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Report Narrative 

• Little is known about how very young infants represent or process familiar words at 

the onset of lexical acquisition. 

• A previous study has found that French-learning 5-month-olds could detect a vowel 

change in their own name, but not a consonant change (Bouchon et al., 2015), and 

that this ability depends on the acoustic distance between vowels. 

• Because English is acoustically very different from French, here we test British 

English-learning infants for the recognition of their name across vowel and 

consonant mispronunciations. 

• British English 5-month-olds fail to systematically detect mispronunciations, but 

show a reliance on intensity contrasts.  

• These results indicate that infants process and represent early words in a language-

specific way, and pay attention to different acoustic dimensions.  
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Abstract 

By the end of their first year of life, infants’ representations of familiar words contain 

phonetic detail; yet little is known about the nature of these representations at the very 

beginning of word learning. Bouchon et al. (2015) showed that French-learning 5-month-

olds could detect a vowel change in their own name and not a consonant change, but also 

that infants reacted to the acoustic distance between vowels. Here we tested British 

English-learning 5-month-olds in a similar study to examine whether the 

acoustic/phonological characteristics of the native language shape the nature of the 

acoustic/phonetic cues that infants pay attention to. In the first experiment, British English-

learning infants failed to recognise their own name compared to a mispronunciation of 

initial consonant (e.g., Molly vs Nolly) or vowel (e.g., April vs Ipril). Yet in the second 

experiment they did so when the contrasted name was phonetically dissimilar (e.g., Sophie 

vs Amber). Differences in phoneme category (stops vs continuants) between the correct 

consonant versus the incorrect one significantly predicted infants’ own name recognition in 

the first experiment. Altogether, these data suggest that infants might enter into a phonetic 

mode of processing through different paths depending on the acoustic characteristics of 

their native language.  
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Infants’ First Words are not Phonetically Specified: 

Own Name Recognition in British English-learning 5-Month-Olds  

Around their first birthday, infants’ representations of familiar words contain specific 

phonetic and phonological information (e.g., Hallé & de Boysson-Bardies, 1996; Mani & 

Plunkett, 2010; Poltrock & Nazzi, 2015; Swingley, 2005; Vihman, Nakai, DePaolis & Hallé, 

2004; Yoshida, Fennell, Swingley & Werker, 2009). This ability to process fine-grained detail 

in speech scaffolds the building of their expanding lexicon, which will grow rapidly over the 

second year of life (e.g., Nazzi & Bertoncini, 2003). To achieve such level of phonetic and 

phonological knowledge by the end of their first year, infants not only rely on their learning 

of native consonant categories by the age of 10-12 months (e.g., Werker & Tees, 1984) and 

vowel categories by the age of 6 months (e.g., Kuhl, 1991), but also on their acquisition of 

perceptual constancy for speech sounds, that is, the ability to identify the same phoneme 

across different surrounding contexts (e.g., Hochmann & Papeo, 2014; Houston & Jusczyk, 

2000). Prior to that stage, the relative weight of acoustic versus phonetic detail
1
 in early 

speech sound representations is not fully understood (Benavides-Varela, Hochmann, 

Macagno, Nespor & Mehler, 2012; Eimas, 1975; Bertoncini, Bijeljac-Babic, Jusczyk, Kennedy 

& Mehler, 1988; Jusczyk, Pisoni & Mullenix, 1992; Jusczyk, Pisoni, Reed, Fernald & Meyers, 

1983). 

The large body of literature assessing young infants’ ability to discriminate speech 

sounds (for a review, see Kuhl et al., 2008) suggests that the gradual construction of fine-

grained phonetic representations towards the end of the first year might rely on their initial 

                                                
1
 Acoustic detail refers to durational, spectral or energy information characterising speech sounds; phonetic 

detail refers to an abstract representation of these sounds based on a combination of acoustic, articulatory 

and perceptual properties.  
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sensitivity to acoustic information (e.g., Narayan, Werker & Beddor, 2009). For example, 

spectral information such as pitch, which is central to identifying vowel quality (and tonal 

information), can be used by newborns or older infants to discriminate speech sequences 

(Bull, Eilers & Oller, 1985; Nazzi, Floccia & Bertoncini, 1998); it is also largely emphasized in 

infant-directed speech through the use of exaggerated pitch contour and vowel 

hyperarticulation, which turn out to be very effective cues for vowel discrimination at 6 

months (Burnham, Kitamura & Vollmer-Conna, 2002; Kuhl et al., 1997; but see Song, 

Demuth & Morgan, 2010, for evidence at a later age).  

Temporal information, which is critical for the characterisation of consonant 

contrasts such as voicing or place, is also found to be perceptually salient in infancy, with 5-

to-11-month-old infants discriminating fine timing cues such as vowel duration (Eilers, Bull, 

Oller & Lewis, 1983) and voice onset time (VOT). Infant-directed speech usually exaggerates 

VOT (Englund, 2005), probably supporting infants’ discrimination of VOT differences across 

phoneme categories (Eimas, Siqueland, Jusczyk & Vigorito, 1971) and even within (Aslin, 

Pisoni, Hennessy & Perey, 1981).  

Finally, energy or amplitude, which is one cue to distinguish vowels from consonants, 

stops from continuants (e.g., Stevens & Blumstein, 1981) and stress patterns (Jusczyk, Cutler 

& Redanz, 1993), can be used by 5-to-11-month-olds to discriminate multisyllabic sequences 

(e.g., Bull et al., 1985), and has been found to modulate infants’ abilities to extract and 

discriminate speech sounds. For example, Polka, Colantonio and Sundara (2001) attributed 

the surprising non-discrimination of the English /d/-/ð/ contrast at 10-12 months to the low 

energy of these phonemes.  
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In sum, attention to acoustic information might support the learning of language-

specific phonetic categories. Given that the earliest reports of infants’ learning of words in 

their native language are around 6 months of age (e.g., Bergelson & Swingley, 2012; Tincoff 

& Jusczyk, 1999, 2012), long before phonetic categories are fully established, it is an open 

question as to which degree of phonetic specificity is found in these first words.  

Besides evidence of early word comprehension at 6 months, Mandel, Jusczyk and 

Pisoni (1995) also showed auditory name recognition by 5 months. They presented 5-

month-olds in a head turn procedure with their own name (e.g., Joshua), a stress matched 

name (Agatha), and two stress-mismatch names (Maria, Eliza). Infants preferred their name 

over any other substitute, especially over the stress matched foil, suggesting that their own 

name representation entails more detail than a broad prosodic pattern.  

If 5-month-olds have encoded more than a global prosodic contour of one of their 

earliest words, their own name, what kind of information do they retain in this 

representation? Bouchon, Floccia, Fux, Adda-Decker and Nazzi (2015) showed that French-

learning 5-month-old infants recognise their own name when the initial consonant (e.g., 

Zictor for Victor) is changed, but not when the initial vowel is changed (e.g., Elix for Alix) , 

suggesting some level of phonetic specificity at that early age, and reinforcing the idea of 

higher perceptual saliency of vowels in early infancy (Benavides-Varela et al., 2012; 

Bertoncini et al., 1988). However, the authors also reported a significant correlation 

between infants’ behaviour and some acoustic features related to vowels: infants tested on 

a vowel change in their name were more likely to prefer their correctly produced name (e.g., 

Alix) over a mispronunciation (e.g., Elix) if the acoustic distance between the two vowels 

was large (here, between [a] and [e]), irrespective of their phonetic distance (which was 
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kept constant, using only 1-feature changes). The acoustic distance between vowels was 

estimated by comparing MFCC coefficients. This suggests that 5-month-olds would not 

necessarily represent phonetic information like adults in terms of features (e.g., Lahiri & 

Reetz, 2010) or prototypes (e.g., Iverson et al., 2003; Kuhl, 1991), but could rather use 

acoustic-based metrics (see Curtin, Fennell & Escudero, 2009, for such a proposal at 15 

months).   

In the present study, we embarked on an extension of Bouchon et al.’s study (2015) 

to British English, for a number of reasons. First, English and French are contrasted on a 

number of acoustic and phonological parameters that could impact differently task 

complexity when infants are presented with minimally different stimuli (Pater, Stager & 

Werker, 2004). Second, Bouchon et al. (2015) were searching for an early asymmetry in the 

processing of vowels and consonants, based on the proposal by Nespor, Peña and Mehler 

(2003) that these two phonological categories serve different functions in language 

processing (with consonants providing lexical information and vowels syntactic and prosodic 

information). While such an asymmetry was found in French-learning infants (e.g., Havy & 

Nazzi, 2009; Nazzi, 2005), recent findings on young British English and Danish learners 

suggest that its development follows a language-specific path (e.g., Floccia, Nazzi, Delle 

Luche, Poltrock & Goslin, 2014; Højen & Nazzi, 2016; Mani & Plunkett, 2007, 2008). 

