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Satellite downlink scheduling problem: A case study✩
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Abstract

The synthetic aperture radar (SAR) technology enables satellites to efficiently
acquire high quality images of the Earth surface. This generates significant
communication traffic from the satellite to the ground stations, and, thus, image
downlinking often becomes the bottleneck in the efficiency of the whole system.
In this paper we address the downlink scheduling problem for Canada’s Earth
observing SAR satellite, RADARSAT-2. Being an applied problem, downlink
scheduling is characterised with a number of constraints that make it difficult
not only to optimise the schedule but even to produce a feasible solution. We
propose a fast schedule generation procedure that abstracts the problem specific
constraints and provides a simple interface to optimisation algorithms. By com-
paring empirically several standard meta-heuristics applied to the problem, we
select the most suitable one and show that it is clearly superior to the approach
currently in use.

Keywords: Satellite, Scheduling, Optimization, Meta-Heuristics.

1. Introduction

Efficient scheduling of image acquisition and image downlinking plays a vital
role in satellite mission planning. These operations are often interlinked and
solved using scheduling heuristics. Most of the literature on satellite mission
planning (image acquisition and downlinking) is divided into two categories:
optical satellites [30, 32] and Synthetic Aperture Radar (SAR) satellites [5, 6,
8, 11].
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This paper deals with the downlink scheduling portion of the mission plan-
ning operations of Canada’s Earth observing SAR satellite, RADARSAT-2. We
assume that image acquisition schedule is given and not to be changed. This is
consistent with existing policies and practices.

Recently, there is a steady increase in demand for RADARSAT-2 imagery.
Thus any improvements in image downlink operations would improve the effi-
ciency of the RADARSAT-2 mission and this is the primary motivation behind
this study. We have addressed only downlink scheduling problem because in
this satellite mission the image acquisition scheduling is performed directly by
the customers and it is ruled by the customer priorities. The customers have
direct access to an image scene ordering tools, and they select and order partic-
ular scenes (at particular time) based on their area of interest. An order from a
high-priority customer is always given priority. If such an order generates can-
cellations of previously submitted orders, the affected low-priority customers are
alerted to repeat their ordering procedure.

It is not always possible to schedule downlinks for all the images. If some
image could not be downlinked by the deadline assigned of the order, the satellite
operations centre revises the image acquisition plan by removing that image.
Customers affected by such cancellations are alerted to place new orders.

Currently used downlink scheduling process exploits a greedy-like algorithm
[18] followed by human intervention whenever necessary. We explored local
search heuristics and metaheuristics to improve the efficiency of the downlink
scheduling. Our experimental study on real-world problem instances has shown
that the proposed techniques significantly improved downlink throughput and
schedule quality.

The satellite image downlink scheduling problem and its variations have been
studied by many authors. Some of these works were focused on case studies for
specific satellites or space missions [11, 14, 20] whereas others are more general
purpose in nature [9, 10, 12, 15, 16, 29, 31, 32, 33]. Literature from machine
scheduling [7, 25, 28, 27] and resource-constrained project scheduling [19, 26]
are also relevant in solving the satellite image downlink scheduling problem
(SIDSP). However, each mission planning problem has its own restrictions and
properties that can be exploited. For example, some studies consider single
satellite problems while others deal with satellite constellations. Special care is
needed to make sure that the restrictions are handled adequately which some-
times changes the inherent combinatorial structure of the problem significantly.
Thus, investigating case studies of special SIDSPs are interesting and relevant as
established in this study, although existing literature on the SIDSP considerably
influenced our work.

The paper is organised as follows. Section 2 describes the real-world problem,
and Section 3 introduces its mathematical model as well as various notations
and definitions. Sections 4 and 5 deal with our heuristic algorithms. Data
analysis and test instances are reported in Section 6 followed by computational
results in Section 7 and concluding remarks in Section 8.
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2. The RADARSAT-2 SIDSP

We consider the problem arising in satellite industry that deals with schedul-
ing downlinks of images assuming that the schedule for image acquisition is
already generated. We study RADARSAT-2 satellite that orbits the Earth to
acquire images that can be downlinked to a set G of stationary ground stations
for further processing. Since the problem has a lot in common with scheduling
problems and, in particular, with the Resource Constrained Project Scheduling
Problem, our notations are close to the ones used in the scheduling literature.

Let V be a set of n downlink requests to be scheduled within the planning
horizon of 24 hours. For each request j ∈ V , release time rj , deadline dj , down-
link duration pj , priority wj and ground station gj ∈ G are prescribed. The
interval [rj , dj ] is called the time window of request j. Downlink requests are
classified as regular and urgent. The downlink of urgent requests has to start as
close as possible to their release times. If several urgent requests are compet-
ing, then their priorities have to be taken into account. However, downlinks of
regular requests are more flexible and are primarily governed by their priorities.
Urgent requests have absolute priority dominance over the regular (non-urgent)
requests, i.e. any (small) improvement in downlinking of urgent requests is pre-
ferred over large improvements in downlinking of regular requests. Finally, some
requests have to be downlinked to two ground stations and we call them dual

requests. Each dual request is represented by two requests i, j ∈ V , and we are
given a set D of pairs (i, j) of dual requests.

A downlink activity can be carried out only when the satellite is passing over
a ground station. This time interval is called visibility mask of the station. The
RADARSAT-2 has two antennas for downlinking, and it can work in half-power
and full-power setting. When working in half-power setting, the two antennas
can work separately and they can independently downlink two different images
to one or two different ground stations simultaneously. In full-power setting,
the satellite can process only one downlink at a time.

