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1. Introduction

The challenge in bivariate survival analysis usually comes from the incomplete infor-

mation of the data, due to random censoring and random truncation (Wang 1991; van

der Laan 1996a,b). Such kind of data occurs in many research areas, such as medicine,

economics, insurance and social sciences. Consider that a business advisory team aims

to study the failures for small and medium size businesses and then further provides

advices to the businesses. In such a study, the time period T1, from the establishment

of a firm to the time of recruitment, and the time period T2, from the recruitment

time point to bankruptcy, are of interests. The times T1 and T2 are subject to ran-

dom censoring by certain random variables C1 and C2, respectively (for example, the

last follow-up). In practice, observations are also subject to random truncation. Suppose

that data are accessible only from year 2004. Then only companies who were recruited

after year 2004 will be available. Therefore there is a random time L1, from the year of

establishment to year 2004, such that only firms with T1 ≥ L1 can be observed. This

implied that T1 is left-truncated. In summary, the observed data are {L1, Y1, δ1, Y2, δ2},

where Yk = min{Tk, Ck} and δk = I[Xk ≤ Ck] and the aim of this study is to estimate

the bivariate survival function of (T1, T2) under both censoring and truncation.

In this case only T1 is subject to truncation L1. In some situations both T1 and T2

are subject to truncation L1 and L2 respectively. An example is in (Huang et al. 2001),

where the bivariate event times of interest are the parent’s and child’s ages of onset in

genetic disease data and they are both right truncated at the parent’s and child’s ages at

interview. For an affected parent-child pair to be included in the study, they have to be

diagnosed with the disease before the time they are interviewed. No censoring is involved

in their study.

Most existing research works (Woodroofe 1985; Keiding and Gill 1990; Wang 1991;
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van der Laan 1996b) focused on bivariate survival analysis under either censoring or

truncation. Some other existing methods dealt with bivariate survival function estimation

under the scenario where one component is censored and truncated, but the other one

is fully observed (Gürler 1997; Gijbels and Gürler 1998). Bivariate survival function

estimation when both components are censored and truncated has received considerable

attention recently (Shen 2006, 2007; Shen and Yan 2008). These methods, however,

used an iterative computing method which is computationally heavy. Shen (2014) used

the idea in Sankaran and Antony (2007) for competing risks set up, to propose two

types of estimators ad generalizations of Dabrowska and Campbell and Foldes estimators.

These estimators are easy to implement and do not require iteration. Dai and Fu (2012)

proposed an estimator based on a polar coordinate transformation, which does not require

iterative calculations and its large sample properties are established.

In this paper, we employ the idea in Dai and Fu (2012) and extend their methods to a

class of estimators, based on different data transformations. The large sample properties

of the class of estimators are also derived and a guidance of selecting good transformation

functions is also provided.

The paper is organized as follows. In Section 2 the statistical models and the data

transformation are discussed, the estimator is constructed and its large sample properties

are provided. Then how to choose a good data transformation function is pointed out in

Section 3. In Section 4, we present numerical studies for the performance of the estimator

under different data transformation functions. A real data analysis is also provided in

this section. Section 5 gives a discussion.
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2. Statistical models and data transformation

Let (T1, T2) be the pair of non-negative random variables with bivariate cumulative

distribution function and survival function F (t1, t2) = P (T1 ≤ t1, T2 ≤ t2) and S(t1, t2) =

P (T1 > t1, T2 > t2), respectively. The pair of survival times (T1, T2) is subject to right

censoring by a pair of censoring times (C1, C2), i.e. one can only observe Yk = min{Tk, Ck}

and δk = I[Tk ≤ Ck] for k = 1, 2. The pair (T1, T2) is also subject to random left

truncation by a pair of truncation times (L1, L2), i.e. only subjects with L1 ≤ T1 and

L2 ≤ T2 can be observed. Note that we focus on such type of truncation throughout this

paper, which is called the type-I bivariate truncation in Dai and Fu (2012). In practice

the data may also be type-II truncated (truncation with L1 ≤ T1 or L2 ≤ T2), for which

the proposed method in this paper can be simply extended. We denote the observed data

as (Y1i, Y2i, δ1i, δ2i, L1i, L2i) for i = 1, . . . , n. We assume that (T1, T2) is independent of

the censoring and truncation times, but the censoring and truncation times themselves

can be mutually correlated, in the sense that we have the following joint probability

function

G(t1, t2) = P (L1 ≤ t1 < C1, L2 ≤ t2 < C2)

We do not specify any parametric function for the above function G and it is estimated

nonparametrically in the paper.

To develop a new estimator for the joint survival function S, we first consider a trans-

formation for the time points (t1, t2) at which the survival function S(t1, t2) is to be

estimated. For any given arbitrary values (t1, t2), we define a transformation from (t1, t2)
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to (z, α) as

t2 = ζ(t1, α), z =

∫ t1

0

√
1 +

[
∂ζ(u, α)

∂u

]2
du (1)

where t2 = ζ(t1, α) means a function (curve) depending on a parameter α.

We assume that for each pair of (t1, t2) there is one and only one value of α such that

t2 = ζ(t1, α). Then the value α is uniquely determined by (t1, t2), once the function ζ is

given. The function ζ needs to be continous and such that ζ(0, α) = 0. Then in equation

(1), the value z is the distance from (t1, t2) to (0, 0) along the curve ζ(·, α). Note that

we can also write

z =

∫ t2

0

√
1 +

[
∂ζ−1(u, α)

∂u

]2
du, (2)

where ζ−1 is the inverse function of ζ such that t1 = ζ−1(t2, α).

