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Abstract

We propose an efficient pricing method for arithmetic Asian options based on
Fourier-cosine expansions. In particular, we allow for mean reversion and jumps
in the underlying price dynamics. There is an extensive body of empirical
evidence in the current literature that points to the existence and prominence
of such anomalies in the prices of certain asset classes, such as commodities.
Our efficient pricing method is derived for the discretely monitored versions of
the European-style arithmetic Asian options. The analytical solutions obtained
from our Fourier-cosine expansions are compared to the benchmark fast Fourier
transform based pricing for the examination of its accuracy and computational
efficiency.
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1. Introduction

A topic of ongoing interest is the long standing hard problem of pricing
arithmetic Asian options. The payoffs of these path-dependent exotics are based
on the arithmetic average of the underlying prices monitored at fixed dates prior
to maturity. The monitoring dates used to measure the arithmetic averages
may also be taken at different frequencies, such as daily, weekly or monthly.
Unlike its closely related geometric type, the prices of the more commonly traded
arithmetic Asian options must be approximated numerically. This is mainly due
to the absence of an analytically tractable solution for the distribution of the
sum of log normally distributed random variables.
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Asian options, introduced in 1987, are now widely traded in the commodi-
ties market as a hedging tool. For instance, various delivery companies in the
gas market utilise Asian options to their advantage under risk management
(see Eydeland and Wolyniec (2003)). The popularity of Asian options arises
mainly from its averaging effect, which is able to reduce possible risk of market
manipulation in the price of the underlying at maturity. In addition, since aver-
ages move in a more stable way in comparison to individual prices, the volatility
inherent in the underlying price is reduced as a result. Further information on
Asian options with its history and evolution may also be found in Boyle and
Boyle (2001) and Marena et al. (2014).

It has been well documented that the prices of certain asset classes, such as
commodities, show evidence of mean reversions and jumps. Hence, the pricing of
options within these asset classes has also become an important focus in the field
of quantitative finance. For example, due to the impact of relative prices on the
supply of both copper and oil, prices tend to fluctuate randomly around some
equilibrium level (see Schwartz (1997)). In addition to the above mentioned
commodities, Bessembinder et al. (1995) provides strong evidence supporting
mean reversion in nine commodity markets, while Casassus and Collin-Dufresne
(2005) reveals the existence of such anomaly in the precious metals market.
Apart from commodities, however, evident motivating the patterns of mean
reversion has also been found in exchange rates and, interestingly, certain stock
prices as well (see Jorion and Sweeney (1996) and Chaudhuri and Wu (2003)).

In addition to the mean reverting property, jumps in the underlying price
dynamic is another prominent feature. For instance, Jorion (1988) examined the
prices of stock market indices and exchange rates for discontinuities, while Ge-
man and Roncoroni (2006) and Seifert and Uhrig-Homburg (2007) conducted
investigations to provide empirical evidence of jumps in the power market. In
addition, Geman and Roncoroni (2006) found further evidence in support of
mean reversion. Further empirical evidence in support of jumps in commodity
prices may also be found in the current literature (see Deng (2000), Hilliard and
Reis (1999), and Schmitz et al. (2014)).

Combining the fundamental ideas above, we propose an efficient pricing
method for discrete arithmetic Asian options under a pricing dynamic which ex-
hibits both jumps and mean reversion. Essentially, the model is a jump-diffusion
extension of the one utilised by Fusai et al. (2008) (as proposed by Chung and
Wong (2014)). Apart from accuracy in the pricing, computational efficiency is
also of equal importance, if not more, particularly, for high frequency traders.
Such notion brings about the non-trivial problem of finding a reasonable trade-
off between accuracy and efficiency in the pricing methods. As a result, efficient
pricing methods of exotic options have also gained much interest from both
practitioners and academics alike.

