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Abstract  

The recent years have witnessed an increased interest in e-learning platforms 

that incorporate adaptive learning and teaching systems that enable the creation of 

adaptive learning environments to suit individual student needs. The efficiency of these 

adaptive educational systems relies on the methodology used to accurately gather and 

examine information pertaining to the characteristics and needs of students and relies 

on the way that information is processed to form an adaptive learning context. The vast 

majority of existing adaptive educational systems do not learn from the users’ 

behaviours to create white-box models to handle the high level of uncertainty and that 

could be easily read and analysed by the lay user. The data generated from interactions, 

such as teacher–learner or learner–system interactions within asynchronous 

environments, provide great opportunities to realise more adaptive and intelligent e-

learning platforms rather than propose prescribed pedagogy that depends on the idea 

of a few designers and experts.  

Another limitation of current adaptive educational systems is that most of the 

existing systems ignore gauging the students' engagements levels and mapping them to 

suitable delivery needs which match the students' knowledge and preferred learning 

styles. It is necessary to estimate the degree of students’ engagement with the course 

contents. Such feedback is highly important and useful for assessing the teaching 

quality and adjusting the teaching delivery in small and large-scale online learning 

platforms. Furthermore, most of the current adaptive educational systems are used 

within asynchronous e-learning contexts as self-paced e-learning products in which 

learners can study in their own time and at their own speed, totally ignorant of 
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synchronous e-learning settings of teacher-led delivery of the learning material over a 

communication tool in real time. 

This thesis presents novel theoretical and practical architectures based on 

computationally lightweight T2FLSs for lifelong learning and adaptation of learners’ 

and teachers’ behaviours in small- and large-scale asynchronous and synchronous e-

learning platforms. In small-scale asynchronous and synchronous e-learning platforms, 

the presented architecture augments an engagement estimate system using a 

noncontact, low-cost, and multiuser support 3D sensor Kinect (v2). This is able to 

capture reliable features including head pose direction and hybrid features of facial 

expression to enable convenient and robust estimation of engagement in small-scale 

online and onsite learning in an unconstrained and natural environment in which users 

are allowed to act freely and move without restrictions. We will present unique real-

world experiments in large and small-scale e-learning platforms carried out by 1,916 

users from King Abdul-Aziz and Essex universities in Saudi Arabia and the UK over 

the course of teaching Excel and PowerPoint in which the type 2 system is learnt and 

adapted to student and teacher behaviour. The type-2 fuzzy system will be subjected to 

extended and varied knowledge, engagement, needs, and a high level of uncertainty 

variation in e-learning environments outperforming the type 1 fuzzy system and non-

adaptive version of the system by producing better performance in terms of improved 

learning, completion rates, and better user engagements. 
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Chapter 1: Introduction 

The enhancement of student learning performance and satisfaction represents 

one of the main objectives of educational systems. In order to be able to tailor the 

teaching process according to the needs and preferences of each student, teachers have 

to conduct accurate evaluations of the different competencies of students, which can 

naturally differ in terms of level of knowledge, interest, social background, and level 

of motivation [James 2012], [Ohle 2015]. An expert teacher in the classroom 

environment is aware of the differentiated characteristics and learning abilities of the 

students. However, there are limits to the degree to which any teacher can adjust the 

learning environment to optimally educate every student simultaneously due to 

classroom size and the accuracy of the evaluation process conducted by the teacher 

[James 2012]. Therefore, the accuracy of learning and analysing such characteristics 

can be facilitated by a smaller class size, which would allow teachers to focus on the 

needs and preferences of each individual student [James 2012]. Studies have shown 

that, in contrast to group education, one-to-one teaching is more likely to generate a 

higher student learning performance [Bloom 1984],[ Kid 2010], [Vandewaetere 

2011]. However, it might be difficult to provide such attention and teaching in 

traditional classrooms.  

The Internet has become a central core to the educative environment 

experienced by learners, thus facilitating learning at any location and at any time 

[Zhao 2006]. Allen and Seaman [Allen 2008] claimed that in 2008, nearly a quarter 

of all students in post-secondary and further education in the USA were taking courses 

delivered exclusively online. By 2009, Ambient Insight Research reported that 44% 
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of post-secondary students in the USA were taking at least some of their courses 

online and projected that penetration would increase to 81% by 2014 [Ambient Insight 

Research 2009]. Thus, developed economies have been the principle market for self-

paced e-learning products in recent times [Adkins 2013]. However, developing 

economies are now enthusiastically embracing e learning due to the huge increase in 

suppliers [Adkins 2013]. A global e-learning system is beginning to define itself. In 

2011, the market for self-paced e-learning reached a total of $35.6 billion worldwide 

and has a five-year compound growth rate of 7.6% [Adkins 2013]. By 2016, revenues 

will be as high as $51.5 billion [Adkins 2013]. Such findings across the world, and in 

the USA in particular, reflect the global rapid adoption of e-learning, from an 

emergent alternative to traditional course delivery. It is rapidly entering mainstream 

and becoming the predominant method of delivering post-secondary education 

[Ambient Insight Research 2009], [Ryan 2012].  

1.1 E-Learning and its methods of delivery 

E-learning is a system of electronic learning whereby instructions are devised 

or formatted to support learning and then delivered to the intended beneficiaries 

through digital devices that normally come in the form of computers or mobile devices 

[Clark 2011]. E-learning may be designed in two forms. One form of e-learning is 

designed as an instructor-led type of learning known as synchronous e-learning, while 

the other is designed in a format that is a self-paced individual study, known as 

asynchronous e learning [Clark 2011]. In asynchronous e-learning, when the learners 

take up a course study that utilises spoken or printed texts that come in the form of 

illustrations, photos, animation, or video as learning materials, and with which 

evaluations are made, the learners are then given the opportunity to control the time 

and place as well as the pace at which they want to undertake their own learning 
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[Beetham 2013], [Clark 2011]. The other e-learning format, known as synchronous e-

learning, is real-time instructor-led training that is designed for instructions on the 

learning to be delivered or facilitated by an instructor to take place in real time [Clark 

2011], [Selvakumarasamy 2013]. Generally, different communication tools are 

utilised for this type of e-learning format, which is usually delivered in real time, 

mostly over the Internet. Students undertaking the training usually log on at a 

scheduled time and establish communications directly with the instructors 

[Selvakumarasamy 2013]. Unfortunately, it appears that these e learning 

environments, which could be asynchronous learning environments or synchronous 

learning environments, have the same problems raised in normal classrooms due to 

the lack of interaction, which means that the diagnosing process cannot be fully 

applied between the teachers and students. In addition, the e-learning courses are 

offered and designed for all students, without considering the individual students’ 

unique needs and abilities [Ciloglugil 2012], [Essalmi 2010]. 

1.2 Adaptive educational systems 

It is important that the learner characteristics are monitored by the adaptive 

educational systems and the instructional milieu is appropriately adjusted to offer 

support and to make improvements to the learning process [Oxman 2014], [Shute 

2012]. Such systems are receiving much interest as a result of their ability to deliver 

instructional content and analysis by actively adapting to the individual student 

requirements and needs [Adaptive Learning 2012], [Shute 2012]. Adaptive 

educational systems contain three different models. The learner profile or model is 

used as means to infer and diagnose student abilities and characteristics, the second 

model is the taught content representation to be learnt, and the third model is 

instructional model which is used to convey and match how the content is suggested 
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to the learner in adaptive and dynamic contexts [Oxman 2014]. The efficiency of 

adaptive educational systems depends on the methodology employed to collect and 

diagnose information regarding the learning needs and characteristics of students as 

well as how this information is processed to develop an adaptive and intelligent 

learning context [Shute 2012]. Student needs and characteristics in the teaching 

environment can be classified based on many variables, such as current student 

knowledge, learning styles, affective states, personality traits, and student goals 

[Ciloglugil 2012]. The main objective of considering these variables is to allow 

students to better achieve their learning goals and objectives [Martins 2008]. Course 

content could be adapted to each learner through feedback, content sequencing, and 

the presentation of materials in different teaching style approaches [Shute 2012].  

The aim of adaptive educational systems is to tailor the overall learning 

approach in order to fulfil the needs of students [Essalmi 2010]. Hence, it is essential 

that the profiles of students be created accurately with consideration for the 

examination of their affective states, levels of knowledge, skills, and personality traits. 

The information required then needs to be utilised and developed in order to improve 

the adaptive learning environment [Essalmi 2010]. Acquiring those learning data 

models then can be used in two ways, prescribed pedagogy proposed by the experts 

and the designers of the adaptive educational system or by the dynamically learning 

suited the pedagogy from the teachers or amateurs student's behaviours. This learning 

capabilities will ensure the improvements of the learner and the system over life-long 

learning mode. Relying on designer or expert knowledge for guiding the pedagogy of 

the adaptive educational system may be considered time-consuming and costly. 

Furthermore, it may even be impossible to tackle the varied characteristics of learners 

in some cases due to incomplete knowledge about what constitutes effective 
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instruction. In proposing a pedagogy, automatic learning from learner behaviors can 

make the design of adaptive e-learning and teaching system more convenient and 

effective, which saves the effort and time of experts and designers. Even more, it will 

give them insight into what makes online instruction effective. The learning models 

generated from student behaviors can be easily edited and modified in a lifelong 

learning model. 

1.2.1 Overview on some AI techniques that are employed 

for adaptive educational systems 

AI approaches are regarded as valuable tools, as they have the ability to 

develop and replicate the decision-making process adopted by people [Frias-Martinez 

2004]. There are various AI techniques that have been used in adaptive educational 

systems, such as fuzzy logic (FL), Bayesian networks, neural networks, and hidden 

Markov models. There are various ways through which AI approaches are used in 

adaptive educational systems. For example, in some systems, the core focus is to 

examine and assess student characteristics to generate profiles of the students with the 

intention of evaluating their overall level of knowledge to be used as basis for 

prescribed software pedagogy [Yadav 2014], [Yildiz 2014], [Millán 2013], [Chen 

2013], [Sripan 2010], [Chika 2009], [Saleh 2009], [Bai 2008], [Venkatesan 2008], 

[Yannibelli 2006], [Yeh 2005], [Gamboa 2001], [Gertner 2000], [Stathacopoulou 

1999], [Martin 1995]. The AI approaches are also used to facilitate the diagnostic 

process completion so that course content can be adjusted to cater to the needs of 

every student, and some of them are used to learn from the student behaviours to adjust 

the prescribed software pedagogy [Cha 2006], [Gutierrez-Santos 2010], [Idris 2009], 

[Moreno 2005], [Seridi-Bouchelaghem 2005], [Xu 2002], [Azough 2010], [Huang 

2007], [ Huang 2008], [Kavčič 2004], [Hsieh 2012]. 
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However, most of the existing adaptive educational systems do not learn from 

student behaviours. Adaptive educational systems that depend on the ideas of a few 

experts or designers that are used in tackling student behaviour might be characterised 

by various sources of uncertainty about the learner response evaluation with an 

adaptive educational system, linked to learner reception of instruction. Various 

sources of uncertainty can occur in e-learning environments, resulting from examining 

student variables, such as assessments or the engagement level. In addition, needed 

instructional action outcomes, such as what concept should be studied in accordance 

with this assessment and engagement, combine in a suitable form of proposed 

environment targets to recognise ideal learning activities. This form of learning-

teaching decision is often needed to deal with information that is uncertain (we are 

not sure that the available information is absolutely true) and/or imprecise (the values 

handled are not completely defined) [Brusilovsky 2007]. An example of a rule that 

we need to deal with would be: ‘if the student knowledge in Excel is very low and in 

PowerPoint is high, then he/she should study moderate Excel materials’. We are not 

sure that this rule and each antecedent and consequent is absolutely true for the target 

learners. Therefore, how do we ensure high accuracy in assessing the individual’s 

knowledge level, learning style, and other needs in order to provide the best and 

correct individual adaptive action? This question is quite critical, due to several 

sources of uncertainties in how accurately student responses are actually assessed by 

adaptive educational methods as well as the corresponding uncertainties associated 

with how the resulting instruction to the student is actually understood and received.  

In e-learning environments, there are high levels of linguistic uncertainties, 

where the individual students can differ greatly in how the same terms, words, or 

methods (e.g., course difficulty or length of study time) are received and 
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comprehended, which can vary according to student motivation, knowledge, and 

future plans about learning a given subject in an e-learning environment. The AI 

techniques, such as FL, neural networks, genetic algorithms, and Markov models, can 

manage the inherent uncertainty that human decision making has, and they are 

innovative approaches that are tolerant of impression, uncertainty, and partial truth. 

In this respect, these AI techniques are useful for several reasons, including that they 

are capable of developing and imitating the human decision-making process [Ahmad 

2004].  

Thus, developing adaptive educational systems based on the knowledge of 

how learners interact with the learning environment in readable and interpretable 

white box models is critical in the guidance of the adaptation approach for learner 

needs as well as understanding the way learning is achieved. Nevertheless, the 

majority of the employed adaptive educational systems do not learn from user 

behaviours (learns to adapt) to create easily read and understood white box models 

that could handle high levels of uncertainties and are easily understood and checked 

by the lay user. However, in the case of the majority of the used techniques (e.g., 

Bayesian networks, hidden Markov models, and neural networks), there is an issue 

with knowledge representation, which means that such AI techniques cannot create 

transparent models of human behaviour. Thus, it is not possible to rely on the black 

box characteristics of these AI techniques, as they pose significant challenges to users 

regarding interpretation [Stathacopoulou 2007]. Another potential limitation of such 

black box model-based techniques is that they need to repeat time-consuming iterative 

learning procedures in order to adapt their models as a result of the dynamic and 

constantly changing nature of the e-learning process.  
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1.2.2 Overview on the application of fuzzy logic systems in 

education and e-learning platforms 
 

Fuzzy logic systems (FLSs) are well known for their abilities to generate white 

box models that can handle high levels of uncertainties. However, the vast majority 

of FLSs employ type 1 FLSs, which handle the encountered uncertainties based on 

precise type 1 fuzzy sets [Mendel 2001]. In contrast, interval type 2 FLSs can handle 

the uncertainties faced through interval type 2 fuzzy sets, which are characterised by 

a footprint of uncertainty (FOU), which provides an extra degree of freedom that 

enables handling high uncertainty levels [Mendel 2001]. Additionally, during the even 

distribution of uncertainty by interval type 2 fuzzy sets across the FOU, it is usual to 

cipate improvement regarding modelling precision and performance when using 

general type 2 fuzzy sets, thus allowing for an unbalanced distribution within 

applications in areas that have uneven distributions of uncertainty when information 

regarding this kind of distribution is available [Wagner 2010].  

A framework geared towards user-modelling, based on the FLS, induces 

simplified reasoning for both users and designers, which therefore assists in terms of 

amendments and comprehension [Ahmad 2004], [Jameson 1996], [Kavčič 2003]. 

Furthermore, FLSs are commonly utilised in order to examine and assess learning- 

and knowledge-related outcomes [Prokhorov 2015],[Yadav 2014],[ Yildiz 2014],[ 

Chen 2013], [Sripan 2010],[ Saleh 2009],[ Bai 2008], [Venkatesan 2008], [Nykänen 

2006], [Weon 2001], [Ma 2000], [Chen 1999], [Chang 1993]. The FLS are also used 

to facilitate the diagnostic process completion, so that course content can be adjusted 

to cater to the needs of every student. In relation to Xu [Xu 2002], a profiling system 

adopting a multi-agent approach has been presented, whereby the creation of fuzzy 
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models for content and students was based on a dynamic plan formally defined ahead 

of time for one individual. This framework was obtained through profile abstraction, 

which is recognised as comprising student-centred learning tasks, such as the topic at 

hand and the time spent on the topic. Furthermore, the content framework was devised 

and created with fuzzy links between the subjects, and the knowledge of the 

individuals (referred to as prerequisite relations) were established to be utilised in 

order to formally determine the learning adaptation (i.e., the order of issues to be 

examined by the individual) [Xu 2002]. The work of [Kavčič 2004] employs FL to 

model user knowledge of domain concepts. The work represents the dependencies 

between domain concepts in order to cycle graph, as some concepts have essential or 

supportive perquisites between them, and they use fixed rules to accomplish dynamic 

updating of user knowledge regarding the concepts. Through these procedures, the 

right concepts are adapted to the students. Similarly, the work of [Chrysafiadi 2015], 

who developed and use of fuzzy knowledge state define FuzKSD module. He defines 

this module in a way that points out the alterations on the state of a student’s level of 

knowledge. Chrysafiadi also used Fuzzy Cognitive map which collaborates with 

FuzKSD and represent the relationship between the domain concepts. When changes 

regarding to the learners’ level of knowledge on domain concepts arises, FuzKSD 

tries to point out the learners’ knowledge, updates it both in this concept and also in 

all other concepts that are related to it, considering the learner updated knowledge as 

well the dependences in FCM for the domain concepts.  

Additionally, Hsieh (2012), in his work, he propose a system which use fuzzy 

inference helps to analysis  the learners’ linguistic ability, something through 

accumulated learner profile which helps them to select the best article that is to be 

read next. Once the learner has gone through the article, he/she is challenged through 
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vocabulary tests which involve words that he/she has encountered while reading that 

article [Hsieh 2012]. Thereafter, the learners profile is updated in relation to their 

performance in the test as well as their linguistic ability which are recalculated and 

analysed and finally a new article is chosen for delivery [Hsieh 2012].  

Nevertheless, in previous research, the behaviours of the students are re-

formed through criterion links between student knowledge and topics with the 

individual behaviour being restricted by establishing a dynamically grounded study 

plan for the student. However, the needs of the student in previous studies were not 

learnt automatically through the large data set obtained from various students, as was 

the case with the system discussed in this thesis. Moreover, the systems considered in 

previous studies did not adapt in a lifelong learning approach to ensure that the 

generated models adapt to the students’ changing needs and expanding knowledge. 

Moreover, to the best of our knowledge, the adoption of type 2 fuzzy approaches in 

the context of an adaptive learning educational environment has not been examined 

yet in the literature.  

1.2.3 Considering the students’ degree of engagement in 

adaptive educational systems 
 

Currently, e-learning is confronted by a significant limitation, in that student 

engagement is not considered by adaptive learning and teaching systems to be used 

as the basis of the adaptation process, and the systems do not map delivery needs in 

terms of the appropriated instructional approach and content taught. Estimating the 

engagement degree of the users robustly and automatically is a key procedure for 

various applications and research topics and has been widely studied in different 

laboratories and semi-constrained environments. Thus, automatic and continuous 
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learning of what content is suitable for a learner when he/she has lower or higher 

engagement is an important factor for achieving higher student learning outcomes, 

engagement, and satisfaction. In order for students to obtain knowledge from the 

course, they need to engage with it, regardless of how the course is delivered [Clark 

2011]. The more a student engages with the content of the course, the more 

information they will absorb [Clark 2011]; hence, if a course can be better tailored to 

student engagement, the students will inevitably learn more in asynchronous and 

synchronous learning environments. In addition, it is unreasonable to expect the 

teacher in a synchronous learning environment to track each individual learner, 

especially in online learning, where the number of students is high. Therefore, 

automatically gauging and analysing the objective feedback from the attendees is a 

key step in the procedures of education so that adaptive education is delivered.  

A conventional non-contact method to estimate the engagement degree is to 

analyse eye gaze features. In the work of Mayberry [Mayberry 2014], eye gaze 

direction is calculated based on two-dimensional (2D) video data, using a low-cost 

embedded hardware platform to determine the engagement and reaction of the users 

in gameplay so that feedback can be provided to the gaming user interface and 

gameplay logic [Mayberry 2014]. In the work of Ye [Ye 2012], the learner 

engagement level was estimated and classified based on an image for the application 

scenarios of human-computer interaction by a webcam using the features extracted 

from 2D user images, including head pose, eye gaze, eyebrow and head movements, 

mouth opening statuses, etc. In the work of Hardy [Hardy 2013], user engagement 

levels were estimated by 2D camera images based on the extracted facial features, and 

the output results were labelled into four different levels of engagement. However, 

the 2D image-based methods are inadequate for returning robust features to complex 
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vision applications, such as eye gaze recognition. Therefore, higher-level systems 

using multiple hybrid sensors are studied.  

Different from the non-contact method, in other studies [Mello 2009], [Mota 

2003], wearable sensors were embedded into glasses facing users’ eyes, which were 

used to analyse the eye gaze and interests of the users. In another study [Amershi 

2006], a skin conductance sensor was employed to recognise the connection between 

the biological degree of skin conductance and emotional experiences in a training 

session of training and learning systems. Similarly, in [Corcoran 2012] research, a 

particular chair utilising pressure sensors was developed to understand the regular 

body actions to relate a child’s interest level in the procedure of conducting an 

education session on a computer. This system was also utilised by [Asteriadis 2009] 

to observe signals of the student body gestures for recognising student emotions in a 

learning session. In the work of [Hernandez 2013], a system based on hybrid wearable 

sensors sensing the real-time data of skin conductance, heart rate, and EMG was 

proposed, and this system used an unsupervised feature selection algorithm to 

measure learner engagement. However, wearable electronic devices are intrusive and 

uncomfortable for the users, especially those electronic devices required to be 

deployed near sensitive parts, such as the eyes.  

In another study [Ishii 2014], an engagement estimation system based on a 

particular eye gaze tracking device was proposed. This system is able to robustly 

measure the user’s engagement based on the orientation of the eye gaze captured by 

a particular non-contact device. However, the main disadvantage is due to the high 

expense (around $2000 USD per piece) of this type of sensor, which can be only used 

for a single user within a relatively short distance (60 centimetres). A similar method 
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was reported by [Mello 2012], where an engagement analysis system based on an eye 

tracker was proposed, and this system is able to label the student as not engaged if the 

student looks away from the screen.  

Besides the engagement analysis methods using various sensors, the literature 

reports systems based on sensor-free methods for estimating student engagement. In 

[Baker 2012], Baker developed an engagement and emotion analysis system based on 

machine learning to detect user emotional states, such as boredom, engagement, 

confusion, frustration, etc. The system employs data mining techniques, analysing the 

log data, which covers the information of student activities, such as the length of time 

the student spends on finishing the question, the difficulty level of the question, and 

the accuracy of the answer given by the student, etc. However, these methods are not 

substantially better, especially when subject to stringent cross-validation processes 

[Baker 2012]. A similar engagement detection method was presented by Badge 

[Badge 2012] based on academic activities and log information of learners performed 

on a social network. 

Importantly, the main focus of the adaptive learning technology and 

environments was on the asynchronous learning environment, completely ignoring 

synchronous online learning environments and models that could be built to model 

adaptive teaching and training that could enable teachers to learn the behaviours of 

expert teachers in tackling different student engagement in accordance with variables 

of the course content in dynamic environments.  
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1.3 Aims and Objectives of this Research 
 

This research aims to contribute towards realising and creating effective 

intelligent adaptive online learning small and large scale platforms, which could more 

precisely model and correlate the student variables (such as knowledge level, 

background, prior knowledge, learning style, and motivation level) with needed 

instructional and pedagogical variables (such as situated difficulty level, pace of 

study, and suitable teaching instructional approach) in easily readable white box 

models. These learnt models will then enable the learning environment to be 

automatically, intelligently, pervasively, and continuously adapted to given student 

needs in order to deliver the best context and content (learning practice) of education 

that adheres to such needs and preferences.  

As an important phase to begin to achieve this aim, we employed self-learning 

type-1 and an interval type 2 Fuzzy systems, which enable the generation of FL-based 

models from the data. These type-1 and type-2 fuzzy models are generated from data 

representing various student characteristics, capabilities, and engagement degrees 

according to their desired learning needs. These learnt FL-based models are then used 

to improve the instruction to the various students based on their individual 

characteristics. In addition, the proposed systems are continuously adapting in a 

lifelong learning mode to make sure that the generated models adapt to the individual 

student needs. These presented theoretical and practical environments deal with 

different challenges that are encountered as discussed earlier in this chapter. The steps 

and processes for achieving the main aim are as follows. 

In the first stage of the work, a theoretical and practical environment was 

developed based on type-1 FL. Learning-teaching behaviour is represented in a human 
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readable and linguistically interpretable manner by the fuzzy rules. Their transparency 

makes them perfect for quick assessment to explain the reason and method of certain 

combinations of inputs actuating specific rules, where a certain set of output 

conclusions has been yielded. The proposed environment employs a self-learning 

mechanism that generates a FL-based model from the data. We incorporated and 

gauged the student engagement levels, and we mapped them to suitable delivery 

needs, which match the knowledge and preferred learning styles of the students. The 

resulting practical and theoretical environments incorporate a novel system for 

gauging the student engagement levels based on utilising visual information to 

automatically calculate the engagement degree of the students. This differs from 

traditional methods that usually employ expensive and invasive sensors. Our approach 

only uses a low-cost Red Green Blue-Depth (RGB-D) video camera (Microsoft 

Kinect) operating in a non-intrusive mode, whereby the users are allowed to act and 

move without restrictions. This fuzzy model is generated from data representing 

various student capabilities and their desired learning needs. The learnt FL-based 

model is then used to improve the knowledge delivery to the various students based 

on their individual characteristics. The proposed environment is adaptive, where it is 

continuously adapting in a lifelong learning mode to ensure that the generated models 

adapt to the individual student preferences. This employed approach was not 

computationally demanding and generated easily read and analysed white box models, 

which can be checked by the lay user, which is mainly suitable for adapting the 

dynamic nature of the e-learning process.  

In this stage of the work, we extended the original practical and theoretical 

environment to use interval type 2 FLSs which employ the type-2 membership 

functions (MFs) which can handle the faced uncertainties. The learnt type 2 MFs 
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minimise and handle high levels of linguistic uncertainties in the e-learning 

environment, whereby students can interpret and act on the same terms, words, or 

methods (e.g., course difficulty, length of study time, or preferred learning style) in 

various ways according to their level engagement, knowledge, and future plans. This 

environment was superior in facilitating the online adaptation of the rules, while being 

robust to the high level of linguistic uncertainties that exist in such an environment. 

In the second stage of the work, we presented a method based on type-2 FL 

utilising visual RGB-D features, including head pose direction and facial expressions 

captured from Kinect (v2), a low-cost but robust 3D camera, to measure the 

engagement degree of students in both remote and onsite education for small-scale e-

learning platforms. This system augments another self-learning type-2 FLS that helps 

teachers with recommendations of how to adaptively vary their teaching methods to 

suit the level of students and enhance their instruction delivery. This proposed 

dynamic e-learning environment integrates both onsite and distance students as well 

as teachers who instruct both groups of students. The rules are learnt from the student 

and teacher learning/teaching behaviours, and the system is continuously updated to 

give the teacher the ability to adapt the delivery approach to varied learner 

engagement levels. The efficiency of the proposed system has been tested through 

various real-world experiments in the University of Essex intelligent classroom 

(iClassroom) among a group of 30 students and six teachers. These experiments 

demonstrated the capabilities—compared to type 1 fuzzy systems and non-adaptive 

systems—of the proposed interval type 2 FL-based system to handle uncertainties and 

improve the average learner motivation to engage during learning. 
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In the final phase, a novel, theoretical, and practical environment based on a 

“zslice-based type-2 FL-based” system that can learn student-preferred knowledge 

delivery needs based on their characteristics and current levels of knowledge in order 

to generate an adaptive learning environment for large-scale e-learning platforms. 