With the above definition, we can transform the target survival function from S(t1, t2)

to S(z;α), by the following formula

S(t1, t2) = P (T1 > t1, T2 > t2)

= P

∫ T1

0

√
1 +

[
∂ζ(u, α)

∂u

]2
du > z,

∫ T2

0

√
1 +

[
∂ζ−1(u, α)

∂u

]2
du > z


= P (Z(α) > z) := S(z;α), (3)

where

Z(α) = min

{∫ T1

0

√
1 +

[
∂ζ(u, α)

∂u

]2
du,

∫ T2

0

√
1 +

[
∂ζ−1(u, α)

∂u

]2
du

}
. (4)
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The above transformation implies that we only need to find a consistent estimate for

S(z;α), which is the same as S(t1, t2).

From the expression S(z;α) = P (Z(α) > z), we can see that S(z;α) can be easily

estimated if we have the transformed data (Z1(α), . . . , Zn(α)), based on (T1i, T2i) for

i = 1, . . . , n. In practice, although the values of Z(α) in (4) may not be obtained due to

censoring and truncation, we can still do similar transformation as follows. Define

Ỹ1i =

∫ Y1i

0

√
1 +

[
∂ζ(u, α)

∂u

]2
du, Ỹ2i =

∫ Y2i

0

√
1 +

[
∂ζ−1(u, α)

∂u

]2
du

and

L̃1i =

∫ L1i

0

√
1 +

[
∂ζ(u, α)

∂u

]2
du, L̃2i =

∫ L2i

0

√
1 +

[
∂ζ−1(u, α)

∂u

]2
du

Then the transformed data are given by

Z̃i(α) = min{Ỹ1i, Ỹ2i},

∆i(α) = δ1iI[Ỹ1i ≤ Ỹ2i] + δ2iI[Ỹ1i ≥ Ỹ2i]−min(δ1i, δ2i)I[Ỹ1i = Ỹ2i],

Vi(α) = max{L̃1i, L̃2i}. (5)

Based on the above transformation, the following lemma implies a product-limit esti-

mator for S(z;α) (i.e. for S(t1, t2)).

Lemma 2.1 For fixed α, the hazard rate function of Z(α) is denoted by Λ(dz;α) =

− S(dz;α)
S(z−;α) . Then we have

Λ(dz;α) =
P (Z̃i(α) ∈ dz, z > Vi(α),∆i(α) = 1)

P (Z̃i(α) ≥ z > Vi(α))
,
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where Z̃i(α) ∈ dz denotes z ≤ Z̃i(α) < z + dz. □

The proof of this lemma is given in Appendix. Note that the polar-coordinate trans-

formation in Dai and Fu (2012) actually uses a specific function ζ(t1, α) := αt1.

Based on the transformed observations {Z̃i(α),∆i(α), Vi(α), i = 1, . . . , n} in (5), we

define

N(ds;α) =

n∑
i=1

Ni(ds;α)/n,

:=

n∑
i=1

I[Z̃i(α) ∈ ds, s > Vi(α),∆i(α) = 1]/n,

H(n)(s;α) =
n∑

i=1

Hi(s;α)/n,

:=
n∑

i=1

I[Z̃i(α) > s ≥ Vi(α)]/n, (6)

and

H(n)(t1, t2) =
n∑

i=1

Hi(t1, t2)/n,

:=

n∑
i=1

I[Y1i > t1 ≥ L1i, Y2i > t2 ≥ L2i]/n. (7)

Note that H(n)(t1, t2) = H(n)(z;α) and Hi(t1, t2) = Hi(z;α). An estimator for Λ(dz;α)

is then given by Λ̂(dz;α) = N(dz;α)/H(n)(z−;α) and the product-limit estimator for

S(z;α) is

Ŝ(z;α) =
∏
s≤z

[
1− N{s;α}

H(n)(s−;α)

]
, (8)

where N{s;α} = N(s;α) − N(s−;α). Since S(z;α) = S(t1, t2), Ŝ(z;α) is also an esti-
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mator for S(t1, t2).

The large sample properties of Ŝ are given by the following theorems, which follow

from Dai and Fu (2012).

Assumption 2.2 The function G(t1, t2) = P (C1 > t1 ≥ L1, C2 > t2 ≥ L2) > 0, almost

surely with respect to S(t1, t2) in A, where A is the support of the distribution for (T1, T2).

Theorem 2.3 Under Assumption 2.2, for any (t1, t2) ∈ A such that S(z;α) > 0 we

have Ŝ(z;α)− S(z;α) = rn(z;α), where rn is such that supα,z E[rn(z;α)]
2 = o(1). □

Theorem 2.4 Define Mi(ds;α) = Ni(ds;α) − Hi(s−;α)Λ(ds;α) and M(ds;α) =

n−1
∑

iMi(ds;α). Under Assumption 2.2, for all (z, α) such that S(z;α) > 0, we have

that

Ŝ(z;α)− S(z;α) = −S(z;α)

∫ z

0

Ŝ(s−;α)

S(s;α)

I[H(n)(s−;α) > 0]

H(n)(s−;α)
M(ds;α) +B(z;α), (9)

where

B(z;α) = S(z;α)

∫ z

0

Ŝ(s−;α)

S(s;α)
I[H(n)(s−;α) = 0]Λ(ds;α). (10)

We further have
√
n(Ŝ(z;α)− S(z;α)) ⇒ N(0, σ2(z;α)), where

σ2(z;α) = S(z;α)2
∫ z

0

1

H(s−;α)
Λ(ds;α).