In option pricing, the valuation of complex contracts requires efficient nu-
merical methods. The conditional expectation of the option payoff under the
risk-neutral measure can be bridged with the solution of a partial differential
equation through the well-known Feynman-Kac theorem. It then follows that
various numerical pricing techniques, including numerical integration, can be
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developed. These numerical integration techniques rely on the transformation
into the Fourier domain, which is particularly useful especially since the density
function of many relevant underlying price process, required for the integra-
tion in the original domain, is not known. However, its Fourier transform, the
characteristic function often is. It then follows that the fast Fourier transform
(FFT) method, introduced by Carr and Madan (1999) and Dempster and Hong
(2002), may be applied to calculate the option price efficiently. However, Fang
and Oosterlee (2008) proposed a novel pricing method, the Fourier-cosine expan-
sions (COS method), as an alternative to the FFT. Such method could further
improve the speed in the pricing.

In this paper, we propose to price discrete arithmetic Asian options under
the assumption of mean reversion and jumps with the COS method. We show
through numerical analysis that the COS method is indeed more efficient than
the benchmark FFT, used by Chung and Wong (2014). It was also shown
in Chung and Wong (2014) that the FFT is superior to the commonly imple-
mented Monte Carlo simulation.

The remainder of this paper is organised as follows. In section 2, we explore
the proposed diffusion model for the underlying price dynamics with mean re-
version and jumps. The joint characteristic function between the arithmetic
average of the asset prices and its terminal value is also derived. Section 3
briefly introduced the COS method and the procedures to price the Asian op-
tion in question. We present a set of numerical results and analysis in Section 4
to evaluate the accuracy and efficiency of the COS method benchmarked to the
FFT. The sensitivity of the COS prices to the underlying parameters are then
analysed. We conclude the paper in Section 5.

2. Price process with mean reversion and jumps

2.1. Model specification

Let (Ω,F ,Q) be a probability space on which a Brownian motion process
Wt and a Poisson process Nt, with intensity λ > 0, is defined for 0 ≤ t ≤
T . Furthermore, we assume independence between the Brownian motion and
Poisson process. Suppose Q is the risk neutral measure under which the price
process is governed by the following dynamics:

dSt = κ
(
θ − µλ

κ
− St−

)
dt+ σ

√
St−dWt + JdNt, (1)

where J ∼ Exp(µ) and Nt ∼ Poi(λt).
The model proposed here is an extension of the Fusai et al. (2008) model,

whereby a jump component has been added to the original spot price process,
which is defined as a square root process driven by a Brownian motion. The
jump size J and its arrival rate Nt are independent, and are modelled with an
exponential distribution and a Poisson process, respectively. More specifically,
the proposed price process is a CIR model with an exponential jump extension.
Further justifications for the specific choice of jump dynamics can be found
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in Hoepfner (2009) and Beliaeva and Nawalkha (2012), with the latter suggesting
the non-existence of an analytical solution under lognormal jumps.

The use of the CIR as a base model gives rise to two main advantages in
terms of Asian option pricing. Firstly, since we are interested in the average

price of the underlying, the existence of the characteristic function for
∫ T

0
rtdt

in the CIR model, used widely in the modelling of interest rates, helps simplify
the problem at hand. Secondly, instead of a log price, by choosing suitable
parameters according to the Feller condition, we can model the stock price
directly under the CIR model while maintaining its positivity. Such positivity
is consistent even after jumps are added, as the jump sizes are modelled using
an exponential distribution, which is always positive.

Our aim is to price an Asian option at initial time 0 that matures at terminal
time T . The underlying price will be recorded at some regular time interval
to allow for the discretely monitored Asian option in question. We split the
pricing interval [0, T ] into n + 1 sets of 4-spaced monitoring dates. Hence,
we have dates 0,4, ..., n4 = T . Such a setup allows for the computation of
an analytical price for the Asian option with payoff depending on arithmetic
average An =

∑n
j=0 ωjSj4 and the terminal price Sn4, where ωj is the weight

assigned to price Sj4 and
∑n
j=0 ωj = 1. It is worthwhile mentioning that the

weights assigned to the underlying price at different time intervals need not be
equal. Table 1 summarises the various type of options that may be priced under
our model assumption.

