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Abstract—Regularity models have been used in dealing with
noise-free multiobjective optimization problems. This paper stud-
ies the behavior of a regularity model in noisy environments and
argues that it is very suitable for noisy multiobjective optimiza-
tion. We propose to embed the regularity model in an existing
multiobjective evolutionary algorithm for tackling noises. The
proposed algorithm works well in terms of both convergence
and diversity. In our experimental studies, we have compared
several state-of-the-art of algorithms with our proposed algo-
rithm on benchmark problems with different levels of noises.
The experimental results showed the effectiveness of the regular-
ity model on noisy problems, but a degenerated performance on
some noisy-free problems.

Index Terms—Local principal component analysis (PCA),
multiobjective optimization, noise, regularity model.

I. INTRODUCTION

AMULTIOBJECTIVE optimization problem (MOP) can
be stated as follows:

min F(x) = ( f1(x), . . . , fm(x))

s.t x ∈ � (1)
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where � is the decision space and F is the objective function
consisting of m individual objectives f1, . . . , fm. Let x, y ∈ �,
x is said to dominate y if and only if fi(x) ≤ fi(y) for all
i ∈ 1, 2, . . . , m and F(x) �= F(y). x∗ ∈ � is Pareto optimal
if no x ∈ � dominates x∗. The set of all the Pareto optimal
solutions is called the Pareto set (PS), and the set of their
objective vectors is called the Pareto front (PF).

Multiobjective evolutionary algorithms (MOEAs) have been
regarded as a major tool for approximating the PF [1]–[7]. In
many real-world applications, environmental and measurement
noises are inevitable and thus the exact objective function eval-
uation is impossible. Moreover, noises on different objectives
might be of different scales and distributions. In this paper,
we assume each function evaluation can only obtain F(x)+ ε,
where ε ∼ N(0, σ 2I), the deviation σ represents the noise
level.

Noises could significantly deteriorate the performance of
MOEAs if no extra measures are taken for handling them.
Noises can lead to wrong ranking and thus mislead the search.
Noises can also make diversity maintaining difficult. Existing
approaches for dealing with noises in MOEAs include the
following.

1) Ranking: To reduce the effect of noises, nondominated
sorting genetic algorithm-II (NSGA-II)-A [8] adopts α-
dominance and uses the support vector machine for
establishing a confidence model for ranking. Hypothesis
testing [9] and fuzzy theory [10] have also been used
to build new dominance relations for noisy MOPs.
Probabilistic Pareto ranking [11] uses an error function
in estimating the dominance probability between two
solutions for noisy MOPs in [9], [12], and [13].

2) Averaging: It is for de-noising. The most straightforward
method is to do objective function evaluation several
times independently and then average the obtained value.
The deviation of the mean value (i.e., average value)
decreases as the number of evaluations increases. Noise-
tolerant strength Pareto evolutionary algorithm (SPEA)
(NTSPEA) [14] assigns different evaluation numbers to
different individual solutions according to their dom-
inance relations in a population. Some researchers
(see [15]) also consider the standard deviation of noisy
objective function values. To reduce the number of func-
tion evaluations, an average of noisy function values of
several close solutions can be used as in [16].

3) Modeling: Noises may affect a single solution signifi-
cantly. However, their effect on a model can be minimal.
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As a solution set can be described as a model, esti-
mation of distribution algorithms (EDAs) have been
recently used for dealing with noisy MOPs. For example,
restricted Boltzmann machine [17], [18] and univariate
marginal distribution algorithm [19] have been adopted
for handling noisy MOPs.

The above approaches can deal with noisy MOPs to
certain extent, but their performance is not always satis-
factory. The existing ranking methods cannot output ranks
with a high accuracy for noisy problems. That is the reason
why multi-objective probabilistic selection evolutionary algo-
rithm (MOSPEA) [11] with the probabilistic Pareto ranking is
not satisfactory on noisy MOPs. The averaging methods need
multiple function evaluations for a single solution or simi-
lar solutions, which increases their computational cost. Even
though some function evaluation saving methods are brought
into the averaging-based algorithms (NTSPEA for instance),
their efficiency is not high enough. The modeling-based
algorithms are more effective than the averaging-based algo-
rithms, but few modeling-based algorithms have considered
the characteristics of MOPs.

This paper focuses on modeling approaches for continuous
noisy MOPs. Under mild conditions, the PS of a continuous
MOP is a piecewise (m−1)-D manifold. Although this regular-
ity property has been successfully used for solving noise-free
MOPs [3], it has not yet been considered in noisy MOPs.
This paper advocates using this regularity model in MOEAs
for dealing with noisy MOPs. Through some analysis in this
paper, we argue that the regularity model is efficient for de-
noising. We also give the guide on how to use the regularity
model in existing MOEAs.

The rest of this paper is organized as follows. Section II
introduces the regularity model briefly. Section III analyzes
the reason why the regularity model can de-noise efficiently
and gives the motivation of this paper. The implementation
of the regularity model is shown in Section IV. Section V
shows how to use the regularity model in MOEAs. Section VI
shows the experimental results and discussions. Finally, the
conclusion is given in Section VII.