Therefore, it was necessary to examine the behaviour of English-learning infants to provide 

a cross-linguistic evaluation of the findings. Finally, Bouchon et al.’s unexpected finding that 

own name recognition was somehow reliant on the acoustic distance between vowels called 

for further investigation into the weight of acoustic versus phonetic information at the 

onset of lexical acquisition. 
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English provides an interesting comparison with French first because of lexical stress, 

which can fall in variable syllable positions (despite being predominantly trochaic) within 

words and is linked to vowel reduction in unstressed syllables. Acoustic correlates of stress 

bear on energy, duration and spectral characteristics in a continuous and complex way (Fear, 

Cutler & Butterfield, 1995). In contrast, there is no contrastive lexical stress in French (Dell, 

1984; Hirst, DiCristo & Nishinuma, 2001), although the final syllables of content words are 

usually lengthened in phrase-final positions, hence a phrasal rather than lexical assignment 

(Christophe, Dupoux, Bertoncini & Mehler, 1994; Delattre, 1966). Moreover, there is far less 

vowel reduction in French than in British English (White, Mattys & Wiget, 2012; for French 

vs American English, see Delattre, 1969). At 9/10 months of age, English-learning infants 

have been shown to distinguish stress-initial from stress-final words (Jusczyk et al., 1993), 

whereas French-learning infants only succeed in easier discrimination tasks, that is when 

tested without phonetic variability and when given long enough familiarisations (Bijeljac-

Babic, Serres, Höhle & Nazzi, 2012; Skoruppa et al., 2009). 

In addition, although the two languages have a comparable ratio of consonants 

versus vowels (e.g., Floccia et al., 2014), the vowel systems in French and English are also 

highly dissimilar. Delattre (1964) summarised the differences between (American) English 

and French as follows: ‘Comparatively, English vowels are predominantly low, back, 

unrounded, with a strong tendency to center the short and unstressed [...]. Duration 

contributes to vowel distinctions. All English vowels are more or less diphthongized. 

Comparatively, French vowels are predominantly high, fronted, rounded, and extreme [...]. 

Duration is negligible in vowel distinction. There is no diphthongization.’ (p. 82). Although 

this comparison was formulated for American English, description of British English tends to 
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confirm these differences with French (Giegrich, 1992, p. 17: ‘many English vowels are at 

least slightly diphthongised in some or even most accents’). In addition, even though it is 

not quantified, the study by Dodane and Al-Tamimi (2007) shows a reduced vocalic triangle 

dispersion for British English compared to French. Regarding consonants, English also tends 

to have heavier syllables than French in terms of number of consonants, which results in 

greater variability in consonant clusters and in their duration (Ramus, Nespor & Mehler, 

1999; White et al., 2012). Altogether, this suggests that English-learning infants might face a 

more difficult task when learning their phonetic or phonemic categories in comparison to 

French-learning infants: not only is stress information more variable in English, but the 

acoustic distance between vowels of English appears to be less informative than in French, 

and consonant clusters are heavier. Based on these comparisons, one might expect English-

learning 5-month-olds to have more difficulties than French-learning ones in perceiving 

phonetic - and in particular vocalic - changes in their own name.  

On the other hand, it could be argued that the target phonemes and their 

mispronunciations could be more salient in the English stimuli than the French ones.  In the 

name recognition task, English-learning infants presented with a dissyllabic name will hear a 

mispronunciation on the initial, stressed, syllable. In contrast, French-learning infants, most 

of them presented with disyllabic names as in Bouchon et al. (2015), were presented with a 

mispronunciation on the initial, unaccented syllable (as French words are lengthened on 

their final syllable).  

The second rationale for this study related to a possible cross-linguistic difference in 

the emergence of the functional difference between vowels and consonants (Nespor et al., 

2003) during language acquisition. Although English and French adult listeners seem to 
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display an equal ‘consonant bias’ in auditory lexical processing (Delle Luche et al., 2014), this 

consonant bias does not seem to emerge simultaneously in the course of language 

acquisition. Whereas French-learning infants display a clear-cut consonant bias from the age 

of 11 months onwards (e.g., Poltrock & Nazzi, 2015), such a bias has not been found 

robustly until the age of 30 months in British English-learning infants (Nazzi, Floccia, Moquet 

& Butler, 2009). Before that age, British English-learning infants show an equal sensitivity to 

vowels and consonants (Floccia et al., 2014; Mani & Plunkett, 2007, 2008). Therefore, the 

developmental trajectory found in French-learning infants of a vowel bias at 5 months 

(Bouchon et al., 2015) followed by a consonant bias at 11 months (Poltrock & Nazzi, 2015) 

would not necessarily extend to British English.  

Taken together, these elements point to possible differences in the way British 

English- and French-learning 5-month-olds process vocalic and consonantal information in 

familiar words. Whereas French-learning infants showed sensitivity to vocalic contrasts – 

but not consonant contrasts - in a lexical context (Bouchon et al., 2015), British-English-

learning infants might show a less clear-cut asymmetry to these two phonological categories. 

In addition, because of the highly contrastive stress system of English combined with the 

greater variability of vowels and consonant cluster durations, they might pay more attention 

than French-learning infants to acoustic dimensions such as energy or duration rather than 

to phonetic cues. 

In Experiment 1, following Bouchon et al. (2015), we used a head-turn procedure to 

test the preference of 5-month-olds for their own name versus a mispronounced version. In 

one test group, infants’ names started with a consonant and the mispronunciation bore on 

this first consonant (e.g., Molly vs Nolly); in the second test group, infants’ names started 
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with a vowel and the mispronunciation bore on this vowel (e.g., April vs Ipril). To control 

that observed performance of the test infants is related to lexical representations rather 

than uncontrolled properties of the recordings, we also tested two control groups: 

Consonant Change and Vowel Change control groups were presented with the names from 

the test group in their correct and incorrect versions, after ensuring that control infants had 

had no exposure to that particular name (for example, a child named Robin would be 

presented with Molly vs Nolly, after enquiring that there was no one named ‘Molly’ in her 

environment). For those two groups, no preference for the correct version over the 

incorrect one was expected; if any difference emerged it would be due to discrimination at 

the pre-lexical level, and not at the lexical level as for the test groups. 

If English-learning infants behave like their French-learning peers, infants in the 

Vowel Change test group should prefer their own name to its mispronunciation; no 

preference for correct or incorrect names should be found in the Consonant Change test 

group and the two control groups. Additional analyses of the relation between infants’ 

behaviour in response to correct and incorrect pronunciations and the acoustic distance 

between these pronunciations will be undertaken. If such links were found, similar to those 

found in the French study, we could reasonably conclude that by 5 months, across two 

highly phonologically distinct languages, infants’ sensitivity to acoustic and phonetic 

information follows a similar developmental path.  

On the contrary, if English-learning infants face a more difficult task than their 

French peers because of the aforementioned differences between these two languages (see 

White et al., 2012), they may have more difficulties accessing fine grained phonetic 

information. In particular, because of the less contrasted acoustic and perceptual cues in the 
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English vowel system, infants may face a harder task detecting a vowel change in their name. 

That is, phonetic changes could be less salient compared to French, resulting in smaller 

spectral distance (MFCC) and a more difficult detection. Rather, we could expect a range of 

correlations between infants’ behaviour and the acoustic characteristics of the stimuli such 

as duration, intensity, pitch, and formants, reflecting their early sensitivity to the correlates 

of stress information. If such results were found, it would signal that the early speech 

perception system develops in a language-specific way in terms of phonetic processing 

during the first months of life. 

Experiment 1 

Two groups of British English-learning infants were tested in a head turn preference task for 

their own name (correct pronunciation or CP) versus a mispronunciation (MP) of their name 

on its first consonant (Consonant Change test group) or vowel (Vowel Change test group). In 

two additional groups, infants were presented with the CP and MP of another child 

(consonant change control group and vowel change control group). The procedure is 

identical to that used in Bouchon et al. (2015), except for a few minor changes that will be 

signalled below. 

