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 Originality-Significance Statement. This is the first to report differential sensitivity 

of Ammonia-oxidizing bacteria (AOB) and archaea (AOA) towards AgNPs in 

estuaries. Our findings suggest that where AgNPs may accumulate in benthic 

sediments (such as downstream from wastewater treatment outflows), there is a 
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potential environmental risk to nitrification, especially in polyhaline sediments where 

ammonia-oxidation is largely driven by AOB.  

Summary 

Silver nanoparticles (AgNPs) enter estuaries via wastewater treatment 

effluents, where they can inhibit microorganisms, because of their 

antimicrobial properties. Ammonia-oxidizing bacteria (AOB) and archaea 

(AOA) are involved in the first step of nitrification and are important to 

ecosystem function, especially where effluent discharge results in high 

nitrogen inputs. Here, we investigated the effect of a pulse addition of AgNPs 

on AOB and AOA ammonia monooxygenase (amoA) gene abundances and 

benthic nitrification potential rates (NPR) in low-salinity and mesohaline 

estuarine sediments. Whilst exposure to 0.5 mg L-1 AgNPs had no significant 

effect on amoA gene abundances or NPR, 50 mg L-1 AgNPs significantly 

decreased AOB amoA gene abundance (up to 76% over 14 days), and 

significantly decreased NPR by twenty-fold in low-salinity sediments and by 

two-fold in mesohaline sediments, after one day. AgNP behaviour differed 

between sites, whereby greater aggregation occurred in mesohaline waters 

(possibly due to higher salinity), which may have reduced toxicity. In 

conclusion, AgNPs have the potential to reduce ammonia oxidation in 

estuarine sediments, particularly where AgNPs accumulate over time and 

reach high concentrations. This could lead to long-term risks to nitrification, 

especially in polyhaline estuaries where ammonia-oxidation is largely driven 

by AOB. 

Keywords: Ammonia-oxidizing bacteria (AOB), Ammonia-oxidizing archaea (AOA), 

amoA gene, silver nanoparticles, ammonia-oxidation, nitrification, estuary 
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Introduction 

A recent explosion in the use of nanotechnology in consumer products has 

increased concerns regarding the adverse effects of nanoparticles (i.e. particles 

between 1-100 nm) on the environment and human health (Nowack et al., 2011; 

Richardson and Ternes, 2011). Silver nanoparticles (AgNPs) are one of the most 

commonly used nanomaterials, because of their antimicrobial properties (Nel et al., 

2006; Pal et al., 2007). Over 400 tons of AgNPs are produced globally each year, 

with applications in medical equipment, cosmetics, textiles, electronics, children’s 

toys and household appliances (PEN, 2016). As a result, AgNPs or silver ions (Ag+) 

may be released directly (e.g. from washing AgNP-containing textiles) or indirectly 

(e.g. leaching from nanosilver-enhanced products) into rivers and estuaries 

(Cleveland et al., 2012; Sun et al., 2014). One major potential route for AgNP entry 

into aquatic environments is via wastewater treatment plants (WWTPs), where 

ammonia-oxidizing microbial communities are important for nitrogen removal.  

Ammonia-oxidation (the first and rate-limiting step of nitrification) is mediated 

by ammonia-oxidizing bacteria (AOB) and archaea (AOA), that possess the amoA 

gene, which codes for the alpha-subunit of the enzyme ammonia monooxygenase 

(AMO) (Hollocher, 1981; McTavish et al., 1993), whereby it is the AmoB subunit of 

AMO that is thought to harbor the active site in ammonia oxidizers (Lieberman and 

Rosenzweig 2005; Balasubramanian et al., 2010). It is well known that ammonia-

oxidizers are sensitive to changes in their environment (e.g. pH, temperature, 

salinity, light) (Joye & Hollibaugh, 1995; Strauss & Dodds, 1997; Rysgaard et al., 

1999; Nicol et al., 2008). Previous work has investigated the impact of AgNPs on 

pure cultures of ammonia oxidisers (Radniecki et al., 2011; Yuan et al., 2012; 

Beddow et al., 2014a) as well as wastewater sludge microbial communities (Choi 
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and Hu, 2009; Liang et al., 2010; Yang et al., 2014), and has demonstrated high 

sensitivity of AOB to AgNPs. For example, both Liang et al. (2010) and Yang et al. 

(2014) found population decreases in activated sludge nitrifying bacteria treated with 

1-40 mg/L AgNPs. Both studies also found AgNPs to have a greater impact on 

activated sludge microbial communities compared to Ag+. Despite this work, little is 

currently known about the effect of AgNPs on AOB and AOA communities in 

receiving waters and sediments, where the fate, behaviour and toxicity of AgNPs 

may be vastly different to that in WWTP sludge (Fabrega et al., 2011). 