Over another categorisation of student backgrounds, the system can handle further 

uncertainty and adapt the resulting rules and MFs in a novel learning mode, 

accommodating further uncertainties arising from background changes in the e-

learning environment and the associated changing user behaviour. We will present 

large-scale, real-world experiments involving 1,871 students from the King Abdul-

Aziz University over the course of teaching Excel and PowerPoint in which the type-

2 Fuzzy system learnt and adapted to student behaviour, while subjected to extending 

knowledge and a high level of linguistic uncertainty variation in e-learning 

environments, which combine various students. In addition, we will show how our 

zslice type 2 FL-based system generated by the one-pass learning technique was able 

to deal with the high level of uncertainties in the adaptive e-learning environment and 

outperform those generated by interval type 2 FL, type 1 fuzzy systems, adaptive, 

instructor-led systems, and non-adaptive systems. 

1.4 Significance of this Research 
 

This work will advance knowledge in multidisciplinary fields, such as 

pedagogy of online education and adaptive learning landscapes. Attaining a 

comprehensive and more adequate understanding of the correlation of learner 

characteristics, prior knowledge, engagement, and their needs according to the 

authoring, instructing, and delivering online teaching content as delivered and 

comprehend by the learners is a pivotal area of research and has not yet been 
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investigated well in online learning environments (OLEs). When the student has lower 

satisfaction, performance, and engagement with the online learning system, most 

providers of current online learning platforms will end with lower completion rates 

and reputations. According to Onah [Onah 2014], there are high dropout rates in the 

number of students who enrolled within massive open online courses, and the 

completion rates in those courses are less than 13%. Therefore, it is worthwhile for 

service providers to learn to adapt to the learners needs and preferences in a manner 

that grips their engagement, speeds up their performance, and gains their satisfaction 

in easily and readable white box models, which can be checked in real time, edited, 

and understood easily. Adaptive learning systems are an important enabler for 

achieving and realising such aims. Thus, finding the correlation between learner 

characteristics, prior knowledge, engagement, and their needs according to the 

authoring and delivering online teaching content, from the perspectives of the learners 

is a significant first step towards realising more effective and intelligent adaptive 

learning systems that serve such a goal. The transparency of the proposed model based 

on the type 2 FLS can give insight into how the learning within e-learning platform is 

realised. In addition, it can be used to further verify the kinds of learning and teaching 

behaviours to be emphasised or rejected in the future. It is important to focus on 

developing explanatory models to produce interpretable insight. Such insight 

advances the understanding of learning and produces recommendations for improved 

educational practices. In addition, the proposed models will be flexible so that many 

learner attributes could be mapped to it and will correlate to more instructional 

variables to achieve more intelligent learning context, and it can be used to test a 

practical hypothesis regarding the learning-teaching behaviour.   
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1.5 Novelty   

It is clear from the studies that exist in the literature that adaptive learning 

environments must be realised, most previous studies do not learn from user 

behaviours to create more easily read and understood white box models that could 

handle high levels of uncertainties. Therefore, when considering some of these 

approaches (namely Bayesian networks, hidden Markov models, and neural 

networks), there is a problem in terms of knowledge representation, meaning that such 

AI approaches are not able to establish transparent human behaviour frameworks 

[Stathacopoulou 2007]. One further restriction of such approaches is that they require 

the repetition of time-consuming iterative learning methods to fulfil framework 

amendments following the dynamic nature of the e-learning process. The FLSs are 

well known for their abilities to generate white box models that can handle high levels 

of uncertainties. However, the vast majority of FLSs employ type 1 FLSs, which 

handle the encountered uncertainties based on precise type 1 fuzzy sets [Mendel 

2001]. In contrast, interval type 2 FLSs can handle the uncertainties faced through 

interval type 2 fuzzy sets, which are characterised by a FOU, which provides an extra 

degree of freedom that enables handling high uncertainty levels [Mendel 2001]. 

Therefore, the main contribution of this research is to provide a novel type-2 FLS that 

can overcome the high level of linguistics and numerical uncertainty that may hinder 

the development of an efficient learning context and investigate the implications of 

using easily read and understood white box models for modelling such environments.  

To address these problems that are related to the degree of ignoring learner 

engagement degree as adaptation and evaluation variable. It is obvious that 

incorporating learner engagements as a learner personalisation variable enriches the 

learning environments with a highly crucial pedagogical dimension. In this thesis, we 
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introduce and utilise an engagement estimate system using non-contact, low-cost, and 

multi-user support 3D sensor Kinect (v2), which is able to capture reliable features, 

including head pose direction and hybrid features of facia; expression, enabling the 

convenient and robust estimation of engagement based on interval type 2 FLS in large-

scale online and onsite learning in an unconstrained and natural environment, where 

users are allowed to act freely and move without restrictions.  

In addition, to the best of our knowledge, no previous studies have been 

proposed to learn the teaching behaviour process according to the varied onsite and 

distance learners’ levels of engagement in their respective small and large scale 

learning environments to then be used as an aiding tool to improve the varied average 

level of engagement in a balanced and improved way. 

1.6 The Structure of the Thesis 

The rest of the thesis is organised as follows. Chapters 2 gives an overview on 

type-1 FLSs and type-2 FLSs, respectively. This chapter is very important, as it 

describe type-1 FLSs and type-2 FLSs theory, which have been utilised as the main 

components in building the proposed theoretical and practical environments.  

Chapter 3 presents our proposed interval type 2 FL-based system with user 

engagement feedback for customised knowledge delivery within small-scale 

intelligent e-learning platforms. Chapter 4 presents our proposed type 2 FL 

recommendation system for adaptive teaching in small-scale e-learning platforms. In 

the fifth chapter, we proposed a zSlice-based type 2 FLS for adaptive learning within 

large-scale e-learning environments, where we have evaluated the proposed 

environments within large-scale e-learning platforms. Finally, we present our 

conclusions and our future work plans in Chapter 6. 
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Chapter 2: An Overview of Type-1 and Type-2 

Fuzzy Logic Based Systems 
 

The main goal of the proposal of fuzzy systems is to develop the means and 

solutions to model, quantify, and handle the uncertainty in complex systems [Dutt 

2013]. Within adaptive e-learning environments, there are high levels of uncertainty, 

vagueness, and imprecision in modelling the data and information related to learners, 

such as their capabilities, characteristics, and needs and interactions linked with taught 

content that could facilitate developing a model to meet the needs of an educational 

setting. Therefore, it is impossible to quantify and measure their relations with the use 

of conventional models of mathematics. FLSs offer some useful capabilities to 

represent and reason with vagueness and impressions to imitate the human approach 

of reasoning [Ahmad 2004]. This reasoning may be for the learner whose abilities, 

characteristics, and needs are being diagnosed and modelled, or it may be that of 

modelling the expert or learners whose knowledge constitutes the foundation for the 

system’s reasoning and adaptation [Ahmad 2004].  

Within the adaptive learning environment, these correlated models can be used 

to deliver content that matches the user’s needs and preferences in a dynamic way, 

which will result in improved engagement, better completion rate, and enhanced 

student performance when dealing with the uncertainties related to real e-learning 

environments. Also, in our proposed synchronous adaptive teaching environment, 

when learning correlated models that describe the best pedagogical decisions based 

on the content difficulty level as well as the average level of student engagement and 

the variation between engagements in a dynamic real online teaching environment. 

This learned model is used to enhance teaching performance by informing the teacher 
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about the best teaching approaches in order to gain an enhanced average level of 

learner engagement [Almohammadi 2015a],[Almohammadi 2015b]. Teaching-

learning behaviour modelling based on FL facilitates reasoning for designers and 

users to understand and modify [Jameson 1996], [Kavčič 2003], because the 

information produced by the system can be represented in transparent and flexible 

human-readable models. 

A new category and extension of fuzzy systems can be defined as type-2 FLSs, 

where type-2 fuzzy sets are used to convey numeric and linguistic uncertainty [Mendel 

2001], [Mendel 2014]. This type-2 fuzzy system can be proposed to directly model 

and reduce the effects of uncertainties [Mendel 2001], [Mendel 2014]. An extended 

part of type-1 FL, known as type-2 FL, can be minimised to type-1 FL with a complete 

disappearance of uncertainty [Mendel 2001], [Mendel 2014]. There are more degrees 

of freedom in a type-2 FLS (in the footprint of uncertainty and the third dimensions 

of type-2 fuzzy sets) compared to the type-1 FLSs. This is indicative of the type-2 

FLSs’ having the position of exceeding the performance of type-1 FLSs due to its 

large number of degrees of freedom in its design [Mendel 2001], [Mendel 2014]. 

Type-2 FLSs provide a methodology for tackling different sources of numeric and 

linguistic uncertainty that exist in e learning environments. 

The rest of this chapter will provide the following information: Section 2.1 of 

this chapter will concisely introduce an overview of FL theory along with the 

description of type-1 FLSs which will be in Section 2.2. A brief introduction of type-

2 fuzzy sets as the methodology of managing uncertainties and extending the 

capabilities of the type-1 fuzzy sets will be presented in Section 2.3. Section 2.4 
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discuss the description of type-2 FL systems. The zSlice-based type-2 FLSs will be 

introduced in Section 2.5. Finally, Section 2.6 will outline the discussions. 

2.1 Overview of Fuzzy Logic Theory   

In this section, we will outline the extenuation from crisp sets to fuzzy sets. 

2.1.1 Crisp Sets 

The elements x ⊂ A are identified to define a crisp set A within the universe 

of discourse X [Mendel 2001]. It can be realized by determining one condition or 

many that makes x ⊂ A [Mendel 2001], [Mendel 2014]. Therefore, the definition of 

A will be: A={x | x meets some condition(s)}. In other words, this leads to the 

introduction of a zero-one MF (it can be called a discrimination, indictor, or 

characteristic function), which may also represent it with respect to A [Mendel 2014]. 

In addition, µ𝐴(𝑥) has been denoted as follows [Mendel 2001]: 

A  ⇒ µ𝐴(𝑥)  ={
1     𝑖𝑓 𝑥 ∈  𝐴

        0      𝑖𝑓 𝑥 ∉ 𝐴          
.                                  (2.1) 

 

Figure 2.1 demonstrates an instance of a crisp set that models the crisp set of 

a very low knowledge level in comprehending a concept. It demonstrates that if the 

current knowledge of the learner is less than or equal to 30, then the learner’s 

knowledge of the concept is very low, and its related MF is one. When the knowledge 

degree is greater than 30, it does not fit the criteria for very low crisp sets, and its 

related MF will be zero. Nevertheless, it is actually complex to determine whether the 

learner’s knowledge is zero compared to the condition in which the learner’s 

knowledge is 30. An additional dilemma is that the sharp position between the 

perception of very low and low is 30, which is not accurate for all people whose 
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knowledge is appraised; several persons regard 20 as the sharp position between two 

perceptions, whereas others could describe 45 as that sharp mark. Hence, this type of 

set cannot be precise or deal with the basis of uncertainty that emerges from these 

vague descriptions, which are extremely common in real-world complex 

environments. Fuzzy sets are able to consider these shortcomings, and will be 

introduced in the next section. 

 

Figure 2.1: An example of a crisp set for a very low level of knowledge. 

2.1.2 Fuzzy Sets  

A crisp set is generalised by a fuzzy set. In the universe of discourse X, it gets 

recognition, and the MF µ𝐴(𝑥) characterises it. The values are in the interval [0, 1]. 

The degree of similarity is provided by the MF for an element in X in the fuzzy set F, 

and F can also be considered a subset of  X [Mendel 2001], [Mendel 2014]. An 

element of X can have both a partial and complete membership in the fuzzy set; thus, 

the element can be seen in more than one fuzzy set to different degrees of similarity 

[Mendel 2001]. One can exhibit a fuzzy set F in X form as a set of order pairs of a 

generic element x along with its grade of MF µ𝐹(𝑥) [Mendel 2001], [Mendel 2014]: 

F = {( x , µ𝐹(𝑥))}  |  x ∈ 𝑋 }.                                     (2.2) 
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Thus, the form of MF for fuzzy set F will be: 

(𝑥, µ𝐹 (𝑥))       ∀ x ∈ 𝑈.                                         (2.3) 

Here, the grade of the MF is denoted by µ𝐹(𝑥) [Mendel 2001]. Nevertheless, 

µ𝐹 (𝑥) is represented as an MF, which is a common practice [Mendel 2001]. When X 

is continuous (such as for real numbers), the representation of F will be as follows 

[Mendel 2001], [Mendel 2014]: 

𝐹 = ∫ µ𝐹 (𝑥)/𝑥
𝑋

.                                           (2.4) 

Here, the collection of all points x ∈  𝑋 in association with MF, µ𝐹  (𝑥), are 

denoted by the integral sign of Equation 2.4 [Mendel 2001], [Mendel 2014]. 

2.1.3 Linguistic Variables  

As Zadeh [1975] asserted, while pulling back from the surface of 

overpowering complication, the application named linguistic variables is naturally 

explored, and these variables comprise the values of words and sentences, not 

numbers. What drives one to use words or sentences instead of numbers is the 

linguistic characterization that is not generally specific in the same way numerical 

characterizations are. The general tendency of humans is to try to express the 

complicated world through words and sentences in a less particular way than using 

mathematical approaches or numbers. Thus, information in FL is elucidated by words 

represented by labels and linguistic variables representing words, which are related to 

fuzzy sets [Doctor 2006].  

Hence, a linguistic variable for the average knowledge level or student 

engagement level within the domain that covers certain value ranges can be defined 
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as 𝑢, and 𝑥 denotes the numerical measured values of u with 𝑥 ∈ 𝑋, where x and u can 

be used interchangeably. Further decomposition of the linguistic variable 𝑈 can be 

done in the form of a set of terms 𝑇(𝑢) constituting fuzzy granularisation of the 

linguistic variable into fuzzy sets, defined over its universe of discourse [Mendel 

2001], [Mendel 2014].  

As a result, decomposition of the linguistic variable u that represents such 

characteristics as the level of student knowledge can be done in the form of a number 

of labels or terms, such as very high, high, medium, low, and very low. Fuzzy numbers 

are expressed through these labels, of which the semantic and perceptual 

amalgamation ultimately constitutes fuzzy granules. Each label is formed by a fuzzy 

set, which is described mathematically by choosing a particular MF type. 

 

Figure 2.2: Triangular MFs representing fuzzy sets for student engagement level. 
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The fundamental characteristics of singleton (type-1) FLSs are explained in 

detail in the next section. 

2.2 Type-1 Fuzzy Logic Systems  

Fuzzy logic can be seen as an extension of traditional set theory, as statements 

can be partial truths that fall between absolute truth and absolute falsity [Mendel 

1995]. The FLS comprises four stages (as Figure 2.3 shows): fuzzifier, rule base, 

inference engine, and defuzzifier [Mendel 1995]. Rules can be extracted from 

numerical data or supplied by experts. Upon establishing the rules, an FLS may be 

considered a mapping from crisp inputs to crisp outputs, and such a mapping may be 

articulated numerically as 𝑦 = 𝑓(𝑥) [Mendel 1995]. 

FUZZIFIER DEFUZZIFIER

RULE BASE

INFERENCE 
ENGINE

Crisp Inputs Crisp Outputs

 

Figure 2.3: Overview of a fuzzy logic system [Mendel 2001]. 

2.2.1 Fuzzification  

A crisp point input vector, including p inputs 𝑥 = ( 𝑥1,…, 𝑥𝑝)𝑇 ∈ 𝑋1  ×

 𝑋2, …, 𝑋𝑝 ≡ X  within a fuzzy set, 𝐴𝑋 in X is measured by the fuzzifier [Mendel 

2001]. The singleton fuzzifier is popular among fuzzifiers, and it will be applied for 
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the environment we have proposed. There is solely a single nonzero membership point 

in the input fuzzy set of the singleton fuzzification [Mendel 2001]. 

This means that the fuzzy set 𝐴𝑥 can be defined as a fuzzy singleton supported 

by 𝑥′ if µ𝐴𝑥
(𝑥) =1 for x=𝑥′ and µ𝐴𝑋

(𝑥) =0 for 𝑥 ≠ 𝑥′ in regards to all other 𝑥 ∈ 𝑋. 

Thus, its meaning can be interpreted as every distinct component of µ𝐴𝑥
(𝑥) being a 

fuzzy singleton. It indicates that we must assume µ𝑥𝑖
(𝑥𝑖

′) = 1 for 𝑥𝑖=𝑥′ and µ𝑥𝑖
(𝑥′) =

0 for ∀ 𝑥𝑖  ∈  𝑋𝑖 𝑎𝑛𝑑 𝑥 ≠ 𝑥𝑖
′ [Mendel 2001]. 

2.2.2 Rule Base 

A type-1 fuzzy system with p inputs 𝑥1  ∈  𝑋1, … , 𝑥𝑝 ∈  𝑋𝑝 and k outputs 𝑦1  ∈

 𝑌1, … , 𝑦𝑘 ∈  𝑌𝑘 will be considered by our study [Mendel 2001]. Thus, the formulation 

of the rule base for this Multiple Input Multiple Output- (MIMO) FLS carrying M 

rules will be as follows [Doctor 2006]: 

𝑅 = {𝑅𝑀𝐼𝑀𝑂
1  , 𝑅𝑀𝐼𝑀𝑂

2  , … … . . , 𝑅𝑀𝐼𝑀𝑂
𝑀 }.                    (2.5) 

Here, the form of the 𝑙𝑙ℎ rule is: 

𝑅𝑀𝐼𝑀𝑂
𝑙 : 𝑖𝑓 𝑥1 𝑖𝑠 𝐹1

𝑙 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑚 𝑖𝑠 𝐹𝑚
𝑙  𝑇ℎ𝑒𝑛 𝑦1 𝑖𝑠 𝐺1

𝑙  , … , 𝑦𝐾 𝑖𝑠 𝐺𝐾
𝑙  𝑙 = 

1, … , 𝑀.                                                             (2.6) 

Lee [1990] proffered outcomes that assert that the rule base of MIMO can be 

taken in terms of a group of Multi-Input Single-Output (MISO) rule bases, as follows 

[Doctor 2006]: 

𝑅 = {𝑅𝐵1 𝑀𝐼𝑆𝑂 , 𝑅𝐵2 𝑀𝐼𝑆𝑂 , … … . . , 𝑅𝐵𝑘 𝑀𝐼𝑆𝑂}.                      (2.7) 
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Here, the rule base of the multiple p inputs and the 𝑐𝑙ℎ single output (MISO) 

𝑅𝐵𝑐 𝑀𝐼𝑆𝑂 is present with c = 1,…, k and k is the total number of outputs of the type-1 

FLS; M rules are contained within the rule base [Doctor 2006]. 

2.2.3 Fuzzy Inference Engine  

The functionality inference engine block in the FLS in Figure 2.7 is to map 

input fuzzy sets to output fuzzy sets [Mendel 2001]. The following is formulated from 

every rule in a MISO fuzzy rule base with M, which is the total number of rules, 𝑙 =

1,2,3, . … , 𝑀  with p inputs 𝑢1  ∈  𝑈1, …, 𝑢𝑛  ∈ 𝑈𝑝  and one output 𝑣 ∈ 𝐺𝑐
𝑙 [Kassem 

2012], [Mendel 2001]: 

𝑅𝐶 𝑀𝐼𝑆𝑂
𝑙 : If 𝑢1 𝑖𝑠 𝐹1

𝑙  and 𝑢𝑝 𝑖𝑠 𝐹𝑝
𝑙, then 𝑣 𝑖𝑠 𝐺𝑐

𝑙  𝑙 = 1, … . , 𝑀,             (2.8) 

where 𝐹1
𝑙  , 𝐹2

𝑙 , … , 𝐹𝑝
𝑙  are fuzzy sets in 𝑈1, 𝑈2, … . , 𝑈𝑝 and 𝐺𝑐

𝑙 are fuzzy sets in 

𝑉. The inference engine employs these if-then rules to map input fuzzy sets in 𝑈 =

𝑈1 × 𝑈2, … , 𝑈𝑚 to output fuzzy sets in 𝑉. Every rule is interpreted as a fuzzy 

implication [Mendel 2001], and in FL, there are numerous means where a fuzzy 

implication could be described [Lee 1990]. The popular implications of engineering 

applications are Mamdani implications, and our proposed system will apply these 

implications. 

Let 𝐹1
𝑙  ×, … ,× 𝐹𝑝

𝑙 be 𝐴 and 𝐺𝑐
𝑙 be 𝐵, so that the rule demonstrated in Equation 

(2.8) is construed by the inference engine as  𝐴 → 𝐵. The mapping is completed from 

µ𝐴(𝑢) to µ𝐵(v), in which 𝑢 ∈ 𝑈  and  𝑣 ∈ V. Moreover, 𝑢 and 𝑣 are linguistic 

variables, and their arithmetic values are x and y, where 𝑥 ∈ 𝑈  and v ∈ V [Kassem 

2012]. By taking x and y into account, the interpretation performed by the inference 

engine can be written as  
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µ𝑅𝑙(𝑥, 𝑦) = µ𝐴→ 𝐵(𝑥, 𝑦).                                      (2.9) 

To calculate the firing strength degree 𝑓𝑙(𝑥) of the 𝑙𝑡ℎ rule 𝑅𝑙, the computation 

is demonstrated in the subsequent equation in which ⋆ is the selected t-norm: 

𝑓𝑙(𝑥) = µ𝑥1
(𝑥1)  ⋆ … … .⋆ µ𝑥𝑝

(𝑥𝑝).                            (2.10) 

Following the computation of the firing degree 𝑓𝑙(𝑥) for every rule 𝑅𝑙, we can 

find the output fuzzy set 𝐵𝑙. The final output fuzzy set is established by merging the 

output fuzzy set for every rule by means of a t-conorm operator [Kassem 2012].  

2.2.4 Defuzzification 

The functionality of the defuzzifier is to calculate a crisp output for the type-1 

FLS from the fuzzy sets that existed at the output of the inference engine. I have used 

one type of defuzzification method, the centre set defuzzification approach [Karnik 

1998], [Sugeno 1993], in which each rule’s consequent is replaced by a singleton 

placed at its centroid, whose amplitude equals the firing level. Then the centroid 

composed of these singletons can be found [Mendel 2001]. The formula for obtaining 

the output is: 

𝑦𝑐𝑜𝑠(𝑥)𝑐 =
∑ 𝑐𝑒𝑐

𝑙  𝑇𝑖=1
𝑝

µ
𝐹𝑖

𝑙 
 (𝑥𝑖 )𝑀

𝑙=1

∑  𝑇
𝑖=1
𝑝

µ
𝐹𝑖

𝑙 
 (𝑥𝑖 )𝑀

𝑙=1

,                                    (2.11) 

Where 𝑐𝑒𝑐
𝑙  is the centroid of the 𝑙𝑡ℎ rule and 𝑇𝑖=1

𝑝 µ
𝐹𝑖

𝑙 
 (𝑥𝑖 ) is the firing strength 

level [Mendel 2001]. 
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2.3 Type-2 Fuzzy Sets 

Modelling numeric and linguistic uncertainties is possible through type-2 

fuzzy sets because their MFs are fuzzy as well [Mendel 2002]. The linguistic and 

numeric uncertainties faced by e-learning environments can be managed by type-2 

fuzzy sets to acquire improved teaching-learning behaviour models. As shown in 

Figure 2.4a, the points on the triangle can be shifted either right or left, and the 

amounts do not have to be equal, as can be seen in Figure. 2.4b. Thus، blurring type-

2 fuzzy sets can be assumed accordingly [Mendel 2014]. Therefore, no single value 

remains for the MF (u’) at a particular value of x, say x’, or any value of points 

intersected by the vertical line with the blurred area in Figure. 2.4c. The weight of 

those values is not required to be the same, so an amplitude distribution can be 

assigned to each of these points. A 3D MF is created to realise this distribution for all 

𝑥 ∈ 𝑋, where a type-2 fuzzy set is characterised by a type-2 MF [Mendel 2001], 

[Mendel 2014]. Conventionally, a type-2 MF 𝜇𝐴̃(𝑥, 𝑢) denotes a type-2 fuzzy 𝐴 ̃set 

[Mendel 2001], [Mendel 2014], where, 𝑥 ∈ 𝑋 and 𝑢 ∈ 𝐽𝑥  ⊆ [0,1], which means 

[Mendel 2001]: 

𝐴̃ = {((𝑥, 𝑢), 𝜇𝐴̃(𝑥, 𝑢))| ∀ 𝑥 ∈ 𝑋 , ∀ 𝑢 ∈ 𝐽𝑥  ⊆ [0,1] }                     (2.12) 
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Figure 2.4: (a) Type-1 MF and (b) blurred type-1 MF (c) FOU [Mendel 2001]. 

 

2.3.1 Interval Type-2 Fuzzy Logic Sets 

Formally, let 𝐴̃ be an interval type-2 fuzzy set (IT2 FS), as shown in Figure 

2.5 a, which is characterized as follows [Mendel 2006a]: 

𝐴̃ =  ∫ ∫ 1/(𝑥, 𝑢) 
𝑢∈𝐽𝑥𝑥∈𝑋

=  ∫ [∫ 1 𝑢⁄
𝑢∈𝐽𝑥

]
𝑥∈𝑋

𝑥⁄                              (2.13)  

where 𝑥, the primary variable, has domain 𝑋; 𝑢 ∈ 𝑈, the secondary variable, 

has domain 𝐽𝑥 at each 𝑥 ∈ 𝑋; 𝐽𝑥 is called the primary membership of 𝑥 and is defined 

in Equation (2.14) and the secondary grades of 𝐴̃ all equal 1 [Mendel 2006a]. 

𝐽𝑥 = {(𝑥, 𝑢): 𝑢 ∈ [𝜇𝐴̃(𝑥), 𝜇
𝐴̃

(𝑥)]}                                        (2.14) 
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Moreover, uncertainty about 𝐴̃ is conveyed by the union of all the primary 

memberships, which is called the footprint of uncertainty (FOU) of 𝐴̃, and is 

formalized as: 

𝐹𝑂𝑈(𝐴̃) = ⋃ 𝐽𝑥∀𝑥∈𝑋 = {(𝑥, 𝑢): 𝑢 ∈  𝐽𝑥 ⊆ [0,1]}                              (2.15) 

 

 

            (a)                                                                                                      (b) 

Figure 2.5: (a) FOU of an IT2 FS and its primary membership with its associated (b) secondary MF. 

 

The upper membership function (UMF), as shown in blue in Figure 2.5 a, and 

the lower membership function (LMF), as shown in green in Figure 2.5 a, of 𝐴̃ are two 

type-1 MFs that bound the FOU. The UMF is associated with the upper bound of 
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𝐹𝑂𝑈(𝐴̃) and is denoted by 𝜇
𝐴̃

(𝑥), ∀𝑥 ∈ 𝑋,  and the LMF is associated with the lower 

bound of 𝐹𝑂𝑈(𝐴̃) and is denoted by 𝜇𝐴̃(𝑥), ∀𝑥 ∈ 𝑋, i.e. 

𝜇
𝐴̃

(𝑥) ≡ 𝐹𝑂𝑈(𝐴̃)      ∀𝑥 ∈ 𝑋                                          (2.16) 

𝜇𝐴̃(𝑥) ≡ 𝐹𝑂𝑈(𝐴̃)      ∀𝑥 ∈ 𝑋                                       (2.17) 

As the name suggests, IT2 fuzzy sets are based on the idea of an interval for 

the additional degree of freedom of a type-2 fuzzy set, which is the third dimension 

represented by the secondary membership function, as illustrated in Figure 2.5 b. 

According to [John 2007], the reason for the popularity of interval techniques is that 

in a case where the secondary membership function is non interval, computation 

becomes much more difficult. Hence, until recently, IT2 fuzzy sets have been the 

subject of a larger focus and greater use in terms of applications and research. 