Participants. All 120 participants were healthy British-English-learning monolingual 5-

month-old infants (see Table 1). When parents were invited to participate, no mention was 

made of the precise condition in which the child would be tested (we only mentioned word 

recognition, not name recognition). A long questionnaire was sent to the parents with 

irrelevant questions alongside the crucial question ‘what is(are) the name(s) you usually 

employ to address your child?’ Based on the parents’ response, we only assigned to the test 

condition infants who were almost exclusively called by their own name or by nicknames (as 
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‘Monkey’ and ‘Pops’). Only infants with a monosyllabic or a trochaic disyllabic name were 

included in the test group. Infants in the control conditions were chosen so that they would 

not know anyone in their environment with the name used in the experiment (this was 

checked on the day of testing, as in Bouchon et al., 2015). As much as possible, control 

children with names starting with a single consonant were assigned to the Consonant 

Change control group (true for 28 infants) and those with names starting with a vowel to the 

Vowel Change control group (true for 18 infants). The data of 29 additional infants were 

excluded due to fussiness (17), being inattentive (6), experimenter error (2), being an outlier 

(difference in looking times between CP and MP above or below 2 standard deviation of the 

group mean; 4).  

Insert Table 1 

Stimuli. Each of the 60 test infants heard repetitions of stimuli corresponding to their CP 

and MP names. Due to a few infants having the same names, we used 27 pairs in the 

Consonant Change condition and 22 pairs in the Vowel Change condition. The same stimuli 

were presented to the 60 yoked control infants. The MP of the names always consisted of a 

1-feature change (Table 2). In the Consonant Change condition, 10 infants were tested on a 

place-of-articulation change, 10 on a voicing change, and 10 on a manner-of-articulation 

change. In the Vowel Change condition, 15 infants were tested on a place change and 15 on 

a height change. 

A female native English speaker recorded 15 tokens each of CP and MP names, in 

isolation, and in a child friendly, affirmative tone. To achieve this, she produced a series of 

approximately 30 CPs in close succession, followed by 30 MPs. The 15 best tokens were 

selected in each list so that MPs were comparable to CPs in terms of intonation patterns and 

durations. For both CPs and MPs, two files including the 15 tokens were created, the second 
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file presenting the same tokens in reversed order. As the experiment spanned over a long 

period, three different speakers were used (adding this factor in the main ANOVA on looking 

times did not impact the results). Each CP-MP pair, however, was produced by the same 

speaker. All sound files lasted 24 s, and the tokens were normalized for amplitude with 

Praat (Boermsa & Weenink, 2010). 

Insert Table 2 

Procedure. After informed consent was obtained from the parent, the child sat on the 

parent’s lap in the experimental head-turn booth. The parent wore headphones playing 

loud music to mask the auditory stimuli. The experimenter sat outside but could observe the 

infant via a video camera (without sound capture). At the beginning of each trial, a green 

light flashed directly in front of the infant to get her attention When the experimenter 

judged that the infant was looking at the central light, she started the trial, causing the 

green light to stop and a red light to start flashing either to the left or the right side 

(randomised and counterbalanced) of the infant. When the infant turned towards the side 

where the light was flashing, a sound file was played via a speaker located just below the 

flashing light, until the end of the file, or until the child looked away for more than 2 s. Any 

trial during which the infant looked away within 1.5 s was aborted and the word list was 

repeated. If two consecutive trials were aborted, or if three trials were aborted during the 

experiment, the participant’s data was excluded for inattentiveness. The session consisted 

of 12 trials divided in 3 blocks; in each block, the two CP and the two MP lists were 

presented (Bouchon et al., 2015, used 8 trials instead of 12). Order of the different lists 

within each block was randomized. Half of the children in each group heard a CP in the very 

first trial, whereas the other half heard an MP. 

Acoustic analyses of the stimuli 
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To allow a comparison with the analyses presented in Bouchon et al. (2015), three 

acoustic dimensions were measured to characterise the contrasted phonemes of CPs and 

MPs: duration, intensity, and Mel Frequency Cepstral Coefficients as a measure of spectral 

distance (MFCCs; see Bouchon et al., 2015, for detailed explanations). This distance is based 

on spectral information regardless of intensity, and collapsed across durations by adjusting a 

Dynamic Time Warping. Departing from Bouchon et al., pitch and individual formant values 

were also measured on vowel segments. While pitch, formants, duration and intensity are 

indicators of acoustic saliency, MFCCs provide a perceptually relevant measure of phonemic 

distance (Davis & Mermelstein, 1980) that has been widely used in automatic speaker and 

speech processing (e.g., Patel & Rao, 2011).   

For each CP/MP pair, duration, intensity and, for vowels, pitch and formants were 

measured for the 15 tokens of the contrasted phonemes using PRAAT (for intensity, the 

minimum pitch was constrained by Praat at 1000 Hz, creating windows of analyses of 3.2 

ms). This was first used to calculate mean duration, intensity, pitch and formant values of 

the contrasted phonemes, in order to compare the relative salience and discriminability of 

the contrasted consonants and vowels. Second, we computed normalised duration, 

intensity, pitch and formant differences (Diff.duration: duration difference between the 

contrasted phonemes of CPs and MPs divided by their mean; Diff.intensity and Diff.pitch are 

defined similarly), in order to test their relation with individual performance. For formant 

analysis, the F1, F2 and F3 values of each token were measured at 50% of the vowel 

duration and converted in mel; for each CP/MP pair the median of each formant for the 15 

MP tokens minus the median for the 15 CP tokens was calculated. This will be referred to as 

Diff.medianF1, Diff.medianF2, and Diff.medianF3. 
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MFCCs were calculated in exactly the same way as in Bouchon et al. (2015) with the 

French stimuli. The subset of MFCCs employed in the classification to measure MFCC 

distances included 12 coefficients, c1 to c12, in order to best represent the envelope of the 

mel-spectrum. MFCC distances correspond to the Euclidian distance between two tokens 

calculated for the 12 coefficients (i.e., the square root of the summed squared differences 

between the two MFCC sets). The relation between individual performance and the 

normalised MFCC distance between CPs and MPs was tested using Diff.spectral, defined for 

each CP/MP pair as the ratio of the mean cross-category distance between the 15 CPs and 

the 15 MPs of a given pair and the mean internal variability within the 15 CPs and the 15 

MPs of that pair. 

Results 

Overall analysis. Mean listening times (LTs) to the CP and MP names were calculated for 

each infant
2
. Group averages are presented in Figure 1. A three-way ANOVA was conducted 

on LTs with the within-subject factor of pronunciation (CP vs MP) and the between-subject 

factors of group (Test vs Control) and condition (Consonant Change vs Vowel Change). 

Neither the effect of condition (F(1, 116) < 1), group (F(1, 116) = 1.21; p = .27), 

pronunciation (F(1, 116) < 1) nor the condition × pronunciation interaction (F(1, 116) < 1) 

reached significance. In addition, neither the pronunciation x group interaction (F(1, 116) < 

1), the group x condition interaction (F(1, 116) = 1.14, p = .27) nor the 3-way interaction 

between pronunciation x group x condition (F(1, 116) < 1) reached significance, establishing 

                                                
2 Analyses conducted with 8 trials instead of 12 trials to compare with Bouchon et al.’s study 

yielded similar results, both for behavioural responses and relations between these and the 

acoustic characteristics of the stimuli.  
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that infants were behaving in the same way in all 4 sub-groups. Finally, when feature (place, 

voicing or manner; all n = 10) was introduced in the ANOVA conducted on the two 

Consonant Change groups, no main effect of feature or interaction with other factors was 

found. Similarly, when the factor feature (place or height; all n = 15) was included in the two 

Vowel Change groups, again, no effect of feature and no interaction involving feature was 

found. Overall, these results do not show that British-English-learning 5-month-olds are 

sensitive to a consonant or a vowel mispronunciation in their own name.  