II. REGULARITY MODEL

Under some mild smoothness conditions, it can be proven
by using the well-known Karush–Kuhn–Tucker condition that
the PS of a continuous MOP is an (m − 1)-D piecewise con-
tinuous manifold [20], [21]. This regularity property was first
used in MOEAs in [3].

Fig. 1 illustrates a simple way for using the regularity prop-
erty to obtain a model (called the regularity model) to model a
population in MOEAs. Circular points are a population found
during the previous search, and the solid curve are the true PS.
One can assume that the population scatters around the PS, in
other words, the PS can be thought of as a central (m − 1)-D
manifold of these solutions. To model the PS, one can divide
these solutions into several (three in Fig. 1) clusters. Then
each cluster is approximated by an (m − 1)-D linear model ζ .

Each linear model ζ in one cluster can be defined as (2),
it can be obtained by principal component analysis (PCA)

Fig. 1. Modeling from a population by regularity property.

Fig. 2. Illustration of calculation of model ζ .

(the distances from solutions to their projection of ζ are
minimized) [3], [22]. In (2), x̄ is the center of cluster C,
Ui(1 ≤ i ≤ n) (sorted by the eigenvalue λi of the covariance
matrix in a descending order) are the principal components of
this cluster, θi is the free variable in the ith principal subspace

ζ = x̄ +
m−1∑

i=1

θiU
i. (2)

An MOP with two decision variables and two objectives in
Fig. 2 is used as an example to explain how to obtain ζ . To
simplify the problem, its true PS is x2 = 0.5 and 30 solutions
around the true PS are classified into one cluster. Firstly, the
center x̄ of those solutions can be calculated. Then, the princi-
pal component Ui can be obtained by PCA. As ζ is (m−1)-D,
only the first m−1 principal components Ui(i = 1, . . . , m−1)

are considered as shown in (2). From the example, x̄ and
Ui(i = 1, . . . , m − 1) construct ζ , the former determines the
location of ζ , and the latter determines the shape of ζ .

By the above “modeling” step, an analytical model for PS
is obtained. Such a probabilistic model cannot be used directly
in population-based MOEAs. Sampling is necessary to sample
a population from a model as an operator to generate new
solutions in MOEAs.

Fig. 3 illustrates two kinds of sampling from a regularity
model. In Fig. 3(a), a population is sampled exactly on the
regularity model. In Fig. 3(b), a population is sampled around
the regularity model by adding noise ε to ζ , which has been
employed in RM-multi-objective estimation of distribution
algorithm (MEDA) [3] to add diversity.
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Fig. 3. Sampling from the regularity model. (a) Sampling on the regularity
model. (b) Sampling around the regularity model.

The process of sampling from ζ in cluster C can be done
by uniformly sampling from free variables θi (1 ≤ i ≤ m − 1)
in (2). The sampling on θi should be in the interval ai ≤ θi ≤ bi

as (3), where αi is a uniformly random value in [0, 1], ai and
bi [shown in (4) and (5)] are the boundaries of sampling in
the ith principal subspace of the cluster [3]

	 =
{

x ∈ Rn|x̄ +
m−1∑

i=1

θiU
i, θi = αi(bi − ai) + ai

}
(3)

ai = min
x∈C

(x − x̄)TUi (4)

bi = max
x∈C

(x − x̄)TUi. (5)

III. ANALYSIS AND MOTIVATION

In this section, we consider a major issue which motives us
to use the regularity model for dealing with noisy MOPs, that
is how well the regularity model can reduce the effect from
noises. We first analyze the effect of noises on selection and
explain why models can help to reduce noises. Then, through
the comparison with other new solution reproduction opera-
tors, we study characteristics of the regularity model in noisy
environments.

In this paper, we consider the following four different types
of MOPs.

1) Type I: The objective functions are uni-modal and the
mapping F (i.e., the objective function) is nearly sym-
metrical around the PS. In other words, two symmetry
solutions about the PS have the same distance to the PF.

2) Type II: The objective functions are multimodal and the
mapping F is nearly symmetrical around the PS.

3) Type III: The objective functions are uni-modal and the
mapping F is not very symmetrical around the PS. In
other words, two symmetry solutions about the PS do
not have the same distance to the PF.

4) Type IV: The objective functions are multimodal and the
mapping F is not very symmetrical around the PS.

Table I lists four test instances of different types used in
our studies. The PS of F1 and F2 is 0 ≤ x1 ≤ 1, and
xi = 0.5, i = 2, . . . , n. The PS of F3 and F4 is 0 ≤ x1 ≤ 1, and
xi = 0, i = 2, . . . , n. All these instances are for minimization.

A. Effects of Noises on Selection

To show the effect of noise level (i.e., σ = 0, σ = 0.1, and
σ = 0.2) on selection, we conduct the following experiments
on F1–F4 with two decision variables.