Within the literature, interval type-2 fuzzy sets have been extensively used in 

a wide range of applications, including control of mobile robots [Hagras 2004], 

forecasting of time series [Karnik 1999b], decision making [Ozen 2004a], [Ozen 

2004b], and additional situations outlined in [Mendel 2002] and [Hagras 2012]. The 

main reason for this proliferation of applications is that type-2 fuzzy sets can respond 

to the shortcomings of type-1 [Greenfield 2009] because they can better (with respect 

to type-1 fuzzy sets) model the uncertainty associated with the available information, 

measurements, etc. [Karnik 1999a]. More important, type-2 FSs provide ways to 

handle the linguistic uncertainty that is emphasized by the adage ‘words mean 

different things to different people’ [Mendel 1999]. However, IT2 FSs are also prone 

to generate a number of incompatible statements as pointed out by Greenfield and 
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John, who suggest the use of general type-2 FSs to achieve consistency in modelling 

statements [Greenfield 2009]. 

The next subsection introduces the general type-2 FL, where the secondary 

membership function is non interval [John 2007] and can be modelled. 

2.3.2 General Type-2 Fuzzy Logic Sets 

As noted in Figure 2.6, which displays the historical development of type-2 

fuzzy logic, the full definition of type-2 fuzzy logic systems, including general type-

2 fuzzy logic, took place in the 2000s.  This step forward also embodies the 

establishment of the connection between type-1 and type-2 fuzzy logic as it follows 

the definition of the type of reduction introduced in [Karnik 1999a]. With the 

significant progress in interval type-2 fuzzy logic, the complexity of the general type-

2 fuzzy logic has become more approachable. Recently, the introduction of zSlices 

[Wagner 2010] and alpha-planes [Mendel 2009], [Mendel 2010] has helped bridge 

the gap caused by the complexity of the design and implementation of general type-2 

fuzzy sets, especially for real-world applications. 

Formally, a general type-2 fuzzy set 𝐺̃ is defined as follows [Mendel 2001a]: 

𝐺̃ =  ∫ ∫ 𝜇𝐺̃(𝑥, 𝑢)/(𝑥, 𝑢) 
𝑢∈𝐽𝑥𝑥∈𝑋

                                           (2.18) 

Where  0 ≤ 𝜇𝐺̃(𝑥, 𝑢) ≤ 1 and the integral denote union over all admissible 

values of 𝑥 and 𝑢. 
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Figure 2.6: A timeline depicting the historical development of type-2 fuzzy logic [John 2007]. 

 

A vertical slice of 𝜇𝐺̃(𝑥, 𝑢) at 𝑥 = 𝑥′, which is a 2-D plane whose axes are 𝑢 

and 𝜇𝐺̃(𝑥′, 𝑢), can be represented as follows [Mendel 2001]: 

 𝜇𝐺̃(𝑥 = 𝑥′, 𝑢) =  ∫ 𝑓𝑥′(𝑢)/𝑢 
𝑢∈𝐽𝑥′

    𝐽𝑥′ ⊆ [0,1]                        (2.19) 

Where 0 ≤ 𝑓𝑥′(𝑢) ≤ 1. 

Hence, a general type-2 fuzzy set 𝐺̃ can be re-expressed in the union of all 

vertical slices as shown in Equation (2.20) [Mendel 2001]: 

𝐺̃ =  ∫ [∫ 𝑓𝑥(𝑢)/𝑢
𝑢∈𝐽𝑥

] /𝑥
𝑥∈𝑋

    𝐽𝑥 ⊆ [0,1                               (2.20) 
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As has been noted before, type-2 fuzzy logic allows for better (in comparison 

to type-1 fuzzy logic) modelling of uncertainty because type-2 fuzzy sets encompass 

an FOU, which gives more degrees of freedom to type-2 fuzzy sets in terms of their 

third dimension [Wagner 2010]. Figure 2.7 shows the secondary membership 

functions (the third dimension) of type-1 FSs (Figure 2.7 A), IT2 FSs (Figure 2.7 B) 

and GT2 FSs (Figure 2.7 C). As seen in Figure 2.7 A, the secondary MF in type-1 

fuzzy sets has only one value in its domain (‘a’ in Figure 2.7 A) corresponding to the 

primary membership value at which the secondary grade is 1 [Wagner 2010]. Hence, 

in type-1 FSs, for each x value, there is no uncertainty associated with the primary 

membership value [Wagner 2010]. However, it can be observed in Figure 2.7 B that 

there is maximum uncertainty represented in the secondary MF of an IT2 FS because 

the primary membership takes in values in the interval [a, b], where each point in the 

interval has an associated secondary membership that is always 1 [Wagner 2010]. In 

GT2 FSs, the uncertainty (represented in the secondary MF) can be modelled with any 

degree between type-1 and IT2 fuzzy sets, for example by the triangular secondary 

MF shown in Figure 2.7 C [Wagner 2010]. Hence, GT2 fuzzy sets can model the 

uncertainty in the third dimension precisely, from nearly no uncertainty (i.e. type-1) 

to maximum (i.e. IT2, where the uncertainty is equally spread in the third dimension) 

[Wagner 2010]. 

 

(A)                                                                 (B)                                                                     (C) 

Figure 2.7: Views of the secondary membership functions (third dimensions) of (a) type-1 fuzzy sets, 

(b) interval type-2 fuzzy sets, and (c) general type-2 fuzzy sets [Wagner 2010]. 
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2.4 Type-2 Fuzzy Logic Systems 

The need for a type-2 FLS stems mainly from the uncertainty inherent in the 

knowledge that is used to construct the rules of an FLS [Mendel 2000]. According to 

Mendel [Mendel 2000], there are three ways in which such uncertainty can occur: the 

words that are used in antecedents and consequents of rules can mean different things 

to different people, consequents obtained by polling a group of experts will often be 

different for the same rule as experts will not necessarily be in agreement, and only 

noisy training data are available. These aforementioned sources of uncertainty 

translate into uncertain antecedents or consequent membership functions within the 

FLS [Karnik 1999a]. Several studies in the literature put forward that type-1 FLSs, 

whose membership functions are type-1 fuzzy sets, are unable to handle rule 

uncertainties directly [Mendel 2000] and therefore are inappropriate for certain types 

of real-world applications. Meanwhile, type-2 FLSs, which use type-2 fuzzy sets, have 

the potential to provide better performance than type-1 FLSs [Mendel 2006b]. Due to 

the computational complexity of using a GT2 FS, most people only use IT2 FSs in a 

T2 FLS, the result being an IT2 FLS [Mendel 2006b]. Within the literature, T2 FLSs 

(especially IT2) have found their way into many engineering applications and are also 

known as fuzzy logic controllers (FLCs) or fuzzy expert systems [Mendel 2006a]. 

 

Figure 2.8 Type-2 fuzzy logic system [Hagras 2004]. 
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The architecture of a type-2 FLS is illustrated in Figure 2.8 where the 

interconnection of the five components (fuzzifier, rules, inference engine, type-

reducer and defuzzifier) is shown. As can be seen, the structure of a type-2 FLS is 

very similar to that of the type-1 FLS shown in Figure 2.8. Different from type-1 

FLSs, type-2 FLSs have the additional block labelled as type-reducer, which is an 

extension of a type-1 defuzzification procedure and represents a mapping of a type-2 

fuzzy set into a type-1 fuzzy set [Mendel 2001]. In a type-2 FLS, the steps taken to 

form type-2 fuzzy output sets are similar to those of a type-1 FLS with the distinction 

that one of the antecedent or consequent fuzzy sets are of type-2 [Mendel 2006b]. 

2.4.1 Fuzzifier 

In the same fashion as a type-1 FLS, the fuzzifier maps the crisp inputs into 

fuzzy sets. Again, there are two types of fuzzification techniques available (singleton 

and non-singleton), which were mentioned in Section 2.2.1 and will not be repeated 

here. 

2.4.2 Rule Base 

The distinction between the type-1 FLS and type-2 FLS is associated with the 

nature of the membership functions, which is not important while forming rules.  

Hence, the structure of the rules remains exactly the same in the type-2 FLS, the only 

difference being that now some, or all, of the sets involved are type-2 [Karnik 1999a]. 

However, the formal representation of the 𝑙th fuzzy rule in a type-2 FLS with 𝑀 rules 

can be restated as follows [Mendel 2001]: 

𝑅𝑙 ∶ 𝐼𝐹 𝑥1𝑖𝑠 𝐹1
𝑙̃  𝑎𝑛𝑑 𝑥2 𝑖𝑠  𝐹2

𝑙̃  𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑝 𝑖𝑠 𝐹𝑝
𝑙̃, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺𝑙̃   𝑙 = 1, . . , 𝑀 (2.21) 
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Where 𝑥𝑖 are inputs; 𝐹𝑖
𝑙̃s are antecedent sets (𝑖 = 1, … , 𝑝); 𝑦 is the output; and 

𝐺𝑙̃ are consequent sets. In the case of multiple consequents in the FLS, the rules can 

be regarded as a group of multiple-input, single-output formats as in Equation (2.21). 

2.4.3 Inference Engine 

The inference process in a type-2 FLS is also quite similar to the inference 

process of a type-1 FLS [Karnik 1999a]. Formally, the inference engine combines 

rules and gives a mapping from input type-2 fuzzy sets to output type-2 fuzzy sets 

[Karnik 1999a]. In detail, multiple antecedents in rules are connected by the t-norm 

(corresponding to the intersection of sets) [Karnik 1999a]. The membership grades in 

the input sets are combined with those in the output sets using the sup-star composition 

[Karnik 1999a]. Multiple rules may be combined using the t-conorm operation 

(corresponding to union of sets) [Karnik 1999a].   

2.4.4 Type Reduction 

The output of the inference engine in a type-2 FLS is different from that in a 

type-1 FLS. As noted in Figure 3.5, the inference engine of a type-2 FLS outputs type-

2 fuzzy sets, which then go into the type-reducer block to be fed into the defuzzifier 

component of the system. In this case, one uses extended versions of type-1 

defuzzification methods that give a type-1 fuzzy set, which is also referred to as a 

‘type-reduced set’ [Karnik 1999a]. The methods include centroid, centre-of-sums, 

height, modified height, and centre-of-sets type reduction [Mendel 2001]. As pointed 

out by Mendel [Mendel 2001], [Liang 2000], centre-of-sets type reduction has 

reasonable computational complexity that lies between computationally expensive 

centroid-type reduction and the simple height- and modified-height-type reductions, 
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which have problems when only one rule fires. Furthermore, a centre-of-sets type 

reduction allows for real-time operation if the rule base is small [Hagras 2004]. 

Type reduction for arbitrary type-2 fuzzy sets can be computationally very 

costly [Mendel 2001]. The computation of meet and join for interval type-2 sets is 

comparatively more straightforward. The formalization for a type-reduced set using 

the centre-of-sets type reduction for IT2 FLS is given in Equation (2.22) below 

[Mendel 2001]: 

𝑌𝑐𝑜𝑠(𝑥) = [𝑦𝑙, 𝑦𝑟] 

= ∫ ⋯ ∫ ∫ ⋯ ∫ 1
∑ 𝑓𝑖𝑦𝑖𝑀

𝑖=1

∑ 𝑓𝑖𝑀
𝑖=1

⁄
𝑓𝑀∈[𝑓𝑀,𝑓

𝑀
]𝑓1∈[𝑓1,𝑓

1
]𝑦𝑀∈[𝑦𝑙

𝑀,𝑦𝑟
𝑀]𝑦1∈[𝑦𝑙

1,𝑦𝑟
1]

                 (2.22) 

where 𝑌𝑐𝑜𝑠(𝑥) is an interval set determined by its leftmost point 𝑦𝑙 and its 

rightmost point 𝑦𝑟, 𝑖 = 1 ⋯ 𝑀 and 𝑀 is the number of rules. 𝑦𝑖 corresponds to the 

centroid of the type-2 interval consequent set of the ith rule and is a pre-computed 

type-1 interval fuzzy set determined by its leftmost point 𝑦𝑙
𝑖 and its rightmost point 𝑦𝑟

𝑖 

[Mendel 2001a]. 𝑓𝑖 denotes the firing strength (degree of firing) of the ith rule, which 

is an interval type-1 set determined by its leftmost point 𝑓𝑖 and rightmost point 𝑓
𝑖
 

[Hagras 2004]. 

In the operation of an IT2 FLS in a real-world application, the calculation of 

the type-reduced sets can be divided into two stages. The first stage is the ahead-of-

time calculation of centroids of the type-2 interval consequent sets of each rule, and 

the second stage is the calculation of the type-reduced sets that are to be defuzzified 

after each inference process [Hagras 2004]. The procedures for both stages are 
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detailed in [Mendel 2001], [Hagras 2004], [Karnik 1999a] [Mendel 2006a] and 

[Mendel 2006b]. 

2.4.5 Defuzzifier 

To get a crisp output from a type-2 FLS, the type-reduced set that is a type-1 

fuzzy set needs to be defuzzified. According to Mendel [Mendel 2001], the most 

natural way to defuzzify the type-1 reduced set is to find its centroid, but there are 

other ways, such as choosing the highest membership point in the type-reduced set 

[Karnik 1999a]. For an IT2 FLS, the crisp output 𝑦(𝒙) of the system is the average of 

the end points of the type-reduced set 𝑌𝑐𝑜𝑠(𝑥) as follows [Mendel 2001]:  

𝑦(𝒙) =  
𝑦𝑙+𝑦𝑟

2
                                          (2.23) 

Most of the calculations above have been formulated using IT2 fuzzy sets 

because they provide simplicity over GT2 fuzzy sets. Until recently, the high 

complexity associated with GT2 FS design and their computational requirements have 

made them appear unsuitable for real-world use. However, the introduction of zSlices 

[Wagner 2010] and alpha-planes [Mendel 2009] has helped bridge the gap caused by 

the complexity of the design and implementation of GT2 fuzzy sets, especially for 

real-world applications. It has been proven that alpha-plane and zSlice representations 

are equivalent [Zhai 2012]; hence, the choice of representation for GT2 FSs can be 

considered a design decision. This thesis was use zSlice representation, so the next 

section will briefly introduce zSlices and present their use to implement GT2 FSs in 

real-world applications.  
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2.5 Introduction to zSlices 

A zSlice is formed by slicing a general type-2 fuzzy set in the third dimension 

(z) at level 𝑧𝑖 [Wagner 2010]. The result of this slicing action is an interval set in the 

third dimension with height 𝑧𝑖. In other words, a zSlice 𝑍̃𝑖 is equivalent to an interval 

type-2 fuzzy set with the exception that its membership grade 𝜇𝑍̃𝑖(𝑥,𝑢) in the third 

dimension is not fixed to 1; instead is equal to 𝑧𝑖 where 0 ≤ 𝑧𝑖 ≤ 1. Thus, the zSlice 

𝑍̃𝑖 can be written as follows [Wagner 2010]: 

𝑍̃𝑖 =  ∫ ∫ 𝑧𝑖/(𝑥, 𝑢𝑖)
𝑢𝑖∈𝐽𝑖𝑥𝑥∈𝑋

                                   (2.24) 

where at each 𝑥 value (as shown in Figure 2.9 A), zSlicing creates an interval 

set with height 𝑧𝑖 and domain 𝐽𝑖𝑥
 which ranges from 𝑙𝑖 to 𝑟𝑖 as shown in Figure 2.9 B,  

1 ≤ 𝑖 ≤ 𝐼, where I is the number of zSlices (excluding 𝑍̃0) and 𝑧𝑖 = 𝑖/𝐼.  

 

Thus, Equation (2.24) can be written as follows [Wagner 2010]: 

𝑍̃𝑖 =  ∫ ∫ 𝑧𝑖/(𝑥, 𝑢𝑖)
𝑢𝑖∈[𝑙𝑖, 𝑟𝑖]𝑥∈𝑋

                                          (2.25) 

 

      (A)                                                                     (B) 

Figure 2.9 (a) A front view of a general type-2 set 𝑮̃ and (b) A third dimension at x’ of a zSlice-based 

general type-2 fuzzy set (Adapted from [Wagner 2010]) 
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Additionally, 𝑍̃0 is regarded as a special case with 𝑧 = 0, as shown in Equation 

(2.26) [Wagner 2010]. Hence, it has been noted to consider that 1 ≤ 𝑖 ≤ 𝐼 as  𝑍̃0 will 

not contribute to the crisp output of the zSlice-based GT2 FLS and it can be omitted 

with no effects [Wagner 2010]. 

𝑍̃0 =  ∫ ∫ 0/(𝑥, 𝑢)
𝑢∈𝐽𝑥𝑥∈𝑋

                                        (2.26) 

2.5.1 zSlices-Based General Type-2 Fuzzy Sets 

A general type-2 fuzzy set 𝐺̃ could be seen as equivalent to the collection of 

an infinite number of zSlices: 

𝐺̃ =  ∫ 𝑍̃𝑖0≤𝑖≤𝐼
 ,   𝐼 → ∞                                       (2.27) 

 

In a discrete universe of discourse, Equation (2.27) can be rewritten as follows: 

𝐺̃ =  ∑ 𝑍̃𝑖
𝐼
𝑖=1                                             (2.28) 

In real-world implementation of GT2 FSs, the discrete version will be used as 

shown in Equation (2.28) where the summation sign does not denote arithmetic 

addition, but rather the union set theoretic operation [Wagner 2010]. Using the max 

operation to represent the union, the membership function 𝜇𝐺̃(𝑥′) at 𝑥′ of the zSlice-

based general type-2 fuzzy set 𝐺̃ can be expressed as follows:  

𝜇𝐺̃(𝑥′) =  ∑ 𝑚𝑎𝑥 (𝑧𝑖)/𝑢𝑢𝑖∈𝐽𝑥′
,  𝐽𝑥′ ⊆ [0,1]                              (2.29) 

 Where 0 ≤ 𝑖 ≤ 𝐼. It is worth noting that at 𝑥′, 𝜇𝐺̃(𝑥′) is a type-1 fuzzy set. 
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The operations on zSlice-based GT2 fuzzy sets, namely the intersection and 

union operations implemented through the meet and join operations, have been 

described in detail in [Wagner 2010]. Accordingly, the join and meet operations 

between two zSlice-based GT2 fuzzy sets are reduced to the computation of the join 

and meet operation between each corresponding zSlices in both sets, successively 

[Wagner 2010]. Because each zSlice is a special IT2 FS, the computations that were 

considered to be complex for GT2 FSs have been simplified and therefore made 

practical to be implemented in real-world applications. Hence, zSlice representation 

has enabled GT2 FSs to be considered suitable to employ within applications that 

require more complex uncertainty modelling. The various steps involved in the 

processing of a zSlice-based GT2 FLS is described and outlined by Wagner [Wagner 

2010], [Wagner 2009].  

2.6 Discussion    

In this chapter, we firstly provided a brief overview of type-1 fuzzy logic 

systems to establish the case for their application in handling the uncertain and 

imprecise information in real e-learning environments. A nonlinear mapping of an 

input set that is acquired from varied student characteristics, knowledge levels, and 

engagement levels to a set of outputs that are related to student needs and preferences 

can be achieved via tailored adaptive learning content. The type-1 FLS rule base will 

have a collection of independent MIMO systems that facilitate this mapping, which 

directly models the user behaviours in the environment [Doctor 2006]. Learning these 

rules is possible as part of an intelligent system from data acquired by monitoring 

learner behaviour in the e-learning environment and representing it as a set of if-then 

statements that describes the current state of the learner and the associated student 

needs in an adaptive intelligent learning system, as Figures 2.10 and 2.11 show. 
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         IF Student-Age is Teen AND Student-Gender is Female AND Secondary-

Grade is Excellent AND Method-of-Providing-Higher-Education is Full-Time 

AND the Secondary-Section is Science AND Average-Knowledge-in-Excel is 

Very Low AND Average-Knowledge-in-PowerPoint is Low, then the Suited-

Excel-Difficulty-Level is Easy AND Needed-Time-to-Study-Excel is Very Long 

AND Suited-PowerPoint-Difficulty-Level is Moderate AND Needed-Time-to-

Study-PowerPoint is Short. 

Figure 2.10: One example of an extracted rule from the produced rules. 

IF the learners’ average level of engagements is Low AND the learners’ 

average standard deviation level of engagements is Moderate AND the difficulty 

level of the current lesson is Hard THEN the recommendation to use the “asking 

questions” teaching approach is High AND the recommendation to use the 

“practical explanation (demo)” approach is Low AND the recommendation to 

use the “teaching with cases (problem solving)” approach is Moderate AND the 

recommendation to use the “PowerPoint slides” teaching approach is Low 

Figure 2.11: An example of one of the extracted fuzzy rules. 

The acquired user behaviours can be represented clearly and flexibly by 

providing the fuzzy rules, which ultimately enhances an approach based on behaviour 

to express the decisions learned from the system [Brooks 1991], [Doctor 2006]. The 

rules describe particular situations or states of the e-learning environment according 

to learner needs under specific conditions. This approach to handling the embodied 
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systems is more appropriate than traditional AI techniques, in which acquired 

information is inclined to be unpredictable, partial, and influenced by the environment 

and a perfect and full solution is far from being predefined [Doctor 2006], [Sharples 

1999]. These advantages increase the strength of FLSs with respect to their easy 

adaptability and improved suitability during real-time processing [Callaghan 2001], 

[Doctor 2006]. 

Learning–teaching behaviour is represented in a human-readable and 

linguistically interpretable manner by the fuzzy rules. Their transparency makes them 

able to be assessed quickly so one can explain the reason for and method of certain 

combinations of input-actuated specific rules where a certain set of output conclusions 

has been yielded. There is an association with linguistic labels appearing in the 

consequent and antecedent of rules grouped as input and output values in the system. 

Adapting the fuzzy sets of an FLS is possible from the data yielded from the system. 

There many other options for soft computing techniques, as discussed in the 

introduction, such as neural networks and genetic algorithms for learning both rules 

and MFs of FLSs [Doctor 2006].  

Most of the FL-based systems developed for e-learning environment 

applications have used type-1 FL for handling uncertainty and imprecisions 

[Chrysafiadi 2015], [Prokhorov 2015], [Yadav 2014], [Yildiz 2014], [Chen 2013], 

[Hsieh 2012], [Sripan 2010], [ Saleh 2009], [Bai 2008], [Venkatesan 2008], [Nykänen 

2006], [Kavčič 2004], [Xu 2002]. Type-1 FLSs, however, have a common problem in 

that they cannot fully handle or accommodate all uncertainties because they use 

precise type-1 fuzzy sets [Mendel 2001], [Mendel 2014]. Type-1 fuzzy sets handle 

uncertainties associated with inputs and outputs using precise and crisp MFs that the 
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user believes captures the uncertainties [Mendel 2001], [Mendel 2014]. Once the type-

1 MFs have been chosen, all the uncertainties disappear, because type-1 MFs are 

precise [Mendel 2001], [Mendel 2014]. Type-1 fuzzy sets are chosen or generated 

under specific parameter ranges from the input and output variables and thereafter 

model the user behaviour under specific learning-teaching conditions. The number of 

users existing in the e-learning environment with their different backgrounds and 

characteristics will cause a high level of linguistic uncertainty whereby user 

interpretations and responses to their levels of knowledge, difficulty of the content, 

time needed, and other needs are different and varied according to their plans, 

cognition, preknowledge, and motivation levels. These uncertainties translate to the 

fuzzy set MFs [Mendel 2002]. The effectiveness of type-1 FLSs is limited by their 

use of precise type-1 fuzzy sets, which handle only the uncertainties associated with 

the specific user view under which the MFs were generated. The mentioned linguistic 

uncertainties would cause the values of fuzzy set MFs associated with linguistic labels 

to change. The specific type-1 MFs would therefore no longer be effective enough at 

modelling the user behaviours under the new conditions and would, therefore, not be 

able to handle the associated linguistic uncertainties.  

This chapter has also considered the introduction of type-2 fuzzy systems 

where type 2 fuzzy sets with the direct ability of modelling linguistic uncertainties 

have been presented. Accordingly, they also have the ability of reducing their effects 

on the design of the adaptive learning and teaching system. Consequently, type-2 

fuzzy sets based on FLSs will be potent enough to yield an improved performance 

compared to type-1 FLSs that will have their effects reflected in facilitated student 

performance and improved student engagement and achievement rates. 
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A big number of type-1 fuzzy sets, having been embedded inside the FOUs of 

the type 2 fuzzy sets, constitute every input and output in type-2 FLSs. The input and 

output variables are described using a big number of type-1 fuzzy sets, which permits 

the acquisition of higher perfection while recording the user behaviour within the 

educational environments. Its reflection will be seen in facilitated student performance 

and improved student engagement and achievement rates. An example of such 

encountered uncertainties in e-learning environments is the acquired rules from user 

behaviours, which define their learning-teaching behaviours and target those users 

within e-learning environments. The number of users who could be students or 

experts, a number we used in obtaining the consequent of rules, makes their agreement 

difficult regarding the same consequents to tackle learners' needs. Another issue is 

that the meaning of the words and fuzzy sets used to describe the learner and 

instructional variables (inputs and outputs), such as their behaviour, within the e 

learning environment means different things to different people. We will show an 

example of how we used the type-2 fuzzy systems to model and reduce the 

uncertainties that exist within the e-learning environments. 

In the next three chapters, we will introduce the proposed empirical theoretical 

and practical environments based on T2FLS. 
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Chapter 3: The Proposed IT2FLS with User 

Engagement Feedback for Adaptive Learning 

within Small-Scale Intelligent E-Learning 

Platforms 

3.1 Introduction 

The recent years have witnessed an expansion in realising adaptive 

educational systems for intelligent e-learning platforms. Such platforms permit the 

development of customised learning contexts adapted to the requirements of every 

student by correlating the students’ characteristics with instructional variables. 

However, the vast majority of the existing adaptive educational systems do not learn 

from the users’ behaviours to create white box models that can handle the linguistic 

uncertainties and be easily read and analysed by the lay user. Moreover, most of the 

existing systems ignore gauging the students’ engagement levels and mapping them 

to suitable delivery needs that match the students’ knowledge and preferred learning 

styles. This chapter presents a novel interval type-2 fuzzy logic–based system that can 

learn the user’s preferred knowledge delivery needs and learning style based on the 

students’ characteristics, capabilities and engagement levels to generate a customised 

learning environment.  

Within the e-learning platforms, there are high levels of uncertainties 

associated with the precision in evaluating the individual’s knowledge delivery needs, 

the preferred style of learning and other requirements for provision of the adaptive 

knowledge delivery. This uncertainty is quite critical due to several sources of 

uncertainties in how accurately students’ responses are actually assessed by adaptive 



P a g e  | 51 

 

 

educational methods, as well as the corresponding uncertainties associated with how 

the resulting instruction to the student is actually understood and received. In e-

learning environments, there are high levels of linguistic uncertainties where the 

students can differ greatly in how the same terms, words, or methods (e.g. course 

difficulty, length of study time, preferred learning style) are received and 

comprehended. This varies according to the students’ levels of engagement, 

knowledge and future plans. To tackle the uncertainty that may inhibit the 

advancement of an efficient learning context, it is suggested that any adaptive 

educational system should incorporate flexible AI methods [Ahamed 2004]. Fuzzy 

logic systems are well known for their ability to generate white box models that can 

handle high levels of uncertainties. However, the vast majority of fuzzy logic systems 

employ type-1 fuzzy logic systems which handle the encountered uncertainties based 

on precise type-1 fuzzy sets [Mendel 2001]. In contrast, interval type-2 fuzzy logic 

systems can handle the faced uncertainties through interval type-2 fuzzy sets which 

are characterized by a footprint of uncertainty (FOU), which provides an extra degree 

of freedom to enable handling high uncertainty levels [Mendel 2001].  