Each ground station g ∈ G has one or two channels for receiving the down-
linked images. Ground stations can also be classified based on their transmission
power. Let G1 be the set of ground stations that are in half-power setting and
G2 be the set of ground stations that are in full-power setting. Then G = G1∪G2

and G1 ∩ G2 = ∅. When two images are downlinked one after another to sta-
tions with the same power setting, there must be a gap (set up time) δ time
units between the two downlinks. When two images are downlinked consecu-
tively to two stations with different power settings, the required gap between
the downlinks is ∆ > δ.

The visibility masks of a ground station g ∈ G can be represented by a col-
lection Mg of non-overlapping time intervals called the normal visibility masks.
Certain downlink requests require better reliability and they have to be down-
linked within high reliability visibility mask M1

g . Each high reliability visibility
mask m1 ∈M1

g is a sub-interval of some normal visibility mask m ∈Mg.
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3. Mathematical Model

Note that SIDSP deals with the problem of finding an image downlink sched-
ule so that a utility function is maximized. The utility function considers the
number of downlinks scheduled, their priority values, and the difference between
the downlink start time and the start time of the request time window (tardi-
ness). Rejection of requests is allowed, and a rejected request is referred to as
unscheduled. Note that the downlink scheduling problem is usually oversub-
scribed due to large customer demand for satellite imagery. Thus, if request
rejection is not allowed, the downlink scheduling problem would often be in-
feasible. Furthermore, the request rejection assumption allows the scheduling
algorithm to choose the requests that maximise the resource utilisation.

A solution S to SIDSP — a schedule — is a set S ⊆ V of scheduled requests
and associated downlink start times Sj for each j ∈ S. Our model for the SIDSP
is to:

Maximize f(S) =
∑

j∈S

wj

(

1− α · Sj − rj
dj − pj − rj

)

subject to S ∈ F ,

where 0 ≤ α ≤ 1 is a parameter reflecting the importance of tardiness minimisa-
tion (α = 0 disables tardiness minimisation while α = 1 means that scheduling a
request to the end of its time window is as bad as rejecting it), and the collection
F contains all schedules S satisfying the following constraints:

(1) No downlink activity happens outside the planning horizon.

(2) A downlink cannot start earlier than the release time of the corresponding
request and must be finished by its deadline: rj ≤ Sj ≤ dj − pj for each
j ∈ S.

(3) Once a downlink starts, it cannot be preempted, i.e. an image cannot be
split into several fragments.

(4) Each urgent request has to be scheduled at the earliest possible time in
its time window even at the cost of delaying or cancelling some regular
downlinks. In several urgent requests are competing, their priorities have
to be taken into account.

(5) For each dual request (i, j) ∈ D, i ∈ S if and only if j ∈ S.

(6) There must be a gap of at least δ units between two consecutive downlinks
under the same power setting.

(7) There must be a gap of at least ∆ ≥ δ time units between two consecutive
downlinks under different power setting.
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(8) If the satellite is in the full-power setting, then only one antenna can work
and the other has to be idle. For both of the satellite antennas to be working
independently, the satellite has to be in the half-power setting. The full-
power setting is used if and only if the satellite transmits data to a full-power
ground station.

We assume the following:

(1) The satellite is in the half-power setting at the beginning of the planning
horizon and that it has to be in the half-power setting at the end as well.

(2) Downlinking (in half-power setting) can start right from the beginning of the
planning horizon, i.e. it is guaranteed that no half-power downlink activity
happened within δ time units before the beginning of the planning horizon.

(3) We tackle constraint (6) by the following pre-processing procedure: Add δ
to pj and dj for all requests j ∈ V . Also, add δ to the upper bounds of each
of the time intervals in normal and high reliability visibility masks for all
g ∈ G. Extend the planning horizon by δ. Further, replace ∆ with ∆− δ.

(4) The solution mechanism ensures that the urgent requests get absolute prior-
ity over regular requests. We discuss our approach to this issue in Section 4.

The SIDSP is NP-hard since several NP-hard machine scheduling problems
are special cases of it. Consider, for example, the parallel machine scheduling
problem with two machines representing satellite antennas.

Heuristic algorithms for the scheduling problems of this class usually exploit
the so-called serial scheduling scheme, in which the solver searches in the space
of job sequences while a polynomial time schedule generator converts the job
sequences into schedules. The schedule generator is a greedy algorithm schedul-
ing the jobs (requests in our work) in the given order, choosing the earliest
available position for each of them. An important property of the schedule gen-
erator is that it always generates active schedules, i.e. schedules such that none
of the unscheduled jobs can be added to it and no scheduled job can be ad-
vanced without delaying some other job [21]. Given that our objective function
is regular (i.e. delaying or deleting a downlink cannot improve the solution if no
other changes are introduced), there exists a sequence of requests generating an
optimal schedule [13].

Moreover, for any active schedule, there exists a sequence generating that
schedule (indeed, it is enough to sort the jobs in ascending order by their start
times). This implies that the schedule generator can produce a worst possible
active schedule. For example, it can produce a schedule S of objective f(S) = 0
by scheduling requests of zero priority and leaving the requests with non-zero
priorities unscheduled.