From WWTPs, AgNPs may be released directly into aquatic systems via 

effluents at estimated concentrations of 42.5 ng L-1 (Gottschalk et al., 2009), or may 

accumulate by up to 1.55 mg kg-1 in biosolids and enter rivers and estuaries through 

agricultural runoff (Gottschalk et al., 2009; Whiteley et al., 2013). In environmental 

waters, AgNPs may release Ag+ that can complex with enzymes and proteins in 

living cells, causing DNA damage and protein inactivation (Feng et al., 2000; Choi 

and Hu 2008; Auffan et al 2009; Xiu et al., 2012). AgNPs may also react with 

chloride ions to form Ag-chloride complexes that increases AgNP solubility, thus 

silver is often more mobile in seawater (Yu et al., 2013). Since dissolution kinetics of 

AgNPs are strongly dependent on the Cl/Ag ratio, it is possible that dissolution rates 

of AgNPs could be greater in marine compared to freshwaters (Levard et al., 2013). 

Other processes, however, can also affect AgNP dissolution rates (Levard et al., 

2013). For example, in sediments, Ag+ may bind with inorganic ligands such as S2-, 

SO4
2- and CO3

2- to form Ag-complexes, which are less bioavailable and less toxic 

than Ag+ (Choi et al., 2009; Levard et al., 2013; Yu et al., 2013). Changes in ionic 

strength, such as the presence of divalent cations (e.g. Ca2+ and Mg2+) in natural 

waters, can alter AgNP surface charges and induce aggregation. Aggregated AgNPs 
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are more likely to deposit in benthic sediments reducing AgNP concentration in the 

water column (Yu et al., 2013). Aggregated AgNPs also have reduced bioavailability 

as a result of reduced particle adsorption to cell surfaces and reduced transport 

across membranes (Christian et al., 2008; Handy et al., 2008). Indeed, aggregated 

AgNPs with increased sizes have lower antimicrobial activities (Zhang et al., 2011). 

Thus, when AgNPs are released into complex ecosystems such as estuaries, 

changes in their surface properties and reactivity may inhibit microbial processes 

that are crucial for ecosystem functioning  

The focus of the current study is the River Colne estuary (Fig. 1), a macrotidal, 

hypernutrified estuary in the United Kingdom, which demonstrates a gradient of 

salinity from the estuary head at the Hythe, through to the estuary mouth at 

Brightlingsea (Papaspyrou et al., 2012; Li et al., 2015). The estuary also has very 

high inorganic nitrogen levels in the upper estuary from inputs from the River Colne 

and a major sewage treatment works (Ogilvie et al., 1997; Papaspyrou et al., 2012; 

Li et al., 2015). Nitrification is an important process in the estuary and when coupled 

with denitrification can remove ~25% of total oxidized nitrogen before it enters the 

North Sea (Dong et al., 2000).  

The overall goal of this study was to investigate the effect of AgNPs on AOB 

and AOA amoA gene abundances and benthic nitrification potential along an 

estuary. Previously, Li et al. (2015) found greater AOB amoA gene abundance 

compared to AOA along the Colne estuary, suggesting that AOB are proportionally 

more important contributors to ammonia-oxidation in this estuary. In the Colne 

estuary, as Cl- concentrations increase downstream, we hypothesize that AgNP 

toxicity will be greater towards the estuary mouth compared to the estuary head. It is 

also hypothesized that AOB and AOA may exhibit differential sensitivities towards 
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AgNPs. This study will provide important information on the potential environmental 

risk of AgNPs to nitrification in estuaries where complex interactions occur. 

 

Results  

Size, dissolution and aggregation behaviour of AgNPs in estuarine water   

The AgNPs were more soluble in the mesohaline (Wivenhoe) water compared 

to the low-salinity (Hythe) water (554 versus 72 µg L-1 free silver by day 25, 

respectively), while ultra-high purity UHP water fell approximately midway between 

the two (Fig. 2A and B). This variation in solubility was established quickly. For 

example, over the first five hours, the rate of Ag+ release increased with increasing 

Cl/Ag molar ratio (from 0.11% h-1 in the low-salinity (Hythe) water to 0.24% h-1 in the 

mesohaline (Wivenhoe) water) (Fig. 3). AgNP particle diameter significantly 

increased in the mesohaline (Wivenhoe) water (60 nm ± 0.5 nm compared to 35 nm 

± 0.2 nm in UHP) and decreased slightly in the low-salinity (Hythe) water (30 nm ± 

0.1 nm) (Table 1). Zeta potentials were determined to indicate the magnitude of 

electrostatic repulsion/attraction between the AgNPs in the different waters. This is 

known to affect particle stability, i.e. a zeta potential close to 0 indicates a greater 

risk of attraction, potentially leading to particle aggregation. Data suggested that the 

AgNPs were most stable in UHP water (-37 mV ± 0.3 mV), but were less stable in 

the low-salinity (Hythe) estuarine water (-12 mV ± 1.1 mV) and least stable in the 

mesohaline (Wivenhoe) estuarine water (-5 mV ± 2.0 mV) (Table 1).  