 This chapter presents theoretical and practical environments based on IT2FLS 

and T1FLS for adaptive knowledge delivery within small-scale intelligent e-learning 

platforms. This proposed theoretical and practical environment can learn the users’ 

knowledge delivery needs and suited learning style based on the students’ 

characteristics, capabilities and average engagement degree during learning activities 

to generate an adaptive e-learning environment. For measuring students’ engagement, 

the chapter presents a novel system for gauging the students’ engagement levels based 

on utilising visual information to calculate automatically the engagement degree of 

students. This differs from traditional methods, which usually employ expensive and 
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invasive sensors. Our approach uses only a low-cost RGB-D video camera (Kinect, 

Microsoft) operating in a non-intrusive mode where the users are allowed to act and 

move without restrictions. The interval type-2 fuzzy logic and type-1 fuzzy logic 

models are created from data collected from a number of students with differing 

capabilities, levels of engagement and needs. The learnt type-2 fuzzy-based and type-

1 fuzzy-based models are then used to improve the knowledge delivery to the various 

students based on their individual characteristics, capabilities and engagement levels. 

We will show how the presented system enables the adaptation within the learning 

environments to improve individualised knowledge delivery to students, which can 

result in enhancing the students’ performance and increasing their engagement and 

motivation. The proposed system is continuously able to respond and adapt to 

students’ needs on a highly individualised basis. Thus, online courses can be 

structured to deliver customised education to the student based on various criteria of 

individual needs and characteristics. The FLSs have been tested through various 

experiments with the participation of 15 students. These experiments indicate that the 

proposed IT2FLS have the ability to handle linguistic uncertainties to produce better 

performance, which includes better learning performance and engagement that 

outperforms that of the T1FLS and non-adaptive systems.  

This chapter will describe the proposed theoretical and practical environment-

based IT2FLS for knowledge delivery customisation within intelligent e-learning 

platforms in section 3.2. Section 3.3 presents the experiments and results, while the 

discussions are presented in Section 3.4. 
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3.2 The Proposed IT2FLS-Based Environment 

Components 

Our system aims to adapt and customise the knowledge delivery within 

intelligent e-learning platforms according to students’ individual knowledge needs. 

Figure 3.1 shows an overview of the proposed system, whereby the data are gathered 

through assessing students’ knowledge delivery needs, as held by students, according 

to their characteristics, capabilities variables and engagement levels in the online 

learning environment, which is subsequently examined and analysed based on the 

extracted fuzzy logic membership functions related to inputs and outputs. The 

employed type-2 fuzzy sets generation approach is based on Liu (2007), which is a 

method centred on creating type-2 fuzzy sets via the gathering of type-1 fuzzy sets 

information from participants [Liu 2007]. The type-1 fuzzy sets derived are combined, 

thus resulting in the FOU, which accordingly induces a type-2 fuzzy set, which is seen 

to signify a word. Furthermore, an unsupervised one-pass approach, as motivated 

through [Mendel 2001], [Wang 2003], [Hagras 2007], is used by our system with the 

aim of extracting the rules from the data collected, which will help to describe the 

knowledge delivery needs of students according to their current characteristics, 

capabilities variables and engagement levels. This information will be used to build a 

model that learns the behaviour of the students.  

The students’ learned behaviours will be taken into account and will 

subsequently create an output in consideration of the current state of inputs. 

Accordingly, this type-2 FLS will make changes to the online learning environment 

in relation to the learned behaviours of the students and will further enable the online 

adaptation and enhancement of rules. This facilitates long-term learning owing to the 

changing of the students’ performance, engagement levels and delivery needs. 
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Figure 3.1: An overview on the proposed type-2 fuzzy logic–based systems for improved 

knowledge delivery within intelligent e-learning platforms. 

The proposed system comprises five phases, as shown in Figure 3.1, which 

will be discussed in detail in the following subsections. 

3.2.1 Capturing the Inputs and Outputs Data 

Initially, our system gathers and captures the students’ data through assessing 

the students’ knowledge delivery needs with the preferred instructional style, along 

with their characteristics, capabilities and engagements levels within the online 

learning environment. Importantly, upon the change in an individual student’s 

knowledge delivery needs, characteristics, or engagement levels, the system will 

actively record the data (both current inputs and outputs). Thus, our system creates 

and learns a descriptive model of the students’ knowledge delivery needs according 

to their characteristics, capabilities and engagement levels; this is achieved through 
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the data gathered, generating a set of multi-input and output data pairs, which take the 

following form [Mendel 2001], [Wang 2003], [Hagras 2007]:         

𝑥(𝑡); 𝑦(𝑡)          (𝑡 =  1,2, . . . , 𝑁),                                      (3.1) 

Where N is recognized as the number of data instances, 𝑥(𝑡) ∈  𝑅𝑛 and 𝑦(𝑡) ∈

 𝑅𝑘, our system extracts rules that explain how the k output knowledge delivery needs 

variables 𝑦 = (𝑦1,  . . . , 𝑦𝑘)𝑇 are affected by the input variables 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇, 

including their characteristics, capabilities and engagement level. Six input variables 

were captured during the usage of the system: the scores for fuzzy logic, mathematics 

and Java; average engagement degree; and the age and gender of each student. 

Afterwards, the scores and results were revealed to the students so they could 

determine their needs and preferences and the right content for their level with their 

preferred learning style. Hence, the system recorded the students’ needs for 

knowledge delivery with 12 outputs related to the preferred difficulty level and the 

time needed to study for the three subjects (Java, math and fuzzy logic). In addition, 

six dimensions of the Felder-Silverman learning style model (visual/verbal, 

sensing/intuitive and active/reflective), as indicated in Table 3.1, were used to obtain 

and capture the percentage of student strengths and preferences for each one of them 

[Dung 2012]. A model mapping inputs to outputs is achieved by the established fuzzy 

rules without requiring a mathematical model. Therefore, individual rules can be 

adapted online, affecting only certain aspects of the descriptive model created and 

learned by the proposed system. 
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3.2.1.1 The Proposed Method for Capturing the Engagement 

Degree  

In the proposed system for capturing the engagement degree, first we compute 

the head pose by using the Kinect camera using the Kinect for Windows SDK, as 

shown in Figure 3.2 a. Then we calculate the deviation degrees of the current head 

orientation away from the monitor to measure the extent of distraction. Finally, we 

select the largest distraction extent degree to estimate the engagement degree of the 

student. More details are discussed in this subsection. 

3.2.1.1.1 Head Pose Estimation 

Recently, head pose estimation has received major attention as an important 

procedure for human behaviour recognition. With depth cameras such as Microsoft 

Kinect, Panasonic D-Imager, and PrimeSense 3D Sensors available at reasonable 

prices, the research focus of head pose estimation has shifted from 2D video analysis 

to 3D (RGB-Depth) information analysis and has shown better accuracy and 

performance than 2D methods [Murphy-Chutorian 2009], [Fanelli 2011], [Murphy-

Chutorian 2010]. The Microsoft Kinect supports the capture of the 2D RGB video 

stream and the 3D depth stream at the real-time speed of 30 frames per second, using 

advanced techniques of infrared projection and light coding. However, the depth 

information captured from Kinect is not as accurate and robust as the data acquired 

by other expensive devices, such as laser sensors. To address this problem and 

improve the accuracy of the estimation results, the method reported in [Cai 2010] was 

employed. The algorithm is based on a regularised maximum likelihood deformable 

model fitting (DMF) approach to reduce the impact of noise factors in the depth 

channel. Because this approach was done in the latest version of Kinect Windows 

SDK (as shown in Figure 3.2 a), we used the module directly to perform head pose 
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estimation on the student (user) in e-learning environments, as shown in Figure 3.3. 

The Kinect SDK provides and describes the head pose relating to the Kinect camera 

by three angles, pitch, roll and yaw, as demonstrated in Figure 3.2 b. The three angles 

are illustrated in degrees ranging from -90 to +90 degrees. 

 

                    (a)                                                        (b)                                 

Figure 3.2: (a) The used Kinect camera (b) Head pose angles (yaw, pitch and roll) 

 

Figure 3.3: Head pose estimation 
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3.2.1.1.2 Engagement Degree Estimation 

Because the head pose can perform a continuous state on all the three degrees 

of freedom based on which engagement estimation is performed, we will consider the 

following assumptions describing the relation between the head pose angles and 

engagement degree: 

 Facing front/towards the monitor—the user is engaged in the online 

learning. 

 Facing down—the student is sleepy or probably playing with a 

tablet/smartphone.  

 Facing to the left/right—the user is distracted from the learning and 

interacting with another student nearby. 

 Looking around—the student is thinking about other matters and is not 

concentrating. 

Based on the assumptions above, the engagement degree of the student can be 

calculated and modelled by the deviation between the current head orientation and the 

optimum engaged head pose (facing towards the screen/monitor), as shown in the 

following equations. 

Engagmentdegree = 1 − {Max(Deviationp, Deviationr, Deviationp)}  (3.2)    

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑝 = 1 −
| 𝑃𝑖𝑡𝑐ℎ𝑐−𝑃𝑖𝑡𝑐ℎ𝑜 |

𝑃𝑖𝑡𝑐ℎ𝑚𝑎𝑥
                                  (3.3) 

 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑟 = 1 −
| 𝑅𝑜𝑙𝑙𝑐−𝑅𝑜𝑙𝑙𝑜 |

𝑅𝑜𝑙𝑙𝑚𝑎𝑥
                            (3.4) 



P a g e  | 59 

 

 

 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑦 = 1 −
| 𝑌𝑎𝑤𝑐−𝑌𝑎𝑤𝑜 |

𝑌𝑎𝑤𝑚𝑎𝑥
                                    (3.5) 

Where Pitch𝑐, Roll𝑐,Yaw𝑐 are the three angles (pitch, roll, and yaw) of the 

current head pose obtained by the algorithm of Kinect head pose estimation. 

Pitch𝑜,Roll𝑜, Yaw𝑜 are the angles describing the optimum engaged head pose that are 

recorded in the initialisation stage of the system. Pitch𝑚𝑎𝑥, Roll𝑚𝑎𝑥, Yaw𝑚𝑎𝑥 are the 

maximum angles defined in the Kinect SDK. 

3.2.2 Extracting the Interval Type-2 Fuzzy Sets 

It is essential that the gathered students’ input/output data be categorized via 

the relevant fuzzy membership functions. This provides quantification of the raw 

input and output values, changing them into linguistic labels, for instance, very 

low/low and high/very high. The approach detailed in [Liu 2007] is implemented, 

which creates a type-2 fuzzy set, the FOU of which embeds the numerous type-1 fuzzy 

sets seen to signify each student’s individual view concerning a particular linguistic 

label explaining the student characteristics, capabilities, engagement level and 

knowledge delivery needs. Accordingly, for the type-2 fuzzy sets, the generated FOU 

will combine the various perspectives of students relating to modelling such words 

and will handle the uncertainties. In the employed approach, the data are gathered 

through questioning the participants on their views relating to particular linguistic 

labels, which will generate type-1 fuzzy sets. Following this stage, using the approach 

of [Liu 2007], the type-2 fuzzy sets are constructed where the type-1fuzzy sets 

representing the students individual view are combined, resulting in the FOU of the 

type-2 fuzzy set that represents the given word. Through application of the 

representation theorem [Mendel 2001] and [Liu 2007], each of the interval type-2 

fuzzy sets 𝐴̃𝑠can be calculated as follows:       
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𝐴̃𝑠 = ⋃ 𝐴𝑖𝑛
𝑖=1                                               (3.6) 

Where 𝐴𝑖is referred to as the 𝑖𝑡ℎ embedded type-1 fuzzy set and ∪ is an 

aggregation operation [Liu 2007]. The process of generating 𝐴̃ is based on 

approximating the upper MF 𝜇
𝐴̃

(𝑥) and the lower MF 𝜇𝐴̃(𝑥) of 𝐴̃𝑠. This will depend 

on the shape of the embedded type-1 fuzzy sets and the FOU model that is to be 

generated for 𝐴̃𝑠. In our system we use interior FOU models, right and left shoulder 

MFs (shown in Figure 3.4 a, b and c) for the upper and lower MF parameters from all 

the embedded non-symmetric triangle type-1 MFs. As shown in Figure 3.4 a, the 

resulting interior interval type-2 fuzzy set is described by parameters 𝑎𝑀𝐹, 𝑐𝑀𝐹, 

𝑐𝑀𝐹and 𝑏𝑀𝐹 denoting a trapezoidal upper MF and the parameters 𝑎̅𝑀𝐹and 𝑏𝑀𝐹for a 

non-symmetric triangular lower MF, with an intersection point  (𝑝, 𝜇𝑝) [Liu 

2007].The procedures for calculating these parameters are now described as follows: 

Given the parameters for the triangle type-1 MFs generated for each of the i 

students [ 𝑎𝑀𝐹
𝑖 ,𝑏𝑀𝐹

𝑖 ], the procedure for approximating the FOU model for interior 

FOUs is as follows [Liu 2007]: For the upper MF 𝜇
𝐴̃

(𝑥), we need to follow these 

steps:  

1) For 𝜇(𝑥) = 0, , find 𝑎𝑀𝐹 to be equal to the minimum 𝑎𝑀𝐹
𝑚𝑖𝑛 of all left-

end points 𝑎𝑀𝐹
𝑖  and 𝑏𝑀𝐹to be equal to the maximum 𝑏𝑀𝐹

𝑚𝑎𝑥of all right-

end points 𝑏𝑀𝐹
𝑖  [Liu 2007]. 

2) For 𝜇(𝑥) = 1, find 𝑐𝑀𝐹, 𝑐𝑀𝐹 which correspond to the minimum and 

the maximum of the centres of the type-1 MFs. 
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3) Approximate the upper MF 𝜇
𝐴̃

(𝑥)by connecting the following points 

with straight lines:(𝑎𝑀𝐹 , 0), (𝑐𝑀𝐹, 1), (𝑐𝑀𝐹 , 1)and (𝑏
𝑀𝐹

, 0). The result 

is a trapezoidal upper MF as depicted in Figure 3.4 a. 

The steps to approximate the lower MF 𝜇𝐴̃(𝑥) are as follows: 

1) For 𝜇(𝑥) = 0, determine 𝑎̅𝑀𝐹 to be equal to the maximum 𝑎𝑀𝐹
𝑚𝑎𝑥 of all 

left-end points 𝑎𝑀𝐹
𝑖  and 𝑏𝑀𝐹 to be equal to the minimum 𝑏𝑀𝐹

𝑚𝑖𝑛  of all 

right-end points 𝑏𝑀𝐹
𝑖  [Liu 2007]. 

2)  Compute the intersection point (𝑝, 𝜇𝑝) by the following equations [Liu 

2007]:   

 

𝑝 =
𝑏𝑀𝐹(𝑐𝑀𝐹 −𝑎𝑀𝐹)+𝑎𝑀𝐹(𝑏𝑀𝐹 −𝑐𝑀𝐹)

(𝑐𝑀𝐹 −𝑎𝑀𝐹)+(𝑏𝑀𝐹 −𝑐𝑀𝐹)
                                 (3.7)                           

𝜇𝑝 = (𝑏𝑀𝐹  −  𝑝)/(𝑏𝑀𝐹  −  𝑐𝑀𝐹)                                 (3.8) 

 

3) Approximating the lower MF 𝜇𝐴̃𝑠
(𝑥) by joining the following points 

with straight lines: (𝑎𝑀𝐹 , 0),(𝑎𝑀𝐹 , 0),(𝑝, 𝜇(𝑝)), (𝑏𝑀𝐹, 0) and 

(𝑏𝑀𝐹 , 0). The result according to Figure 3.4 a) is a triangle lower MF.  
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Figure 3.4: (a) An interior type-2 MF embedding the different type-1 fuzzy sets, (b) 

left shoulder    type-2 MF embedding the different type-1 fuzzy sets. (c) Right 

shoulder type-2 MF embedding the different type-1 fuzzy sets [Liu 2007]. 

 

3.2.3 Extracting the type-2 Fuzzy Rules from the Collected 

Data 

The generated interval type-2 fuzzy sets are mixed with the data of 

accumulated user input/output with the aim of extracting the rules explaining the 

behaviours of the students. The rule extraction method employed in this chapter is 

based on an improved form of the Wang-Mendel approach for the type-1fuzzy logic 

system and the interval type-2 fuzzy logic systems [Wang 1992], [Mendel 2001], 

[Wang 2003], [Doctor 2004], [Doctor 2005a], [Doctor 2005b], [Hagras 2007]. 

For extracting the type-1 fuzzy rules, we employed method that is 

acknowledged as being a one-pass approach centred on garnering fuzzy rules from 
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data under examination. The rules’ antecedent and consequent fuzzy sets divide the 

output and input spaces into fuzzy areas. 

MIMO rules are extracted by the system, which accordingly highlights the 

relationship between 𝑥 = ( 𝑥1, . . . , 𝑥𝑛)𝑇 and 𝑦 = ( 𝑦1, . . . , 𝑦𝑘)𝑇. Notably, the 

following form is adopted [Wang 1992], [Wang 2003], [Doctor 2004], [Doctor 

2005a], [Almohammadi 2013b]: 

If 𝑥1is 𝐴1
(𝑙)

and … and 𝑥𝑛 is 𝐴𝑛
(𝑙)

 Then 𝑦1𝑖𝑠 𝐵1
(𝑙)

and. . . and 𝑦𝑘 is 𝐵𝑘
(𝑙)

     (3.9)                

Where l=1, 2...M, and M is recognized as the number of rules, whilst l is the 

rules index. There are V fuzzy sets defined for each input 𝑥𝑠 with 𝐴s
𝑞 , 𝑞 = 1, . . . , 𝑉. 

There are W fuzzy sets 𝐵𝑐
ℎ, ℎ =  1, . . . , 𝑊 defined for each output 𝑦𝑐.  

In an attempt to simplify the subsequent notation, the approach in regard to 

single-output rules is highlighted owing to the technique being relatively simply 

expanded to rules with various outputs [Doctor 2004], [Doctor 2005a], 

[Almohammadi 2013b]. The following are the different steps involved in the 

extraction of rules: 

Step 1:  

In regard to a fixed pair of input-output (𝑥(𝑡); 𝑦(𝑡)) in the dataset (1) (𝑡 =

 1,2, . . . , 𝑁), the membership values are computed 𝜇  ( 𝑥𝑠
(𝑡)

 )
𝐴𝑠

𝑞
   for each membership 

function 𝑞 = 1, . . . , 𝑉, and each input variable 𝑠 (𝑠 = 1, . . . , 𝑛), find 𝑞∗  ∈ { 1, … , 𝑉} 

as can be seen in [Wang 1992], [Wang 2003], [Doctor 2004], [Doctor 2005a], 

[Almohammadi 2013b]: 
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𝜇 ∗ ( 𝑥𝑠
(𝑡)

 )
𝐴𝑠

𝑞
  ≥  𝜇  ( 𝑥𝑠

(𝑡)
 )

𝐴𝑠
𝑞
                                     (3.10) 

For all q = 1,...,V . 

The following rule may be referred to as generated by (𝑥(𝑡); 𝑦(𝑡))[Wang 

1992], [Wang 2003], [Doctor 2004], [Doctor 2005a], [Almohammadi 2013b]: 

If 𝑥1
𝑡  is 𝐴1

𝑞∗  

and …  and 𝑥𝑛
𝑡  𝑖𝑠 𝐴𝑛

𝑞∗  

Then 𝑦 𝑖s centerd at 𝑦(𝑡)                 (3.11) 

In regard to each of the input variables 𝑥𝑠, there are fuzzy sets 𝐴𝑠
𝑞 , 𝑞 =, 1, . . . 𝑉 

that characterise it, thus facilitating the generation of the greatest possible number of 

rules (𝑉𝑛), where n is the total number of input variables. However, considering the 

dataset, rules will only be generated amongst the 𝑉𝑛 possibilities comprising a 

dominant region with at least one point of data. Accordingly, as a result of following 

Step 1, one rule is generated on the basis of each data pair of input-output; for each 

input, the fuzzy set that achieves the greater membership value in the IF part of the 

rule is selected. This can be seen in Equation (3.10) and Equation (3.11).  

However, this is not the final rule; this will be established in the subsequent 

stage. Nevertheless, the rule’s weight can be calculated as follows [Wang 2003], 

[Wang 1992], [Doctor 2005]: 

                    𝑤(𝑡) =  ∏   𝜇  ( 𝑥𝑠(𝑡) )
𝐴𝑠

𝑞
   𝑛

𝑠=1                                    (3.12) 

The rule weight 𝑤(𝑡) is centred on establishing the points’ strength 𝑥(𝑡) in 

regard to the fuzzy region fitting the rule.  
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Step 2:  

For all the t data points from 1 to N, Step 1 is repeated in an attempt to establish 

the N data–generated rules through Equation (3.11). Because the number of data 

points is significant, this will imply the generation of numerous rules through the 

application of Step 1, all of which share the same IF part and which are further 

acknowledged as contradictory, i.e. rules comprising the same antecedent 

membership functions but dissimilar consequent values. Through this stage, those 

rules seen to have the same IF element are brought together into a single rule. 

Accordingly, the N rules are broken down into groups, with the same IF part 

seen across all rules within the same group. If it is considered that there are M groups 

where Group l will encompass 𝑁𝑙, the rules are as follows [Wang 1992], [Wang 2003], 

[Doctor 2004], [Doctor 2005a], [Almohammadi 2013b]: 

if 𝑥1 is 𝐴1

(𝑞𝑙)
and. . . and 𝑥𝑛 is 𝐴𝑛

(𝑞𝑙)
 Then y is centred at 𝑦(𝑡𝑢

𝑙 )         (3.13) 

Where 𝑁𝑙 and 𝑡𝑢
𝑙  is the data points index in regard to Group. The rules’ 

weighted average in the conflict group is then calculated as follows [Wang 

1992],[Wang 2003],[Doctor 2004], [Doctor 2005a], [Almohammadi 2013b]: 

𝑎𝑣(𝑙) =
∑ 𝑦

(𝑡𝑢
𝑙 )

 𝑤
(𝑡𝑢

𝑙 )𝑁𝑙
𝑢=1

∑ 𝑤
(𝑡𝑢

𝑙 )𝑁𝑙
𝑢=1

                                   (3.14) 

Accordingly, the 𝑁𝑙 rules are then combined into a single rule, adopting the 

following configuration [Wang 1992], [Wang 2003], [Doctor 2004], [Doctor 2005 a], 

[Almohammadi 2013b]: 

      If 𝑥1 is 𝐴1
(𝑙)

and …  and 𝑥𝑛 𝑖𝑠 𝐴𝑛
(𝑙)

 Then  𝑦 is 𝐵(𝑙)                    (3.15) 
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Where the output fuzzy set 𝐵𝑙 is selected in regard to the following, where 

among the W output fuzzy sets 𝐵1...𝐵𝑤, find the 𝐵ℎ∗ such that [Wang 1992], [Wang 

2003], [Doctor 2004], [Doctor 2005a], [Almohammadi 2013b]: 

   𝜇 ( 𝑎𝑣(𝑙))
𝐵ℎ∗ 

  ≥  𝜇 ( 𝑎𝑣(𝑙))
𝐵ℎ    

                                  (3.16) 

For ℎ =  1,2, . . . , 𝑊, B is chosen as 𝐵ℎ∗
.  

As can be seen from the above, data pairs of input-output comprising multiple 

outputs are handled by our system. Step 1 is recognized as being distinct in regard to 

the number of outputs associated with each rule; on the other hand, Step 2 provides 

straightforward expansion with the aim of enabling rules to encompass multiple 

outputs; for each output, the calculations detailed in Equation (3.14) and Equation 

(3.16) are repeated. 

The type-2 fuzzy system considered in this chapter extracts various multiple-

input–multiple-output rules, which are known to explain the relation between 

𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇 and 𝑦 = (𝑦1, . . . , 𝑦𝑘)𝑇 and adopt the following form: 

IF 𝑥1 is 𝐴̃1
𝑙 … and 𝑥𝑛 is 𝐴̃𝑛

𝑙  THEN  𝑦1 𝑖𝑠 𝐵̃1
𝑙 … 𝑎𝑛𝑑 𝑦𝑘 𝑖𝑠 𝐵̃𝑘

𝑙                  (3.17) 

𝑙 = 1,2, … . , 𝑀, where M is the number of rules and 𝑙 is the index of the rules.  

Notably, there are 𝑉𝑖 interval type-2 fuzzy sets 𝐴̃𝑠
𝑞 , 𝑞 = 1, … , 𝑉𝑖 explained for 

each input 𝑥𝑠where 𝑠 = 1,2, … . , 𝑛. There are 𝑉𝑜 interval type-2 fuzzy sets 𝐵̃𝑐
ℎ , ℎ =

1, … , 𝑉𝑜, explained for each output 𝑦𝑐where 𝑐 = 1,2, … . , 𝑘, the 𝑉𝑖 input interval type-

2 fuzzy sets.  
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In an attempt to explain and abridge the subsequent representation, the 

approach for those rules comprising a single output is demonstrated because the 

method is relatively simple to expand in regards to rules involving numerous outputs. 

The various stages involved in this rule extraction are shown below. 

Stage 1: In regard to a fixed input–output pair, (𝑥(𝑡); 𝑦(𝑡)) in the dataset (𝑡 =

 1,2, . . . , 𝑁), the upper and lower membership values are computed 𝜇
𝐴̃𝑠

𝑞(𝑥𝑠
(𝑡)

) and 

𝜇𝐴̃𝑠
𝑞(𝑥𝑠

(𝑡)
) for each of the fuzzy set 𝐴̃𝑠

𝑞 , 𝑞 = 1, … , 𝑉𝑖, as well as for each input 

variable (𝑠 = 1, . . . , 𝑛). Find 𝑞∗ ∈ { 1, … , 𝑉𝑖} such that [Mendel 2001], [Wang 2003], 

[Doctor 2005b], [Hagras 2007]:   

      𝜇
𝐴̃𝑠

𝑞∗
𝑐𝑔

(𝑥𝑠
(𝑡)

) ≥ 𝜇
𝐴̃𝑠

𝑞
𝑐𝑔

(𝑥𝑠
(𝑡)

)                                     (3.18) 

For all q = 1,...,𝑉𝑖. Notably, 𝜇
𝐴̃𝑠

𝑞
𝑐𝑔

(𝑥𝑠
(𝑡)

) is the centre of gravity of the interval 

membership of 𝐴̃𝑠
𝑞
 at 𝑥𝑠

(𝑡)
, as can be seen below [Mendel 2001], [Wang 2003], [Doctor 

2005b], [Hagras 2007]: 

  𝜇
𝐴̃𝑠

𝑞
𝑐𝑔

(𝑥𝑠
(𝑡)

) =  
1

2
[𝜇

𝐴̃𝑠
𝑞(𝑥𝑠

(𝑡)
) +  𝜇𝐴̃𝑠

𝑞(𝑥𝑠
(𝑡)

)]                        (3.19) 

The following rule will be referred to as the rule generated by (𝑥(𝑡); 𝑦(𝑡)) 

[Mendel 2001], [Wang 2003], [Doctor 2005 b], [Hagras 2007]: 

IF 𝑥1is 𝐴̃1
𝑞

∗(𝑡)
… and 𝑥𝑛 is 𝐴̃𝑛

𝑞
∗(𝑡)

THEN 𝑦 is centered at 𝑦(𝑡)                  (3.20) 

For all of the input variables 𝑥𝑠 there are 𝑉𝑖 type-2 fuzzy sets 𝐴̃𝑠
𝑞
, which enables 

the greater amount of potential rules equal to 𝑉𝑖
𝑛. Nevertheless, when considering the 
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dataset, there will be the generation of those rules amongst the 𝑉𝑖
𝑛 possibilities that 

show a dominant region comprising a minimum of one data point.  