With the serial scheduling scheme in mind, the SIDSP can be viewed as
a problem of optimising a permutation of the downlink requests for which a
schedule will be generated in the following manner: From the order defined by
the permutation, schedule each request to the earliest available time considering
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the constraints related to the satellite antennas, ground station channels, visi-
bility masks and dual requests. Let ℘ be the set of all permutations of elements
of V . For any π ∈ ℘, let Sπ be the corresponding schedule generated by the
schedule generator algorithm (see Section 5). Thus, to solve SIDSP, we solve
the following Downlink Request Permutation Problem (DRPP):

Maximize φ(π) = f(Sπ)

subject to π ∈ ℘.

Note that to evaluate the solution quality of a permutation we need to gen-
erate the schedule from that permutation, i.e. to apply the schedule generator
algorithm described in Section 5.

4. Solution Approach

Instead of dealing with urgent requests separately in the objective function
or in some other way, we used a two phase solution approach. The first phase
schedules all urgent requests, and the second phase schedules all regular requests
using the remaining resources. Hence, our approach respects the requirement to
give the urgent requests ultimate priority over the regular requests. A high-level
description of the algorithm is given as follows:

Phase 1 — Urgent requests: Schedule all urgent requests using heuristicH.

Phase 2 — Regular requests: Fix the urgent requests scheduled in Phase 1,
update resource availability accordingly and schedule regular requests us-
ing heuristic H.

In the following sections we describe several heuristic algorithms for the
DRPP that can be used as H. We primarily focused on standard algorithmic
paradigms since one of the objectives was to propose algorithms that are easy
to understand and implement. In particular, we limited our experiments to
the Greedy Randomised Adaptive Search Procedure (GRASP), Ejection Chain,
Simulated Annealing and Tabu Search algorithms.

4.1. Construction Heuristic

One of the components of our heuristics is a construction algorithm, that
generates an initial schedule from the list of sorted requests in V (the so-called
priority-rule based scheduling method known to be efficient for quick generation
of reasonably good solutions [13]). Despite significant achievements in designing
complicated dispatching rules for standard scheduling problems (see, e.g., [3]),
we preferred a simple dispatching scheme as the quality of the initial solutions is
not crucial to us. We considered the following sorting criteria and tie breakers:

1. Priority wj ;

2. Time window duration dj − rj − pj
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3. Downlink duration pj.

After extensive computational experiments using various combinations of the
listed criteria, we selected sorting the elements of V by wj in the descending
order, ties broken by ⌊dj − rj − pj⌋ in the ascending order.

4.2. GRASP

The Greedy Randomised Adaptive Search Procedure is a simple meta-heuris-
tic often applied to scheduling problems [24]. GRASP repeatedly generates
solutions with a randomised greedy constructor followed by a local search phase.
Due to the randomness of the greedy procedure, GRASP is likely to produce
new solutions on every iteration. The best out of all the produced solutions is
selected in the end. For details, see Algorithm 1.

Algorithm 1 GRASP Algorithm

Input: Given time T
Output: A permutation optimised with respect to φ()
while “elapsed time” < T do

π′ ← GreedyRandomisedConstructor()
π′ ← LocalSearch(π′)
if φ(π′) > φ(π) then
π ← π′

end if

end while

return π

As a randomised greedy constructor GreedyRandomisedConstructor(), we
use a modification of the construction procedure described in Section 4.1. In
particular, on every iteration of building π, GreedyRandomisedConstructor()
orders all the remaining downlink requests as described in Section 4.1 and selects
one of the first ten candidates randomly with uniform probability distribution.

Our local search LocalSearch(π) explores a swap neighbourhood. The swap
neighbourhood Nswap(π) consists of all the solutions that can be obtained from
the permutation π by swapping two of its elements. The size of the neighbour-

hood is |Nswap(π)| = n(n−1)
2 , and, hence, it would take O(n5) time to explore

it (we will show in Section 5 that the complexity of the schedule generator al-
gorithm is O(n3)). With such a high complexity of the local search, GRASP is
likely to perform only few iterations, which is not enough to exploit the strength
of the meta-heuristic. To speed up the local search phase, we decided to ex-
plore the neighbourhood in a random order and terminate the search when a
prescribed time limit is reached. For details, see Algorithm 2.

Here and in the rest of the paper function Swap(π, i, j) swaps elements in
positions i and j of the permutation π; the original permutation π remains
unchanged.
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Algorithm 2 GRASP local search LocalSearch(π)

Input: initial permutation π0; the time given for one run of the local search
Output: Improved permutation with respect to φ()
π ← π0

while given time did not elapse do

Select randomly i 6= j ∈ π with uniform probability distribution
π′ ← Swap(π, i, j)
if φ(π′) > φ(π) then
π ← π′

end if

end while

return π

4.3. Ejection Chain Algorithm

Ejection chain methods [17] have commonly been used in developing Very
Large Scale Neighbourhood (VLSN) search algorithms [1, 2] for solving com-
plex combinatorial optimisation problems. For example, the well known Lin-
Kernighan heuristic — an efficient heuristic for solving the travelling salesman
problem [4] — is an ejection chain algorithm. We use the idea of the ejection
chains to develop a simple and effective heuristic to solve the DRPP.

The data structure used in our ejection chain algorithm is a pair (π, h), where
π is a permutation of all the requests in V and h ∈ {1, 2, . . . , n} is a position in
this permutation called a hole. In order to calculate the objective value ξ(π, h),
copy all the permutation π skipping the element in position h and feed this
copy to the schedule generator algorithm (Section 5) to obtain the schedule and
calculate its objective.