 

Effect of AgNPs on AOB and AOA amoA gene abundance 

Whilst exposure to 0.5 mg L-1 AgNPs had no significant effect on AOB and 

AOA amoA gene abundance in either the low-salinity (Hythe) or mesohaline 
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(Wivenhoe) sediments over 14 days (Fig. 4), 50 mg L-1 AgNPs caused significant 

reductions to AOB amoA gene abundance in the low-salinity (Hythe) sediments after 

7 days (F2,8=9.16, P<0.05) and 14 days (F2,8=6.86, P<0.05) (Fig. 4A). Specifically, 

AOB amoA gene abundance in the low-salinity (Hythe) sediments exposed to 50 mg 

L-1 AgNPs was 68% lower than controls at day 7, and 76% lower than controls at day 

14 (Fig. 4A). In the mesohaline (Wivenhoe) sediments exposed to 50 mg L-1 AgNPs, 

amoA gene abundance was 55% lower than controls at day 7, and  66% lower than 

controls at day 14 (Fig. 4B).  

Overall, AOB amoA gene abundance was a thousand-fold greater than that 

for AOA at both sites (Fig. 4A-D). Furthermore, AOB amoA gene abundance was 

37% greater in the low-salinity (Hythe) compared to the mesohaline (Wivenhoe) 

sediments at day 0 (t4=4.59, P=0.01) (Fig. 4A-B). There was no significant difference 

in AOA amoA gene abundance between the two sites (Fig. 4 C-D) and, in contrast to 

AOB amoA gene abundances, exposure to AgNPs at both 0.5 and 50 mg L-1 had no 

significant effect on AOA amoA gene abundance in either the low salinity or 

mesohaline (Wivenhoe) sediments over 14 days (Fig. 4C and D).  

 

Effect of AgNPs on nitrification potential rates (NPRs) 

In general, faster NPRs were obtained from the low-salinity (Hythe) sediments 

at the estuary head (60.0 ± 1.0 µM NH4
+ oxidized g-1 dry weight sediment day-1) 

compared to the mesohaline (Wivenhoe) sediments from mid-estuary (42.2 ± 7.4 µM 

NH4
+ oxidized g-1 dry weight sediment day-1) at day 0, although the difference was 

not significant (Fig. 5A and B). Whilst AgNPs at 0.5 mg L-1 had no significant impact 

on NPRs in the low-salinity (Hythe) or mesohaline (Wivenhoe) sediments, NPRs 

were reduced over time in the low-salinity (Hythe) sediments by 20% by day 14 in 
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comparison to controls at day 14. AgNP concentrations of 50 mg L-1 resulted in 

significant inhibition to NPRs in both the low-salinity (Hythe) (F2,20=265.73, P<0.001) 

and mesohaline (Wivenhoe) (F2,20=890.37, P<0.001) sediments over 14 days (Fig. 

5A and B). Specifically, when exposed to 50 mg L-1 AgNPs, NPRs obtained from the 

low-salinity (Hythe) sediments were twenty-fold lower than the controls by day 1 

(P<0.001) (Fig. 5 A). The low-salinity (Hythe) sediment NPRs remained twenty-fold 

lower than controls by day 7 (P<0.001) (Fig. 5A). By day 14, the low-salinity (Hythe) 

sediment NPRs exposed to 50 mg L-1 AgNPs recovered somewhat, yet remained 

four-fold lower than controls (P<0.005) (Fig. 5A).  

NPRs obtained from the mesohaline (Wivenhoe) sediments exposed to 50 mg 

L-1 AgNPs were also significantly reduced, by almost three-fold (P<0.001) compared 

to controls, by day 1, and were so low they were almost unmeasurable by day 7 

(P<0.001) (Fig. 5B). By day 14, however, the mesohaline (Wivenhoe) sediment 

NPRs significantly recovered to levels similar to those prior to AgNP exposure (Fig. 

5B). Killed control sediment slurries demonstrated no loss of ammonium between 

days 0 and 14 (data not shown). 

