 

by Ottenstein and Bartley (1971). Details of this method are outlined in the general materials and methods 

(see section 2.5.6). 

 

The concentration of fatty acids in feed and freeze dried samples were extracted by direct saponification 

method described by Enser et al. (1998).  See section 2.5.7 of the general materials and methods for 

detailed description of the techniques. 

 

4.2.5. Experimental design and statistical analysis 

This study was a completely randomized design (CRD) experiment. The objective was to examine the 

effects of ten EOs on the extent of rumen biohydrogenation of n-3 PUFA in vitro, including their effects 

on fermentation parameters (gas production, NH3-N concentration and on concentrations of TVFA and 

molar proportions of individual VFA. The null hypothesis was that inclusion of 300 mg/L of EOs would 

have no effect on fermentation and biohydrogenation data. The alternative hypothesis was that the EOs 

would affect (decrease or increase) fermentation activities. Data were analysed (separately for each time 

point) by one-way analysis of variance (ANOVA) using GenStat 16th edition (VSN international Ltd, 

Registered to: Writtle College) with experimental runs as a blocking factor. Differences between 

treatments were declared by least significance difference (LSD) and significance was declared at P< 0.05.  
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4.4.0. RESULTS 

4.4.1. In vitro fermentation parameters 

The effects of EO on cumulative gas production (ml/g OM) and concentration of NH₃-N (mM) are shown 

in Table 4.3. At 12 h of incubation, the levels of gas production in the control and five of the added EOs 

(ANO, CTO, ETO, JPO and LVO) were not significantly different (P=0.004), but the rest of the 

treatments reduced gas production compared to the control.  Relative to the control, about half of the 

added EOs (CLO, CMO, MDO and RMO) caused inhibition of gas production (mean 17%) at 24 h, 

whilst the rest of the treatments (ANO, CTO, ETO, JPO and LVO) did not affect gas production at that 

time. However, at 48 h, gas production was reduced (P<0.001) with the inclusion of majority of the 

additives, with CLO being the most inhibitory (149.8 ml/g OM compared to 192.8 ml/g OM for the 

control), whilst the addition of CSO, CTO, JPO or LVO maintained similar gas levels to the control.   

During the first 12 h of incubation, NH₃-N concentration was reduced (P<0.001) with the addition of all 

but three EOs (LVO, MDO and RMO), with ANO, CSO and CLO causing the greatest reduction (mean 

33%). With the exception of CSO which maintained significant (P<0.001) inhibition (33%) of ammonia 

production after 24 h, all other EOs did not affect the concentration of  NH₃-N in culture, but LVO 

increased NH₃-N (48%). There was no effect of treatments on the ruminal concentration of ammonia N 

after 48 h.  

The concentration of total VFA and proportion of individual VFA are presented in Table 4.4. At 24 h, the 

concentration of total VFA  was reduced (P<0.001) by the addition of all EOs except the inclusion of 

ETO and LVO, with CSO and ANO being the most inhibiting EOs, inducing  27% and 15% inhibition, 

respectively.  At 48 h effects of the addition of EOs on total VFA was similar to the reported effects at 24 

h, with ANO causing the highest reduction. Of the ten EOs screened in this study, CSO was the only 

additive that reduced the molar proportion of acetate relative to the control, the rest of the extracts 

increased acetate with CTO showing the highest increase (mean 3.5%). The molar proportion of 

propionate was not affected by 50% of the EOs (ANO, ETO, JPO, MDO and RMO) at 24 h, but was 

reduced by other additive type, with only CSO increasing (P<0.001) the molar proportion of propionate 
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(mean increase 2.5%). The proportion of butyrate was reduced in cultures supplemented with JPO and 

RMO (mean 8%) and increased with the addition of CSO and CMO (mean 21%), but other EOs did not 

affect the molar proportion of butyric acid in cultures at all times of incubation. The ratio of acetate to 

propionate (A: P) was not affected by JPO and RMO at 24 h but it was reduced by CSO, with the 

remaining EOs increasing A: P, with LVO causing the highest (mean 11%) increase. At 48 h period of 

incubation, the A/P ratio was highest in cultures with MDO and ANO (means 2.9) and lowest in CSO 

(2.6).    
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Table 4.3 Effects of EOs on cumulative gas production (ml/g OM) and ammonia concentration NH₃-N (mM) in cultures during 48 h in vitro incubation 

  EOs  

Parameters Time (h) CON ANO CSO CTO CLO CMO ETO JPO LVO MDO RMO S.E.D P-Values 

Gas production               

 12 96.2ᵃ 95.1ᵃ 77.0ᵇ 95.5ᵃ 80.1ᵇ 81.6ᵇ 97.0ᵃ 102.3ᵃ 97.6ᵃ 80.6ᵇ 84.4ᵇ 7.37 =0.004 

 24 150.3ᵃ 143.6ᵃ 141.1ᵃ 146.9ᵃ 123.9ᵇ 124.1ᵇ 145.5ᵃ 149.5ᵃ 143.6ᵃ 119.7ᵇ 130.7ᵇ 8.93 =0.003 

 48 192.8ᵃ 172.2ᵇ 191.5ᵃ 194.6ᵃ 149.8ᶜ 151.7ᶜ 178.8ᵇ 182.7ᵃ 176.3ᵃᵇ 146.6ᶜ 162.1ᵇᶜ 9.93 <0.001 

NH₃-N               

 12 4.8a 3.3b 3.2b 3.5b 3.2b 3.8b 3.8b 3.5b 5.6a 5.6a 4.9a 0.44 <0.001 

 24 4.5a 3.4ab 3.0b 3.6ab 4.2a 4.2a 4.6a 4.4a 6.6c 4.8a 3.9ab 0.56 <0.001 

 48 8.2 7.2 6.7 7.3 7.5 8.0 7.6 7.5 7.1 7.1 7.5 0.45 NS 

Means within row with different superscripts letters are different (P<0.05); Control (CON), anise oil (ANO), cassia oil (CSO), citronella oil (CTO), clove oil (CLO), control 

(CON), cornmint oil (CMO), eucalyptus oil (ETO), juniper berry oil (JPO), lavender oil (LVO), mandarin oil (MDO) and rosemary oil (RMO); NS = not significant; EOs= 

essential oils 
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Table 4.4 Effects of EOs on concentration of total (mM) and proportions of individual volatile fatty acids (mM/mol TVFA) in cultures during 48 h in vitro 

incubation 

  EOs  

Parameters Time (h) CON ANO CSO CTO CLO CMO ETO JPO LVO MDO RMO S.E.D P-Values 

TVFA  

 24 70.0ᵃ 60.6ᵇ 51.0ᶜ 61.1ᵇ 65.6ᵈᵉ 64.1ᵈ 68.3ᵃᵉ 64.9ᵈ 68.2ᵃᵉ 63.5ᵈ 63.2ᵈ 1.37 <0.001 

 48 83.5ᵃ 71.0ᵇ 75.7ᶜᵉ 77.7ᶜ 76.1ᶜ 77.8ᶜ 81.1ᵈ 76.1ᶜ 77.9ᶜ 73.7ᵉ 79.2ᵈ 1.09 <0.001 

Acetate 

 24 62.2ᵃ 63.3ᵇᶠ 60.1ᶜ 64.1ᵈ 62.9ᵇ 61.3ᵉ 62.7ᵃ 63.0ᵇ 63.7ᶠ 63.2ᵇ 63.1ᵇ 0.33 <0.001 

 48 61.6ᵃ 64.0ᵇᵉ 63.3ᶜ 64.0ᵇᵉ 62.4ᵈ 61.6ᵃ 61.8ᵃ 63.3ᶜ 63.8ᵇ 64.3ᵉ 63.3ᶜ 0.17 <0.001 

propionate 

 24 24.7ᵃ 24.3ᵃᵈ 25.7ᵇ 23.6ᶜ 24.0ᵈ 23.9ᵈ 24.6ᵃ 24.9ᵃ 23.2ᶜ 24.3ᵃᵈ 25.1ᵃ 0.25 <0.001 

 48 24.2ᵃ 21.9ᵇ 24.4ᵃ 22.8ᶜ 23.4ᵈ 22.6ᶜ 24.2ᵃ 23.0ᵈ 22.4ᶜ 22.5ᶜ 23.2ᵈ 0.23 <0.001 

Butyrate 

 24 10.1ᵃ 9.7ᵃ 12.5ᵇ 9.5ᵃ 10.1ᵃ 11.9ᵇ 9.8ᵃ 9.3ᶜ 10.1ᵃ 9.7ᵃ 9.3ᶜ 0.28 <0.001 

 48 10.2ᵃᵉ 10.3ᵃ 9.0ᵇ 9.7ᶜᶠ 10.3ᵃ 11.8ᵈ 10.2ᵃ 10.0ᵉ 10.1ᵉ 9.6ᶜ 9.8ᶠ 0.08 <0.001 

Acetae:propionate 

 24 2.5ᵃ 2.6ᵇ 2.3ᶜ 2.7ᵈ 2.6ᵇ 2.6ᵇ 2.6ᵇ 2.5ᵃ 2.8ᵉ 2.6ᵇ 2.5ᵃ 0.04 <0.001 

 48 2.5ᵃ 2.9ᵇ 2.6ᶜ 2.8ᵈ 2.7ᵉ 2.7ᵉ 2.6ᶜ 2.8ᵈ 2.8ᵈ 2.9ᵇ 2.7ᵉ 0.03 <0.001 

Means within row with different superscripts letters are different (P<0.05); Total volatile fatty acid (TVFA), control (CON), anise oil (ANO), cassia oil (CSO), citronella oil 

(CTO), clove oil (CLO), control (CON), cornmint oil (CMO), eucalyptus oil (ETO), juniper berry oil (JPO), lavender oil (LVO), mandarin oil (MDO) and rosemary oil (RMO); 

EOs= essential oils
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4.4.2. Effect of EOs on fatty acid metabolism 

The effects of EOs on concentration of selected C14 and C16 fatty acids in cultures are summarized in 

Table 4.5. There was no effect of treatments on the concentration of C14 at 12 and 24 h period of 

incubation. However, half of the added EOs (ANO, CSO, CLO, JPO and MDO) reduced (P<0.001) the 

concentration of C14 after 48 h.  

Although the levels of C16:0 were not significantly different between the control and the added oils at 12 

h period, it was reduced (P<0.001) with the addition of CSO, CMO, ETO and RMO (mean 14.0 g/100 g 

TFA) compared to the control (15.0 g/100 g TFA) at 24 h. However, at 48 h, the content of C16:0 was 

decreased with the inclusion of all EOs in cultures (mean 6.0 g/100 TFA) except the cultures 

supplemented with CSO which did not affect the levels of C16:0 relative to the control (7.0 g/100 g 

TFA). 

Relative to the control (2.7 g/100 TFA), the concentration of C16:1 at 12 h was increased by all 

treatments except CLO, JPO and MDO, with CSO showing the highest increase (3.3 g/100 TFA). At 24 h 

the content of C16:1 in cultures was increased with the inclusion of all EOs except ANO, JPO and LVO 

which maintained the levels of C16:1 similar to the control. Except the addition of CLO, CTO and JPO 

which did not affect the concentration of C16:1 compared to the control (2.7 g/100 g TFA), the levels of 

C16:1were increased with all additives, with ANO the highest (3.0 g/100 TFA). 

Indicated in Table 4.6 are concentrations of selected C18 fatty acids in cultures during incubation. Except 

for CSO (12 h) and RMO (24 h) which reduced (P<0.001) the content of 18:0 compared to the control, 

there was no effect of EOs inclusion on the production of stearic acid. At 48 h, the vessels with added 

MDO and CTO had the highest content of C18:0 (Mean values 12.6 g/100 g TFA) compared to the 

control (6.9 g/100 g TFA). 

The concentration of C18:1 n-9 at 12 h was significantly highest in CSO (8.4 g/100 g TFA) followed by 

ANO and CTO (means 7.9 g/100 g TFA) compared to the control (7.4 g/100 g TFA). At 24 h period of 

incubation, the fermentation vessel content of C18:1 n-9 was highest (P<0.001) in ANO, CSO, CTO and 

MDO (means 8.4 g/100 g TFA) and lowest (P<0.001) in RMO, ETO and CLO (means 7.3 g/100 g TFA) 
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relative to the control (6.0 g/100 g TFA). After 48 h, the level of C18:1 n-9 in cultures was not affected 

with the inclusion of five of the extracts (CSO, CLO, ETO, JPO and LVO) but it was significantly 

increased with the rest of the treatments. 

The levels of C18:1 trans 11 were increased (P<0.001) with all EOs at 12 h relative to the control (1.1 

g/100 g TFA), with the highest content found in cultures supplemented with CSO (1.6 g/100 g TFA). At 

24 h period of incubation, the content of C18:1 trans 11 was highest in CSO relative to the control. 

Majority of the added EOs increased (P<0.001) the concentration of C18:1 trans 11 in cultures after 48 h, 

with JPO, CTO and LVO being the most effective EOs (means 3.1 g/100 g TFA), compared to the control 

(1.96 g/100 g).  

Except for CSO, CTO and ANO at 12, 24 h and 48 h respectively, which increased (P<0.001) the content 

of cis-9 trans 11 CLA, there was no effect of treatment on the content of cis-9 trans-11 18:2 CLA during 

incubation. 

The content of C18:2 n-6 decreased with time, being highest at 12 h and lowest at 48 h, in both the 

control and the EOs cultures. At 24 h, relative to the control, the inclusion of all EOs maintained higher 

(P<0.001) the content of C18:2 n-6 in cultures though at varying levels, being highest in CSO (6.0 g/100 

g TFA) and ANO (5.4 g/100 g TFA), and lowest in CLO, ETO and LVO (means 3.3 g/100 g TFA), 

compared to the control (2.2 g/100 TFA). At 48 h, ANO had the highest (P<0.001) concentration of 

C18:2 n-6 (2.8 g/100 g TFA) and the lowest levels were observed in CSO, CTO and ETO (means 1.5 

g/100 g TFA). The level of C18:2 n-6 in cultures with other additives was intermediate between the 

highest and the lowest treatments. 

 The vessel content of C18:3 n-3 also decreased with time, being highest at 12 h and lowest at 48 h, in 

both the CON and in all EOs cultures. Relative to the control, within the EOs, the concentration of C18:3 

n-3 was consistently highest (P<0.001) in ANO and CSO (mean values were more than 2-fold), and 

consistently lowest (P<0.001) in ETO and JPO at 12 and 24 h. At 48 h, the content of C18:3 n-3 was 

maintained at the highest levels (P<0.001) with the addition of ANO (4.2 g/100 g TFA), a level which is 
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more than twice compared to the least effective EO (CSO; 1.8 g/100 g TFA), and the CON (1.6 g/100 g 

TFA).  

The concentrations of selected C20 fatty acids are presented in Table 4.7. At 12 and 24 h, the level of 

C20:4 n-6 was decreased with the addition of all EOs except CLO, ETO, JPO and LVO (12 h) and CLO, 

ETO and JPO (24 h), relative to the control. At 48 h, it was observed that ANO and MDO had the lowest 

concentration of C20:4 n-6 (means 0.4 g/100 g TFA) compared to the control (0.7 g/100 g TFA). 

In both the control and EOs, the concentration of C20:5 n-3 decreased with increase in the time of 

incubation, being highest at 12 h (means 3.6 g/100 g TFA) and lowest at 48 h (means 1.0 g/100 g TFA). 

The concentrations of C20:5 n-3 at 12 and 24 h of incubation were highest in cultures supplemented with 

ANO, CSO and CMO (means 3.1 and 2.5 g/100 g TFA for 12 and 24 h respectively) and lowest in ETO 

and JPO (means 2.2 and 2.0 g/100 g TFA for 12 and 24 h respectively) compared to the CON (1.7 and 1.4 

g/100 g TFA for 12 and 24 h respectively). At 48 h, the most effective EO was ANO, which had about a 

four-fold increase (1.9 g/100 g TFA) in the content of C20:5 n-3 compared to the control (0.5 g/100 g 

TFA), whilst the vessel effluent content of C20:5 n-3 in the least effective extract (CSO) was 0.6 g/100 g 

TFA. Increasing the time of incubation also decreased the content of C22:6 n-3 in cultures, being highest 

in ANO and CMO (means 1.7 g/100 g TFA) and lowest in CSO (0.8 g/100 g TFA) after 48 h, relative to 

the control (0.9 g/100 g TFA). Other added extracts maintained intermediate effect between ANO and 

CSO on the concentration of C22:6 n-3 in cultures.  

The concentrations of sums of fatty acids (g/100 g TFA) and content of total fatty acid (mg/g) are 

presented in Table 4.8. The levels of remaining fatty acids (RFA) were significantly reduced in cultures 

with added EOs at all times of incubation except ETO and RMO (24 h), and CSO, CLO and ETO (48 h). 

 The levels of ∑SFA in cultures at 12 h were increased by all EOs except CSO which reduced (P<0.001), 

and RMO, which had a similar level of ∑SFA to the control. At 24 h the content of ∑SFA was highest in 

cultures with CTO, MDO and LVO, but ∑SFA was not different between the control and majority of the 

extracts after 48 h period of incubation. However, the levels of SFA at 48 h were significantly reduced 

(P<0.001) with the addition of all EOs when SFA was calculated without C18:0 (i.e. ∑SFA-C18:0).  
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At both 12 and 24 h, the content of ∑MUFA in cultures with CLO and LVO was similar to the control 

(18.6 and 21.8 g/100 g TFA), but reduced with the addition of other EOs, being lowest in ANO (16.8 and 

18.8 g/100 TFA, for 12 and 24 h respectively). At the last hour of incubation (48 h), majority of the 

treatments (CTO, CLO, CMO, ETO, LVO and RMO) did not affect the levels of ∑MUFA in cultures but 

it was reduced by the rest of the added EOs. 

The content of ∑PUFA) decreased with increase in the time of incubation (i.e. highest at 12 h and lowest 

at 48 h), and was highest (P<0.001) in ANO (11.1 g/100 g TFA) and lowest in CSO and CTO (mean 

values 5.4 g/100 g TFA) at 48 h, relative to the control (4.8 g/100 TFA). 

At 24 h, the amount of TFA (mg/g) was significantly reduced (P<0.001) by majority of the EOs relative 

to the control, except ANO and RMO which did not affect this concentration (Table 4.8). However, at 48 

h, the inclusion of ANO, LVO and MDO (means 38.1 mg/g) reduced (P<0.001) the content of TFA 

compared to the control (43.5 mg/g), with other treatments showing no effect.  

The ∑n-6/∑n-3 was lowest in cultures with ANO (24 and 48 h), CSO, CTO, CMO, ETO, MDO and 

RMO (24), and consistently highest in the control at all times of incubation (Table 4.9).  

The ratio of PUFA to SFA ratio (P: S) in cultures decreased with time, and was consistently highest in 

vessels with ANO and CSO at both 12 and 24 h (means 0.7 and 0.75, for 12 and 24 h, respectively) 

relative to the control (0.5 and 0.3 for 12 h and 24 h respectively, Table 4.9). At 48 h of incubation, the 

ratio of P/S in cultures with ANO was double (0.4) the content of P/S in the control (0.2). 

Table 4.10 shows the biohydrogenation (g/100 g) of C18:2 n-6 and n-3 PUFA.  The extent of 

biohydrogenation of linoleic acid in the fermentation vessels increased as the time of incubation 

progressed, being lowest at 12 h and highest at 48 h. At 24 h, the biohydrogenation of C18:2 n -6 was 

lowest (P<0.001) in ANO and CSO (mean values 40.8 g/100 g), and highest in ETO (69.4 g/100 g), 

relative to the control (76.1 g/100 g), with the rest of the treatments showing effects which are 

intermediate between the control and the most effective treatments (ANO and CSO). At 48 h of 

incubation, the biohydrogenation of C18:2 n-6 was highest in the control, CSO and ETO (means 86.7 
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g/100 g), followed by CTO, CMO, JPO and RMO (means 79.8 g/100 g), and lowest in ANO (68.6 g/100 

g). 

 The pattern of effects of EOs on biohydrogenation of C18:3 n-3 was similar to their reported effects on 

the disappearance of vessel content of C18:2 n-6, being lowest in ANO (69.5 g/100 g), followed by CLO 

and MDO (means 78.0 g/100 g), and highest in the control, CSO and ETO (means values 89.3 g/100 g) at 

48 h time of incubation.  

The extent of disappearance of C20:5 n-3 in vessels increased as the time of incubation advanced, being 

lowest at 12 h and highest at 48 h. After 48 h, the quantity of the content of C20:5 n-3 in vessel which 

disappeared was highest in the control and CSO (means 85.2 g/100 g), and lowest in ANO (42.0 g/100 g), 

with the remaining treatments having intermediate values. The trend of biohydrogenation in the vessel 

content of C22:6 n-3 was similar to the reported trend in the biohydrogenation of C20:5 n-3, with ANO 

showing the highest (P<0.001) potential to reduce the disappearance of C22:6 n-3 after 24 and 48 h, 

whilst control and CSO, had the lowest potential at 48 h. 
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Table 4.5 Effects of whole EOs on C14:0, C16:0 and C16:1 fatty acids concentration (g/100 g total fatty acids) in in vitro cultures at 12, 24 and 48 h incubation 

  EOs   

Fatty acids Time (h) CON ANO CSO CTO CLO CMO ETO JPO LVO MDO RMO S.E.D P-Values 

C14:0 12 5.00 5.01 5.02 5.01 5.02 5.02 5.01 5.00 5.00 5.01 5.02 0.102 NS 

 24 4.99 5.00 5.01 5.01 4.98 5.00 5.02 5.00 5.01 4.96 5.01 0.102 NS 

 48 5.01ª 4.02ᵇ 4.00ᵇ 5.01ª 4.02ᵇ 5.00ª 5.01ª 4.02ᵇ 5.01ª 4.01ᵇ 5.00ª 0.100 <0.001 

               

C16:0 12 15.00 15.03 15.02 15.01 15.00 15.02 15.02 15.00 15.03 15.03 15.02 0.300 NS 

 24 15.02ᵃ 15.02ᵃ 14.00ᵇ 16.01ᶜ 15.01ᵃ 14.03ᵇ 14.03ᵇ 15.04ᵃ 15.02ᵃ 15.01ᵃ 14.02ᵇ 0.400 <0.001 

 48 7.00ᵃ 6.03ᵇ 7.02ᵃ 6.00ᵇ 6.02ᵇ 6.05ᵇ 6.04ᵇ 6.01ᵇ 6.02ᵇ 6.03ᵇ 6.01ᵇ 0.300 =0.002 

               

C16:1 12 2.70ª 3.00ᵇ 3.30ᶜ 3.00ᵇ 2.80ª 3.10ᵇᶜ 3.10ᵇᶜ 2.80ª 3.01ᵇ 2.80ª 3.10ᵇᶜ 0.110 <0.001 

 24 2.90ªe 3.00ªᵇ 3.20ᵇᵈ 3.10ᵇᵈ 3.10ᵇᵈ 3.30ᵈ 3.30ᵈ 3.00ªᵇ 3.01ªᵇ 2.70e 3.20bd 0.110 <0.001 

 48 2.10a 3.01b 1.70c 2.30a 2.20a 2.50de 2.40d 2.20a 2.70e 1.80c 2.50de 0.120 <0.001 

Means within row with different superscripts letters are different (P<0.05); control (CON), anise oil (ANO), cassia oil (CSO), citronella oil (CTO), clove oil (CLO), control 

(CON), cornmint oil (CMO), eucalyptus oil (ETO), juniper berry oil (JPO), lavender oil (LVO), mandarin oil (MDO) and rosemary oil (RMO), NS = not significant.  
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Table 4.6 Effects of whole EOs on C18:0, C18:1 n-9, C18:1 trans 11,  C18:2 c9 t11 CLA, C18:2 n-6 and C18:3 n-3 fatty acids composition (g/100 g total fatty 

acids) in in vitro cultures at 12, 24 and 48 h incubation 

  EOs  

Fatty acids Time (h) CON ANO CSO CTO CLO CMO ETO JPO LVO MDO RMO S.E.D P-Values 

C18:0 12 10.3ᵃ 12.0ᵇ 8.4ᶜ 11.5ᵇ 10.6ᵃ 10.7ᵃ 10.7ᵃ 11.2ᵇ 10.5ᵃ 12.4ᵇ 9.9ᵃᶜ 0.57 <0.001 

 24 7.0ᵃ 8.5ᵇ 7.0ᵃ 9.9ᵇᶜ 7.0ᵃ 6.3ᵃ 5.7ᵃ 7.4ᵃ 10.0ᶜ 10.7ᶜ 5.4ᵈ 0.71 <0.001 

 48 6.9ᵃ 10.8ᵇ 12.7ᶜ 11.3ᵇᶜ 8.9ᵈ 9.2ᵇ 8.5ᵈ 9.2ᵇ 9.0ᵇ 13.8ᶜ 8.6ᵃᵈ 0.89 <0.001 
               

C18:1 n-9 12 7.4a 7.8b 8.4c 8.0b 7.7ab 7.7ab 7.6ab 7.5ab 7.7ab 7.6ab 7.6ab 0.16 <0.001 

 24 6.0a 8.2b 8.2b 8.6b 7.4c 7.5c 7.2c 8.3b 7.6c 8.4b 7.3c 0.22 <0.001 

 48 1.9a 3.2b 2.6ab 3.0b 2.8ab 3.3b 2.4ab 2.6ab 2.6ab 3.9b 3.5b 0.56 =0.062 
               

C18:1 trans 11 12 1.1ᵃ 1.2ᵇ 1.6ᶜ 1.3ᵈ 1.3ᵈ 1.3ᵈ 1.3ᵈ 1.2ᵇ 1.4ᵉ 1.2ᵇ 1.3ᵈ 0.05 <0.001 

 24 1.26ᵃ 1.31ᵃᵈ 1.70ᵇ 1.36ᵈ 1.32ᵃᵈ 1.37ᵈ 1.33ᵃᵈ 1.3ᵃᵈ 1.28ᵃ 1.26ᵃ 1.4ᵉ 0.05 <0.001 

 48 1.96ᵃ 2.58ᵇᶜ 2.67ᵇᶜ 3.04ᵇ 2.37ᵃᶜ 2.36ᵃᶜ 2.48ᵃᵇ 3.08ᵇ 3.03ᵇ 2.82ᵇᶜ 2.46ᵃᵇ 0.29 =0.005 
               

C18:2 c9 t11 CLA 12 0.16a 0.14a 0.21b 0.14a 0.16a 0.13a 0.15a 0.17a 0.17a 0.16a 0.15a 0.017 =0.005 

 24 0.1ᵃ 0.11ᵃ 0.12ᵃ 0.16ᵇ 0.13ᶜ 0.11ᵃ 0.12ᵃ 0.10ᵃ 0.11ᵃ 0.12ᵃ 0.12ᵃ 0.011 <0.001 

 48 0.10ᵃ 0.14ᵇ 0.10ᵃ 0.08ᵃ 0.11ᵃ 0.08ᵃ 0.09ᵃ 0.09ᵃ 0.08ᵃ 0.11ᵃ 0.06ᶜ 0.012 <0.001 
               

C18:2 n-6 12 3.8ᵃ 5.5ᵇ 6.3ᶜ 5.6ᵇ 4.8ᵈ 5.0ᵈ 4.3ᵉ 4.3ᵉ 4.8ᵈ 5.1ᵇ 4.6ᵈᵉ 0.24 <0.001 

 24 2.2ᵃ 5.4ᵇ 6.0ᶜ 4.1ᵈ 3.4ᵉᵍ 4.5ᶠ 3.2ᵉ 3.7ᵍ 3.4ᵉᵍ 4.6ᶠ 3.9   ͪ 0.16 <0.001 

 48 1.1ᵃ 2.8ᵇ 1.4ᶜ 1.5ᶜ 1.8ᵈ 2.2ᵉᶠ 1.5ᶜ 1.8ᵈ 2.3ᵉ 2.2ᵉᶠ 2.0ᵈᶠ 0.11 <0.001 
               

C18:3 n-3 12 5.4ᵃ 8.4ᵇ 9.6ᶜ 8.0ᵇ 7.1ᵈ 7.6ᵈ 6.2ᵉ 6.4ᵉ 7.0ᵈ 7.5ᵈ 6.8ᵉ 0.38 <0.001 

 24 2.8ᵃ 8.1ᵇ 9.4ᶜ 5.9ᵈ 4.9ᵉ 6.9ᶠ 4.5ᵉ 5.3ᵍ 4.8ᵉ 7.4ᶠ 5.8ᵈ 0.27 <0.001 

 48 1.6ᵃ 4.2ᵇ 1.8ᵃᶜ 2.0ᶜ 2.5ᵈ 3.1ᵉ 2.0ᶜ 2.5ᵈ 2.7ᵈ 3.3ᵉ 2.6ᵈ 0.14 <0.001 

Means within row with different superscripts letters are different (P<0.05); control (CON), anise oil (ANO), cassia oil (CSO), citronella oil (CTO), clove oil (CLO), control 