Table 1: Payoff functions of various options

Option type Payoff function

Fixed strike Asian call max{An −K, 0}
Fixed strike Asian put max{K −An, 0}
Floating strike Asian call max{Sn4 −An −K, 0}
Floating strike Asian put max{K +An − Sn4, 0}
European call max{Sn4 −K, 0}
European put max{K − Sn4, 0}

2.2. Derivation of joint characteristic function

The joint characteristic function between Sn4 and An is required for us
to price the Asian options analytically. We first determine the characteristic
function of St+4 and proceed to derive the joint characteristic function of the
pair Sn4 and An.

The characteristic function of St+4 can be defined as fϕ(t, St) ≡ EQ
t [eiυSt+4 ]

with parameter set ϕ = {κ;µ;λ; θ;σ}.1 The generalised Feynman-Kac theorem
(see Duffie et al. (2000) and Cont and Tankov (1975)) implies that fϕ solves

1From here, we drop the Q for notational convenience
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the following partial integro-differential equation (PIDE):

∂fϕ

∂τ
+ κ
(
θ − µλ

κ
− Su

)∂fϕ
∂Su

+
1

2
σ2Su

∂2fϕ

∂S2
u

+

λ

∫ ∞
−∞

[fϕ(u, Su + J) − fϕ(u, Su)q(J)]dJ = 0,

with boundary condition fϕ(t +4, St+4) = eiυSt+4 , where u ∈ [t, t +4] and

τ = t +4− u, and q(J) is the distribution of J . Coefficients, κ(θ − µλ
κ − Su)

and σ, of the mean reverting asset price process (1) are both affine in nature.
It follows that the solution to (2) is of exponential affine form fϕ(u, Su) =
e−α

ϕ(τ ;υ)Su−βϕ(τ ;υ). Substituting into (2) above, and matching the character-
istic function of the exponential distribution governing the jumps, we obtain
E(e−α

ϕ(τ ;υ)) = 1
1+µαϕ(τ ;υ) . Further simplification will allow us to obtain the

following ODE (with differentiations taken with respect to τ):

αϕ′(τ ; υ) + καϕ(τ ; υ) +
1

2
σ2[αϕ(τ ; υ)]2 = 0 (2)

βϕ′(τ ; υ)− κ
(
θ − µλ

κ

)
αϕ(τ ; υ) + λ

( 1

1 + µαϕ(τ ; υ)
− 1
)

= 0 (3)

with initial conditions αϕ(0; υ) = −iυ and βϕ(0; υ) = 0.
Solving for αϕ(4; υ) from the Bernoulli equation, and βυ(4; υ) through

integration, we obtain the following:

Ψϕ(υ) = Et(eiυSt+4) = e−α
ϕ(4;υ)St−βϕ(4;υ), (4)

where

αϕ(4; υ) =
σ2

2κ (eκ4 − 1)− eκ4

υ i
σ4

4κ2 (eκ4 − 1)2 + e2κ4

υ2

(5)

βϕ(4; υ) = κ
(
θ − µλ

κ

)∫ 4
0

αϕ(τ ; υ)dτ − λ
∫ 4

0

( 1

1 + µαϕ(τ ; υ)
− 1
)
dτ. (6)

The joint characteristic function between Sn4 and An can be derived by utilising
(4) and repeating the law of iterated expectation. Hence, following the method-
ology as outlined in Chung and Wong (2014), we have the joint characteristic
function between Sn4 and

∑n
j=0 ωjSj4 under price dynamics (1):

Ψϕ
An

(φ; γ) = E0

(
eiφSn4+iγ

∑n
j=0 ωjSj4

)
= eiΓ

ϕ
0 (4;φ,γ)S0−

∑n−1
j=0 β

ϕ(4;Γϕj+1(4;φ,γ))
(7)

where Γϕj (4;φ, γ) satisfies the following recursive equation:

Γϕj (4;φ, γ) = iΓϕ(4; Γϕj+1(4;φ, γ)) + γωj , (8)

for j = n− 1, n− 2, ..., 0, and starting value Γϕn(4;φ, γ) = φ+ γωn.
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3. Asian option pricing with Fourier-cosine expansions