In the first stage, there is the creation of one rule for each respective input–

output data pair, with the fuzzy set selected being that which is seen to achieve the 

greater value of membership at the data point, and notably selected as the one in the 

rule’s IF element. Nevertheless, this is not the finalised version of the rule, which will 

be calculated in the subsequent step. Notably, the computation of the rule weight is 

carried out as follows [Mendel 2001], [Wang 2003], [Doctor 2005b], [Hagras 2007]: 

                       𝑤𝑖(𝑡) =  ∏ 𝜇
𝐴̃𝑠

𝑞
𝑐𝑔(𝑥𝑠(𝑡)) 𝑛

𝑠=1                                     (3.21) 

A rule  𝑤𝑖(𝑡) weight is a measure of the strength of the points 𝑥(𝑡) belonging 

to the fuzzy region that the entire rule encompasses. 

Stage 2: The first stage for all of the data points from 1 to N is repeated; this 

helps to obtain N data–generated rules in the form of Equation (3.20). Because there 

is a significant number of data points comprising numerous similar instances, Stage 1 

witnesses the creation of multiple rules, all of which have the same IF part in common 

but which are all conflicting. During this stage, those rules seen to have the same IF 

part are amalgamated to form a single rule. Accordingly, the rules N are divided into 

groups, with rules in each of the groups seen to have the same IF part. If it is 

considered that such groups amount to M, it may also be stated that the group has  𝑁𝑙 

rules, thus [Mendel 2001], [Wang 2003], [Doctor 2005b], [Hagras 2007]: 

IF 𝑥1is 𝐴̃1
𝑙 … and 𝑥𝑛is 𝐴̃𝑛

𝑙  THEN y is centered 𝑎𝑡 𝑦(𝑡𝑢
𝑙 )                    (3.22) 
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Where 𝑢 = 1, … , 𝑁𝑙  and 𝑡𝑢
𝑙  is the data points index of Group 𝑙. The weighted 

average of all rules involved in the conflict group is subsequently calculated as shown 

below: 

             𝑎𝑣(𝑙) =
∑ 𝑦

(𝑡𝑢
𝑙 )

𝑤𝑖
(𝑡𝑢

𝑙 )𝑁𝑙
𝑢=1

∑ 𝑤𝑖
(𝑡𝑢

𝑙 )𝑁𝑙
𝑢=1

                                        (3.23) 

These 𝑁𝑙 rules are combined into a single rule, utilising the following format 

[Mendel 2001], [Wang 2003], [Doctor 2005b], [Hagras 2007]: 

IF 𝑥1is 𝐴̃1
𝑙 … and 𝑥𝑛is 𝐴̃𝑛

𝑙  THEN 𝑦 is 𝐵̃𝑙                   (3.24) 

 Where there is the selection of the output fuzzy set 𝐵̃𝑙 based on the following: 

amongst the 𝑉𝑜 output interval type-2 fuzzy sets 𝐵̃𝑙, … , 𝐵̃𝑉𝑜  find the  𝐵ℎ∗ such that 

[Mendel 2001], [Wang 2003], [Doctor 2005b], [Hagras 2007]: 

    𝜇
𝐵̃ℎ∗
𝑐𝑔

(𝑎𝑣(𝑙)) ≥  𝜇
𝐵̃ℎ
𝑐𝑔

(𝑎𝑣(𝑙))           for ℎ = 1,2 … , 𝑉𝑜              (3.25) 

𝐵̃𝑙 is selected owing to the fact that 𝐵ℎ∗, where 𝜇
𝐵̃ℎ
𝑐𝑔

 is the center of gravity of 

the interval membership of 𝐵̃ℎ at 𝑎𝑣(𝑙)as in Equation (3.19). 

As can be seen from the above, data pairs of input-output, comprising multiple 

outputs, are handled by our system. Step 1 is recognized as being distinct in regard to 

the number of outputs associated with each rule; on the other hand, Step 2 provides 

straightforward expansion with the aim of enabling rules to encompass multiple 

outputs; for each output, the calculations detailed in Equations (3.23)- (3.25) are 

repeated.  
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3.2.4 The Customization of Knowledge Delivery to Students 

The fuzzy rules generated through the input and output data of students and 

the extracted membership functions facilitate the proposed system in terms of 

establishing and learning the characteristics and requirements of knowledge delivery 

to students. As such, the system is then in a position to make changes to the online 

learning environment with particular consideration to the requirements of students. 

The system’s actions are initiated through the examination and monitoring of student 

variables, which cause an impact to be felt by the online instructional environment, 

especially in regard to the learned approximation of students’ individual needs. The 

type-2 fuzzy adaptive educational system considered in this chapter works as follows: 

 The crisp inputs that encompass the characteristics, capabilities and average 

level of engagement of the student, detailed in the e-learning environment, are 

fuzzified into the input interval type-2 fuzzy sets (singleton fuzzification). 

 The inference engine and rule base are activated, which creates the outputs 

(student needs) type-2 fuzzy sets. 

 The inference engine outputs are processed by type reduction to produce type-

reduced sets. 

 The type-reduced type-1 fuzzy outputs are then de-fuzzified to create crisp 

outputs 

 The crisp outputs are then fed to the outputs as explained in chapter 3.  

For T1FLS, within this system we employ the centre of sets defuzzification, 

product implication and singleton fuzzification [Mendel 2001], [Doctor 2006]. A crisp 
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input vector can be correlated with a crisp output vector 𝑦 = 𝑓(𝑥) using the following 

formula: 

𝑦(𝑥) = 𝑓𝑠(𝑥) =
∑ 𝑦−𝑙 ∏ 𝜇𝐹𝑖

𝑙 (𝑥𝑖)    𝑛
𝑖=1

𝑀
𝑙=1

∑ ∏ 𝜇𝐹𝑖
𝑙 (𝑥𝑖)     𝑛

𝑖=1
𝑀
𝑙=1

                              (3.26)  

Where M is the number of rules in the rule base, 𝑦−𝑙 is the centroid of the lth 

output fuzzy set 𝐵𝑙 , ∏ 𝜇𝐹𝑖
𝑙 (𝑥𝑖)𝑛

𝑖=1  is the product of the membership values of each 

rule’s inputs. When considering multiple outputs, this equation is repeated for each 

output parameter. 

3.2.5 The Adaptive Process for Selecting and Presenting the 

Right Content for the User 

The proposed system must be able to adjust to the changing requirements 

(knowledge delivery needs), constantly expand the knowledge level and hold the 

various student engagement levels by providing the students with the ability to modify 

their learning needs. The system will change its rules or apply new ones accordingly. 

In case of a given input, no rules fire from the rule base (i.e. the rule’s firing strength 

in Equation (3.21) 𝑤𝑖(𝑡) = 0), and the system will capture the system input and user-

preferred delivery needs to create a rule that can cover this uncovered input status. 

Thus, the system will incorporate new rules when the state of the online learning 

environment monitored at that time is indeterminate, according to the present rules in 

the rules base (i.e. where none of the present rules are fired). In such an instance, new 

rules will be devised and added by the system, whereby the antecedent sets highlight 

the online environment’s present input states, with the consequent fuzzy sets reliant 

on the current state of knowledge delivery needs. For all of the input parameters 𝑥𝑠 , the 

fuzzy sets that provide membership values, where 𝜇
𝐴̃𝑐

ℎ
𝑐𝑔

( 𝑥𝑠
(𝑡′)

) > 0 are identified. As a 
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result, this creates a number of identified fuzzy sets in a grid for each input parameter. 

From such a grid, new rules are constructed based on all individual combinations of 

successive input fuzzy sets. The consequent fuzzy sets that provide the greatest value 

of membership to the student-defined knowledge delivery needs (𝑦𝑐) are accordingly 

chosen to act as the generated rule consequent. The resulting fuzzy sets can be 

established through conducting a calculation of the output interval memberships’ 

centre of gravity [Hagras 2007]. 

                        𝜇
𝐵̃𝑐

ℎ∗
𝑐𝑔 (𝑦𝑐) ≥  𝜇

𝐵̃𝑐
ℎ

𝑐𝑔 (𝑦𝑐)                                        (3.27) 

For ℎ =  1, . . . , 𝑊 the 𝐵̃𝑐 is chosen as 𝐵̃𝑐
ℎ∗

where 𝑐 =  1, . . . , 𝑘. This enables the 

gradual addition of new rules. 

In case the user indicates a change of preference and need for the knowledge 

delivery at a given input status, the fired rules will be identified, and the rule 

consequents will be changed if more than two users signal the same knowledge 

delivery needs, as indicated by Equation (3.27). Thus, the fired rules are adapted to 

reflect more appropriately the updated knowledge delivery requirements of the 

students, considering the present state of the online learning environment. 

The system proposed in this chapter will adopt life-long learning through 

facilitating the adaptation of rules according to the knowledge delivery needs of 

students, which notably change over time, and in regard to the state of the online 

learning environment. Owing to the system’s flexibility, the fuzzy logic model learned 

initially may be effortlessly expanded to make changes to both new and existing rules. 
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3.3 Experiment and Results 
 

Various experiments were conducted on a sample of 15 students from Essex 

University. The experiments involved knowledge delivery for an online course of 

fuzzy logic and its associated areas in which each student should be skilled, such as 

mathematics and programming. The experiments commenced by giving all students 

the non-adaptive version of the system to study for half an hour, after which their level 

of knowledge of Java programming, fuzzy logic and mathematics was examined. Six 

input variables were captured during the usage of the system: the scores for fuzzy 

logic, mathematics and Java; average engagement degree; and the age and gender of 

each student. We measured the average engagement degree for each student using the 

Kinect camera, as shown in Figure 3.5 and as explained in section 3.2.1.1. Afterwards, 

the scores and results were revealed to the students so they could determine their needs 

and preferences and the right content for their level with their preferred learning style. 

Hence, the system recorded the students’ needs for knowledge delivery with 12 

outputs related to the preferred difficulty level and the time needed to study for the 

three subjects (Java, math and fuzzy logic). In addition, six dimensions of the Felder-

Silverman learning style model (visual/verbal, sensing/intuitive and active/reflective), 

as indicated in Table 3.1, were used to obtain and capture the percentage of student 

strengths and preferences for each one of them [Dung 2012].  

After the students’ inputs and outputs had been obtained, the students were 

divided into three five-member groups. The groups were equally divided based on the 

students’ previous knowledge and average degree of engagement to overcome the 

possibility of the effect of external factors on the evaluations of the systems, such as 

placing students with poor performance and low motivation in one group or vice versa. 
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The first group studied the non-adaptive version of the system, the second studied a 

knowledge delivery system based on type-1 fuzzy logic and the third studied the 

knowledge delivery system based on the applied interval type-2 fuzzy logic system. 

Learning Styles Application in Online Courses 

Visual Visual learners prefer to acquire knowledge by using 

images, graphics, charts, animation and videos.  

Verbal  Verbal learners prefer to acquire knowledge by using 

texts and audio. 

Active Active learners prefer to acquire knowledge by using 

self-assessment exercises and multiple-choice exercises.  

Reflective  

 

Reflective learners prefer to acquire knowledge by 

using examples, outlines and looking at results pages. 

Sensing  Sensing learners prefer to acquire knowledge by using 

examples, explanation, facts and practical materials  

Intuitive  

 

Intuitive learners prefer to acquire knowledge by using 

definitions and algorithms. 

Table 3.1: Learning styles categories [Dung 2012] 

 

Once the groups were equally divided and the type-1 and type-2 groups’ input 

and output data were obtained in this phase, the type-2 fuzzy logic and type-1 models 

were constructed for each group using the linguistic variables and rules, as explained 

in Section 3.2.2 and 3.2.3 (See Figure 3.6 for one of the extracted interval type-2 fuzzy 

logic sets and Appendix A for the extracted fuzzy sets.) The type-2 fuzzy sets were 

obtained to capture the uncertainty that signifies students’ individual views 

concerning a particular linguistic label explaining the characteristics, preferences and 

requirements, while the type-1 fuzzy logic system uses a type-1 fuzzy set shown in 

yellow dashed lines in Figure 3.6. 
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Figure 3.5 : Various participants with GUI of the vision engagement system. 

   

 

Figure 3.6: The generated interval type-2 fuzzy sets of the average engagement level 

 

Low Moderate  High 



P a g e  | 76 

 

In the second phase, the course contents of the three subjects (Java, math and 

fuzzy logic) were delivered as required for the second group that used the system 

based on type-1 fuzzy logic and the third group that used the system based on the 

applied interval type-2 fuzzy logic system. Meanwhile, the first group continued to 

study a non-adaptive version of the system. Thus, the second and the third groups 

were presented with individually tailored learning content matched to their needs and 

preferences according to the rule base learnt from various similar system users. Users 

were presented with learning objects (LOs) according to their knowledge delivery 

needs. Each LO unit, such as arrays in Java, is associated with three linguistic 

variables corresponding to the difficulty of Java content and whether the user prefers 

to spend more time studying Java topics and its learning style type. There were more 

than 600 LOs for the three subjects (Java, math and fuzzy logic) that ranged from very 

easy to very difficult content, and they covered all the learning styles categories that 

are theoretically described in Table 3.1 (see Figure 3.7) [Dung 2012]. Once this phase 

was complete, students from the three groups were asked—after sufficient study 

time—to retake the previous tests with the aim of measuring the suggested system’s 

overall efficiency in terms of improved learning outcomes and average degree of 

engagement which was measured using the Kinect camera (as shown in Figure 3.5 

and as explained in section 3.2.1.1) during student learning in the three groups. 
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Figure 3.7: Screenshots of various java study masteries 

The results from the knowledge delivery system based on the applied interval 

type-2 fuzzy logic system were compared with those from the knowledge delivery 

system based on type-1 fuzzy logic and with those obtained from using the same 

knowledge delivery for all users, the non-adaptive version. Figure 3.8 shows the 

improvements of the average scores obtained by each of the three different groups’ 

students in the three tested subjects (Java, math and fuzzy logic) prior to and after the 

application of the system using type-1 and type-2 fuzzy logic techniques and the non-

adaptive version. As clearly shown in Figure 3.8, there is a significant increase in 

fuzzy logic, Java and mathematics average scores due to the employment of the type-

2 fuzzy logic system, which resulted in a 6% better average learning improvements 

than did the type-1 fuzzy logic system and a 13% better gain than the non-adaptive 

system gave.  



P a g e  | 80 

 

 

Figure 3.8: The improvements of the average scores 

In addition, as shown in Figure 3.9, the average engagement degree obtained 

for the three groups indicated that the students engage more with the interval type-2 

adaptive educational system than they do with the type-1 fuzzy system and the non-

adaptive system. The improvements in the students’ learning outcomes and average 

engagement degree evidence the effectiveness of the proposed interval type-2 

adaptive educational systems compared to the type-1 fuzzy system and the non-

adaptive based system.  
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Figure 3.9: the improvements of the engagements level. 

 

Table 3.2 shows the average error and standard deviation for some of the 

system outputs obtained regarding the students’ learned data. These results 

demonstrate that the type-2 fuzzy logic system produces a lower average and standard 

deviation of errors than the type-1 fuzzy logic system between the system output and 

the user desired output. This means that the type-2 system is more effective at 

capturing student behaviour. 

 

Applying our proposed
approach ( IT2F)
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process

Average Engagement Degree 71.8 70.275 65.8102

71.8 70.275
65.8102

10

20

30

40

50

60

70

80

90

100
A

V
ER

A
G

E 
EN

G
A

G
EM

EN
T 

D
EG

R
EE



P a g e  | 82 

 

 

Table 3.2: Average error and standard deviations of some of the systems outputs 
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3.4 Discussion 

This chapter presented an interval type-2 fuzzy logic–based system that can 

learn users’ preferred knowledge delivery needs and learning style based on students’ 

characteristics and engagement levels to generate a customised learning environment, 

resulting in enhanced student performance and engagement. For capturing the 

engagement levels of students, we proposed a method to use visual information to 

calculate the engagement degree automatically. This differs from traditional methods 

which usually employ expensive and invasive sensors. The presented type-2 fuzzy 

model was first created from data acquired from a number of students of differing 

capabilities and learning needs. The model was subsequently used to enhance 

knowledge delivery to the individuals based on their characteristics and engagement 

levels. The proposed system is able to adapt and respond to the requirements of 

students continuously and on an individualised basis. Furthermore, the type-2 fuzzy 

logic–based model created is a white box model that can be easily read and 

interpreted. 

The effectiveness of the proposed system has been actualised through several 

real-world experiments with 15 students participating. The experiments revealed the 

ability of the proposed type-2 based system to handle the linguistic uncertainties, 

resulting in enhanced performance in terms of better user engagement and improved 

learning compared to type-1– based fuzzy systems and non-adaptive systems. 

In the next chapter, we will extend the proposed theoretical and practical 

environments to be used in synchronous e-learning settings with the aim of 

customising instructional delivery to improve and increase the engagement and 

satisfaction of different learners. 
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Chapter 4: A T2FLS Based Recommendation 

Approach for Adaptive Teaching within Small-

Scale eLearning Platforms 

4.1 Introduction 

Recently, the teacher’s role has moved from one where they know everything 

to one where teachers must be continuously learning and reflective on their skills 

[Mergler 2012].The teacher’s role in the learning environment has been found to be 

the most influential aspect in improving student satisfaction, outcomes, and 

engagements [Hattie 2003], [Lovat 2007].Thus, most teachers aim to improve their 

teaching skills, which have been acquired through their pre-service teaching 

qualification, training, and career expertise [Mergler 2012]. However, our 

understanding of what constitutes quality teaching has changed over time, and the 

definition has become more challenging [Lovat 2007]. Thus, it is difficult to get 

definite feedback about the best instructional approaches that teachers can follow to 

promote different learners’ engagement, outcomes, and satisfaction due to several 

issues associated with teachers, learners, and technology-mediated learning and their 

interactions in the teaching-learning process [Almohammadi 2015a], [Almohammadi 

2015b]. First is the issue of teacher expertise in evaluating various learners’ 

engagements as well as the best instructional approaches and teaching actions to 

maintain the various learners’ engagement in a balanced and improved way. Even if 

teachers profess to have high learner engagement, they will, under normal 

circumstances, receive no feedback about the engagement of remote learners. 

Moreover, the total size of remote and on-site students makes it difficult for teachers 

to diagnose students’ interests and discover the best instructional actions to motivate 
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them regarding the learning objectives [Almohammadi 2015a], [Almohammadi 

2015b].  

Similarly, beginning teachers step into an unknown world, working under the 

obligation to teach learners with different needs and levels of engagement, and this 

variable can cause them apprehension [Smith 2005]. This is because there is no 

smooth initiation into teaching and many teachers struggle to progress from pre-

service training to professional practice [Smith 2005]. Importantly, new teachers are 

usually required to teach like experienced teachers, and thus face the multiple tasks of 

being students, instructors, and scientists [Öztürk 2013]. Although novices do not 

have the qualities of experienced teachers, they are still required to meet similar 

requirements as soon as they enter the field. Furthermore, the most difficult or irksome 

teaching assignments are often dumped on newly qualified teachers and junior staff 

members [Öztürk 2013]. The immense stress resulting from these factors results in 

the situation whereby new teachers leave the teaching job at higher rates than new 

workers in other fields [Wonacott 2002]. 

High teacher stress and turnover affects student learning in terms of 

achievement, engagement, and, ultimately, the outcomes that comprise the end result 

of the education system. Recently, with advances in educational technology, adaptive 

educational systems have emerged, and, despite being intended for use by individual 

students in asynchronous learning contexts, such systems can be used to tailor 

instructional content to the needs of each student, thus promoting improved learning 

performance [Shute 2012], [Intelligent Adaptive Learning 2012]. Drawing on the 

ideas underpinning these adaptive systems that learn and adapted what works best for 

students, we extend a synchronous system to adaptive teaching and training that 
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enables teachers to learn the behaviors of expert teachers in tackling different 

students’ engagement in accordance with variables of the course content. This process 

will open opportunities for professional growth for teachers and enhance instruction, 

which will lead to better student achievement and promote student engagement. 

A higher level of engagement with the course content and teaching instructions 

enables students to acquire more knowledge, therefore improving their learning 

performance [Clark 2011]. As such, maintaining and increasing the learning 

engagement of different students requires ongoing learning in the context of the 

instructions established by experienced teachers. Given these considerations, the 

purpose of this chapter is to identify the instructional approaches that experienced 

teachers, in light of general course characteristics and different student engagement 

levels, deem to be the most effective. Subsequently, this learned behavior can be 

applied in the training of new teachers to improve their teaching approaches and thus 

promote better learning. 

The effectiveness of any adaptive and intelligent teaching framework depends 

on the approach used to accurately accumulate data about the best instructional 

approaches, and also the ability of how and when this information is processed to 

prepare an effective instruction context [Shute 2012]. The important question arises, 

then, of how one can ensure precision in evaluating and choosing the appropriate 

teaching approach that will best promote and improve learner engagement. This 

question is quite critical because of uncertainties about how accurately teacher 

decisions about instructional approaches are actually categorized by the learning 

system—as well as the corresponding uncertainties associated with how the resulting 
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instruction is actually decided and administered according to the varied levels of 

learner engagement.  

In synchronized teaching environments, there are high levels of linguistic 

uncertainties whereby teachers can interpret and act on the same terms, words, or 

methods (e.g., pertaining to lesson difficulty, appropriate teaching style, and 

approach) in various ways, according to their pupils’ varied levels of engagement, 

knowledge, and expertise in their subject. The integration of flexible Artificial 

Intelligence (AI) techniques within adaptive e-learning contexts could help to handle 

the uncertainties that may negatively affect the development of an environment which 

encourage learning and teaching [Ahmad 2004]. 

To the best of our knowledge, no previous studies have been proposed to learn 

the teaching behavior process according to the varied on-site and distance learners’ 

levels of engagement in their respective learning environments. 

This chapter presents an IT2FLS capable of understanding various teachers’ 

behaviors, involving their instructional decisions in accordance with various varied 

learners’ average engagement levels and the difficulty level of the content in dynamic 

teaching environments. The type-2 fuzzy model is first created from data collected 

from a number of teaching sessions with different teaching approaches conducted by 

different qualified teachers. The learned type-2 fuzzy-based model is then used to 

improve instructional delivery approaches that can be used as supplemental tools to 

aid the teaching profession and enhance the learning process. We will show how the 

proposed system enables the customization of instructional delivery to improve and 

increase different learners’ engagement. Furthermore, the proposed system is flexible 

enough to allow constant updating in accordance with the level of student 
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engagement. A number of experiments have been conducted within the iClassroom at 

the University of Essex among a group of thirty students and six teachers to assess the 

efficiency of the proposed system. The results of the experiments indicate that, in 

comparison to type-1 fuzzy systems and non-adaptive systems, the proposed system 

based on interval type-2 fuzzy logic has greater capacity for managing ambiguities 

and stimulating student engagement and satisfaction. 

4.2 The Proposed Environments Components 

Throughout the proposed e-learning framework, knowledge acquisitions 

would be transformed based on the teacher’s instructional approaches and tutorial 

actions aimed at fulfilling and prompting the current feedback regarding the varied 

levels of engagement of the remote and on-site learners. Figure 4.1  shows the 

conceptual model of the proposed environment whereby the data about the appropriate 

instructional approach are recorded by the tutor according to the distance and on-site 

learners’ varied engagement levels and the lesson’s difficulty level (for the three 

teaching sessions in the case of the carried out experiments) in the observer 

component. In this component, the data from the e-learning framework are monitored 

and captured at whatever point the teacher alter his or her instructional approach. 

Accordingly, these gathered data will be used in the fuzzy learning component. This 

component will initially enable the system to generate the type-2 fuzzy sets as per the 

methodology described in [Liu 2007], [Almohammadi 2014], [Almohammadi 2013a].  

This method centers on producing type-2 fuzzy sets via the gathering of type-

1 fuzzy sets from various instructors. These type-1 fuzzy sets are combined, resulting 

in the FOU, which appropriately induces a type-2 fuzzy set, which is seen to signify 

a word. Furthermore, this component implements an unsupervised one-pass approach, 
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as inspired by [Wang 2003], [Hagras 2007], [Almohammadi 2015a], [Almohammadi 

2015b], and obtains the rules from the acquired data; this is the main goal of this 

component. In the IT2FLS adaptation rules component, these learned rules trigger the 

best instructional methodologies based on the current state of inputs. This adaptation 

model component also considers the new teacher-learned actions that are subject to 

the existing input parameters from the e-learning environment that are already 

monitored in the observer component, and subsequently creates an output in 

consideration of the current state of inputs. This further enables the online adaptation 

and enhancement of rules and ultimately facilitates life-long learning owing to the 

dynamic quality of teaching and learning process interactions. 

 

Figure 4.1: An overview on the proposed Type-2 Fuzzy Logic Based recommendation approach 

for Adaptive Teaching across Interactive E-learning Environments. 

 



P a g e  | 90 

 

As demonstrated in Figure 4.1, there would be three components in the 

proposed system which are the observer component, the fuzzy logic component and 

the IT2FLS and adaptation components. These three components will be discussed in 

detail in the following subsections. 

4.2.1 The Observer Component 

Primarily, the proposed system gathers and captures the data through 

collecting the appropriate instructional approach as recorded by the teacher, according 

to the distance learners’ varied average level of engagement and the difficulty level 

of the current lesson taught within the online learning environment. It is noteworthy 

that the data (both current inputs and outputs) would be actively recorded by the 

system if there was any change in the appropriate instructional approach (as indicated 

by the teachers) in accordance with the current state of the e-learning environment. 

Thus, our system creates and learns a descriptive model of the best instructional 

teachers’ methodologies used in tackling and promoting the varied levels of 

engagement of distance learners in a balanced way; this is achieved through the data 

gathered, generating a set of multi-input and multi-output data pairs, which take the 

following form [Wang 2003],[Hagras 2007], [Almohammadi 2015a] : 

𝑥(𝑡); 𝑦(𝑡)                  (𝑡 =  1,2, . . . , 𝑁),                                (4.1) 

 Where N is referred to as the total of data instances,  𝑥(𝑡) ∈  𝑅𝑛 , and 𝑦(𝑡) ∈

 𝑅𝑘. Rules are basically mined by our system, which explains how the k output, which 

is the best instructional approach variables  𝑦 = (𝑦1,   .  .  . , 𝑦𝑘)𝑇 are affected by the 

input variables 𝑥 = (𝑥1, .  .  . , 𝑥𝑛)𝑇. A model mapping inputs to outputs is achieved 

using the established fuzzy rules without requiring a mathematical model. Therefore, 
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individual rules can be adapted online, affecting only certain aspects of the descriptive 

model created and learned by the proposed system. 

4.2.1.1 The Proposed Method for Engagement Degree Estimation 

The first step is to calculate the head pose orientation and the face emotion 

using the SDK of Kinect v2. After that, the deviation degrees of the current head 

orientation away from the expected direction (towards the whiteboard or screen) are 

calculated to measure the extent of distraction. And then we select the largest 

distraction extent degree to estimate the engagement degree of the student. Finally, 

based on the deviation and the face emotion, the engagement degree can be computed. 

