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Abstract Commercial airports are under increasing pressure to comply with the
Eurocontrol Collaborative Decision Making (CDM) initiative, to ensure that in-
formation is passed between stakeholders, integrate automated decision support
or make predictions. These systems can also aid effective operations beyond the
airport by communicating scheduling decisions to other relevant parties, such as
Eurocontrol, for passing on to downstream airports and enabling overall airspace
improvements.

One of the major CDM components is aimed at producing the target take-off
times and target startup-approval times, i.e. scheduling when the aircraft should
push back from the gates and start their engines and when they will take off. For
medium-sized airports, a common choice for this is a “Pre-Departure Sequencer”
(PDS). In this paper, we describe the design and requirements challenges which
arose during our development of a PDS system for medium sized international
airports. Firstly, the scheduling problem is highly dynamic and event driven. Sec-
ondly, it is important to end-users that the system be predictable and, as far
as possible, transparent in its operation, with decisions that can be explained.
Thirdly, users can override decisions, and this information has to be taken into
account. Finally, it is important that the system is as fair as possible for all users
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of the airport, and the interpretation of this is considered here. Together, these
factors have influenced the design of the PDS system which has been built to work
within an existing large system which is being used at many airports.

Keywords Automated decision support · Scheduling · Aviation · Airport ground
operations · Modelling user preferences · Collaborative decision making

1 Introduction

Ongoing improvements to the European-wide airspace require all parties to share
information with each other and to utilise the information which they are provided
in order to make better decisions. To aid this, organisations such as Eurocontrol1,
who are responsible for the management of the airspace over Europe, have in-
troduced and promoted “Collaborative Decision Making” (CDM) systems (for
example, their CDM web site2 provides many resources). One important element
of CDM, from the point of view of airports, is that they provide to Eurocontrol
predicted take-off times (TTOTs, “Target Take-Off Times”) and pushback times
(TSATs, “Target Start-up Approval Times”, the times at which aircraft push back
from their stands and start their engines).

This paper primarily considers the process of TSAT generation at a medium
sized international airport. Ultra Electronics Airport Systems3 has systems in
many such airports worldwide. This paper describes a system which can collabo-
rate with the existing Ultra systems in order to generate TSATs for airports. A
real-world operational research problem is considered and the real-world elements
had a crucial effect upon the decision making process and the system design. The
airport environment, existing system, communication interfaces, user interaction
and commands, and the preferences of the airlines and other airport users all had
important effects upon the design of this system and are discussed in this paper,
along with the algorithms which were developed to solve the problem. The real-
world complexities that this introduces are important problems to consider and
have influenced the design of the system. On the other hand, the situation has also
ensured that the TSAT generator is self-contained and that the decision making
logic can be described in a stand-alone manner.

In particular, the need for ease of explanation, with the consequent ability
to build trust by the users, led us to implement an algorithm that was (iter-
ated) constructive/rule-based. The system is built out of ‘elementary components’,
meaning that the individual operations are themselves in a language that would
make sense to the end users. For example, using priority-based allocations, rather
than having recourse to more advanced (and harder to explain) optimisation meth-
ods such as maximum weight matching or stochastic search. Much of the previous
research into airport operations has involved the application of optimisation al-
gorithms where the decision making process is based upon an objective function
and the reasons for individual decision elements may not be obvious, since an au-
tomated search often works in a different manner to human decision making. For

1 Eurocontrol web site: https://www.eurocontrol.int/
2 Eurocontrol CDM web site: https://www.eurocontrol.int/services/acdm
3 Ultra Electronics Airport Systems web site: http://www.ultra-as.com/

https://www.eurocontrol.int/
https://www.eurocontrol.int/services/acdm
http://www.ultra-as.com/
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example, runway sequencing research (which is perhaps the closest common aca-
demic problem to that which is considered here) usually uses an objective function
which optimises for makespan (Newell, 1979; Bolander, 2000), total delay (Bianco
et al, 1999) or deviation from target runway times (Beasley et al, 2000; Ernst
et al, 1999). Where the re-sequencing is limited to try to enforce fairness, it is
usually for reasons of lowering the cost assessed by the objective function, rather
than considering explicit movement, and involved either applying maximum po-
sition shifts (Dear and Sherif, 1989; Psaraftis, 1990; Balakrishnan and Chandran,
2010), adding a penalty factor into the objective function to penalise positional
shifts (Atkin et al, 2007; Beasley et al, 2004), using a non-linear factor for delay
(Beasley et al, 2001), or a combination of two or more of these (Atkin et al, 2013).
A particularly good example of this is the consideration of the dynamic sequenc-
ing problem in Beasley et al (2004), where the deviations from a previous solution
were explicitly penalised, and the difficulties of obtaining an objective function
which will match the decision making of the human controllers at Heathrow was
observed in Atkin et al (2010a). A review of airport runway scheduling can be
found in Bennell et al (2011), showing the extent of the academic research into the
problem at that time, and an earlier broader review can be found in Wu and Caves
(2002). The use of an optimisation function rather than swapping rules is also not
uncommon in other problems as well, as exemplified by the objective function for
gate allocation research (see Dorndorf et al (2007)) and ground movement research
(see Atkin et al (2010b)).

In contrast, in this research it was found that the justification for decision
making was key for ensuring its acceptance and has had a significant influence
upon the design of the system, since justifications of each change rather than the
overall result were needed in order to persuade the stakeholders at the airport to
accept the decisions. Of course, the elementary nature of the algorithm components
does not imply that the final result is elementary; and it actually took a number
of iterations and careful design to arrive at a final system which was acceptable
to users from the point of view of both efficacy and explainability.

The system must also react to user input, a situation which is too often ignored
within academic models (for example, none of the academic papers cited above
include user input in the decision making) and decisions had to be made about how
to handle any conflicts between decisions which are made by user and automated
decisions about changes based upon a constantly evolving situation at the airport.
Indeed, it is quite possible for a situational change to be handled by the decision
making algorithms before the user really becomes aware of it, in which case it
would be inappropriate to apply a constraint which was based upon out of date
information. For this reason, although the focus of the paper is upon the TSAT
generation algorithm (the decision making element of the system), some other
elements of the overall system are also briefly summarised, since these form the
environment within which the algorithm has to execute and had important effects
upon the design of the algorithm. We have endeavoured to keep such explanations
to a minimum and to only discuss those elements which are key for understanding
the system.