(CON), cornmint oil (CMO), eucalyptus oil (ETO), juniper berry oil (JPO), lavender oil (LVO), mandarin oil (MDO) and rosemary oil (RMO). 
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Table 4.7 Effects of whole EOs on  C20:4 n-6, C20:5 n-3 and C22:6 n-3 long chain fatty acids composition (g/100 g total fatty acids) in in vitro cultures at 12, 24 

and 48h incubation 

  EOs  

Fatty acids Time (h) CON ANO CSO CTO CLO CMO ETO JPO LVO MDO RMO S.E.D P-Values 

C20:4 n-6 12 0.6a 0.5b 0.5b 0.5b 0.6a 0.4c 0.6a 0.6a 0.6a 0.5b 0.5b 0.04 <0.001 

 24 0.8a 0.6b 0.6b 0.7c 0.8a 0.6b 0.7c 0.7c 0.6b 0.6b 0.7c 0.05 <0.001 

 48 0.7a 0.4b 0.5c 0.6d 0.7a 0.6d 0.7a 0.7a 0.6d 0.4b 0.6d 0.03 <0.001 

               

C20:5 n-3 12 1.7ᵃ 3.0ᵇᶜ 3.2ᵇ 2.8ᶜ 2.5d 3.0ᵇᶜ 2.1e 2.2e 2.3e 2.6ᶠ 2.9ᶜ 0.13 <0.001 

 24 1.4ᵃ 2.4b 3.0c 2.2bd 2.0bd 2.1bd 2.0bd 1.9ad 1.9ᵉ 2.1bd 2.0bd 0.23 <0.001 

 48 0.5ᵃ 1.9ᵇ 0.6ᵃᶜ 0.7ᶜ 1.0ᵈ 1.3ᵉ 1.0ᵈ 0.9ᵈ 1.2ᵉᶠ 1.1ᶠ 1.1ᶠ 0.08 <0.001 

               

C22:6 n-3 12 1.8ᵃ 2.3ᵇc 2.4b 2.1cd 2.1ᶜd 2.3ᵇᵉ 2.3ᵇᵉ 2.0d 2.1cᵈ 2.2ᵉ 2.3ᵇᵉ 0.11 <0.001 

 24 1.7ᵃ 2.0b 2.4c 1.9b 1.9b 2.0b 1.9b 1.9b 1.9b 1.9b 1.9b 0.08 <0.001 

 48 0.9ᵃ 1.7ᵇ 0.8ᵃ 0.9ᵃ 1.4ᶜ 1.7ᵇ 1.6ᵇᵈ 1.5ᵈ 1.5ᵈ 1.2ᵉ 1.6ᵇᵈ 0.10 <0.001 

Means within row with different superscripts letters are different (P<0.05); control (CON), anise oil (ANO), cassia oil (CSO), citronella oil (CTO), clove oil (CLO), control 

(CON), cornmint oil (CMO), eucalyptus oil (ETO), juniper berry oil (JPO), lavender oil (LVO), mandarin oil (MDO) and rosemary oil (RMO). 
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Table 4.8 Effects of whole EOs on the concentration of sums of fatty acids (g/100 g TFA) and total fatty acids (mg/g) in cultures at 12, 24 and 48 h in vitro 

  EOs  

Total Fatty Acids Time (h) CON ANO CSO CTO CLO CMO ETO JPO LVO MDO RMO S.E.D P-Values 

Remaining FA  12 37.1a 31.1b 31.3b 31.2b 32.7bc 32.7bc 34.1c 34.9c 33.4bc 32.3b 34.7c 1.13 <0.001 

 24 41.2a 32.4bd 30.4b 31.1b 36.1c 34.6bc 39.2a 35.1d 34.7bc 31.0b 38.4a 1.45 <0.001 

 48 47.5a 40.3b 46.5a 43.0c 45.6a 42.7c 46.0ad 45.1d 41.4b 40.0b 43.1c 1.13 <0.001 
               

∑SFA 12 29.7a 32.0bd 27.5c 31.4b 30.5b 30.5b 30.6b 30.8b 29.9a 32.6d 29.7a 0.79 <0.001 

 24 26.8ac 28.0a 26.0ac 30.4b 26.9ac 25.7cd 24.8cd 27.4ac 29.9b 30.8b 23.8d 1.10 <0.001 

 48 27.4a 30.2b 31.6b 30.9b 27.6a 28.3a 27.4a 27.9a 28.7a 33.6c 28.3a 1.00 <0.001 
               

∑SFA-C18:0 12 19.5 19.9 19.1 19.9 19.9 19.8 19.9 19.6 19.5 20.2 19.8 0.34 NS 

 24 19.8ᵃ 19.4ᵃᶜ 19ᵃ 20.5ᵇ 19.9ᵃ 19.4ᵃᶜ 19.1ᵃᶜ 20ᵇ 19.9ᵃ 20.1ᵇ 18.4ᶜ 0.53 =0.017 

 48 20.5ᵃ 19.4ᵇᶜ 19ᵇᶜ 19.7ᵇ 18.7ᶜ 19.2ᵇᶜ 18.9ᶜ 18.7ᶜ 19.8ᵇ 19.8ᵇ 19.7ᵇ 0.43 =0.002 
               

∑MUFA 12 18.6a 16.8b 17.6c 17.7c 18.4a 18.3a 18.9a 17.9c 18.5a 16.8b 18.3a 0.32 <0.001 

 24 21.8a 18.8b 20.2c 21.4a 22.3a 20.9c 21.7a 22.3a 21.5a 19.5b 20.6c 0.60 <0.001 

 48 18.2a 15.7b 14.0b 17.1a 16.9ab 17.7a 17.1a 16.5b 18.5a 15.2b 18.3a 0.91 <0.001 
               

∑PUFA 12 13.4a 18.9b 22.0c 18.3bd 17.1d 17.3d 15.2e 15.3e 16.8d 17.2d 16.0e 0.89 <0.001 

 24 9.0a 19.5b 21.8c 15.7d 13.4e 17.4f 12.9e 13.9e 12.7e 17.4f 15.7d 0.58 <0.001 

 48 4.9a 11.2b 5.2ac 5.8c 7.5df 8.9e 7.0d 7.4df 8.3e 8.4e 7.9f 0.34 <0.001 
               

TFA (mg/g) 12 41.2ᵃ 44.0ᵃ 35.2ᵇ 37.3ᵇ 39.7ᶜ 40.3ᶜ 40.9ᶜ 40.3ᶜ 39.5ᶜ 41.3ᵃ 42.4ᵃ 1.54 <0.001 

 24 37.6ᵃ 36ᵃ 34.1ᶜ 34ᶜ 37.8ᵃ 38ᵃ 38.3ᵃ 37.8ᵃ 38.3ᵃ 33.9ᶜ 37.9ᵃ 1.19 <0.001 

 48 43.5ᵃ 40ᵇ 43.9ᵃ 40.2ᵃ 42.1ᵃ 42ᵃ 42.5ᵃ 42ᵃ 36.6ᵇ 37.7ᵇ 43.4ᵃ 1.75 <0.001 

Means within row with different superscripts letters are different (P<0.05); control (CON), anise oil (ANO), cassia oil (CSO), citronella oil (CTO), clove oil (CLO), control (CON), cornmint oil 
(CMO), eucalyptus oil (ETO), juniper berry oil (JPO), lavender oil (LVO), mandarin oil (MDO) and rosemary oil (RMO), NS= not significant, SFA= saturated fatty acids, MUFA= monounsaturated 
fatty acids, PUFA= polyunsaturated fatty acids, TFA= total fatty acids.  
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Table 4.9 Effects of whole EOs on fatty acid ratios ∑n-6/∑n-3 and P:S  in cultures at 12, 24 and 48 h in vitro incubation  

  EOs  

Fatty acid ratios Time (h) CON ANO CSO CTO CLO CMO ETO JPO LVO MDO RMO S.E.D P-Values 

∑n-6/∑n-3 12 0.50 0.50 0.51 0.51 0.50 0.51 0.50 0.51 0.51 0.50 0.50 0.010 NS 

 24 0.50a 0.41b 0.41b 0.40b 0.51a 0.41b 0.40b 0.50a 0.51a 0.40b 0.40b 0.010 <0.001 

 48 0.62a 0.41b 0.60a 0.63a 0.51c 0.50c 0.50c 0.51c 0.60a 0.51c 0.50c 0.030 <0.001 

               

P:S 12 0.50a 0.60b 0.80c 0.60b 0.61b 0.60b 0.50a 0.50a 0.61b 0.51a 0.50a 0.05 <0.001 

 24 0.30a 0.70b 0.80c 0.50d 0.51d 0.70b 0.50d 0.50d 0.41e 0.60f 0.70b 0.04 <0.001 

 48 0.22a 0.41b 0.21a 0.20a 0.30c 0.31c 0.30c 0.32c 0.30c 0.21a 0.31c 0.02 <0.001 

Means within row with different superscripts letters are different (P<0.05);  control (CON), anise oil (ANO), cassia oil (CSO), citronella oil (CTO), clove oil (CLO), control 

(CON), cornmint oil (CMO), eucalyptus oil (ETO), juniper berry oil (JPO), lavender oil (LVO), mandarin oil (MDO) and rosemary oil (RMO); n-6/n-3= sum of n-6 divided by 

sum of n-3 fatty acids, P/S= sum of PUFA divided by sum of SFA 
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Table 4.10 The effects of EOs on the biohydrogenation (g/100 g) of C18:2 n-6, C18:3 n-6, C20:5 n-3 and C22:6 n-3 PUFA in in vitro cultures at 12, 24 and 48 h 

incubation 

  EOs  

Fatty acids Time (h) CON ANO CSO CTO CLO CMO ETO JPO LVO MDO RMO SED P-Values 

C18:2 n-6 12 58.1ᵃ 38.3ᵇ 39.8ᵇ 35.8ᵇ 28.5ᶜ 46.9ᵈᵉ 59.1ᵃ 57.9ᵃ 44.0ᵈᵉ 42.2ᵈ 48.8ᵉ 2.54 <0.001 

 24 76.1ᵃ 39.6ᵇ 42.0ᵇ 52.9ᶜ 48.4ᵈ 52.0ᶜ 69.4ᵉ 63.8ᶠ 60.4ᶠ 47.6ᵈ 56.2ᶜ 2.15 <0.001 

 48 87.8ᵃ 68.6ᵇ 86.9ᵃ 82.2ᶜ 72.7ᵈ 76.8ᵉ 85.3ᵃ 82.2ᶜ 73.3ᵈ 74.4ᵈ 78.1ᵉ 1.55 <0.001 

               

C18:3 n-6 12 62.9ᵃ 39.8ᵇ 45.2ᶜ 44.1ᶜ 38.9ᵇ 53.2ᵈ 66.2ᵃ 64.6ᵃ 52.1ᵈ 49.1ᵉ 54.2ᵈ 2.21 <0.001 

 24 80.8ᵃ 41.8ᵇ 45.7ᵇᶠ 59.0ᶜ 57.7ᶜ 57.2ᶜ 75.9ᵈ 70.5ᵉ 67.4ᵉ 49.8ᶠ 61.2ᶜ 2.13 <0.001 

 48 89.2ᵃ 69.5ᵇ 89.8ᵃ 86ᶜ 78.3ᵈ 80.9ᵉ 89.0ᵃ 86.4ᶜ 81.6ᵉ 77.3ᵈ 82.6ᵉ 1.13 <0.001 

               

C20:5 n-3 12 49.1ᵃ 9.4b 17.4cd 16.2c 25.3d 18.5cd 48.9a 46.7a 33.8e 26.2d 19.3cd 4.09 <0.001 

 24 60ᵃ 28.3ᵇc 24.4ᵇ 32.9cbd 38.9cd 41.0d 52.4a 53.0a 43.6d 39.5ᵈ 43.0d 5.83 <0.001 

 48 85.2ᵃ 42.0ᵇ 85.2ᵃ 80.2ᶜ 71.0ᵈ 65.0ᵉ 74.9ᵈ 77.6ᶜ 65.5ᵉ 68.9ᵉ 69.4ᵉ 2.29 <0.001 

               

C22:6 n-3 12 24.3a 5.3b 17.1c 5.7b 10.3bd 12.0d 20.7a 33.8a 8.4b 11.4b 6.2b 3.12 <0.001 

 24 28.1ᵃc 15.1ᵇ 18.9ᵇ 13.7ᵇ 21.0ᵃ 21.5ᵃ 35.7ᵉ 36.6ᵉ 21.7ᵃ 21.8ᵃ 22.5ᵃ 4.60 <0.001 

 48 63.4ᵃᶜ 28.6ᵇᵈ 71.1ᵃ 59.5ᶜ 22.6ᵇ 33.7ᵈ 44.0ᵉ 49.8ᵉᶠ 36.7ᵈ 52.5ᶜᶠ 37.3ᵈ 4.20 <0.001 

Means within row with different superscripts letters are different (P<0.05), control (CON), anise oil (ANO), cassia oil (CSO), citronella oil (CTO), clove oil (CLO), control 

(CON), cornmint oil (CMO), eucalyptus oil (ETO), juniper berry oil (JPO), lavender oil (LVO), mandarin oil (MDO) and rosemary oil (RMO). 
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4.5. Discussion 

The objective of the current study was to examine the effects of whole EOs on the extent of rumen 

biohydrogenation of n-3 PUFA. The EOs used in the current study were selected based on the 24 h results 

of the first experiment (described in Chapter 3; Eburu and Chikunya, 2014) which screened the effects of 

15 individual essential oil’s constituent compounds. On one hand, the EOCs were ranked from 1 (highest) 

to 15 (lowest) based on the concentration (g/100 g TFA) of C18:3 n-3, C18:2 n-6, C20:5 n-3, C22:6 n-3, 

C18:2 cis-9 trans-11 CLA and C18:1trans 11 in their cultures.  On another hand, EOCs were ranked from 

1 (least inhibition of VFA) to 15 (most inhibitory effect on VFA concentration). After careful 

consideration of their effects on fatty acid and volatile fatty acid concentrations, the overall best EOCs 

were then selected and the parent whole oils of the best 10 EOCs were then used in the current study. The 

24 h results were used for selecting the most effective EOCs because of the assumption that, at 12 h, there 

might be inadequate time for interaction between the microbes and the EOCs, and at 48 h, there might be 

remarkable change in the microbial species composition (Personal communication with Prof John 

Wallace). Hence, 24 h results provide the most representative outlook of the effects of EOCs/EOs on 

rumen fermentation. 

4.5.1. Effects of EOs on in vitro fermentation parameters 

Within the EOs, the cumulative gas production was not affected at 24 h by more than half of the EOs 

(ANO, CSO, CTO, ETO, JPO and LVO), whilst the rest of the EOs reduced gas production relative to the 

control. However, at 48 h, majority of the extracts reduced gas production compared with the control, 

with CLO, CMO and MDO being the most inhibiting EOs. These findings on whole EOs are in 

agreement with our previous preliminary study (Chapter 3), where individual EOCs of these same EOs 

reduced the amount of total gas produced, with inhibition being highest in phenolic compounds. The 

differences in these EOs to influence the amount of gas production suggest differences in their potential 

to decrease microbial activity.  This difference could be due to the variation in the chemical composition 

of individual EO as the antimicrobial activity of terpenes depends on the chemical structure of the 

isoprene unit (Griffin et al. 1999). Essential oils containing high proportion of phenolic compounds such 

as thymol, carvacrol and eugenol (2-methoxy-4-(2-propenyl)phenol as components of their chemical 
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structure exhibited the strongest antimicrobial properties against food borne pathogens (Cosentino et al., 

1999; Juliano et al., 2000; Lambert et al., 2001). In the current study, CLO (containing a phenolic 

compound, eugenol as the active compound, Table 4.2), ANO (containing a phenolic compound, 

anethole) were among the most effective EO to reduce gas production. This further confirms the well-

established contention that phenolic compounds have the greatest antimicrobial strength to modify 

microbial composition resulting in decreased fermentation of substrates, as reduction in fermentation is 

due to altered microbial species composition (Van Soest, 1994). There is a link between the inhibition of 

gas production by the EOCs (Chapter 3) and the whole oils in the current study. Overall, CMO and MDO 

had the most inhibiting effect on total cumulative gas production which is consistent with the previous 

study where menthol (active component of CMO, Table 4.2), cinnamaldehyde (active component of 

cassia, Table 4.2) and anethole (active component of ANO, Table 4.2) were among the most effective 

EOCs to reduce total gas production. However, comparison of the effects of EOCs (in Chapter 3, e.g. 

anethole) and EOs (current study, e.g. anise oil) on gas production indicate that anise oil is more 

inhibitory than anethole (as lower gas was produced in culture with anise oil than in anethole). The higher 

level of gas in cultures supplemented with anethole 300 mg/L (Chapter 3) than anise oil 300 mg/L 

(current study) suggest that other minor components of anise oil had significant synergistic effects on 

ruminal fermentation activities. These observations are consistent with previous studies where it is 

suggested that minor components may synergistically interact with the major components of EOs 

(Davidson and Naidu, 2000; Burt, 2004). 

The concentration of NH₃-N in cultures was significantly reduced by majority (7 out of 10) of the EOs at 

12 h. However, at 24 and 48 h, the concentration of NH₃-N in cultures was not affected by inclusion of 

EOs, except CSO which had significant inhibition (33%) of ammonia production at 24 h. The observed 

results at 12 h agree with previous studies where oregano (30 and 300 mg/L) and cinnamon oil (0.3 to 300 

mg/L) decreased NH₃-N (Cardozo et al., 2005), where 0.22 mg/L of cinnamon oil reduced NH₃-N 

(Cardozo et al., 2004), and where a higher dose (3,000 mg/L) of cinnamaldehyde and cinnamon oil 

inhibited NH₃-N (Busquet et al., 2005; Busquet et al., 2006). This change in the potential of EOs to 

reduce NH₃-N production with time of incubation may be due to gradual adaptation of individual 
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microbial species to EO or shifts in microbial populations (Gladine et al., 2007). The gradual decrease in 

the potency of EOs to inhibit ammonia N concentration with increase in time of incubation suggest that 

the benefits associated with the use of essential oil as feed additive may decline over time. Reduced 

concentration of NH₃-N (at 12 h) with the inclusion of EOs could be due to inhibition of microbial 

enzymes responsible for amino acid deamination. As suggested in previous studies, inhibition of amino 

acid deamination is the consequence of reduced proteolytic activity of the rumen (Mclnotch et al., 2003). 

Bach et al. (2005) reported that different groups of microbes: HAP (with lower abundance but use amino 

acids as energy source), proteolytic bacteria (with higher abundance and lower rate of NH₃-N producing 

potential), and protozoa, are the major groups of microorganisms involved in NH₃-N production. 

Therefore, the lower concentration of ammonia in some cultures could be due to inhibition of activities of 

these predominant microorganisms by the addition of EOs (Mclnotch et al., 2003). Cassia oil containing 

the phenolic compound, cinnamaldehyde (Table 4.2) had the highest inhibition of NH₃-N concentration 

in cultures, further suggesting that phenolic compounds have the greatest and broadest antimicrobial 

characteristics. 

The inclusion of all EOs, except ETO and LVO at 24 h, significantly reduced TVFA at all times of 

incubation compared to the control. As ruminants derive the majority of their energy from VFA 

(Bergman, 1990), a reduction in VFA of the magnitude observed (over 10% average reduction) with all 

EOs except ETO and LVO would suggest a gross inhibition of rumen function. Inhibition of TVFA in the 

current study agrees with a number of previous studies such as Eburu and Chikunya (2014), where 

inclusion of 300 mg/L of EOCs reduced TVFA; Gunal et al. (2013), where different doses of citronella 

oil (125, 250 and 500 mg/L) reduced TVFA; and Agarwal et al. (2009), where 1.0 and 2.0 ml/L of 

peppermint oil depressed feed digestibility and TVFA production, and,  Busquet et al. (2005), where 

inclusion of higher dose (3000 mg/L) of whole EO and individual components such as cinnamon oil and 

cinnamaldehyde (3000 mg/L) reduced TVFA.  By contrast, the use of anise at 0.22 mg/L in continuous 

culture experiment did not change the profile of TVFA (Cardozo et al. (2004), and lavender oil (5, 50 and 

500 mg/L) did not modify rumen fermentation parameters after 24 h (Castillejos et al., 2008). The 

difference in the production of TVFA between the current study and the study of Cardozo et al. (2004) 
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could be understood from the point of view of the difference in the dose of EOs. Addition of EO to 

cultures may decrease (at high doses) or have no effect (at low doses) on TVFA concentration, depending 

on the concentration of the EOs to alter feed nutrient digestibility (Patra and Saxena, 2010). In addition, 

previous studies suggested that effects of EO on VFA are not always consistent, but determined by the 

dose and type of EO (Bustquet et al., 2006), and the pH of the rumen (Cardozo et al., 2005). In the 

current study, the reduction on the concentration of TVFA was consistent with the reported reduction on 

cumulative gas production after 48 h period of incubation. Reduced digestion in feed which is reflected 

on decreased production of gas can be accompanied by less production of hydrogen, CH4 and volatile 

fatty acids plus a lower A/P ratio (Boggs et al., 1987).  

In the current study, CSO (with cinnamaldehyde as active component, Table 4.2) was the only additive 

that reduced the molar proportion of acetate relative to the control, the rest of the extracts increased 

acetate. This supports the finding in the first experiment (Chapter 3) where cinnamaldehyde decreased the 

molar proportion of acetate. In addition; the result is consistent with previous studies (Busquet et al., 

2005; Gunal et al., 2013) where the use of either individual EOCs or whole EOs increased the molar 

proportion of acetate in cultures. However, using rumen fluid from beef cattle fed 10% concentrate and 

90% forage in in vitro fermentation experiment with pH 5.5, Cardozo et al. (2005) reported that anise oil 

reduced acetate proportion. The difference in the composition of the basal diets fed to the donor animals 

between the current study and the study by Cardozo et al. (2005) could be responsible for the observed 

differences in the molar proportion of acetate. The proportion of propionate was not affected by 50% of 

the EOs (ANO, ETO, JPO, MDO and RMO) at 24 h, but reduced by the rest of the additives used, with 

the exception of CSO increased this molar proportion. This increase in the molar proportion of propionate 

with the inclusion of CSO is consistent with the findings from previous studies (Busquet et al., 2005; 

Castillejos et al., 2008). This suggests that the inclusion of CSO in cultures modified microbial 

population towards decreased methanogenesis (Demeyer and Van Nevel, 1995). In the rumen, anaerobic 

fermentation of proteins and soluble carbohydrates (sugars and starch) with higher propionate production 

results in reduced acetate and methanogenesis (Demeyer and Van Nevel, 1995), since the predominant 

producers of acetate and methane are cellulolytic bacteria. The reduced proportion of propionate in the 
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current study with the inclusion of the rest of the EOs also supports the results in Chapter 3, where EOCs 

reduced the molar proportion of propionate, and also consistent with earlier studies (Castillejos et al., 

2006). The ratio of acetate to propionate (A: P) was not affected by JPO and RMO at 24 h but reduced by 

CSO, with the remaining EOs increasing A/P. The increased ratio of A/P with the inclusion of most of the 

EOs could be due to the higher molar proportion of acetate observed in those cultures, and the decrease in 

A/P in cultures supplemented with CSO is also due to the increased proportion of propionate in those 

vessels. 

4.5.2. Effect of EOs on fatty acid metabolism 

In the current study, the addition of ANO, CSO, CLO, JPO and MDO (at 48 h) and the inclusion of all 

EOs except CSO (at 48 h) reduced the concentrations of C14:0 and C16:0 respectively. Available reports 

suggest that these fatty acids (palmitic and myristic acids) are capable of raising plasma cholesterol 

through suppression and saturation of low-density lipoprotein (LDL) receptors (Keys et al., 1995). This 

suggests that a reduction in the concentration of C14:0 and C16:0 in the current study with the inclusion 

of all EOs except CSO could possibly decrease the plasma levels of low-density lipoprotein (LDL) if this 

is repeated in vivo. 

The concentration of the last product of the biohydrogenation of C18:3 n-3, C18:2 n-6 and C18:1 n-9 

(C18:0) was not affected by the addition of EOs to cultures. The exception to this was the reduced levels 

of C18:0 in CSO (12 h) and RMO (24 h). It is uncertain why the high accumulation of C18:3 n-3 and 

C18:2 n-6 in this study did not translate to a reduction in C18:0, since C18:0 is the end product of their 

biohydrogenation. However, the accumulation of C18:0 in the current study despite high levels of PUFA 

is in agreement with previous studies with EOs (Vasta et al., 2013). Also, in our previous studies with 

individual EOCs, the production of C18:0 was not affected by majority of the EOCs at 24 h despite higher 

levels of C18:3 n-3 and C18:2 n-6 (Chapter 3; Eburu and Chikunya, 2014). As suggested in Chapter 3, 

three possibilities were discussed as potential reasons for the high accumulation of PUFA without major 

effects on the end product of biohydrogenation: firstly, the high concentration of C18:0 in the current 

study despite high levels of PUFA could be emanating from the high concentration of C18:1 n-9 in 

cultures with added EOs. Jenkins et al. (2006) reported that about 70% of C18:1 n-9 in rumen culture was 
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converted to C18:0, and only 30% was transformed to ketostearic acid and hydroxystearic acid; the next 

possibility is that other unidentified biohydrogenation intermediates could have been produced in these 

cultures (Gunal et al., 2013); and finally, accumulation of PUFA could be due to reduced lipolytic 

activities. Buccioni et al. (2012) suggested that if small amounts of PUFA in the diet reach the duodenum, 

it might be arising from a reduction in lipolysis. This suggests that these EOs inhibit the activity of 

Butyrivibrio fibisolvens and Anaerovibrio lipolytica, which are responsible for hydrolysing the ester bond 

in fatty acids (Buccioni et al., 2012), potentially reducing lipolysis and isomerization of oil. As suggested 

by previous studies (Cobb 1992; Grundy, 1994; Pariza, 2004), unlike C14:0 and C16:0 fatty acids, 

discussion on the control of cholesterol through dietary manipulations should not be focused on stearic 

acid as it is a saturated fatty acid but without any harmful effects on human health.  

The activity of the rumenic acid enzyme, the reductase enzyme, aids the formation of trans-11 18:1 

(vaccenic acid; VA) from cis-9 trans 11 18:2 CLA (Jenkins et al., 2008; Kim et al., 2009; Buccioni et al., 

2012).  In the current study, majority of the added EOs increased the concentration of C18:1 trans 11 in 

cultures after 48 h, JPO, CTO and LVO being the most effective EOs, in agreement with Lourenco et al. 

(2009). This suggests that inclusion of EOs stimulates the activity of the reductase enzyme, and also 

indicate that inclusion of these EOs could increase the concentration of cis-9 trans 11 18:2 CLA. 

Vaccenic acid represents a substrate for endogenous synthesis of CLA in animal tissues through the Δ-9 

desaturase enzyme (Griinari et al., 2000); hence, increasing the level of VA would potentially have a 

linear effect on the amount of cis-9 trans 11 18:2 CLA in animal tissues (Griinari et al., 2000). Previous 

studies (Piperova et al., 2002; Kay et al., 2004) reported that about 90% of cis-9 trans-11 CLA in cow’s 

milk resulted from the desaturation of VA. In addition, high accumulation of C18:1 trans 11 in the current 

study suggests that the addition of EOs could likely impair the activity of Clostridium proteoclasticum 

(Kemp et al., 1975; Maia et al., 2007), renamed as Butyrivibrio proteoclasticus (Moon et al., 2008), the 

bacteria responsible for converting VA to C18:0.  

The current study observed that only the inclusion of CTO (24 h) and ANO (48 h) significantly increased 

the content of cis-9 trans 11 18:2 CLA, relative to the control, which is consistent with previous studies 

(Whitney et al., 2011); the rest of the treatments did not affect this intermediate of biohydrogenation. As 
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mentioned previously, cis-9 trans 1118:2  CLA is formed in the first step during the transformation of cis-

9, cis-12 18:2 by the linoleic acid isomerase (LA-I) (Jenkins et al., 2008; Kim et al., 2009; Buccioni et 

al., 2012). It can be suggested from the results of the current study that the activities of the lipase (LA-I) 

which facilitate the formation of cis-9 trans 11 CLA from cis-9, cis-12 18:2 were impaired by all but 

CTO and ANO at the times indicated.  

The content of C18:2 n-6 in both the CON and in all EOs rapidly decreased with time, being lowest at 48 

h and highest at 12 h. Although the biohydrogenations of C18:2 n-6 and C18:3 n-3 were similar, that of 

C18:2 n-6 was slightly lower than that of C18:3 n-3. These biohydrogenation values conform to results of 

previous in vitro (Beam et al., 2000) and in vivo (Wachira et al., 2000) studies. The effects of the added 

EOs on the biohydrogenation of C18:2 n-6 and C18:3 n-3 (discuss later) were similar, with ANO and 

CSO being the most effective EOs to reduce the extent of biohydrigenation of C18:2 n-6. 