4.2.1.1.1 Head Pose Estimation 

To robustly estimate the head pose orientation and improve the accuracy of 

the results, the method based on a regularized maximum likelihood Deformable 

Model Fitting (DMF) reported in [Cai 2010] which is robust against the impact of 

noise factors in the depth channel. As this method has been developed in the latest 

version v1409 of Kinect v2 Windows SDK, in our experiments we utilize the module 

directly to obtain the 3D head pose orientation of the student in E-Learning 

environments. In our experiments, we use the latest model Kinect v2 as shown in 

Figure 4.2 a) which is more robust than the previous model [Almohammadi 2014]. 

The SDK of Kinect v2 provides and describes head pose relating to the Kinect camera 

by three angles: pitch, roll and yaw, as demonstrated in Figure 4.2 b). 
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                                   (a)                                                 (b)                                                                 

Figure 4.2:   (a) The used Kinect v2.  (b) Head pose angles. 

 

4.2.1.1.2 Engagement Degree Estimation 

Based on the visual features including head pose together with the face 

emotion returned by the 3D sensor, in our experiments, we will consider the following 

assumptions describing the relation between the input visual features and the output 

engagement degree: 

 Facing the whiteboard (or computer screen in case of remote learning) – the 

student is engaged in the class. 

 Facing down – the student is sleepy or probably playing a tablet/smartphone.  

 Facing to the left/right – the user is distracted from the learning and interacting 

with another student nearby. 
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 Looking around/away – The student is thinking about irrelevant problems and 

is not concentrated.  

 Face emotion – One eye is not open or both of the two eyes are closed (falling-

asleep), and other face emotion for example, mouth open and close (speaking), 

facial expression is happy, face emotion is engaged, etc. 

Based on the assumptions above, the engagement degree of the student can be 

calculated and modelled by the face emotion of the student and the deviation between 

the current head orientation and the optimum engaged head pose (facing towards the 

whiteboard) which are shown in the following equations. 

 

Engagement Degree= (1-Deviation)×Emotion Modifier                       (4.2) 

  

Where Emotion Modifier is decided by the facial emotion including falling-

asleep, speaking, happy, engaged. In this experiment we mainly consider the factor 

falling-asleep for face expression analysis: 

EmotionModifier={
1

OEC Modifier
0

   if    

𝑇𝑤𝑜 𝑒𝑦𝑒𝑠 𝑎𝑟𝑒 𝑜𝑝𝑒𝑛
𝑂𝑛𝑒 𝑒𝑦𝑒 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑

𝑇𝑤𝑜 𝑒𝑦𝑒𝑠 𝑎𝑟𝑒 𝑐𝑙𝑜𝑠𝑒𝑑
                  (4.3) 

Where OEC Modifier is in the range of 0 and 1, and can be determined by the 

actual application scenario.  

  

 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥{𝐷𝑝𝑖𝑡𝑐ℎ, 𝐷𝑟𝑜𝑙𝑙, 𝐷𝑦𝑎𝑤}                                         (4.4) 

 

𝐷𝑝𝑖𝑡𝑐ℎ= 
|𝑃𝑖𝑡𝑐ℎ𝑐−𝑃𝑖𝑡𝑐ℎ𝑜|

𝑃𝑖𝑡𝑐ℎ𝑚𝑎𝑥
                                      (4.5) 

 

       𝐷𝑟𝑜𝑙𝑙 =  
|𝑅𝑜𝑙𝑙𝑐−𝑅𝑜𝑙𝑙𝑜|

𝑅𝑜𝑙𝑙𝑚𝑎𝑥
                                         (4.6) 
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𝐷𝑦𝑎𝑤= 
|𝑌𝑎𝑤𝑐−𝑌𝑎𝑤𝑜|

𝑌𝑎𝑤𝑚𝑎𝑥
                                         (4.7) 

Where 𝑃𝑖𝑡𝑐ℎ𝑐, 𝑅𝑜𝑙𝑙c, 𝑌𝑎𝑤c are the three angles (pitch, roll and yaw) of the 

current head pose obtained by the Kinect v2. 𝑃𝑖𝑡𝑐ℎ𝑜, 𝑅𝑜𝑙𝑙𝑜, 𝑌𝑎𝑤𝑜 are the angles 

describing the optimum engaged head pose orientation which are recorded in the 

training stage. 𝑃𝑖𝑡𝑐ℎ𝑚𝑎𝑥,𝑅𝑜𝑙𝑙𝑚𝑎𝑥, 𝑌𝑎𝑤𝑚𝑎𝑥 are the maximum angles defined and 

returned by the Kinect v2 SDK. 

4.2.2 Fuzzy Logic Component  

4.2.2.1 Extracting the Interval Type-2 Fuzzy Sets 

Classification of the acquired teaching–learning behavior input/output data 

through the relevant fuzzy membership functions is a vital step in this component 

layer. The raw input and output values are ultimately quantified through this process, 

which leads them into linguistic labels such as low/moderate and high for the average 

level of engagement. The type-2 fuzzy set extraction approach used is indicated in 

[Liu 2007], [Almohammadi 2014], and [Almohammadi 2013a], by which a type-2 

fuzzy set is developed and its FOU embeds the numerous type-1 fuzzy sets, so that 

each teacher’s individual interpretation can be specified regarding a particular 

linguistic label that justifies the appropriate instructional approach and various varied 

learners’ average engagement levels. Therefore, the teachers’ diverse views with 

regard to modeling these words would be integrated by the FOU produced, and the 

uncertainties would also be handled for the type-2 fuzzy sets. In this method, data are 

gathered by questioning the teachers regarding their specific linguistic labels through 

which type-1 fuzzy sets would be produced. Subsequent to this step, the type-2 fuzzy 

sets are produced, while the type-1 fuzzy sets (demonstrating the teachers’ individual 

views) are integrated, through which the FOU of the type-2 fuzzy set is delivered to 



P a g e  | 95 

 

 

represent the given word. Through the application of the Representation Theorem 

[Mendel 2001], [Liu 2007], each of the interval type-2 fuzzy sets 𝐴̃𝑠 can be calculated 

as follows: 

𝐴̃𝑠 = ⋃ 𝐴𝑖𝑛
𝑖=1                                                        (4.8) 

In this equation, ∪ is an aggregation operation and 𝐴𝑖  is referred to as the 

𝑖𝑡ℎ embedded type-1 fuzzy set [Liu 2007]. Reckoning the upper MF 𝜇
𝐴̃

(𝑥) and the 

lower MF 𝜇𝐴̃(𝑥) of 𝐴̃𝑠 can deliver the process of 𝐴̃ production. The embedded type-

1 fuzzy sets and the upcoming FOU model for 𝐴̃𝑠 would collectively decide the 

occurrence of this mechanism. For the upper and lower MF parameters, interior FOU 

models, right and left shoulder MFs (shown in Figure 4.3 a, b and c) are to be applied 

in our system. According to Figure 4.3 a, the parameters:  𝑎𝑀𝐹, 𝑐𝑀𝐹, 𝑐𝑀𝐹 and 

𝑏𝑀𝐹 denoting a trapezoidal upper MF and the parameters: 𝑎̅𝑀𝐹 and 𝑏𝑀𝐹 for a 

symmetric triangular lower MF, with an intersection point (𝑝, 𝜇𝑝) are most likely to 

describe the resulting interior interval type-2 fuzzy set [Liu 2007]. We describe below 

the procedures for calculating these parameters: 

The type-1 MFs for each of the i teachers is described according to the 

parameters [𝑎𝑀𝐹
𝑖 ,𝑏𝑀𝐹

𝑖 ]. For interior FOUs, we provide below the procedure for 

assessing the FOU model [Liu 2007]: We should follow the given steps for the upper 

MF 𝜇
𝐴̃

(𝑥),   
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1) For 𝜇(𝑥) = 0 , determine 𝑎𝑀𝐹to be equal to the minimum 𝑎𝑀𝐹
𝑚𝑖𝑛 of all left-end 

points 𝑎𝑀𝐹
𝑖  and 𝑏𝑀𝐹 to be equal to the maximum 𝑏𝑀𝐹

𝑚𝑎𝑥 of all right-end 

points 𝑏𝑀𝐹
𝑖  [Liu 2007]. 

2)  For 𝜇(𝑥) = 1, calculate 𝑐𝑀𝐹, 𝑐𝑀𝐹 which correlate to the minimum and the 

maximum of the centres of the type-1 MFs. 

3) Approach the upper MF 𝜇
𝐴̃

(𝑥) by joining the following points with straight 

lines: (𝑎𝑀𝐹 , 0),(𝑐𝑀𝐹, 1),(𝑐𝑀𝐹 , 1)and (𝑏
𝑀𝐹

, 0). Figure 4.3 a) illustrates the 

result, which is a trapezoidal upper MF. 

Following are the steps to estimate the lower MF𝜇𝐴̃(𝑥):  

1) For 𝜇(𝑥) = 0, determine 𝑎̅𝑀𝐹 to be equal to the maximum 𝑎𝑀𝐹
𝑚𝑎𝑥 of all left-end 

points 𝑎𝑀𝐹
𝑖  and 𝑏𝑀𝐹 to be equal to the minimum 𝑏𝑀𝐹

𝑚𝑖𝑛  of all right-end points 

𝑏𝑀𝐹
𝑖  [Liu 2007]. 

2)  By using the following equations, compute the intersection point (𝑝, 𝜇𝑝) [Liu 

2007]: 

 

𝑝 =
𝑏𝑀𝐹(𝑐𝑀𝐹 −𝑎𝑀𝐹)+𝑎𝑀𝐹(𝑏𝑀𝐹 −𝑐𝑀𝐹)

(𝑐𝑀𝐹 −𝑎𝑀𝐹)+(𝑏𝑀𝐹 −𝑐𝑀𝐹)
                             (4.9) 

𝜇𝑝 =
(𝑏𝑀𝐹 − 𝑝)

(𝑏𝑀𝐹 − 𝑐𝑀𝐹)
                                                      (4.10)  

 

3)  Approximating the lower MF 𝜇𝐴̃𝑠
(𝑥) by joining the following points with 

straight lines :(𝑎𝑀𝐹 , 0),(𝑎𝑀𝐹, 0),(𝑝, 𝜇(𝑝)), (𝑏𝑀𝐹, 0)and (𝑏𝑀𝐹, 0).The result 

according to Figure 4.3 a) is a triangle lower MF.  
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The method adopted for computing the FOU for the right and left shoulder is 

similar to that described in [Liu 2007]. To compute the upper MF 𝜇
𝐴̃

(𝑥) for the left 

shoulder (as shown in Figure 4.3 b), points (0,1),(𝑎
𝑀𝐹

, 1) and (𝑏
𝑀𝐹

, 0) should be 

joined with straight lines. To compute the lower MF𝜇𝐴̃(𝑥), 

points (0,1),(𝑎𝑀𝐹, 1),(𝑏𝑀𝐹 , 0), and (𝑏
𝑀𝐹

, 0) should be connected with straight lines. 

Similarly, as shown in Figure 4.3 c), to estimate MF 𝜇
𝐴̃

(𝑥) for the right shoulder, 

points (𝑎𝑀𝐹, 0),(𝑏𝑀𝐹, 1) and (𝑀, 1) should be joined with straight lines. To 

approximate the lower MF𝜇𝐴̃(𝑥), points (𝑎𝑀𝐹, 0),(𝑎
𝑀𝐹

, 0), (𝑏
𝑀𝐹

, 1) and (𝑀, 1) 

should be joined with straight lines [Liu 2007].   

 

 

 

(a)  (c) 

Figure 4.3:   (a) An interior type-2 MF embedding the different type-1 fuzzy sets, (b) left shoulder 

type-2 MF embedding the different type-1 fuzzy sets (c) Right shoulder type-2 MF embedding the 

different type-1 fuzzy sets [Liu 2007]. 

(a) 
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4.2.2.2 Extracting the Fuzzy Rule from the Collected Data 

The data collected from the e-learning environment (input/output) are combined 

with the extracted type-2 fuzzy sets so that the rules describing the actions of teachers 

can be extracted. An enhanced form of the Wang–Mendel technique is used to drive 

the rule extraction method employed in this chapter [Wang 2003], [Hagras 2007]. This 

method was explained in the previous chapter in section 3.2.3. An example of the 

extracted rule with multiple inputs-outputs is shown in Figure 4.4.        

IF the learners’ average level of engagements is Low AND the 

learners’ average standard deviation level of engagements is 

Moderate AND the difficulty level of the current lesson is Hard THEN 

the recommendation to use the “asking questions” teaching 

approach is High AND the recommendation to use the “practical 

explanation (demo)” approach is Low AND  the recommendation to 

use the “teaching with cases (problem solving)” approach is 

Moderate AND the recommendation to use the “PowerPoint slides” 

teaching approach is Low 

Figure 4.4:  An example of one of the extracted fuzzy rules 

 

4.2.3 The IT2FLS and adaption component 

The generated type-2 fuzzy sets and the fuzzy rules extracted from the input 

and output gathered data of learners enables the proposed system to learn and obtain 

the best instructional approaches in accordance to the varied level of engagement of 

the learners and the difficulty level of the taught content. The system is consequently 
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able to notify the teachers to re-adjust the online learning environment with specific 

consideration to appropriate instructional approach. The system actions are triggered 

through the examination and monitoring of various learners’ varied levels of 

engagement and the lesson difficulty, which subsequently affects the online 

instructional environment, with a particular consideration of the learned 

approximation of best tutorial actions that could be followed by the teachers. The 

following are the functionalities of the proposed type-2 fuzzy adaptive system: 

 As specified in the e-learning environment, the crisp inputs including the 

learners’ variables are fuzzified (via singleton fuzzification) into the input 

interval type-2 fuzzy sets. 

 The outputs (instructional approaches) type-2 fuzzy sets are generated by the 

activation of inference engine and rule base. 

The proposed system must have the ability to be fine-tuned with respect to the 

dynamic and diverse varied learners’ engagements and various difficulties of the 

taught lessons’ states by continuously enabling teachers to modify their instructional 

approaches. Subsequently, the system will re-adjust its procedures or it would apply 

new ones. If no rules arouse from the rule base (i.e. the rule’s firing strength in 

Equation (3.21) in section 3.2.3 in chapter 3 ( 𝑤𝑖(𝑡) = 0) in a given input, 

subsequently the system input would be captured by the system. To create a rule 

covering this uncovered input status, it will capture the appropriated teaching 

approaches. Therefore, new rules would be integrated in the system while there is an 

undefined state of the online learning environment at that moment as per the existing 

rules in the rules base (i.e. where none of the present rules are fired). The new rules 

will be generated and the system integrates them in such an instance, in which the 
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online learning environment's current input states are specified by the antecedents 

besides the consequent fuzzy sets that are dependent on the current state of the 

instructional approach. The fuzzy sets that have membership values, where 

𝜇
𝐴̃𝑐

ℎ
𝑐𝑔

( 𝑥𝑠

(𝑡′)
) > 0, are identified for all of the input parameters 𝑥𝑠. Consequently, for 

each input parameter, numerous identified fuzzy set(s) are generated in the form of a 

grid from which new rules are generated based on all individual combinations of 

successive input fuzzy sets. The consequent fuzzy set that provides the greatest value 

of membership to the teacher defines the appropriate instructional approach (𝑦𝑐) so 

that it can operate as the generated rule consequent. After performing a calculation of 

the output interval memberships’ center of gravity, we can establish the fuzzy sets 

[Wang 2003], [Hagras 2007],[Almohammadi 2013a]: 

𝜇
𝐵̃𝑐

ℎ∗
𝑐𝑔 (𝑦𝑐) ≥ 𝜇

𝐵̃𝑐
ℎ

𝑐𝑔 (𝑦𝑐)                                        (4.20) 

For ℎ =  1, . . . , 𝑊 the 𝐵̃𝑐 is chosen as 𝐵̃𝑐
ℎ∗

, where 𝑐 =  1, . . . , 𝑘. Consequently, 

new and upcoming rules can be progressively added. 

In case the teacher needs to change the suited instructional approaches at a 

given input status, the fired rules will be identified and the rule consequents will be 

changed (if more than two teachers signal the same modifications for the teaching 

approaches), as indicated by Equation (4.20). Therefore, the fired rules are modified 

so that the updated suited instruction approaches for the students could be reflected in 

a desirable way, while taking into account the existing state of the online learning 

environment. The system proposed in this chapter adopts life-long learning through 

facilitating the adaptation of rules according to the optimized instruction delivery 

approaches by teachers, which notably change over time based on students varying 
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levels of engagements and in regard to the state of the online learning environment. 

Owing to the system flexibility, the fuzzy logic model learned initially may be 

effortlessly expanded in order to make changes to both new and existing rules. These 

fuzzy rules enable a large range of values for all parameters (input and output) to be 

captured, which in turn enables the continuation of the generation of rules, even when 

the online learning environment gradually changes. On the other hand, if notable 

changes occur in terms of the students’ varied average level of engagements or in the 

environment (which may not be captured by the present rules, as highlighted above), 

the new rules will be automatically generated, which ultimately satisfy present 

conditions. Accordingly, the inconspicuous system will expand its actions and may 

be adapted in order to improve the instruction delivery. 

4.3 Experiment and Results 

Various real-world experiments were performed in the iClassroom of the 

University of Essex to compare the effectiveness of the proposed Interval Type-2 

Fuzzy Logic based System (IT2FLS) with the Type-1 Fuzzy Logic based counterpart 

system (T1FLS) and the non-adaptive version of the system in regards of enhancing 

the quality of instruction to promote better student engagement and satisfaction. To 

perform the experiments, 20 lessons from a Microsoft Excel course were selected and 

categorized according to level of difficulty (i.e. very hard, hard, moderate, easy and 

very easy). Furthermore, we examined four teaching approaches, namely teaching: 

using PowerPoint slides, practical explanation (demo), teaching with cases (problem 

solving) and asking questions. These approaches were recommended by different 

expert teachers to be used in the systems.  
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Real-world experiments were conducted with a sample of 30 students and six 

teachers from the University of Essex. The experiments began by training the system. 

Three groups were formed from the 15 students, each of which was randomly assigned 

five distance learners. An expert teacher was assigned to each group to teach 20 

lessons using the four teaching approaches.  

 

Figure 4.5:  Teachers are shown on the left side photographs while they are teaching different lessons 

with different teaching approaches. On the right side photographs, the students’ engagement feedback 

are shown in the teachers’ user interface 
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During the teaching sessions, the learners’ average level of engagements and 

the average standard deviation level were measured and accumulated every five 

seconds, as well as the difficulty level of the current lesson being presented in the 

teacher-user interface; both were used as input variables. When the teacher decided to 

change the teaching approach, he/she should rank and prioritize these teaching 

approaches from zero (not beneficial in the current situation) to ten (absolutely 

beneficial in the current situation); this ranking was used as the output. The teacher 

recorded the inputs and their related outputs in the system’s database. These 

inputs/outputs were captured by the observer component whenever the teacher 

changed or recorded the appropriated instructional approach. The left hand side of 

Figure 4.5 shows the teachers teaching the lessons while the right hand side shows the 

students’ engagement degree recognized by the teacher user interface. The average 

engagement degree for each student was measured using the Kinect camera (as shown 

in Figure 4.5 and as explained in section 4.2.1.1). 

It should be noted that the calculation of the average learners’ engagement and 

the standard deviation was taken from the beginning of teaching a lesson in one of the 

four teaching approaches until teaching another lesson that differed in difficulty level 

or until changing the teaching approach. 

After collecting sufficient datasets, we started the testing phase. Here, three 

five-member groups were taught by three different teachers (i.e. one teacher assigned 

to each group). The teacher in the first group used a system applying T1FLS, while 

the second group’s teacher used applied IT2FLs recommendations. The third group 

did not use any technological system and served as the control group for the 

experiment. After dividing the three groups equally and the input and output data for 
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type-1 and type-2 groups were obtained. Then, by using the linguistic variables and 

rules, the fuzzy logic models for both the type-1 and type-2 were constructed. The 

type-2 fuzzy sets (shown in thick line in Figure 4.6) were obtained to capture the 

uncertainty that represents teachers’ views regarding a particular linguistic label 

explaining the average of students’ engagement, their standard deviation and the 

teaching approach, while the type-1 fuzzy logic system uses a type-1 fuzzy set (shown 

in dashed lines and sample from the extracted fuzzy sets can be found in Appendix B) 

as it shown in Figure 4.6 .In addition, examples of the generated rule is shown in 

Figure 4.4. 

Low      Moderate               High 

 

Figure 4.6:  The generated interval type-2 fuzzy sets of the average engagement level (think solid 

lines) and the type-1 fuzzy sets (thick dashed lines). 
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As soon as the teachers in the first and second groups started introducing the 

first lesson, the observer component started calculating the average engagement and 

the standard deviation. Simultaneously, the observer component tried finding the 

matched rule(s) with the current monitored inputs. When the system found the 

matched rule(s), it would be presented in the teacher user interface thus, he/she could 

know what the best teaching approach in that situation was given the output of the 

IT2FLS. The teacher could ignore this output and the system would learn from his/her 

decision of re-prioritizing and re-ranking the teaching approaches based on the current 

given data. Hence, if the teacher determined to continue teaching the lesson (or any 

lesson in the same difficulty level) without changing the teaching approach, the 

observer component will continue calculating the average engagement and the 

standard deviation. In contrast, if the teacher changed the teaching approach or taught 

a lesson that differed from the previous one, the observer component would modify 

its action accordingly and adapt the corresponding rules.   

The notification frequency is determined by changes in the monitored inputs 

(the eLearning environment state), modified by the average level of engagement, the 

average standard deviation of learners engagements, or the difficulty level of the 

lesson. We have noticed that these inputs do not sharply change, so the notifications 

should not affect the instructor mode of teaching. Through the experiments, it has 

been shown that 66% of the suggested teaching approaches were followed by the 

teacher, whereas 34% divided between the edited ones and the recommendation that 

affects the instructor mode of teaching. It is important to note that teachers might need 

some time to switch from one teaching approach to another, so they might in some 

cases ignore the recommended approach.  
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Finally, for evaluation purposes the teacher learned data was collected to 

compare the type-2 and type-1 fuzzy logic system to know the average error and 

standard deviation of the teachers’ preferred output and the system outputs. In 

addition, the comparison between the three groups in terms of the average 

engagements and standard deviations involved comparing them based on the data 

gathered by the observer component (during the whole teaching session for every 

group) and based on the students’ views which tracked by their questionnaire 

responses. 

 

Output Name Type-2 Fuzzy Logic Type-1 Fuzzy 
Logic 

Average error Standard 
deviation 

Average 
error 

Standard 
deviation 

 

Asking questions 

approach 

 

2.60 1.43 2.73 1.88 

 

Practical explanation 

(demo) approach 

 

1.90 1.28 2.78 1.67 

 

teaching with cases 

(problem solving) 

approach 

2.09 1.32 2.88 1.79 

Using PowerPoint 

slides 

 

2.31 1.71 2.97 1.95 

 

Table 4.1: Average error and statndard deviation of the system outputs 
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Firstly, based on the teachers’ learned data, Table 4.1. shows the average error 

and standard deviation to compare the teacher preferred output and the system outputs 

in both systems IT2FLS and T1FLS. These results clearly show that IT2FLS has less 

average error and standard deviation. Even for the least improvements in the “Asking 

questions Approach”, the IT2FLS produced almost 5% better performance when 

compared to T1FLS in terms of lower average error between the system output 

“asking question approach” and the preferred teacher learned output “asking question 

approach.” In addition, the IT2FLS produced better spread of the errors by having 

23% less standard deviation when compared to T1FLS. Consequently, IT2FLS 

appears to be more effective than type-1 fuzzy logic system in recording teachers’ 

tutorial actions.  

On the other hand, according to data gathered by the observer component, the 

results indicated that the use of IT2FLS makes students more engaged and brings them 

closer to each other in terms of their degree of engagement. Accordingly, there was 

little dispersion of the set of engagement data for the IT2FLS group, with an average 

engagement degree of 68.75% and 10% average standard deviation, compared to an 

average engagement degree of 64.23% and 16% average standard deviation for the 

type-1 fuzzy logic system (T1FLS)—and a 44.34% average engagement degree and 

20% average standard deviation for the control group.  

Furthermore, we analyzed the participants’ satisfactions in the questionnaire 

(see Figure 4.7) using ANOVA to compare the responses from the groups at a 

significance level of 0.05. The analysis revealed that there is a significant statistical 

difference between the various groups (p << 0.05). We also carried out Tukey 

comparison test to see which pair of groups has the difference. We observed that group 
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3 (IT2FLS) and Group 1 (control group) were the most significantly different groups 

as compared to other pairings, as shown in Figure 4.8 

 

Figure 4.7: the designed questionnaire for measuring participants’ satisfactions  
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Figure 4.8: Plot for group means comparison using Tukey. 

 

4.4 Discussion 

E-learning platforms facilitate the interaction between students and instructors 

while mitigating temporal or spatial constraints. Nevertheless, such platforms require 

measuring the degree of students’ engagement with the delivered course content and 

teaching style. Such information is highly valuable for evaluating the quality of the 

teaching and altering the teaching delivery style in massively crowded online learning 

platforms. When the number of learners is high, it is essential to attain overall 

engagement and feedback, yet doing so is highly challenging due to the high levels of 

uncertainties related to students and the learning context. To handle these 
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uncertainties more robustly, we have presented a method based on type-2 fuzzy logic 

utilizing visual RGB-D features, including head pose direction and facial expressions 

captured from Kinect v2, a low-cost but robust 3D camera, to measure the engagement 

degree of students in both remote and on-site education. This system augments 

another self-learning type-2 fuzzy logic system that helps teachers with 

recommendations of how to adaptively vary their teaching methods to suit the level 

of students and enhance their instruction delivery. This proposed dynamic e-learning 

environment integrates both on-site and distance students as well as teachers who 

instruct both groups of students. The rules are learned from the students’ and teachers’ 

learning/teaching behaviors, and the system is continuously updated to give the 

teacher the ability to adapt the delivery approach to varied learners’ engagement 

levels.  

The IT2FLS has been tested and compared with the T1FLS and with a non-

adaptive system within a small-scale elearning platform. The experiments were 

conducted with a population of six teachers and 30 students at Essex University. The 

results revealed that IT2FLS was better able to handle uncertainties where IT2FLS 

produced lower average errors and standard deviation compared to T1FLS between 

the system outputs and the preferred teacher outputs. This has resulted in increasing 

the average level of engagement over the T1FLS group by 7%; the engagement level 

improved over the control group by 55%. Furthermore, the use of the IT2FLS system 

brought the students’ engagement levels closer together, yielding an average standard 

deviation improvement of about 37.5% over the T1FLS group and about 50% over 

the control group. Using ANOVA and Tukey tests, we found that the satisfaction level 

of the participants in the IT2FLS differed significantly from the satisfaction level of 

students in the control group (p < 0.05). 
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Thus, these promising results from the proposed system has facilitated the 

instruction with better delivery to the learners more than the type 1 fuzzy systems and 

the non-adaptive version. 

It should be noted that the proposed system can be scalable and is designed for 

a large number of remote students. In addition, the system can be extended in terms 

of the relations between more varied student input variables and more teaching 

methods outputs to be tested. In the future, we intend to carry experiments with large 

size classes. 

In the next chapter, we aim to employ the general new zSlices-based type-2-

fuzzy-logic-based system to better handle uncertainties in the model and extend the 

flexibilities of the proposed models. We also conduct various large-scale, real-world 

experiments involving 1,871 students from King Abdul-Aziz University to test the 

proposed zSlices-based type-2-fuzzy-logic-based system with the IT2FLS. 