□
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A consistent estimator for σ2(z;α) is

σ̂2(z;α) = Ŝ(z;α)2
∫ z

0

I[H(n)(s−;α) > 0]

H(n)(s−;α)
Λ̂(ds;α). (11)

3. Interpretation of the transformation and selecting ζ

Dai and Bao (2009) consider the function t2 = ζ(t1, α) = αt1 as the data transformation

function for censored data. The bivariate function S(z;α) is estimated by fixing α first

and then find the estimates for all different values of α. The advantage of using such

transformation is that we can estimate S(z;α) as a univariate survival function (viewed

as a univariate function with fixed α) and then the univariate function estimate can

be transformed back to the bivariate function estimate. The estimation based on the

transformed data makes use of the bivariate data information, when S(z;α) is estimated

with a given α. A naive approach of not using such transformation is to estimate S(t1, t2)

by fixing t2 first and then find the estimates for all different values of t2. Such a naive

approach will ignore the censoring or truncation information of the second component,

when estimating S(t1, t2) with fixed t2. Therefore the polar-coordinate transformation

provides better estimate comparing to the naive approach (Dai and Bao 2009).

If we consider the transformed data in (5), the transformation is required not chang-

ing the partial order of the observations, in the sense that Y1i < Y1j , Y2i < Y2j (or

Z̃i(α) < Z̃j(α)) will be kept unchanged under different functions of ζ. Therefore if the

data are fully observed, the estimate based on the transformed data is the same as the

bivariate empirical estimator. However, if the data are censored or truncated, different

transformation function ζ will give a different result. This is because the transformed

indicator ∆i(α) may choose either δ1i or δ2i as its value, depending on the function ζ,

and the relation of Z̃i(α) and Vi(α) is also dependent of ζ. Therefore, we may transform
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the data in different ways. For example consider the following two sets of data, given by

the scatter plots in Figure 1. It may be more appropriate to use a linear function (the

linear line in the plot) as ζ, for the transformation of the first data set (left plot), and

it may be more suitable to use a non-linear function ζ (the curve in the plot) for the

transformation of the second data set (right plot).
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Figure 1. Using different data transformation function for different data sets.

In practice, we should select ζ which gives a small bias for Ŝ(z;α)− S(z;α), which is

given in Theorem 2.4 by (9). Since the first term in (9) is a zero-mean martingale, we

know that E[Ŝ(z;α) − S(z;α)] = E[B(z;α)], where B(z;α) is given in (10). We should

choose ζ to make B(z;α) as small as possible. Clearly we need to have a smaller value of

I[H(n)(s−;α) = 0] in order to have small B(z;α). This means that we should choose ζ to

guarantee that the transformed data should have small possibilities of having H(n) = 0.

Recall the definition of Hn(s;α) in (6). To make the bias smaller we have to assure

that the number of observations, such that

Z̃i(α) > Vi(α), (12)

is as large as possible. Further recalling the definition of Z̃i(α) and Vi(α) in (5), we need
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to choose ζ to guarantee that the number of observations with

min{Ỹ1i, Ỹ2i} > max{L1i, L2i} (13)

is as large as possible. In other words we need to choose ζ which gives a large proportion

of observations satisfying (13).

The above arguments may not be applied easily in practice. In practice, we may con-

sider to use the following statistics

A =

∫ ∫ [
B̂(s;α)2 + σ̂2(s;α)

]
dsdα (14)

which can be viewed as the total mean square errors for all observed data points. Note

that B̂ is the estimated values for B, which can be obtained by replacing S and Λ by

their consistent estimators in (10).In practice, when we compare several transformation

functions ζk, which give total mse statistic Ak respectively, we should choose the function

ζk which gives the smallest total mean square error Ak.

The simulation studies in the following section confirm the above arguments.

4. Simulation studies and data analysis

4.1. Simulation

In this section we provide a simulation study to show the properties of the estimates based

on different data-transformations and assess the performance of the proposed methods.

We consider a scenario where data are generated from the model

T1 ∼ Gamma(2, 1) and T2 = a ∗
√

T1 + ε,
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with a = 0.5 and ε ∼ N(1, 0.5). We aim to estimate the joint survival functions of (T1, T2)

via the proposed nonparametric approach, under censoring and truncation.

The censoring variables C1 and C2 are simulated via

C1 = a1ξ1 + a2ξ2 and C2 = b1ξ1 + b2ξ2, (15)

where ξ1, ξ2 ∼ exp(β) and β = 0.02. Moreover, we assume that truncation variables are

given by

Lk = 0.05 · (Ck − U [0, 1]), k = 1, 2.

Thus Lk ≤ Ck and they are correlated. Note that only observations with Lk ≤ Tk, k = 1, 2

are recorded.

The values of a1, a2, b1 and b2 in (15) are chosen to achieve different censoring percent-

ages and truncation probabilities. In our study the censoring percentages for both T1

and T2 are about 20% respectively and the truncation probability P (L1 < T1, L2 < T2)

is about 85%. We consider different sample sizes, n = 100, n = 200 and n = 500.

Tables 1, 2 and 3 summarize the simulation results, where the true S(t1, t2), the mean

estimates of our proposed estimator S̄ =
∑m

k=1 Ŝk/m, the bias of Ŝ(t1, t2), the empirical

standard errors of Ŝ(t1, t2) based on m = 500 simulations
√∑m

k=1(Ŝk − S̄)2/(m− 1),

the empirical means of standard errors
∑m

k=1 σ̂k/m, the mean squared error of Ŝ(t1, t2)

and the proportion of Z̃i > Vi are respectively shown in rows (a), (b), (c), (d), (e), (f)

and (g).