1) Evenly generate 51×51 solutions in [0, 1]2 as an initial
population Popi from the search space.

TABLE I
TEST INSTANCES

Fig. 4. Selected population Pops on F1–F4 with different noise levels (σ = 0,
σ = 0.1, and σ = 0.2).

2) Use a nondominated sort (e.g., fast nondominated
rank sort [1], nondominated rank sort [23], deductive
sort [24], corner sort [25], and efficient nondominated
sort [26]) to select 51 solutions as the selected popula-
tion Pops.

Fig. 4 presents the experimental results. All the solutions in
the selected population Pops are very close to the true PS in
the noise-free case (i.e., σ = 0). The deviation of the points
in the selected population is increasing as σ grows. Solutions
closer to the true PS have more chances to generate optimal
solutions in the future generations. They can promote the evo-
lutionary process and be viewed as good solutions. However,
good solutions cannot be selected due to noises in the
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Fig. 5. Model ζ restored from the selected population Pops on F1–F4 with
different noise levels (σ = 0, σ = 0.1, and σ = 0.2).

objective space. It is clear that the effect of noises varies from
instance to instance.

A majority of selected solutions on uni-modal F1 and F3
(types I and III) are close to the PS. In contrast, quite
a number of selected solutions on multimodal F2 and F4
(types II and IV) are close to some local optima.

On F1 and F2 (types I and II), selected solutions are dis-
tributed on both sides of the PS. In contrast, on F3 and F4
(types III and IV), most solutions are distributed on one side
of the PS due to their less-symmetrical mappings around the
true PS.

B. Models for Selected Population

Now, we study if one can build a good model for the PS
from the selected solutions. We do PCA on these solutions
to build a linear model for modeling their distributions. The
results are plotted in Fig. 5.

Fig. 5 presents the experimental results. In the noise-free
case, the obtained model approximates the PS very much. This
is not surprising because the selected solutions are very close
to the PS. As the noise level σ increases, the model quality is
getting worse.

On F1 and F2 (types I and II) with symmetrical mapping,
the model can approximate to the true PS reasonably good,
particularly when σ is small. However, models are very poor
on F3 and F4 even when σ is small.

These experimental results suggest that models are useful
for noisy MOPs of types I and II, but are not effective for
types III and IV. The symmetrical degree of the mapping F
affects the de-noising performance of the regularity model.
There are two kinds of F in those test instances, they are
both extreme cases. F1 and F2 have the perfectly symmetrical
mapping and F3 and F4 have the completely nonsymmet-
rical mapping. In practice, the symmetrical degree of most

problems is between these two extremes. Therefore, the results
of F1 and F2 show the best performance of the regularity
model for noisy MOPs, whereas the results of F3 and F4 show
the worst performance of regularity model for noisy MOPs.

C. Efficiency of Regularity Model

The efficiency of a de-noising approach means how well it
can guide the population to approximate the true PS, which
can be quantitatively measured by the average distance to the
true PS in the decision space. That distance can be calculated
by averaging the shortest distances of Pops to a set of uniform
samples from true PS.

Now, we study how well a regularity model works in noisy
environments by comparing with EDA (a different model-
based approach that has been used for de-noising). We use
the EDA with the univariate marginal product model [19] as a
compared approach. SBX [27] without any de-noising ability
is also compared as a reference. Therefore, we conduct the
following experiments on F1–F4 with 2–30 decision variables
in two different noise levels (σ = 0.1 and σ = 0.2).

1) Randomly generate 500 solutions from the search space.
2) Find the nondominated solutions as the selected popu-

lation Pops.
3) Build a regularity model from Pops as the modeling step

in [3], and sample 100 solutions exactly on the obtained
model as in Fig. 3(a).

4) Build a univariate marginal product model [19] from
Pops, and sample 100 solutions on the obtained model.

5) Use SBX [27] to generate 100 solutions from Pops.
These compared approaches have different output. The

regularity model outputs analytical models (ζ with x̄ and
Ui(i = 1, . . . , m−1)). Whereas, EDA and SBX produce solu-
tions. Therefore, we use solutions sampled from the obtained
regularity model as in Fig. 3(a) for a fair comparison with
EDA and SBX.

Fig. 6 presents the average distance to the true PS of the 100
solutions generated by each approach on the four test instances
with different numbers of decision variables under two differ-
ent noise levels (σ = 0.1 and σ = 0.2). The average distance
of the solutions in Pops to the true PS is also presented in
this figure as a reference. It is clear that on the instances with
two or three decision variables, all these approaches perform
similarly. Their obtained solutions have about the same aver-
age distance to the true PS. However, on all the four instances
with more than four decision variables, the average distance
of new solutions generated by the regular model to the true
PS is smaller than that of the solutions in Pops. Recalling that
Pops was selected from noisy environments, this suggests that
the regularity model does have a de-noising ability. In con-
trast, the average distance of the new solutions generated by
SBX is about same as that of the solutions in Pops. Therefore,
SBX is unable to de-noise. The EDA approach can de-noise
on F3 and F4 with a large number of decision variables, but it
is not as good as the regular model approach. A major reason
is that the EDA approach does not make use of the PS regu-
larity property. With the PS regularity property, the dimension
of the model is reduced from n to m − 1. Therefore, when n