Unfortunately, we could not utilize the engagement system within the employed 

experiments because of the large number of distance learners and the inability to 

require them to buy the Kinect v2 camera. 
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Chapter 5: zSlices-Based T2FLs for Users-Centric 

Adaptive Learning in Large Scale E-Learning 

Platforms 

5.1 Introduction 

Previous experiments and chapters for small-scale e-learning platforms have 

proven that interval type-2 FLSs are capable of providing better performance 

compared to type-1 FLSs as type-2 FLSs can be considered as groups of uncountable 

embedded type-1 FLSs [Mendel 2001]. The interval type-2 fuzzy sets assume the even 

distribution of uncertainty by interval type-2 fuzzy sets across the FOU. However, 

better performance can expected through the use of general type-2 fuzzy sets as 

general type-2 fuzzy sets can allow for an unbalanced distribution within applications 

in areas that have uneven distributions of uncertainty when information regarding this 

kind of distribution is available [Wagner 2010]. In adaptive e-learning environments 

that could learn the learners behaviour, there are multi learners where their behaviours 

can be extracted from various characteristics such as their pervious education; an 

example is the secondary school education level. In Saudi Arabia, there are two 

secondary education sections which are the humanities section and scientific 

secondary section. We will show how we utilise the third dimension to manage more 

the raised uncertainty using zSlices based general type-2 fuzzy sets.  

This chapter presents a new zSlices-based general type-2 fuzzy-logic-based 

system that can learn students’ preferred knowledge delivery needs based on their 

characteristics and current levels of knowledge to generate an adaptive learning 

environment. We have evaluated the proposed system’s efficiency through various 
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large-scale, real-world experiments involving 1871 students from King Abdulaziz 

University. These experiments demonstrate the proposed zSlices general type-2 

fuzzy-logic-based system’s capability for handling linguistic uncertainties to produce 

better performance, particularly in terms of enhanced student performance and 

improved success rates compared with interval type-2 fuzzy logic, type-1 fuzzy 

systems, adaptive, instructor-led systems, and non-adaptive systems. 

5.2 The zSlices-based General T2FLS for users-centric 

adaptive learning in large scale e-learning platforms 

Our proposed theoretical and practical environment based on zSlices general 

type-2 fuzzy logic aims to correlate and learn various needed instructional variables 

like the suited current level of content difficulty and the time needed for the taught 

content that can tackle the current state of various learner variables, such as current 

levels of knowledge and characteristics. Figure 5.1 shows an overview of the proposed 

environment where interactions occur between various learners and the e-learning 

environments in the application layer. The main objective of this layer is first to 

specify needed instructional variables to be learned (the outputs) in the learning 

environment according to the learners’ variables, which are the inputs. Secondly, this 

layer will enable the system to gather and monitor these specified data related to 

evaluating students’ understanding of their knowledge delivery needs according to 

their characteristics variables in the online learning environment, which is 

subsequently examined and analyzed in the learning fuzzy rules layer. 

The learning fuzzy rules’ functionality generates the system learned rules. The 

objective of the first component of this layer is to extract the zSlices general type-2 

fuzzy sets for the system input and output, which are based on a method that centers 
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on creating type-2 fuzzy sets [Liu 2007], [Almohammadi 2014], [Almohammadi 

2013a], [Almohammadi 2015a] gathered from a sample of participants (n=30 students 

in the conducted experiments) to handle the internal uncertainties for two groups of 

students. After acquiring the fuzzy sets and collecting data (which took one week in 

the conducted experiments), the system is able to generate the fuzzy rules that describe 

the best needed instructional actions that satisfy the current state of students’ 

capabilities and characteristics. The proposed zSlices system utilizes an unsupervised 

one-pass technique (inspired by previous studies [Bilgin 2012], [Wang 2003], [Hagras 

2007], [Almohammadi 2013a]) for extracting the rules from the collected data in this 

extracting fuzzy rule component. 

Finally, the adaptation layer is used when it takes the students’ learning current 

input states and gives them suitable outputs to accomplish their learning tasks. Our 

proposed environment in this layer further enables the online adaption and 

enhancement of rules and facilitates long-term learning due to changes in performance 

and capabilities, delivery instructional needs. The proposed environment comprises 

the three following layers (as shown in Figure 5.1), which with their sub-components 

are discussed in detail in the following subsections. 
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Figure 5.1 :An overview on the proposed zSlices based on type-2 fuzzy logic for users-centric 

adaptive learning system in large scale e-learning platforms 

 

5.2.1 Application Layer 

The main purpose of this layer is to first specify the learners’ variables, which 

are the inputs according to the system outputs; these are related to the content or 

instructional variables to be learned. Instructional variables could be the suitable 

learning content difficulty level and time needed, along with the preferred learning 

style and method of knowledge acquisition. These variables promote the student 

learning level that matches the current learner variables, which include the student’s 
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current level of knowledge and other personal characteristics related to the adaptation 

process, making it more personalized. 

5.2.1.1 The Observer Component 

 

The objective of this component in the proposed system is to record and 

monitor the system inputs and outputs. The data are captured via the collection and 

assessment of various student knowledge delivery requirements (outputs for the fuzzy 

system) according to their characteristics and capabilities (inputs for the fuzzy system) 

within the application layer. It is noteworthy that this component is also responsible 

for actively recording data (both current inputs and outputs) to see if there is any 

change in the student instructional needs in accordance with the current state of the e-

learning environment [Hagras 2007], [Almohammadi 2013a]. Therefore, the observer 

component enables proposed environments to create and learn a descriptive model of 

the appropriate student instructional needs used in handling and promoting the 

students’ current levels of knowledge and capability; this is accomplished via this 

process of data gathering, which generates a set of multi-input and multi-output data 

pairs, which will be formed as follows [Bilgin 2012], [Wang 2003], [Hagras 2007]: 

𝑥(𝑡); 𝑦(𝑡)                  (𝑡 =  1,2, . . . , 𝑁),   (5-1) 

Where N is the total number of data instances,  𝑥(𝑡) ∈  𝑅𝑛 , and 𝑦(𝑡) ∈  𝑅𝑘. The 

rules generated by the proposed system are basically explaining how the k output, 

which is the students’ instructional needs variables 𝑦 = (𝑦1,  . . . , 𝑦𝑘)𝑇, are affected by 

the input variables 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇, which are the student characteristics and 

capabilities. A correlating model for inputs to outputs is constructed using the 

established fuzzy rules without requiring a mathematical model. Thus, individual 
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rules can be adapted online, affecting only certain aspects of the descriptive model 

created and learned by the proposed system. 

5.2.2 The Fuzzy Rules Learning Layer 

5.2.2.1 Extracting the zSlice based general type-2 fuzzy sets 

Categorization of the gathered learning-instruction behavior input/output data 

via the relevant fuzzy membership functions is an important step in the fuzzy rule 

learning layer. This component enables the system to quantify the raw input and 

output values by changing them into linguistic labels such as very low, low, moderate, 

high, and very high for the average level of knowledge in the current learning subject. 

A zSlice is formed by slicing a general type-2 fuzzy sets in the third dimension (z) at 

level 𝑧𝑖[Wagner 2009], [Wagner 2010]. The result of this slicing action is an interval 

set in the third dimension with height 𝑧𝑙. In other words, a zSlice 𝑍̃𝑖 is equivalent to 

an interval type-2 fuzzy set with the exception that its membership grade 𝜇𝑍̃𝑖(𝑥,𝑢) in 

the third dimension is not fixed to 1; instead it is equal to 𝑧𝑙, where 0 ≤ 𝑧𝑖 ≤

1[Wagner 2010]. Thus, the zSlice 𝑍̃𝑙 can be written as [Wagner 2010]: 

𝑍̃𝑖 = ∫ ∫ 𝑧𝑖/(𝑥, 𝑢𝑖)
 𝑢𝑖∈𝐽𝑖𝑥𝑥∈𝑋

 
(5-2) 

Interval type-2 fuzzy sets with the height 𝑧𝑙 extraction approach that produce 

a type-2 fuzzy set are detailed in [Liu 2007], [Almohammadi 2014], [Almohammadi 

2013a], [Almohammadi 2015a]. Their FOU integrates the numerous type-1 fuzzy sets 

that describe the interpretation of each students’ views regarding a particular linguistic 

label that justifies the learned instructional and learner variables (inputs-outputs) 

related to the learning environment. Accordingly, the learners’ various perspectives 

regarding modeling these words would be embedded by the generated FOU to handle 
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uncertainties for the type-2 fuzzy sets. In this approach, the data are collected by 

asking the students for their views regarding their specific linguistic labels through 

which type-1 fuzzy sets would be generated. Following this step, the type-2 fuzzy sets 

are extracted while the type-1 fuzzy sets representing the learners’ individual views 

are combined, resulting in the FOU of the type-2 fuzzy sets being delivered that 

represent the given word [Liu 2007], [Almohammadi 2014], [Almohammadi 2013a], 

[Almohammadi 2015a]. Through the application of the Representation Theorem, each 

of the interval type-2 fuzzy sets 𝐴̃𝑠 can be computed as follows: 

𝐴̃𝑠 = ⋃ 𝐴𝑖𝑛
𝑖=1                                                        (5-3) 

Where 𝐴𝑖  is referred to as the 𝑖𝑡ℎ combined type-1 fuzzy set and ∪ is an 

aggregation operation. Reckoning the upper membership function (MF)  𝜇
𝐴̃

(𝑥) and 

the lower MF 𝜇𝐴̃(𝑥) of 𝐴̃𝑠 can deliver the process of 𝐴̃ production [Liu 2007], 

[Almohammadi 2014], [Almohammadi 2013a], [Almohammadi 2015a]. This depends 

on the shape of the embedded type-1 fuzzy sets and the FOU model to be generated 

for 𝐴̃𝑠. In our system, we use the interior FOU models and the right and left shoulder 

MFs for the upper and lower MF parameters, as shown in Figure (5.2) a, Figure (5.2) 

b and Figure (5.2) c . As is shown in Figure (5.2) a, the resulting interior interval type-

2 fuzzy set is constructed by the parameters 𝑎𝑀𝐹, 𝑐𝑀𝐹, 𝑐𝑀𝐹 and 𝑏𝑀𝐹 denoting a 

trapezoidal upper MF and the parameters 𝑎̅𝑀𝐹 and 𝑏𝑀𝐹 for a symmetric triangular 

lower MF, with an intersection point (𝑝, 𝜇𝑝). We describe the procedures for 

calculating these parameters below. 

Given the parameters for the symmetric triangle type-1 MFs generated for 

each of the i students [aMF
i ,bMF

i ], for interior FOUs, we provide the procedure for 



P a g e  | 119 

 

 

calculating the FOU model below [Liu 2007], [Almohammadi 2014], [Almohammadi 

2013a], [Almohammadi 2015a]  . 

For the upper MF 𝜇
𝐴̃

(𝑥), we need to follow these three steps: 

1. For 𝜇(𝑥) = 0 , find 𝑎𝑀𝐹to be equal to the minimum 𝑎𝑀𝐹
𝑚𝑖𝑛 of all left-end points 

𝑎𝑀𝐹
𝑖  and 𝑏𝑀𝐹  to be equal to the maximum 𝑏𝑀𝐹

𝑚𝑎𝑥 of all right-end points 𝑏𝑀𝐹
𝑖  

For 𝜇(𝑥) = 1, find 𝑐𝑀𝐹, 𝑐𝑀𝐹 that correspond to the minimum and the 

maximum of the centers of the type-1 MFs . 

2. Approximate the upper MF𝜇
𝐴̃

(𝑥) by connecting the following points with 

straight lines: (𝑎𝑀𝐹 , 0),(𝑐𝑀𝐹, 1),(𝑐𝑀𝐹 , 1)and (𝑏
𝑀𝐹

, 0).  

Figure (5.2) a shows the result, which is a trapezoidal upper MF. For the lower 

MF𝜇𝐴̃(𝑥) we need to follow these three steps [Liu 2007], [Almohammadi 2014], 

[Almohammadi 2013a], [Almohammadi 2015a]: 

1. For 𝜇(𝑥) = 0, find 𝑎̅𝑀𝐹 to be equal to the maximum 𝑎𝑀𝐹
𝑚𝑎𝑥 of all left-end points 

𝑎𝑀𝐹
𝑖  and 𝑏𝑀𝐹 to be equal to the minimum 𝑏𝑀𝐹

𝑚𝑖𝑛  of all right-end points 𝑏𝑀𝐹
𝑖   

2. Compute the intersection point (𝑝, 𝜇𝑝) by using the following equations  

𝑝 =
𝑏𝑀𝐹(𝑐𝑀𝐹  − 𝑎𝑀𝐹) + 𝑎𝑀𝐹(𝑏𝑀𝐹  − 𝑐𝑀𝐹)

(𝑐𝑀𝐹  − 𝑎𝑀𝐹) + (𝑏𝑀𝐹  − 𝑐𝑀𝐹)
 

(5-4) 

𝜇𝑝 =
(𝑏𝑀𝐹  −  𝑝)

(𝑏𝑀𝐹  −  𝑐𝑀𝐹)
 

(5-5) 

3. Approximate the lower MF 𝜇𝐴̃𝑠
(𝑥) by connecting the following points with 

straight lines: (𝑎𝑀𝐹 , 0),(𝑎𝑀𝐹, 0),(𝑝, 𝜇(𝑝)), (𝑏𝑀𝐹, 0)and (𝑏𝑀𝐹, 0).  

The result, as it is illustrated in Figure (5.2) a, is a triangle lower MF.  
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The method adopted for computing the FOU for the right and left shoulder is 

similar to that described in [Liu 2007], [Almohammadi 2014], [Almohammadi 

2013a], [Almohammadi 2015a]. To compute the upper MF 𝜇
𝐴̃

(𝑥) for the left shoulder 

(as shown in Figure (5.2)b), points (0,1), (𝑎
𝑀𝐹

, 1) and (𝑏
𝑀𝐹

, 0) should be joined with 

straight lines. To compute the lower MF𝜇𝐴̃(𝑥), points (0,1), (𝑎𝑀𝐹 , 1), (𝑏𝑀𝐹, 0), and 

(𝑏
𝑀𝐹

, 0) should be connected with straight lines. Similarly, as shown in Figure (5.2) 

c, to estimate MF 𝜇
𝐴̃

(𝑥) for the right shoulder, points (𝑎𝑀𝐹 , 0),(𝑏𝑀𝐹, 1) and (𝑀, 1) 

should be joined with straight lines. To approximate the lower MF𝜇𝐴̃(𝑥), 

points (𝑎𝑀𝐹, 0),(𝑎
𝑀𝐹

, 0), (𝑏
𝑀𝐹

, 1) and (𝑀, 1) should be joined with straight lines [Liu 

2007], [Almohammadi 2014], [Almohammadi 2013a], [Almohammadi 2015a].  

 

 

 

(a)  (c) 

Figure 5.2: (a) An interior type-2 MF embedding the different type-1 fuzzy sets, (b) left shoulder 

type-2 MF embedding the different type-1 fuzzy sets, (c) right shoulder type-2 MF embedding the 

different type-1 fuzzy sets [Liu 2007], [Almohammadi 2014], [Almohammadi 2013a], 

[Almohammadi 2015a]  . 

(a) 

 

                    (b)        (c) 

(a) 
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The experiments section describes and draws the zSlices general type-2 fuzzy 

set combining two interval type-2 fuzzy sets with height 𝒛𝟐 from two categorized 

participant groups.  

5.2.2.2 Extracting the fuzzy rules 

The extracted fuzzy set is amalgamated with the collected input/output user 

data with the aim of obtaining those rules known to define student behaviors. Our 

system’s method of learning the rules from the data is based on an extended and 

further developed version of the Mendal-Wang approach [Bilgin 2012], [Wang 2003], 

[Hagras 2007], [Almohammadi 2013a]. This is a one-pass technique for extracting 

fuzzy rules from the accumulated data. The fuzzy sets for the antecedents and 

consequents of the rules divide the input and output space into fuzzy regions. Several 

multi-input/multi-output rules are extracted using the type-2 fuzzy system, through 

which the association between 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇 and 𝑦 = (𝑦1, . . . , 𝑦𝑘)𝑇 can be 

explained such that: 

𝐼𝐹 𝑥1 is 𝐴̃1
𝑙 … and 𝑥𝑛 is 𝐴̃𝑛

𝑙  THEN  𝑦1 𝑖𝑠 𝐵̃1
𝑙 … . . 𝑎𝑛𝑑  𝑦k 𝑖𝑠 𝐵̃k

𝑙   (5-6) 

𝑙 = 1,2, … . , 𝑀, where 𝑙 is the index of the rules and M is the number of rules. 

Specifically, for each input 𝑥𝑠 where 𝑠 = 1,2, … . , 𝑛, there are 𝑉𝑖 type-2 fuzzy 

sets 𝐴̃𝑠
𝑞 , 𝑞 = 1, … , 𝑉𝑖, and each one of them has defined 𝐼 zSlices 𝑍𝑙𝐴̃𝑠

𝑞
 where 𝑙 =

1, … . , 𝑙. Similarly, for each output 𝑦𝑐, there are 𝑉𝑜 type-2 fuzzy sets 𝐵̃𝑐
ℎ , ℎ = 1, … , 𝑉𝑜, 

where 𝑐 = 1,2, … . , 𝑘 and each set  has defined 𝐼 zSlices 𝑍𝑙𝐵̃𝑐
ℎ, where 𝑙 = 1, … . , 𝑙. It 

is worth noting that the total number of zSlices is the same for all the 𝑉𝑖 input sets and 

𝑉𝑜 output sets, which are generated according to the various students’ views, as 

indicated in the previous section. 
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To clarify and summarize the following representation, an approach 

comprising a single output is illustrated because of the method’s simplicity for 

upgrading the rules involving multiple outputs. We note the several phases included 

in this rule extraction below. 

Phase 1: The upper and lower membership values are calculated as 𝜇
𝐴̃𝑠

𝑞(𝑥𝑠
(𝑡)

) 

and 𝜇𝐴̃𝑠
𝑞(𝑥𝑠

(𝑡)
) for each zSlice 𝑍𝑙𝐴̃𝑠

𝑞
 where 𝑙 = 1, … . , 𝑙, for each of the fuzzy 

set 𝐴̃𝑠
𝑞 , 𝑞 = 1, … , 𝑉𝑖 , and for each input variable 𝑠 (𝑠 = 1, . . . , 𝑛) regarding a fixed 

input–output pair (𝑥(𝑡); 𝑦(𝑡)) in the dataset (𝑡 =  1,2, . . . , 𝑁) by finding 𝑞∗ ∈

{ 1, … , 𝑉𝑖} such that [Bilgin 2012], [Wang 2003], [Hagras 2007], [Almohammadi 

2013a] : 

𝜇
𝐴̃𝑠

𝑞∗
𝑧𝑐𝑔

(𝑥𝑠
(𝑡)

) ≥ 𝜇
𝐴̃𝑠

𝑞
𝑧𝑐𝑔

(𝑥𝑠
(𝑡)

) (5-7) 

For all q = 1,...,𝑉𝑖, where 𝜇
𝐴̃𝑠

𝑞
𝑧𝑐𝑔

(𝑥𝑠
(𝑡)

) is the z-weighted center of gravity of the 

membership of 𝐴̃𝑠
𝑞 at 𝑥𝑠

(𝑡)
, which can be seen below [Bilgin 2012], [Wang 2003], 

[Hagras 2007], [Almohammadi 2013a] : 

𝜇
𝐴̃𝑠

𝑞
𝑧𝑐𝑔

(𝑥𝑠
(𝑡)

) =  
1

2
[ 

∑  𝜇
𝑍𝑙𝐴̃𝑠

𝑞(𝑥𝑠
(𝑡)

) ∗ 𝑧𝑙
𝐼
𝑙

∑ 𝑧𝑙
𝐼
𝑙

+ 
∑ 𝜇𝑍𝑙𝐴̃𝑠

𝑞(𝑥𝑠
(𝑡)

) ∗ 𝑧𝑙
𝐼
𝑙

∑ 𝑧𝑙
𝐼
𝑙

 ] 

(5-8) 

Where 𝑧𝑙 = 𝑙/𝐼 and 1 ≤ 𝑙 ≤ 𝐼 .The rule given below is generated by 

(𝑥(𝑡); 𝑦(𝑡)) [Bilgin 2012], [Wang 2003], [Hagras 2007], [Almohammadi 2013a]: 

𝐼𝐹𝑥1is 𝐴̃1
𝑞

∗(𝑡)
 and 𝑥𝑛 is 𝐴̃𝑛

𝑞
∗(𝑡)

𝑇𝐻𝐸𝑁 centered 𝑎𝑡 𝑦(𝑡𝑢
𝑙 )  (5-9) 
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For all of the input variables 𝑥𝑠, there are 𝑉𝑖 type-2 fuzzy sets 𝐴̃𝑠
𝑞
, which makes 

the greater amount of possible rules equal to 𝑉𝑖
𝑛. However, when considering the 

dataset, there will be the generation of those rules among the 𝑉𝑖
𝑛possibilities that show 

a dominant region comprising a minimum of one data point. 

In the first phase, there is the generation of one rule for each particular 

input/output data pair, with the selected fuzzy set being that which is seen to obtain 

the greatest value of membership at the data point and particularly selected as the one 

in the rule’s IF element. However, this is not the final version of the rule, which is 

computed in the following step. The calculation of the rule weight is accomplished as 

follows [Bilgin 2012], [Wang 2003], [Hagras 2007], and [Almohammadi 2013a]: 

   𝑤𝑖(𝑡) =  ∏ 𝜇
𝐴̃𝑠

𝑞∗
𝑧𝑐𝑔

(𝑥𝑠
(𝑡)

)𝑛
𝑠=1                                             (5-10) 

A rule 𝑤𝑖(𝑡) weight is a degree of the strength of the points 𝑥(𝑡) regarding the 

fuzzy region covered by the entire rule. 

Phase 2: For all of the data points from 1 to N, the first phase is repeated. With 

the help of this practice, N rules extracted from the data are taken in the form of 

Equation (5-9). Phase 1 witnesses the generation of multiple rules, all of which have 

the same IF part in common yet are all conflicting. During this phase, those rules that 

have the same IF part are amalgamated to form a single rule. Subsequently, the rules 

N are divided into groups, with rules in each group seem to have the same IF part. If 

such groups amount to M and it may also be stated that the group has 𝑁𝑙  rules, then 

[Bilgin 2012], [Wang 2003], [Hagras 2007], [Almohammadi 2013a]: 

   𝐼𝐹 𝑥1is 𝐴̃1
𝑙 … and 𝑥𝑛is 𝐴̃𝑛

𝑙  THEN 𝑦 is centered 𝑎𝑡 𝑦(𝑡𝑢
𝑙 )                (5-11) 
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Where 𝑢 = 1, … , 𝑁 and 𝑡𝑢
𝑙  are the data points index of Group l. The equation 

given below shows how to calculate the weighted average of all rules involved in the 

conflict group: 

 

              Subsequently, a single rule is formed by integrating these 𝑁𝑙 rules, resulting 

in the following form [Bilgin 2012], [Wang 2003], [Hagras 2007], and 

[Almohammadi 2013a]: 

𝐼𝐹 𝑥1is 𝐴̃1
𝑙 … and 𝑥𝑛is 𝐴̃𝑛

𝑙  THEN 𝑦 is 𝐵̃𝑙                         (5-13) 

where there is the selection of the output fuzzy set 𝐵̃𝑙 on the basis of the 

following: we compute the lower and the upper membership values 𝜇
𝑍𝑙𝐵̃𝑐

ℎ ̃ (𝑎𝑣(𝑙)) and 

 𝜇
𝑍𝑙𝐵̃𝑐

ℎ ̃ (𝑎𝑣(𝑙)) for each zSlice 𝑍𝐵̃𝑐
ℎ, where 𝑙 = 1, … . , 𝐼 for each fuzzy output 

𝐵̃𝑙, … , 𝐵̃𝑉𝑜; calculate  𝐵ℎ∗ such that [Bilgin 2012], [Wang 2003], [Hagras 2007], 

[Almohammadi 2013a] : 

𝜇
𝐵̃𝑐

ℎ∗
𝑧𝑐𝑔

(𝑎𝑣(𝑙)) ≥ 𝜇
𝐵̃𝑐

ℎ
𝑧𝑐𝑔

(𝑎𝑣(𝑙))    for all h = 1, … … , 𝑉𝑜            (5-14)  

𝐵̃𝑙 is chosen due to the 𝐵ℎ∗, where 𝜇
𝐵̃𝑐

ℎ
𝑧𝑐𝑔

(𝑎𝑣(𝑙)) is the z-weighted center of 

gravity of the membership of 𝐵̃ℎ at 𝑎𝑣(𝑙) as illustrated also in Equation (5-8): 

𝜇
𝐵̃𝑐

ℎ
𝑧𝑐𝑔

(𝑎𝑣(𝑙)) =  
1

2
 [

∑  𝜇
𝑍𝑙𝐵̃𝑐

ℎ 
̃ (𝑎𝑣(𝑙))∗𝑧𝑙

𝐼
𝑙

∑ 𝑧𝑙
𝐼
𝑙

+  
∑ 𝜇

𝑍𝑙𝐵̃𝑐
ℎ 

̃ (𝑎𝑣(𝑙))∗𝑧𝑙
𝐼
𝑙

∑ 𝑧𝑙
𝐼
𝑙

]                   (5-15) 
 

𝑎𝑣(𝑙) =
∑ 𝑦

(𝑡𝑢
𝑙 )

𝑤𝑖
(𝑡𝑢

𝑙 )𝑁𝑙
𝑢=1

∑ 𝑤𝑖
(𝑡𝑢

𝑙 )𝑁𝑙
𝑢=1

                                        (5-12) 
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The proposed system can effectively handle the input/output data pairs, 

including multiple outputs as per the work presented above. Phase 1 is recognized as 

being distinct with regard to the number of outputs associated with each rule. In 

contrast, Phase 2 provides a straightforward expansion with the aim of enabling rules 

to encompass multiple outputs; for each output, the calculations detailed in Equations 

((5-12)–(5-14)) are repeated. 

 

5.2.3 The online adaption and lifelong learning layer 

5.2.3.1 The customization of knowledge delivery to students 

The generated type-2 fuzzy sets and the fuzzy rules extracted from the input 

and output gathered learner data enables the proposed system to learn and obtain the 

best instructional actions in accordance with the current learners. The system is 

consequently able to notify the system to re-adjust the online learning environment 

with specific consideration of the appropriate instructional actions. The system actions 

are triggered through the examination and monitoring of various learners’ variables, 

which subsequently affects the online instructional environment, with particular 

consideration of the learned approximation of best instruction actions that will be 

generated for the learners. The followed architecture and functionality of the adaptive 

zSlices system, including type-reduction and defuzzification processes, are naturally 

inherited from the structure of a zSlices-based general type-2 FLS, as described in 

[Wagner 2010]. At the end of these calculations, the crisp output reflecting the users’ 

need and preference is presented to the users within the online learning environment. 
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5.2.3.2 Adaptive online life-long learning mechanism for 

dynamically updating selection and presentation of 

appropriate content 

It is important for the proposed system to have the ability to be adjustable with 

respect to the dynamic and changing learners’ needs and to constantly expand the 

students’ knowledge levels by continuously enabling them to modify their 

instructional and learning needs. According to these modifications, the system will 

readjust its rules or apply new ones. In a given input state, if no rules fire from the 

rule base (i.e., the rule’s firing strength in Equation (5-10) 𝑤𝑖(𝑡) = 0), the proposed 

system will actively record these inputs and the outputs (the instructional needs) to 

create a rule covering this uncovered input status. Thus, new rules would be added in 

the system when the state of the monitored online learning environment at that time 

is indeterminate per the existing rules in the rules base (i.e., when none of the present 

rules are fired). In such cases, the new rules will be extracted and the system will 

incorporate them, whereby the antecedent sets highlight the online environment’s 

present input states with the consequent fuzzy sets reliant on the current state of 

instructional needs.  