The distribution function estimators are evaluated at points (t1, t2) with values (1, 1),

(2, 1), (2, 2) and (3, 2), respectively. Three data transformation functions have been con-

sidered: (i): t2 = a
√
t1; (ii): t2 = at1: (iii) t2 = at21.
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When the sample size becomes smaller (n = 500, n = 200, n = 100) (Tables 1, 2 and

3), the choice of the ζ becomes more important. In particular Ŝ(t1, t2) will have a larger

bias, if ζ gives a smaller probability of {Z̃i(α) > Vi(α)}. For example from Table 3, we

can see that (iii) has probability of {Z̃i(α) > Vi(α)} uniformly smaller than (i) and (ii)

and in the mean time the estimates of (iii) have larger bias and larger mean squared

error. We also noticed that with n = 200, the standard error estimate of (iii) is much

larger than (i) and (ii) and the standard error estimate of (iii) is not good enough (not

close to the Monte Carlo standard error).

Table 1. Simulation study. Sample size: n = 500. (a): true S(t1, t2); (b):
empirical mean of Ŝ(t1, t2); (c): the bias of Ŝ(t1, t2); (d): empirical SE of
Ŝ(t1, t2); (e): empirical mean of estimated SE of Ŝ(t1, t2); (f): the mean

squared error of Ŝ(t1, t2); (g): P (Z̃i > Vi) for selected time pairs (t1, t2) for
three data transformations: (i): T2 = a

√
T1; (ii): T2 = aT1; (iii): T2 = aT 2

1 .

(1,1) (2,1)
(i) (ii) (iii) (i) (ii) (iii)

(a) 0.6809 0.6809 0.6809 0.3908 0.3908 0.3908
(b) 0.6789 0.6783 0.6788 0.3906 0.3902 0.3936
(c) -0.0021 -0.0027 -0.0021 -0.0002 -0.0006 0.0028
(d) 0.0248 0.0260 0.0395 0.0254 0.0280 0.0431
(e) 0.0251 0.0257 0.0331 0.0250 0.0269 0.0383
(f) 0.0006 0.0007 0.0016 0.0006 0.0008 0.0019
(g) 0.9800 0.9660 0.9140 0.9100 0.8560 0.7400

(2,2) (3,2)
(i) (ii) (iii) (i) (ii) (iii)

(a) 0.1726 0.1726 0.1726 0.1025 0.1025 0.1025
(b) 0.1710 0.1713 0.1697 0.1022 0.1024 0.1027
(c) -0.0017 -0.0014 -0.0029 -0.0004 -0.0001 0.0002
(d) 0.0198 0.0196 0.0234 0.0176 0.0180 0.0210
(e) 0.0196 0.0195 0.0214 0.0162 0.0164 0.0185
(f) 0.0004 0.0004 0.0006 0.0003 0.0003 0.0004
(g) 0.9700 0.9660 0.8660 0.9740 0.9340 0.7420

Moreover looking at the Table 3 for n = 100, we observed that although bias and mean

squared error become worse for each transformation, they are always greater under the

transformation (ii) and (iii) comparing to that under transformation (i). In other words,

when we move from the “true relation” between T1 and T2, the results become unstable,

especially for very small sample sizes. This is also confirmed by the statistic A in (14).

13



Table 2. Simulation study. Sample size: n = 200. (a): true S(t1, t2); (b):
empirical mean of Ŝ(t1, t2); (c): the bias of Ŝ(t1, t2); (d): empirical SE of

Ŝ(t1, t2); (e): empirical mean of estimated SE of Ŝ(t1, t2); (f): the mean
squared error of Ŝ(t1, t2); (g): P (Z̃i > Vi) for selected time pairs (t1, t2) for
three data transformations: (i): T2 = a

√
T1; (ii): T2 = aT1; (iii): T2 = aT 2

1 .

(1,1) (2,1)
(i) (ii) (iii) (i) (ii) (iii)

(a) 0.6809 0.6809 0.6809 0.3908 0.3908 0.3908
(b) 0.6796 0.6791 0.6773 0.3869 0.3865 0.3819
(c) -0.0014 -0.0018 -0.0036 -0.0039 -0.0043 -0.0089
(d) 0.0387 0.0400 0.0670 0.0367 0.0383 0.0786
(e) 0.0386 0.0398 0.0493 0.0394 0.0420 0.0563
(f) 0.0015 0.0016 0.0045 0.0014 0.0015 0.0063
(g) 0.9800 0.9450 0.9200 0.9400 0.8650 0.7500

(2,2) (3,2)
(i) (ii) (iii) (i) (ii) (iii)

(a) 0.1726 0.1726 0.1726 0.1025 0.1025 0.1025
(b) 0.1728 0.1726 0.1735 0.1033 0.1031 0.1036
(c) 0.0002 0.0000 0.0008 0.0008 0.0005 0.0011
(d) 0.0318 0.0311 0.0381 0.0255 0.0257 0.0309
(e) 0.0306 0.0305 0.0331 0.0253 0.0255 0.0282
(f) 0.0010 0.0010 0.0015 0.0007 0.0007 0.0010
(g) 0.9700 0.9700 0.8650 0.9850 0.8800 0.7250

With 20% censoring and 80% truncation, the statistics A (total mean square errors)

based on different tranformation function ζ are shown in Table 4. We can see that for all

sample size under consideration, the square root transformation (the true transformation)

gives the smallest total mse. These findings imply that although the choice of ζ is very

arbitrary, for sample size which is not very large, we should choose a ζ which can give a

small value of A.