WANG et al.: REGULARITY MODEL FOR NOISY MULTIOBJECTIVE OPTIMIZATION 2001

Fig. 6. Average distance of the selected population Pops and samplings
obtained by SBX, EDA, and the regularity model to the true PS on F1–F4 with
2–30 decision variables in different sizes of noises (σ = 0.1 and σ = 0.2).

is larger than m − 1, which often happens in MOPs, the reg-
ularity model, as a de-noising tool, is more effective than the
EDA approach.

D. Motivation

With advantages of models and regularity property, the regu-
larity model is more effective than other model-based methods
in de-noising. Having this in mind, we believe that a regular-
ity model on the obtained nondominated solution set can help
existing MOEAs for noise-free problems to deal with noisy
MOPs. Therefore, we will focus on how the regularity model
works for noisy problems in Section IV and how to use the
regularity model for improving existing MOEAs in Section V.

IV. PROPOSED REGULARITY MODEL FOR DE-NOISING

A simple implementation of the regularity model has been
proposed for noise-free MOPs in [3]. In this section, we
modify it for noisy MOPs.

Algorithm 1 Pseudo Code of the Self-Adaptive Local PCA
1: Parameters: Pop-the non-domination solution set in the

current population, N-the size of Pop, m-No. of objectives.
2: For K = 1 : �N/m�
3: Divide Pop into K clusters by local PCA [3], [22].

4: If
∑m−1

i λi
j∑n

i λi
j

> P0, 1 ≤ j ≤ K

5: Break.
6: End
7: End

A. Modeling

Local PCA [22] rather than K-means [28] is employed to
classify the population into K clusters (i.e., K linear models),
because it suits the task of manifold division. Considering a
PS with K segments of manifold, each cluster Cj contains
one (m − 1)-D manifold, i.e., the contribution of principal
components should concentrate on the first (m−1) components
as (6), where λi

j is the ith eigenvalue in Cj and P0 is one
parameter of PCA. P0 is usually set as 0.7, 0.8, and 0.9 [29],
we set it as 0.9 in this paper

∑m−1
i λi

j∑n
i λi

j

≥ P0. (6)

However, the cluster method with a fixed number of clus-
ters K cannot suit all different distributions well. In view of
this, we design a self-adaptive method in Algorithm 1. The
self-adaptive local PCA tries to cluster the population with
an increasing K and stops until all the clusters satisfy (6)
[the population is divided into K (m − 1)-D manifolds].

The minimal cluster size to build an (m−1)-D linear model
is m. That is the reason why we iterate K from 1 to �N/m� in
Algorithm 1. PS is a piecewise (m − 1)-D manifold, there
would not be as many as �N/m� segments in most cases.
Our method stops once K (m − 1)-D manifolds are found.
Therefore, it does not incur any heavy computational cost.

B. Sampling

Aiming at noisy MOPs, we improve the sampling step
especially in two aspects [endpoint maintenance and uniform
sampling matrix (USM)].

1) Endpoint Maintenance: In the regularity model, only the
first (m − 1) principal components Ui(i = 1, . . . , m − 1) of
ζ are considered. We define that either point xi

min or xi
max

[shown in (7) and (8)] is an endpoint P in the decision space,
which contributes to the spread of PS. Because of noises, the
solution set is very changeable in different generations. That
is the reason why endpoints (the spread of PS) are hard to be
maintained

xi
min = arg min

x∈C
(x − x̄)TUi, i = 1, . . . , m − 1 (7)

xi
max = arg max

x∈C
(x − x̄)TUi, i = 1, . . . , m − 1. (8)

There are two cases between two generations, either model
ζ changes significantly or slightly. When ζ changes signif-
icantly, the location and shape of ζ change significantly,
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Fig. 7. Illustration of the endpoint maintenance strategy.

the endpoints in the previous generation may not be on the
new ζ , thus they do not need to be maintained. However,
when ζ changes slightly, the location and shape of ζ change
slightly but the spread might be changeable, the endpoints in
the previous generation may be on the new ζ , they need to be
kept in the new ζ to maximize the spread of PS.