Insert Figure 1 

Comparison with the French data. We compared these data to those from Bouchon 

et al. (2015), using LT.diff as a dependent variable, which is the difference between CP and 

MP, with positive values indicating a preference for the correctly produced name. We ran a 

repeated measure ANOVA on LT.diff with group (Test vs Control), condition (Consonant 

Change vs Vowel Change) and language (French vs English). There was first a main effect of 

group (F(1, 232) = 4.02, p = .046, η²p = .02), due to a larger LT.diff for test infants than 

control infants (.73 vs -.01 for control infants), suggesting that overall, infants tended to 

prefer their correctly pronounced name over the mispronounced version, across all 

phoneme conditions and languages. However, the triple interaction between language, 

condition and group was significant (F(1, 232) = 5.11, p = .025, η²p = .02). In addition, the 

interaction between group and language was marginally significant (F(1, 232) = 3.15, p = .08, 

η²p = .01), due to a marginal difference between the test groups (mean LT.diff : French 1.18; 

English 0.28; F(1, 116) = 2.98, p = .09, η²p = .03), but no significant difference between the 

two control groups (French -.21; English .19; F(1, 116) < 1). The difference between the 

French and English vowel change test groups approached significance (mean LT.diff: French 

1.86, English 0.44, t(58) = 1.81, p = .075), and so did the difference between the French and 
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English vowel change control groups (mean LT.diff: French -1.06, English 0.50, t(58) = 1.92, p 

= .060). However, no difference was found between the French and English consonant 

change test groups (t(58) < 1) or control groups (t(58) = 1.15). Therefore, although infants 

tended to show preference for their own name over its mispronunciation when languages 

and phoneme conditions are pooled together, this effect was mainly driven by French-

learning infants presented with vowel changes.  

In what follows, we conducted a thorough investigation of the links between 

acoustic dimensions in the stimuli and infants’ listening behaviour, providing similar 

analyses as in Bouchon et al. (2015), with the addition of pitch and formant measures for 

vowels. 

Acoustic measures 

Acoustic measures were performed on the stimuli (see Stimuli section and Figure 2 

for details), which consisted of 27 different CP/MP pairs  in the Consonant Change condition 

and 22 CP/MP pairs in the Vowel Change condition. 

Duration, Intensity, Pitch and Formants. Regarding acoustic salience, the initial consonants 

lasted 81.5 ms (SD 46.3) and were 61.6 dB (SD 7.8) loud on average, while the initial vowels 

lasted 112.8 ms (SD 45.6) and were 78.7 dB (SD 2.1) loud. Consonants were significantly 

shorter (duration: F(1, 47) = 8.44, p = .006, η²p = .15) and softer (intensity: F(1, 47) = 172.7, p 

< .0001, η²p = .79) than vowels, hence establishing, as expected, that consonants were less 

acoustically salient than vowels.  

Regarding discriminability, within each pair of contrasted phoneme (e.g., the /m/ in 

Molly vs the /n/ in Nolly), consonant CPs were on average 16.4 ms shorter (95% CI = [-29.6, -

3.2]) and 0.10 dB louder (95% CI = [-2.8, 2.6]) than consonant MPs; vowel CPs were on 

average 3.6 ms longer (95% CI = [-3.9, 11.2]) and .09 dB softer (95% CI = [-.24, 0.41]) than 
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vowel MPs. With consonants and vowels collapsed, there was no effect of pronunciation on 

duration (F(1, 47) = 2.31, p = .14) or on intensity (F(1, 47) < 1). However, there was a 

pronunciation × condition interaction for duration (F(1, 47) = 5.70, p = .021, η²p = .11) but 

not for intensity (F(1, 47) < 1). This was due to consonant CPs being significantly shorter 

than consonant MPs (paired t-test t(26) = 2.38, p = .025).  

Finally, adding to Bouchon et al.’s analyses, we also compared mean pitch values in 

vowels and found no significant difference between CPs (mean 263.5 Hz; SD 41.5) and MPs 

(mean 261.8 Hz; SD 44.3; paired t-test t(21) < 1). Regarding formant values, vowels in CPs 

had a mean F1 of 853 Hz (mel scale; SD 132) and 771 Hz in MPs (SD 114; t(21) = 2.17, p 

= .041). No difference was found for F2 (CP: 1398 Hz, SD 148; MP: 1362 Hz, SD 193) and F3 

(CP: 1839 Hz, SD 107; MP: 1859 Hz, SD 95). The difference on the first formant is not 

surprising given that F1 changes are often associated with height contrasts, which was 

manipulated in half our stimuli. To summarise these measures on vowels, CPs and MPs 

could not be reliably distinguished based on intensity, duration and pitch. Vowel CPs and 

MPs, however, could be distinguished using F1 – as far as numerical distance would 

necessarily translate into perceptual distance. For consonants, CPs and MPs could not be 

reliably distinguished based on intensity, but there was a significant 16.4 ms duration 

difference, the only perceptual cue that may have been exploited by infants.  

Regarding spectral measures, the acoustic/phonetic distance (Diff.spectral, based on 

MFCCs) was used to further assess discriminability (as mentioned above, MFCCs are not 

meaningful with respect to salience). On average, Diff.spectral was 1.18 (SE = .03) for 

consonant contrasts, which was not significantly different than the same index for vowels 

(1.25, SE = .05; t(47) = 1.32, p = .19). This establishes that consonant contrasts were not 

acoustically more distinct than vowel contrasts, once normalised for intensity and duration. 
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For comparison purposes with Bouchon et al. (2015), Table 3 provides the present 

values and those found in French. Interestingly, vowels in English were about 16 dB louder 

than consonants, whereas vowels in French were only 8 dB louder than consonants. In 

addition, although English phonemes were slightly longer than French ones, MFCC distances 

were smaller in English than in French, especially for consonant contrasts which might 

suggest that they are less distinct in English than French, at least in this sample.  

Insert Table 3 

Acoustic predictors of preference measures 

Similarly to Bouchon et al. (2015), we explored whether listening preferences (LT.Diff) 

were driven by acoustic distance between CPs and MPs such as measured by Diff.duration, 

Diff.intensity and Diff.spectral. We also evaluated the pitch and formant differences for the 

analysis of vowel stimuli (Diff.pitch, Diff.medianF1, Diff.medianF2 and Diff.medianF3).  

First, a multiple linear regression was run on all 60 test infants (30 Consonant Change, 

30 Vowel Change) with LT.diff as the dependent variable and the 3 acoustic distances as 

predictors (for which there was no colinearity, all VIFs < 1.14). The model significantly 

explained 16.5 % of the variance in LT.diff (R²adjusted = .12; F(3, 56) = 3.68, p = .017; SEE = 

2.79). This was due mainly to Diff.intensity which significantly predicted the difference in LTs 

between CPs and MPs, but inversely (βintensity = -.34, p = .011; see below). The two other 

predictors, Diff.spectral and Diff.duration, did not contribute significantly to the model. The 

same regression analysis conducted on the 60 control infants yielded a non-significant 

model explaining 12.1 % of the variance (R²adjusted = .07; F(3, 56) = 2.57, p = .063; SEE = 2.63).  

Second, since it is possible that infants process consonants and vowels differently, 

leading to different effects of acoustic distance within each category, we re-ran the same 

regression separately for Consonant and Vowel Changes. In the Consonant Change condition, 
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for the 30 test infants (all VIFs < 1.5), the 3-predictor model explained significantly 26.1 % of 

the variance in LT.diff (R²adjusted = .17; F(3, 29) = 3.05, p = .046; SEE = 2.64). In this model, 

Diff.intensity was the only significant predictor (βintensity = -.47, p = .028). For the 30 control 

infants (all VIFs < 1.5), the 3-predictor model did not explain a significant part of the 

variance in LT.diff (R² = .16, R²adjusted = .06; F(3, 29) = 1.59, p = .22; SEE = 1.73).  

In the Vowel Change condition, for the 30 test infants (all VIFs < 1.1), the 3-predictor 

model did not explain any significant part of the variance in LT.diff (R² = .11, R²adjusted = .01; 

F(3, 29) = 1.1, SEE = 3.06). The addition of Diff.pitch as a predictor in this model did not 

significantly increase the portion of explained variance (R² = .12, R²adjusted = -.02; F(4, 25) < 1; 

SEE = 3.11). A similar result was found for the 30 vowel control infants, without Diff.Pitch (R² 

= .15, R²adjusted = .06; F(3, 29) = 1.58, SEE = 3.34), or with Diff.Pitch (R² = .17, R²adjusted = .04; 

F(4, 29) = 1.32, SEE = 3.37). Finally, when the three formant measures were included, the 

model was still not significant for both test (R
2
 = .16, F(7, 29) < 1) and control infants (R

2
 = 

.18, F(7, 29) < 1).  