As a direct reflection of the biohydrogenation of C18:3 n-3 in cultures, the content of C18:3 n-3 rapidly 

decreased with time, being highest at 12 h and lowest at the end of incubation (48 h). This rapid 

biohydrogenation of C18:3 n-3 from whole ground linseed which was more than 80 g/100 g at 24 h 

agrees with the results obtained with the EOCs in Chapter 3. This biohydrogenation values are also in 

support of other results of previous in vivo studies (Wachira et al., 2000; Scollan et al., 2001, Wang et al., 

2002) and in vitro studies (Sinclair et al., 2005). In the first 24 h, the concentration of C18:3 n-3 was 

significantly highest in ANO and CSO and consistently lowest in ETO and JPO, relative to the control. At 

48 h, the highest levels of C18:3 n-3 were still observed in cultures with ANO. These findings are in 

agreement with our previous study where anethole and cinnamaldehyde, the active components of anise 

and cassia EOs respectively, were among the most effective compounds to maintain the highest 

concentrations of C18:3n -3 and C18:2 n-6 (Chapter 3, Eburu and Chikunya, 2014). The most active 

component of ANO (anethole) and CSO (cinnamaldehyde) possess phenolic moieties in their chemical 

structures (Calsamiglia et al., 2007; Bakkali et al., 2008). As mentioned previously, the antibacterial 

activity and specific mode of action of an individual EO is influenced by the chemical structure of EO 

components (Dormans and Deans, 2000). The possibility of ANO and CSO to exert the greatest 

antimicrobial characteristic by maintaining higher levels of C18:3 n-3 than other EOs could be due to 
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their phenolic properties. This could suggest that ANO and CSO probably reduced isomerization of C18:3 

n-3 compared to the rest of the treatments. EOs containing high proportion of phenolic compounds such 

as thymol, carvacrol and eugenol (2-methoxy-4-(2-propenyl)phenol as components of their chemical 

structure exhibit the strongest antimicrobial properties against food borne pathogens (Cosentino et al., 

1999; Juliano et al., 2000; Lambert et al., 2001). The mechanisms of action of phenolics are thought to 

generally include disruption of proton motive force (PMF), coagulation of cell contents, disturbance of 

cytoplasmic membrane and disruption of active transport and electron flow (Sikkema et al., 1995; 

Davidson, 1997). By contrast, the use of six different essential oils (citronella, rosemary, sage, Siberian fir 

needle oil, clove and white thyme) at 125, 250 and 500 mg/L did not affect the biohydrogenation of 

C18:3n -3 (Gunal et al., 2013). The possible explanation to the difference in results obtained between the 

study of Gunal et al. (2013) and the current study could be the difference in the maturity stage of the 

parent plant at which the oil was obtained before use, and the part of the plant from which the oils were 

extracted. This is because maturity stage and the part of the plant from where oil is extracted have been 

reported to influence the antimicrobial potency of oils (McGimpsey et al., 1994; Cosentino et al., 1999; 

Lis-Balchin et al., 1999; Marino et al., 1999; Delaquis et al., 2002). This indicates wide variation between 

the compositions of EOs obtained from different parts of the same plant, which could translate to their 

different antimicrobial characteristics. Comparison between the effects of EOCs (in Chapter 3, e.g. 

anethole) and EOs (the current study, e.g. anise oil) on concentrations and biohydrogenation of C18:3 n -3 

and C18:2 n-6 suggest that anise oil and its predominant active compound (anethole) had similar effects 

on rumen concentration of C18:3 n-3. This observation is consistent with previous studies where it is 

established that anethole is the main compound in anise oil (Davidson and Naidu, 2000). However, the 

higher concentrations of C18:3 n-3 and C18:2 n-6 in cultures supplemented with anise oil 300 mg/L 

(current study) than anethole 300 mg/L (Chapter 3) suggest that other minor components of anise oil had 

significant synergistic effects on ruminal fermentation activities. 

In our previous study (Chapter 3; Eburu and Chikunya, 2014), the use of anethole and 4-allylanisole, the 

two most effective EOCs, protected 22.2 and 26.4 g/100 g of C18:3 n-3 from biohydrogenation. In the 

current study however, the use of ANO and CSO, the two most effective EOs, protected 58.2 and 54.3 
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g/100 g respectively, from biohydrogenation at 24 h. As mentioned previously, the possible reason why 

the use of the whole EOs in the current study had higher potential to protect C18:3 n -3 or C18:2 n -6 

from biohydrogenation could be that there is some form of synergism between the minor and major 

compounds in the whole EOs (Davidson and Parish, 1989; Burt, 2004). 

The extent of disappearance of C20:5 n-3 and C22:6 n-3 in vessels increased as the time of incubation 

progressed, being highest at 48 h and lowest at 12 h. The quantity of the content of C20:5 n-3 and C22:6 

n-3 in vessel which disappeared after 48 h was highest in the control. These results support previous 

reports from in vivo studies where the biohydrogenation of C20:5 n-3 and C22:6 n-3  in fish oil range 

from 72 to 93 g/100 g TFA (Wachira et al., 2000; Scollan et al., 2001; Chikunya et al., 2004). However, 

these findings contrast in vitro reports where the biohydrogenation of C20:5 n-3 and C22:6 n-3 was less 

than 50 g/100 g (Ashes et al., 1992; Sinclair et al., 2005). Similar to the results obtained in Chapter 3, the 

potential inhibition of the biohydrogenation of C20:5 n-3 and C22:6 n-3 differs within the EO group; with 

biohydrogenation being lowest in ANO whose most active compound (anethole) possesses phenolic 

moieties. As discussed in Chapter 3, the biohydrogenation of the fish oil fatty acids (C20:5 n-3 and C22:6 

n-3) was less compared to the ruminal disappearance of C18 fatty acids (C18:3 n-3 and C18:2 n-6). This 

inability of microbes to hydrogenate the fish oil fatty acids is not due to the difference in the lipase 

activities but because microbes lack the enzymes necessary to hydrogenate the long chain n-3 PUFA 

(Ashes et al., 1992).  

There were no clear effects of treatments on the content of ∑SFA after 48 h; therefore, ∑SFA was 

calculated without C18:0 (I.e. ∑SFA-C18:0) since C18:0 does not have any harmful effects in human 

health (discussed previously). After 48 h the inclusion of all EOs in cultures reduced the content of 

∑SFA-C18:0 compared with the control at 48 h, which is consistent with the higher accumulation of 

∑PUFA in cultures with added EOs. 

The content of ∑PUFA declined with increase in the time of incubation, and was highest in ANO at 48 h, 

relative to the control. The decrease in the levels of ∑PUFA with time agrees with the corresponding 
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decrease in the concentration of individual PUFA. The highest content of the ∑PUFA in vessels treated 

with ANO also conformed to the highest levels of individual PUFA.  

In the report presented here, the content of TFA was significantly reduced by majority of the EOs relative 

to the control, except ANO and RMO (both at 24 h) which did not affect the concentration of TFA. 

Reduction of TFA could suggest that the reported decrease in TVFA and ammonia concentration (mostly 

at 12 h) had reduced the microbial de novo fatty acids synthesis (Sauvant and Bas, 2001), leading to 

reductions in the levels of TFA.  

In this study, the major thrombotic fatty acid (C20:4 n-6; Kinsella et al., 1990), was beneficially reduced 

by most of the added EOs and was lowest in ANO and MDO after 48 h. If ∑n-6/∑n-3 is an indicator of 

the antithrombotic effect, then cultures with ANO would have the highest antithrombotic strength. 

The ratio of PUFA to SFA (P: S) in cultures decreased with time, and was consistently highest in vessels 

with ANO and CSO. After 48 h of incubation, only cultures with ANO had P/S close to the value of 0.45 

recommended in the guidelines of the Department of Health (1994). 

 4.6. Conclusion 

In the current study, the potential of whole EOs used in this study to inhibit BH of n-3 PUFA at 24 h can 

be ranked as follows: ANO and CSO > MDO and CMO > CTO and RMO > JPO, LVO, CLVO and ETO. 

These results showed that ANO and CSO (rich in phenolic compounds) have the greatest potential to 

modulate the biohydrogenation of n-3 PUFA in the rumen. However, it is uncertain whether these 

changes are replicated in in vivo experiment. If this is confirmed, then the levels of PUFA in ruminant 

food products (meat and milk) could be enhanced by supplementing ruminant diet with cassia and anise 

oils. However, lower doses should be tested to establish optimum levels of inclusion at which feed 

degradability and VFA production would not be impaired. It is also worthwhile to investigate the 

mechanism of action and the stability of these oils in the rumen. Therefore, the next study (discussed in 

Chapter 5) would investigate effects of varying doses (0, 100, 200 and 300 mg/L) of the two most 

effective oils (anise and cassia) and the two most effective EOCs (anethole and 4-allylanisole).  
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 Chapter 5 

 The effects of graded doses of 4-allylanisole, anethole, anise oil and 

cassia oil on fermentation and biohydrogenation of n-3 polyunsaturated 

fatty acids by rumen microorganisms in vitro 
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Abstract 

Effects of varying levels of inclusion of 4-Allyanisole (ALA), anethole (ANE), anise oil (ANO) and 

cassia oil (CSO) on the fermentation activities of rumen microbes and the biohydrogenation (BH) of n-3 

PUFA were evaluated in vitro using batch culture system. Rumen fluid was collected from six Hartline  

Texel cross cull ewes. A basal feedstock comprising of 70:30 grass hay (Lolium perenne) and concentrate 

(lamb finisher cubes) was used. Serum bottles were incubated at 39⁰C; each bottle contained 1 g of feed 

substrate, 80 ml buffer, 20 ml inoculum, then supplemented with increasing concentrations (0, 100, 200 

and 300 mg/l) of each EOs/EOCs.  There were 16 treatments (with 6 replicates per treatment) as follows: 

ALA, ANE, ANO and CSO. Fermentation was stopped after 12 and 24 h, and samples were collected to 

analyse NH3-N, total and molar proportions of individual VFA; and concentration of PUFA including 

intermediates of BH. Relative to the control, CSO (all doses), ANE (at 100), and ALA at 300 reduced 

NH3-N levels relative to the control, whilst concentration was similar in all doses of ANO. Irrespective of 

oil, the highest dose (300 mg/L) of all substances with the exception of ANE induced the most inhibition 

(average 12%) on TVFA.  At 200 mg/L, ANE, ALA and ANO only slightly (by about 2%) reduced 

TVFA relative to the control, but CSO reduced TVFA by 10%.  The level of C18:0 was reduced by ANO 

(at 100 mg/L), ALA (at 300 mg/L) and CSO (at 200 mg/L). All doses of all substances maintained higher 

(P<0.001) the concentrations of 18:2 cis-9 trans 11 CLA and all PUFA in a dose-dependent manner, 

suggesting that higher doses afforded better protection.  At 200 and 300 mg/L all substances substantially 

maintained higher concentration of PUFA relative to the control. Therefore, considering the effects of the 

tested EOs and EOCs and at different doses in this study, it appears that the administration of ALA, ANE 

and ANO at 200 mg/L seems to give best balance between PUFA protection and minimal disturbance to 

VFA concentration. However, CSO requires a dose more than 100 mg/L but less than 200 mg/L to attain 

the same level of protection and minimising disruption of fermentation. It is worthwhile to investigate 

whether these effects are sustained in vivo including testing the possibility of microbial adaptation to 

these substances at these doses.   
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5.1. Introduction 

In two separate preliminary investigations, it was established that including both individual essential oil 

compounds (EOCs) particularly 4-allylanisole and anethole (Chapter 3; Eburu and Chikunya, 2014) and 

whole essential (EOs) such as oils of anise and cassia (Chapter 4; Eburu and Chikunya, 2015a) at 300 

mg/L significantly inhibits the disappearance of C18:2 n-6 and n-3 polyunsaturated fatty acids (PUFA; 

C18:3 n-3, C20:5 n-3 and C22:6 n-3) from rumen contents. However, at this level of inclusion (300 

mg/L) there was a concomitant significant suppression of VFA levels (over 10% average reductions with 

the addition of both EOs and EOCs). Volatile fatty acids are the fundamental sources of energy for 

ruminants and their ruminal concentrations reflect the extent of degradation of nutrients in the used feed 

(Bergman, 1990; Szumacher-Strabel and Cieslak, 2012).  The reduced concentrations of VFA in our 

previous studies (Chapters 3; 4) would suggest that if similar effect is exerted in vivo, animal performance 

would be significantly negatively affected. Previous studies suggested that the benefits of using EOs and 

EOCs to decrease ruminal NH3-N production can be counterbalanced by a reduction in feed digestibility 

and decreased concentration of VFA if their inclusion levels are not optimized (Busquet et al., 2006; 

Martinez et al., 2006). Therefore, using these additives at optimum dosages could reduce the negative 

effects on VFA concentration.  Because the aim of using EOs and EOCs as feed additive is to improve the 

efficiency of rumen fermentation processes and not inhibition, information on their optimum doses is vital 

to maximize ruminant performance. McIntosh et al. (2003) observed that EOs affect microbial population 

in a dose-dependent manner. The aim of the current study was to establish the optimal doses of the four 

substances (4-allyanisole, anethole, anise and cassia) which were identified in our preliminary studies 

(Chapters 3; 4) to be most effective at inhibiting PUFA disappearance. This would enable the 

achievement of satisfactory inhibition of PUFA biohydrogenation but without significant reductions in 

VFA concentration. In the current study, these additives were evaluated at graded levels of inclusion. 
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5.2.0. Materials and methods  

5.2.1. Animal management and collection of rumen fluid/sampling 

In this experiment, six Hartline  Texel cross cull ewes (mean weight 70.2 ±7.5kg) were used as rumen 

fluid donors.  Experimental details relating to housing, experimental diet, feeding, duration of adaptation 

and collection of rumen fluid are described in section 2.1.  

5.2.2. Basal feedstock, treatments and in vitro incubation 

The basal feedstock was mixtures of good quality rye-grass hay (Lolium perenne), lamb finisher 

concentrate, whole ground linseed and fish oil. The supplier details and components of the basal 

feedstock used in this in vitro incubation are as described in the general material and methods (see section 

2.3). The ingredient content, chemical and fatty acid composition of the basal feedstock are shown in 

Table 2.2. 

The effects of the 2 EOCs and 2 whole essential oils were evaluated using the in vitro gas production 

batch culture method described by Theodorou et al. (1994). All EOCs and EOs used were purchased from 

Sigma-Aldrich Co. Ltd., UK and were stored at the required temperatures specified on delivery notes 

prior to use. See Tables 3.2 and 3.3 for a description of the EOCs and Tables 4.1 and 4.2 for a description 

of the EOs used in this study. There were 16 treatments and 6 replicates per treatment as follows: 4-

Allyanisole (ALA: 0, 100, 200 and 300 mg/L), anethole (ANE: 0, 100, 200 and 300 mg/L), anise oil 

(ANO: 0, 100, 200 and 300 mg/L) and cassia oil (CSO: 0, 100, 200 and 300 mg/L). In total 292 serum 

bottles were incubated, each bottle contained 1 g of feed substrate, 300 mg/l of EOC, 80 ml anaerobic 

buffer (see Table 2.1) and 20 ml inoculum and the bottle sealed with rubber cork before incubation. 

5.2.3. Sample collection and preservation 

Experimental procedures relating to cumulative gas pressure measurements, incubation stopping times, 

collection and storage of samples in this study were as described in the general material and methods (see 

section 2.4). 
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5.2.4 Chemical analysis 

The concentration of NH3-N in digesta was analysed using the phenol-hypochlorite method 

(Weatherburn, 1967; Broderick and Kang, 1980) adopted for use on the plate reader as described in 

general materials and methods (see section 2.5.4).  

The concentrations of total volatile fatty acid (VFA) and molar proportion of VFA was determined by gas 

chromatography (GC) as described by Ottenstein and Bartley (1971). Details of this method are outlined 

in the general materials and methods (see section 2.5.6). 

 

The concentration of fatty acids in feed and freeze dried samples were extracted using the direct 

saponification method described by Enser et al. (1998). See section 2.5.7 of the general materials and 

methods for detailed description of the techniques. 

 

5.2.5. Experimental design and statistical analysis 

This study was a randomized complete block design (RCBD) experiment. The objective was to examine 

the effects of increasing doses of EOCs/EOs on the extent of rumen biohydrogenation of n-3 PUFA in 

vitro. The null hypothesis was that inclusion of varying doses of EOs/EOCs would have no effect on 

fermentation and biohydrogenation data. The alternative hypothesis was that the different doses of 

EOCs/EOs would affect (decrease or increase) fermentation activities. 

The study was a 4 (EOs/EOCs: ALA, ANE, ANO and CSO)   4 (dose: 0, 100, 200 and 300 mg/L) 

factorial design experiment. Therefore data were analysed by TWO-WAY analysis of variance (ANOVA) 

using GenStat 16th edition (VSN international Ltd, Registered to: Writtle College). The main effects were 

EOs/EOCs, dose and oil   dose interaction. Differences between treatments were declared by least 

significance difference (LSD) and significance was declared at P< 0.05. Data were analysed separately 

for each time point (12 and 24 h). 
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5.3.0. RESULTS 

5.3.1 In vitro fermentation parameters 

Effects of treatments on cumulative gas production (ml/g OM) and NH3-N (mM) are presented in Table 

5.1a, whilst the significance of the main effects and interactions are shown in Table 5.1b.  

At 12 h, the levels of total gas was decreased (P<0.001) with the supplementation of all doses (100, 200 

and 300 mg/L) of all EOCs/EOs in a dose response manner, relative to the control. Regardless of oil, the 

300 mg/L (highest dose) of all substances caused the most reduction (average 22%) on total gas. At 200 

mg/L, all treatments caused marginal inhibition of total gas (average 6%), except for CSO which inhibited 

by 15%. There was a significant interaction between dose levels and EOs/EOCs (P<0.001). It was 

observed that supplementing CSO 300 mg/L induced the highest inhibition of total gas relative to the 300 

mg/L of the rest of the treatments (ALA, ANE and ANO). Mean values were 103.5 (average across all 

controls), 84.1, 82.5, 94.3 and 62.9 ml/g OM (sed= 4.02, P<0.001, Table 5.1a), for ALA 300, ANE 300, 

ANO 300 and CSO 300, respectively. At 24 h, irrespective of oil, increasing the dose of all substances 

progressively reduced the amount of total gas observed in fermentation vessels. The lowest dose (100 

mg/L) of all substances elicited the least reduction (average 4%) on total gas, but no interaction was 

observed at this point.  

At 12 h, the addition of ANE (at 100 and 200 mg/L) and ANO (at 300 mg/L) reduced (P<0.001) NH3-N 

concentration relative to the control. In contrast, the supplementation of cultures with ALA (at 100, 200 

and 300 mg/L) and CSO (at 200 and 300 mg/L) increased (P<0.001) the mean concentration of NH3-N. 

There was a significant interaction between the oils and the dose such that ANE 200 mg/L decreased 

NH3-N concentration compared to the 200 mg/L of the rest of the treatments (ALA, ANO and CSO). 

Mean values were 3.6 (mean across all controls), 3.8, 3.1, 3.8 and 3.7 mM (sed= 0.22, P<0.001, Table 

5.1a). After 24 h, the concentration of NH3-N in fermentation vessels was reduced (P<0.001) with the 

supplementation of ALA (at 300 mg/L) and CSO (at 100, 200 and 300 mg/L) but increased in vessels 

where ANE (100 mg/L) and ANO (at 200 mg/L) were added. The addition of CSO at 100 had the lowest 

level of ammonia compared with ALA 100, ANE 100 and ANO 100, relative to the control. Average 

values were 4.8, 4.4, 5.6, 4.6 and 3.4 mM (sed= 0.44, P<0.018, Table 5.1a), for the control, ALA 100, 



177 
 

ANE 100, ANS 100 and CAS 100, respectively. Similar effect was true for ALA 200, ANE 200, ANO 

200 and CSO 200. However, ALA 300 and CSO 300 caused 25% average NH3-N reduction relative to the 

control, whilst ANE 300 and ANO 300 maintained the concentration of NH3-N at similar levels to the 

control. Mean values were 4.8, 3.4, 4.8 and 3.8 mM (sed= 0.44, P<0.018, Table 5.1a), for the control, 

ALA 300, ANE 300, ANO 300 and CSO 300, respectively.  

Effects of treatments on the concentration of TVFA (mM) and the molar proportions of individual VFA 

(mM/mol TVFA) are presented in Table 5.2a and the significance of the main effects and interactions are 

in Table 5.2b. In this study, both EOCs and EOs used all reduced the mean (mean across all doses) 

concentration of TVFA, with the overall highest reductions observed in vessels with CSO (14%) and 

ALA (11%). All doses of all EOs and EOCs maintained a dose dependent response effect on TVFA with 

the exception of ANE, such that vessels that received the highest dose (300 mg/L) irrespective of additive 

type,  induced the highest inhibition (average 12%) on TVFA (Table 5.2a). Relative to the control, 

supplementing ALA 300 caused the highest decrease on TVFA compared to 300 of ANE, ANO and COS 

(Table 5.1a). Average inhibitions were 18%, 2%, 10.7% and 15.1% for ALA 300, ANE 300, ANO 300 

and CSO 300, respectively. At 200 mg/L, ANE, ALA and ANO only marginally reduced TVFA (by 

about 2%) relative to the control, but CSO reduced TVFA by 10%. Mean values were 92.5 (mean of all 

controls), 87.3, 103.5, 91.8 and 82.9 mM (sed= 2.62, P<0.001, Table 5.2a), for the control, ALA, ANE, 

ANO and CSO, respectively. Compared to the control, the 100 mg/L of ANO and ANE caused 

approximately 7% and 12% increases in TVFA, respectively (Table 5.2a). 

The proportion of acetate was reduced (P<0.001) in CSO (at 100, 200 and 300 mg/L); ALA and ANO (at 

300 mg/L); and in ANE (100 mg/L). By contrast, ANE (200 and 300 mg/L) and ANO (at 100 and 200) 

increased the proportion of acetate, relative to the control. All doses (at 100, 200 and 300 mg/L) of CSO 

recorded the lowest molar proportion of acetate relative to the corresponding doses of other substances 

(Table 5.2a, b). Overall mean across all doses showed that the proportion of propionate was increased 

(17%) in vessels where CSO was added and reduced (12%) where ANE was added, but ALA and ANO 

maintained the concentration of propionate similar to the control. At 100 mg/L, the proportion of 

propionate was increased with the addition of CSO compared to the 100 mg/L of the remaining 
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treatments. At 200 mg/L, CSO and ALA increased the concentration of propionate but ANO and ANE 

reduced it. Supplementing 300 mg/L of CSO increased the concentration of propionate relative to 300 

mg/L of other treatments (ANO, ANE and ALA). Average values were 17.2 (mean across all controls), 

17.8, 17.4, 16.4 and 20.5 (100 mg/L); 16.8, 14.2, 16.1 and 20.3 (200 mg/L); and 300 mg/L were 17.2, 

17.6, 14.6, 16.4 and 19.5 mM/mol TVFA (sed= 0.54, P<0.001, Table 5.2a and b), for the control, ALA, 

ANE, ANO and CSO, respectively. Although the proportion of butyrate was not affected with higher 

doses (200 and 300 mg/L) of CSO and lower doses of ALA (100 and 200 mg/L), it was reduced 

(P<0.001) where higher doses of ANE (200 and 300 mg/L) and lower doses of ANO (100 and 200 mg/L) 

were added. The acetate to propionate ratio (A: P) was reduced with all doses of CSO (reduction being 

highest in the lower doses, average 21%) and the lowest dose (100 mg/L) of ALA (5%) and ANE (3%). 

However, all doses of ANO (100, 200 and 300 mg/L) and higher doses of ANE (200 and 300 mg/L) 

increased A: P (Tables 5.2a; b). Supplementation of EOCs/EOs elicited minor increases and decreases on 

the molar proportions of the branched-chain VFA (BCVFA) such as iso-valeric, iso-butyric, valeric and 

caproic acids (Tables 5.2a and b). Generally, the lowest proportions of iso-valeric, iso-butyric and caproic 

acids were observed in CSO (200 and 300 mg/L), relative to the control.  
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Table 5.1a Effects of EOs and EOCs on gas production (ml/g OM) and ammonia (mM) during 24 h in vitro incubation 

 EOs and EOCs  

  4-Allylanisole (mg/L)  Anethole (mg/L)  Anise (mg/L)  Cassia (mg/L)  S.E.D 

Variables Time(h) 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 O or D O   D 

Gas 

12 103.5 104.3 96.8 84.1  103.2 100.0 94.3 82.5  103.9 102.6 100.9 94.3  103.4 95.0 88.0 62.9  2.01 4.02 

24 147.6 145.2 132.3 117.7  147.6 140.1 129.5 113.6  147.5 142.4 136.5 128.5  147.8 138.0 131.8 108.3  2.46 4.92 

                        

NH3-N 

12 3.6 4.1 3.8 4.0  3.6 3.2 3.1 4.6  3.5 3.7 3.8 3.2  3.6 3.6 3.7 4.2  0.11 0.22 

24 4.8 4.4 4.4 3.4  4.8 5.6 4.2 4.8  4.7 4.7 5.2 4.9  4.8 3.4 4.1 3.8  0.22 0.44 

S.E.D= Standard error of difference, O or D= Oil or dose; O   D = Oil by dose interaction. NB. S.E.D for oil and dose were similar that is why oil or dose is used 

in the table; EOCs= essential oil compounds; EOs= essential oils 

 

 

 

Table 5.1b Effects of EOs and EOCs on gas production (ml/g OM) and ammonia (mM) during 24 h in vitro incubation (Significance of main effects and 

interactions) 

Parameter Time (h) Oil Dose Oil   Dose 

Gas production 

12 <0.001 <0.001 <0.001 

24 NS <0.001 NS 

NH3-N (mM) 

12 <0.001 <0.001 <0.001 

24 <0.001 =0.046 =0.018 

NS= Not significant (P<0.05); O   D = Oil by dose interaction; EOs= essential oils; EOCs= essential oil compounds 
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Table 5.2a Effects of EOs and EOCs on total (mM) and molar proportions of VFA (mM/mol TVFA) at 24 h in vitro incubation  

 EOs and EOCs  

 4-Allylanisole (mg/L)  Anethole (mg/L)  Anise (mg/L)  Cassia (mg/L)  S.E.D 

Fatty acid 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 O or D O   D 

TVFA 92.5 91.6 87.3 75.9  92.6 86.6 103.5 91.1  92.7 98.9 91.8 82.6  92.2 85.3 82.9 78.5  1.31 2.62 

Acetate 66.4 66.1 66.7 64.0  66.4 65.5 70.9 69.3  66.5 68.0 68.1 65.5  66.3 62.9 63.7 63.9  0.33 0.66 

Propionate 17.2 17.8 16.8 17.6  17.0 16.4 14.2 14.6  17.3 16.4 16.1 16.4  17.3 20.5 20.3 19.5  0.27 0.54 

Butyrate 8.2 8.1 7.9 8.7  8.2 7.7 6.9 7.4  8.2 7.0 7.0 8.2  8.1 8.4 7.8 7.9  0.16 0.32 

Iso-butyric 0.8 0.7 0.7 0.8  0.8 0.8 0.6 0.6  0.8 0.8 0.8 0.8  0.8 0.7 0.6 0.6  0.01 0.03 

Iso-valeric 0.9 0.6 0.7 0.7  0.9 1.2 1.2 0.9  0.8 1.1 1.0 1.0  0.8 0.6 0.5 0.5  0.02 0.05 

Valeric 1.0 1.0 1.1 1.1  1.1 0.9 1.0 1.0  1.0 1.0 0.9 1.0  0.9 1.0 0.9 1.0  0.01 0.02 

Caproic 0.4 0.2 0.5 0.6  0.4 0.6 0.4 0.6  0.4 0.7 0.7 1.6  0.4 0.0 0.0 0.3  0.07 0.13 

A/P ratio 3.7 3.7 4.0 3.7  3.7 3.8 5.0 4.8  3.7 4.2 4.2 4.0  3.6 3.1 3.1 3.3  0.09 0.17 

O or D= Oil or dose; O   D = Oil by dose interaction. NB. S.E.D for oil and dose were similar that is why oil or dose is used in the table 

 

Table 5.2b Effects of EOs and EOCs on total VFA (mM) and molar proportions of VFA (mM/mol TVFA) at 24 h in vitro incubation (Sig.of OD) 

 
Oil Dose OD 

TVFA (mM) <0.001 <0.001 <0.001 

Acetate <0.001 <0.001 <0.001 

Propionate <0.001 <0.001 <0.001 

Butyrate <0.001 <0.001 <0.001 

Iso-butyric <0.001 <0.001 <0.001 

Iso-valeric <0.001 <0.001 <0.001 

Valeric <0.001 <0.001 <0.001 

Caproic <0.001 <0.001 <0.010 

A/P ratio <0.001 <0.001 <0.001 

NS= Not significant (P<0.05); EOs= essential oils; EOCs= essential oil compounds
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5.3.2. Effect of EOC on fatty acid metabolism 

Effects of treatments on the concentrations of selected C14 and C16 are presented in Table 5.3a and the 

significance of the main effects and interactions are shown in Table 5.3b.  