For all of the input parameters 𝑥𝑠, the fuzzy sets that have membership values, 

where 𝜇
𝐴̃𝑐

ℎ
𝑐𝑔

( 𝑥𝑠

(𝑡′)
) > 0 are identified. As a result, for each input parameter, a number 

of identified fuzzy set(s) are generated in the form of a grid, from which new rules are 

generated based on all individual combinations of successive input fuzzy sets. The 

resulting fuzzy set that provides the greatest value of membership to the student 

defines the needed instructional variable (𝑦𝑐) so that it can act as the extracted rule 

consequent. The resulting fuzzy sets can be established by conducting a calculation 

of the output memberships’ center of gravity [Hagras 2007]: 
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𝜇
𝐵̃𝑐

ℎ∗
𝑧𝑐𝑔(𝑦𝑐) ≥ 𝜇

𝐵̃𝑐
ℎ

𝑧𝑐𝑔(𝑦𝑐)                                             (5-16)  

For ℎ =  1, . . . , 𝑊 the 𝐵̃𝑐 is chosen as 𝐵̃𝑐
ℎ∗

, where 𝑐 =  1, . . . , 𝑘. Consequently, 

new and upcoming rules can be progressively added. 

In case the user needs to change the suited instructional requirement at a given 

input status, the fired rules will be identified, and the rule consequents will be changed 

(if more than two students signal the same modifications for the instructional needed 

variables), as indicated by Equation (5-16). Therefore, the fired rules are modified so 

that the updated suited instruction needs for the students could be reflected in a 

desirable way while considering the present state of the online learning environment.  

This component enables the system proposed to adopt lifelong learning by 

facilitating the adaptation of rules according to the students’ instructional needs, 

which notably change over time according to their capabilities and characteristics. 

Owing to the system’s flexibility, the fuzzy logic model learned initially may be 

effortlessly expanded to make changes to both new and existing rules. These fuzzy 

rules enable a large range of values for all parameters (input and output) to be 

captured, which in turn enables the continuation of the generation of rules, even when 

the online learning environment gradually changes. Meanwhile, if notable changes 

occur in terms of the students’ knowledge level (which may not be captured by the 

present rules, as highlighted above), the new rules will be automatically generated, 

which ultimately satisfy present conditions. Accordingly, the inconspicuous system 

will expand its actions and may be adapted to improve the instruction delivery by 

adhering to the students’ needs. 



P a g e  | 128 

 

5.3 Experiments and Results 

We performed various real-world experiments at King Abdulaziz University 

in Saudi Arabia using a large-scale e-learning platform comprising 1871 students. We 

conducted these experiments using the fully developed e-learning platform to deliver 

PowerPoint and Microsoft Excel modules as the University permitted. The e-learning 

platform facilitated the examination of all adaptive proposed systems, which included 

a total of twenty-one learning units consisting of twelve units for Excel and nine for 

PowerPoint. Each unit combined of various numbers of lessons, all of which offered 

training in different aspects of the Microsoft programs. Figure 5.3 and 5.4 demonstrate 

a full explanation of each of these learning units based on the approved course 

structure and contents from King Abdulziz University. 

 

Figure 5.3: The main interface of the designed online learning platform. 
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Figure 5.4: The learning units designed for both Excel and PowerPoint. 

As Figure 5.5 illustrates, each lesson comprised five key components: 

PowerPoint slides explaining the lesson, a practical demonstration of the lesson, 

practical exercises, a video lecture explaining the lesson, and a final assessment task. 

An overview of these features using screenshots follows. 
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Figure 5.5: The main lesson interface. 

1. The student views a text-based explanation of the module on PowerPoint 

slides. For instance, Figure (5.6) shows how this lesson teaches students how to create 

line charts and pie charts. 

 

Figure 5.6: Text-based explanation interface for the pie chart creation lesson. 
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2. A demonstration shows learners how to apply their new knowledge in 

practice, as Figure (5.7) illustrates. For example, the lesson on creating a pie chart first 

directs students to select a range of cells and instructs them to click on the insert tab 

in the Charts group to select Pie and choose the most appropriate pie chart (Figure 

5.7). 

 

Figure 5.7: Practical demonstration on how to create a pie chart. 

 

3. The module provides relevant practical exercises for the students to 

complete to reinforce their abilities. If a student submits an incorrect answer, the 

system offers a hint. For instance, for the lesson “Changing the Sheet Direction,” 

students must determine how to switch the orientation of the page from left to right. 

To do so, they are required to select the Page Layout tab. If they click on a different 

tab, the system offers a hint to assist them in making the correct choice by using a red 

triangle to guide them toward the correct tab (Figure (5.8)). Students can make three 
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attempts for each step of the task. If the student successfully makes a correct move—

for instance, if he or she clicks on the Sheet Right-to-Left button in the sheet options—

the system offers positive feedback and congratulates the student for making the 

correct choice (Figure (5.9)).  

 

Figure 5.8: Practical exercise showing the steps for changing the chart direction (when students 

respond incorrectly). 

 

Figure 5.9: Practical exercise showing the steps for changing the chart direction (when students 

respond correctly). 
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4. Figure (5.10) presents a video featuring a lecturer discussing the lesson on 

creating pie charts and line charts. 

 

Figure 5.10: Lecturer video interface for creating the pie chart lesson. 

 

5. The final lesson component is an assessment exercise that provides 

feedback to students, enabling them to see whether their answer is correct. This 

assessment differs from the earlier practical exercises, which offered only hints to 

guide the students. The user can make only one attempt at this exercise and receives 

feedback about whether the answer is correct (see Figure (5.11)). 
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Figure 5.11: Assessment exercise interfaces (with system feedback about whether the answer is 

correct). 

 



P a g e  | 135 

 

 

The main aim of the experiment was to determine the relative performance of 

the zSlices-based general type-2 fuzzy system (zSlices-based general T2FS) 

compared to the IT2FLS), the T1FLS, the instructor-led adaptive system, and the non-

adaptive version, for the purposes of increasing instruction quality, bettering student 

performance, and enhancing overall students success rates. At the start of this study, 

a total of 1871 students were involved to participate with equal numbers of randomly-

chosen e-learners assigned to each group. The monitoring phase of the study required 

the students to register for the course and complete a cohesive pre-assessment to 

determine their existing knowledge of PowerPoint and Excel.  

We collected the average scores for these two pre-assessment tests along with 

the students’ gender, age, secondary school grade, status as full- or part-time status, 

and secondary school course of study to form the seven inputs for the fuzzy systems. 

Subsequently, we deliberately revealed the average assessment results to the students 

so they could determine the appropriate content for their level and preference. Four 

outputs were collected from the students: the difficulty level they needed for Excel 

and PowerPoint, time needed for Excel, and time needed for PowerPoint.  

Once we collected the inputs and outputs for the proposed model, we 

constructed the zSlices-based general T2FS, IT2FLS, and T1FLS using the fuzzy sets 

to generate rules (see Figure (5.12)), as explained in section 5.2.2. We used these 

fuzzy sets to analyze and manage the uncertainties associated with perceptions about 

modeling a particular linguistic label to determine learner characteristics and 

instructional needs. Figure (5.13) shows the interval type-2 fuzzy sets; dashed yellow 

lines indicate the type-1 fuzzy sets. A total of 30 students participated in constructing 

interval type-2 fuzzy sets; we required them to discuss their opinions on how such 
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fuzzy sets should be modeled. On the other hand, two user groups contributed toward 

the construction of two interval type-2 fuzzy sets in the zSlice-based general T2FS; 

one group was drawn from the humanities section and the other from the scientific 

secondary section. The scientific section (high z=1) was assigned more weight in the 

third dimension than the humanities section (high z=0.5), as approximately 60% of 

the users were drawn from the scientific section and were more likely to study courses 

in Saudi Arabia.  

 

Figure 5.12: One example of an extracted rule from the produced rules 

 

IF Student-Age is Teen AND Student-Gender is Female AND Secondary-

Grade is Excellent AND Method-of-Providing-Higher-Education is Full-

Time AND the Secondary-Section is Science AND Average-Knowledge-in-

Excel is Very Low AND Average-Knowledge-in-PowerPoint is Low, then 

the Suited-Excel-Difficulty-Level is Easy AND Needed-Time-to-Study-

Excel is Very Long AND Suited-PowerPoint-Difficulty-Level is Moderate 

AND Needed-Time-to-Study-PowerPoint is Short. 
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Figure 5.13: (a) An example of the extracted interval type-2 fuzzy set (very easy) of the suitable 

required difficulty level (thick solid lines) and the type-1 fuzzy sets (thick dashed lines).(b) Third 

dimension of x=10 of the the zSlice based type-2 fuzzy set 

 

The second phase of the experiment process provided adaptive course content 

on both Excel and PowerPoint to the third, fourth, and fifth user groups, who used a 

type-1-fuzzy-logic-based system (T1FLS), an applied interval type-2 fuzzy logic 

system (IT2FLS), and an applied zSlice-based general type-2 fuzzy system, 

respectively. At the same time, the first group proceeded with the module using the 

non-adaptive system version, whereas the second group employed the instructor-led 

adaption model that came with fixed rules devised based on expert knowledge. A more 

customizable module was given to students in the third, fourth, and fifth groups, who 
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used an adaptive learning system that could be modified based on the user’s unique 

learning needs. The rules in this case were generated based on different system users. 

A series of learning objects (LOs) were given to the users based on their chosen 

learning needs. In each lesson, all LOs were linked to two linguistic values correlated 

with the Excel and PowerPoint material’s level of difficulty and the tendency for 

students to take longer learning PowerPoint and Excel topics. All 63 lessons across 

both modules were characterized by these features as the difficulty of the content 

fluctuated from very easy to more advanced, with different topics taking longer to 

complete. Following this stage in the experiment, we assessed the findings in order to 

evaluate the students’ performance at the end of the semester.  

We comparatively analyzed the results we obtained from the applied zSlice-

based general T2FS environment, IT2FLS environment, T1FLS environment, fixed 

rule system, and non-adaptive version. Figure (5.14) illustrates the extent to which 

students improved their performance based on their assessment scores before and after 

using the e-learning system. Based on the figures we present, the average scores of 

students using the zSlices-based general T2FS rose markedly by 26.45%, indicating 

that this system yielded the most positive performance. We found that student scores 

increased by 26.04% using I2TFLS and 23.78% using the T1FLS system, whereas the 

instructor-led adaptive system generated an increase of 20.48%, and the non-adaptive 

version generated an increase of 19.06% among the control group.  
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Figure 5.14: The improvement in the average scores obtained from each of the five study groups 

before and after each system’s application. 

In addition, we analyzed the groups’ mean of learning improvements from the 

pretests to the posttests using ANOVA for comparison at a significance level of 0.05. 

The analysis revealed a significant statistical difference between the various groups 

(p < .05). We also carried out Tukey HSD and LSD comparison tests to see which 

pair of groups had the greatest difference. We observed that Group 5 (zSlices T2FLS 

with M=26.4512 and SD=26.25757) and Group 1 (controlled group with M=19.0681 

and SD=23.51329) were the most significantly different groups as compared to other 

pairings, as shown in Figure 5.15. Moreover, Group 5 (zSlices T2FLS) was 

significantly different from Group 2, which was the instructor-led adaptation model 

(with M=20.4895 and SD=26.14493), and a notable difference existed between the 

zSlices T2FLS and T1FLS groups (with M=23.7866 and SD=25.37530). The least 

significantly different groups, according to the results, were zSlices T2FLS and 

IT2FLS (with M=26.0491 and SD=26.58322).  
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Figure 5.15: Means plots for the groups’ learning improvement 

  

Additionally, we analyzed the rate of completion for all five groups, as Figure 

(5.16) shows, finding that the total number of students who completed at least 90% of 

the lessons with the zSlices-based general type-2 adaptive educational system 

exceeded the students in the other groups to realise 6.61% improvement over those in 

the interval type-2 adaptive educational group, 8.23% over those in T1FLS, 16.09% 

over the instructor-led adaptive system group, and 17.26% over the non-adoptive-

based system’s group. The improvement in the students’ learning performance and 

completion rates indicates the effectiveness of the proposed zSlices-based general 

T2FS adaptive educational system compared with the other methods.  
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Figure 5.15:  the completion rate obtained by each of the five groups of students in the two 

study subjects after each system’s application. 

Furthermore, Table 5.1 presents the average error and standard deviation of 

the system outputs compared to the desired learner outputs. The collective data set 

contained a total of 960 instances, 672 of which were classified as training data and 

288 of which were classified as testing data. These results demonstrate that the 

zSlices-based general T2FLS produces a lower average error rate and standard error 

deviation than the ITFLS and T1FLS systems when the system outputs are compared 

to the student-desired outputs. As an example of the improvements in the ‘level of 

difficulty needed for studying Excel’, the zSlices-based general T2FLS produced 

8.3% and 3.5% better performance when compared to IT2FLS and T1FLS, 

respectively, in terms of lower average error between the system output and the 

students’ learned output. In addition, the zSlices-based general T2FLS produced a 

better spread of the errors by having 0.2% and 13% less standard deviation than 

IT2FLS and T1FLS, respectively. In other words, the zSlices-based general T2FLS 

captures student behaviour more effectively.  
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Table 5.1: Average error (AE) and statndard deviation (SD) of the system outputs. 

5.4 Discussion 

In this chapter we have proposed a novel zSlices-based general type-2 fuzzy 

logic system that can determine different users’ pedagogical needs and preferences in 

a dynamic online environment based on both their knowledge level and 

characteristics. This system’s purpose is to improve student performance and increase 

completion rates of lessons by presenting students with tailored, adaptive content that 

matches their needs. This chapter tested the zSlice-based general T2FS in comparison 

with the IT2FLS, the T1FLS, the instructor-led adaptive system, and the non-adaptive 

system. A large-scale e-learning platform in which 1871 King Abdul-Aziz University 

students participated facilitated the testing process.  

The results revealed that IT2FLS was better able to handle uncertainties, 

producing lower average errors and standard deviation. This resulted in an increased 

completion rate over the T1FLS group by 1.62%, over the instructor’s lead adaption 

model by 9.48%, and over the controlled group by 10.65%. In addition, this improved 

students’ performance for the IT2FLS group was over the performance improvement 
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achieved by T1FLS group by 2.26% and over the instructor’s lead adaption model by 

5.56%, and over the controlled group by 6.98% . 

In addition, the findings indicate that the zSlice-based general T2FS is more 

effective at managing uncertainty, lowering average errors and standard deviation, 

and increasing the overall completion rate by 6.61%, 8.23%, 16.09% and 17.26% 

compared with the IT2FLS, T1FLS, instructor-led adaption, and control groups 

respectively. Furthermore, the zSlice-based general T2FS system achieved an 

improvement in student performance that was higher than that of the IT2FLS by 

0.40%, and higher than that of the T1FLS, instructor-led adaption, and control groups 

by 2.66 %, 5.96%, and 7.38%, respectively.  

These results clearly demonstrate that the proposed zSlice-based general T2FS 

and IT2FLS can more effectively provide adaptive content to students. In the next 

chapter, we presents the conclusions and the future work of the thesis.    
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Chapter 6: Conclusions and Future Work 

This thesis began with the introduction in Chapter 1, which presented the 

background of adaptive educational systems and their related significance as well as 

the motivation for providing tailored learning experiences within intelligent e-learning 

platforms. Such e-learning platforms enable the creation of automatic adaptive 

learning environments to suit the students’ individual requirements and needs. 

Adaptive educational systems are used to capture, analyze, and model important 

information regarding the behaviour of students and to provide dynamic, tailored 

learning experiences. Furthermore, we provided an explanation of the problems 

associated with the vast majority of existing adaptive educational systems, noting that 

many do not learn from the users’ behaviours to create white-box models to handle 

the high level of uncertainty and that could be easily read and analysed by the lay user. 

The data generated from interactions, such as teacher–learner or learner–system 

interactions within asynchronous environments, provide great opportunities to realize 

more adaptive and intelligent e-learning platforms. Another shortcoming of current 

adaptive educational systems is that they do not detect learner engagement during 

activities and map it to learners’ pedagogical delivery needs. In addition, most current 

adaptive educational systems are used within asynchronous e-learning contexts that 

are totally ignorant of synchronous e-learning settings.  

We then presented the application of fuzzy logic and other artificial 

intelligence (AI) techniques, which have been used to handle uncertainty and achieve 

robust modelling and adaption within the e-learning environment along with 

applications of engagement feedback to achieve and realize more effective and 

adaptive e-learning contexts. We then introduced the objectives, the novelty and 

significance, and the structure of this thesis along with the discussion. 
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In Chapters 2, we described the theoretical background of this project. To start, 

Chapter 2 introduced the basic concepts and theory of fuzzy logic, its extension from 

crisp logic, and other relevant concepts, including the type-1 fuzzy set and linguistic 

variables. Furthermore, we provided an explanation for the singleton (type-1) fuzzy 

logic system’s basic characteristics, including its working procedures and 

components. We also discussed and provided an explanation of fuzzy logic’s benefits 

as an AI-based model for encoding and developing the context for teaching and 

learning with the imprecise information that is generated within real e-learning 

platforms. The learned user behaviours can be formed flexibly and clearly through the 

provisioning of fuzzy rules that can improve a behaviour-based approach to express 

the information learned from the system. Particular states and situations related to e-

learning environments are described by the rules that correspond to a specific learner’s 

characteristics and needs. The representation of learning–teaching behaviour, as it 

relates to fuzzy logic, is done in a manner that is readable by humans and linguistically 

interpretable. These rules are perfect for quick assessments because of their 

transparency, which is done in an attempt to explain the method and purpose of certain 

combinations of inputs that yield a certain set of output conclusions. We also 

discussed how type-1 fuzzy logic is not robust enough to handle the high level of 

uncertainty associated with real e-learning environments. Thus, we concluded that 

there is a need for a system that is capable of robustly, adaptively, and automatically 

dealing with and minimizing uncertainty within e-learning environments. 

The type-2 fuzzy logic concept, as well as the zSlices-based type-2 fuzzy sets 

and interval type-2 fuzzy sets were introduced in Chapter 2. Subsequently, the chapter 

provided an explanation of the interval and the zSlices-based type-2 fuzzy logic 

systems, including their working procedures. We also discussed how these type-2 
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fuzzy logic categories are more robust than type-1 fuzzy logic-based systems for 

handling the high level of uncertainty associated with real-world e-learning 

environments. Having been implanted inside the type-2 fuzzy sets’ footprints of 

uncertainty (FOUs), many type-1 fuzzy sets are part of every type-2 fuzzy logic 

system’s input and output. Interval type-2 fuzzy logic systems can manage the raised 

uncertainties by encoding them via FOUs. These FOUs give more choices and degrees 

of freedom to be utilized when dealing with high uncertainty levels. Furthermore, an 

IT2FLS has an even distribution of uncertainty because of the deployment of interval 

type-2 fuzzy sets. However, using general type-2 fuzzy sets such as zSlices allows an 

uneven distribution of uncertainty in modelling the teaching-learning behaviour. This 

kind of distribution is better suited to handling the encountered uncertainties in 

comparison to an interval type-2 fuzzy logic system, which Chapter 5 demonstrated. 

Hence, we concluded that type-2 fuzzy logic systems have the ability to deal with 

these uncertainties automatically and adaptively, outperforming type-1 fuzzy logic 

systems. 

6.1 Summary of Achievements and contributions  

We highlighted the first asynchronous theoretical and practical environments 

based on a type-1 fuzzy logic system and an integrated type-2 fuzzy logic system for 

adaptive knowledge delivery within small-scale intelligent e-learning platforms in 

Chapter 3. The users’ pedagogical needs as along with the appropriate instructional 

approach, which is based on the student’s degree of average engagement, capabilities, 

and characteristics during learning activities, can be determined through the proposed 

theoretical and practical environments to generate an adaptive e-learning 

environment. The chapter presented a novel system for measuring students’ 

engagement levels based on an automatic calculation of the students’ degree of 
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engagement using visual information. This is different from traditional approaches 

that normally use expensive, invasive sensors. Our method utilized only an affordable 

RGB-D video camera (Kinect, Microsoft) in a nonintrusive operation mode with no 

restrictions pertaining to user movements and actions. The data collected from 

students with different abilities, characteristics, needs, and engagement levels were 

used to create type-1 and interval type-2 fuzzy logic models, which were then used to 

improve the delivery of knowledge to various students based on their individual 

characteristics and engagement levels.  

Different experiments involving fifteen students were used to test the 

efficiency of the proposed environments. We compared the results of our systems, 

which delivered knowledge to each student in a customized fashion using type-1 fuzzy 

logic and interval type-2 fuzzy logic systems, against a system that had not been 

customized for the users. The results indicated that there is a considerable increase in 

the average java, fuzzy logic, and mathematics scores when utilizing an interval type-

2 fuzzy logic system. Specifically, average scores increased by 13%, and utilizing a 

nonadaptive system resulted in average scores increasing by 6% compared to an 

adaptive type-1 fuzzy logic system. Furthermore, average student engagement with 

the interval type-2 adaptive educational system was 2% higher than that of students 

engaging with the type-1 system and 7% higher when compared to a nonadaptive 

system, according to the average degree of engagement obtained for the three groups. 

The results obtained for the system outputs regarding the students’ learned data show 

that the mean error and standard deviation related to type-2 fuzzy logic systems are 

lower than those related to type-1 systems, meaning that the type-2 system captured 

student behaviour better. Thus, the proposed system in this chapter resulted in a better 
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learner behaviour model and improved delivery of knowledge to students, thus 

increasing students’ outcomes and average learner engagements. 

In Chapter 4, we extended the proposed theoretical and practical environments 

to be used in synchronous e-learning contexts with the aim of giving teachers the 

ability to adapt their instructional approaches to improve and increase the engagement 

and satisfaction of different learners within small scale e-learning platforms. This new 

model, based on an integrated type-2 fuzzy logic system, was capable of learning 

different teachers’ pedagogical decisions based on the content difficulty level as well 

as the students’ average levels of engagement and the variation between the 

engagements in a dynamic, online teaching environment. The type-2 fuzzy-based 

model was applied to enhance the teaching performance by informing the teacher of 

the best teaching approaches to increase the average learners’ engagement. Moreover, 

we presented a method based on type-2 fuzzy logic systems that utilized visual RGB-

D features, including head pose and facial expressions captured from a low-cost but 

capable 3D camera (Kinect v2) to estimate the students’ degree of engagement in both 

remote and onsite education environments. In addition, the proposed system was 

flexible enough to allow constant updating in accordance with the level of student 

engagement.  

Through various real-world experiments, the evaluation of the proposed 

system’s effectiveness was tested in the University of Essex iClassroom on a sample 

that consisted of six teachers and thirty students. The experiment showed that the 

proposed interval type-2 fuzzy logic system produced a lower standard deviation and 

average errors compared to the type-1 fuzzy logic system between the preferred 

teacher outputs and the system outputs. Therefore, it was confirmed that the interval 
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type-2 fuzzy logic system was better at handling uncertainty and capturing teacher 

behaviour. The deployments of the proposed interval type-2 system led to a 7% 

increase in the average engagement level over the type-1 system group as well as a 

55% improvement in engagement level over the control group. Moreover, the use of 

the interval type-2 fuzzy logic system brought individual students’ engagement levels 

closer together and yielded an average standard deviation improvement of about 50% 

over the control group and about 37.5% over the type-1 fuzzy logic system group. The 

participants’ satisfaction levels were tested using a questionnaire, and the responses 

were analyzed using ANOVA and Tukey tests. The tests revealed that the level of 

satisfaction among participants in the interval type-2 group was quite different from 

the level of the students’ satisfaction in the control group. Thus, the promising results 

from the proposed system have facilitated an instructional style with better knowledge 

delivery to learners in comparison to the type-1 fuzzy logic and nonadaptive systems.  

Chapter 5 presented an extended and novel zSlices-based environment based 

on the type-2 fuzzy logic system to better handle uncertainties in the previous 

environments and extend the flexibility of the proposed models in large-scale e-

learning platforms. We tackled the shortcomings and limitations of the small number 

of students involved in testing the integrated type-2 fuzzy logic system in Chapter 3 

by conducting a large-scale evaluation of the proposed system via real-world 

experiments on 1,871 students within a massively crowded e-learning platform from 

King Abdul-Aziz University. Because of the large number of distance learners and 

their inability to purchase the Kinect v2 camera, we could not use the engagement 

system in the experiments.  
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This chapter presented a new zSlices-based type-2 fuzzy logic system that is 

capable of identifying and learning students’ preferred knowledge delivery needs 

based on their characteristics and current levels of knowledge to generate an adaptive 

learning environment. We evaluated the proposed system’s efficiency through various 

large-scale, real-world experiments involving 1,871 students from King Abdul-Aziz 

University. Such evaluations showed that the proposed zSlices-based type-2 fuzzy 

logic system’s ability to handle uncertainty resulted in superior completion rates, 

success rates, and overall learning compared with interval type-2 fuzzy logic, type-1 

fuzzy logic, adaptive, instructor-led, and nonadaptive systems. 

The results indicated that the interval type-2 fuzzy logic system was better able 

to handle uncertainty, resulting in lower average errors and standard deviation. This 

resulted in a 1.62% increase in completion rate over the type-1 fuzzy logic system 

group, a 9.48% increase over the instructor-led adaption model, and a 10.65% increase 

over the control group. In addition, students’ average performance rates within the 

interval type-2 fuzzy logic system group were 2.26% higher than the type-1 system 

group’s rates, 6.98% higher than the control group’s rates, and 5.56% higher than the 

instructor-led adaption model group’s rates. 

Moreover, the findings revealed that the zSlices-based general T2FS is more 

efficient at handling uncertainty, lowering average errors and standard deviation, and 

expanding the overall completion rate by 6.61%, 8.23%, 16.09%, and 17.26% 

compared with the interval type-2 fuzzy logic, type-1 fuzzy logic, instructor-led, and 

control groups, respectively. Furthermore, the zSlices-based general T2FS system 

achieved an improvement in student performance that was 0.40% higher than that of 

the interval type-2 fuzzy logic system, 2.66% higher than the type-1 fuzzy logic 
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system, 5.96% higher than the teacher-led adaption model, and 7.38% higher than the 

control group. 

6.2 Future work 

In the future, we aim to employ general type-2 fuzzy logic systems that are 

better at handling uncertainty in the model. We also aim to deploy the proposed 

system for more e-learning courses with more inputs and outputs that will include 

thousands of students. We will explore adding more complex learner inputs and 

teaching outputs in both synchronous and asynchronous e-learning settings. The 

proposed model was built to be easily read, checked, and analyzed by the lay user, 

which makes it more valuable, and we can make these rules available for teachers to 

edit , verify and delete when needed. To optimize the rules and the extracted fuzzy 

sets, we aim to employ a Big Bang–Big Crunch–based optimization algorithm to fine-

tune the parameters of the fuzzy logic system to encourage more robust learning and 

teaching behaviour-based models. 
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