These real-world elements are considered in the following sections: Section 2
explains the problem which is being solved and discusses the relevant previous
research. Section 3 considers the overall system architecture and the components
which are relevant for the TSAT generation module, which is the real focus of this
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paper. Section 4 formalises the TSAT generation problem, discusses the input and
output data for the TSAT generator, and presents the TSAT generation algorithm
and the options which are possible for its customisation. Section 5 discusses po-
tential future enhancements of the system. Finally Section 6 summarises the key
lessons from this research, which resulted in the development of a live decision
support system for medium sized international airports.

2 Problem Description

Each departing flight in a commercial airport typically follows a sequence of steps:

1. The aircraft crew and other airport services report the time at which the flight
will be ready to depart, called the TOBT (Target Off-Block Time).

2. The airport controllers schedule the ‘off-block’ / ‘push back’ times based upon
these TOBTs and other information. The procedure is usually for a tug to push
the aircraft back from the stand, since most of the aircraft are not capable of
moving in the reverse direction without risking damage to the stands.

3. The aircraft is pushed back and its engines are turned on.
4. The aircraft taxies towards the end of the runway where it may join a queue

of departing aircraft.
5. The aircraft taxies onto the runway, lines up and takes off.

TSATs (Target Start-up Approval Times) are generated at the airport, to
specify the time at which an aircraft should commence its pushback (step 2 above)
and start its engines. TSAT allocation is an important process, as highlighted by
a Eurocontrol brochure about “Airport CDM” (A-CDM) (EUROCONTROL and
ACIEurope, 2010), which states that some key aims are:

“Information sharing is the first and most essential element of A-CDM as it

creates the foundation by creating a common situational awareness. In addition,

it potentially brings predictability and resource efficiency benefits. . . . With the

pre-departure sequencing function the target start-up approval time (TSAT) can

be calculated, providing an off-block sequence.”

In common with many systems, the system described in this paper achieves TSAT
allocation by building a predicted take-off sequence even before aircraft leave the
stands (a pre-departure sequence), then allocating TSAT times to aircraft which
will allow them to achieve these take-off times.

Although the TSAT allocation process is usually common across airports, the
details can vary greatly depending upon the constraints at each airport. These
constraints will depend upon the demand (how many flights want to take off from
the airport at any time), capacity (i.e. how many flights can it reasonably ac-
commodate at that time), layout (e.g. complex and/or crossing taxiway structures
can introduce complexity into the ground movement operations, which may need
to be modelled) and operating mode (e.g. which runways are used for arrivals,
departures or both).

There are a number of objectives, such as to ensure fairness (equity) across all
users (airlines or individual aircraft), to ensure that delays are low and to ensure
that sufficient overall capacity is maintained. Delay can be expensive for airlines,
who often work on very low profit margins, so equity is often really important,
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since earlier take-offs can lead to a competitive advantage for airlines. Interestingly,
however, the constraints upon the system will also affect the importance of the
objectives. For example, at an airport such as Heathrow, the demand can often
exceed capacity, so avoiding wasted capacity can often be a primary objective,
even at the cost of some equity loss (Atkin et al, 2008, 2010a, 2013). In such a
circumstance, any loss in capacity can lead to cumulative delays for all parties,
thus parties will accept some inequity if it can be shown that it will lower their
overall delays (and hence costs). On the other hand, if an airport is not running so
close to capacity, then it may be more important to ensure fairness, making sure
that the required demand is met, rather than to maximise theoretical capacity. In
other words, the equity cost for packing departures in as quickly as possible, may
not be worthwhile if there is then a gap due to lack of any aircraft waiting.

An important consideration when predicting take-off sequences for most Eu-
ropean airports is to comply with any take-off timeslots which are allocated by
Eurocontrol. These are allocated to manage bottlenecks in the airspace and these
regulated flights are issued a “Calculated Take-Off Time” (CTOT), which defines a
fifteen minute time window (from CTOT− 5 to CTOT + 10) for the take-off time
from the runway. A CTOT window is a hard constraint; if the flight is not ready
to depart before the end of the CTOT window, a new CTOT usually has to be
requested, which may cause additional delays and associated costs. In other words,
any plan which would violate a CTOT is strongly undesirable for the airport.

2.1 Sequence vs Slot-based approaches

The operational mode, in terms of what types of aircraft (landings or take-offs)
runways are used for at the time, can affect the importance of the various objec-
tives. When aircraft take-off or land, separations have to be maintained between
adjacent runway usages, to ensure that any wake vortices behind the aircraft do
not affect the following aircraft, and to allow aircraft the time to fully, safely de-
part the runway. These ‘wake vortex separations’ depend upon the aircraft weight
categories, and mean that controllers will often group aircraft together by weight
category. When runways are used in mixed mode (for both arrivals and depar-
tures), it is usually better to alternate take-offs and landings (Newell, 1979), and
the individual aircraft which are used, or even their weight classes, may not mat-
ter in most cases. In this case it may be sufficient just to ensure that there is
a reasonably sized pool of aircraft at the runway from which the controller can
choose, rather than planning individual aircraft specifically. In this case, it is often
sufficient to provide generic slots for aircraft, and to be relatively unconcerned
about which particular aircraft is allocated to each slot.

When a runway is being used for only arrivals or only departures, it is of-
ten more important to consider at least the types of the aircraft at the runway,
since the separations are sequence-dependent, and changing the sequence can often
reduce the total separations needed and hence improve the throughput (Newell,
1979; Beasley et al, 2000; Bolander, 2000; Atkin, 2008). In addition, when aircraft
are taking off into busy airspace, downstream constraints may be more likely to
affect the separations, and thus it may be important to consider the departure
routes as well as the aircraft sizes, and potentially also the aircraft speed groups
(Atkin et al, 2008). For example, the London airspace which Heathrow feeds into
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can apply significant separation requirements upon aircraft depending upon their
departure route, speed groups and weight classes of aircraft. With so many differ-
ent combinations, exact sequencing of aircraft may be sensible. Such sequencing
decisions are far from easy, however, in a constrained system, and even the arrival
sequencing problem alone can be complex to solve (Beasley et al, 2000, 2001), with
some departure problems being significantly more complex (Atkin et al, 2008) and
not amenable to the simplification methods which are used for arrivals, such as
applying maximum position shifts or grouping by weight class (Dear and Sherif,
1989; Psaraftis, 1990; Trivizas, 1998; H Balakrishnan, 2010). Conversely, when the
airspace is less busy, it may be sufficient to only consider the weight classes of
aircraft, and/or the options for controllers and pressure upon the system may be
sufficient to allow controllers to make the sequencing decisions in their heads, in
which case a generic take-off slot based system may again be sufficient.