 

Discussion 

AgNPs are widely used in consumer products and pose a potential threat to 

the environment (Fabrega et al., 2011). Once released into the environment, 

changes in the surface properties and reactivity of AgNPs may occur, which affect 

their transport, behaviour and toxicity towards the in-situ microbial communities. 

AOB and AOA are important in the ecosystem functioning of estuaries, especially 

where wastewater effluents are released. However, little is currently known about the 

effects of AgNPs on estuarine AOB and AOA. Here, sediments from mesohaline 
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(Wivenhoe) and low-salinity (Hythe) sites in the Colne Estuary, UK, were exposed to 

AgNPs to determine the effect of AgNPs on estuarine nitrification and AOB and AOA 

amoA gene abundances. Exposure to 50 mg L-1 AgNPs resulted in significant 

decreases in AOB amoA gene abundance in both the low-salinity (Hythe) and 

mesohaline (Wivenhoe) sediments, whilst AOA amoA gene abundances (although 

much lower than AOB), were not significantly affected. Whilst amoA gene copy 

numbers are an ideal indicator for AOB and AOA abundance, they cannot directly 

infer nitrifying activity (Wuchter et al. 2006; Li et al. 2015). Our findings therefore 

suggest that AgNPs may have a detrimental impact on AOB driven ammonia 

oxidation in estuarine environments. Previous studies have also demonstrated high 

sensitivity of AOB to AgNPs (Choi and Hu, 2009; Liang et al., 2010; Yang et al., 

2014). For example, both Liang et al. (2010) and Yang et al. (2014) found population 

decreases in activated sludge nitrifying bacteria treated with 1-40 mg L-1 AgNPs. 

Both studies also found AgNPs to have a greater impact on activated sludge 

microbial communities compared to Ag+. One possible explanation for the observed 

sensitivity of AOB towards AgNPs is that there are significantly different predicted 

structures of archaeal AmoB and bacterial AmoB. Since it is the AmoB subunit of 

AMO that is thought to harbor the active site in ammonia oxidizers (Lieberman and 

Rosenzweig 2005; Balasubramanian et al., 2010), it is possible that there are 

differences in ammonia oxidation functionality of this protein in AOA compared to 

AOB (Walker et al., 2010). Consequently, AgNPs or their ions may interact differently 

with the bacterial AmoB compared to the archaeal AmoB, leading to the observed 

differential sensitivity towards AgNPs found herein.  

In the Colne estuary, the estuary head at the Hythe has a high net input of 

nitrogen as a result of wastewater effluents entering the system from the nearby 
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wastewater treatment facility (Thornton et al., 2007; Li et al., 2015), thus ammonia-

oxidation is of great importance for nitrogen transformations at this location. We 

demonstrated significant NPR inhibition with exposure to 50 mg L-1 AgNPs, 

suggesting that AgNPs have the potential to reduce ammonia oxidation in estuarine 

sediments, particularly where AgNPs accumulate over time and reach high 

concentrations.  

In estuaries, the structure of ammonia-oxidizing communities is complex, 

whereby AOA are dominant in some estuaries (Beman and Francis, 2006; Caffrey et 

al., 2007; Moin et al., 2009; Bernhard et al., 2010; Damashek et al., 2015), AOB are 

dominant in others (Abell et al., 2010; Bernhard et al., 2010), whilst other estuaries 

have alternating spatial trends of AOA and AOB dominance (Mosier and Francis 

2008; Bouskill et al., 2012; Zheng et al., 2014). Our study and that of Li et al. (2015), 

found greater AOB amoA gene abundance compared to AOA along the Colne 

estuary, suggesting that AOB may have a greater contribution to ammonia-oxidation 

in this estuary. Our findings suggest that the accumulation of high levels of AgNPs 

may pose an immediate environmental risk to estuarine nitrification, and a further 

delayed risk to AOB abundance, especially where ammonia-oxidation is potentially 

predominantly driven by AOB, like in the Colne estuary. Unless communities are 

able to adapt and recover, this could have severe environmental risks, given that 

estuaries may be exposed to nanoparticles over a long duration. Furthermore, AOA 

communities (which were present in much lower abundances prior to AgNP 

exposure), may increase in abundance and become more significant drivers of 

ammonia oxidation in these estuaries. 