In practice, we may choose ζ by inspecting the possible parametric relationship between

T1 and T2. For example, we can check the scatter plots (see Figure 1) and a good ζ should

be the one which gives a better fit for the relation of T1 and T2. Therefore, our method is

actually a nonparametric method, but makes full use of certain parametric information

about the relation between T1 and T2.
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Table 3. Simulation study. Sample size: n = 100. (a): true S(t1, t2); (b):
empirical mean of Ŝ(t1, t2); (c): the bias of Ŝ(t1, t2); (d): empirical SE of

Ŝ(t1, t2); (e): empirical mean of estimated SE of Ŝ(t1, t2); (f): the mean
squared error of Ŝ(t1, t2); (g): P (Z̃i > Vi) for selected time pairs (t1, t2) for
three data transformations: (i): T2 = a

√
T1; (ii): T2 = aT1; (iii): T2 = aT 2

1 .

(1,1) (2,1)
(i) (ii) (iii) (i) (ii) (iii)

(a) 0.6809 0.6809 0.6809 0.3908 0.3908 0.3908
(b) 0.6778 0.6768 0.6743 0.3891 0.3913 0.3921
(c) -0.0031 -0.0042 -0.0067 -0.0017 0.0005 0.0013
(d) 0.0567 0.0574 0.0894 0.0577 0.0625 0.0887
(e) 0.0537 0.0555 0.0656 0.0550 0.0586 0.0754
(f) 0.0032 0.0033 0.0080 0.0033 0.0039 0.0079
(g) 0.9900 0.9800 0.9400 0.9200 0.8600 0.7500

(2,2) (3,2)
(i) (ii) (iii) (i) (ii) (iii)

(a) 0.1726 0.1726 0.1726 0.1025 0.1025 0.1025
(b) 0.1704 0.1695 0.1699 0.1001 0.0994 0.0994
(c) -0.0022 -0.0032 -0.0028 -0.0025 -0.0032 -0.0031
(d) 0.0438 0.0426 0.0506 0.0388 0.0389 0.0453
(e) 0.0423 0.0421 0.0447 0.0338 0.0340 0.0371
(f) 0.0019 0.0018 0.0026 0.0015 0.0015 0.0021
(g) 0.9800 0.9800 0.8900 0.9700 0.8900 0.7400

Table 4. Comparision of different ζ

n = 500 n = 200 n = 100 n = 50
A with t2 = a

√
t1 0.973 0.934 0.899 0.867

A with t2 = at1 1.041 0.997 0.959 0.925
A with t2 = at21 1.826 1.600 1.410 1.218

4.2. Simulation studies under different truncation probabilities

In this section we show the effect of truncation percentage on the estimation of the bi-

variate survival function Ŝ(t1, t2). The scenario considered is the same as that illustrated

in Section 4.1, except that truncation probability P (L1 < T1, L2 < T2) is chosen to be

about 50%. We fixed sample sizes at n = 100, n = 200 and n = 500.

Tables 5 to 7 summarize the simulation results for the proportion of truncation equal

to about 50%, where the true S(t1, t2), the mean estimates of our proposed estimator

S̄ =
∑m

k=1 Ŝk/m, the bias of Ŝ(t1, t2), the empirical standard errors of Ŝ(t1, t2) based

on m = 500 simulations
√∑m

k=1(Ŝk − S̄)2/(m− 1), the empirical means of standard

errors
∑m

k=1 σ̂k/m, the mean squared error of Ŝ(t1, t2) and the proportion of Z̃i > Vi are
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respectively shown in rows (a), (b), (c), (d), (e), (f) and (g).

Compared the Table 7 and the Table 1 (large sample size n = 500), we have almost

similar findings in terms of the mean square errors, i.e. using the true relation as the

transformation function, the estimate will give smaller mean square errors. Note that

when sample size becomes smaller n = 200, mean square errors in 6 do not confirm the

“true” relation between T1 and T2. This is reasonable, as we need more samples when

the data are severely biased. Also the results in Tables 5 - 7 have much larger bias and

mean square errors, comparing to those in Tables 3-1, because the truncation probability

is smaller (data are more biased).

Table 5. Simulation study. Sample size: n = 100. (a): true S(t1, t2); (b):

empirical mean of Ŝ(t1, t2); (c): the bias of Ŝ(t1, t2); (d): empirical SE of
Ŝ(t1, t2); (e): empirical mean of estimated SE of Ŝ(t1, t2); (f): the mean
squared error of Ŝ(t1, t2); (g): P (Z̃i > Vi) for selected time pairs (t1, t2) for
three data transformations: (i): T2 = a

√
T1; (ii): T2 = aT1; (iii): T2 = aT 2

1 .

(1,1) (2,1)
(i) (ii) (iii) (i) (ii) (iii)

(a) 0.6809 0.6809 0.6809 0.3908 0.3908 0.3908
(b) 0.6845 0.6843 0.6875 0.3887 0.3923 0.4137
(c) 0.0036 0.0034 0.0066 -0.0021 0.0015 0.0229
(d) 0.0998 0.0869 0.1226 0.0743 0.0897 0.1459
(e) 0.0812 0.0779 0.0856 0.0677 0.0786 0.1024
(f) 0.0100 0.0076 0.0151 0.0055 0.0080 0.0218
(g) 0.9400 0.9400 0.8000 0.7400 0.7500 0.6600

(2,2) (3,2)
(i) (ii) (iii) (i) (ii) (iii)

(a) 0.1726 0.1726 0.1726 0.1025 0.1025 0.1025
(b) 0.1710 0.1702 0.1710 0.1011 0.1012 0.1071
(c) -0.0016 -0.0025 -0.0016 -0.0014 -0.0013 0.0046
(d) 0.0510 0.0425 0.0543 0.0333 0.0332 0.0514
(e) 0.0447 0.0398 0.0454 0.0301 0.0309 0.0402
(f) 0.0026 0.0018 0.0029 0.0011 0.0011 0.0027
(g) 0.7800 0.9000 0.8100 0.9700 0.8900 0.7100

4.3. Data Analysis

We apply our proposed method to analyze the probability of failure for a sample of

420 Italian firms, which was collected from the Amadeus Database, provided by Bureau
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Table 6. Simulation study. Sample size: n = 200. (a): true S(t1, t2); (b):
empirical mean of Ŝ(t1, t2); (c): the bias of Ŝ(t1, t2); (d): empirical SE of

Ŝ(t1, t2); (e): empirical mean of estimated SE of Ŝ(t1, t2); (f): the mean
squared error of Ŝ(t1, t2); (g): P (Z̃i > Vi) for selected time pairs (t1, t2) for
three data transformations: (i): T2 = a

√
T1; (ii): T2 = aT1; (iii): T2 = aT 2

1 .