At 12 h, the concentration of C14:0 decreased in ALA (at 200 mg/L) and in CSO (at 100, 200 and 300 

mg/L). However, mean levels of C14:0 was not affected with the supplementation of ALA (100 and 300 

mg/L) and ANE and ANO (at 100, 200 and 300 mg/L) (Table 5.3a, b). There was a significant interaction 

between oils and dose levels. Relative to the control, all doses (100, 200 and 300 mg/L) of CSO and ALA 

200 reduced the levels of C14:0 compared to the respective doses of other treatments (Table 5.3a; b). 

After 24 h, the addition of EOCs/EOs did not change the concentration of C14:0 in the vessels. 

The concentration of C16:0 at both 12 and 24 h decreased (P<0.001) as the dose of all substances (ALA, 

ANE, ANO and CSO) increased. Regardless of the substance, the lowest levels of C16:0 were observed 

in vessels in which the 300 mg/L of both EOCs and EOs were added. Although the interaction between 

oil and dose was not significant at 12 h, rates were different after 24 h. After 24 h, the addition of ANE 

100 increased the concentration of C16:0 compared with the supplementation of 100 mg/L of other 

treatments (ALA, ANO and CSO), relative to the control. Average values for 100 mg/L were 15.8 (mean 

of all controls), 15.6, 17.7, 15.5 and 15.9 g/100 g TFA (sed= 0.51, P<0.001, Table 5.3a), for the control, 

ALA, ANE, ANO and CSO, respectively. 

The addition of all doses of all substances increased (P<0.001) the concentration of C16:1, with increases 

being proportional to the dose of oils (Table 5.3a; b). After 24 h, CSO 300 mg/L reduced (by about 4%) 

the concentration of C16:1 relative to the 300 mg/L of the rest of the treatment which increased it 

(average 13%), compared with the control.  

Effects of EOCs and EOs on concentrations of selected C18 fatty acids are presented in Table 5.4a and 

significance of the main effects and interactions are shown in Table 5.4b.  

At 12 h, the fermentation vessel concentrations of C18:0 were decreased in ANO (at 100 mg/L, by 6%); 

increased in ALA and ANE (at 100, 200 and 300 mg/L), ANO (at 300 mg/L) and CSO (at 200 and 300 

mg/L); whilst CSO (at 100 mg/L) maintained similar to the control.  Fermentation vessels that received 
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ANO 100 mg/L reduced the content of C18:0 compared with the 100 mg/L of the rest of the treatments 

(ALA, ANE and CSO), whilst vessels with added ANE 100 had the highest concentration of C18:0, 

relative to the control. Mean values for 100 mg/L were 12.1 (average of controls), 12.6, 13.1, 11.4 and 

12.3 g/100 g TFA (sed= 0.27, P<0.001, Table 5.4a, b), for the control, ALA 100, ANE 100, ANO 100 and 

CSO 100 mg/L, respectively. After 24 h, the concentration of C18:0 was reduced (P<0.001) in vessels 

that were supplemented with ALA (at 300 mg/L) and CSO (at 200 mg/L). In contrast, the level of C18:0 

was increased in cultures where ANE (300 mg/L) and ANO (at 200 and 300 mg/L) were added, but 

concentration was not affected in vessels that received ALA (200 and 300 mg/L), ANE (100 and 300 

mg/L), ANO (at 100 mg/L) and CSO (at 100, 200 and 300 mg/L).  

Anise oil had the overall lowest mean of C18:1 n-9 relative to the control after 12 h. Average values were 

7.9 (mean across all controls), 7.8, 7.7, 7.4 and 7.9 g/100 g TFA (sed= 0.06, P<0.001, Table 5.4a, b), for 

the control, ALA, ANE, ANO and CSO, respectively.  After 24 h, irrespective of oil, the highest dose 

(300 mg/L) of all substances with the exception of ANO had the highest levels of C18:1 n-9. The addition 

of ANO 300 had the lowest content of C18:1 n-9 compared with 300 mg/L of ALA, ANE and CSO, 

relative to the control. Mean values expressed as % increase to the control (5.3) were 35.8%, 30.2%, 

15.1% and 41.5% (Table 5.4a), for ALA, ANE, ANO and CSO, respectively. 

At 12 h, the mean (across all doses) concentration of C18:1 trans 11 was highest in vessels supplemented 

with CSO, lowest in fermentation vessels with ALA and ANO, whilst ANE maintained it similar to the 

control. Mean values across all doses were 1.8, 1.7, 1.8, 1.7 and 2.0 g/100 g TFA (sed= 0.02, P<0.001, 

Table 5.4a, b), for the control, ALA, ANE, ANS and CAS, respectively. The observed concentration of 

C18:1 trans 11 at 12 h was proportional to the dose level of all additive type, such that the 300 mg/L (the 

highest dose) of all substances recorded the highest (P<0.001) level of C18:1 trans 11 (Table 5.4a). 

Supplementation of CSO 300 mg/L caused 17% increase on 18:1 trans 11 compared to 300 mg/L of the 

rest of the treatments (ALA, ANE and ANO). Mean values for 300 mg/L were 1.8 (mean of all controls), 

1.8, 1.8, 1.8 and 2.1 g/100 g TFA (sed= 0.04, P<0.001, Table 5.4a, b), for the control, ALA, ANE, ANO 

and CSO, respectively. However, after 24 h, effects of dose, oil and interactions were not significant. 



183 
 

At 12 h, effects of EOCs/EOs, dose and the interactions between oils and dose levels on the concentration 

of C18:2 cis-9 trans 11 CLA were not significant (Table 5.4a, b). However, after 24 h, the overall 

concentration of C18:2 cis-9 trans 11 CLA was maintained at higher levels (P<0.001) with the 

supplementation of all substances. The level of C18:2 cis-9 trans 11 CLA increased as the dose of oil 

progressed, such that the highest dose (300 mg/L) of all substances irrespective of oil, recorded the 

highest level of C18:2 cis-9 trans 11 CLA, relative to the control. The minimum doses of all substances 

needed to maintain higher concentration of C18:2 cis-9 trans 11 CLA relative to the control were ANO 

(at 100, 200 and 300 mg/L), ALA (at 200 mg/L), ANE and CSO (at 300 mg/L). Fermentation vessels 

which received all the doses of ANO (100, 200 and 300 mg/L) contained the highest levels of C18:2 cis-9 

trans 11 CLA compared to the respective doses of other treatments, relative to the control. Mean values 

were 0.15 (average of controls); 0.15, 0.14, 0.16 and 0.14 (100 mg/L); 0.16, 0.15, 0.18 and 0.15 (200 

mg/L) and 300 mg/L were 0.18, 0.16, 0.19 and 0.18 g TFA (sed= 0.010, P<0.001, Table 5.4a, b), for the 

control, ALA, ANE, ANO and CSO, respectively. 

All doses (of both EOCs and EOs) maintained the concentrations of C18:2 n-6 and C18:3 n-3 in a dose 

related response. Irrespective of additive type, the highest concentrations of C18:2 n-6 and C18:3 n-3 

were observed in vessels supplemented with the highest dose (300 mg/L) of all the substances. At 100 

mg/L, there was a significant (P<0.001) but marginal increases on the concentrations of both C18:2 n-6 

and C18:3 n-3, relative to the control. The minimum dose of all the oils required to maintain a substantial 

concentrations of both C18:2 n-6 and C18:3 n-3 relative to the control was 200 mg/L. The average (12 

and 24 h) effects of treatments indicated that the mean concentrations of C18:2 n-6 and 18:3 n-3 were 

highest in vessels supplemented with ANO 200 relative to the 200 mg/L of other substances and the 

control. Mean values (12 and 24 h) for 200 mg/L were 3. 0 (average of controls), 3.8, 3.7, 3.9 and 3.7 

(C18:2 n-6) and for C18:3 n-3 were 3.7 (mean of controls), 5.0, 5.0, 5.3 and 4.8 g/100 g TFA (Table 5.4a, 

b), for the control, ALA, ANE, ANO and CSO, respectively. The corresponding % increases relative to 

the control were 26.7%, 23.3%, 30% and 23.3% (18:2 n-6) and for C18:3 n-3 were 35.1%, 35.1%, 43.2% 

and 29.7%, for ALA, ANE, ANO and CSO, respectively.  
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The effects of EOCs and EOs on the concentrations of selected C20 and C22 are presented in Table 5.5a 

and significance of the main effects and interactions are indicated in Table 5.5b.  

At 12 h, the addition of EOCs/EOs did not affect the concentration of of C20:4 n-6, relative to the control 

(Table 5.5a, b). However, after 24 h, the concentration of C20:4 n-6 decreased (P<0.001) in ALA and 

ANE (at 100, 200 and 300 mg/L). The lowest concentration of C20:4 n-6 was observed in vessels where 

ANE 300 was added relative to 300 mg/L of other treatments (ALA, ANO and CSO) and the control. 

Mean values for 300 mg/L were 0.5 (mean of control), 0.4, 0.3, 0.5 and 0.5 (sed= 0.04, P<0.023, Table 

5.5a, b), for the control, ALA 300 mg/L, ANE mg/L, ANO mg/L and CSO mg/L, respectively. 

Relative to the control, overall means indicated that all substances (ALA, ANE, ANO and CSO) 

increased (P<0.001) the concentrations of both C20:5 n-3 and C22:6 n-3 in vessels at 12 and 24 h.  The 

levels of C20:5 n-3 and C22:6 n-3 observed in fermentation vessels were proportional to the doses of all 

substances used in this study. Regardless of substances, the highest concentrations of C20:5 n-3 and 

C22:6 n-3 were recorded in vessels where 300 mg/L of all substances were added (Table 5.5a). Although 

the concentrations of C20:5 n-3 and C22:6 n-3 were higher (P<0.001) at 100 mg/L of all substances, the 

values were marginal relative to the control. There was a significant interaction between oils and dose at 

both 12 and 24 h time points. The average (12 and 24 h) effects of oils on the concentration of C20:5 n-3 

indicated that the levels of C20:5 n-3 was highest (P<0.001) in vessels with all doses of ANO (100, 200 

and 300 mg/L) compared with the corresponding doses of all other additive type and the control. Mean 

values were 1.2 (control); 1.3, 1.3, 1.5 and 1.3 g/100 g TFA (100 mg/L); 1.4, 1.4, 1.8 and 1.5 g/100 g 

TFA (200 mg/L) and for 300 mg/L were 1.8, 1.6, 1.9 and 1.7 g/100 g TFA (Table 5.5a, b), for ALA, 

ANE, ANS and CAS, respectively. Although the interactions were not statistically significant (Table 5.5a, 

b), trends indicated that the average concentration of C22:6 n-3 was higher in cultures with ANO 200 

than the 200 mg/L of ALA, ANE and CSO.  

The addition of increasing doses of EOs and EOCs sequentially increased the concentrations of ∑PUFA 

and P/S ratio and progressively decreased the concentrations of ∑n-6/∑n-3 and ∑SFA-18:0, relative to 

the control (Tables 5.6a, b). 
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 The effect of EOs/EOCs on the biohydrogenation (g/100 g) of PUFA (C18:2 n-6, C18:3 n-3, C20:5 n-3 

and C22:6 n-3) and the significance of main effects and interactions are shown in Tables 5.7a and 5.7b, 

respectively.  

Relative to the control (both at 12 and 24 h), the biohydrogenation of C18:2 n-6 in the fermentation 

vessels decreased (P<0.001) with the supplementation of all doses (100, 200 and 300 mg/L) of all 

substances, in a manner that is proportional to the dose level of the oils that were added (Tables 5.7a). 

The average biohydrogenation of C18:2 n-6 across corresponding doses of all oils at 12 h were 50.3, 46.7 

and 39.8 g/100 g for 100, 200 and 300 mg/L, respectively, relative to the control (55.4 g/100 g). At 24 h, 

the values were 78.8, 74.5 and 67.7 g/100 g, for 100, 200 and 300 mg/L, respectively, relative to the 

control (82.7 g/100 g). These indicate that biohydrogenation was lowest in the presence of the highest 

dose (300 mg/L) but was significantly though marginally inhibited at the 100 mg/L of all oils.  The 

interaction between oil and dose was significant at 12 h but not at 24 h. Relative to the control, the 

biohydrogenation of 18:2 n-6 was lowest in CSO 300 mg/L (Table 5.7a, b).  

The biohydrogenation of C18:3 n-3 in fermentation vessels decreased (P<0.001) by the supplementation 

of all doses (100, 200 and 300 mg/L) of all oils in a dose dependent manner, compared to the control 

(Tables 5.7a). However, the inhibition of the biohydrogenation of C18:3 n-3 was marginally significant at 

100 mg/L of all substances. The pattern of effects of oils and dose levels on the biohydrogenation of 

C18:3 n-3 was the same at both 12 and 24 h time point (i.e. both oil, dose and the interaction of dose and 

oils were significant at 12 and 24 h). At 12 h the mean biohydrogenation of C18:3 n-3 in cultures with all 

doses of ANO (100, 200 and 300 mg/L) was lowest compared to the respective biohydrogenation levels 

in corresponding doses of other substances relative to the control. Mean values were 67.9 (mean of all 

controls); 63.5, 65.0, 58.6 and 63.5 (100 mg/L); 59.0, 63.1.8, 52.7 and 56.6 (200 mg/L) and for 300 mg/L 

were 52.5, 56.3, 46.8 and 44.8 g/100 g (sed= 2.05, P<0.001, Table 5.7a, b), for ALA, ANE, ANO and 

CSO, respectively. The values for 24 h were 87.2 (mean across all controls); 83.8, 84.6, 84.3 and 84.1 

(100 mg/L); 77.0, 80.4, 77.6 and 82.0 (200 mg/L) and for 300 mg/L were 69.4, 73.4, 70.9 and 75.6 g/100 

g (sed= 1.07, P<0.001,Table 5.7a, b), for ALA, ANE, ANO and CSO, respectively.  
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At both 12 and 24 h, the biohydrogenation of C20:5 n-3 and C22:6 n-3 in fermentation vessels decreased 

(P<0.001) as the level (100, 200 and 300 mg/L) of all substances increased (Tables 5.7a). However, on 

the average, the minimum level of all substances necessary to cause substantial inhibition of the 

biohydrogenation of both C20:5 n-3 and C22:6 n-3 was 200 mg/L. The rate of biohydrogenation of C20:5 

n-3 and C22:6 n-3 was not different between the corresponding levels of all substances (i.e. no significant 

interaction between oils and dose, Table 5.7b). 
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Table 5.3a Effects of whole EOs and EOCs on the concentration of selected C14/C16 fatty acids (g/100 g TFA) in cultures at 12 and 24 h in vitro incubation 

 EOs and EOCs  

  4-Allylanisole (mg/L)  Anethole (mg/L)  Anise (mg/L)  Cassia (mg/L)  S.E.D 

Fatty acid Time (h) 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 O or D O   D 

C14:0 

12 5.00 5.01 4.00 5.00  5.01 5.00 5.01 5.01  5.00 5.01 5.00 5.00  5.01 4.01 4.01 4.01  0.000 0.100 

24 5.00 5.01 5.01 5.02  5.01 5.01 5.02 5.00  5.00 5.01 5.02 5.00  5.00 5.00 5.00 5.01  0.100 0.200 

                        

C16:0 

12 15.50 15.30 15.00 14.90  15.70 15.60 15.40 15.10  15.70 15.20 15.20 15.10  15.60 15.00 14.90 14.90  0.090 0.180 

24 15.80 15.60 15.40 14.90  15.70 17.70 15.60 15.00  15.90 15.50 15.30 15.30  15.80 15.90 15.40 15.00  0.260 0.510 

                        

C16:1 
12 3.10 3.20 3.20 3.20  3.30 3.20 3.30 3.30  3.20 3.40 3.40 3.30  3.10 3.10 3.20 3.10  0.030 0.050 

24 2.60 2.80 2.80 3.10  2.50 2.90 2.70 2.90  2.60 2.80 2.80 2.80  2.70 2.70 2.60 2.50  0.060 0.130 

O or D= Oil or dose; O   D = Oil by dose interaction. NB. S.E.D for oil and dose were similar that is why oil or dose is used in the table 

 

Table 5.3b Effects of whole EOs and EOCs on concentration of selected C14/C16 fatty acids (g/100 g TFA) in cultures at 12 and 24 h in vitro incubation 

(Significance of main effects and interactions) 

Fatty acid Time (h) Oil Dose Oil   Dose 

C14:0 

12 <0.001 =0.017 <0.001 

24 NS NS NS 

 

C16:0 

12 =0.004 <0.001 NS 

24 =0.028 NS <0.001 

C16:1 

12 <0.001 =0.028 =0.004 

24 <0.001 <0.001 =0.011 

NS= Not significant (P<0.05); O   D = Oil by dose interaction 
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Table 5.4a Effects of whole EOs and EOCs on the concentration of selected C18 fatty acids (g/100 g TFA) in cultures at 12 and 24 h in vitro incubation 

 EOs and EOCs  

  4-Allylanisole (mg/L)  Anethole (mg/L)  Anise (mg/L)  Cassia (mg/L)  S.E.D 

Fatty acids 
Time (h) 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 O or D O   D 

C18:0 

12 12.1 12.6 13.2 13.0  12.0 13.1 13.1 12.8  12.2 11.4 12.4 13.0  12.1 12.3 12.6 12.7  0.14 0.27 

24 12.8 12.9 12.9 12.3  12.9 13.2 13.8 13.0  12.8 13.1 13.6 13.7  12.7 12.6 12.3 12.8  0.23 0.47 

  
                      

C18:1 n-9 

12 7.7 7.8 7.7 7.9  7.7 7.9 7.6 7.6  7.5 7.3 7.5 7.5  7.9 7.8 7.9 8.0  0.06 0.12 

24 5.3 6.4 6.9 7.2  5.3 6.5 6.9 6.9  5.4 6.4 6.6 6.1  5.2 6.6 6.8 7.5  0.25 0.50 

                        

C18:1 trans 11 

12 1.8 1.7 1.7 1.8  1.9 1.7 1.8 1.8  1.7 1.7 1.7 1.8  1.7 1.9 1.9 2.1  0.02 0.04 

24 1.2 1.3 1.3 1.3  1.3 1.2 1.2 1.2  1.2 1.2 1.2 1.2  1.1 1.4 1.4 1.5  0.17 0.34 

                        

 

18:2 cis-9 tr11 CLA 

12 0.20 0.20 0.20 0.20  0.20 0.20 0.20 0.20  0.20 0.20 0.20 0.20  0.20 0.20 0.20 0.20  0.010 0.020 

24 0.15 0.15 0.16 0.18  0.16 0.14 0.15 0.16  0.15 0.16 0.18 0.19  0.14 0.14 0.15 0.18  0.010 0.010 

                        

 

C18:2 n-6 

12 4.3 4.8 4.9 5.3  4.2 4.9 4.9 5.3  4.4 4.9 5.3 5.4  4.3 4.7 5.1 5.8  0.05 0.10 

24 1.7 2.1 2.6 3.2  1.6 2.0 2.5 3.1  1.7 2.0 2.4 2.8  1.6 2.1 2.2 2.6  0.04 0.07 

                        

 

C18:3 n-3 

12 5.2 6.0 6.4 7.4  5.3 6.1 6.5 7.5  5.2 6.4 7.2 7.7  5.1 5.8 6.7 8.3  0.08 0.15 

24 2.1 2.7 3.6 4.7  2.0 2.7 3.4 4.6  2.2 2.5 3.4 4.2  2.1 2.5 2.8 3.7  0.05 0.10 

O or D= Oil or dose; O   D = Oil by dose interaction. NB. S.E.D for oil and dose were similar that is why oil or dose is used in the table 
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Table 5.4b Effects of whole EOs and EOCs on concentration of selected C18 fatty acids (g/100 g TFA) in cultures at 12 and 24 h in vitro incubation 

  (Significance of main effects and interactions) 

Fatty acid Time (h) Oil Dose Oil   Dose 

C18:0 

12 <0.001 <0.001 <0.001 

24 <0.001 <0.001 NS 

C18:1 n-9 

12 <0.001 NS NS 

24 NS <0.001 <0.001 

C18:1 trans 11 

12 <0.001 <0.001 <0.001 

24 NS NS NS 

C18:2 cis-9 tr11 CLA 

12 NS NS NS 

24 <0.001 <0.001 <0.001 

C18:2 n-6 

12 NS <0.001 <0.001 

24 <0.001 <0.001 <0.001 

C18:3 n-3 

12 <0.001 <0.001 <0.001 

24 <0.001 <0.001 <0.001 

NS= Not significant (P<0.05), O   D = Oil by dose interaction   
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Table 5.5a Effects of whole EOs and EOCs on concentration of selected long chain fatty acids (g/100 g total fatty acids) in cultures at 12 and 24 h in vitro 

incubation 

 EOs and EOCs  

  4-Allylanisole (mg/L)  Anethole (mg/L)  Anise (mg/L)  Cassia (mg/L)  S.E.D 

Fatty acids Time (h) 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 O or D O   D 

C20:4 n-6 

12 0.51 0.50 0.50 0.51  0.51 0.50 0.52 0.40  0.52 0.50 0.50 0.51  0.51 0.51 0.50 0.50  0.010 0.010 

24 0.51 0.41 0.42 0.42  0.52 0.41 0.40 0.30  0.52 0.50 0.53 0.51  0.52 0.52 0.40 0.51  0.020 0.040 

                        

C20:5 n-3 

12 1.70 1.80 1.90 2.20  1.80 1.80 1.90 2.00  1.70 2.20 2.60 2.60  1.70 1.80 2.00 2.20  0.060 0.120 

24 0.60 0.70 0.90 1.30  0.50 0.70 0.90 1.20  0.70 0.70 1.00 1.20  0.60 0.80 0.90 1.20  0.020 0.040 

                        

C22:6 n-3 

12 2.00 2.10 2.10 2.20  2.00 2.00 2.01 2.10  2.00 2.10 2.20 2.20  2.00 2.10 2.10 2.10  0.020 0.030 

24 1.70 1.80 1.90 2.00  1.60 1.70 1.80 1.90  1.70 1.80 1.90 1.90  1.70 1.80 1.80 1.80  0.040 0.080 

O or D= Oil or dose; O   D = Oil by dose interaction. NB. S.E.D for oil and dose were similar that is why oil or dose is used in the table 

 

Table 5.5b Effects of whole EOs and EOCs on concentration of selected long chain fatty acids (g/100 g total fatty acids) in cultures at 12 and 24 h in vitro 

incubation (Significance of main effects and interactions) 

Fatty acid Time (h) Oil Dose Oil   Dose 

C20:4 n-6 

12 <0.001 <0.001 NS 

24 <0.001 <0.001 =0.023 

C20:5 n-3 

12 <0.001 <0.001 <0.001 

24 NS <0.001 <0.001 

C22:6 n-3 

12 <0.001 <0.001 NS 

24 NS <0.001 NS 

NS= Not significant (P<0.05), O   D = Oil by dose interaction  
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Table 5.6a Effects of whole EOs and EOCs on the concentration of fatty acids (g/100 g TFA) and content of total fatty acids (mg/g) at 12 and 24 h in vitro 

incubation  

 EOs and EOCs  

  4-Allylanisole  Anethole  Anise  Cassia  S.E.D 

Fatty Acid Time (h) 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 O or D O   D 

RFA 

12 32.0 30.9 31.3 29.5  31.6 30.3 30.7 30.0  32.1 31.8 29.9 29.4  31.1 31.9 30.5 28.7  0.34 0.68 

24 40.7 36.8 35.3 34.4  40.8 36.3 35.0 35.3  40.7 37.3 36.1 34.2  40.6 36.0 36.8 35.7  0.87 1.73 

                        

∑SFA 

12 32.3 32.4 32.6 32.5  32.4 33.3 33.2 32.6  32.6 31.8 32.5 33.0  32.4 31.6 32.0 32.0  0.20 0.40 

24 33.3 33.1 33.0 32.0  33.2 33.6 34.1 32.8  33.5 33.3 33.6 33.7  33.2 33.0 32.2 32.4  0.54 1.07 

                        

∑SFA-18:0 

12 20.3 19.8 19.4 19.5  20.2 20.2 20.0 19.8  20.3 20.3 20.2 20.0  20.4 19.3 19.4 19.3  0.09 0.17 

24 20.5 20.3 20.1 19.7  20.4 20.3 20.2 19.8  20.6 20.2 20.0 19.9  20.5 20.4 19.9 19.5  0.32 0.65 

                        

∑MUFA 

12 12.7 12.8 12.5 12.7  12.7 12.8 12.6 12.6  12.8 12.5 12.6 12.4  12.6 12.8 13.0 13.2  0.08 0.16 

24 9.1 10.5 11.1 11.6  9.3 10.6 10.8 11.0  9.1 10.4 10.7 11.0  9.2 10.7 10.9 11.5  0.25 0.49 

                        

∑PUFA 

12 13.9 15.6 15.9 17.8  13.8 15.5 16.0 17.7  13.9 16.3 18.1 18.6  14.0 15.0 16.7 19.0  0.32 0.64 

24 6.7 7.8 9.5 11.7  6.7 7.6 9.1 11.3  6.7 7.6 9.4 11.0  6.7 7.7 8.3 9.9  0.09 0.19 

                        

TFA (mg/g) 

12 41.3 39.0 37.6 36.2  41.2 36.1 39.1 38.3  41.3 42.0 41.3 39.4  41.4 38.5 37.7 36.7  0.83 1.66 

24 39.7 39.1 37.8 37.9  39.7 40.1 38.2 38.7  39.8 40.9 41.8 39.8  39.6 41.6 40.3 40.6  1.23 2.46 

                        

n-6/n-3 
12 0.55 0.54 0.51 0.49  0.56 0.54 0.52 0.49  0.55 0.50 0.48 0.47  0.54 0.53 0.52 0.50  0.004 0.008 

24 0.50 0.49 0.47 0.45  0.50 0.49 0.47 0.45  0.51 0.51 0.48 0.45  0.50 0.50 0.49 0.47  0.007 0.014 

                        

P/S 

12 0.43 0.48 0.49 0.55  0.43 0.47 0.48 0.54  0.44 0.52 0.56 0.56  0.42 0.47 0.52 0.59  0.006 0.013 

24 0.35 0.39 0.47 0.59  0.34 0.37 0.45 0.57  0.36 0.38 0.47 0.55  0.35 0.38 0.41 0.51  0.01 0.02 

O or D= Oil or dose; O   D = Oil by dose interaction. NB. S.E.D for oil and dose were similar that is why oil or dose is used in the table. RFA= remaining fatty 

acids, SFA= saturated fatty acids, MUFA= monounsaturated fatty acids, PUFA= polyunsaturated fatty acids, TFA= total fatty acids, n-6/n-3= sum of n-6 divided 

by sum of n-3 fatty acids, P/S= sum of PUFA divided by sum of SFA. 
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Table 5.6b Effects of whole EOs and EOCs on the concentration of fatty acids (g/100 g TFA) and content of total fatty acids (mg/g) at 12 and 24 h in vitro 

incubation (Significance of main effects and interactions) 

Fatty acid Time (h) Oil Dose Oil   Dose 

Remaining fatty acids 

12 NS <0.001 NS 

24 <0.001 <0.001 <0.001 

∑SFA 

12 <0.001 NS NS 

24 <0.001 =0.047 =0.007 

∑SFA-18:0 

12 <0.001 <0.001 NS 

24 =0.007 NS <0.001 

∑MUFA 

12 <0.001 NS NS 

24 =0.029 <0.001 <0.001 

∑PUFA 

12 <0.001 <0.001 <0.001 

24 <0.001 <0.001 <0.001 

Total fatty acid (mg/g) 

12 <0.001 <0.001 NS 

24 <0.001 =0.012 =0.003 

n-6/n-3 

12 <0.001 <0.001 NS 

24 0.005 0.001 0.001 

P/S 

12 0.001 0.001 0.001 

24 NS 0.001 0.001 

NS= Not significant (P<0.05); SFA= saturated fatty acids, MUFA= monounsaturated fatty acids, PUFA= polyunsaturated fatty acids, TFA= total fatty acids, n-

6/n-3= sum of n-6 divided by sum of n-3 fatty acids, P/S= sum of PUFA divided by sum of SFA. 
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Table 5.7a The effects of EOs on the biohydrogenation (g/100 g) of PUFA in cultures at 12 and 24 h in vitro incubation 

 EOs and EOCs  

  4-Allylanisole  Anethole  Anise  Cassia  SED 

Fatty acid Time  (h) 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 O or D O   D 

C18:2 n-6 

12 55.4 50.7 48.9 42.9  55.3 50.7 49.3 42.3  55.4 50.2 45.8 41.3  55.2 49.6 42.7 32.8  1.01 2.01 

24 82.7 79.0 72.6 66.1  82.9 78.9 75.2 66.5  82.7 79.5 74.8 69.1  82.6 77.6 75.2 69.2  0.55 0.11 

                        

C18:3 n-3 

12 67.9 63.5 59.0 52.5  67.8 65.0 63.1 56.3  67.9 58.6 52.7 46.8  67.9 63.5 56.6 44.8  1.02 2.05 

24 87.2 83.8 77.0 69.4  87.0 84.6 80.4 73.4  87.4 84.3 77.6 70.9  87.2 84.1 82.0 75.6  0.54 1.07 

                        

C20:5 n-3 

12 59.4 57.1 47.5 30.1  59.5 60.8 57.9 47.4  59.3 45.6 36.3 33.4  59.4 46.5 30.2 16.6  2.25 4.51 

24 84.3 84.1 75.8 59.9  84.4 85.6 80.3 68.1  84.3 83.3 76.6 67.8  84.2 77.6 70.3 56.8  1.06 2.11 

                        

C22:3 n-6 

12 23.3 22.9 15.7 8.5  23.3 25.2 23.5 10.2  23.2 19.1 15.2 5.7  23.3 10.8 6.9 6.8  1.67 3.34 

24 39.0 34.0 25.5 16.5  39.1 36.9 34.6 21.3  39.0 32.0 27.9 13.2  38.9 22.7 16.5 11.4  2.21 4.41 

O or D= Oil or dose; O   D = Oil by dose interaction. NB. S.E.D for oil and dose were similar that is why oil or dose is used in the table 

 

 

Table 5.7b The effects of EOs on the biohydrogenation (g/100 g) of PUFA in cultures at 12 and 24 h in vitro incubation (Significance of main effects and) 

Fatty acid Time (h) Oil Dose Oil   Dose 

C18:2 n-6 

12 <0.001 <0.001 <0.001 

24 NS <0.001 NS 

C18:3 n-3 
12 <0.001 <0.001 <0.001 

24 <0.001 <0.001 <0.001 

C20:5 n-3 
12 <0.001 <0.001 NS 

24 <0.001 <0.001 NS 

C22:3 n-6 
12 <0.001 <0.001 NS 

24 <0.001 <0.001 NS 

NS= Not significant (P<0.05), O   D = Oil by dose interaction 
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5.4. Discussion 

The aim of the present study was to examine the effects of graded doses of 4-Allylanisole, anethole, anise 

oil and cassia oil on the extent of rumen biohydrogenation of n-3 PUFA. The EOCs used in the current 

study were selected based on the 24 h batch culture results of the first experiment described in Chapter 3 

which screened the effects of 15 individual essential oil’s constituent compounds on the extent of rumen 

biohydrogenation of n-3 PUFA (Eburu and Chikunya, 2014). Similarly, the EOs used in the current study 

were selected based on the 24 h batch culture results of the second experiment described in Chapter 4 

which screened the effects of 10 whole essential oils on the extent of rumen biohydrogenation of n-3 

PUFA (Eburu and Chikunya, 2015a). In each of those experiments, selection of both EOCs and EOs was 

based on two ways: on one hand, the EOCs/EOs were ranked from 1 (highest) to 15 (lowest) based on the 

concentration (g/100 g TFA) of C18:3 n-3, C18:2 n-6, C20:5 n-3, C22:6 n-3, C18:2 cis-9 trans-11 CLA 

and C18:1trans 11 in their cultures, on another hand, EOCs/EOs were ranked from 1 (least inhibitory) to 

15 (most inhibitory) on VFA concentration. After considering their effects on fatty acid and volatile fatty 

acid concentrations, the two overall best EOCs and two best EOs were selected and investigated in the 

current study to establish optimum doses for them.  