It is well known that the physical and chemical properties of an environment 

influence nanoparticle characteristics, which in turn may affect their toxicity (Fabrega 
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et al., 2011; Lowry et al., 2012). In this study we hypothesized that AgNP toxicity  

would be greater towards the estuary mouth compared to the estuary head, yet the  

opposite occurred. Such differences in physicochemical factors along the estuary  

may help to explain the mitigation of a detrimental effect on NPRs (by 50 mg L-1  

AgNPs) in the mesohaline (Wivenhoe) compared to the low-salinity (Hythe)  

sediments, by day 14. For example, AgNPs may react with dissolved sulfide species  

(H2S, HS-) to produce nanosilver-sulfide structures which are less bioavailable and  

therefore less toxic (Choi et al., 2009; Liu and Hurt 2010; Levard et al., 2013; Yu et  

al., 2013). Thus in sulfur-rich sediments, AgNP toxicity may be reduced. Here,  

sulfate concentrations were over three-fold greater in the mesohaline (Wivenhoe)  

sediments compared to the low-salinity (Hythe) sediments. Therefore, in the anoxic  

sediments, sulphate may be reduced, resulting in higher concentrations of sulphide.  

Thus, nanosilver-sulphide complexes would be more likely to form at the estuary  

mouth, decreasing toxicity and allowing the microbial communities to recover  

(Levard et al., 2012; Reinsch et al., 2012). Recovery of naturally occurring microbial  

populations exposed to carboxy-functionalised polyacrylate-capped AgNPs (1-10 nm  

diameter) has been demonstrated elsewhere (Das et al. 2012a, b). A possible  

explanation for such a recovery could be a shift in the microbial population (i.e.  

proliferation of more resistant populations) in response to silver exposure (Schimel et  

al., 2007). However, since background silver concentrations in the Colne sediments  

were within the lower range of those previously measured by Blaser et al. (2008) (i.e.  

< 0.37 mg kg-1 dry weight sediment, Fig. 1), it was assumed that the in-situ  

microbiota were not pre-adapted to high silver concentrations. In addition, previous  

work has shown that the surface oxic layer is greater near the estuary mouth  

compared to the estuary head (Ogilvie et al, 1997). Thus, it is also possible that  
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differences in oxygen concentration along the estuary may have influenced the 

behaviour and toxicity of the AgNPs, which in turn influenced the growth and activity 

of AOA and AOB. 

AgNPs often exhibit size-dependent toxicity (Sondi & Salopek-Sondi, 2004; 

Ma et al., 2012; Xiu et al., 2012). Here, the size and aggregation behavior of the 

AgNPs was strongly influenced by the estuarine waters they were dispersed in, 

which may have affected toxicity. We hypothesized that AgNP toxicity will be greater 

towards the estuary mouth compared to the estuary head. However, our findings 

showed that AgNP toxicity was greater in the low salinity site at the estuary head. 

This may be as a result of the higher salinity found at the estuary mouth causing 

greater aggregation of AgNPs in the mesohaline (Wivenhoe) waters compared to the 

low-salinity (Hythe) site, which may have reduced AgNP toxicity. Greater AgNP 

dissolution was also measured in the mesohaline (Wivenhoe) water compared to the 

low-salinity (Hythe) water, which is likely due to each water matrix inducing different 

chemical speciation of Ag, with either enhanced or reduced Ag+ production (Levard 

et al., 2013). This is in agreement with Levard et al. (2013) who reported the 

formation of soluble Ag species and that the rate of release of dissolved Ag+ 

increased as Cl/Ag ratio increased. High chloride concentrations in the mesohaline 

(Wivenhoe) water (Fig 1) are likely to have led to the formation of soluble Ag-chloride 

complexes (Liu & Hurt, 2010; Levard et al., 2012; Tejamaya et al., 2012)), which can 

explain the greater dissolved Ag found in our study. In contrast, AgNP dissolution 

observed in the low-salinity (Hythe) water was lower than in UHP water, despite the 

higher chloride concentration in the low-salinity (Hythe) water compared to UHP 

water. This may have been due to the formation of insoluble silver chloride species 

(Levard et al., 2013), or Ag-organic complexes with humic and fulvic acids (Kim et 
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al., 2010; Liu & Hurt 2010; Levard et al., 2012) with a higher molecular weight than  

the 1 kDa cut-off of the dialysis membrane that was used to separate soluble species  

from AgNPs. Indeed, DOC concentration was over two-fold greater at the estuary  

head compared to the estuary mouth (Fig. 1), suggesting that Ag-organic complexes  

were more likely to form at the estuary head.  