(1,1) (2,1)
(i) (ii) (iii) (i) (ii) (iii)

(a) 0.6809 0.6809 0.6809 0.3908 0.3908 0.3908
(b) 0.6839 0.6809 0.6825 0.3898 0.3894 0.3985
(c) 0.0030 0.0000 0.0016 -0.0010 -0.0014 0.0077
(d) 0.0640 0.0623 0.1001 0.0516 0.0602 0.1133
(e) 0.0615 0.0583 0.0671 0.0496 0.0575 0.0823
(f) 0.0041 0.0039 0.0100 0.0027 0.0036 0.0129
(g) 0.9500 0.9600 0.8400 0.7400 0.7000 0.6750

(2,2) (3,2)
(i) (ii) (iii) (i) (ii) (iii)

(a) 0.1726 0.1726 0.1726 0.1025 0.1025 0.1025
(b) 0.1711 0.1709 0.1721 0.1008 0.1002 0.1020
(c) -0.0016 -0.0017 -0.0005 -0.0017 -0.0023 -0.0005
(d) 0.0349 0.0287 0.0398 0.0222 0.0233 0.0381
(e) 0.0328 0.0290 0.0337 0.0218 0.0222 0.0298
(f) 0.0012 0.0008 0.0016 0.0005 0.0005 0.0015
(g) 0.8150 0.9450 0.8600 0.9200 0.8900 0.6250

van Dijk. Following Altman (1968), the interest is in predicting the firms’ potential end-

ing up in financial distress and studying the relationship between the financial status

of a company (acquisition, bankruptcy, liquidation, merger and so on) and its probabil-

ity of failure. Many theoretical and empirical studies have been conducted to analyze

and predict the occurrence of the business insolvency, by means of statistical techniques

(i.e. discriminant analysis, logit and probit regressions, survival analysis) (for further

details see Balcaen and Ooghe (2006), Gepp and Kumar (2012)). When survival anal-

ysis is applied in this context (see for example Gepp and Kumar (2008), Luoma and

Laitinen (1991)), right censoring and truncation have been considered in only few papers

(Bhattacharjee et al. 2009) in the univariate case.

It is expected that for all companies which entered this study, new businesses are more

likely to be bankrupted during a crisis than well-established businesses. In other words

the older is the firm, the smaller is the probability of bankruptcy and consequently bigger

is the probability of being in activity. This motivates us to concentrate on two events:
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Table 7. Simulation study. Sample size: n = 500. (a): true S(t1, t2); (b):
empirical mean of Ŝ(t1, t2); (c): the bias of Ŝ(t1, t2); (d): empirical SE of

Ŝ(t1, t2); (e): empirical mean of estimated SE of Ŝ(t1, t2); (f): the mean
squared error of Ŝ(t1, t2); (g): P (Z̃i > Vi) for selected time pairs (t1, t2) for
three data transformations: (i): T2 = a

√
T1; (ii): T2 = aT1; (iii): T2 = aT 2

1 .

(1,1) (2,1)
(i) (ii) (iii) (i) (ii) (iii)

(a) 0.6809 0.6809 0.6809 0.3908 0.3908 0.3908
(b) 0.6820 0.6812 0.6847 0.3909 0.3885 0.3903
(c) 0.0011 0.0003 0.0038 0.0001 -0.0023 -0.0005
(d) 0.0441 0.0382 0.0596 0.0320 0.0425 0.0773
(e) 0.0408 0.0381 0.0481 0.0318 0.0368 0.0597
(f) 0.0019 0.0015 0.0036 0.0010 0.0018 0.0060
(g) 0.9260 0.9460 0.7700 0.7320 0.7100 0.6420

(2,2) (3,2)
(i) (ii) (iii) (i) (ii) (iii)

(a) 0.1726 0.1726 0.1726 0.1025 0.1025 0.1025
(b) 0.1711 0.1712 0.1727 0.1044 0.1039 0.1059
(c) -0.0015 -0.0014 0.0000 0.0019 0.0013 0.0033
(d) 0.0221 0.0191 0.0282 0.0148 0.0155 0.0240
(e) 0.0210 0.0184 0.0227 0.0143 0.0146 0.0211
(f) 0.0005 0.0004 0.0008 0.0002 0.0002 0.0006
(g) 0.8500 0.9420 0.8420 0.9180 0.8920 0.6460

the time period, T1, from the establishment of a firm to recruitment time point, and T2,

from recruitment to bankruptcy. These two events are correlated. The time T1 is usually

truncated by a random variable L1, the time period from the establishment of a firm to

year 2004, such that only firms with T1 ≥ L1 can be observed. In the mean time, T1 and

T2 are subject to random censoring by certain random variables C1 and C2 respectively.