The basic move in our ejection chain algorithm is swapping the element of
π in position i with the ‘hole’, for some i 6= h ∈ {1, 2, . . . , n}. There are n − 1
options for this move, and we select the best one with respect to ξ(π, h). In
addition to calculating ξ(π, h), we also calculate φ(π) on every iteration to keep
track of the best ‘full’ solution found. A version of this ejection chain algorithm is
presented in a preliminary report on this problem [20]. For a formal description
of our ejection chain algorithm see Algorithms 3 and 4.

4.4. Simulated Annealing

Simulated Annealing (SA) is a stochastic optimisation technique widely used
in the literature for solving various optimisation problems. SA algorithm is
similar to the randomised local search with the exception that the worsening
moves can also be accepted.

We implemented the standard SA based on the Nswap(π) neighbourhood
(see Algorithm 5). In each iteration, we swap two randomly selected elements
in π. If the obtained solution is better than π, we replace π with that solution.

Otherwise, the probability of accepting the solution is e
φ(π′)−φ(π)

T , where T is
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Algorithm 3 Ejection Chain Algorithm

Input: permutation π0; maximum ejection chain length depth

Output: Improved permutation with respect to φ()
σ ← π0; π ← π0

c← n; {c counts non-improving iterations}
h← 1
while c > 0 do

if improvement(π, h, σ, depth) = 1 then

c← n
σ ← π as changed by improvement(π, h, σ, depth)

else

c← c− 1
end if

if h = n then h← 1 else h← h+ 1; {Next hole position}
end while

return σ

the current temperature. In each iteration, the temperature decreases linearly
from a given initial value T0 to 0.

4.5. Tabu Search

The Tabu Search (TS) meta-heuristic is a neighbourhood-based searchmethod-
ology with a tabu list mechanism for escaping local maxima. By storing certain
features of the recent solutions in a tabu list, TS avoids re-exploring previously
visited areas of the search space, which, in turn, allows the algorithm to accept
worsening solutions when it is at a local maximum. A high-level description of
the TS procedure is given in Algorithm 6.

The efficiency of the TS algorithm significantly depends on the features
to be kept in the tabu list. For problems with permutation-based solution
representation, it is a common practice to use pairs of recently modified elements
and their positions as such features. Any solution that has the saved elements at
exactly the same positions is excluded from exploration in the next few iterations
(tabu tenure) of the search.

However, our experiments have shown that such a TS implementation per-
forms poorly on the DRPP. For the explanation, observe that one SIDSP so-
lution can be represented by many distinct DRPP solutions. For instance, if
a request j is scheduled at its release time rj , advancing j in the permutation
π does not change the resulting schedule Sπ. Hence, simple constraints on the
permutation π do no guarantee that the SIDSP solution Sπ is excluded from the
search, which might affect the ability of the TS to escape the local maximum.
In other words, tabu lists based on request positions work well in the space of
permutations but fail in the space of schedules.

To make sure that the search does not return to the recently explored region
of SIDSP solutions, we save features of schedules (rather than permutations)

9



Algorithm 4 Recursive Build of the Ejection Chain: improvement(π, h, σ, d)

Input: permutation π; hole position h; the best solution found so far σ (also
an output parameter); the remaining search depth d

Output: 1 — improving ejection chain exists; 0 — otherwise
if d = 0 then

return 0
end if

ξp ← ξ(π, h)
j ← 0
for i← 1, 2, . . . , h− 1, h+ 1, h+ 2, . . . , n do

π′ ← Swap(π, h, i)
if φ(π′) > φ(σ) then
σ ← π′

return 1
end if

if ξ(π′, i) > ξp then

j ← i
ξp ← ξ(π′, i)

end if

end for

if j > 0 then

π′ ← Swap(π, h, j)
if improvement(π′, j, σ, d− 1) = 1 then

return 1
end if

end if

return 0

in the tabu list. Each element of our tabu list includes the objective value and
the average request tardiness t(S) = 1

|S| ·
∑

j∈S(Sj − rj) of a recently explored

solution S = Sπ. If both the objective value and the average tardiness of a new
solution S′ are close to the ones in the list, such a solution is excluded from the
search. More formally, with respect to a tabu list element (f, t), a solution S′

is tabu if (a) |f(S′)−f |
f

≤ ǫ and (b) |t(S′)−t|
t

≤ ǫ, where 0 < ǫ≪ 1 is a tolerance
parameter of the algorithm.

5. Schedule Generator Algorithm

This section describes the schedule generation algorithm we use to produce a
schedule from a given ordered subset of requests V . Let us start by introducing
some terminology and notations to simplify the discussion.
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Algorithm 5 Simulated Annealing improvement heuristic

Input: initial permutation π0; initial temperature T0; given time T
Output: Improved permutation with respect to φ()
π ← π0

while “elapsed time” < T do

Select i 6= j ∈ π randomly with uniform distribution
π′ ← Swap(π, i, j)
if φ(π′) > φ(π) then
π ← π′

else

T ← T0 · T −“elapsed time′′

T

p← e
φ(π′)−φ(π)

T

r ← random number uniformly distributed in [0, 1]
if r < p then

π ← π′

end if

end if

end while

return π

5.1. Interval Sets

Let I be a finite set of non-intersecting intervals. We call such a struc-
ture interval set. Since the elements of I are non-intersecting intervals, I
can also be viewed as an ordered set with the natural order produced by
the position of these intervals on the real line. Thus, I is represented as
I = {[ℓ1, u1], [ℓ2, u2], . . . , [ℓv, uv]}, where ℓ1 < u1 < ℓ2 < u2 < · · · < ℓv < uv and
v = |I|. We refer to the k-th interval in I as Ik.