A first interpretation of the effect of Diff.intensity is that infants pay relatively more 

attention to their correct name than its mispronunciation when the initial MP phoneme has 

more energy than its CP counterpart. The reason why this effect is found in consonants but 

not in vowels is possibly due to the distribution of Diff.intensity between the two conditions: 

although the mean Diff.intensity values are very similar in consonants (+0.10) and in vowels 

(-0.09), the values for consonants are much more widespread than for vowels (SE for 

consonants: 1.32; for vowels: 0.16). This is of course explained by the fact that a one-feature 

change in consonants can result in qualitatively different phonemes (e.g., Leo/Zeo or 

Rory/Jory) whereas a one-feature change in vowels still result in another, similar shaped, 

vowel. Infants are presented with larger intensity differences between CPs and MPs in 
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consonants than vowels, which confirms intensity as an explanatory factor for their 

discrimination score (this is illustrated in Figure 2, which uses the same scales for the 

consonant and vowel groups). This is particularly true for manner changes (filled round 

markers on top, Figure 2) which are widely spread along the intensity difference axis. This 

distribution is inherent to the type of change: voicing and place do not affect intensity of the 

consonants as much, but changing manner pairs up quiet and loud consonants.  

Insert Figure 2 

Another way to explain the effect of Diff.intensity is that infants would be differently 

sensitive to initial consonants with a short amplitude-rise-time such as stops, over 

continuants that have a long amplitude-rise-time. As reported by Nittrouer and Studdert-

Kennedy (1986, p. 214, adapted from Mack & Blumstein, 1983), stops and continuants can 

be distinguished by their ratio of the “rms energy of a brief acoustic segment immediately 

following release offset to the rms energy of a brief acoustic segment at release onset”. It 

must be noted however that children from the age of 4 years, just like adults, do not seem 

to rely on this acoustic property to distinguish for example stops from glides, but rather use 

formant change information (Nittrouer, Lowenstein & Tarr, 2013). 

We included the factor of CP consonant type (continuants vs stops; classification 

following Skandera & Burleigh, 2011: plosives and affricates are stops and all other 

consonants are continuants) in an ANOVA on LTs with pronunciation (CP vs MP) and group 

(test vs control). Out of the 30 Consonant Change test infants, 17 had a name starting with a 

continuant and 13 with a stop. The only significant effect was the triple interaction between 

consonant type, pronunciation and group (F(1, 56) = 6.32, p = .015, ƞ
2 

=.10). This was due to 

an interaction between pronunciation and group for those infants hearing their name 
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starting with a stop (F(1, 24) = 5.35, p = .030, ƞ
2 

=.18). Test infants in this group tended to 

listen longer to their own name than its mispronunciation (10.0 s vs 8.8 s, t(12) = 1.75, p 

= .11) while the reverse tendency was found for control infants (7.5 s vs 8.2 s, t(12) = -1.52, p 

= .16). No interaction between pronunciation and group was found for those infants hearing 

names starting with a continuant (F(1, 32) = 1.70, p = .20, ƞ
2 

=.05). An identical analysis 

taking MP consonant type as a factor did not lead to any significant effect (out of the 30 

consonant change test infants, 11 heard an MP starting with a stop and 19 with a 

continuant). A first interpretation of these results is that infants whose name starts with a 

stop are better at identifying a consonant-initial change; a second, more plausible, 

interpretation is that infants are better at detecting a stop-to-stop change than a 

continuant-to-continuant change. Indeed the distribution of changes in our stimuli is such 

that nearly all stop-initial names changed into a stop-initial mispronunciation (N= 10 out of 

13), while nearly all continuant-initial names changed into continuant-initial 

mispronunciations (N= 16 out of 17).  

To relate these findings back to the impact of Diff.intensity in the regression analyses, 

we have ranked the consonant CP/MP pairs according to the value of Diff.intensity in Table 4, 

including information about feature change and phoneme category of the CP and the MP 

(stop or continuant; Stevens & Blumstein, 1981). First, as was seen in Figure 2, manner 

changes are mainly found on both sides of the Diff.intensity continuum. In addition, it is 

noteworthy that names starting with a stop are more likely to be grouped together (top 

lines of Table 4), while continuant-initial names are mainly located at the bottom half the 

table. This suggests that the correlation between Diff.intensity and infants’ discrimination 

scores might be spurious and reflect instead the fact that infants tend to better discriminate 

stop-to-stop changes than continuant-to-continuant changes. Indeed, pairs of CP/MP 
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leading to the strongest correct name preference are not only showing larger intensity 

differences, but also have stops as initial phonemes.  

Insert Table 4 

Discussion 

In this first experiment we tested British English-learning 5-month-olds for their 

preference of their own name versus a mispronunciation involving its initial phoneme, 

consonant or vowel. Contrary to Bouchon et al. (2015) who conducted a very similar study in 

French, and found sensitivity to mispronunciation (marked by an own name preference) in 

the vowel change condition but not in the consonant change condition, we failed to find 

overall evidence of name preference in either condition. Yet, in terms of task difficulty,  

English-learning infants were presented with a potentially easier task as compared to the 

French-learning infants, thanks to stress location: for all infants the mispronunciation bore 

on the initial, stressed, syllable (54 out of 60 test infants had a trochaic disyllabic name and 

6 had a monosyllabic name). In contrast, for the 56 French-learning infants with a disyllabic 

name (out of 60), the mispronunciation bore on the initial, unaccented, syllable (as French 

words are lengthened on their final syllable). Therefore, the target phonemes and their 

mispronunciations were presumably more salient for the English stimuli than for the French 

ones, yet English-learning infants failed to prefer their name consistently.  

However, English test infants’ behaviour in the consonant change condition 

appeared to be predicted by the type of consonant found at the onset of their name: those 

presented with a CP involving a stop consonant were more likely to prefer their correctly 

produced name over its mispronunciation, as opposed to those whose name started with a 

continuant. Importantly, the type of phoneme found in the mispronunciation, stop or 

continuant, did not predict infants’ discrimination pattern, suggesting that infants’ 
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representation of their own name was more consistent, or more readily accessed, with a 

stop in initial position. However, a caveat to this interpretation is that most consonant 

changes retained category: stops were changed into stops and continuants into continuants 

(even in most cases when manipulating manner). Therefore our results could be seen as 

infants being generally more sensitive to stop-to-stop changes rather than continuant-to-

continuant changes. 

It must be noted that these findings argue against the claim that the predominance 

of complex consonant clusters in English as compared to French would have, comparatively, 

enhanced British English learners’ sensitivity to vowels. Indeed British English-learning 

infants showed, if anything, greater sensitivity to consonant changes than to vowel changes, 

which is the opposite of what was found for French (Bouchon et al., 2015). 

Before further discussing these results, and due to the lack of an overall name 

recognition effect when tested against a one-feature mispronunciation, we decided to 

validate our general protocol by testing a new group of 5-month-olds on the recognition of 

their own name versus an entirely different name (for example Victor would hear an 

alternation of ‘Victor’ and ‘Jacob’; see Mandel et al., 1995). We were also aware of the 

findings – as yet unexplained - that British English learners’ vocabulary scores are 

significantly smaller than those of their American English counterparts, when measured with 

parental reports throughout their first three years (Fenson et al., 1994; Hamilton, Plunkett & 

Schafer, 2000). Therefore, the possibility remained that 5 months was too early to observe 

own name recognition in British English infants, contrary to what had been reported by 

Mandel et al. (1995) with American English-learning infants.  

Experiment 2 
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Experiment 2 tested whether British English-learning infants would display a preference for 

their own name over a phonetically different one (Mandel et al., 1995). Foils were chosen so 

that they would share the number of syllables and stress pattern of the target names, so as 

to ensure that infants would not discriminate on supra-segmental features but on 

segmental information. 

Participants. Eighteen full term 5-month-old infants (8 females, 10 males) aged 5 months 

and 8 days on average (range [4;27 – 6;6]) were tested. Eleven additional participants were 

excluded: fussiness (8), outlier (1) and technical issues and experimenter error (2).  

Stimuli. The same questionnaire as in Exp1 was sent to parents before their visit and only 

those infants who were addressed consistently by their own name or a nickname were 

included in the study. As in Exp1, the name had to be either monosyllabic or a trochaic 

disyllabic one. Again, fifteen tokens of the names and their foils were produced in a child 

directed friendly voice, by the same speaker. For each name, the paired foil had a different 

initial phoneme, no phonological overlap overall, the same number of syllables and the 

same stress pattern (apart from the pair Thomas/Nate, due to experimental error). Half the 

infants heard their own name in the first trial, and the other half heard the foil in the first 

trial.  