One of the problems which has to be faced when targeting specific sequences
is that elements such as startup times and taxi times are hardly ever precisely
predictable. Significant ‘slack’ may need to be added into timing to ensure that
aircraft arrive when expected and/or to ensure that there is an appropriate se-
lection of aircraft available waiting at the runway that the runway controller can
re-sequence in order to achieve an acceptable take-off sequence, even if one or more
of the intended aircraft do not arrive at the runway on time. However, if too many
aircraft are released, the queues can build up at the runway and can actually make
it harder to achieve a desirable take-off sequence, since it may be impossible for
the correct aircraft to get past others which are waiting (Atkin et al, 2007). It is
therefore of use to reduce this idling with the engines running whenever this is pos-
sible. In addition, jet engines can consume 5–7% of the normal fuel burn even on
idle, which is a significant cost for airlines as well as causing a significant emission
of pollutants into the atmosphere. When it is important to target specific take-off
sequences, delays for individual aircraft may be much more significant, and more
slack may need to be included into taxi time predictions.

The system described in this paper uses a slot-based system. Since the aim is
to ensure that a reasonable number of aircraft are waiting at the runway rather
than to generate an exact take-off sequence which aims to minimise separations,
a slot-based system is useful as each slot can theoretically be used by any air-
craft (although some aircraft could use more than one adjacent slot if they have
characteristics which will unusually reduce the throughput of the runway). This
targets our system to medium-sized airports feeding into reasonably busy airspace;
in contrast, larger/busier airports would benefit from using the sequence-based ap-
proach.

2.2 Pre-Departure Sequencers (PDSs) and Departure Managers (DMANs)

A Departure Manager (DMAN) attempts to find take-off sequences and times,
which should (or at least could) be adopted. These systems aim to at least emu-
late a skilled controller, simplifying the decision making problem for the runway
controller who has to sequence the aircraft. A DMAN is most useful when the se-
quencing problem is very complex and not feasible for controllers to be continually
solving in their heads. At the most-constrained airports, a DMAN is appropriate
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as it is important to ensure that runway capacity is not wasted, but the throughput
may be highly dependent upon the exact take-off sequence.

A Pre-Departure Sequencer (PDS) on the other hand will attempt to produce
a take-off sequence while aircraft are still at the stands but then apply no commit-
ment to airlines or controllers to actually adhere to the sequence. Although a PDS
produces take-off time predictions which are good enough to be of use for improv-
ing the airspace, and for giving visibility of delays to Eurocontrol (and hence to
downstream airports), it does not constrain the controller to use the exact take-
off sequence. These take-off times can still be used to produce TSATs, allocating
appropriate stand holds (delays at the stands/gates before starting the engines)
to aircraft. In summary, the main difference between a PDS system and a DMAN
is the degree of commitment of the airport towards actually achieving the runway
sequence plan that the system derives.

DMANs are popular in larger airports (even as early as 2004, a SESAR re-
port (SESAR Joint Undertaking, 2004) listed a number of such DMANs which
were in regular use: “in Zürich (DARTS), in Paris-CDG (MAESTRO), Munich
(SEPL) and Frankfurt (Sequence Planner)”. At least some of the DMANs can
provide PDS facilities, such as DARTS delair air traffic systems (2013) and SEPL
München (2006). However, at many airports, particularly when the throughput
is less dependent upon the individual aircraft which are present at the runway,
waiting for take-off, and there is significantly more freedom for controllers to tac-
tically re-sequence aircraft without losing runway throughput, a DMAN may be
unnecessary and a PDS may suffice. Many such PDS systems (even when they are
provided by a DMAN), including the one presented in this paper, are ‘slot-based’
(e.g. DARTS (delair air traffic systems, 2013)), meaning that flights are allocated
to time-slots of a fixed duration.

Commercial airports are under increasing pressure to ensure that they have a
PDS or DMAN system deployed at the airport, to provide the take-off time and
TSAT predictions. This paper considers a PDS for TSAT allocation at interna-
tional airports, which are less constrained than airports such as Heathrow, so that
the exact take-off sequence has less effect upon throughput, and which are con-
sequently more concerned about both fairness and transparency of prioritisation
rules.

2.3 Requirements

Given the previous explanations, the requirements to the PDS system can be
summarised as follows:

– Produce a predicted take-off time for each aircraft, for use by Eurocontrol and
for passing on to other parties (e.g. airports) to aid overall system optimisation.

– Ensure that all take-off times meet the allocated CTOT time-slots for regulated
flights.

– Ensure that the sequence responds appropriately to changing circumstances.
– Ensure that the prioritisation (slot-allocation) is both transparent (using known

rules) and justifiable to all parties.
– Ensure that the system is easily adjustable to the needs and practices of a

particular airport and maintainable.
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– Ensure reliability of the system in circumstances such as unstable connection
with the other components, power cuts off, etc.

3 The Components of the System

In order to understand the full problem which has to be solved, it is important
to understand the data which is available, the user commands which have to be
supported (and which can override system decision and so will impose constraints),
and the environment within which the algorithm has to sit. These real world issues
can impose important real world constraints upon any practical system which is
to run in airports, most of which will have existing data sharing systems, as a part
of the increasing automation in the Airport CDM initiative, even where they do
not yet have automated decision support or decision making systems.