The changing degree of ζ between generations can be quan-
titatively calculated. Taking Fig. 7 as an example, endpoints
A and B are two endpoints in the previous generation, ζ is
the model in this generation. Determining whether those two
points are on ζ can be done by their projection to ζ . We find
the projection distance dA

p of A is much longer than its offset
distance dA⊥, thus A is on ζ . By adding A, the spread of ζ

increases. However, the situation of B is different, thus B is
not on ζ . Therefore, the ratio d2

p/(d
2
p + d2⊥) of one endpoint xe

shows the changing degree, when the ratio is higher than 0.95,
ζ changes slightly, xe needs to be maintained. Distances dp and
d⊥ of xe can be calculated as shown below

dp =
√√√√

m−1∑

i=1

[
(xe − x̄)TUi

]2
(9)

d⊥ =
√√√√

n∑

i=m

[
(xe − x̄)TUi

]2
. (10)

We record endpoints in every generation to maintain end-
points as Algorithm 2. When an endpoint from the previous
generation is on ζ , the model changes slightly between gener-
ations, the points need to be maintained for the calculation of
the points xi

min and xi
max for the tth generation by (7) and (8).

Thus, the spread of PS can be kept well between different
generations.

2) Uniform Sampling Matrix: As shown in (3), the sam-
pling step is to sample uniformly in an (m − 1)-D cubic
space. Uniformly sampling from the regularity model can pro-
vide better diversity for the population. We randomly sample
a matrix rand(N, m − 1) in every generation and accumulate
these matrices to form a relatively USM. Our algorithm adds
new random samples and deletes extra samples in every gen-
eration to form a more USM. Some diversity maintenance
strategies in MOEAs can achieve the deleting task, such as
the crowding distance in NSGA-II [1], environment selection
in SPEA2 [4], and the harmonic distance in [30].

Algorithm 2 Pseudo Code of the Endpoint Maintenance for
an Obtained Model ζ in the tth Generation

1: Parameters: Pl
t−1-the l-th endpoint in the t − 1-th gen-

eration, Pop-the solution set for building the model, and
ζ -the obtained model in the t-th generation

2: For each Pl
t−1

3: If Pl
t−1 is on ζ

4: Add Pl
t−1 to Pop.

5: End
6: End
7: Calculate ai and bi as Equations (4) and (5), where x ∈

Pop, i = 1, . . . , m − 1.
8: Add the points xi

min and xi
max (shown in

Equations (7) and (8)) to Pt for the t-th generation.

Fig. 8. Flow-chart of embedding the regularity model in MOEAs, the solid
line represents the general flow of MOEAs, and the dotted line represents the
flow of building regularity model on the nondominated solution set (modeling
after the clustering by self-adaptive local PCA, endpoint maintenance, and
sampling by USM).

V. IMPROVE EXISTING MOEAS BY REGULARITY MODEL

MOEAs have been developed to handle different MOPs.
However, existing MOEAs for noisy problems have not taken
the full use of MOEAs for different types of MOPs. Therefore,
the main purpose of this paper is to improve the performance
of any existing MOEAs on a wide range of MOPs with noises
by adding the regularity model as a part of them. To show
how to embed the regularity model in existing MOEAs, we
use NSGA-II [1] as an example in the following sections.

A. Example MOEA Embedded With Regularity Model

In Section II, we have shown that the regularity model
can efficiently reduce noises in the population. Building a
regularity model for the nondominated solution set in every
generation can help MOEAs to de-noise. Thus, the nondomi-
nated solution set is modeled by a regularity model in every
generation. To be compatible with population-based MOEAs,
the regularity model samples a population from a model as
shown in Section IV-B. The final output is a set of samplings
from the obtained regularity model in the last generation.

As shown in Fig. 8, the regularity model can be embedded in
existing MOEAs as an additional reproduction operator, which
is similar to that of [31], the other parts of the MOEA are not
affected by the regularity model. In this paper, we embed the
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Fig. 9. Illustration of the ED strategy.

regularity model in NSGA-II (called RM-NSGA-II) for the
following experiment to study the improvement of MOEAs
by the regularity model on noisy MOPs, because NSGA-II is
the most widely-studied MOEA. Its characteristics are well-
known, thus our idea can be understood easily.

B. Extra De-Noising

To provide a more precise sample points for the regularity
model, we add a preprocessing step [an extra de-noising (ED)
strategy] to RM-NSGA-II. Inspired by extended averag-
ing [16], similar individuals in the decision space can be
viewed as of approximated objective values. As shown in
Fig. 9, the observed objective values are far from their true
objective values due to noises, but the average of neighbors
(gray dots) in the decision space is approximated to the true
objective value.

Therefore, there is a set to record the solutions during the
optimization process. After observing the objectives of a new
solution, its decision variables are compared with the existing
solutions in the set to check if any similar solutions have been
searched before. If there are any similar solutions in the set,
the averages of both decision variables and objective values
are employed for the solution after the extra strategy. We use
the L1-norm-based distance as the similarity evaluation.