In conclusion, the effects of AgNPs were studied in low salinity (Hythe) and  

mesohaline (Wivenhoe) sediments and AOB at both sites demonstrated sensitivity  

towards the AgNPs tested. Specifically, AgNPs at 50 mg L-1 significantly decreased  

AOB but not AOA amoA gene abundances, and significantly decreased NPRs in  

both low-salinity (Hythe) and mesohaline (Wivenhoe) sediments. These findings  

suggest that where AgNPs are likely to accumulate in benthic sediments (such as  

downstream from wastewater treatment outflows), there is a potential environmental  

risk to nitrification, especially where ammonia-oxidation is largely driven by AOB.  

Future work could extend the number of sites in this estuary and in estuaries  

elsewhere, in order to cover more of the vastly diverse conditions AOB and AOA are  

subjected to, and determine whether this is the case.  

  

Experimental procedures  

Silver nanoparticles and characterisation  

The AgNPs were provided as a 0.9 g L-1 suspension by Dr. Paul Christian  

(University of Manchester, UK). The AgNPs were coated with methoxypolyethylene- 

glycol (mPEG), a capping agent which is commonly used to stabilize AgNPs and aid  

dispersion (Christian et al., 2008). The AgNPs have previously been characterized in  

UHP water (Beddow et al., 2014a; Beddow et al., 2014b) using a range of methods  

including dynamic light scattering (Zetasizer Nano ZS ZEN3600, Malvern  
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Instruments Ltd), transmission electron microscopy (TEM, JEOL 1200EX), flow field  

flow fractionation (FlFFF, AF2000 Postnova) and atomic force microscopy (AFM,  

XW-100, Park Systems). The AgNPs in UHP water were found to be predominantly  

present as single particles with an average diameter of 17-40 nm (± 0-10 nm)  

(depending on the characterization technique used) and a zeta potential of -37 mV  

(Beddow et al., 2014a). In the present study, the hydrodynamic diameter and zeta- 

potential of the AgNPs in 0.2 µm filtered (Whatman PLC) water from the low-salinity  

(Hythe) and mesohaline (Wivenhoe) sites were measured by dynamic light scattering  

(Zetasizer Nano ZS ZEN3600, Malvern Instruments Ltd) using methods previously  

described (Beddow et al., 2014a; Beddow et al., 2014b). The rate by which soluble  

Ag was released from the AgNPs dispersed in either ultra-high purity (UHP) water or  

estuarine water from the two sites studied was determined over 25 days, using  

dialysis with a 1 kDa cut-off membrane as previously described (Beddow et al.,  

2014a).   

  

Sample sites and analysis  

Surface sediments (6 kg from the top 0-2 cm layer of sediment) and overlying  

water samples (16 L from the top 50 cm of the water column) were collected in  

October 2011 from two sites along the Colne estuary, UK: the Hythe (51°52′47.3″N;  

0°55′43.1″E), at the estuary head which has low-salinity, and Wivenhoe  

(51°52’8.7″N; 0°56′32.8″E), located mid-estuary which is mesohaline (Smith et al.,  

2007) (Fig. 1). The sampling sites were selected as they were both downstream of a  

large wastewater treatment facility and therefore a potential release site for AgNPs.  

Water salinities were determined at the time of sample collection using a portable  

refractometer (CETI, Belgium). To determine the background Ag+ content of  
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sediments, samples were prepared by acid digestion and analysed by ICPMS (ELAN 

9000, Perkin Elmer, USA) according to the US EPA method 3051A (US EPA, 2007), 

by Dr. Macoura Kone, University of Alberta, Canada. Sediment slurries were 

prepared from 1 part sediment mixed with 2 parts overlying water. The dissolved 

organic carbon (DOC) concentrations of water samples filtered through 0.2 µm pore 

size, 47 mm diameter Millipore Durapore filters (Merck Millipore, UK), were 

measured using a high-temperature combustion method (Shimadzu TOC-VCSH, 

UK) against a set of freshly prepared glucose standards (0.1-10 mg L-1). The 

anion/cation content of slurry pore waters were measured using a Dionex ICS-3000 

(Thermo Scientific, UK) against a set of freshly prepared standards ranging from 0-

500 µM (cations) or 0-200 µM (anions). Sediment dry weights (dws) were 

determined by drying 5 g slurry at 60°C (Hybaid oven, UK) to a constant weight. 

 

Microcosm setup 

Sediment slurries were prepared by mixing one part wet sediment with three 

parts overlying water from the corresponding site. Triplicate oxic microcosms 

containing 300 mL slurry from either the low-salinity (Hythe) (91 g dws L-1 slurry) or 

mesohaline (Wivenhoe)  (130 g dws L-1 slurry) sites along the estuary, and AgNPs at 

final concentrations of 0.5 or 50 mg L-1 were prepared in sterile 500 mL conical 

flasks. AgNP concentrations were selected based on exposure models which show 

that predicted environmental concentrations (PECs) for AgNPs in different 

environmental compartments are in the range of those quoted by Maurer-Jones et al 

(2013) in their overview of bacterial nanotoxicity. 