The full PDS system can be considered to be a number of discrete but inter-
connecting modules. An outline of the PDS architecture is shown in Figure 1. All
of the decision making elements are in the TSAT Generator, which is described in
Section 4 and is the focus of this paper. The other two important modules are the
Interface Module, which controls the database, and the Graphical User Interface
(GUI). Each of the modules in the system can be restarted at any time, can be
located on different machines at different locations, and is relatively independent
of the others. This introduces some timing issues which have to be handled, such as
the need to deal with events asynchronously, which can imply some additional con-
straints upon the problem, in that messages or requests can be received which may
not be entirely relevant by the time that they are received. In addition, neither the
TSAT Generator nor the GUI have direct access to the database but communicate

HTTP

TSAT Generator

Cache

Events

Logic

Flight, runway and
commands data

Slot data

Interface
Module

Database

GUI

Fig. 1: PDS architecture. The TSAT Generator module communicates with the rest
of the system through the Interface Module. The communications are implemented
as one-way synchronisation of the flight, runway and commands data from the
Interface Module to the TSAT Generator, and of the slot data from the TSAT
Generator to the Interface Module.
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with the Interface Module by means of an HTTP-based protocol. This aids with
ensuring system extendibility and flexibility as changes in the database structure
affect only the Interface Module. Using HTTP makes the interface with the TSAT
generator easy to maintain and extend, as well as simpler to test.

The Interface Module is not the focus of this paper, despite being an important
element of the system, so we only summarise its behaviour from the point of view
of TSAT generation. The Interface Module has much of the general control logic
for the system, and is responsible for marshalling the information and change
requests from the other modules, including those from the other airport systems
beyond the TSAT generator. The database actually contains a huge amount of
data about the airport, much of which is not relevant for TSAT generation but is
vital for the operation of the other systems at the airport. As the situation at the
airport changes, the Interface Module is responsible for passing on the information
about the new current state to the TSAT Generator module. This means that the
TSAT generator will be receiving a number of asynchronous updates and requests,
indirectly from many different sources, via a single interface.

The GUI module is responsible for displaying to the user the current state
of the airport. The focus of this paper is also not upon the user interface, the
design of which would deserve a paper on its own. In summary, the GUI module
allows the user to see the current state of the system and to issue commands.
These user commands will be converted to constraints upon the TSAT generator,
such as to force an aircraft into a specific take-off slot or to lock it into the slot
it is currently in. The algorithms then have to respect these constraints. From a
practical implementation point of view, the asynchronous nature of the operations,
whereby the situation may change since the user looked at it, but before they issue
the command, means that the GUI has to pass some information about what it
thought the status was at the time the command was issued (e.g. what slot was
an aircraft moved from as well as being moved to) and the TSAT generator has
to validate that the state was correct before creating the constraint, or reject the
command and report that the situation has changed.

4 The TSAT Generator

The TSAT Generator is the key component of the PDS responsible for producing
the pre-departure sequences. It handles the following data items:

1. Flight data: this contains all of the information about flights including their sta-
tuses, time predictions, etc. Flight data comes from the other airport systems
and is, therefore, owned by the Interface Module.

2. Runway data: this includes the information on logical runways such as runway
capacities at different time periods and temporary closure informations. Simi-
larly to the flight data, the runway data is owned by the Interface Module, but
will usually change less often.

3. Slot data: this defines the TSAT values and associated information as proposed
by the TSAT Generator. Hence, the slot data is owned by the TSAT Generator.

4. User commands data: this is the list of manual user edits of the pre-departure
sequence that require processing by the TSAT Generator. This data is created
by the GUI and owned by the Interface Module.
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Each data item is owned by a specific module. Modules which do not own the
data item have read-only access to it; they have no ability to modify, or delete
data of that type. Any editing or deletion of the data has to be performed by the
owning module. In general the owning module will also create the data, except for
the case of the User Commands data. The owner module has the responsibility for
ensuring consistency in the data which it manages, resolving any inconsistencies
between the requests which are made and the current state of the data. As an
example of the use of this system, if a flight was deleted, the Interface Module is
in charge of removing the corresponding record from the flights data and notifying
the other modules of the event. However, the Interface Module cannot remove
the corresponding slot data as the slot data is owned by the TSAT Generator.
Instead, once the TSAT Generator receives the notification of the flight deletion,
it removes the corresponding slot data and sends the appropriate update to the
Interface Module.

The TSAT Generator can be considered as event based since it updates the
slot data (the TSAT values) only when some flight or runway data changes, or
when a specific time has expired (which could be considered to be a timer expiry
event, even if not implemented that way). Its behaviour depends upon the type of
the event and the associated data which accompanies the event notification. While
the time-based events can be implemented inside the TSAT Generator, to respond
to the flight and runway data changes it needs to be notified of those changes by
the Interface Module.

4.1 Data Communication Algorithms

Since the volume of the data items described above can be significant, only the
changes themselves are normally communicated. The TSAT Generator needs to
have a local copy of the flight and runway data as it cannot request the entire data
every time something changes. It will, however, request the entire flight data at
intervals (such as every few minutes). This ensures that the system is periodically
given a consistent view of data, regardless of the ordering of any change events,
and also simplifies matters such as deciding when an aircraft should leave the
system.

Conceptually, the communication for each data flow is designed as a one-way
synchronisation mechanism. When the TSAT Generator starts, it requests the
entire content of the synchronised data item and then subscribes itself to receive
any changes in that data item. Internally it maintains two copies of the data: a
cache which is stored in data structures compatible with the protocol, and an
internal copy which is stored in data structures not directly linked to the protocol.
Every time an update is received, the TSAT Generator applies that update to the
cache and then runs synchronisation between the cache and the internal storage
to identify and handle changes. By comparing these two versions of the data, it
detects changes and raises corresponding events internally, regardless of whether
the change was identified due to a full data refresh or due to the notification of
only that event. When the TSAT Generator starts, it requests the latest version
of the slot data (i.e. data item owned by the TSAT Generator). Every time the
TSAT Generator changes the pre-departure sequence, it sends the updates to the
Interface Module. In addition, at intervals, it re-requests the entire slot data and
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replaces the local cache with the downloaded data. If the downloaded version of
the data is different to the internal sequence, that will automatically trigger a new
message to the Interface module with the update. This approach separates the
protocol implementation from the TSAT Generator logic, which in turn reduces
the cost of maintenance, and allows the TSAT Generator to store custom data
even if the protocol does not support that. It also simplifies the communications
protocol as any HTTP failures (which could happen occasionally) can be ignored
due to the recovery procedure.