Insert Table 5 

Procedure. Identical to that of Exp1.  

Results and Discussion  

Infants listened longer to their own name (M = 10.66 s, SE = .69) than the foil (M = 9.36 s, SE 

= .69; t(18) = 2.50, p = .023). Out of the 18 infants, 13 showed this pattern of results. Given 
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the findings in Exp1 that infants whose name started with a stop were more likely to prefer 

its correct version to its incorrect version than infants whose name started with a 

continuant consonant, the same analysis was conducted in Exp2. Out of the 15 names 

starting with a consonant, 7 started with a stop and 8 with a continuant. An ANOVA with 

Name (name vs foil) and Initial phoneme (stop vs continuant) did not provide any significant 

difference, with both types of consonants resulting in a similar name preference (interaction 

Name x Initial phoneme: F(1, 13) < 1). Contrary to Exp1, most changes here involved a 

category change (stop-to-continuant: N = 6; continuant-to-stop: N = 4; stop-to-stop: N = 2; 

continuant-to-continuant: N = 0; stop-or-continuant-to-vowel or vice-versa: N = 6). The 

absence of post-hoc initial phoneme category effect (stop vs continuant) in this second 

experiment is either due to the small number of observations per cell, or to the quasi-

absence of stop-stop or continuant-continuant changes. It could be also due to the task 

infants face in this experiment, since being presented with their name versus a very 

different speech sequence might not require infants to pay attention to fine-grained details 

as in Exp1. 

Experiment 2 establishes that when presented with their own name versus a 

phonetically different unknown name, British English-learning 5-month-olds prefer their 

own name, as found by Mandel et al. (1995) for American English-learning infants of the 

same age. This suggests that the failure to find a name preference in Exp1 was not caused 

by methodological issues, or by British English-learning infants being late in learning their 

name as compared to American English- and French-learning infants. Rather, it suggests that 

early word representation in British English-learning infants does not include phonetic 

details at 5 months of age. 
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General Discussion 

To examine speech perception development between two languages where infants’ lexical 

processing seems to regularly differ (e.g., perception of vowels and consonants: Mani & 

Plunkett, 2008; Nazzi, 2005; perception of stress: Höhle, Bijeljac-Babic, Herold, Weissenborn 

& Nazzi, 2009;  Jusczyk et al., 1993; Skoruppa et al., 2009), we tested British English-learning 

infants’ recognition of their own name against an initial phoneme mispronunciation that 

could be either a consonant or a vowel, in a direct replication of a study examining French-

learning infants by Bouchon et al. (2015). The contribution of phonetic versus acoustic 

information to behavioural patterns was also evaluated. To summarise, French-learning 5-

month-olds were found to discriminate their name from a mispronunciation on the first 

vowel, but not on the first consonant. In addition, their listening behaviour in the vowel 

condition was significantly predicted by the MFCC distance between the paired vowels: that 

is, the larger the acoustic distance between the initial vowel in the infant’s name (e.g., /a/ in 

Alix) and its mispronunciation (e.g., /e/ in Elix), the more likely they were to prefer their own 

name. In contrast, name preference did not occur for a consonant change, although 

consonants were found to be further apart from one another than vowels in terms of MFCC 

distance. The developmental scenario that was proposed in light of these findings was as 

follows: infants start lexical processing with a vowel bias, possibly because vowels are more 

salient than consonants (see also Benavides-Varela et al., 2012; Bertoncini et al., 1988), and 

to initially distinguish between vowels, they exploit acoustic distance as extracted for 

example through MFCCs. With further language exposure and maturation, their attention 

turns towards consonants, which, although less salient in the signal, are more distinct from 

one another in terms of acoustic/phonetic distance. This switch from a vowel to a consonant 
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bias could be achieved either through lexical development (Bergelson & Swingley, 2012; 

Tincoff & Jusczyk, 1999, 2012), the construction of phonemic (Werker & Curtin, 2005) and 

phonetic (Feldman, Griffiths, Goldwater & Morgan, 2013) categories, and/or thanks to their 

refining temporal resolution abilities (Werner, 1996).  

The current results complicate this picture slightly. British English-learning 5-month-

olds behave very differently from French-learning 5-month-olds: overall, they do not 

discriminate an initial phoneme change in their name, neither vowel nor consonant. 

Moreover, whereas French-learning infants were reliably found to use acoustic/phonetic 

distance in vowels to discriminate changes, here weaker evidence suggests that English-

learning infants exploit instead energy information in consonants. This was observed with a 

higher propensity to discriminate CP from MP when their name starts with a short 

amplitude-rise-time consonant (stops) rather than a longer amplitude-rise-time consonant 

(continuant). Given the distribution of category changes found in our stimuli, another, more 

plausible, interpretation is that infants were actually more sensitive to stop-to-stop changes 

than continuant-to-continuant changes. This suggests, first, that the information that infants 

use at 5 months to process and represent words is not yet in a phonetic format, as they 

seem to be more sensitive to acoustic cues or broadly defined phonetic features (stop vs 

continuant, that are distinguished in terms of their rms energy profiles) than to detailed 

phonetic features (such as place, aperture, etc.). Second, the English and French data 

together also suggest that 5-month-olds use different sets of acoustic cues depending on 

the language they are learning. It must be noted that we reanalysed the French data to 

examine whether the 30 consonant change test infants would also be differently sensitive to 

consonant changes when their name starts with a stop (N = 9) rather than a continuant (N = 

21). Contrary to the English findings, the interaction between consonant type (stop vs 
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continuant) and group (test vs control) was not significant (F(1, 56) < 1), indicating that 

French-learning infants were not particularly sensitive to changes when their name start 

with  stop consonant. Similarly, they were equally likely to (not) discriminate a stop-to-stop 

change (N=7) or a continuant-to-continuant change (N=17; F(1, 22) < 1). As pointed out 

before, disyllabic French names have final lengthening, as opposed to having a trochaic 

pattern like most English disyllabic words: a word-initial short amplitude-rise-time stop 

would therefore be more perceptually salient in English than French, perhaps explaining the 

effect found in English infants and not in French.  

As suggested by a Reviewer, our results could be partially accounted for by English 

and French differing on glottalisation in vowel-initial words. This is a frequent phenomenon 

in English (Dilley, Shattuck-Hufnagel & Ostendorf, 1996), but it occurs to a lesser extent in 

French (Fougeron, 2001; Malécot, 1975). We evaluated the occurrence of glottal stops in 

vowel-initial names, CP and MP, with the visualisation of spectrograms (5 randomly selected 

tokens for each type of vowel, adding up to 45 tokens in English and 40 in French): 10 

tokens in English contained a clearly glottalised initial vowel (22 %), and 9 other contained 

some glottalisation (20 %). In French, we measured fewer glottalised vowels (5, 13 %), with 

some glottalisation in 14 tokens (35%). Therefore, names in both studies did not differ 

greatly in that respect, although the tendency was as expected from the literature, with 

clearer glottalisation in English than French. Beyond these two studies, it could be that 

exposure to more frequent glottalisation in English than French prevented the extraction of 

a fine-grained representation of the following vowels in English-learning infants. 

The remaining possibility that British English-learning infants might be slightly late in 

retrieving segmental information as compared to those learning French (or even other 

languages) finds some echo in the comparison between vocabulary learning curves as 
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measured with the adaptations of the MacArthur Communicative Development Inventories 

(Fenson et al., 1994) in 13 languages. Bleses et al. (2008) report that the two slowest curves 

of word comprehension between the ages of 8 and 15 months are for British English and 

Danish, the latter being a language in which the vowel system is particularly complex. The 

word comprehension curve in French (French CDI: Hilaire et al., 2001) is comparable to that 

observed in the majority of languages in that study. American English infants, however, 

perform better than their British counterparts, a finding which could either be related, 

according to Bleses et al. (2008), to the presence of rhoticity in American English which 

provides an additional cue to segmentation, or to the tendency for American speakers to 

produce secondary stress where British speakers produce unstressed syllables. Note that in 

our experiments, infants are brought up in a rhotic British English environment, although 

rhoticity did not impact phoneme manipulation. Whatever the explanation might be for 

British English infants to have been reported as knowing less words than American English 

infants (see Hamilton et al., 2000), the possibility that British English learners are genuinely 

late as compared to many other languages must not be discarded, and would relate to our 

finding. A few weeks or months might be necessary to catch up with French-learning infants, 

in which case one would expect to observe the same ‘vowel bias’ stage in young British 

English infants as was found in French-learning infants by Bouchon et al. (2015), before 

developing a sensitivity for consonants. Note however that even in older British English 

children, the emergence of the consonant bias as seen in French (e.g., Nazzi, 2005; Poltrock 

& Nazzi, 2015) or Italian (Hochmann, Benavides-Varela, Nespor & Mehler, 2011) is not found 

until the age of 30 months (Nazzi et al., 2009), and is preceded by a stage during which 

infants are equally sensitive to consonants and vowels (e.g., Floccia et al., 2014; Mani & 

Plunkett, 2007). So even if, at 5 months, British English infants are delayed in the processing 
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of phonetic information in vowels as compared to French learners, their learning path may 

rely on different cues, as can be concluded from the different pathways infants take 

regarding the development of the consonant bias. 