5.4.1. In vitro fermentation parameters 

In this study, it was generally observed that the supplementation of all doses of EOCs/EOs progressively 

reduced substantially the amount of total gas. Regardless of oil, the 300 mg/L (highest dose) of all 

substances induced the most reduction (average 22%) on total gas. At 200 mg/L, all treatments caused 

marginal inhibition of total gas (average 6%), except for CSO which inhibited by 15% at this level of 

inclusion. There was a significant interaction between dose levels and EOs/EOCs but only at the highest 

level (300 mg/L) at 12 h. This interaction showed that the supplementation of CSO 300 mg/L induced the 

highest inhibition of total gas relative to the 300 mg/L of the rest of the treatments (ALA, ANE and 

ANO). However, after 24 h the interaction between dose levels and EOs/EOCs was not significant.  The 

dose dependent effects of the substances on gas production are consistent with previous studies such as 

those of Talebzadeh et al. (2012), where the supplementation of different doses (150, 300, 450 and 

microgram/ml) of oil of Zataria multiflora, which is rich in thymol and carvacrol (phenolic compounds) 
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and those of Gunal et al., (2013), where Siberian fir needle oil (125, 250 and 500 mg/L) reduced total gas 

production according to concentration of EOs. 

Overall, under our experimental conditions, the minimum concentration of EOCs/EOs that caused 

inhibition of rumen fermentation activities (gas production, concentrations of NH3-N, VFA and PUFA) 

ranged from 100 mg/L to 300 mg/L for all the substances used (ALA, ANE, ANO and CSO). It is useful 

to point out that the uniqueness of substances in this study is that all the whole oils (anise and cassia) 

contained phenolic compounds as the most active components and all the essential oil compounds (4-

allyanisole and anethole) are also phenolic compounds (Table 3.3; 4.2). Anethole is the main active 

compound in anise oil (P. anisum) (Soher et al., 2014; Davidson and Naidu, 2000, Table 4.2); 

cinnamaldehyde is the predominant constituent of cassia oil (EP 5; Kalemba et al., 2012; Table 4.2) and 

4-allylanisole is the most active component of basil oil (Naidu 2000; Holley et al., 2005). Anethole, 

cinnamaldehyde and 4-allylanisole are phenylpropanoids (see Table 3.3). Hence, all the substances 

contained phenolic moieties in their chemical structures. The antimicrobial effects and mechanism of 

action of EO is determined by the chemical structure of its constituent compounds (Dorman and Deans, 

2000). Hence, these phenolic compounds (in the current study) generally require about the same 

concentration to elicit a response. This characteristic (phenolic chemical structure) which is common to 

all the substances in the current study could be speculated as the reason for the lack of marked difference 

among them in terms of their effect on gas production after 24 h. The range of minimum concentrations 

of EOCs/EOs in this study (100-300 mg/L) is within the established minimum inhibitory concentration 

(MIC) necessary to cause inhibition of both mixtures of microorganisms and single bacterial species by 

other phenolic compounds or essential oils rich in phenolic compounds of this type. The MIC of carvacrol 

was 22.5-500 mg/L against Escherichia coli (Cosentino et al., 1999); 17.5-45 mg/L against 

Staphylococcus aureus (Lambert et al., 2001) and 37.5-500 mg/L against Listeria monocytogenes 

(Cosentino et al., 1999; Pol and Smid, 1999). The MIC for thymol was 22.5-45 mg/L against E.coli 

(Cosentino et al., 1999), 45.0 mg/L against L. monocytogenes (although these are not rumen bacteria) 

(Cosentino et al., 1999) and 14.0-22.5 mg/L against Staph. aureus (Cosentino et al., 1999; Lambert et al., 

2001). The MIC for clove oil (whose main active compound is eugenol, a phenolic compound) against 
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E.coli ranges from 40-250 mg/L (Smith-Palmer et al., 1998) and against L.monocytogenes was 20 mg/L 

(Smith-Palmer et al., 1998). The MIC for thyme oil (rich in thymol and carvacrol) against 

L.monocytogenes was 30 mg/L (Smith-Palmer et al., 1998; Burt 2004) and against E.coli ranges from 45-

125 mg/L (Smith-Palmer et al., 1998; Burt 2004). The broadest antimicrobial activities of the phenolic 

compounds is linked with the possession of hydroxyl group, whose acidic characters are speculated to 

inhibit both the attachment of bacteria to insoluble fractions of feed and the digestion of the soluble 

components of feeds (McAllister et al., 1994; Aharoni et al., 1998).  

The concentration of NH3-N in fermentation vessels was reduced in CSO (at 100, 200 and 300), ANE (at 

100 and 200 mg/L) and ALA and ANO (300 mg/L). These results are consistent with the observations of 

Busquet et al. (2006) who reported that cassia/cinnamon oil and its main constituent compound 

(cinnamaldehyde) reduced ammonia concentration. However, Busquet et al. (2006) did not observe 

reduction in NH3-N with the supplementation of ANE and ANO (at 30 or 300 mg/L). The difference in 

the observation between our results and those of Busquet et al. (2006) could be due to the variations in 

the environmental conditions, plant chemotype or in the preparation of the anise oil. The results when 300 

mg/L of all substances was administered are also in agreement with the reports in Chapter 3 (where the 

levels of NH3-N in vessels were significantly decreased with the addition of ALA and ANE), and in 

Chapter 4 (where the addition of CSO reduced the content of NH3-N). These findings suggest that the 

inclusion of ALA and ANO (300 mg/L); ANE (at 100 and 200 mg/L) and CSO (at 100, 200 and 300) 

could potentially inhibit the activities of hyper ammonia producing bacteria or proteolytic bacteria (which 

are responsible for extensive deamination of amino acid, Mclnotch et al., 2003; Bach et al., 2005; section 

1.7.6). It has been observed that about 75-85% of dietary N consumed by dairy cows is excreted in faeces 

and urine as waste (Tamminga, 1992). Therefore, in terms of practical implications of the results of the 

current study, it can be conceived that supplementing the diet of dairy cows with CSO (either at 100, 200 

or 300 mg/L), ANE (at 100 mg/L) and ALA and ANO (at 300 mg/L) could possibly reduce the 

production of NH3-N and increase ruminal escape of dietary protein, consequently improving the 

efficiency of protein use in the rumen (Van Nevel and Demeyer, 1988). There was a significant 

interaction between dose levels and EOs/EOCs, which suggest that the use of CSO 100 mg/L would 



197 
 

reduce more amount of ammonia than the supplementation of ANE 100 mg/L. Reduction of NH3-N with 

the supplementation of ANE (at 100 mg/L) has practical benefits as its use would potentially improve the 

efficiency of protein in the rumen without adversely affecting VFA concentration (see VFA concentration 

at 100 mg/L). 

Total VFA was decreased with the inclusion of all the EOCs and EOs used in this experiment, with the 

highest reductions being observed in vessels with CSO and ALA. All doses of all EOs and EOCs 

maintained a dose related response effects on TVFA with the exception of ANE, with cultures receiving 

the highest dose (300 mg/L) of all substances irrespective of oil inducing the highest inhibition (average 

12%) on TVFA. The rate of VFA inhibition which clearly depends on doses of EOs is consistent with the 

reports of other studies who investigated dose related (0, 3, 30, 300 and 3000 mg/L) effects of cassia oil, 

anethole and anise oil on VFA concentration (Bustquet et al., 2006; Macheboeuf et al., 2008; Gunal et al., 

2013). Furthermore, these results are in agreement with those of Gunal et al. (2013), where different 

doses of citronella oil (125, 250 and 500 mg/L) reduced TVFA; Pandu et al. (2014), where the addition of 

thyme oil (125, 250 and 500 mg/l); and Agarwal et al. (2009), where 1.0 and 2.0 ml/L of peppermint oil 

caused a dose related depression of feed digestibility and TVFA concentration. The average inhibition of 

TVFA with the inclusion of 300 mg/L of all substances in the current study also agree with our previous 

reports where the addition of 300 mg/L of EOCs (Chapter 3) and EOs (Chapter 4) caused over 10% 

reduction of TVFA.  There was a significant interaction at 200 mg/L, which indicated that ANE, ALA 

and ANO only marginally reduced TVFA (by about 2%) relative to the control, but CSO reduced TVFA 

by 10%. Therefore, it could be suggested in this study that whilst the optimum dose for ALA, ANE and 

ANO could be 200 mg/L (because at this dose no substantial reduction on TVFA was observed), CSO 

requires less than 200 mg/L to maintain similar effect on concentration of TVFA. However, if the diets of 

ruminant must be supplemented with CSO 200 mg/L (due to other benefits associated with this dose), 

equivalent of 4.8 g/day/sheep, then ways of preventing reduction in feed intake, such as encapsulation 

must be developed. This findings support earlier observation that addition of EOCs/EOs may decrease (at 

high doses) or have no effect (at low doses) on VFA concentration (Patra and Saxena, 2010). In the 

current study, the effects of EOs/EOCs on the concentration of TVFA at different doses were consistent 
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with the reported effects on cumulative gas production. This suggests that the way a substance affects the 

digestion of feed (decrease/increase) directly impacts on the concentration of TVFA. Reduced digestion 

in feed which is reflected on decreased production of gas can be accompanied by less production of 

hydrogen, CH4 and volatile fatty acids plus a lower A/P ratio (Boggs et al., 1987).   

The molar proportion of acetate was reduced in CSO (at 100, 200 and 300 mg/L); ALA and ANO (at 300 

mg/L); and in ANE (100 mg/L), and the reduction in cultures with CSO progressed as the dose of CSO 

decreased. There was a significant interaction at all doses which suggest that the supplementation of CSO 

(at 100, 200 and 300 mg/L) would possibly increase the molar proportion of propionate more than the 

addition of the remaining treatments. Consistent with the reduction on the molar concentration of acetate 

in cultures with CSO (at all doses), the A/P ratio was significantly reduced in vessels where all doses of 

CSO were added. As anaerobic fermentation of proteins and carbohydrates with higher propionate levels 

results in reduced acetate and methanogenesis (Demeyer and Van Nevel, 1995), results of this study 

suggest that the inclusion of CSO (100, 200 and 300 mg/L) would modify microbial population towards 

decreased methanogenesis. These observations are in support of previous reports with ALA and ANE 

(Chapter 3) and ANO and CSO (Chapter 4). The fact that ANE (at 100 mg/L) reduced the molar 

proportions of acetate and propionate casts doubt on its practical application as feed additive in dairy 

farming. Reduction in propionate and acetate, which are the main precursors in ruminant for glucose and 

fat synthesis, respectively, is detrimental. In terms of practical application, it implies that anethole may 

not be nutritionally beneficial to dairy cattle, except if it is used in conjunction with another compound. 

This observation with ANE is consistent with the results of Bustquet et al. (2006) who reported that 

anethole decreased both acetate and propionate. The BCVFA are derived from the ruminal catabolism of 

amino acid (Mackie and White, 1990). The reduced concentrations of BCVFA in vessels with all doses of 

CSO coincide with the decrease in NH3-N concentration in this study.   

5.4.2. Effect of EOs/EOCs on fatty acid metabolism 

In this study, as evidence of biohydrogenation of PUFA in the rumen, the profiles of fatty acids of 

incubated diet were considerably different from those observed in the digesta. The levels of C14 were not 

affected by the addition of substances except ALA (at 200 mg/L) and CSO (at 100, 200 and 300 mg/L) 
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which reduced it at 12 h. Regardless of the substance, the lowest levels of C16:0 was observed in vessels 

that received the 300 mg/L of both EOCs and EOs at 12 h. Myristic (C14:0) and palmitic (C16:0) acids 

are saturated fatty acids having the capacity to   increase the  plasma cholesterol levels by suppressing and 

saturating low-density lipoprotein (LDL) receptors (Keys et al., 1995). This implies that reduced 

concentration of these fatty acids with the inclusion of ALA (at 200 mg/L) and CSO (at 100, 200 and 300 

mg/L) would be beneficial in terms of the possibility of reducing the level of plasma cholesterol levels.  

The levels of C18:0 (the end-product of the biohydrogenation of C18:1 n-9, C18:3 n-3 and C18:2 n-6) 

were reduced in ANO (at 100 mg/L), ALA (at 300 mg/L) and CSO (at 200 mg/L) but not in the 

corresponding doses of the other treatments. The significant interaction at 100 mg/L suggests that the low 

levels of C18:0 in ANO 100 mg/L could probably be emanating from reduce conversion of C18:1 n-9. 

This speculation is due to the corresponding low concentration of C18:1 n-9 in ANO 100 mg/L and the 

absent of reduction of C18:0 in the higher levels of ANO (200 and 300 mg/L). Overall, the addition of 

ANO reduced the level of C18:1 n-9 relative to the control. The concentration of C18:1 trans 11 at 12 h 

was increased with the addition of CSO 300 mg/L and maintained in vessels where 300 mg/L of the rest 

of the treatments were added. There seems to be a link in relation to the levels of C18:0, C18:1 n-9 and 

C18:1 trans 11 in vessels. There appears to be tendency that the higher the levels of C18:0 the lower 

would be the concentration of C18:1 n-9, and low content of C18:0 tended to be accompanied by high 

concentrations of C18:1 trans 11. The higher levels of C18:0 and the associated lower concentrations of 

C18:1 n-9 would suggest that the high stearic acid might be emanating from the conversion of the oleic 

acid during ruminal transformation of fatty acids. It has been observed that about 70% of C18:1 n-9 in 

rumen culture was converted to C18:0, and only 30% was transformed to ketostearic acid and 

hydroxystearic acid (Jenkins et al., 2006). The lower concentration of C18:0 which corresponds to high 

content of C18:1 trans 11 probably implies that the activity of Clostridium proteoclasticum (Kemp et al., 

1975; Maia et al., 2007), renamed (Moon et al., 2008) as Butyrivibrio proteoclasticus, the bacteria which  

converts VA to C18:0, was inhibited in those cultures, hence the observed increased levels of C18:1 trans 

11. It is important to mention here that evaluation of microbial species composition, which this study 

unfortunately did not perform, would have been able to conclusively establish whether there is a 
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relationship between the inhibition of these key biohydrogenation bacteria and the concentration of these 

intermediates. These findings are in agreement with results from our preliminary studies (Chapters 3 and 

4). As C18:0 is a saturated fatty acid but without any harmful effects on human health (Grundy, 1994; 

Pariza, 2004), its high accumulation would not suggest any negative effects provided the levels of PUFA 

in the corresponding vessels are higher. 

The concentration of C18:2 cis-9 trans 11 CLA was maintained at higher levels with the inclusion of all 

substances at all doses. The highest dose (300 mg/L) of all substances recorded the highest level of C18:2 

cis-9 trans 11 CLA, relative to the control. The higher levels of C18:2 cis-9 trans 11 CLA were 

associated with lower content of C18:1 trans 11. This relationship between C18:2 cis-9 trans 11 CLA and 

C18:1 trans 11 is consistent with our previous results (described in Chapters 3 and 4). Results of this 

study suggest that inclusion of ALA (at 200 mg/L), ANE and CSO (at 300 mg/L) and ANO (at 100, 200 

and 300 mg/L) would increase the level of C18:2 trans 11 CLA and potentially increase its health benefits 

(Banni et al., 2001; Corl et al., 2003). Although both ALA 200 mg/L and ANO 200 mg/L increased the 

concentration of C18:2 cis-9 trans 11 CLA, the significant interaction indicated that supplementation of 

ANO 200 mg/L would result in higher levels of C18:2 cis-9 trans 11 CLA than ALA 200 mg/L. 

Similarly, the concentration of C18:2 cis-9 trans 11 CLA in ANO 300 mg/L would potentially be higher 

than the levels in ANE and CSO 300 mg/L.  

It was observed in this study that increasing the doses of both EOCs and EOs resulted to a proportional 

increase in the concentrations of C18:2 n-6 and C18:3 n-3, relative to the control. The highest 

concentrations of C18:2 n-6 and C18:3 n-3 which were observed in vessels with the highest dose (300 

mg/L) of all substances were in the same range as the observed effects of these substances in our previous 

experiments (Chapter 3; Chapter 4). The minimum dose of all the oils required to maintain a higher 

concentrations of C18:3 n-3 relative to the control was 200 mg/L .The concentration of C18:3 n-3 at 200 

mg/L increased in response to treatments relative to the control in the sequence:  43.2% (ANO 200 mg/L) 

> 35.1% (ANE 200 mg/L), 35.1% (ALA 200 mg/L) > 29.7% (CSO 200 mg/L). This significant 

interaction indicates that supplementation of ANO 200 mg/L would potentially cause higher 

concentration of C18:3 n-3 than the addition of either ALA or ANE 200 mg/L. Comparison between the 
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anethole and anise oil suggest that anise oil and its predominant active compound (anethole) had similar 

effects on rumen concentration of C18:3 n-3. This observation is consistent with previous studies where it 

is established that anethole is the main compound in anise oil (Davidson and Naidu, 2000). However, the 

slightly higher concentration of C18:3 n-3 in ANO 200 mg/L than ANE 200 mg/L suggests that other 

minor components of anise oil had insignificant but synergistic effects on ruminal fermentation activities.  

The biohydrogenation of C18:3 n-3 which approached 90 g/100 g (87.2 g/100 g) at 24 h was comparable 

to the biohydrogenation of C18:3 n-3 in other studies where different protection methods were used such 

as in vitro (Beam et al., 2000; Sinclair et al., 2005) and in vivo (Wachira et al., 2000; Scollan et al., 2001, 

Wang et al., 2002) studies. The content of C18:2 n-6 and C18:3 n-3 rapidly decreased with time, being 

highest at 12 h and lowest at 24 h, in the control, EOCs and EOs. Relative to the control, the average 

concentration of C18:2 n-6 and C18:3 n-3 in cultures with the inclusion of 100 mg/L of all substances 

were significant but negligible. However, the average effects of treatments at 12 and 24 h indicated that 

the biohydrogenation of C18:2 n-6 and C18:3 n-3 were lowest in vessels with ANO 200 followed by 

ALA 200 than 200 mg/L of other substances relative to the control. At 24 h, biohydrogenation data 

indicated that the disappearance of C18:3 n-3 from ruminal content was reduced as follows: 23.0%, 

19.6%, 25.2% and 18.0% for ALA, ANE, ANO and CSO, respectively. At 300 mg/L, the average 

protection was approximately 10% higher than that of 200 mg/L. These values are comparable to other 

protection techniques described in Chapter 2 such as where about 44.3 g/100 g and 30. 7 g/100 g of C18:3 

n -3 were protected from biohydrogenation when whole linseed was pre-treated with NaOH and formic 

acid respectively, prior to treatment with formaldehyde. The fact that EOs and EOCs are extracts of plants 

which are part of animal diets and their consideration as generally recognized as safe (GRAS) food 

additives, offers the use of EOs to reduce ruminal PUFA disappearance advantage over other methods 

that use chemicals. However, data from this study disagree with the results from the study of Gunal et al. 

(2013) who reported that different doses (125, 250 and 500 mg/L) of six essential oils (citronella, 

rosemary, clove, white thyme, sage and Siberian fir needle oils) did not affect the concentration of  C18:3 

n-3 or C18:2 n-6 in batch culture study. It has been established that the antimicrobial effects and 

mechanism of action of EO is determined by the chemical structure of its constituent compounds 
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(Dorman and Deans, 2000), and could be responsible for the observed difference between our results and 

those of Gunal et al. (2013). 

The extent of disappearance of C20:5 n-3 and C22:6 n-3 in vessels increased as the time of incubation 

advanced. After 24 h, the quantity of the content of C20:5 n-3 in vessel which disappeared was highest in 

the control (84.3%) and supports previous reports from in vivo studies where the biohydrogenation of 

C20:5 n-3 and C22:6 n-3  from fish oil range from 72 to 93 g/100 g TFA (Wachira et al., 2000; Scollan et 

al., 2001; Chikunya et al., 2004), and contrast in vitro reports where the biohydrogenation of C20:5 n-3 

and C22:6 n-3 was less than 50 g/100 g (Ashes et al., 1992; Sinclair et al., 2005). The concentrations of 

C20:5 n-3 and C22:6 n-3 responded proportionally to the dose of both EOs and EOCs, with the highest 

levels of C20:5 n-3 and C22:6 n-3 observed in vessels where 300 mg/L of substances were added. 

However, at 100 mg/L, the levels of C20:5 n-3 and C22:6 n-3 were insignificant, relative to the control. 

The average (12 and 24 h) effects of substances on the concentration of C20:5 n-3 indicated that it was 

highest in vessels with all doses of ANO compared with the corresponding doses of all other additive type 

and the control. These significant interactions were consistent with the biohydrogenation data and suggest 

that supplementation of ANO (at 100, 200 and 300 mg/L) slightly had a higher potency to reduce the 

biohydrogenation of C20:5 n-3 and C22:6 n-3 irrespective of dose, than other substances. As mentioned 

previously (see section 1.7.8), it is worthy to mention that the biohydrogenation pathways of C20:5 n-3 

and C22:6 n-3 are not yet fully established like that of C18:2 n-6 and C18:3 n-3. 

The addition of graded doses of EOs and EOCs sequentially increased the concentrations of ∑PUFA and 

P/S ratio and progressively decreased the concentrations of ∑n-6/∑n-3 and ∑SFA-C18:0, relative to the 

control. At 200 mg/L all doses of all substances had the P/S ratio above the 0.45 recommended in the 

guidelines of the Department of Health (1994) except CSO which had 0.41. 

It is important to emphasise that the possible reason why the effect of substances used in this study on 

fermentation parameters and PUFA concentration or biohydrogenation are not too distinct compared to 

the results of the first (Chapter 3) and second (Chapter 4) experiment is that all EOCs and EOs in the 

current study are rich in phenolic compounds. This group of compounds have been observed to elicit the 
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highest and the broadest antimicrobial potency. However, the interactions as discussed above suggest that 

at a particular dose, different phenolic compounds may elicit a slightly different response. If 200 mg/L is 

considered the optimum dose for majority of the substances in this study, it means about 4.8 g/sheep/day 

of the substances are required to feed a sheep producing an average of 24 litres of rumen fluid per day.  

5.5. Conclusion 

Although at 100 mg/L all substances did not affect the concentration of TVFA, effect on gas production, 

concentration and biohydrogenation of PUFA was significant but marginal, relative to the control. At 200 

mg/L all substances substantially maintained higher concentrations of PUFA, CLA; and ANE, ALA and 

ANO only marginally reduced TVFA (by about 2%) relative to the control, but CSO reduced TVFA by 

10%. At 300 mg/L the addition of all substances almost tripled the concentration of residual PUFA 

observed in cultures but this was accompanied by over 12% inhibition of the concentration of TVFA. 

Therefore, considering the effects of the tested EOs and EOCs and at different doses in this study, it 

appears that whilst administration of ALA, ANE and ANO at 200 mg/L seems to maintain higher PUFA 

levels and minimal disruption to VFA concentration in vitro, CSO requires a dose less than 200 mg/L to 

attain the same balance. However, the significant interactions at 200 mg/L with respect to CLA and 

PUFA concentration and biohydrogenation suggests that supplementing ANO (at 200 mg/L) is potentially 

more effective than the other three in both preventing PUFA disappearance and maintenance of optimal 

VFA concentration. It is worthwhile to investigate whether these effects also occur in vivo including 

testing the possibility of microbial adaptation to these substances. Therefore, the next study (Chapter 6) 

investigates the possibility of rumen adaptation to 100 mg/L of ANO for four weeks. 
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 CHAPTER 6 

 Effects of four weeks of rumen adaptation to anise oil on 

biohydrogenation of n-3 polyunsaturated fatty acids 
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Abstract  

This study evaluates effect of four weeks of microbial adaptation to anise oil (ANO) on the fermentation 

activities of ruminal micro-organisms and the biohydrogenation of n-3 polyunsaturated fatty acids 

(PUFA). In this experiment, six Hartline  Texel cross lambs were used. Three of the lambs were 

randomly assigned to the basal diet (basal diet group, BDG) and the remaining three lambs were offered 

basal diet with ANO (anise oil group, AOG) for four weeks.  The rumen fluid donor sheep were offered 

water and hay ad libitum and supplemented with additional 400 g/sheep/day of concentrate plus 2.4 

g/sheep/day of ANO (for the AOG). The ANO was thoroughly mixed with the concentrate prior to 

feeding. The total amount (400 g) of lamb finisher cubes offered per sheep/day was divided into two 

equal parts (200 g) and fed at 08.00 hours and 16.00 hours.  After the four weeks adaptation period, lambs 

were slaughtered and ruminal fluid was collected from each of the lambs on BDG and on AOG and used  

in a 48 h in vitro batch culture system to study the fermentation of a 70: 30  grass hay (Lolium perenne) 

and concentrate (lamb finisher) diet . The study was a 2 (batches of rumen fluid: BDG and AOG)   2 

(doses of ANO: 0 and 200 mg/L) factorial design experiment. Total volatile fatty acid (TVFA) in RF 

extracted from lambs on the BDG (242.0 mM) was similar to that in the AOG (242.2 mM). 