The pricing of options under the COS method, as with all numerical inte-
gration techniques, follows from the discounted expected payoff approach under
the risk-neutral measure Q:

v(x, t) = e−r(T−t)E[v(y, T )|x] = e−r(T−t)
∫
R
v(y, T )g(y|x)dy, (9)

where v(x, t) denotes the option value at time t, and r is the interest rate. x and
y are state variables at time t and expiration date T , respectively. Typically, the
option’s payoff function, v, is known, but its transitional density function g(y|x)
is not. Fang and Oosterlee (2008) proposed an approximation of the transition
probability, based on (9), with a truncated domain [a; b] by a truncated Fourier-
cosine series expansion with N terms, based on the conditional characteristic
function, i.e.:

g(y|x) ≈ 2

b− a

N−1∑
h=0

′
Re
{
ψ
( hπ

b− a
;x
)
e−ihπ

a
b−a

}
cos
(
hπ
y − a
b− a

)
, (10)

where ψ(ν;x) is the conditional characteristic function of g(y|x), and a, b de-
notes the integration range in the original domain.

∑′
indicates that the first

term of the summation is multiplied by a weight of one-half. The integra-
tion range [a, b] may also be determined by making use of the cumulants, such
that the error of the approximation is within some tolerance level Tol, i.e.

|
∫
R g(y|x)dy −

∫ b
a
g(y|x)dy| < Tol (see Fang and Oosterlee (2008)). Finally,

replacing the conditional density function in (9) with its approximation (10),
and interchanging the summation and integration, we obtain the COS formula
to price an option with payoff v(x, t):

v̂(x, t) = e−r(T−t)
N−1∑
h=0

′
Re
{
ψ
( hπ

b− a
;x
)
e−ihπ

a
b−a

}
Vh (11)

where v̂(x, t) is the approximation of the option value at time t, and

Vh :=
2

b− a

∫ b

a

v(y, T ) cos
(
hπ
y − a
b− a

)
dy (12)

are the Fourier-cosine coefficients of payoff v(y, T ).
Having derived the joint characteristic function between Sn4 and An, we

use the COS method to price Asian options. First, consider the contingent
claim v(y, T ) = max(ρy − k, 0) at time T , where k = ρK, ρ = +1 for calls
and ρ = −1 for puts. This setup allows for both fixed strike Asian options(
y =

∑n
j=0 ωjSj4

)
and floating strike Asian options

(
y = Sn4−

∑n
j=0 ωjSωj

)
,

as well as for a plain vanilla option
(
y = Sn4

)
. Under the assumption of risk
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neutrality, with gρy(u) as the density of ρy, the arbitrage free price of our option
at initial time 0 is:

v(y, T ; k; ρ) = e−r(T−t)
∫ ∞
−∞

max(u− k, 0)gρy(u)du. (13)

Through expression (13), and substituting the joint characteristic function de-
rived in (7) into (11), we arrive at the COS method for pricing the various
arithmetic Asian options mentioned in table 1, where:

Vh =


2
b−a

(
Π1,h(K, b)−KΠ2,h(K, b)

)
for calls,

2
b−a

(
KΠ2,h(a,K)−Π1,h(a,K)

)
for puts,

(14)

where Π1,h and Π2,h are from the mathematical results below.

Proposition 1. The cosine series coefficients, Π1,h, of a function H(y) = y on
[x1, x2] ⊂ [a, b] given by,

Π1,h(x1, x2) :=

∫ x2

x1

y cos
(
hπ
y − a
b− a

)
dy, (15)

and the cosine series coefficients, Π2,h, of another function H(y) = 1 on [x1, x2] ⊂
[a, b] given by,

Π2,h(x1, x2) :=

∫ x2

x1

cos
(
hπ
y − a
b− a

)
dy, (16)

are both known analytically.

Proof . A straightforward calculation shows that

Π1,k(x1, x2) =
1(
hπ
b−a

)2

[
cos
(
hπ
x2 − a
b− a

)
− cos

(
hπ
x1 − a
b− a

)

+
hπ

b− a
sin
(
hπ
x2 − a
b− a

)
x2 −

hπ

b− a
sin
(
hπ
x1 − a
b− a

)]
and

Π2,k(x1, x2) =

{[
sin
(
hπ x2−a

b−a

)
− sin

(
hπ x1−a

b−a

)]
b−a
hπ , if h 6= 0.