We estimate S(t1, t2) via two different transformation functions t2 = at1 and t2 = a
√
t1,

the results of which are given in Table 8 and Table 9, respectively. The estimates shown

in Table 8 has smaller standard error estimates than that in Table 9. Also the total mse

A = 39.8 with linear tranformation is much smaller than the total mse A = 106 with

square root tranformation. Therefore, the transformation t2 = at1 is recommended. Table

8 and Table 9 present the time period for t2 in the interval [8.0, 8.5], which represents

the period of four years after the financial crisis. From the result in Table 8 we find that

a larger value of T1 will give a smaller value of P (T2 ∈ [8.0, 8.5]) (when T1 increases from

12.57 to 16.57, P (T2 ∈ [8.0, 8.5]) goes from 0.0237 down to 0.128), which indeed implies
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Table 8. Business failure data. Ŝ(t1, t2) at the selected time pairs (t1, t2) their estimated standard error (in paren-

theses), when the data transformation is t2 = at1

t2
8.00 8.07 8.14 8.21 8.29 8.36 8.43 8.50

t1

12.57 0.3845 0.3837 0.3825 0.3825 0.3825 0.3778 0.3758 0.3608
(0.0538) (0.0538) (0.0539) (0.0544) (0.0523) (0.0521) (0.0522) (0.0510)
[0.4548] [0.4548] [0.4548] [0.4476] [0.4452] [0.4405] [0.4405] [0.4405]

13.71 0.3827 0.3727 0.3712 0.3712 0.3592 0.3476 0.3451 0.3394
(0.0527) (0.0523) (0.0523) (0.0523) (0.0508) (0.0500) (0.0496) (0.0492)
[0.4714] [0.4714] [0.4714] [0.4667] [0.4619] [0.4571] [0.4571] [0.4571]

14.86 0.3438 0.3438 0.3438 0.3438 0.3376 0.3280 0.3244 0.3163
(0.0486) (0.0490) (0.0494) (0.0494) (0.0485) (0.0471) (0.0468) (0.0460)
[0.5095] [0.5071] [0.5048] [0.5024] [0.5024] [0.4952] [0.4905] [0.4857]

15.43 0.3416 0.3416 0.3416 0.3416 0.3343 0.3223 0.3223 0.3163
(0.0481) (0.0487) (0.0487) (0.0487) (0.0478) (0.0467) (0.0472) (0.0467)
[0.5333] [0.5214] [0.5190] [0.5143] [0.5095] [0.5071] [0.5048] [0.5024]

16.57 0.2896 0.2884 0.2884 0.2884 0.2834 0.2768 0.2768 0.2768
(0.0429) (0.0429) (0.0433) (0.0433) (0.0423) (0.0418) (0.0421) (0.0421)
[0.5738] [0.5690] [0.5619] [0.5595] [0.5595] [0.5548] [0.5452] [0.5381]

Table 9. Business failure data. Ŝ(t1, t2) at the selected time pairs (t1, t2), their estimated standard error (in paren-
theses), and P (Z̃i(α) > Vi(α)) (in square brackets) when the data transformation is t2 = a

√
t1

t2
8.00 8.07 8.14 8.21 8.29 8.36 8.43 8.50

t1

12.57 0.3331 0.3304 0.3304 0.3304 0.3150 0.2995 0.2995 0.2851
(0.0987) (0.0981) (0.0986) (0.0990) (0.0953) (0.0923) (0.0928) (0.0899)
[0.4571] [0.4452] [0.4405] [0.4333] [0.4262] [0.4167] [0.4119] [0.4095]

13.71 0.3331 0.3304 0.3304 0.3150 0.3048 0.2938 0.2910 0.2851
(0.081) (0.0812) (0.0811) (0.0857) (0.0831) (0.0878) (0.0872) (0.0866)
[0.4952] [0.4810] [0.4786] [0.4667] [0.4595] [0.4571] [0.4452] [0.4405]

14.86 0.3331 0.3304 0.3304 0.3150 0.3048 0.2938 0.2910 0.2715
(0.0753) (0.0745) (0.0744) (0.0743) (0.0722) (0.0715) (0.0716) (0.0747)
[0.5333] [0.5214] [0.5167] [0.5095] [0.5048] [0.4929] [0.4810] [0.4786]

15.43 0.3331 0.3304 0.3304 0.3150 0.3048 0.2938 0.2910 0.2715
(0.0775) (0.0761) (0.0753) (0.0752) (0.0726) (0.0699) (0.0697) (0.0706)
[0.5452] [0.5381] [0.5333] [0.5262] [0.5167] [0.5119] [0.5071] [0.4952]

16.57 0.3261 0.3261 0.3261 0.3150 0.3048 0.2863 0.2822 0.2715
(0.0706) (0.0725) (0.0713) (0.0699) (0.0680) (0.0648) (0.0641) (0.0640)
[0.5738] [0.5643] [0.5548] [0.5500] [0.5452] [0.5381] [0.5333] [0.5262]

that if a company is older, it has a smaller probability to fail during the crisis. Such a

conclusion cannot be drawn if we use the transformation function t2 = a
√
t1, which is

not appropriate. The plot of the estimated joint survival function is shown in Figure 2.

We can also estimate the truncation probability via the method in Shen (2006), or Dai

and Fu (2012). Specifically, the truncation probability γ = P (L1 ≤ T1, L2 ≤ T2) can be

estimated by

γ̂ =

[
n−1

n∑
i=1

1

Ŝ(L1i−, L2i−)

]−1

,
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Figure 2. The bivariate survival function estimate for (T1, T2).

where Ŝ(L1i−, L2i−) is the left-continuous version of Ŝ(L1i, L2i), which is our estimator

evaluated at (L1i, L2i) for the ith observation. Here for our data of 420 Italian firms, the

estimated truncation probability is γ̂ = 0.21.
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5. Discussion

This paper proposes a class of nonparametric estimators based on a general data trans-

formation for the bivariate survival function estimation. The large sample properties of

the estimators have been provided. The performances of the estimators using different

data transformation functions are compared via simulation studies. The proposed class of

estimators is nonparametric, however it makes use of certain parametric information for

the pair of random variables via a data transformation function. The estimator is equiv-

alent to a univariate Kaplan-Meier estimator on the selected transformation function ζ.