Concentrations of TVFA in in vitro digests were similar between groups on the BDG (68.6 mM) and on 

the AOG (66.4 mM), but differed between levels of anise oil (0 versus 200 mg/L).  The levels of NH3-N 

were not different (P<0.05) between the RF collected from AOG and BDG. However, in vitro results 

showed that AOG 200 mg/L induced a 20% decrease on the concentration of NH3-N in fermentation 

vessels, relative to BDG 0 mg/L. The in vitro digesta incubated in RF from the AOG (i.e. AOG 200 

mg/L) maintained higher concentrations of PUFA (C18:2 n-6 and n-3 PUFA), trans vaccenic acid and 

lower concentration of stearic acid.This suggest that there was no rumen adaptation within the period of 

trial.  These results indicate that anise oil is potentially a useful feed additive to optimise the fatty acid 

composition of ruminant food products, if these effects are repeated in meat and milk. 
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6.1. Introduction  

In the preceding experiments (Chapters 3, 4 and 5), it has been established that certain EOCs (e.g. 

anethole and 4-allylanisole) and whole EOs (e.g. anise oil) when added at 200 mg/L can significantly 

suppress biohydrogenation of PUFA without detrimental effects to fermentation and VFA concentrations. 

However, it is not clear whether these effects are sustained in the medium and long term. Available 

evidence from continuous culture studies and long term in vivo trials suggest that the benefits associated 

with the use of essential oil as feed additives may decline due to two possibilities: (1) adaptation of 

individual microbial species to the use of EOs or, (2) shifts in microbial populations following long-term 

use of essential oil (Gladine et al., 2007). In addition, only few studies have been conducted in vivo to 

investigate the possibility of microbial adaptation to essential oils in the rumen as a measure of their 

potential effectiveness as feed additives. Previous studies with the use of specific blend of essential oil 

(BEO) compounds consisting mainly of limonene, guaiacol and thymol observed that ruminal N 

metabolism was modified by supplementing with BEO (Mclntosh et al., 2003; Molero et al., 2004; 

Newbold et al., 2004). About four weeks period of microbial adaptation was suggested as the minimum 

time required to modify N metabolism in the rumen by some of these studies (Wallace et al., 2003; 

Molero et al., 2004; Castillejos et al., 2007). However, to date, there is no similar report about the 

adaptation period of microbes to EOs and their corresponding effects on fatty acid metabolism in the 

rumen. The aim of the present study was to examine effects of four weeks period of microbial adaptation 

to anise oil on metabolism of PUFA and biohydrogenation end-product. Anise oil (200 mg/L) was 

identified as the most effective substance to both prevent PUFA disappearance and maintain optimal VFA 

concentration  in the preceding Chapter (Chapter 5; Eburu and Chikunya (2015b)). 
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6.2.0. Materials and methods  

6.2.1. Animal management and collection of rumen fluid/sampling 

In this experiment, six Hartline  Texel cross lambs (mean weight 42.0 ±2.5kg) were used as rumen fluid 

donors.  Details of animal housing, experimental diets and feeding are as described in section 2.1 of 

general material and methods. Briefly, the rumen fluid donor lambs were offered water and hay ad 

libitum and supplemented with additional 400 g/sheep/day of concentrate. The total amount (400 g) of 

lamb finisher cubes offered per sheep/day was divided into two equal parts (200 g) and fed at 08.00 hours 

and 16.00 hours. Three lambs were randomly assigned to the basal diet (basal diet group, BDG) and the 

remaining three lambs were fed basal diet with ANO (2.4 g/sheep/day ANO, AOG) for four weeks.  The 

2.4 g/day/sheep of anise oil was thoroughly mixed with the lamb finisher cubes prior to feeding. The dose 

(2.4 g/sheep/day) was estimated based on an estimated rumen volume of about 10 litres (as rumen volume 

equals body weight, Owens and Goetsch, 1988) and a dilution rate of about 100 mg/h. The total amount 

of fluid estimated to flow through the rumen per 24 h/day was 24 litres which equals about 100 mg/L (a 

dose which was observed to maintain the level of TVFA similar to the control in the previous experiment) 

(Chapter 5; Eburu and Chikunya, 2015b). See section 2.1 of the general materials and methods for the 

collection of rumen fluid and preparation for in vitro incubation.  

6.2.2. Basal feedstock, treatments and in vitro incubation 

The basal feedstock for in vitro incubation was mixtures of good quality rye-grass hay (Lolium perenne), 

lamb finisher concentrate, whole ground linseed and fish oil. Details of the basal feedstock used in this in 

vitro incubation are as described in the general material and methods (see section 2.3). The ingredients, 

chemical and fatty acid composition of the diet are shown in Table 2.2. 

The effect of anise oil was evaluated using the in vitro gas production batch culture method described by 

Theodorou et al. (1994). Anise oil was purchased from Sigma-Aldrich Co. Ltd., UK and was stored at the 

required temperatures specified on delivery notes prior to use. See Tables 4.1 and 4.2 for a description of 

the ANO used in this study.  

The effect of four weeks adaptation of rumen microbes to ANO was examined in vitro, using rumen fluid 

extracted from both basal diet group (BDG) and anise oil group (AOG) in a 2 (batches of rumen fluid: 
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BDG and AOG)   2 (doses of ANO: 0 and 200 mg/L) factorial design experiment with six replicates as 

follows: (1) fluid from BDG plus 0 mg/l of anise (BDG 0 mg/l); (2) fluid from BDG plus a single dose of 

200 mg/l of anise oil (BDG 200 mg/l); (3) fluid from AOG plus 0 mg/l of anise oil (AOG 0 mg/l); and (4) 

fluid from AOG plus a single dose of 200 mg/l of anise (AOG 200 mg/l).    

 In total 100 serum bottles were incubated, each bottle contained 1 g of feed substrate, 200 or 0 mg/l of 

anise oil, 80 ml anaerobic buffer (see Table 2.1) and 20 ml inoculum and the bottle sealed with rubber 

cork before incubation. 

6.2.3. Sample collection and preservation 

Cumulative gas pressure measurements, incubation stopping times, collection and storage of samples in 

this study were as described in the general material and methods (see section 2.4). 

6.2.4 Chemical analysis 

The concentration of NH3-N in digesta was analysed using the phenol-hypochlorite method 

(Weatherburn, 1967; Broderick and Kang, 1980) adopted for use on the plate reader as described in 

general materials and methods (see section 2.5.4).  

The concentration of volatile fatty acid (VFA) was determined by Gas chromatography (GC) as described 

by Ottenstein and Bartley (1971). Detail of this method in general materials and methods (see section 

2.5.6). 

The concentration of fatty acids in feed and freeze dried samples were extracted by direct saponification 

method described by Enser et al. (1998). See section 2.5.7 of the general materials and methods for detail. 

6.2.5. Experimental design and statistical analysis 

The study (RCBD) was a 2 (batches of rumen fluid: BDG and AOG)   2 (doses of ANO: 0 and 200 

mg/L) factorial design experiment. Therefore data were analysed by TWO-WAY analysis of variance 

(ANOVA) with batches of rumen fluid and dose of anise as the main effects using GenStat 16th edition. 

Differences between treatments were declared by least significance difference (LSD) and significance 

was declared at P< 0.05. Data were analysed separately for each time point (12, 24 and 48 h). 
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6.3. Results 

6.3.1. Fermentation parameters 

The effects of four weeks of microbial adaptation to anise oil on animal performance and concentrations 

of total volatile fatty acids (TVFA, mM), molar proportion of individual VFA (mM/mol TVFA) and NH3-

N (mM) in vivo are shown in Table 6.1. The dry matter intake was significantly higher in sheep that 

received anise oil compared to the control. Mean values were 18.5 and 18.9 kg/week (SEM= 0.05, 

P<0.05, Table 6.1), for the control and the anise oil group of sheep, respectively. The initial and final 

body weight gain were not different (P=0.05) between the two groups of lambs (Table 6.1).  

The concentrations of NH3-N, TVFA and molar proportions of individual VFA were not affected by 

treatments. However, the acetate to propionate ratio was lower in the AOG than the BDG. Mean values 

were 3.4 and 3.1 (SEM= 0.008, P=0.05, Table 6.1), for the BDG and the AOG, respectively. 

The effects of treatments on cumulative gas production (ml/g OM), NH3-N (mM), TVFA (mM) and 

molar proportion of individual VFA (mM/mol TVFA) in vitro are presented in Table 6.2. 

In this experiment the fluid adapted with anise oil (AOG) and the unadapted fluid (BDG) maintained 

similar levels of total gas production.  The total amounts of gas in vessels were maintained in a dose-

response pattern, such that the higher dose of anise oil (200 mg/L), irrespective of source of innoculum, 

produced lower total gas relative to the control (BDG 0). Mean values were 96.2, 87.2, 96.0 and 90.4 ml/g 

OM (12 h, sed=, 3.08, P<0.028); 133.2, 121.6, 131.5 and 123.7 ml/g OM (24 h, sed= 2.93, P<0.004); and 

for 48 h were 164.8, 144.3, 159.4 and 145.4 ml/g OM (sed= 2.88, P<0.001, Table 6.2), for BDG 0, BDG 

200, AOG 0 and AOG 200, respectively. 

 The concentration of NH3-N in the fermentation vessels at all time points was not significantly different 

between the BDG and AOG. At 12 and 48 h, the vessel concentration of NH3-N was not affected by dose 

of anise. However, at 24 h, the concentration of NH3-N in vessels was maintained in a dose-response 

pattern, with the higher dose of anise oil (200 mg/L), regardless of fluid, containing lower ammonia 

relative to BDG 0 (Table 6.2). Mean values were 5.0, 4.7, 5.3 and 4.0 mM (sed= 0.29, P<0.017), for BDG 

0, BDG 200, AOG 0 and AOG 200, respectively. This indicates that AOG 200 mg/L caused a 20% 

reduction on the ruminal concentration of ammonia. 
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At 24 and 48 h, the fermentation vessel concentration of TVFA was similar between BDG and AOG 

(Table 6.2).  There was a dose dependent response effect on the levels of TVFA at 48 h but not at 24 h. At 

48 h, irrespective of fluid type, the higher dose of anise (200 mg/L) reduced (P<0.001) the concentration 

of TVFA relative to the control (mean inhibition 8%). Mean values were 24 h (48 h in brackets) 70.2 

(81.5), 67.0 (74.6), 67.3 (80.0) and 65.5 (75.0) mM for BDG 0, BDG 200, AOG 0 and AOG 200, 

respectively. 

The molar proportion of acetate was significantly higher (P<0.001) in cultures with the AOG than the 

BDG. Mean values (average of doses within a fluid type) were 24 h (48 h in brackets) 61.3 (61.1) and 

63.2 (62.6) mM/mol TVFA for the BDG and AOG, respectively. Although there was no observed 

difference between doses of anise on the proportion of acetate at 24 h, levels were different at 48 h, such 

that the 200 mg/L of both BDG and AOG maintained higher levels of acetate than the 0 mg/L. 

The proportion of propionate was significantly lower (P<0.001) in cultures with the AOG compared to 

the BDG. Mean values (mean of doses within a fluid type) for 24 h were 20.0 and 18.1 and for 48 h were 

20.2 and 18.7 mM/mol TVFA (Table 6.2), for the BDG and AOG, respectively. The proportion of 

propionate was not affected by the dose of anise (irrespective of fluid type) at 24 h, but levels were 

different at 48 h, with the 200 mg/L causing the higher reduction in propionate compared to the lower 

dose (0 mg/L). 

The molar proportion of butyrate was not affected by treatment except at 24 h where the AOG reduced 

(P<0.001) it compared to the BDG (mean values 8.5 and 8.0 mM/mol TVFA for the BDG and AOG, 

respectively). The acetate to propionate ratios were maintained at higher levels in the AOG relative to the 

BDG at both 24 and 48 h. 

Treatment effects caused minor changes to the concentrations of branched chain volatile fatty acids 

(BCVFA) such as isovaleric, valeric and isobutyric acids (Table 6.2). 
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Table 6.1 Effects of four weeks of rumen adaptation to anise oil on animal performance and 

concentrations of total volatile fatty acids (mM), molar proportion of individual VFA (mM/mol TVFA) 

and NH3-N (mM) in vivo 

 Treatments   

 Basal diet group Anise oil group SEM Significance 

Animal performance 

Intake (kg/week) 18.50 18.90 0.05 <0.001 

Initial body weight (kg) 42.01 42.02 0.01 NS 

Final body weight (kg) 44.02 44.03 0.01 NS 

Volatile fatty acid concentration 

TVFA 242.00 242.2 18.6 NS 

Acetate 68.30 65.40 2.57 NS 

Propionate 20.00 21.6 2.49 NS 

Butyrate 7.70 8.40 0.47 NS 

Isobutyric 0.88 0.88 0.00 NS 

Isovaleric 0.67 0.73 0.00 NS 

Valeric 0.56 0.53 0.00 NS 

A/P ratio 3.40 3.10 0.008 =0.05 

Ammonia concentration 

Ammonia 3.2 2.6 0.61 NS 

NS= Not significant at P<0.05. Note: Because of the small sample size (n=3) for the parameters measured 

in this table, differences between mean was calculated using the t-Test. 
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Table 6.2 Effects of four weeks of rumen adaptation to anise oil on total gas (ml/g OM), ammonia 

concentration (mM), total VFA (mM) and molar proportion of individual VFA (mM/mol TVFA) in 

cultures during 48 h in vitro incubation 
  Treatments  

  

 

Basal diet group 

 

Anise oil group 

 

S.E.D 

 

Significance 

Parameter Time 0 mg/l 200 0 mg/l 200 Fluid Dose F   D Fluid Dose F   D 

Gas 

12  96.2 87.2  96.0 90.4  3.08 3.08 4.36  NS =0.028 NS 

24  133.2 121.6  131.5 123.7  2.93 2.93 4.14  NS =0.004 NS 

48  164.8 144.3  159.4 145.4  2.88 2.88 4.08  NS <0.001 NS 

                

NH3-N 

12  4.0 3.9  4.0 3.6  0.33 0.33 0.47  NS NS NS 

24  5.0 4.7  5.3 4.0  0.29 0.29 0.41  NS =0.017 NS 

48  6.0 5.9  6.0 4.8  0.33 0.33 0.47  NS NS NS 

                

TVFA 

24  
70.2 67.0 

 
67.3 65.5 

 
1.69 1.9 2.39 

 
NS NS NS 

48  
81.5 74.6 

 
80.0 75.0 

 
2.10 2.10 2.97 

 
NS <0.001 NS 

                

Acetate 

24  
60.9 61.6 

 
63.0 63.4 

 
0.41 0.41 0.58 

 
<0.001 NS NS 

48  
60.1 62.1 

 
62.0 63.2 

 
0.37 0.37 0.52 

 
<0.001 <0.001 NS 

 
               

Propionate 

24  
20.4 19.6 

 
18.4 17.7 

 
0.44 0.44 0.62 

 
<0.001 NS NS 

48  
21.7 18.6 

 
20.0 17.3 

 
0.39 0.39 0.55 

 
<0.001 <0.001 NS 

 
               

Butyrate 

24  
8.6 8.4 

 
7.9 8.0 

 
0.19 0.19 0.27 

 
=0.014 NS NS 

48  
8.0 7.7 

 
7.9 7.9 

 
0.16 0.16 0.23 

 
NS NS NS 

 
               

Isobutyric 

24  0.87 0.83  0.87 0.82  0.013 0.013 0.019  NS =0.003 NS 

48  0.96 0.96  0.98 0.94  0.023 0.023 0.032  NS NS NS 

                

Isovaleric 

24  1.12 1.07  0.98 0.88  0.027 0.027 0.038  <0.001 =0.011 NS 

48  1.31 1.43  1.21 1.04  0.049 0.049 0.070  <0.001 NS =0.006 

                

Valeric 

24  0.98 0.97  1.00 0.99  0.011 0.011 0.015  NS NS NS 

48  1.05 1.19  1.19 1.31  0.022 0.022 0.031  <0.001 <0.001 NS 

                

A/P ratio 

24  
3.0 3.1 

 
3.4 3.6 

 
0.09 0.09 0.13 

 
<0.001 NS NS 

48  
2.8 3.3 

 
3.1 3.7 

 
0.09 0.09 0.12 

 
<0.001 <0.001 NS 

S.E.D= Standard error of difference; F   D = fluid by dose interaction, NS= Not significant at P<0.05 
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6.3.2. Effect of EOC on fatty acid metabolism 

The effects of treatments on the concentration of selected fatty acids (g/100 g TFA) are presented in Table 

6.3. 

The levels of C14:0 were not affected by treatments (Table 6.3).  The g/100 g concentration of C16:0 was 

not different between the BDG and AOG, but the 200 mg/L of anise (regardless of fluid) reduced the 

levels of C16:0 relative to the control at both 12 and 48 h time points. Mean values were 12 h (48 h in 

brackets) 15.0 (17.0), 14.0 (15.0), 15.0 (16.0) and 14.0 (15.0) g/100 g TFA for BDG 0, BDG 200, AOG 0 

and AOG 200, respectively. 

The level of C16:1 in the AOG at 12 h was higher (P<0.001) than the BDG. Mean values were 7.1 and 

7.6 g/100 g TFA (sed= 0.02, P<0.001, Table 6.3), for the BDG and AOG, respectively. At the dose level, 

there was no difference (P<0.05), irrespective of fluid, between the levels of anise added. There was a 

significant interaction which indicates that addition of 0 and 200 mg/L of anise to the fluid adapted with 

anise oil (i.e. AOG 0 mg/L and AOG 200 mg/L) significantly increased the concentration of C16:1 

compared with the respective 0 and 200 mg/L of the unadapted fluid (BDG) at 12 h. Mean values were 

3.5, 3.6, 3.8 and 3.8 g/100 g TFA (sed= 0.03, P<0.016, Table 6.3), for BDG 0, BDG 200, AOG 0 and 

AOG 200, respectively.  

The concentrations of C18:0 were reduced (P<0.001) in cultures with the AOG relative to the BDG 

(Table 6.3). Mean values were 14.2 and 11.2 g/100 g TFA (12 h, sed= 0.15, P<0.001), 15.5 and 11.9 

g/100 g TFA (24 h, sed= 0.21, P<0.001) and for 48 h were 16.8 and 12.9 g/100 g TFA (sed= 0.45, 

P<0.001), for BDG and AOG, respectively. The 200 mg/L regardless of the type of fluid (BDG or AOG) 

maintained higher levels of C18:0 than the 0 mg/L of all fluids. 

The concentrations of C18:1 n-9 in cultures were not different (P<0.05) between the BDG and AOG 

(Table 6.3). At the dose level, the 200 mg/L of all fluid type maintained higher levels of C18:1 n-9 than 

the 0 mg/L. Mean values were 7.9, 8.0, 7.7 and 8.2 (12 h); 6.3, 7.3, 6.1 and 7.8 (24 h) and for 48 h were 

4.5, 5.6, 3.1 and 5.4 g/100 g TFA for BDG 0, BDG 200, AOG 0 and AOG 200, respectively. 
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The concentrations of C18:1 trans 11 at 12 and 24 h were significantly higher in cultures with the AOG 

than the BDG. Mean values were 3.6 and 3.8 (12 h, sed= 0.02, P<0.001, Table 6.3) and 24 h were 2.9 and 

3.4 g/100 g TFA (sed=0.05, P<0.001, Table 6.3), for the BDG and AOG, respectively. There was no 

difference in the dose of anise oil at all time points except at 48 h where the AOG 200 mg/L had higher 

level of 18:1 trans 11 than the rest of the treatments. Average values were 1.4, 1.4, 1.4 and 1.6 g/100 g 

TFA BDG 0, BDG 200, AOG 0 and AOG 200, respectively.  

The concentrations of C18:2 cis-9 trans 11CLA in cultures with BDG and AOG were similar (Table 6.3). 

The addition of different doses of anise oil (0 and 200 mg/L) had no effect on the levels of C18:2 trans 

11CLA at all time of incubation except at 12 h, where the levels of C18:2 trans 11CLA in cultures were 

maintained in a linear pattern (dose-response). Mean values were 0.25, 0.26, 0.27 and 0.28 g/100 g TFA 

BDG 0, BDG 200, AOG 0 and AOG 200, respectively. 

At both 12 and 24 h period, the unadapted fluid (BDG) and adapted fluid (AOG) maintained a similar 

level of C18:2 n-6 and C18:3 n-3 (Table 6.3).  In contrast, the concentrations of C18:2 n-6 and C18:3 n-3 

at 48 h were higher in vessels with AOG relative to BDG. Mean values were 5.1 and 6.8 (C18:2 n-6, 

sed=0.44, P<0.049) and for C18:3 n-3 were 5.7 and 7.5 g/100 g TFA (sed=0.36, P<0.022), for BDG and 

AOG, respectively. The 200 mg/L of all fluids maintained higher levels of C18:2 n-6 and C18:3 n-3 

compared to the control. There was a significant interaction at 24 h time point, which showed that the 

concentrations of C18:2 n-6 and C18:3 n-3 in vessels where AOG 200 were added were higher than their 

corresponding values in BDG 200 (Table 6.3). Mean values were 2.7, 4.1, 2.6 and 4.9 g/100 g TFA (18:2 

n-6, sed= 0.29, P<0.035) and for C18:3 n-3 were 3.4, 5.7, 3.3 and 7.0 g/100 g TFA (sed= 0.45, P<0.031), 

for BDG 0, BDG 200, AOG 0 and AOG 200, respectively. 

At 12 h the concentration of C20:4 n-6 was higher (P<0.025) in cultures with the AOG compared to the 

BDG (Table 6.3). By contrast, the levels of C20:4 n-6 at 24 and 48 h were lower in vessels with AOG 

than BDG.  Mean values were 1.0 and 1.1 (12 h), 1.2 and 1.0 (24 h) and 48 h were 1.2 (1.0) g/100 g TFA 

for BDG 0, BDG 200, AOG 0 and AOG 200 mg/L, respectively. 



216 
 

At 12 and 24 h time points, fluid from sheep adapted with anise oil maintained higher levels of C20:5 n-3 

and C22:6 n-3 than the unadapted fluid (Table 6.3). Mean values were 12 h (24 h in brackets) 6.6 (4.0) 

and 7.0 (5.4) for C20:5 n-3 and for C22:6 n-3 were 5.0 (4.0) and 5.3 (4.6) g/100 g TFA for BDG and 

AOG, respectively. All treatments maintained a dose related effect on the levels of C20:5 n-3 and C22:6 

n-3, such that the 200 mg/L of anise (the higher dose) contained higher amounts of these fatty acids 

compared to the control. Except at 48 h, there were no significant interactions between fluid and dose of 

anise. The concentration of C22:6 n-6 at 48 h was maintained higher (P<0.049) in cultures where AOG 

200 mg/L was added than other treatments. Mean values were 1.9, 1.7, 1.8 and 2.1 g/100 g TFA 

(sed=0.18, P<0.049, Table 6.3), for BDG 0, BDG 200, AOG 0 and AOG 200 mg/L, respectively. 

The content of ∑SFA was consistently lower in AOG compared to BDG at all time points (12, 24 and 48 

h). Mean values were 52.9 and 50.8 (12 h), 56.8 and 52.8 (24 h) and for 48 h were 59.0 and 54.9 g/100 g 

TFA (Table 6.4), for BDG and AOG, respectively. Effects of treatments on levels of total SFA was not 

dependent on the dose of anise but levels are generally lower in the adapted fuid.  

At 12 h, the fermentation vessel concentration of ∑MUFA was higher in the AOG than in vessels with 

BDG (Table 6.4). Mean values were 26.6 and 27.3 g/100 g TFA (sed= 0.06, P<0.001, Table 6.4), for 

BDG and AOG, respectively. There was significant interaction at 12 h period of incubation, which 

showed that supplementing cultures with AOG 200 mg/L contained higher concentration of ∑MUFA 

compared to the addition of BDG 200 mg/L. Mean values were 13.3, 13.3, 13.4 and 13.9 g/100 g TFA 

(sed= 0.08, P<0.006, Table 6.4), for BDG 0, BDG 200, AOG 0 and AOG 200 mg/L, respectively. 

However, at 24 and 48 h, the concentration of ∑MUFA in vessels was similar in the two fluids. The 

levels of ∑MUFA in cultures were maintained in a dose response pattern, with the higher dose of anise oil 

(200 mg/L) containing higher ∑MUFA than 0 mg/L.  

The vessel contents of ∑PUFA were higher in the AOG than the BDG at 12 h. Mean values were 41.3 

and 42.5 g/100 g TFA (sed= 0.17, P<0.002, Table 6.4), for BDG and AOG, respectively. However, at 24 

and 48 h, the concentrations of ∑PUFA in vessels were similar between the two fluids. The levels of 

∑PUFA in cultures increased as the dose of anise increased. Except at 24 h, there were no significant 
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interactions between fluid and dose on the content of PUFA. The addition of AOG 200 mg at 24 h had the 

highest content of ∑PUFA compared to the control. Mean values were 12.8, 15.0, 11.1 and 18.1 g/100 g 

TFA (sed= 1.43, P<0.025, Table 6.4), for BDG 0, BDG 200, AOG 0 and AOG 200 mg/L, respectively. 

The fermentation vessel contents of total fatty acid (TFA) at 12 and 24 h in unadapted fluid (BDG) and 

adapted fluid (AOG) were not different. However, at 48 h the levels of TFA in AOG exceeded (P<0.001) 

the concentration in BDG (mean values were 64.4 and 75.9 mg/g for BDG and AOG respectively). Total 

fatty acid content (mg/g) in all fluids was not affected by the dose of anise.   

The ratio of n-6/n-3 in cultures at all time points (12, 24 and 48 h) was consistently higher in the BDG 

than the AOG (Table 6.4). The vessel content of n-6/n-3 in cultures was higher in BDG 0 mg/L compared 

to the AOG 0 mg/L and this was true for BDG 200 mg/L relative to AOG 200 mg/L. Average 

concentrations were 0.46, 0.44, 0.44 and 0.44 (12 h, sed=0.003, P<0.001); 0.45, 0.46, 0.41 and 0.44 (24 h, 

sed=0.007, P<0.032), and for 48 h were 0.50, 0.46, 0.44 and 0.47 (sed=0.013, P<0.001), for BDG 0, BDG 

200, AOG 0 and AOG 200 mg/L, respectively. 

Although the average biohydrogenation of C18:2 n-6 and C18:3 n-3 in BDG and AOG were not different 

at 48 h, levels of disappearance after 12 and 24 h in vessels with AOG were lower than in BDG (Table 

6.5). Mean values for C18:2 n-6 were 12 h (24 h in brackets) 43.7 (67.3) and 39.1 (60.8) and for C18:3 n-

3 were 52.9 (74.3) and 48.1 (68.3) g/100 g, for BDG and AOG, respectively. The biohydrogenation of 

C18:2 n-6 and C18:3 n-3 in vessels with the higher dose of anise (200 mg/L) were maintained at lower 

levels compared to the levels of biohydrogenation in cultures with BDG 0 mg/L. There was a significant 

interactions at both 12 and 24 h such that the biohydrogenation of C18:2 n-6 and C18:3 n-3 increased 

significantly in response to treatment in the sequence: values for C18:2 n-6 were BDG 0 mg/L (50.5 and 

74.1) > AOG 0 mg/L (48.0 and 73.3) > BDG 200 mg/L (36.9 and 60.4) > AOG 200 mg/L (30.1 and 48.3 

g/100 g), for 12 (sed=1.26, P<0.05) and 24 h (sed=2.79, P<0.010, Table 6.5), respectively . Similar values 

for C18:3 n-3 were BDG 0 mg/L (60.9 and 80.5) > AOG 0 mg/L (58.4 and 80.4) > BDG 200 mg/L (44.8 

and 68.0) > AOG 200 mg/L (37.8 and 56.2 g/100 g), for 12 (sed=1.37, P<0.032) and 24 h (sed=2.51, 

P<0.004, Table 6.5), respectively. 
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At 12 and 24 h, the mean biohydrogenation (mean across all doses within a fluid type) of 20:5 n-3 and 

22:6 n-3 were lower in AOG relative to levels in BDG (Table 6.5). Mean values for 20:5 n-3 were 12 h 

(24 h in brackets) 27.4 (57.1) and 18.1 (37.2) and for 22:6 n-3 were 16.5 (34.4) and 5.9 (17.1) g/100 g for 

BDG and AOG, respectively. The biohydrogenation of 20:5 n-3 and 22:6 n-3 decreased as the dose of 

anise oil increased in fermentation vessels, such that the highest dose (200 mg/L) of all fluids maintained 

lower levels of disappearance compared to the control. Mean values for 20:5 n-3 were 31.8, 23.0, 24.7 

and 11.5 g/100 g (12 h, sed=0.90, P<0.001); and 65.8, 48.4, 48.7, 25.7 g/100 g (24 h, sed= 3.22, P<0.001, 

Table 6.5), for BDG 0, BDG 200, AOG 0 and AOG 200 mg/L, respectively. The corresponding means for 

22:6 n-3 were 19.7, 13.2, 7.9 and 3.9 g/100 g (12 h, sed= 1.46, P<0.002); and 41.2, 27.6, 22.8 and 11.4 

g/100 g (24 h, sed= 2.68, P<0.001, Table 6.5), for BDG 0, BDG 200, AOG 0 and AOG 200 mg/L, 

respectively. 