Rather than British English infants being late as compared to French ones, another 

possibility is that these two populations of infants enter lexical processing with different 

tools, because of the fundamentally different properties of their two native languages. 

Faced with a language like French with phrase-final lengthening, a syllable-timed rhythm, 

and mostly steady-state vowels, infants might focus on vowels in continuity with their initial 

bias (e.g., Benavides-Varela et al., 2012; Bertoncini et al., 1988). From these vowels, they 

start to extract acoustic information that will later coalesce into phonetic categories, with 

the help of a growing lexicon (e.g., Feldman, Myers, White, Griffiths & Morgan, 2013). With 

the refinement of their temporal resolution abilities (Werner, 1996) and lexicon increase (or 

their protolexicon of word forms), they will become more and more able to process 

differences between consonants, ultimately developing a consonant bias as early as 11 

months (e.g., Poltrock & Nazzi, 2015). In contrast, British English-learning infants, exposed to 

a language with variable lexical stress, reduced vowels and frequent diphthongisation, have 

to work with a different weighting of acoustic cues: perhaps they become particularly 

sensitive to energy information (as was seen in Exp1 with names starting with short 

amplitude-rise-time stop consonants over larger amplitude-rise-time continuants), as one of 

the acoustic correlates of stress (Fear et al., 1995). This sensitivity would apply not 

necessarily to the highly variable class of vowels but would generalise to all kinds of 

phonemes, which would explain why British English-learning infants are later found to be 

equally sensitive to consonants and vowels (e.g., Floccia et al., 2014; Mani & Plunkett, 2007) 

before developing a consonant bias by the age of 30 months (Nazzi et al., 2009). In this 



 

32 
 

approach, the format of representations or the processing of familiar words at the age of 5 

months would not only be acoustically based – as opposed to phonetically specified - but 

also highly language-specific. Indeed, the current results compared to those of Bouchon et 

al. (2015) suggest that the acoustic characteristics of the native language shape the focus of 

infants’ perceptual lens (see also Floccia et al., 2014; Højen & Nazzi, 2016).  

How would infants’ language-specific perceptual sensitivity for acoustic cues 

converge towards an adult-like phonetic and phonemic mode of perception? One possible 

way to enter into a phonemic mode of perception would be the acquisition of a lexicon (or 

at least a proto-lexicon). Indeed, the counter-intuitive idea that learning of phonemic 

categories emerges from the encoding of early word forms – as opposed to the more 

traditional, reverse, view (e.g., Lilienfeld et al., 2014; Martin & Fabes, 2008) - has recently 

abounded in the literature (e.g., Feldman et al., 2013a; Swingley, 2009). In the influential 

PRIMIR model for word learning and speech perception development, Werker and Curtin 

(2005) proposed for example that “as the vocabulary expands and more words with 

overlapping features are added, higher order regularities emerge from the multidimensional 

clusters. These higher order regularities gradually coalesce into a system of contrastive 

phonemes [..]” (p. 217). Feldman et al. (2013b) showed that 8-month-olds, just like adults, 

would use word-level information to process vowel contrasts, suggesting a strong role of 

top-down lexical information in the building of phonemic and phonetic categories. This 

learning process was further illustrated in a non-parametric Bayesian model (Feldman et al., 

2013a), showing that phonetic (vocalic) ambiguity could be solved by using information 

about which sounds occur together in words (see also Elsner, Goldwater & Eisenstein, 

2012). Moreover, according to Martin, Peperkamp and Dupoux (2013), it might not be 

necessary to have computed a lexicon per se to derive phonological categories, as infants 
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could use top-down information found in a proto-lexicon, that is, a repertoire of all most 

frequent n-grams in the input (Fourtassi & Dupoux, 2014; Ngon et al., 2013; Poltrock & 

Nazzi, 2015). In favour of this hypothesis and regarding the current finding, a study by Mani 

and Plunkett (2010) shows that 12-month-old British English infants can detect various types 

of vowel changes in familiar words, irrespective of their acoustic characteristics. 

Interestingly, infants with larger vocabulary were more likely to detect these 

mispronunciations than infants with smaller vocabulary, suggesting that attunement of 

sensitivity to phonetic changes is partially driven by lexical growth between 5 (the current 

study) and 12 months (Mani & Plunkett, 2010). Moreover, a few studies have recently 

shown that learning words increases infants’ sensitivity to phonetic (Yeung & Werker, 2009) 

or prosodic (Yeung & Nazzi, 2014) differences around 9-10 months of age.  

In conclusion, we have shown that by the age of 5 months, British English learning 

infants represent and process early words with a different perceptual lens than their 

French-learning peers (Bouchon et al., 2015). These results call for further cross-linguistic 

investigations of the nature of the information that infants encode or process when 

presented with early familiar words, at the onset of lexical acquisition. The specificity of 

word representations and the lexical processing biases reported in older infants might result 

from a combination of language-specific acoustic biases reflecting the phonology of the 

native language, and a lexically-driven learning process that would originate with the 

language-specific format of the very first words being stored in the (proto)lexicon.  
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Table 1. Participant information (age and gender), illustration of the 4 experimental 

conditions and stimuli examples. 

 

 

  

Groups (all n = 

30) 

Stimuli 

(example) 

Infant’s name 

(example) 
Age in days (SD) Girls/boys 

Consonant 

change 

condition 

    

Test 
e.g., Molly vs 

Nolly 
Molly 161 (14) 11/19 

Control 
e.g., Molly vs 

Nolly 
Jessica 167 (15) 15/15 

Vowel change 

condition 
    

Test 
e.g., April vs 

Ipril 
April 161 (14) 14/16 

Control 
e.g., April vs 

Ipril 
Elsa 163 (12) 15/15 
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Table 2. List of names (CP) and their mispronunciation (MP) used in the Consonant change 

condition (left) and the Vowel change condition (right), with information about the feature 

change. For each name, the name of the associated control infant is provided. Changes 

involve one feature apart from /i:/-/e/ which involves aperture and tenseness (in bold), 

following the system proposed by Giegrich (1992; note that in case of feature redundancy, 

only the more informative one is retained, e.g., /æ/-/ʌ/). 