4.2 The TSAT Generation Problem

The TSAT Generation problem can be defined as follows. We are given the set
of flights F and the set of current allocations A. For each flight f ∈ F we are
given its ID n(f), TOBT, tTOBT(f), CTOT tCTOT(f) and expected taxi-out time
(EXOT, tEXOT(f), the time which the system should expect the aircraft to take
from commencing pushback from the stand to arriving at the runway queue, which
may include slack to allow for some delay). tCTOT(f) can have the ‘none’ value
which means that flight f is non-regulated. We also maintain a moves counter
m(f) for each flight f , which will be used to suppress changes for flights which
otherwise receive too many changes of allocation.

For each existing allocation a ∈ A we are given the current take-off slot start
time tTTOT(a), the TSAT value tTSAT(a) and the flight information, f(a) ∈ F .
The TSAT and TTOT values are always linked by tTTOT = tTSAT + tEXOT; the
algorithm sets the TSAT and TTOT together, linking them in this fashion.

Finally, we are given the set of runway records R with prescribed start time
tstart(r) and capacity c(r) for each runway record r ∈ R.4 Without loss of generality,
we assume that the runway records r ∈ R are ordered by the start time tstart(r).
Then a runway record r ∈ R is active from tstart(r) to tend(r) = tstart(r

′), where
r′ ∈ R is the runway record in R immediately following r. If r is the last runway
record, it is active forever, i.e. tend(r) =∞. During the activity period of a runway
record r, the capacity of the runway (the number of slots per hour) is c(r). During
the runway closures, the runway capacity is assumed to be c(r) = 0.

For convenience, let a(f) be the allocation of the flight f :

a(f) =

{
a if ∃a ∈ A such that f(a) = f,

‘none’ otherwise.

4.3 Re-Sequencing Algorithm

Whenever any change in the flight or runway data happens, or a timer expires, the
re-sequencing algorithm is triggered. The re-sequencing algorithm is responsible for
keeping the pre-departure sequence up-to-date. Effectively, the re-sequencing algo-
rithm ‘fixes’ the pre-departure sequence to reflect the data changes. This approach
reduces the number of flight moves and improves the system’s predictability.

4 For simplicity we omit some details here such as the existence of two logical runways
corresponding to two directions of a physical runway since these have little effect on the main
algorithm.
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The pseudo-code of the re-sequencing procedure is presented in Algorithm 1.
The input of the algorithm is the current flights, runway and slot data (F,R,A′)
as well as a snapshot F ′ of the flight data obtained during the last run of the
algorithm. The algorithm starts by converting the runway data R into runway
time slots S (line 1). Then, by comparing F to F ′ and matching F , A′ and S,
the algorithm identifies which flights need to be removed (line 4), added (line 5),
or reallocated (usually due to some exogenous change of data) in the sequence
(lines 6–7). Then the flights that need to be allocated or re-allocated are ordered
according to some logic as described in Section 4.4. Finally, Algorithm 2 is called
for each flight to be allocated/reallocated. While allocating a flight, Algorithm 2
may eject another flight from its slot, and for that reason the allocation may need
to be repeated. Note that the flight allocation rules have to guarantee that the
loop in lines 9–11 will terminate.

Algorithm 1: Allocations update procedure.

input : Flights F , runway records R, allocations A′, and a copy F ′ of the
flights since the last run of the procedure

parameters : Slot generation time window w
output : Updated allocations A

1 Generate a set S of runway slots for the period [now− w,now + w] excluding the
runway closure periods; each s ∈ S is a triple (tfrom, tto, B) such that

tfrom − tstart(r) = 1 hour
c(r)

i, where i is a non-negative integer, r is the runway record

active at tfrom, tto = min{tstart + 1 hour
c(r)

, tend} and B = ∅ is the set of allocations in

that slot (note that |B| ≤ 1 in any circumstances);
2 Let Q be an empty queue of flights for allocation/reallocation;
3 Let A← A′;
4 For each a ∈ A such that f(a) /∈ F and remove a by A← A \ {a};
5 For each f ∈ F such that a(f) = ‘none’, enqueue f to Q and set m(f(a))← 0;
6 For each a ∈ A such that tTOBT(f) 6= tTOBT(f ′) or tCTOT(f) 6= tCTOT(f ′) or
tEXOT(f) 6= tEXOT(f ′), where f = f(a) and f ′ ∈ F ′, n(f ′) = n(f), remove a by
A← A \ {a}, enqueue f to Q and reset m(f(a))← 0;

7 For each a ∈ A, find (tfrom, tto, B) ∈ S such that tTTOT(a) = tfrom; if no such slot
exists or B 6= ∅, then remove a by A← A \ {a}, enqueue f(a) to Q and reset
m(f(a))← 0; otherwise let B = {a};

8 Order the flights in Q according to the prioritisation rules (see Section 4.4);
9 while Q 6= ∅ do

10 Dequeue f from Q;
11 Call allocate(f,A, S,Q) (Algorithm 2);

12 return A

4.4 Adjustability of the TSAT Generator

In order to be part of a widely-used system, the TSAT Generator needs to be easily
adjustable for the needs of each particular airport. This is achieved by thorough
parameterising of all the aspects of its operation and leaving the most important
decisions up to some declarative rules that can flexibly define the desired behaviour
of the system without affecting the core functions responsible for maintaining data
integrity.
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Algorithm 2: Function allocate(f,A, S,Q) allocating an added/modified
flight to the slots.

input : Flight f , allocations A, runway time slots S the queue Q of flights to be
allocated, slot filters Suitable(1) and Suitable(2)

parameters : Slack size σ for creating a pool of aircraft at the runway
output : Updated allocations A, updated slots S and updated flights queue Q

1 foreach pass, p, of the algorithm do
2 Compute the set of slots S′ ⊆ S that pass Suitable(p), and so can be used for

allocating flight f in this pass of the algorithm;
3 if S′ 6= ∅ then
4 Find (tfrom, tto, B) ∈ S′ that minimises tfrom;
5 if B 6= ∅ then
6 Remove the allocation: A← A \B;
7 Enqueue f(a′) to Q, where {a′} = B;
8 Update the moves counter: m(f(a′))← m(f(a′)) + 1;

9 Create a new allocation a and set f(a)← f , tTTOT(a)← tfrom and
tTSAT(a)← tfrom − tEXOT(f)− σ;

10 Update the allocations: A← A ∪ {a};
11 Update the time slot: B ← {a};
12 return

The declarative rules are used for two purposes. Firstly, to give a priority order
to the flights when allocating or re-allocating several of them in the same run of
the re-sequencing procedure (line 8 of Algorithm 1). Secondly, to find the slot
for allocating a flight (see Algorithm 2), and which implicitly define a ‘allocation
priority’ ordering in the sense of which flight have the power to eject out some
other flight from its slot.