Consider two arbitrary intervals [a, b] and [ℓ, u]. Let us introduce the sub-

traction operation [ℓ, u]⊖ [a, b] as follows:

[ℓ, u]⊖ [a, b] =



















∅ if a ≤ ℓ and b ≥ u,

{[ℓ, a], [b, u]} if a > ℓ and b < u,

{[b, u]} if a ≤ ℓ and b < u,

{[ℓ, a]} if a > ℓ and b ≥ u.

Now we can define subtraction I ⊖ [a, b] for an interval [a, b] and an interval set
I = {[ℓ1, u1], [ℓ2, u2], . . . , [ℓv, uv]}:

I ⊖ [a, b] =
⋃

[ℓ,u]∈I

[ℓ, u]⊖ [a, b] .

Informally, one can think of the subtraction operation as a set subtraction where
the interval set I and the interval [a, b] are represented as sets of points, and
where the isolated points are excluded from the result.

11



Algorithm 6 Tabu Search improvement heuristic

Input: initial permutation π0; tabu list length L; given time T
Output: Improved permutation with respect to φ()
Initialise an empty FIFO list L
πcur ← π0; {πcur is the solution whose neighbourhood is explored}
π∗ ← π; {π∗ is the best solution found in the neighbourhood of πcur}
while “elapsed time” < T do

for all {i, j} ⊂ πcur do

π′ ← S⊒⊣√(πcur, i, j)

if φ(π′) > φ(π); {The best known solution is improved} then
π ← π′; {Record as the best found solution}
π∗ ← π′; {Update π∗ ignoring the possible tabu}

else if π′ /∈ L and φ(π′) > φ(π∗) then
π∗ ← π′

end if

end for

Insert(π∗,L)
if |L| > L then

Remove(L)
end if

πcur ← π∗ {Move to the best found solution}
end while

return π

An interval [a, b] is said to be a subinterval of the interval set I if there exists
k such that ℓk ≤ a < b ≤ uk and [ℓk, uk] ∈ I. This relationship is denoted by
[a, b] ⋐ I.

5.2. Implementation of the Schedule Generator

Let V ∗ be an ordered subset of V . Given V ∗, we now present a schedule

generation algorithm to schedule requests in V ∗ following the order prescribed in
V ∗. The algorithm maintains several indicator interval sets representing channel
availability at ground stations and antenna availability on the satellite. After
scheduling a request, the algorithm updates these indicator sets. A high-level
pseudo-code of the schedule generation algorithm is presented in Algorithm 7.
In what follows, we describe the details of each step of the algorithm.

As we mentioned above, the algorithm maintains several interval sets:

• A is an interval set representing the time intervals when both satellite
antennas are available.

• H and F are interval sets indicating the time intervals when half-power
and full-power downlinks can happen, respectively.
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Algorithm 7 The Schedule Generation Algorithm takes an ordered set of re-
quests V ∗ ⊆ V as an input and attempts to allocate each of the requests j ∈ V ∗,
following the prescribed order, to the earliest available time subject to all the
operational constraints. The output of the procedure is a feasible schedule.

Input: An ordered set of requests V ∗ ⊆ V
Output: A schedule S as defined in Section 3, i.e. a set of scheduled requests
S and associated downlink start times Sj for each j ∈ S
repeat

Initialise the indicator sets, S ← ∅, V ∗∗ ← V ∗ and restart ← 0
while V ∗∗ 6= ∅ and restart = 0 do

Let j be the first request in V ∗∗

Update V ∗∗ ← V ∗∗ \ {j}
Find the earliest start time x for request j
if no such x exists then
if ∃i ∈ V such that (i, j) ∈ D or (j, i) ∈ D then

V ∗ ← V ∗ \ {i, j} and V ∗∗ ← V ∗∗ \ {i}
if i ∈ S then

restart ← 1
end if

end if

else

S ← S ∪ {j} and Sj ← x
Update the indicator sets

end if

end while

until restart = 0
Assign the downlinks to the particular ground station channels and satellite
antennas
return S

• Qg and Q1
g are interval sets indicating the availability of the ground station

g ∈ G in normal and high reliability visibility, respectively. Note that we
do not need the second pair of indicator sets for a two channel ground
station. Indeed, the number of channels in this case is not limiting since
the number of simultaneous downlinks is constrained by the number of
antennas. Hence, resource availability of the two channel ground stations
does not need to be tracked.

We initialise the indicator sets as follows: A ← H ← F ← {[0, 24 hours]},
and we set Qg to the normal visibility mask of g and Q1

g to the high reliability
visibility mask of g for every ground station g ∈ G. Note that for every [ℓ1k, u

1
k] ∈

Q1
g there is an interval [ℓl, ul] ∈ Qg such that ℓl < ℓ1k < u1

k < ul.
If j is to be downlinked to a half-power station g ∈ G1, we use the following

procedure to find the earliest time x when it can be scheduled. Let Q ← Qg

if j requires normal reliability and Q ← Q1
g otherwise. Choose the smallest
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k ∈ {1, 2, . . . , |H |} and l ∈ {1, 2, . . . , |Q|} such that |Hl ∩ Qk ∩ [rj , dj ]| ≥ pj .
If no such k and l exist, request j cannot be scheduled, and the algorithm
proceeds to the next request. Otherwise compute [x, y] = Hk ∩ Ql ∩ [rj , dj ],
schedule the request to tome x and update the indicator sets as follows. Let
X = [Sj , Sj + pj ]. Set X ← X ⊖ [ℓk, uk] for every [ℓk, uk] ∈ A. Then t ∈ X iff
t ∈ [Sj , Sj+pj] and exactly one antenna was available at time t before scheduling
j. Set H ← H⊖[ℓk, uk] for every [ℓk, uk] ∈ X to reflect that the time intervalsX
are no longer available to half-power downlinks. Also set A← A⊖ [Sj , Sj + pj ]
and F ← F ⊖ [Sj − ∆, Sj + pj + ∆]. Finally, if g is a one channel ground
station, update Qg ← Qg ⊖ [Sj , Sj + pj ] and Q1

g ← Q1
g ⊖ [Sj , Sj + pj] (recall

that two channel ground stations are never limiting the number of simultaneous
downlinks).