VI. COMPUTATIONAL EXPERIMENTS

A. Test Problems, Evaluation Metrics, and
Parameter Settings

In order to evaluate our new idea for noisy MOPs, we
employ the ZDT [32], DTLZ [33], and WFG [34] prob-
lems with different noise levels as the test problems in our
experiments. The details of those test problems are shown in
Table II. We adopt generational distance (GD) [35], minimal
spacing [36], and inverted generational distance (IGD) [37]
to evaluate the performance of different algorithms. GD is
the average distance from the obtained PF to the true PF,
which describes the convergence of the obtained PF. Minimal
spacing is a metric for uniformity, which uses nonduplicated
distances for its final calculation. IGD is the average dis-
tance from the true PF to the obtained PF, whose value
reflects both convergence and diversity of the obtained PF.
In the following experiments, the stopping criterion is set
as 50 000 function evaluations, and the reproduction meth-
ods in the compared algorithms are set as SBX (η = 15
and probability = 1) and polynomial mutation (η = 15
and probability = 0.1). All the experiments are repeated
independently for 30 times.

TABLE II
CHARACTERISTICS OF TEST PROBLEMS

B. Experiments for Extra De-Noising

The ED strategy is a special noise handling operation in
RM-NSGA-II, whose effect to RM-NSGA-II is analyzed in
this section. We compare the proposed algorithms with and
without the ED strategy on ZDT2 and DTLZ2. The results
on GD, minimal spacing, and IGD are shown in Table III,
which are analyzed by Wilcoxon signed-rank test [38]. For
the noise-free problems, the algorithm without the ED strategy
has better performance than that with the ED strategy. This is
because that the averaging in neighborhoods for the noise-free
problems adds uncertainty to function observations. However,
for the noisy problems, the ED strategy helps the algorithm
to build an accurate model.

From the results in Table III, we find that the ED strategy
improves the performance of RM-NSGA-II for noisy MOPs on
both convergence and diversity. Although the improvement
on the two-objective problem ZDT2 is small, the improvement
on the three-objective problem DTLZ2 is significant. In short,
the ED strategy can help the proposed algorithm to obtain a
better model in noisy environments.

C. Experiments for Endpoint Maintenance

In this section, we analyze the effect of the endpoint main-
tenance strategy in the regularity model. We compare the
proposed algorithms with and without the endpoint mainte-
nance strategy on ZDT2 and DTLZ2 (σ = 0.1 and σ = 0.2).
The distances to the true endpoints of the proposed algorithms
with and without the endpoint maintenance strategy over gen-
erations are shown in Fig. 10. With the endpoint maintenance
strategy, the proposed algorithm can obtain the solution close
to the true endpoints in a noisy environment, which leads to a
larger PS spread than that without the endpoint maintenance
strategy.

D. Experiments for Uniform Sampling Matrix

In this section, we analyze the USM in the regularity model.
We compare the proposed algorithms with and without the
USM on ZDT2 and DTLZ2. The results on GD, minimal
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TABLE III
RESULTS OF THE PROPOSED ALGORITHMS WITH AND WITHOUT THE ED STRATEGY ANALYZED BY WILCOXON SIGNED-RANK

TEST. THE SIGNIFICANT RESULTS ARE IN BOLD FACE (SIGNIFICANCE LEVEL = 0.05)

Fig. 10. Distances to the true endpoints of the proposed algorithms with and without the endpoint maintenance strategy over generations on ZDT2 and
DTLZ2 (σ = 0.1 and σ = 0.2).

TABLE IV
RESULTS OF THE PROPOSED ALGORITHMS WITH AND WITHOUT THE USM ANALYZED BY WILCOXON SIGNED-RANK TEST.

THE SIGNIFICANT RESULTS ARE IN BOLD FACE (SIGNIFICANCE LEVEL = 0.05)

spacing, and IGD are shown in Table IV, which are ana-
lyzed by Wilcoxon signed-rank test [38]. As the USM has
no relation to the modeling in RM-NSGA-II, GD is not influ-
enced by the USM. For minimal spacing, the improvement is
significant especially on ZDT2. The reason is that the USM
becomes more and more uniform by generations than a random
sampling matrix. Additionally, the value of IGD is signifi-
cantly improved on both ZDT2 and DTLZ2 because of better
diversity from the USM.

E. Comparative Experiments

In order to test the performance of RM-NSGA-II on noisy
MOPs, we employ several different MOEAs as compared
algorithms in our experiments (shown in Table V). They are
NSGA-II, which is one of the most well-known MOEAs and
the base of RM-NSGA-II, RM-MEDA, which is a regularity

TABLE V
EXPLANATIONS FOR COMPARED ALGORITHMS

model-based MOEA, MOSPEA, which is a probabilistic
Pareto ranking-based MOEA for noisy MOPs, and NTSPEA,
which is an averaging-based MOEA for noisy MOPs. We con-
duct the experiments on the ZDT, DTLZ, and WFG problems.
All the experiments are terminated after 50 000 function eval-
uations and repeated for 30 independent runs. Other parameter



WANG et al.: REGULARITY MODEL FOR NOISY MULTIOBJECTIVE OPTIMIZATION 2005

TABLE VI
IGD VALUES OF RM-NSGA-II, NSGA-II, RM-MEDA, MOSPEA, AND NTSPEA ANALYZED BY

WILCOXON SIGNED-RANK TEST ON THE ZDT PROBLEMS. THE SIGNIFICANT RESULTS

ARE IN BOLD FACE (SIGNIFICANCE LEVEL = 0.05)

TABLE VII
IGD VALUES OF RM-NSGA-II, NSGA-II, RM-MEDA, MOSPEA, AND NTSPEA ANALYZED BY

WILCOXON SIGNED-RANK TEST ON THE DTLZ PROBLEMS. THE SIGNIFICANT RESULTS

ARE IN BOLD FACE (SIGNIFICANCE LEVEL = 0.05)

settings have been shown in Section VI-A. The comparative
results are shown in Tables VI–VIII.