(x1 − x2), otherwise.

4. Numerical Results

In this section, a variety of numerical analyses are performed to test the
performance of the COS method against its alternative competitor, the FFT
method, as a benchmark. In addition to Chung and Wong (2014), which con-
cluded that the FFT outperforms Monte Carlo simulations in terms of both
pricing accuracy and efficiency, we further show that the COS method is more
efficient, and does not compromise the pricing accuracy.
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4.1. Truncation range for COS method

The error analysis of the COS method, presented in Fang and Oosterlee
(2008), has shown that over a well-specified truncation range for the integration
in (12), the overall error converges either exponentially or algebraically, depend-
ing on whether the density function belongs to C∞([a, b] ∈ R) or has a disconti-
nuity in one of its derivatives, respectively. Such a truncation range, [a, b], may
be determined by making use of the n-th cumulant, cn, of y =

∑n
j=0 ωjSj4 (for

fixed strike) or y = Sn4−
∑n
j=0 ωjSωj (for floating strike), as proposed in Fang

and Oosterlee (2008):

[a, b] :=
[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
with L = 10. (17)

Readers are referred to Fang and Oosterlee (2008) and Fang and Oosterlee
(2009) for detailed discussions on the choices of cn and L.

4.2. Comparison of COS method against FFT

Our main focus is the performance comparison between the proposed COS
method and that of the FFT. Constant parameters are utilised in our models
to ease the demonstration. In particular, we make use of the same constant
parameters as specified in Chung and Wong (2014). These parameter values
are summarised in table 2. In addition, our comparison will be performed on
both fixed and floating strike Asian options, for the different frequencies of
monitoring dates n, where n = 4, 12, 26, 52 and 252. These dates correspond to
quarterly, monthly, biweekly, weekly and daily monitoring setups. The resulting
relative price differences between the COS method and FFT are shown in figure
1. Our numerical result shows a relative pricing difference (or error) in the order

Table 2: Parameter values for the numerical analyses

S0 = 1 κ = 0.3
θ = 1.05 σ = 0.7
λ = 5 µ = 0.1
T = 1 r = 0.04
ωj = 1

n+1

between 0.006% and 0.02% for the fixed strike Asian options, and between 0.02%
and 0.2% for the floating strike, indicating a negligible difference between the
two approaches. These results, together with that of Chung and Wong (2014),
suggest a high pricing accuracy for both the FFT and COS method in pricing
arithmetic Asian options.

In terms of pricing efficiency, the COS method dominates that of the FFT.
Using a computer equipped with a 3.5GHz quad-core Intel Core i7-4850HQ
processor, the COS method takes only between 0.01-1s (ranging between 1

15
and 1

2 of the time required by the FFT method) to obtain the option prices,
depending on the choice of monitoring dates and integration grid sizes, N .
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Figure 1: Price difference between COS and FFT methods for Fixed and Floating strike Asian
calls

In Table 3, the cpu time and relative error information, comparing the COS
and the FFT method, are presented for the pricing of Asian options. For this
particular example, we price for fixed strike arithmetic Asian options, with
weekly monitoring dates (n = 52), and grid sizes ranging from N = 128 to
N = 1024. The COS method uses significantly less cpu time to obtain the
option prices, while at the same time, produces equal level of accuracy to that
of the FFT (evidence from the negligible absolute relative pricing errors).

Table 3: cpu time differences and relative error between COS method and FFT

n = 52 N 128 256 512 1024
COS sec 0.0244 0.0431 0.0524 0.1207
FFT sec 0.2458 0.2551 0.2712 0.2954

abs. rel. err. 1.6754e-05 1.6840e-05 1.6838e-05 1.6838e-05

Table 4 displays the cpu time comparison and the relative error information
between the COS and FFT methods in calculating Asian option prices. In
this example, we calculate for fixed strike Asian options across the different
monitoring dates, ranging from quarterly (n = 4) to daily (n = 252), and
grid size N = 4096. The COS method once again proves to be superior to the
alternative FFT method in terms of efficiency for all monitoring dates. However,
the efficiency improvement is of a decreasing rate as we increase the monitoring
frequency. Such patterns are not dissimilar to the results of Fang and Oosterlee
(2008), whereby the COS method’s rate of efficiency improvements was shown
to decrease as the number of grid sizes, N , is increased.
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Table 4: cpu time differences and relative error between COS method and FFT