The non-uniqueness of ζ can also be interpreted by the fact that there is no unique par-

tial order for the observations (under censoring and truncation) in the two-dimensional

space. Such problems are equivalent to the challenges of martingales on the plane, where

there is no unique order in R+2
(Merzbach and Nualart 1988). It is of interests to further

study how to find the best transformation function ζ, if this is possible. We leave this as

a future work.

Appendix A. Proof of Lemma 2.1

Proof. Given (t1, t2), the event z ≤ Z(α) < z + dz is the same as {T1 ∈ dt1, T2 >

t2} ∪ {T1 > t1, T2 ∈ dt2} ∪ {T1 ∈ dt1, T2 ∈ dt2}. Therefore

Λ(dz) =
P (z ≤ Z(α) < z + dz)

P (Z(α) ≥ z)

=
P (T1 ∈ dt1, T2 > t2) + P (T1 > t1, T2 ∈ dt2) + P (T1 ∈ dt1, T2 ∈ dt2)

P (T1 ≥ t1, T2 ≥ t2)
. (A1)
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On the other hand Using the facts {z > Vi(α)} ⇔ {t1 > L1i, t2 > L2i} we have

P (Z̃i(α) ∈ dz, z > Vi(α),∆i(α) = 1)

P (Z̃i(α) ≥ z > Vi(α))

=
P (Z̃i(α) ∈ dz, z > Vi(α),∆i(α) = 1|L1i ≤ T1i, L2i ≤ T2i)

P (Z̃i(α) ≥ z > Vi(α)|L1i ≤ T1i, L2i ≤ T2i)

=
P (Z̃(α) ∈ dz, z > V (α),∆(α) = 1)

P (Z̃(α) ≥ z > V (α)
(A2)

Now we consider the set {Z̃(α) ∈ dz, z > V (α),∆(α) = 1} in (A2). The definition in (5)

indicates that

{∆(α) = 1} = {δ1 = 1, Ỹ1 ≤ Ỹ2} ∪ {δ2 = 1, Ỹ1 ≥ Ỹ2}

and because of {δ1 = 1, Ỹ1 ≤ Ỹ2} ∩ {δ2 = 1, Ỹ1 ≥ Ỹ2} = {min{δ1, δ2} = 1, Ỹ1 = Ỹ2} we

further have

P (Z̃(α) ∈ dz, z > V (α),∆(α) = 1)

= P (Z̃(α) ∈ dz, z > V (α), δ1 = 1, Ỹ1 ≤ Ỹ2) + P (Z̃(α) ∈ dz, z > V (α), δ2 = 1, Ỹ1 ≥ Ỹ2)

−P (Z̃(α) ∈ dz, z > V (α),min{δ1, δ2} = 1, Ỹ1 = Ỹ2). (A3)

For the three sets in (A3), we have

{Z̃(α) ∈ dz, z > V (α), δ1 = 1, Ỹ1 ≤ Ỹ2} ⇔ {T1 ∈ dt1, C1 ≥ t1 > L1, T2 ≥ t2, C2 ≥ t2 > L2},

{Z̃(α) ∈ dz, z > V (α), δ2 = 1, Ỹ1 ≥ Ỹ2} ⇔ {T1 ≥ t1, C1 ≥ t1 > L1, T2 ∈ dt2, C2 ≥ t2 > L2},

{Z̃(α) ∈ dz, z > V (α),min(δ1, δ2) = 1, Ỹ1 = Ỹ2}

⇔ {T1 ∈ dt1, T2 ∈ dt2, C1 ≥ t1 > L1, C2 ≥ t2 > L2}. (A4)
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Now (A3) and (A4) together imply that (A2) can be rewritten as

P (Z̃i(α) ∈ dz, z > Vi(α),∆i(α) = 1)

P (Z̃i(α) ≥ z > Vi(α))

=
P (T1 ∈ dt1, T2 ≥ t2, C1 ≥ t1 > L1, C2 ≥ t2 > L2)

P (T1 ≥ t1, T2 ≥ t2, C1 ≥ t1 > L1, C2 ≥ t2 > L2)

+
P (T1 ≥ t1, T2 ∈ dt2, C1 ≥ t1 > L1, C2 ≥ t2 > L2)

P (T1 ≥ t1, T2 ≥ t2, C1 ≥ t1 > L1, C2 ≥ t2 > L2)

−P (T1 ∈ dt1, T2 ∈ dt2, C1 ≥ t1 > L1, C2 ≥ t2 > L2)

P (T1 ≥ t1, T2 ≥ t2, C1 ≥ t1 > L1, C2 ≥ t2 > L2)

=
P (T1 ∈ dt1, T2 ≥ t2) + P (T1 ≥ t1, T2 ∈ dt2)− P (T1 ∈ dt1, T2 ∈ dt2)

P (T1 ≥ t1, T2 ≥ t2)

=
P (T1 ∈ dt1, T2 > t2) + P (T1 > t1, T2 ∈ dt2) + P (T1 ∈ dt1, T2 ∈ dt2)

P (T1 ≥ t1, T2 ≥ t2)

which, from (A1), is Λ(dz;α). ■
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