If j is to be downlinked to a full-power station g ∈ G2, we use another
procedure to find the earliest time x when it can be scheduled. Let Q ← Qg

if j requires normal reliability and Q ← Q1
g otherwise. Choose the smallest

k ∈ {1, 2, . . . , |F |} and l ∈ {1, 2, . . . , |Q|} such that |Fk ∩ Ql ∩ [rj , dj ]| ≥ pj . If
no such k and l exist, request j cannot scheduled, and the algorithm proceeds
to the next request. Otherwise compute [x, y] = Fk ∩Ql ∩ [rj , dj ], schedule the
request to time x and update the indicator sets as follows: F ← F ⊖ [Sj , Sj+pj]
and H ← H ⊖ [Sj −∆, Sj + pj +∆]. Note that it is not necessary to update the
indicator set A since no downlink can happen if neither H nor F is available.

Our updating scheme of the interval sets A, H and F ensures that no antenna
conflict arises and all the downlinks happen within the planning horizon. By
subtracting [Sj −∆, Sj + pj +∆] from F for every half-power downlink request
j, we guarantee that no full-power downlink can happen within ∆ units of the
downlink j. Similarly, no half-power downlink can happen within ∆ units of a
full-power downlink j. Also, the updating of the indicator sets Qg and Q1

g guar-
antees that no channel conflicts occurs and the downlinks obey visibility mask
constraints. The pre-processing of data assures that there is a gap of at least
δ units between two consecutive downlinks. Finally, dual requests constraint is
satisfied as every time a conflict is detected (one of the requests is schedules
while the other one cannot be scheduled), the procedure restarts.

Let us now analyse the complexity of the algorithm. The primary operations
in each iteration are: (1) to find the smallest k and l to satisfy certain condition,
and (2) to update the indicator sets A, H , F , Qg and Q1

g. Note that the size of
the indicator set Qg (and Q1

g) for some g ∈ G may increase but it is bounded
by O(ng), where ng is the number of requests to be scheduled to the station
g. Similarly, the sizes of the indicator sets A, H and F are limited by O(n).
Thus, operation (1) for these sets can be performed inO(n) time by simultaneous
scanning of the sets. Operation (2) can also be performed in O(n) time. Indeed,
we only need to update a fixed number of indicator sets, and updating each of
them takes O(n) time (for a downlink to a half-power setting ground station,
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manipulation with X also requires only O(n) time4). The number of iterations
is at most O(n2) and, thus, the complexity of the algorithm is O(n3).

In fact, the running time of this algorithm can potentially be reduced by
smarter processing of dual requests. In particular, one does not need to restart
the algorithm every time a dual request constraint violation is observed. It
is enough to roll back the state of the algorithm to the point when one of
the dual requests was scheduled. However, that would not reduce the worst
time complexity of the algorithm as the number of iterations would still be
O(n2). Indeed, each roll back requires O(n) iterations as it may result in re-
scheduling O(n) requests, and there are O(n) roll backs required in the general
case. Moreover, the roll back procedure would complicate the implementation
(note that rolling back would require some form of restoration of the indicator
sets). Finally, we observed that the number of dual requests was low in our test
instances, so we decided to restart the generation procedure for each detected
dual request violation, as shown in Algorithm 7.

6. Real-World Problem Instances

The algorithms presented in this paper have been tested on real data — the
RADARSAT-2 problem instances: (1) 10 low-density instances (LD1—LD10)
collected in Autumn 2011, each containing approximately 100 requests per plan-
ning horizon (24 hours); and (2) 10 high-density instances (HD1—HD10) col-
lected in August 2011, each containing approximately 300 requests. There are
at most ten ground stations involved in each instance. Each ground station is
visible between 4 to 10 times from the satellite during the planning horizon,
depending on the ground station location. Around 70% of the ground stations
have one channel and 30% have two channels.

For the purpose of our experimental study, we were provided with the real
downlink schedules implemented for each of the low- and high-density instances.
The process currently in use for satellite mission planning includes two phases:
(1) construction of the schedules with a priority rule-based algorithm5 and (2)
human intervention. The system operator modifies the machine-generated so-
lutions with the aim of scheduling some additional downlink requests and sat-
isfying additional considerations known to the operator at that time. Such a
solution may be imprecise. For example, a human operator may sometimes
use his/her judgement to schedule a downlink request even if a downlink goes
beyond the prescribed visibility mask by a very small amount of time. Such
a solution would be infeasible as per our model as we use crisp visibility mask
boundaries, as per satellite mission planning requirements.

We call such real schedules human-rescheduled (H-R) and in the following
section we compare them against our algorithms.

4Note that each of the H ← H ⊖ [ℓk, uk] for [ℓk, uk] ∈ X operations needs only O(1) time
since all of these operations affect only one interval in H.