Triplicate control microcosms without the addition of nanoparticles were also 

set up. Triplicate killed control microcosms were prepared by tyndallization 
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(autoclaving under pressure to 121°C for 15 mins over three successive days, with  

periods of incubation at 20°C in between) and the viability of killed controls was  

checked by plating 100 µL of slurry onto R2A agar and incubating for two weeks at  

20°C. Flasks were incubated at 20°C in the dark with shaking (100 rpm) for 14 days.  

  

Nitrification potential rate (NPR) analysis   

Following 0, 1, 7 and 14 days incubation, sub-samples (33 mL) from both the  

live and killed sediment slurry microcosms were transferred into sterile 100 mL  

conical flasks and further diluted with 67 mL filtered water (filtered through 0.2 µm  

pore size, 47 mm diameter Millipore Durapore filters (Merck Millipore, UK) into sterile  

glass 1L duran bottles and stored at 4°C) from the corresponding site (low-salinity  

(Hythe) or mesohaline (Wivenhoe)). Day 0 sub-samples were taken immediately  

prior to the addition of AgNPs to microcosms, and within four hours of sample  

collection from the estuary. Microcosm nitrification potential rates were analysed by  

measuring the ammonium concentration in diluted slurry sub-samples at three  

separate time points (0, 24 and 48 hours) as previously described (Li et al., 2015).  

Ammonium concentration in sediment pore water was analyzed by the indophenol  

blue spectrophotometric method (Pai et al., 2001). Rates of ammonium removal  

were determined by linear regression analysis of the concentration of ammonium  

with time.   

  

  

   

Nucleic acid extraction  
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Following 0, 1, 7 and 14 days incubation, nucleic acids were extracted from 

slurry samples (1 mL) using a bead-beating method as described by Stephen et al. 

(1996). Extracted DNA was pelleted by centrifugation (12,000 × g for 5 min) and 

washed with 0.5 mL 70 % (v/v) ice cold ethanol, then air dried for 20 min at room 

temperature before being resuspended in 100 µl sterile distilled water and stored at -

80°C. DNA yield ranged between 0.5-1.0 µg and DNA purity was checked at 

260:280 nm using a Nanodrop® ND-1000 spectrophotometer (Thermo Fisher 

Scientific, UK). 

 

Real-time qPCR analysis of AOB and AOA amoA genes  

DNA standards for qPCR analysis were created from PCR-amplified low-

salinity (Hythe) estuarine sediment DNA using the primer pair 1F/2R-TC (Rotthauwe 

et al., 1997; Nicolaisen & Ramsing, 2002) to target the AOB amoA gene, and the 

primer pair A23F/A616R (Tourna et al., 2008) to target the AOA amoA gene. PCR 

mixtures for DNA standard preparation (total 50 µL) contained 1 µl DNA template, 

and a final concentration of 1× PCR buffer (containing 1.5 mM MgCl2) (Qiagen), 0.4 

µM of each primer, 200 µM of each dNTP and 1U Taq DNA polymerase (TopTaqTM, 

Qiagen, UK). Thermocycling consisted of 95°C for 5 min followed by 35 cycles of 

95°C for 30 s, 57°C (AOB) or 55°C (AOA) for 30 s and 72°C for 1 min, with a final 

elongation step of 72°C for 7 min (Gene Amp® PCR system 9700 Thermocycler, 

Applied Biosystems, UK). Resulting amplicons were purified using a QIAquick PCR 

purification kit (Qiagen, UK) and quantified on a Nanodrop® ND-1000 

spectrophotometer (Thermo Fisher Scientific, UK). Target abundances were 

calculated for each sample using the following equation, assuming a mass of 660 Da 

for double stranded DNA: 
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Copy no. = *6.023 x 1023 (copies mol-1) x standard concentration (g µL-1)  

MW (g mol-1)  

*Avogadro’s constant  

DNA template concentration used in q-PCR standard curves ranged from 101 
 

to 107 target genes µl-1. Q-PCR analysis was performed on triplicate microcosm  

samples, no template controls and standard curves, in triplicate (technical  

replicates), with each primer set, using a Bio-Rad CFX96 Touch Real-Time PCR  

Detection System (Bio-Rad Laboratories, UK). Each 20 µl reaction contained 1 µl  

DNA template, 1× SensiFASTTM SYBR No-ROX dye (Bioline Reagents Ltd, UK) and  

100 nM of each primer, prepared in BrightWhite 96-well plates (Primer Design Ltd.,  

UK). Thermocycling consisted of 95°C for 5 min followed by 40 cycles of 95°C for  

10s and 60°C for 30 s. Target genes were quantified against their corresponding  

standard curves using CFX Manager software (Bio-Rad Laboratories, UK) with  

automatic settings for Cq values and the baseline. The detection limit of the qPCR  

assay was ≈28 gene copies (≈33 cycles). Standard curve coefficient correlations  

were 0.99 and 0.97 for AOB and AOA amoA genes, respectively, and average  

efficiencies of qPCR reactions were 94.0% and 98.8% for AOB and AOA amoA  

standard curves, respectively.   