1) Results: Table VI shows the IGD values of compared
algorithms on the ZDT problems. For the noise-free ZDT
problems, NSGA-II and RM-MEDA can outperform other
algorithms. For noisy ZDT1-3, RM-NSGA-II outperforms
other compared algorithms, but for noisy ZDT4, RM-NSGA-II
cannot perform better than the MOEAs for noisy problems
(NTSPEA and MOSPEA). As ZDT4 is a multimodal prob-
lem, noises make algorithms easily trapped in local optima.
Thus, it is hard for the regularity model to learn to jump out
of local optima due to its low exploration ability. In contrast,
NTSPEA and MOSPEA have strategies to improve the conver-
gence for noisy MOPs. That is the reason why RM-NSGA-II
has poor performance on ZDT4, which is similar to the case
of F4 in Section III-C.

Table VII shows the IGD values of compared algo-
rithms on the DTLZ problems. For noise-free DTLZ prob-
lems, both NSGA-II and RM-MEDA are the winners. The
results of noisy DTLZ problems are similar to that of ZDT.
RM-NSGA-II can outperform other compared algorithms on
noisy DTLZ2 and DTLZ4, but cannot outperform other

compared algorithms on noisy DTLZ1 and DTLZ3 that are
multimodal, because the regularity model concentrates on
local optima. The reason of the less satisfactory IGD of
RM-NSGA-II on DTLZ4 comes from poor diversity. As we
know, the mapping relation of DTLZ4 from PS to PF is not
uniform, but RM-NSGA-II samples uniformly on PS, which
leads to poor diversity on PF.

Table VIII shows the IGD values of compared algo-
rithms on the WFG problems. For the noise-free WFG
problems, NSGA-II outperforms other algorithms on WFG1,
WFG4, WFG5, and WFG8, RM-MEDA outperforms other
algorithms on WFG2 and WFG7. RM-NSGA-II outper-
forms other algorithms on most noisy WFG problems
except for WFG2 and WFG7, where RM-MEDA is the
winner.

To explore the limitation of the noise level that compared
algorithms can deal with, we test these five algorithms on
ZDT2 and DTLZ2 with higher level noises (up to σ = 0.5)
for 30 independent runs. The curves of IGD value versus the
σ value are shown in Fig. 11.

All the compared algorithms increase their IGD values as
the σ value increases, and RM-NSGA-II has the smallest
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TABLE VIII
IGD VALUES OF RM-NSGA-II, NSGA-II, RM-MEDA, MOSPEA, AND NTSPEA ANALYZED BY

WILCOXON SIGNED-RANK TEST ON THE WFG PROBLEMS. THE SIGNIFICANT RESULTS

ARE IN BOLD FACE (SIGNIFICANCE LEVEL = 0.05)

Fig. 11. IGD values of RM-NSGA-II, NSGA-II, RM-MEDA, MOSPEA,
and NTSPEA on ZDT2 and DTLZ2 in different noise levels (up to σ = 0.5).

IGD values on noisy problems. For the two-objective problem
ZDT2 with noise σ = 0.2, algorithms expect for RM-NSGA-II
have similar IGD values. When σ grows to 0.4, MOEAs for
noisy problems (MOSPEA and NTSPEA) perform better than
MOEAs for noise-free problems (NSGA-II and RM-MEDA),
as expected. However, RM-NSGA-II has a significant advan-
tage over all those four algorithms. Interestingly, after σ = 0.4,
NTSPEA cannot beat NSGA-II, and the advantage of RM-
NSGA-II is not as significant as the case of a smaller σ . For the
3-objective problem DTLZ2, RM-NSGA-II increases its IGD
values much slower than the other four algorithms. In short,

RM-NSGA-II can handle problems with noises, large or small,
better than all other algorithms.

2) Discussion: From the results in the last section, we can
conclude the behaviors of the characteristics on these com-
pared algorithms. Fig. 12 is the GD values of RM-NSGA-II,
NSGA-II, RM-MEDA, MOSPEA, and NTSPEA over gen-
erations on DTLZ2 (σ = 0, σ = 0.05, σ = 0.1, and
σ = 0.2). For the noise-free DTLZ2, all the compared algo-
rithms have approximated convergence performance except for
RM-MEDA. However, the situation changes when σ increases.
In the cases with σ = 0.05 and σ = 0.1, MOEAs for noisy
MOPs (RM-NSGA-II, MOSPEA, and NTSPEA) have better
convergence performance than MOEAs for noisy-free MOPs
(NSGA-II and RM-MEDA), MOSPEA converges fast in the
first 10 000 function evaluations, but RM-NSGA-II outper-
forms MOSPEA after 10 000 function evaluations; NTSPEA
has a smaller GD value than NSGA-II but a larger GD value
than RM-NSGA-II and MOSPEA. When σ grows to 0.2, the
advantage of RM-NSGA-II over MOSPEA on GD rises, and
NTSPEA cannot outperform NSGA-II due to the large number
of re-evaluations for the high level of noises.