5The details of that algorithm are unavailable to us.
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7. Experimental Study

We implemented our algorithms in C++ and tested them on a PC with Intel
Core i7-3820 CPU (3.60 GHz). The low-density and high-density instances
discussed in Section 6 were used in this experimental study.

Following an empirical parameter tuning procedure, we set the time given
to each local search run within GRASP to 1 second, the EC search depth to 10,
the simulated annealing initial temperature T0 to 0.001, the tabu list length L
to 4, and the tabu tolerance parameter ǫ to 0.01.

7.1. Computational Results

In this section we compare the performance of GRASP (named GR. in the
tables below), Ejection Chain (EC), Simulated Annealing (SA) and Tabu Search
(TS) algorithms (see Section 4) to the H-R schedules (see Section 6). The
computational results for low-density and high-density instances are reported
in Tables 1 and 2, respectively. In our experiments, all our algorithms were
given equal time for fair comparison. Since EC is our only algorithm that does
not have an explicit setting for the running time, we gave each of GRASP, SA
and TS algorithms as much time as EC needed to terminate for each particular
instance.

The columns of Tables 1 and 2 are as follows (from left to right): the instance
name, the number of downlink requests |V |, the number of urgent requests, the
time given to each of our algorithms, the number of unscheduled (urgent/total)
requests for each of the algorithms, the average tardiness of the urgent requests
for each of the algorithms, and the overall average tardiness for each of the
algorithms. The tardiness of a request j is measured as Sj − τj , where τj is the
earliest time j can be downlinked subject to no other downlinks are scheduled.

It follows from the results of our computational experiments that the low-
density instances are relatively easy to solve. Observe that each of our al-
gorithms (GRASP, EC, SA and TS) scheduled all the requests and achieved
0.0 seconds urgent request tardiness for each instance. In terms of the overall
average tardiness, the GRASP and the SA algorithms are the winners.

The high-density instances are much harder to solve. Each of the algorithms
left several requests unscheduled for each of the instances. In terms of urgent
requests, all our algorithms performed very similarly. In terms of overall per-
formance, SA and EC are the leaders, followed by GRASP.

Our algorithms clearly outperformed the H-R solutions. For the low-density
instances, the H-R solutions left, on average, one unscheduled request while all
of our algorithms managed to schedule all the requests. For the high-density
instances, the H-R solutions left, on average, 98.2 requests unscheduled, which
is more than twice compared to any of our algorithms. Our best algorithms
also significantly decreased the average tardiness (both overall and for urgent
requests) compared to the H-R solutions.

It is worth noting that our construction heuristic described in Section 4.1 also
outperformed the H-R solutions. For example, for the high-density instances,
it left only 56.9 requests unscheduled, on average. Compare it to the 98.2
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Unscheduled (urgent/total) Avg. tard. (urg.), sec Avg. tard., sec

Inst. |V | Urg. Time H-R GR. EC SA TS H-R GR. EC SA TS H-R GR. EC SA TS

LD1 110 31 1.7 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 0.3 0.0 0.0 0.0 0.0 762 135 135 144 271
LD2 108 34 2.0 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 0.5 0.0 0.0 0.0 0.0 1001 250 271 271 393
LD3 115 29 2.5 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 0.7 0.0 0.0 0.0 0.0 881 95 94 98 219
LD4 105 25 2.2 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 0.7 0.0 0.0 0.0 0.0 1613 296 457 296 680
LD5 104 32 0.7 0 / 2 0 / 0 0 / 0 0 / 0 0 / 0 0.4 0.0 0.0 0.0 0.0 701 184 184 184 190
LD6 105 33 1.0 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 1.3 0.0 0.0 0.0 0.0 202 119 119 119 135
LD7 90 30 0.7 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 3.1 0.0 0.0 0.0 0.0 379 79 80 80 97
LD8 108 31 1.5 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 4.5 0.0 0.0 0.0 0.0 234 103 105 102 118
LD9 110 28 1.8 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 11.3 0.0 0.0 0.0 0.0 975 244 250 237 278
LD10 134 27 4.5 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0.4 0.0 0.0 0.0 0.0 564 65 65 66 199

Average 108.9 30.0 1.8 0.0 / 1.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 2.3 0.0 0.0 0.0 0.0 731.1 156.9 176.0 159.7 258.0

Table 1: Comparison of the heuristic algorithms for the low-density instances.