  



219 
 

Table 6.3 Effects of four weeks of rumen adaptation to anise oil on concentration of selected fatty acids 

(g/100 g total fatty acids) in cultures during 48 h in vitro incubation 
  Treatments  

  

 

Basal diet group 

 

Anise oil group 

 

S.E.D 

 

Significance 

Fatty acid Time 0 mg/l 200 0 mg/l 200 Fluid Dose F   D Fluid Dose F   D 

C14:0 

12  5.0 5.0  5.0 5.0  0.01 0.01 0.11  NS NS NS 

24  5.0 5.0  5.0 5.0  0.10 0.10 0.10  NS NS NS 

48  5.0 5.0  5.0 5.0  0.10 0.10 0.10  NS NS NS 

                

C16:0 

12  15.0 14.0  15.0 14.0  0.10 0.10 0.10  NS <0.001 NS 

24  15.0 15.0  15.0 15.0  0.20 0.20 0.30  NS NS NS 

48  17.0 15.0  16.0 15.0  0.30 0.30 0.40  NS =0.004 NS 

                

C16:1 

12  3.6 3.6  3.8 3.8  0.02 0.02 0.03  <0.001 NS =0.016 

24  3.3 3.3  3.5 3.6  0.07 0.07 0.10  0.003 NS NS 

48  3.0 3.2  3.2 3.3  0.09 0.09 0.13  NS NS NS 
                

C18:0 

12  6.9 7.3  5.3 5.9  0.15 0.15 0.21  <0.001 =0.002 NS 

24  7.4 8.1  5.3 6.6  0.21 0.21 0.30  <0.001 <0.001 NS 

48  8.0 8.8  5.8 7.1  0.45 0.45 0.64  <0.001 =0.029 NS 
                

C18:1 n-9 

12  7.9 8.0  7.7 8.2  0.07 0.07 0.09  NS <0.001 NS 

24  6.3 7.3  6.1 7.8  0.32 0.32 0.45  NS <0.001 NS 

48  4.5 5.6  3.1 5.4  0.74 0.74 1.04  NS =0.029 NS 
                

C18:1 trans 

11 

12  1.8 1.8  1.9 1.9  0.02 0.01 0.02  <0.001 NS NS 

24  1.4 1.5  1.7 1.7  0.05 0.05 0.07  <0.001 NS NS 

48  1.4 1.4  1.4 1.6  0.06 0.06 0.08  NS =0.033 NS 
                

18:2 tr 

11CLA 

12  0.25 0.28  0.26 0.27  0.008 0.008 0.011  NS =0.034 NS 

24  0.17 0.18  0.17 0.17  0.013 0.013 0.019  NS NS NS 

48  0.15 0.16  0.16 0.18  0.016 0.016 0.023  NS NS NS 
                

C18:2 n-6 

12  5.1 6.5  5.1 6.6  0.06 0.06 0.08  NS <0.001 NS 

24  2.7 4.1  2.6 4.9  0.20 0.20 0.29  NS <0.001 =0.035 

48  2.3 2.8  2.3 4.0  0.44 0.44 0.63  =0.049 =0.006 NS 
                

C18:3 n-3 

12  6.8 9.7  7.0 9.9  0.10 0.10 0.15  NS <0.001 NS 

24  3.4 5.7  3.3 7.0  0.32 0.32 0.45  NS <0.001 =0.031 

48  2.1 3.6  3.0 4.5  0.36 0.36 0.50  =0.022 <0.001 NS 
                

C20:4 n-6 

12  0.5 0.5  0.6 0.5  0.01 0.01 0.01  =0.025 NS NS 

24  0.6 0.6  0.5 0.5  0.02 0.02 0.02  =0.030 NS NS 

48  0.6 0.6  0.5 0.5  0.01 0.01 0.01  <0.001 NS NS 

                

C20:5 n-3 

12  3.1 3.5  3.3 3.7  0.03 0.03 0.03  <0.001 <0.001 NS 

24  1.6 2.4  2.3 3.1  0.15 0.15 0.21  <0.001 <0.001 NS 

48  1.2 1.6  1.2 2.2  0.27 0.27 0.38  NS =0.016 NS 
                

C22:6 n-3 

12  2.4 2.6  2.6 2.7  0.03 0.03 0.04  <0.001 <0.001 NS 

24  1.8 2.2  2.2 2.4  0.07 0.07 0.10  <0.001 <0.001 NS 

48  1.6 1.7  1.8 2.1  0.13 0.13 0.18  NS NS =0.049 

S.E.D= Standard error of difference; F   D = fluid by dose interaction, NS= Not significant at P<0.05 
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Table 6.4 Assessing the effects of rumen adaptation to anise oil on the concentration of sum of fatty acids 

(g/100 g TFA) and content of total fatty acids (mg/g) on animals treated with Basal or Anise oil diets for 

the four weeks prior to slaughter. Rumen Fluid was subsequently incubated in vitro for 48 hours, (reading 

taken at 12, 24 and 48 hours). 

  Treatments  

  

 

Basal diet group 

 

Anise oil group 

 

S.E.D 

 

Significance 

Fatty acid Time 0 mg/l 200 0 mg/l 200 Fluid Dose F   D Fluid Dose F   D 

RFA 

12  32.4 31.0  32.1 29.8  0.20 0.20 0.28  <0.001 <0.001 =0.039 

24  36.2 33.9  38.1 32.2  0.97 0.97 1.37  NS <0.001 NS 

48  37.6 34.5  42.4 37.9  1.24 1.24 1.75  =0.003 =0.006 NS 

                

∑SFA 

 

12  26.7 26.2  25.6 25.2  0.18 0.18 0.25  <0.001 =0.020 NS 

24  28.1 28.7  26.0 26.8  0.24 0.24 0.35  <0.001 =0.011 NS 

48  29.7 29.3  27.1 27.8  0.64 0.64 0.90  =0.005 NS NS 

                

∑MUFA 

12  13.3 13.3  13.4 13.9  0.06 0.06 0.08  <0.001 <0.001 =0.006 

24  11.0 12.1  11.3 13.1  0.37 0.37 0.52  NS <0.001 NS 

48  8.9 10.3  7.7 10.3  0.85 0.85 1.20  NS =0.031 NS 

                

∑PUFA 

12  18.2 23.1  18.8 23.7  0.17 0.17 0.24  =0.002 <0.001 NS 

24  12.8 15.0  11.1 18.1  1.01 1.01 1.43  NS <0.001 =0.025 

48  7.4 10.5  8.9 14.8  1.58 1.58 2.24  NS =0.010 NS 

                

TFA 

12  34.7 36.8  37.1 35.5  0.79 0.79 1.11  NS NS =0.029 

24  35.1 33.9  35.9 36.5  0.93 0.93 1.32  NS NS NS 

48  33.8 30.6  39.2 36.7  1.48 1.48 2.10  <0.001 NS NS 

                

n-6/n-3 

12  0.46 0.44  0.44 0.44  0.002 0.002 0.003  <0.001 =0.002 <0.001 

24  0.45 0.46  0.41 0.44  0.005 0.005 0.007  <0.001 =0.002 =0.032 

48  0.50 0.46  0.44 0.47  0.009 0.009 0.013  =0.028 NS <0.001 

                

P/S 

12  0.68 0.88  0.73 0.94  0.010 0.010 0.015  <0.001 <0.001 NS 

24  0.46 0.52  0.43 0.68  0.035 0.035 0.050  =0.092 <0.001 =0.017 

48  0.27 0.38  0.30 0.53  0.071 0.071 0.100  NS =0.028 NS 

S.E.D= Standard error of difference; F   D = fluid by dose interaction, RFA= remaining fatty acids, 

∑SFA= sum of saturated fatty acids, ∑MUFA= sum of monounsaturated fatty acids, ∑PUFA= sum of 

polyunsaturated fatty acids, TFA= total fatty acids, P/S= ∑PUFA/∑SFA, n-6/n-3= sum of n-6 divided by 

sum of n-3 fatty acids, NS= Not significant at P<0.05 
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Table 6.5 Assessing the effects of rumen adaptation to anise oil on biohydrogenation of PUFA (g/100 g 

TFA) when animals were treated with basal or Anise oil diets for four weeks prior to slaughter. Rumen 

fluid was subsequently incubated in vitro for 48 hours, (reading were taken at 12, 24 and 48 hours).  
  Treatments  

  

 

Basal diet group 

 

Anise oil group 

 

S.E.D 

 

Significance 

Fatty acid Time 0 mg/l 200 0 mg/l 200 Fluid Dose F   D Fluid Dose F   D 

C18:2 n-6 

12  50.5 36.9  48.0 30.1  0.89 0.89 1.26  <0.001 <0.001 =0.053 

24  74.1 60.4  73.3 48.3  1.97 1.97 2.79  =0.004 <0.001 =0.010 

48  82.8 71.0  77.4 61.4  4.51 4.51 6.38  NS =0.006 NS 

 
               

C18:3 n-3 

12  60.9 44.8  58.4 37.8  0.97 0.97 1.37  <0.001 <0.001 =0.032 

24  80.5 68.0  80.4 56.2  1.78 1.78 2.51  =0.003 <0.001 =0.004 

48  87.7 77.0  83.1 74.4  2.18 2.18 3.08  NS <0.001 NS 

 
               

C20:5 n-3 

12  31.8 23.0  24.7 11.5  0.90 0.90 1.28  <0.001 <0.001 NS 

24  65.8 48.4  48.7 25.7  3.22 3.22 4.56  <0.001 <0.001 NS 

48  73.7 61.1  73.2 53.0  6.00 6.00 8.48  NS =0.013 NS 

 
               

C22:6 n-3 

12  19.7 13.2  7.9 3.9  1.46 1.46 2.06  <0.001 =0.002 NS 

24  41.2 27.6  22.8 11.4  2.68 2.68 3.79  <0.001 <0.001 NS 

48  45.5 31.1  36.1 35.3  4.15 4.15 5.87  NS NS NS 

S.E.D= Standard error of difference; F   D = fluid by dose interaction, NS= Not significant at P<0.05 
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6.4.0. Discussion  

The aim of the current study was to examine the possibility of rumen adaptation to anise oil within a 

feeding period of four weeks. Anise oil (200 mg/L) was identified in the previous study (Chapter 5) as the 

most effective essential oil in terms of both preventing PUFA disappearance and maintenance of optimal 

VFA production. In this study, six Hartline  Texel cross lambs were used. Three of the lambs were 

randomly assigned to the control treatment (without anise oil, BDG) and the remaining three lambs were 

offered feed pre-treated with ANO (2.4 g/sheep/day anise oil, AOG) for four weeks.  All the six lambs 

used in this study were in good health condition throughout the period of the trial.  Dry matter intake was 

marginally higher (by 2%) in sheep that received anise oil (AOG) compared to the control (BDG). 

However, final body weight gains were not affected by treatments (BDG and AOG). Nevertheless, it 

could be speculated that the AOG that had higher feed intake but without higher weight gain may have 

excreted more nutrients than the BDG. By contrast, previous in vivo studies where higher doses: 500 

mg/day of cinnamaldehyde (Busquet et al., 2003; Calsamiglia et al., 2007), and a mixture of eugenol (90 

mg/day) plus 180 mg/day of cinnamaldehyde (Cardozo et al., 2006) were used observed negative effect 

on feed intake. The observed difference in feed intake between the present study and some previous 

studies (Busquet et al., 2003; Cardozo et al., 2006; Calsamiglia et al., 2007) could be due to the different 

doses or type of EOs/EOCs or the diet used.  

6.4.1. Fermentation parameters 

The current study observed that although the BDG and AOG maintained similar levels of total gas 

production, BDG 200 and AOG 200 caused 7.9% (average) inhibition of total gas relative to the control.  

This level of reduction of total gas in cultures supplemented with 200 mg/L from both sources of rumen 

fluid (AOG and BDG) in the current study is similar and consistent with the level of inhibition of gas 

production when 200 mg/L of anise oil was used in the previous study (see Chapter 5). 

A number of studies have indicated that different blend of essential oil decreased proteolysis and amino 

acid deamination (McIntosh et al., 2003; Molero et al., 2004; Newbold et al., 2004; Castillejos et al., 

2007). Majority of these studies proposed that about four weeks period of microbial adaptation to blend of 

essential oil  was the minimum period of time necessary to observe the effects of mixtures of essential oil  
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on protein metabolism in the rumen (Wallace et al., 2003; Molero et al., 2004; Castillejos et al., 2007 ). 

In the current in vivo study, the concentrations of NH3-N from the two fluids (BDG and AOG) were not 

affected by treatments.  This observation is in agreement with Newbold et al. (2004) who reported that 

110 mg/d of blend of EO (Crina® ruminants; Akzo Surface Chemistry Ltd., Herfordshire, UK) did not 

affect the concentration of NH3-N measured in vitro. Furthermore, Castillejos et al. (2007) observed that 

the concentration of NH3-N was not affected by supplementing 110 mg/L of a blend of essential oil 

(Crina® Ruminant; AKZO NOBEL/CRINA S.A., Gland, Switzerland). The constituents of the Crina® 

Ruminant were guaiacol, thymol and limonene. However, both studies (Newbold et al., 2004; Castillejos 

et al., 2007) reported that 24% and 14% respectively, of ammonia N was decreased when measured in 

vitro from rumen fluid collected from sheep adapted with blend of essential oil for four weeks.  In the 

current in vitro study, we observed that the addition of AOG 200 mg/L but not of BDG 200 mg/L induced 

a 16% reduction on NH3-N concentration after 24 h. This observation suggests reduced deamination or 

decreased concentration of HAP (although not tested). Some studies have demonstrated that some (HAP) 

such as Peptostreptococcus anaerobius and  Clostridium sticklandii were more sensitive than others such 

as  Clostridium aminophilum to the Crina blend of essential oil (McIntosh et al., 2003). Contrary to the 

results obtained in the current study, previous results (described in Chapters 4 and 5) indicate that anise 

oil (300 and 200 mg/L) did not change the levels of NH3-N in rumen contents. These results indicate the 

possibility that the accumulated residual effects of feeding anise oil to lambs (for four weeks) resulted to 

the decreased concentration of ammonia, suggesting that ruminal microbes need adaptation time of about 

four weeks in order to change the levels of NH3-N in the rumen.  

After four weeks period of microbial adaptation to anise oil, TVFA concentrations in the rumen (in vivo) 

and in vitro were not different between the BDG and AOG, which implies that anise oil, at the dose tested 

in this study, neither affect feed intake nor alter the utilization of energy. These results are consistent with 

results of other previous studies (Wallace et al., 2002; Newbold et al., 2004). In addition, Castillejos et al. 

(2007) observed in a dual flow continuous culture studies that supplementing 650 mg/day of a blend of 

essential oil (Crina® Ruminant; AKZO NOBEL/CRINA S.A., Gland, Switzerland) did not alter the 

concentration of VFA (in vitro and in vivo). Since the absorption of VFA in the rumen is proportional to 
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its ruminal concentration (Lopez et al., 2003), this study suggests that absorption of VFA would also not 

be affected with the inclusion of 2.4 g/sheep/day of anise oil. Although the molar proportions of 

individual VFA were not affected by treatment in vivo, results were different in vitro. The unadapted fluid 

plus 200 mg/L of anise oil (BDG 200 mg/L) did not affect the molar proportions of acetate, propionate 

and the acetate to propionate ratio at 24 h which is consistent with previous reports described in Chapter 5 

(where 200 mg/L of anise oil did not change the molar proportions of VFA). In contrast, AOG 200 mg/L 

increased acetate and reduced propionate. These results between in vitro and in vivo studies are in 

agreement with the observation of Castillejos et al. (2007) who reported that although blend of essential 

oil did not affect the concentrations of total and individual VFA in vivo, levels were affected when rumen 

fluid collected from sheep adapted to blend of essential oil was used in in vitro trial. The concentrations 

of branched-chain volatile fatty acids (BCVFA) such as isobutyric and isovaleric in AOG 200 mg/L were 

reduced which agreed with the reduced concentration of NH3-N in those cultures. These results are 

consistent with decreased deamination process (Allison et al., 1962). 

6.4.2. Effect of EOC on fatty acid metabolism 

Saturated fatty acids such as C14:0 and C16:0 have the capacity to increase the plasma cholesterol levels 

by suppressing and saturating low-density lipoprotein (LDL) receptors (Keys et al., 1995). In the current 

study, the levels of C14:0 were not affected by treatments, but the g/100 g concentration of C16:0 was 

considerably reduced with the addition of 200 mg/L of anise oil (irrespective of fluid) relative to the 

control. This agrees with the previous reports described in Chapter 5 and suggests that anise oil could 

potentially reduce the levels of plasma cholesterol through decreasing the concentration of palmitic 

(C16:0) acids.  

The average concentration of C18:0 was reduced in cultures supplemented with AOG relative to the 

BDG. The 200 mg/L regardless of the type of fluid (AOG or BDG) maintained higher levels of C18:0 

than the 0 mg/L.  At 12 and 24 h, the concentration of C18:1 trans 11 (vaccenic acid) was significantly 

higher in cultures with the AOG relative to the BDG. These results suggest that anise oil modified the 

biohydrogenation of fatty acids by reducing the production of stearic acid (the end-product of 

biohydrogenation) and maintained higher levels of C18:1 trans 11 than the control cultures. Reduction in 
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the content of C18:0 and higher levels of C18:1 trans 11 suggests that supplementing anise oil might 

reduce the activity of Butyrivibrio proteoclasticus, the ruminal microorganism responsible for converting 

C18:1 trans 11 to stearic acid during the reductase-step of biohydrogenation (Moon et al., 2008). These 

results agree with the reports from our preliminary in vitro studies (Eburu and Chikunya, 2014; 2015a; b). 

In those studies, both anise oil and its main active constituent compound (anethole) maintained high 

concentration of PUFA in cultures as a consequence of decreased biohydrogenation. 

The concentrations of C18:2 cis-9 trans 11CLA in cultures at 12 h were maintained in a linear dose-

response pattern. This is consistent with reports from our previous study where anise oil maintained 

higher levels of C18:2 trans 11CLA (Chapter 5; Eburu and Chikunya 2015a, b). This intermediate of 

biohydrogenation (C18:2 cis-9 trans 11 CLA) is formed in the first step during the transformation of cis-

9, cis-12 18:2 by the linoleic acid isomerase (LA-I) (Jenkins et al., 2008; Kim et al., 2009; Buccioni et 

al., 2012). Results of the current study suggest that anise oil at the level tested facilitated the activities of 

the linoleic acid isomerase which regulates the formation of cis-9 trans 11 CLA from cis-9, cis-12 18:2. 

The content of C18:2 n-6 and C18:3 n-3 rapidly decreased with time and the biohydrogenation of C18:2 

n-6 and C18:3 n-3 was similar to previous in vitro (Beam et al., 2000; Sinclair et al., 2005) and in vivo 

(Wachira et al., 2000; Scollan et al., 2001, Wang et al., 2002) studies. After 48 h time point,  the 

concentrations of C18:2 n-6 and C18:3 n-3 were higher in vessels with AOG than in BDG, and the 200 

mg/L of all fluids maintained higher levels of C18:2 n-6 and C18:3 n-3 compared to the control. At 24 h 

time point, the concentrations of C18:2 n-6 and C18:3 n-3 in vessels with added AOG 200 mg/L were 

higher than their corresponding values in BDG 200 mg/L. This significant interaction proposes the 

possibility of the residual effects of feeding anise oil to lambs (for four weeks) on the maintenance of the 

concentration of PUFA by decreasing biohydrogenation. The biohydrogenation of these C-18 PUFAs was 

similar to their concentrations with AOG 200 mg/L indicating the highest potency to decrease the 

disappearance of PUFA. These results are consistent with those of Vasta et al. (2013) who observed that 

after 3 months of supplementing the diet of Barbarine lambs with 400 ppm of Artemisia essential oil, the 

concentrations of C18:1 trans 11, C18:2 cis-9 trans 11, C18:2 n-6, C18:3 n-3 and MUFA in the muscle 

were increased compared to the control. Futhermore, other studies reported that the fat content of milk 
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from dairy cows was increased by feeding 5 g/day/cow and 2/day/cow of alium and juniper essential oils, 

respectively (Yang et al., 2007). By contrast, Chaves et al. (2008) reported that supplementing garlic, 

juniper berry and cinnamaldehyde at 200 mg/kg of dry matter to growing lambs did not modify the fatty 

acid profile of back and liver fat. Other studies observed that monoterpenes blend consisting of β-pinene, 

linalool, α-pinene, p-cymene at 0.43 g/kg of dry matter intake did not change the fatty acid profile of milk 

(Malecky et al., 2009). In another study, supplementing the diet of dairy cows with 1 g/day of 

cinnalmaldehyde did not affect the fatty acid composition of milk (Benchaar et al., 2007b).  The 

difference between the present study and previous studies (Chaves et al., 2008; Malecky et al., 2009) for 

composition of fatty acid could be due to the difference in the chemical structure of essential oils and the 

duration of exposure. These factors (the chemical structure of essential oils and the duration of exposure) 

could affect the applicability of in vitro results and the actual response from animal performance in vivo 

due to possible microbial adaptation. This is why other researchers suggested that sufficient time should 

be provided in vitro in order to study the possibility of such adaptations (Calsamiglia et al., 2007).  

The extent of disappearance of C20:5 n-3 and C22:6 n-3 in vessels increased as the time of incubation 

progressed.  After 24 h, the quantity of the content of 20:5 n-3 in vessel which disappeared was highest in 

the control (73.7%) and supports previous reports from in vivo studies where the biohydrogenation of 

C20:5 n-3 and C22:6 n-3 from fish oil range from 72 to 93 g/100 g TFA (Wachira et al., 2000; Scollan et 

al., 2001; Chikunya et al., 2004). The disappearance of C22:6 n-3 which was less than the 

biohydrogenation of C20:5 n-3 was also consistent with other previous in vitro reports where the 

biohydrogenation of C22:6 n-3 was less than 50 g/100 g (Ashes et al., 1992; Sinclair et al., 2005). Rumen 

fluid from sheep adapted with anise oil (AOG) maintained higher levels of C20:5 n-3 and C22:6 n-3 and 

reduced their biohydrogenation than BDG, and all treatments maintained a dose-related response effect 

on the levels of C20:5 n-3 and C22:6 n-3. As the concentrations of these fatty acids reflect the 

biohydrogenation data, it indicates that disappearance of these PUFA was substantially reduced in the 

AOG. However, there was no significant interaction between fluid and dose of anise on the concentration 

and biohydrogenation of these long chain PUFAs. 
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The addition of graded doses of anise (0 and 200 mg/L) sequentially increased the concentrations of 

∑PUFA and P/S ratio and progressively decreased the concentrations of ∑n-6/∑n-3 and ∑SFA, relative to 

the control. These increased concentrations of ∑PUFA, P/S ratio and progressive decrease on the 

concentrations of ∑n-6/∑n-3 and ∑SFA with 200 mg/L of anise oil were higher in vessels with the AOG 

200 mg/L relative to the BDG 200 mg/L. This interaction implies that feeding 2.4 g/day/sheep of anise oil 

for 4 weeks improved the concentrations of ∑PUFA, P/S ratio, ∑n-6/∑n-3 and ∑SFA than just the 

supplementation of cultures with 200 mg/L of anise oil. 

This microbial adaptation study did not measure the stability of anise oil (the used essential oil) in the 

rumen. However, this assessment would have been achieved by measuring the amount of the oil in the 

diet and examination of the feaces for the same purpose. There is increasing evidence that essential oils 

and their constituent compounds are anaerobically biodegraded to a number of other compounds.  This 

suggests that adaptation may result from the biotransformation of the active form of a compound to a less 

active form.  In anaerobic environment, facultative bacteria such as Alcaligenes defragrans degrade 

monoterpenes such as limonene into 2-carene or α-terpinene depending on the absence or availability of 

nitrate, respectively (Heyen and Harder, 1998). Other microbes such as E.coli produce carveol, perillyl 

alcohol, perillic acid and carvone from the biotransformation of monoterpenes such as limonene (Cheong 

and Oriel, 2000; Mars et al., 2001). 

In summary, as an indication of modified fatty acid profile in the present study, the fluid from lambs 

adapted with 2.4 g/sheep/day for four weeks contained higher levels of individual and total PUFA and 

reduced concentration of C18:0 and ∑SFA than the unadapted fluid. This study indicates that there was 

no microbial adaptation to anise oil (2.4 g/sheep/day) during this experimental period (four weeks), and 

suggests that at the dose tested, anise oil sustain microbial inhibition and prevented any form of microbial 

adaptation process. 

 6.5. Conclusion  

In this four weeks adaptation study, fluid from sheep adapted with anise oil maintained higher 

concentrations of total and individual PUFA, trans vaccenic acid and lower concentration of stearic acid. 
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These results indicate that there was no microbial adaptation to anise oil in the rumen during the four 

weeks period of study. These results suggest that anise oil is potentially a useful feed additive to optimise 

the fatty acid composition of ruminant food products, if these effects are observed in meat and milk. 
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 CHAPTER 7 

7.1a. General discussion and recommendations for future research 

The effects of essential oils and their constituent compounds on in vitro biohydrogenation of PUFA in the 

rumen were examined during the course of this PhD research. The major objective was to use EOs/EOCs 

to modify microbial metabolism of PUFA in order to optimize the fatty acid composition of ruminant 

meat and milk. The need for optimization of the fatty acid composition of ruminant food products is due 

to the well-known human health implications of consuming high SFA and low PUFA, which is common 

in ruminant food products. One of the weaknesses of EOCs or EOs in the rumen is their lack of selectivity 

in terms of microbial species affected; hence, dose optimization of EOCs/EOs was performed to obtain 

satisfactory protection of PUFA from ruminal biohydrogenation but without disrupting VFA 

concentration. In addition, microorganisms have the tendency to adapt to EOCs/EOs over time; therefore, 

the possibility of microbial adaptation to anise oil (the most effective oil identified during the in vitro 

studies) was investigated. During this PhD research, the main aims and the principal accomplishments 

and findings are outlined as follows: 

1. Phenolic compounds from essential oils were more effective at reducing biohydrogenation of 

PUFA in the rumen than other classes of EOCs (Chapter 3). 

2. Anethole and 4-allyanisole (at 300 mg/L) were the most effective EOCs to reduce the extent of in 

vitro rumen biohydrogenation of C18:3 n-3 (average values were 22.2% and 26.4%, for anethole 

and 4-allyanisole, respectively). However, at 300 mg/L, anethole and 4-allyanisole concomitantly 

induced substantial decrease (over 10% reductions) on the ruminal concentration of total VFA 

(Chapter 3). 

3. Essential oils that are rich in phenolic compounds were more effective at reducing 

biohydrogenation of PUFA in the rumen than other essential oils whose active compounds are not 

predominantly phenolic compounds (Chapter 4). 

4. Anise and cassia oils (at 300 mg/L) were the most effective whole EOs to reduce the extent of in 

vitro rumen biohydrogenation of C18:3 n-3 (mean values were 58.2% and 54.3% for anise and 
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cassia oils, respectively). However, protection of PUFA from biohydrogenation was accompanied 

by significant (over 10% reductions) suppression of VFA concentration in the ruminal contents. 

5. Essential oils have slightly more potential to inhibit the biohydrogenation of PUFA in the rumen 

than their main active constituent components (Chapter 4 and Chapter 5). 

6. At 200 mg/L, 4-allylanisole, anethole and anise oil seems to give best balance between PUFA 

protection and minimal disruption to VFA concentration in vitro, but cassia oil requires a dose 

more than 100 mg/L but less than 200 mg/L to attain the same balance (Chapter 5). 

7. At 200 mg/L, anise oil was more effective than the rest of the other substances (-allylanisole, 

anethole and cassia oil) in both preventing PUFA disappearance and maintenance of optimal 

VFA production (Chapter 5). 

8. In vitro digests from rumen fluid fed anise oil (2.4 g/sheep/day) contained higher concentrations 

of PUFA and biohydrogenation intermediate (C18:1 trans 11) with substantial reduction of C18:0 

concentration (Chapter 6). 

9. Microbial adaptation to anise oil did not occur within four weeks period used in adaptation study, 

as evidenced by high accumulation of PUFA and C18:1 trans 11 with substantial reduction of 

C18:0 concentration (Chapter 6). 

10. There is a possibility to select essential oils and their main constituent compounds to reduce the 

biohydrogenation of PUFA and to potentially use them to optimize the fatty acid composition of 

ruminant food products (Chapters 3; 4; 5; 6). 