The criteria that can be used to order the flights before allocation include:

1. The allocated CTOT (for regulated flights). Prioritising by the CTOT will
ensure that flights get allocated in an order which reflects the order of their
allocated CTOT. As long as all aircraft which are added as a set can meet
their CTOTs, this will ensure that they do so.

2. The move counter m(f), i.e. the number of times flight f has been moved.
Moving a flight means changes for the airline and/or ground handlers and may
mean that scarce resources (e.g. the tugs which are needed for pushing aircraft
back from the gates) have to be reallocated. This is obviously undesirable, so
can be explicitly penalised. Penalising this factor super-linearly means larger
move counts are relatively heavily penalised per move, and so encourages that
the changes are more evenly spread across aircraft. Although it could result
in a number of smaller changes rather than one larger (less equitable) change,
small changes are often easier to accommodate, especially if aircraft still push
back in the same relative sequence.

3. The time at which the current TOBT was declared. Giving a higher priority
to earlier TOBTs biases the schedule towards a first-come-first-served system
whereby airlines which inform the airport about the TOBT earlier are more
likely to get the earlier take-off slot. This is useful to discourage late changes
to TOBTs, which can have adverse effects on a sequence and force late changes
upon other aircraft to compensate for changes.
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Slot ID Reg. Moves

9:00–9:02
9:02–9:04 N1 No 0
9:04–9:06 N2 No 0
9:06–9:08
9:08–9:10

(a) Two non-regulated flights are slotted.
The earliest suitable slots for both N1 and
N2 are 9:02–9:04.

Slot ID Reg. Moves

9:00–9:02
9:02–9:04 R3 Yes 0
9:04–9:06 N2 No 0
9:06–9:08
9:08–9:10

(b) A regulated flight R3 with the first
suitable slot 9:02–9:04 enters the system.
Being of a higher priority than N1, it ejects
N1.

Slot ID Reg. Moves

9:00–9:02
9:02–9:04 R3 Yes 0
9:04–9:06 N2 No 0
9:06–9:08 N1 No 1
9:08–9:10

(c) The priority of N1 is lower than that
of R3 and it is not higher than that of N1.
Hence, it is slotted to the 9:06–9:08 slot.

Fig. 2: Example of prioritisation of regulated over non-regulated flights only. This
scheme enforces minimal perturbation, as only one non-regulated flight is moved.
The moves counters in this example are not involved in the prioritisation.

4. The TOBT. Ordering by the TOBT can be considered to be fair in that the
aircraft which will be ready first will get the earlier slot.

The flight allocation rules define the time slots suitable for a flight and the
priority of an allocating flight against the already allocated flights.

For example, we can define two algorithm passes (see Algorithm 2) for a reg-
ulated flight f :

1. Suitable(1) allows only slots (tfrom, tto, B) such that

max{tCTOT − 5, tTOBT(f) + tEXOT(f)} ≤ tfrom ≤ tCTOT + 10 and B = ∅.

In other words, flight f does not have ‘allocation priority’ over any flights at
this stage; the algorithm attempts to allocate f to a vacant slot.
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Slot ID Reg. Moves

9:00–9:02
9:02–9:04 N1 No 0
9:04–9:06 N2 No 0
9:06–9:08
9:08–9:10

(a) Two non-regulated flights are slotted.
The earliest suitable slots for both N1 and
N2 are 9:02–9:04.

Slot ID Reg. Moves

9:00–9:02
9:02–9:04 R3 Yes 0
9:04–9:06 N2 No 0
9:06–9:08
9:08–9:10

(b) A regulated flight R3 with the first
suitable slot 9:02–9:04 enters the system.
Being of a higher priority than N1, it ejects
N1. The N1 flight moves counter turns 1.

Slot ID Reg. Moves

9:00–9:02
9:02–9:04 R3 Yes 0
9:04–9:06 N1 No 1
9:06–9:08
9:08–9:10

(c) The priority of N1 is lower than that of
R3. However, due to its moves counter, its
priority is higher than that of N2. Hence, it
ejects N2. The moves counter of N2 turns
1.

Slot ID Reg. Moves

9:00–9:02
9:02–9:04 R3 Yes 0
9:04–9:06 N1 No 1
9:06–9:08 N2 No 1
9:08–9:10

(d) The priority of N2 is lower than that
of R3 and it is not higher than that of N1.
Hence, it gets slotted to 9:06–9:08.

Fig. 3: Example of prioritisation of regulated over non-regulated flights, with ties
broken by the number of moves. This scheme enforces fairness, as both non-
regulated (low-priority) flights get equally delayed.

2. Suitable(2) allows only slots (tfrom, tto, B) such that

max{tCTOT − 5, tTOBT(f) + tEXOT(f)} ≤ tfrom

and
either B = ∅ or

(
B = {a} and tCTOT(f(a)) = ‘none’

)
.

In other words, flight f has ‘allocation priority’ over any non-regulated flight.

With the above rules, the first pass of the algorithm will attempt to allocate
f to some vacant slot within the CTOT window. If failed, the second pass will
attempt to allocate the flight to the earliest slot whether it is empty or occupied
by a non-regulated flight.