Consonant change condition Vowel change condition 

  CP MP Phonemes 

Feature 

change 

Control 

infant's name   CP MP Phonemes 

Feature 

change 

Control 

infant's name 

1 Ben Wen /b/-/w/ Manner Cian 1 Alfie Elfie  /æ/-/e/ Aperture Oliver 

2 Joelly Roelly  /dȝ/-/r/ Manner Lucy 2 Anwynn Enwynn  /æ/-/e/ Aperture Hayley 

3 Jorga Shorga  /dȝ/-/ȝ/ Manner Chloe 3 April Ipril  /eɪ/-/aɪ/ Aperture Elsa 

4 Leo Zeo  /l/-/z/ Manner Seth 4 Eddie Addie  /e/-/æ/ Aperture Dexter 

5 Logan Zogan  /l/-/z/ Manner Sophie 5 Elsie Alsie  /e/-/æ/ Aperture Amelia 

6 Miya Wiya  /m/-/w/ Manner Reggie 6 Emma Imma  /e/-/ɪ/ Aperture Jolie 

7 Miya Wiya  /m/-/w/ Manner Freddie 7 Esther Asther  /e/-/æ/ Aperture Anais 

8 Monkey Wonkey  /m/-/w/ Manner Louie 8 Ethan Eathan  /i:/-/e/ Aperture Oliver 

9 Nonny Zonny  /n/-/z/ Manner Annabelle 9 Ethan Eathan  /i:/-/e/ Aperture Luke 

10 Rory Jory  /r/-/dȝ/ Manner Keely 10 Ethan Eathan  /i:/-/e/ Aperture Zachery 

11 Caitlin Taitlin  /k/-/t/ Place James 11 Isaac Eisaac  /aɪ/-/eɪ/ Aperture Osian 

12 Finley Thinley  /f/-/θ/ Place George 12 Isaac Eisaac  /aɪ/-/eɪ/ Aperture Felix 

13 Finn Thinn  /f/-/θ/ Place Gray 13 Isaac Eisaac  /aɪ/-/eɪ/ Aperture Laila 

14 Molly Nolly  /m/-/n/ Place Jessica 14 Isaac Eisaac  /aɪ/-/eɪ/ Aperture Aubrey 

15 Poppy Toppy  /p/-/t/ Place Zachary 15 Isla Eisla  /aɪ/-/eɪ/ Aperture Emily 

16 Reuben Weuben  /r/-/w/ Place Isabelle 16 Adam Udam  /æ/-/ʌ/ Place Lucas 

17 Sam Tham  /s/-/θ/ Place Luka 17 Adam Udam  /æ/-/ʌ/ Place Willow 

18 Sam Sham  /s/-/ʃ/ Place Noah 18 Alex Ulex  /æ/-/ʌ/ Place Henry 

19 Thomas Pomas  /t/-/p/ Place Freya 19 Anya Unya  /æ/-/ʌ/ Place Isabelle 

20 Warwick Rarwick  /w/-/r/ Place Beatrice 20 Archie Orchie  /a:/-/ɔ:/ Place Jacob 

21 Daniel Taniel  /d/-/t/ Voicing Jack 21 Arthur Orthur   /a:/-/ɔ:/ Place George 

22 Dory Tory  /d/-/t/ Voicing Florrie-May 22 Edmund Udmund  /e/-/ʌ/ Place Olivia 

23 Finlay Vinlay  /f/-/v/ Voicing Theo 23 Edward Udward  /e/-/ʌ/ Place Iona 

24 Finlay Vinlay  /f/-/v/ Voicing Phoebe 24 Effie Uffie  /e/-/ʌ/ Place Sonny 

25 Jack Chack  /dȝ/-/tʃ/ Voicing Fearne 25 Ella Ulla  /e/-/ʌ/ Place Isabel 

26 Jacob Chacob  /dȝ/-/tʃ/ Voicing Roberta 26 Erin Urin  /e/-/ʌ/ Place Isaac 

27 Jacob Chacob  /dȝ/-/tʃ/ Voicing Kiera 27 Erin Urin  /e/-/ʌ/ Place Oscar 

28 Kalli Galli  /k/-/g/ Voicing Hugo 28 Esme Usme  /e/-/ʌ/ Place Amaya 

29 Pops Bops  /p/-/b/ Voicing Freya 29 Esme Usme  /e/-/ʌ/ Place Theodore 

30 Sophie Zophie  /s/-/z/ Voicing Harrison 30 Oryn Aryn  /ɒ/-/æ/ Place Ebonie 
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Table 3. Summary of characteristics of stimuli used in the current experiment (English) and 

in the Bouchon et al. (2015) study (French). ‘Diff.’ corresponds to the mean difference 

between, for example, the duration of the consonant CPs minus that of the consonant MPs. 

Standard errors are in brackets.  

 

 

    English French 

    Duration Intensity Pitch MFCC Duration Intensity Pitch MFCC 

Consonant CP 73.4 

(6.4) 

61.7 

(1.2) 

    68.3 

(5.3) 

72.0 

(1.3) 

    

  MP 89.7 

(8.2) 

61.6 

(1.4) 

    78.1 

(5.9) 

70.9 

(1.6) 

    

  Diff. -16.4* 

(6.9) 

0.10 

(1.3) 

  1.18 

(.03) 

-9.8 (6.1) 1.2 (2.1)   1.54 

(.06) 

  

Vowel CP 114.7 

(8.8) 

78.6 

(0.3) 

261.8 

(9.4) 

  105.4 

(3.2) 

78.6 

(0.3) 

    

  MP 111.0 

(9.3) 

78.7 

(0.3) 

263.5 

(8.8) 

  108.3 

(3.6) 

79.1 

(0.5) 

    

  Diff. 3.6 (3.8) -.09 (0.2) -1.7 

(5.8) 

1.25 

(.05) 

-2.8 (2.4) -0.5 (0.6)   1.36 

(.03) 
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Table 4. Individual results for the 60 children in the consonant change group (LTdiff test and 
LTdiff cont), with the associated pair of CP/MP and the corresponding Diff.intensity value. 
The feature change associated with the CP/MP pair is also provided, together with the 
phoneme category of the CP and the MP (stop or continuant).  

 

  Diff.intensity Ltdiff test 

Ltdiff 

cont 

Feature 

change 

Phoneme 

category 

Jorga-Shorga -14.41 4.14 -3.64 manner stop-cont 

Joelly-Roelly -13.22 3.79 0.96 manner stop-cont 

Ben-Wen -12.88 0.62 0.93 manner stop-cont 

Jack-Chack -3.52 2.17 -2.46 voice stop-stop 

Warwick-Rarwick -3.19 -0.19 1.31 place cont-cont 

Poppy-Toppy -3.16 -2.66 -0.08 place stop-stop 

Jacob-Chacob -2.97 0.31 0.69 voice stop-stop 

Jacob-Chacob -2.97 2.63 -3.77 voice stop-stop 

Daniel-Taniel -2.48 1.60 -1.12 voice stop-stop 

Sam-Sham -2.15 -0.09 -0.88 place cont-cont 

Caitlin-Taitilin -1.43 3.92 -2.69 place stop-stop 

Thomas-Pomas -1.19 -2.98 -0.35 place stop-stop 

Reuben-Weuben -1.09 0.11 -0.16 place cont-cont 

Finlay-Vinlay -1.04 0.86 1.38 voice cont-cont 

Finlay-Vinlay -1.04 -1.45 -0.66 voice cont-cont 

Miya-Wiya -0.74 5.57 1.35 manner cont-cont 

Miya-Wiya -0.74 -1.24 1.94 manner cont-cont 

Finn-Thinn 0.66 -5.62 -0.42 place cont-cont 

Kalli-Galli 1.04 3.11 1.44 voice stop-stop 

Monkey-Wonkey 1.22 4.98 1.02 manner cont-cont 

Sophie-Zophie 1.32 -0.13 3.36 voice cont-cont 

Dory-Tory 2.03 -1.30 -0.97 voice stop-stop 

Molly-Nolly 2.29 1.57 -1.34 place cont-cont 

Sam-Tham 3.25 -3.41 0.40 place cont-cont 

Pops-Bops 4.37 0.00 1.00 voice stop-stop 

Finley-Thinley 5.49 -2.85 -2.81 place cont-cont 

Logan-Zogan 7.30 -4.06 2.11 manner cont-cont 

Leo-Zeo 8.87 0.98 1.77 manner cont-cont 

Nonny-Zonny 13.39 -4.82 -1.91 manner cont-cont 

Rory-Jory 15.05 -1.91 0.38 manner cont-stop 
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Table 5: List of names and their foils used in Exp2 

Name Foil 

Isla Harry 

Joel Ewan 

Cleo Finlay 

Ewan Joel 

Jacob Reuben 

Ella Robyn 

Freya Callan 

Hugo Skyler 

Charlie Ella 

Lily Hugo 

Holly Alex 

Boris Freya 

Daisy Boris 

Faith Ben 

Alfie Robyn 

Thomas Nate 

Xavier Thomas 

Sophie Amber 
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Figure Captions 

 

Figure 1. Mean looking times (s) towards the Correct Pronunciation of the names (filled bar) 

versus the Mispronunciation (hatched bar), in the Consonant change condition (left) and the 

Vowel change condition (right). Within each condition, results are broken down between 

the test group who heard their own name versus a mispronunciation (left) and the control 

group who heard a name and its mispronunciation but never encountered that name before 

(right). Brackets represent +/- 1 standard error. 

 

Figure 2. LT.Diff as a function of Diff.Intensity for consonant changes on top, and for vowel 

changes below. LT.Diff = difference in looking times between the correct pronunciation of a 

name (CP) and its incorrect pronunciation (MP); positive values indicate a preference for the 

correct pronunciation. The same scale is used for both distributions to illustrate the wider 

range of values for consonants than for vowels. For the consonants, manner, place and 

voicing changes are depicted with a different marker (see key). 
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