  

Statistical analyses  

Where data were normally distributed, one-way ANOVAs with Tukey’s HSD  

post-hoc analyses and t-tests were used to test for significant differences in NPRs  

and gene copy numbers between samples (PASW Statistics v18, IBM, USA).    
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Titles and Legends to Figures 

Fig. 1. Map of the sampling sites (marked with stars) along the Colne estuary, United 

Kingdom. Panels show the abiotic characteristics of estuarine water and sediment at 

the time of collection. Site 1 (the Hythe, low-salinity) was located towards the 

freshwater head of the estuary, just downstream of a large sewage treatment works 

(STW). Site 2 (Wivenhoe, mesohaline) was located further downstream of site 1, 

towards the marine mouth of the estuary. Ag refers to background silver 

concentration per kg dry weight sediment (dws). ± represents the standard error of 

the mean (n=3). ND = Not detected. 

 

Fig. 2. Release of soluble silver from 5 mg L-1 AgNP suspensions in UHP water (∆), 

low-salinity (Hythe) estuarine water ( ) and mesohaline (Wivenhoe) estuarine water 

( ), over (A) 30 hours and (B) 25 days. Each point represents the average where 

n=2. Extremities of the vertical bar on each point represent the data range.  

 

Fig. 3. Comparison of dissolution rates as a function of Cl/Ag ratio reported by 

Levard et al. (2013) (◆) with our data (■) over the first five hours.  

 

Fig. 4. AOB and AOA amoA gene abundance (mean ± s.e.; n=3) in low-salinity 

(Hythe) and mesohaline (Wivenhoe) sediments over time in the presence of 0.5 or 

50 mg L-1 AgNPs. Controls do not contain any AgNPs. Results that are significantly 

different to controls are shown by * (p ≤ 0.05).  

 

Fig. 5. Autotrophic nitrification potential rates (NPRs) in (A) low-salinity (Hythe) and 

(B) mesohaline (Wivenhoe) sediments over 14 days in the presence of 0.5 or 50 mg 
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L-1 AgNPs. Controls do not contain any AgNPs. Results that are significantly different 

to controls are shown by ** (p ≤ 0.01). Error bars represent the standard error of the 

mean (n=3). 

 

Table 1. Characteristics of AgNPs in sterile Ultra High Purity Water (UHP) and  

estuarine waters that were either low salinity (Hythe) or mesohaline (Wivenhoe) (± 

standard error of the mean, n=15), determined by dynamic and electrophoretic light 

scattering (DLS) as described in Beddow et al. (2014a). Results that are significantly 

different to those in ultra-high purity (UHP) water are shown by ** (p ≤ 0.01).   
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Low-salinity (Hythe) 

pH 7.5 

Salinity 3.5 ‰ 

DOC 9.1 ± 0.2 mg L-1 

Ag 0.37 ± 0.01 mg kg-1 dws 

Cl- 80 ± 9 mM 

NH4
+ 19 ± 1 µM 

NO3
- 537 ± 89 µM  

NO2
- 86 ± 15 µM 

PO4
3- 221 ± 2 µM 

SO4
2- 7375 ± 737 µM 

Mesohaline (Wivenhoe) 

pH 7.5 

Salinity 27 ‰ 

DOC 3.4 ± 0.2 mg L-1 

Ag 0.33 ± 0.01 mg kg-1 dws 

Cl- 278 ± 2 mM 

NH4
+ 36 ± 1 µM 

NO3
- 227 ± 18 µM 

NO2
- 135 ± 10 µM 

PO4
3- ND 

SO4
2- 23060 ± 193 µM 
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Fig. 4.  
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Fig. 5  
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Table 1.  

Water DLS diameter (nm) Zeta(ζ) –potential (mV) 

UHP  35 ± 0.2 -37 ± 0.3 

Low salinity (Hythe)  30* ± 0.1 -12* ± 1.1 

Mesohaline (Wivenhoe)  60* ± 0.5 -5* ± 2.0 
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