Some airports, however, may prefer to have the regulated flights at the runway
as early as possible in any circumstances. Then the first rule should be omitted.
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For a flight which is not regulated, it may be appropriate to replace the first
allocation pass by:

1. Suitable(1) allows only slots (tfrom, tto, B) such that

tfrom ≥ tTOBT(f) + tEXOT(f) and B = ∅.

In other words, non-regulated flights can only be allocated to vacant slots.
This strategy enforces the minimum perturbation of the sequence, see example
in Figure 2.

An alternative rule for a regulated flight may be:

1. Suitable(1) allows only slots (tfrom, tto, B) such that

tfrom ≥ tTOBT(f) + tEXOT(f)

and

either B = ∅ or
(
B = {a} and tCTOT(f) = ‘none’ and m(f) > m(f(a))

)
.

In other words, the algorithm accepts the first slot which is either vacant or is
occupied by a non-regulated flight with a lower number of moves.
This strategy enforces fairness as the algorithm tends to avoid moving flights
that were already moved many times, see example in Figure 3.

The above examples demonstrate that the designed TSAT Generator can be
adapted for a wide variety of specific airports and operator preferences, while
continuing to use clearly understandable rules, and maintaining the clarity and
acceptability for airport operators. Table 1 depicts how each of the requirements
defined in Section 2.3 are met by our system.

5 Potential enhancements and future benefits

The system which has been implemented based upon this research has been inte-
grated into a medium sized International European airport, providing both take-
off time predictions and pushback time allocations. As inter-airport coordination
improves and new facilities come on board, further uses could be found for the
predicted take-off times, and further feeds may need to be considered within the
allocation rules. Two such potential links are considered in this section: a link with
a DMAN and a link with the strategic slot allocation system for airports.

The similarities and differences between a DMAN and PDS system were dis-
cussed in Section 2.2. In general, a DMAN will be needed at an airport where
the departure sequencing problem is too complex for controllers to easily solve it
manually. In small to medium sized mixed-mode airports (where the runways are
used for both take-offs and landings) it may be simple enough to manually solve
the sequencing problem (see Section 2.1). However, at large multi-runway airports,
especially where complex take-off sequencing constraints are present, where there
are constraints on some departure routes, or where runways are used in segregated
mode (e.g. London Heathrow has all three of these problems, Atkin et al (2007)),
sequencing help, such as from a DMAN, may be appropriate. When a PDS is
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Produce a predicted take-off time
for each aircraft, for use by Eu-
rocontrol and for passing on to
other parties (e.g. airports) to aid
overall system optimisation.

The TSAT Generator predicts the TTOTs by producing
an approximate departure sequence and maintaining it
reflecting the flight and runway status updates. The up-
dates are communicated to the other components of the
system.

Ensure that all take-off times
meet the allocated CTOT time-
slots for regulated flights.

The ordering of flights in the allocation queue and the
implementation of the Suitable function can be adjusted
to give priority to regulated flight over non-regulated
flights. The sample implementation of the Suitable func-
tion (see Section 4.4) guarantees that, if an appropriate
runway time slot exists, the regulated flight will be allo-
cated within the CTOT window unless all such slots are
occupied by other regulated flights.

Ensure that the sequence re-
sponds appropriately to changing
circumstances.

By comparing the new flight database to its last seen
version, Algorithm 1 reliably extracts information on the
recent data changes, quickly responding to any events.
The runway data changes are handled by regeneration of
the runway time slots and further matching of the flight
allocations to the new slots.

Ensure that the prioritisation
(slot-allocation) is both trans-
parent (using known rules) and
justifiable to all parties.

The sequencing procedure is transparent and determin-
istic. The response of the system to any change of the
data is predictable by any of the stakeholders. Moreover,
interference between changes is minimised due to the sys-
tem’s attempt to minimise perturbations, which further
improves predictability.

Ensure that the system is easily
adjustable to the needs and prac-
tices of a particular airport and
maintainable.

The behaviour of the system can be adjusted by mod-
ifying the order and allocation prioritisations, see Sec-
tion 4.4. The multi-pass algorithm allows flexible control
over the preferred slots for each allocation. The declara-
tive nature of all the adjustable components provide the
necessary transparency and maintainability.

Ensure reliability of the system
in circumstances such as unstable
connection with the other com-
ponents, power cuts off, etc.

The one-way synchronisation mechanism (Section 4.1)
employed to communicate data changes between the
components effectively tackles unstable connection and
power cut off issues and prevents errors accumulation.

Table 1: Ways in which our system meets the requirements.

present, there will usually be fewer aircraft at the runway (the PDS will hold back
at the gates those which would otherwise have longer waits), which will increase
the practicality of solving the remaining sequencing problem manually, making a
full DMAN less necessary.

At airports where both a PDS and DMAN are present, it is possible to link
the two. The simplest way to link a PDS and DMAN together is to apply the PDS
first, to determine the TSATs and obtain the early predictions of the take-off times.
When the aircraft reach the runway a subsequent DMAN can then determine the
final take-off sequence. However, it should be noted that the set of aircraft which
the DMAN has available to sequence will depend upon the results from the PDS
system (which will determine when to release aircraft from the gates). At some
airports, where the throughput is not very sensitive to the set of aircraft which are
available, an unlinked system would work well. At others, it may be necessary for
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the PDS system to actually understand the detailed runway separation rules in
order to ensure that an appropriate pool of aircraft is available. For example, the
TSAT allocation system at London Heathrow (Atkin et al, 2013) actually models
the runway sequencing constraints due to the ease with which capacity can be lost
at Heathrow.

When a PDS is considering all of the separation constraints already, there is
an obvious question of whether the system could do both tasks. For example, a
cut-down version of the DARTS DMAN can be utilised as a PDS (delair air traffic
systems, 2013), and the Heathrow TSAT generator (Atkin et al, 2013) could easily
be used as a DMAN, since it continues to refine take-off time predictions for aircraft
even after they push back (although these changes are not sent externally from the
airport) in order to ensure that the changing airport situation is reflected in later
TSATs which it allocates. However, the major problem difference between these
two systems is the time at which decisions are made. Due to the fact that aircraft
may not be able to push back in time (for reasons which are beyond the control of
an airline in many cases, e.g. delayed passengers) and the variability in taxi times,
it is impractical to actually commit to definitive take-off times or sequences which
have been determined by a system at least 30-60 minutes before take-off (the sort
of time at which a PDS will be estimating take-off times). Even if a single system
performed both tasks, they should happen separately (or on an ongoing basis), so
that the take-off sequence and times that are suggested to controllers take account
of the situation at the time, rather than an hour earlier when the TSATs were
generated.