Unscheduled (urgent/total) Avg. tard. (urg.), sec Avg. tard., sec

Inst. |V | Urg. Time H-R GR. EC SA TS H-R GR. EC SA TS H-R GR. EC SA TS

HD1 211 34 29.4 0 / 53 0 / 19 0 / 19 0 / 18 0 / 24 0.3 0.0 0.0 0.0 0.0 2013 581 450 462 630
HD2 301 35 135.8 0 / 123 0 / 67 0 / 65 0 / 64 0 / 65 0.6 0.0 0.0 0.0 0.0 3788 3087 2943 3074 5446
HD3 324 42 432.9 0 / 120 0 / 51 0 / 46 0 / 47 0 / 52 0.5 0.0 0.0 0.0 0.0 2329 2693 2397 2183 2745
HD4 294 41 149.1 2 / 116 0 / 57 0 / 54 0 / 51 0 / 61 0.5 0.0 0.0 0.0 0.0 2025 1529 1201 1326 1864
HD5 260 36 284.3 0 / 85 0 / 50 0 / 49 0 / 48 0 / 49 0.5 0.0 0.0 0.0 0.0 2621 899 1013 1294 1390
HD6 356 46 468.8 2 / 130 1 / 63 1 / 58 1 / 58 1 / 68 0.4 0.0 0.0 0.0 0.0 2555 1878 1702 1885 3921
HD7 259 38 124.6 2 / 87 0 / 31 0 / 32 0 / 30 0 / 30 0.4 0.0 0.0 0.0 0.0 2407 1994 1658 1941 2557
HD8 304 54 229.4 1 / 98 0 / 35 0 / 35 0 / 34 0 / 36 0.4 0.0 0.0 0.0 0.0 2230 1991 1396 1250 2345
HD9 278 39 134.9 3 / 90 0 / 37 0 / 37 0 / 35 0 / 39 0.5 0.5 0.5 0.5 0.5 2463 1085 908 761 2304
HD10 230 25 83.4 0 / 80 0 / 28 0 / 28 0 / 28 0 / 30 0.5 0.0 0.0 0.0 0.0 2880 2092 2081 2077 2342

Avg. 281.7 39.0 207.3 1.0 / 98.2 0.1 / 43.8 0.1 / 42.3 0.1 / 41.3 0.1 / 45.4 0.5 0.1 0.1 0.1 0.1 2531.0 1782.9 1574.8 1625.5 2554.4

Table 2: Comparison of the heuristic algorithms for the high-density instances.
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Figure 1: Performance of the GRASP, EC, SA and TS algorithms on a range
of settings (given time for GRASP, SA and TS, and search depth depth for
EC). The results are averaged over 10 runs (one run for each of the high-density
instances). The vertical axis shows how far a solution is from the best known
solution.

unscheduled requests in the H-R solutions. However, each of our meta-heuristics
significantly improved the results of the construction heuristic, leaving only 41–
45 requests unscheduled.

7.2. Effect of Given Time Parameter

In this section we test the effect of varying the running time of our algo-
rithms. The GRASP, SA and TS algorithms have explicit parameters to adjust
their running time. The EC algorithm has only one parameter, the search depth,
that might affect the running time of EC. In this experiment, we ran GRASP,
SA and TS given 4, 8, 16, . . . , 8192 seconds and EC with depth = 2, 5, 10, 20, 50.
The results for each algorithm and each setting were averaged over all the high-
density instances.

The results of the experiment are reported in Figure 1. An important obser-
vation is that neither the running time nor the solution quality of the EC algo-
rithm notably depend on the value of parameter depth. The other algorithms’
quality significantly improves when given more time. TS shows relatively poor
performance when given little time which, however, rapidly improves with the
increase of the running time. GRASP and SA are less sensitive to the given
time. The winning algorithm is clearly SA: it outperforms other algorithms on
the whole range of given times, producing reasonable solutions in just a few
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seconds and being able to gradually improve the solution quality.

7.3. Effect of Parameter α

Recall that the objective function for the SIDSP uses a parameter α that
represents the importance of tardiness minimisation compared to the importance
of scheduling as many requests as possible. The value of α is irrelevant as long as
all the requests are scheduled (like in our solutions of the low-density instances).
However, if the problem is over-subscribed, the parameter α controls the trade-
off between the number of scheduled requests and their tardiness. Figure 2
shows how the performance of the SA algorithm depends on α.
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Figure 2: Demonstration of how the value of α influences the trade-off between
average tardiness and the number of unscheduled requests. The number on the
right of each point is the value of α. Each point was obtained by averaging the
results of 30-second runs of the SA algorithm for 10 different seed values and
all the high-density instances.

As expected, increasing the value of α puts emphasis on tardiness minimisa-
tion at the cost of scheduling fewer requests. Nevertheless, the range of solutions
produced for different values of α is relatively small. Hence, the results obtained
in this paper for α = 0.5 are expected to hold for different values of α.

It is also interesting to note that the solutions obtained for α = 0 are, on
average, dominated by the solutions obtained for α = 0.01. We link it to the
changing fitness landscape. Observe that, for α = 0, the objective value of a
solution depends only on the set S but not the times Sj . Hence, many distinct
solutions sharing the same set S cannot be distinguished by the solver. That
creates the so-called high neutrality of the fitness landscape that is known to
reduce the performance of optimisation heuristics [23].
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8. Conclusions

In this paper, we formalised the satellite downlink scheduling problem and
proposed a flexible solution approach separating the details of the problem-
specific constraints from the optimisation mechanism. That significantly simpli-
fied the design and implementation of optimisation meta-heuristics. We tested
several standard search techniques, including GRASP, Ejection Chain, Simu-
lated Annealing and Tabu Search, and chose Simulated Annealing as the most
efficient algorithm.

Our heuristic achieved very promising results comparing to the solutions
obtained by the currently implemented method. For situations and problem in-
stances where downlink scheduling was oversubscribed, the number of unsched-
uled downlink requests was halved. Although many of unsuccessful downlinks
could have been ‘background’ acquisitions of little importance, the increase in
the downlink throughput was significant and could be used for generating addi-
tional imagery products, increasing the number of customers, and thus increas-
ing the company’s profit. Moreover, our algorithms produced solutions with
lower total tardiness, on average.

This research shows how a complicated model can be combined with modern
optimisation heuristic methods in such a way that the resulting system is easy to
use and maintain. The proposed approach gives an opportunity to handle other
variations of the problem as well as potential additional constraints without re-
implementing the optimisation part, which is a vital requirement of industrial
systems.
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