Results of this PhD thesis suggest that, generally, dietary addition of essential oils and their constituent 

compounds represent a potential effective technique to optimize the fatty acid composition of ruminant 

food products by reducing the extent of rumen biohydrogenation of PUFA. Whole essential oils that are 

rich in phenolic compounds are more effective than the individual constituent compounds. However, 

certain questions remain unanswered which need to be addressed in future study. Therefore, the following 

areas of further study are suggested. 
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7.1b MECHANISM OF ACTION OF EOS/EOCS 

Despite the considerable increase on the concentration and the dramatic reduction in the biohydrogenation 

of PUFA due to the supplementation of EOs/EOCs, there were no corresponding data on their effects on 

specific biohydrogenating bacteria. It was not a deliberate decision not to evaluate effects of EOs/EOCs 

on microbial species composition, but priority in the design of the PhD work was given to comparative 

evaluation of effects of whole essential oils and their individual EOCs; establishment of optimum doses 

for both EOCs/EOs; and the possibility of rumen adaptation. Furthermore, the time consuming nature of 

microbial analyses and the expensive nature of microbial characterization studies were other factors that 

worked against microbial species composition analysis in this study.   

Clostridium proteoclasticum (Kemp et al., 1975; Maia et al., 2007) which was re-classified as 

Butyrivibrio proteoclasticus (Moon et al., 2008), is well known as the only bacteria capable of converting 

C18:1 trans 11 to C18:0, and all bacteria in the Butyrivibrio group are known to have the capacity to 

convert linoleic acid to C18:2 cis-9 trans-11 CLA. However,  because bacteria need to be growing or 

active in order to cause biohydrogenation, other authors have argued that as PUFA are capable of 

inhibiting this growth, it is likely that other bacteria which are potential producers of C18:0 might have 

been inhibited (Wallace et al., 2006). Hudson et al. (1998) observed that Streptococcus bovis has the 

ability to cause hydration of linoleic acid to 13-hydroxy-9-octadecenoic acid. The study of Hudson et al. 

(1998) provide evidence to suggest that other facultative ruminal bacteria including Lactobacillus, 

Staphyloccous, pediococcus and Enterococcus have the ability to hydrate linoleic acid (Hudson et al., 

2000). There is limited evidence whether there are many more bacteria involved in biohydrogentaion due 

to the time-consuming nature and the high cost of isolating such bacteria (Huws et al., 2006). Available 

evidence suggests that other bacteria such as Ruminococcaceae, Anaerovoax, Prevotella as well as other 

clostridiales which have not been identified could also play a role in biohydrogenation pathways (Huws et 

al., 2006, Huws et al., 2011). Future study with EOs/EOCs must consider examination of effects on 

microbial species composition, providing evidence on the abundance of key biohydrogenating bacteria in 

order to conclusively state the mechanism of actions of essential oils against individual microbial species. 
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7.1c IN VIVO STUDIES 

Only short term in vitro studies up to 48 h and four weeks period of microbial adaptation effects were 

evaluated in this PhD. Several studies have reported wide discrepancies between in vitro and in vivo 

results.  Malecky et al. (2009) observed that the fatty acid composition of milk was not affected by adding 

a monoterpene blend (0.43 g/kg diet) containing α-pinene, β-pinene, p-cymene and linalool to the diet. In 

another study, cinnamaldehyde (1 g/kg) added to the diet of dairy cattle also did not affect the profile of 

milk fatty acids (Benchaar and Chouinard, 2009). Others observed that the fatty acid profile of milk 

obtained from dairy cows offered 0.75 g/cow/day of a mixture of essential oils and compounds (Crina 

ruminants; CRINA S.A., Gland, Switzerland) was not affected (Benchaar et al., 2007a). Furthermore, 

Chaves et al. (2008) reported that supplementing garlic, juniper berry and cinnamaldehyde at 200 mg/kg 

of dry matter to growing lambs did not modify the fatty acid profile of back and liver fat. However, other 

studies observed that after 3 months of supplementing the diet of Barbarine lambs with 400 ppm of 

Artemisia essential oil, the concentrations of C18:1 trans 11, C18:2 cis-9 trans 11, C18:2 n-6, C18:3 n-3 

and total MUFA in the muscle were increased compared to the control( Vasta et al., 2013). In our in vitro 

and adaptation studies, we observed dramatic changes in PUFA metabolism, resulting in higher 

concentration and reduced biohydrogenation of PUFA due to the supplementation of EOs/EOCs. A 

number of factors such as the environmental condition of the growing plant (soil temperature, 

composition and moisture), stage of plant growth, the species of the plant, the part of the plant from 

where the essential oil is extracted, and the particular method used for the extraction of oil, are all known 

to be responsible for variation in the composition of essential oil and by extension, their antimicrobial 

effects. In most cases, producers of the majority of the available commercial essential oils do not provide 

sufficient details about these factors; hence, the differences observed in results cannot be categorically 

attributed to any known factor. Therefore, in order to standardize the dose and type of essential oil in 

relation to a particular effect in the rumen, future research must provide details of the growing conditions 

of a plant, the species, the part of the plant from which oil was extracted, the method of extraction used, 

the purity and chemical composition of the oil and the concentration which produced a particular effect in 

the rumen. These data would reduce the discrepancies observed in results. 
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In a situation where the above factors are considered and a difference is still observed, this might be 

attributed to microbial adaptation to essential oil or shift in microbial species composition.  In the present 

study, we established that there was no microbial adaptation after four weeks of feeding anise (at 2.4 

g/sheep/day). We are proposing that there would be close relationship between in vivo and in vitro results 

if in vivo studies (evaluation of effects on meat and milk fatty acid composition) succeed microbial 

adaptation studies. In this way the minimum period of time which was established from an adaptation 

study could be applied in the in vivo study. We had established that there was no microbial adaptation to 

anise oil after four weeks period of feeding anise oil to lambs, further in vivo studies are necessary to 

examine the potential transfer of these fatty acid changes to meat or milk by using anise oil at the dose 

tested here and at the last four weeks to market weight (slaughter of the animal).  

7.1d STABILITY OF ESSENTIAL OIL IN THE RUMEN 

The microbial adaptation study did not measure the stability of anise oil (the used essential oil) in the 

rumen. But there is increasing evidence that essential oils and their constituent compounds are 

anaerobically biodegraded to a number of other compounds.  This suggests that adaptation may result 

from the biotransformation of the active form of a compound to a less active form.  In anaerobic 

environment, facultative bacteria such as Alcaligenes defragrans degrade monoterpenes such as limonene 

into 2-carene or α-terpinene depending on the absence or availability of nitrate, respectively (Heyen and 

Harder, 1998). Other microbes such as E.coli produce carveol, perillyl alcohol, perillic acid and carvone 

from the biotransformation of monoterpenes such as limonene (Cheong and Oriel, 2000; Mars et al., 

2001). Facultative bacteria produce isoterpinolene from the biodegradation of isolimonene (Chang et al., 

1995; Heyen and Harder, 1998). The biodegradation of EOs or their compounds is achieved through the 

re-arrangement of unsaturated monoterpenes by bacterial enzymes (Heyen and Harder, 1998). These 

same authors reported that products of EO/EOC biodegradation might be in the form of ionic compounds. 

This suggests that products of EO/EOCs biotransformation might just remain as intracellular substrate, 

hence, the inhibitory effect of the products might be lost.  Heylemon and Harder (1999) reported that C-1 

sp2 hybridization of menthadienes can be used to determine the metabolism or transformation of 

monoterpenes. Further study must use this method to elucidate the exact biodegradation pathways of EOs 
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and their compounds. Badee et al. (2011) suggested that the biodegradation of monoterpenes can be 

inhibited either by the substrate or the end product of bioconversion.  Establishment of these pathways 

would help to suggest ways of inhibiting the activities of the biotransformation bacteria and ensure the 

stability and antimicrobial activity of EOs and their constituent compounds in the rumen.  

7.1e OTHER AREAS OF FURTHER RESEARCH 

It is a known fact that farmers would not adopt a new nutritional strategy except the cost-benefit analysis 

and the economic benefits for animal production are established.  It is worth mentioning that because 

most commercial essential oils, particularly their active compounds, are very expensive (Sigma Aldrich); 

their effects on the welfare and productivity of animal should be established prior to their use in the farm. 

Therefore, the cost-benefits ratio which would take into account the cost of an essential oil, the 

concentration used and farm profitability (Calsamiglia et al., 2007), should be established in future study.  

7.2. Brief summary 

Optimising the fatty acid composition of ruminant derived food products for human health by altering the 

processes of lipolysis and subsequent biohydrogenation of free fatty acids was the principal aim of this 

study. Increased intakes of saturated fatty acids have been consistently associated with increased 

occurrence of chronic diseases such as diabetes, obesity, compromised immune system and 

cardiovascular diseases (Givens, 2005). In contrast, there is a positive relationship with increased intake 

of n-3 PUFA and reduced risk of coronary heart disease (CHD). This relationship between CHD and the 

intake of n-3 PUFA has led nutritional recommendation authorities to place emphasis on increasing the 

intakes of dietary n-3 PUFA and reducing the consumption of SFA (Department of Health, 1994; WHO, 

2003). Indeed, ruminant derived food products are paradoxical. On one hand, they have often been 

blamed for containing low level of omega-3 fatty acids (about 2 g in every 100 g) and high content of 

SFA (about 65 g in every 100 g) resulting from extensive biohydrogenation of dietary PUFA and the de 

novo fatty acid synthesis (Gurr and Harwood, 1991). On the other hand, incomplete biohydrogenation of 

dietary PUFA produces a number of intermediate fatty acids such as cis-9 trans 11 18:2 CLA and its 

precursor, C18:1 trans 11. These fatty acids have been reported to possess a number of human health 
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benefits such as anti-carcinogenic, anti-inflammatory, anti-atherogenic and anti-diabetic effects (Banni et 

al., 2001; Corl et al., 2003). Therefore, research to manipulate rumen metabolism of fatty acid is 

necessary to optimize the fatty acid profile of ruminant food products and to improve human consumption 

of n-3 PUFA and cis-9 trans 11 18:2 CLA from ruminant food products.  

One of the ways of optimising the fatty acid composition of ruminant food products is through animal 

dietary manipulation. A number of technologies have been developed over the years but they have been 

largely ineffective or not cost effective. These factors have hindered the commercialization of many 

technologies with the aim of optimizing the fatty acid composition of ruminant derived food products. A 

few in vitro studies have shown the potential of essential oils to alter fatty acid metabolism and cause 

accumulation of biohydrogenation intermediates. The effectiveness of essential oil to achieve this 

depends on the ability of its active compounds to penetrate microbial cell wall, damage  membrane 

proteins, deplete the proton motive force, damage the cytoplasmic membrane, cause leakage of the cell 

contents and coagulate the cytoplasm (see Chapter 1.7.3). These mechanisms of actions are capable of 

enabling EOCs/EOs to reduce the activities of key biohydrogenating bacteria such as Butyrivibrio 

proteoclasticus. The fact that these substances are constituent of plants which are dietary components for 

herbivorous animals (Cowan, 1999), and also because a number of EOs/EOCs have been proposed as safe 

alternative to antibiotics and their addition to food are generally considered as safe (Calsamiglia et al., 

2007), EOs/EOCs represent a potential dietary additive to achieve the right optimization of the fatty acid 

composition of ruminant food products.  

The principal objectives of this PhD study were 1) to examine the in vitro effects of essential oils 

constituent compounds on the metabolism of n-3 PUFA by rumen microorganisms, 2) to further validate 

the in vitro effects of whole essential oils on rumen fermentation and biohydrogenation of n-3 

polyunsaturated fatty acids by rumen microorganisms, 3) to establish optimum doses of supplementing 

essential oils and their compounds in ruminant diet and 4) to establish the potential adaptation time of the 

most effective essential oil on rumen fermentation and metabolism of n-3 PUFA.  
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In order to achieve these objectives three preliminary in vitro studies followed by feeding trial and then 

another in vitro study were conducted. 

In all the in vitro trials in this research, the basal feedstock (a 70: 30 mixture of grass hay and concentrate, 

respectively) was similar and was formulated once. Details of the experimental diet and supplier of the 

ingredients are as described in section 2.3 (see general material and methods). The nutrient content and 

the fatty acid composition of the basal feedstock are shown in Table 2.2 (general materials and methods). 

Lipid sources in the basal feedstock were linseed (C18:3 n-3), grass hay (C18:3 n-3 and C18:2 n-6) and 

fish oil (C20:5 n -3 and C22:6 n -3). The predominant C-18 fatty acids in the basal feedstock were C18:3 

n-3 (21.93 g/100 g TFA) and C18:2 n-6 (12.90 g/100 g TFA). These principal C-18 FAs account for more 

than 50% (59%) of the TFA in the diet. Similarly, C20:5 n -3 and C22:6 n -3 were the most abundant long 

chain n-3 PUFA, contributing 8.3% and 6.2%, respectively to the TFA composition of the diet. Hence, 

the fatty acid composition of the diet is a direct reflection of the sources of fatty acids in the diets (i.e. 

C18:3 n-3 and C18:2 n-6 from linseed and grass hay, respectively and C20:5n -3 and C22:6n -3 from fish 

oil). The basal feedstock was formulated by using feedstuff that are  rich in C18:2 n-6, C18:3 n-3, C20:5 

n -3 and C22:6 n -3 because the main aim of the study was to examine the biohydrogenation of those fatty 

acids over time. 

The effects of fifteen essential oil constituent compounds (at 300 mg/L) on the ruminal biohydrogenation 

of C18:2 n-6 and n-3 PUFA was examined by means of 48 h in vitro batch culture system. A 70: 30 

mixture of grass hay and concentrate respectively was formulated and then supplemented with additional 

fat from the mixture of 60% of fish oil and 40% of ground linseed. The experiment was repeated twice 

and the results presented were the means of two experiments. Treatments were control (no essential oil), 

4-allylanisole, anethole and cinnamaldehyde (phenylpropanoids), menthol (monoterpene alcohol), 3-

carene and borneol (bicyclic monoterpenes), citronellol, limonene, myrtenol, p-cymene and thujone 

(monoterpenes), bisabolol (sesquiterpene), eucalyptol (monoterpene ethers), caryophyllene (bicyclic 

sesquiterpene) and vanillin (aldehydes). There was rapid biohydrogenation of C18:3 n-3 from ground 

linseed which exceeded 80 g/100 g at 24 h. This observation agrees with previous studies where the 

biohydrogenation of C18:3 n-3 range from 72-95% (Wachira et al., 2000; Scollan et al., 2001). However, 
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supplementing cultures with EOCs considerably reduced biohydrogenation and maintained higher the 

concentrations of C18:2 n-6 and n-3 PUFA (Chapter 3). The content of C18:3 n-3 or C18:2 n-6 at 24 h 

increased significantly in the progression: ALA and ANE (phenylpropanoids), MEN (monoterpene 

alcohol) and CIT (monoterpene) > 3-CAR and BOR (bicyclic monoterpenes), CIN (phenylpropanoid), 

LIM, MYT, CYM and THU (monoterpenes) > BIS (sesquiterpene) and EUC (monoterpene ethers) > 

CPY (bicyclic sesquiterpene) and VAN (aldehydes). The results which indicated that phenolic 

compounds were the most potent compounds and that aldehydes were the least effective compounds was 

consistent with the findings of Kalemba et al. (2012) who ranked the antimicrobial potency of EOCs in 

the following descending order: phenols > cinnamic aldehyde > alcohols > aldehydes. Anethole and 4-

allylanisole (phenolic compounds) were the most effective EOCs after 24 h. As a consequence of 

including anethole and 4-allylanisole in cultures, the concentrations of C18:2 n-6 and C18:3 n-3 (g/100 g 

TFA) were more than double the corresponding values in the control. Mean values were 2.7, 2.7 and 1.3 

(C18:2 n-6) and for C18:3 n-3 were 4.0, 3.9 and 1.6 g/100 g TFA for 4-allylanisole, anethole and the 

control, respectively. The values for other EOCs were intermediate between the control and the most 

effective EOCs (anethole and 4-allylanisole). The biohydrogenation results showed that about 22.2% and 

26.4% of alpha linolenic acid (C18:3 n-3) were protected from ruminal biohydrogenation in cultures 

supplemented with anethole and 4-allylanisole, respectively. The possibility of anethole and 4-allylanisole 

to exert the greatest antimicrobial characteristic by maintaining higher levels of C18:3 n-3 than other 

EOCs could be due to the possession of hydroxyl group whose acidic characters are speculated to have 

broad inhibition of microbial activities (Cosentino et al., 1999; Juliano et al., 2000; Lambert et al., 2001). 

This could suggest that anethole and 4-allylanisole probably had higher capacity to reduce isomerization 

of C18:3 n-3 and C18:2 n-6 compared to the rest of the treatments or that they were more active against 

Clostridium proteoclasticum (Kemp et al., 1975; Maia et al., 2007), renamed (Moon et al., 2008) as 

Butyrivibrio proteoclasticus, the bacteria which converts C18:1 trans 11 to C18:0. The latter reason 

probably could be the option as further evaluation of the concentrations of C18:1 trans 11 revealed that 

levels were higher in fermentation vessels supplemented with anethole and 4-allylanisole. However, due 

to the high concentration of oleic acid (C18:1 n-9) which was probably converted to C18:0, 

corresponding reduction in C18:0 as an evidence of reduced biohydrogenation of C18:3 n-3 and C18:2 n-
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6 was not observed in anethole and 4-allylanisole. Jenkins et al. (2006) observed that about 70% of C18:1 

n-9 in rumen culture was converted to C18:0 and only 30% was transformed to ketostearic acid and 

hydroxystearic acid. Evaluation of microbial species composition, which this study unfortunately did not 

perform, would have been able to conclusively establish whether the increased concentration of PUFA 

and biohydrogenation intermediates such as C18:1 trans 11 concomitantly reduce the activity of 

Butyrivibrio proteoclasticus (the key biohydrogenator) or any other closely associated bacteria capable of 

causing biohydrogenation. However, substantial suppression of VFA was concomitantly associated with 

the increased concentration of PUFA.  The fact that EOCs are extracts of plants which are part of animal 

diets (Cowan, 1999), and their consideration as generally recognized as safe food additives (GRAS, 

Calsamiglia et al., 2007), offers the use of EOCs to reduce ruminal PUFA disappearance advantage over 

other non-commercialized method of protecting PUFA from biohydrogenation such as the formaldehyde 

method, if their use is balanced against inhibition of VFA. 

The potential of ten whole essential oils (at 300 mg/L) on the biohydrogenation of C18:2 n-6 and n-3 

PUFA was further evaluated through in vitro batch culture system. The aim was to establish whether the 

whole essential oils from where some of the major compounds showing potential to reduce the 

biohydrogenation of PUFA in Chapter 3 are equally effective.  The ten whole oils (anise, cassia, 

citronella, clove, cornmint, eucalyptus, juniper berry, lavender , mandarin and rosemary) used in this 

study were the parent oils whose main compounds were the best ten in Chapter 3.  There was rapid 

biohydrogenation of C18:3 n-3 from ground linseed which exceeded 80 g/100 g at 24 h. This observation 

agrees with previous studies where the biohydrogenation of C18:3 n-3 range from 72-95% (Wachira et 

al., 2000; Scollan et al., 2001; Wang et al., 2002; Sinclair et al., 2005). Similarly, the biohydrogenation of 

C20:5 n-3 which exceeded 80 g/100 g was in agreement with previous reports from in vivo studies where 

the biohydrogenation of C20:5 n-3 and C22:6 n-3  in fish oil range from 72 to 93 g/100 g TFA (Wachira 

et al., 2000; Scollan et al., 2001; Chikunya et al., 2004), and contrast in vitro reports where the 

biohydrogenation of C20:5 n-3 and C22:6 n-3 was less than 50 g/100 g (Ashes et al., 1992; Sinclair et al., 

2005). However, supplementing cultures with EOs substantially reduced biohydrogenation and 

maintained higher the concentration of C18:2 n-6 and n-3 PUFA, but with corresponding significant (over 
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10% average) suppression of VFA concentration (Chapter 4). The potential of whole EOs used in this 

study to reduce the biohydrogenation of n-3 PUFA at 24 h was as follows: ANO and CSO > MDO and 

CMO > CTO and RMO > JPO, LVO, CLVO and ETO. Similar to the results observed with the EOCs 

(Chapter 3), the whole essential oils whose main components possess phenolic moieties in their chemical 

structures were the most effective oils in this study. The fermentation vessels supplemented with anise 

(high in anethole) and cassia (high in cinnamaldehyde) oils elicited the most effective protection of C18:2 

n-6 and n-3 PUFA from biohydrogenation. Supplementation of anise and cassia oils tripled the 

concentration of C18:2 n-6 and C18:3 n-3 relative to the control. The concentration values at 24 h were 

5.4, 6.0 and 2.2 (C18:2 n-6) and for C18:3 n-3 were 8.1, 9.4 and 2.8 g/100 g TFA for anise oil, cassia oil 

and the control, respectively. The biohydrogenation data indicated that about 58.2% and 54.3% protection 

of alpha linolenic acid (C18:3 n-3) from ruminal biohydrogenation was obtained with the addition of 

anise oil and cassia oil, respectively. This probably implies that anise and cassia oils had higher capacity 

to either reduce isomerization of C18:3 n-3 and C18:2 n-6 compared to the rest of the treatments or that 

they were more active against Clostridium proteoclasticum (Kemp et al., 1975; Maia et al., 2007), 

renamed (Moon et al., 2008) as Butyrivibrio proteoclasticus, the bacteria which converts C18:1 trans 11 

to C18:0. The concentration of C18:0 (the end-product of the biohydrogenation of C18:1 n-9, C18:3 n-3 

and C18:2 n-6) was considerably decreased in cultures supplemented with cassia oil. This observation 

learns support to the possibility of these phenolic rich EO to reduce the activity of Butyrivibrio 

proteoclasticus, the key bacteria which converts C18:1 trans 11 to C18:0. Comparison of the effects of 

EOCs (Chapter 3) and whole essential oils (Chapter 4) indicates that the whole essential oils are more 

effective than the main active compounds in terms of inhibiting the biohydrogenation of PUFA. This 

suggests that although the major constituent components of EOs reflect the biological properties of the 

whole oils, minor components can contribute in modulating their activities such as hydrophobicity, cell 

penetration and fixation on cell membranes (Bakkali et al., 2008). This leads to the suggestion that the 

minor components of essential oils could be critical to the antimicrobial activity of the oil by working 

synergistically with the major components (Burt, 2004). Although substantial suppression of VFA was 

concomitantly associated with the increased concentration of PUFA, whole EOs are probably more 

effective than the individual EOCs, if their dose is optimized. These results show that EOs have higher 
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potential to reduce PUFA biohydrogenation than other PUFA protection technologies such as the 

formaldehyde method described in the reports of  Sinclair et al. (2005), where pre-treatment of whole 

linseed with  NaOH and formic acid prior to treatment with formaldehyde obtained 44.3% and 30.7% 

protection for C18:3 n-3, respectively.  As shown above, the average use of whole anise and cassia oils 

are 32.0% and 18.8% better than the use of EOCs (Chapter 3) and the method of Sinclair et al. (2005), 

respectively. This is not weighting the economic and potential health benefits of the whole oils relative to 

the formaldehyde method of Sinclair et al. (2005). 

 

Based on the substantial inhibition of total VFA results from using 300 mg/L of EOCs (first experiment, 

chapter 3) and of the whole oils (second experiment, chapter 4), a third in vitro study was conducted in 

which graded doses (0, 100, 200 and 300 mg/L) of two most effective EOCs and 2 most effective whole 

essential oils were evaluated. The aim was to establish a dose at which satisfactory inhibition of ruminal 

PUFA biohydrogenation can be obtained but without significant reduction of VFA concentration. 

Treatments were 4-Allyanisole (ALA 0, 100, 200 and 300 mg/L), anethole (ANE 0, 100, 200 and 300 

mg/L), anise oil (ANO 0, 100, 200 and 300 mg/L) and cassia oil (CSO 0, 100, 200 and 300 mg/L). 

Increasing the dose of both EOs/EOCs substantially increased proportionally the concentration of PUFA 

(C18:3 n-3, C18:2 n-6, C20:5 n-3 and C22:6 n-3) and concomitant accumulation of biohydrogenation 

intermediates such as C18:1 trans 11 and 18:2 cis-9 trans 11 CLA (Chapter 5).  The substances also had a 

dose related response on the concentration of total VFA. The concentrations of PUFA in all substances 

were significant but marginal at 100 mg/L; doubled at 200 mg/L and; levels were tripled at 300 mg/L. As 

all the essential oils and the EOCs used in this study had similar chemical structure (i.e. rich in phenolic 

moieties), general results did not observe any marked difference in response among them. However, there 

was a significant interaction at each level of supplementation with anise oil indicating higher potential 

than other three substances to protect PUFA from biohydrogenation. Except in anise oil (at 100 mg/L), 4-

allylanisole (at 300 mg/L) and cassia oil (at 200 mg/L),  the high accumulation of C18:1 trans 11 and 

C18:2 cis-9 trans 11 CLA was not associated with reduced concentration of C18:0, suggesting that the 

emergence of C18:0 may not be emanating from the biohydrogenation of C18:3 n-3 and C18:2 n-6 alone 

but from oleic acid (C18:1 n-9) as discussed previously .  At 200 mg/L, administration of 4-allylanisole, 
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anethole and anise oil seems to give best balance between PUFA protection and minimal disruption to 

VFA concentration in vitro, but cassia requires a dose more than 100 mg/L but less than 200 mg/L to 

attain the same balance. At this dose (200 mg/L), the corresponding concentration of total VFA was 

unaffected in all substances except in cassia which caused 10% suppression of VFA level. However, 

cassia (at 200 mg/L) reduced NH3-N concentration and the molar proportion of acetate and increased the 

proportion of propionate.  The significant interaction on both PUFA and total VFA concentrations suggest 

that supplementation of anise oil had higher potential than other substances to protect PUFA from 

biohydrogenation and to maintain VFA concentration at optimum level. 

There is evidence from results of continuous culture studies and long term in vivo studies that the benefits 

associated with the use of essential oil as feed additive may decline due to either microbial adaption to 

EOs or shifts in microbial populations (Gladine et al., 2007). Therefore, a four weeks in vivo feeding trial 

was conducted to test the possibility of microbial adaptation to the use of anise oil. Anise oil was 

identified as the most effective from in vitro trials in terms of PUFA protection and maintenance of 

ruminal VFA concentration (Chapter 5). In this experiment, six Hartline  Texel cross lambs (mean 

weight 44.0 ±2.5kg) were used as rumen fluid donors. The rumen fluid donor lambs were offered water 

and hay ad libitum and supplemented with additional 400 g/sheep/day of concentrate plus 2.4 g/sheep/day 

of ANO (for the anise oil group). After four weeks of adaptation, lambs were slaughtered and ruminal 

fluid collected from each of the unadapted lambs (BDG) and adapted lambs (AOG) was used in vitro. The 

study was a 2 (batches of rumen fluid: BDG and AOG)   2 (doses of ANO: 0 and 200 mg/L) factorial 

design experiment. In this adaptation study, results indicated that rumen fluid from sheep adapted with 

anise oil for four weeks maintained higher concentrations of PUFA, trans vaccenic acid and lower 

concentration of stearic acid. These results are similar to the work reported in (Benchaar et al., 2006a). 

These authors observed that biohydrogenation was altered and the concentration of cis-9, trans-11 18:2 

CLA in milk fatty acids was increased when a mixture of essential oil compounds (Crina ruminants’ at 2 

g/cow/day) was fed to dairy cow (Benchaar et al., 2006a). The Crina ruminants’ mixture contains 

eugenol, thymol, limonene, guaiacol and vanillin (McIntosh et al., 2003; Castillejos et al., 2005). 

Furthermore, other studies observed that after 3 months of supplementing the diet of Barbarine lambs 
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with 400 ppm of Artemisia essential oil, the concentrations of C18:1 trans 11, C18:2 cis-9 trans 11, 

C18:2 n-6, C18:3 n-3 and total MUFA in the muscle were increased compared to the control( Vasta et al., 

2013). Although the fatty acid composition of the sheep meat was not examined in the present study to 

confirm the transfer of this changes (increased PUFA and reduced C18:0) to meat, results of four weeks 

adaptation study imply that anise oil is a potential feed additive to reduce the biohydrogenation of PUFA 

and potentially optimize the fatty acid composition of ruminant food products. This suggest that if anise 

oil (at 2.4 g/sheep/day, the tested dose) is fed to sheep at least one month before market weight, there is a 

potential to alter the biohydrogenation of PUFA by increasing the concentration of  PUFA and trans 

vaccenic acid with concomitant reduction in the concentration of stearic acid without affecting dry matter 

intake. There is also an indication that about 16% reduction in NH3-N excretion would be achieved along 

with the benefits derivable from optimized fatty acid composition. The main effect of CRINA products 

had also established a minimum of four weeks adaptation period to reduce ammonia excretion (McIntosh 

et al., 2003; Molero et al., 2004; Newbold et al., 2004; Castillejos et al., 2007). 

In conclusion, results of this PhD thesis suggest that, generally, dietary addition of essential oils and their 

compounds represent a potential effective technique to optimize the fatty acid composition of ruminant 

food products by reducing the extent of rumen biohydrogenation of PUFA. Whole essential oils are more 

effective than the individual constituent compounds. More precisely, whole essential oils that are rich in 

phenolic compounds were the most effective. 
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