In addition to the CTOT slots and the allocated runway slots, that have already
been discussed in this paper, other types of slots are often allocated at airports.
Airports have theoretical maximum capacities for various things (such as runway
usage). Unfortunately, the load on an airport is not usually level throughout the
day, with significant peaks, and the allocation of ‘slots’ to airlines indicating an
allocation of the resources to the airline and a time at which the resource can be
used is common at the busier airports5. Runway slots (which will here be called
‘airline runway slots’ to differentiate them from the runway slot times which the
TSAT system allocates) are an example of these. Airline runway slots can have a
very high value at some airports6, and the primary purpose is to ensure that an
airline keeps to the times to which they have committed.

Although compliance with these airline runway slots is not currently considered
when the TSAT system allocates runway slot times, this could be utilised as an ob-
jective, potentially in the same way as CTOT compliance is considered. However,
since the TSAT system is under the control of the airport, not the airline, and is
attempting to tactically handle, in a fair manner, the situation where the demand
for runway capacity exceeds the supply, there are some potential problems with
such an approach, in that it may result in a ‘less fair’ slot allocation. For example,
an airline which had been allocated a slot, but was delayed, may benefit by being
prioritised in order to meet its airline runway slot; a situation which is far from
the initial intention for such allocations.

5 See IATA slot allocation process page, http://www.iata.org/policy/slots/Pages/index.
aspx

6 For example, ”Heathrow slots fetch £20m”, Sunday times: http://www.thesundaytimes.
co.uk/sto/business/Companies/article1425242.ece

http://www.iata.org/policy/slots/Pages/index.aspx
http://www.iata.org/policy/slots/Pages/index.aspx
http://www.thesundaytimes.co.uk/sto/business/Companies/article1425242.ece
http://www.thesundaytimes.co.uk/sto/business/Companies/article1425242.ece
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New systems which would measure the compliance of airlines to allocated slots
are being considered7 could take the predicted take-off times from airport systems
(including the TSAT system discussed here) into consideration when examining
compliance with airline runway slots, in which case the interaction of the two
types of runway slots may need to be reconsidered, and a two-way communication
(i.e. feedback) mechanism may also prove useful, subject to the approval of all
stakeholders involved.

6 Conclusions

In this paper we have described the aims of a Pre-Departure Sequencer for allocat-
ing TSATs and the environment within which it must operate. We have explained
the goals, requirements and algorithms which we utilised in the development of
this real decision support system. The system has been built to be integrated into
the Ultra Electronics systems which are running at a number of airports world-
wide, and will enter acceptance trials at the first airport soon. It has been designed
in collaboration with experts at the airport and within Ultra Electronics Airport
Systems and a number of lessons were learned in the process about how to actually
meet user requirements in this kind of environment. The main research conclusions
from this process are summarised below.

Besides the obvious sequencing constraints, one of the most important aspects
of the PDS is the interaction with humans, for example, with decision makers in
the ATC and ground operations. This has the immediate consequence that the
system decisions should not ‘churn’: TSAT values should not be changed more
than necessary, since constant updates lead to difficult and inefficient operations.
This is an important criterion in the algorithm design.

It was also important that the human aspects required the PDS decisions to
be predictable, repeatable, and potentially explainable to people that are experts
in ATC, but not experts in algorithms or search. If the PDS is stochastic, then the
exact outcome is unpredictable, which can be very disconcerting for operators and
also makes the software testing phase both onerous and complex, or impossible
to guarantee. The requirement of ensuring that decisions could always be given
explanations that make sense to the human experts limited the choice of algorithms
that would be appropriate for this problem. For example, a standard stochastic
local search would be a last resort, since it tends to be non-repeatable, and also
very difficult to explain or justify the final decisions, which effectively arose from
making some kind of global improvement, so the identification and justification
of specific local improvements can be hard to achieve. As has been shown, the
developed algorithm is flexible enough to not only allow decisions to be explained,
but to conform to many different decision maker priorities.

Overall, this led us to an event-driven rule-based approach; though with multi-
ple passes through carefully designed sets of rules, and various triggers correspond-
ing to circumstances such as the runway capacity changing. The basic algorithm
presented here is based on splitting the runway resource into time slots of the
same lengths, which are computed from maximum number of take-offs per hour

7 see for example, Eurocontrol’s Flight Plan and Airport Slot Consis-
tency Service (FAS) web page: https://www.eurocontrol.int/services/
cs1-flight-plan-and-airport-slot-consistency-service-fas

https://www.eurocontrol.int/services/cs1-flight-plan-and-airport-slot-consistency-service-fas
https://www.eurocontrol.int/services/cs1-flight-plan-and-airport-slot-consistency-service-fas
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as provided by the ATC. In general the PDS algorithm will be working with a
sequence which it has previously generated, and it then has to fit in a new flight
allocation that has just become available, remove one which is no longer available,
or make some change to an existing flight allocation. The sequence is updated in
reaction to events such as ‘a new flight is declared’, ‘EXOT is changed’ or ‘con-
troller reallocated a flight’. Such a system avoids unnecessary alteration of flights
and has an easy to understand behaviour.

A PDS system can significantly improve many aspects of airport operations,
by providing both predicted take-off times and allocating TSATs to airlines well
in advance of pushback. Apart from obeying the basic constraints of take-off se-
quencing, the system keeps the number of changes in the pre-departure sequence
to the minimum and has easily predictable and explainable behaviour. The tra-
ditional focus of OR optimisation projects is on the problem alone; however, one
of our main lessons was that the “meta-problem” of the human context, with the
need for development of high trust levels in the autonomous operations, had an
important influence on the user acceptability of different algorithms in this re-
search. The lessons learned here, may well also be useful to other problems in OR
that have a combination of a dynamic, interactive, online system, with the need
to provide a decision support system that can handle the complexity but do so
using a rule-based so as to remain explainable and transparent to the end users.
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