n 4 12 26 52 252
COS sec 0.0396 0.0669 0.1063 0.1648 0.7042
FFT sec 0.2745 0.3135 0.3675 0.4625 1.3861

abs. rel. err. 9.7365e-06 1.3956e-05 1.5865e-05 1.6838e-05 1.7689e-05

4.3. Price sensitivity to changes in model parameters

Apart from our comparison on the pricing efficiency and accuracy, we eval-
uate the effect of parameter value changes on the Asian option price computed
from the proposed COS method. This falls particularly in line with the analyses
performed by Chung and Wong (2014). Inclusion of such analyses also provide
further robust evidence on the stability of the COS method in comparison to the
FFT if time-dependent parameters were advocated. The three parameters ob-
served are (i) the jump intensity, (ii) the mean level, and (iii) the asset volatility
of the proposed commodity price dynamic (1).

We plot the Asian call option prices against different values of the three
parameters mentioned above. Parameter values in table 2 are used as a base
case and altered within a specified range to find different Asian option prices.
The resulting prices are calculated using the COS method, with K = S0 for fixed
strike Asian options and K = 0 for the floating. Prices against each changing
parameter are then plotted in Figures 2-4.

From Figure 2, it is clear that both fixed and floating Asian call option
prices are increasing functions of jump intensity, λ. Such result may be deemed
valid as an increase in jump intensity also introduces more variability into the
underlying asset price dynamic, which in turn increases the value of the options.
Long term mean levels should also have a positive relationship with call option
prices, as greater long term mean levels implies asset prices will tend to remain
at a higher level. Such notion is evidence in Figure 3, which shows a higher Asian
call option prices for greater long term mean levels (the opposite will hold for
puts). Finally, Figure 4 confirms the trivial notion of a positive relationship
between volatility and option prices. The greater the volatility the more the
variability there is in the asset price, and thus the greater the option value.

It is also worthwhile emphasising that the above results are consistent with
the FFT case presented in Chung and Wong (2014), further reinforcing the
stability in the pricing accuracy of the COS method to that of the alternative
FFT. When the resulting COS prices are compared to the FFT as a benchmark,
the relative errors (or price differences) were also found to be negligible (not
dissimilar to that of Figure 1).

Finally, in Figure 5 we present the rate of convergence of the COS Asian
option prices when monitoring frequencies are increased. Both fixed and floating
strike Asian option prices tend to converge or stabilise for weekly monitoring
frequencies and above.
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Figure 2: Asian option price against jump intensity under COS method
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Figure 3: Asian option price against mean levels under COS method
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Figure 4: Asian option price against asset volatility under COS method
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5. Conclusion

In this paper, we proposed the pricing of arithmetic Asian options with the
Fourier-cosine method. In particular, we assume a mean reverting jump dif-
fusion process in modelling the underlying commodity price dynamics. Our
main focus lies in the investigation of the efficiency and accuracy of the COS
method in comparison to the widely accepted FFT. The COS method were
shown through our numerical analyses to be more efficient than the benchmark
FFT, while producing an equal level of accuracy. Such results are also of partic-
ular significance to high frequency traders in search of a better tradeoff between
pricing accuracy and efficiency, and a superior method to that of the currently
preferred FFT.

To further demonstrate the stability of the COS method, investigations on
the price sensitivity to different underlying parameters were conducted. The
results presented in this paper further support the use of jumps in the price
dynamic, and the inclusion of time-varying mean level and asset volatility. In
addition, it demonstrated the stability of the COS method in comparison to the
alternative FFT when underlying parameters vary. Further work may include
the investigation of COS method pricing of early exercise Asian options of the
arithmetic type, in particular, with mean reversion and jumps inherent in the
underlying price dynamics.
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