NSGA-II searches individuals to form the nondominated
solution set, while RM-NSGA-II obtains a regularity model
of the nondominated solution set. Therefore, NSGA-II can
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Fig. 12. GD values of RM-NSGA-II, NSGA-II, RM-MEDA, MOSPEA, and NTSPEA over generations on DTLZ2 (σ = 0, σ = 0.05, σ = 0.1, and σ = 0.2).

TABLE IX
COMPARISON BETWEEN RM-NSGA-II AND RM-MEDA

obtain a small number of solutions very close to the true
PFs but distributed randomly. As NSGA-II has no de-noising
strategy, it cannot obtain the observed objective values pre-
cisely or maintain diversity reasonably, which is the reason
why the performance of NSGA-II on noisy problems is unsta-
ble. In contrast, RM-NSGA-II considers the solution set as a
whole, which helps de-noising and obtaining a solution set
with both satisfactory convergence and diversity. However,
building (m − 1)-D models in the decision space may limit
RM-NSGA-II. There is a mapping relation from PS to PF, a
large spread of PS might not lead to a large spread of PF, which
is the reason why RM-NSGA-II cannot have a larger spread
of PF than NSGA-II on some WFG problems (their solution
sets are more complicated than that of ZDT problems, and
NSGA-II emphasizes extreme points in the objective space),
WFG2 for instance. That is also the reason why RM-NSGA-II
loses its performance on the multimodal problem DTLZ3.

RM-MEDA uses the regularity model as RM-NSGA-II,
but it is not suitable for noisy MOPs from the result. From
Table IX, we can find the significant differences between
RM-NSGA-II and RM-MEDA.

For noisy MOPs, RM-NSGA-II only uses nondominated
solutions rather than the whole population as RM-MEDA does
to build the model, because RM-NSGA-II aims to capture
the manifold of the nondominated set. In contrast, RM-
MEDA aims to learn the manifold of the population by the
regularity model to promote optimization. For such differ-
ent aims, RM-MEDA introduces noise ε in the model and
extends the manifold to add diversity, whereas RM-NSGA-II
only keeps the manifold strictly from the obtained model.
RM-NSGA-II also adds special strategies to maintain end-
points and to de-noise, which RM-MEDA never takes into
account. Additionally, RM-NSGA-II identifies the number of
clusters adaptively and maintains the sampling matrix into
an USM. All the above differences make RM-NSGA-II more
effective than RM-MEDA in solving noisy MOPs.

For noise-free problems, the ED strategy in RM-NSGA-II
still averages the objective values without uncertainty of dif-
ferent solutions in a small neighborhood, which can lead
inaccurate objective values for RM-NSGA-II, thus the perfor-
mance of RM-NSGA-II is lowered (shown in Section VI-B).
That is the reason why RM-NSGA-II cannot perform better
than RM-MEDA on the problems without any noises.

MOSPEA is a representative of MOEAs for noisy MOPs
with the probabilistic Pareto ranking, which results in its good
convergence ability on noisy problems. That is the reason why
MOSPEA performs better on hard problems such as DTLZ1,
DTLZ3, and ZDT4. However, probabilistic Pareto ranking
cannot provide satisfactory diversity in MOSPEA, especially
when the size of noises increases. Both RM-NSGA-II and
MOSPEA aim at noisy MOPs, hence we only compare their
performance on noisy problems. Probabilistic Pareto ranking
performs better than building a model on convergence when
the structure of PS is simple (see the results on the ZDT and
DTLZ problems). However, when the PS becomes compli-
cated, building a model works better than probabilistic Pareto
ranking.

NTSPEA adopts re-evaluation, thus, the effect brought by
noises can be reduced. With relatively accurate objective
evaluations, NTSPEA can obtain the solutions with better
convergence even on DTLZ3, whereas RM-NSGA-II cannot
obtain approximated models. However, the model construction
in RM-NSGA-II works on the WFG problems, which leads to
better convergence than NTSPEA.

Summarily, existing MOEAs such as NSGA-II and
RM-MEDA are insufficient to solve noisy MOPs because they
were not designed to cope with noises in MOPs. For the
two compared MOEAs for noisy MOPs, both of them fail
to maintain diversity well due to their focusing on a single
individual rather than a model of a solution set. Comparing
with these algorithms, RM-NSGA-II improves NSGA-II on
noisy MOPs. The regularity model can efficiently learn from
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noisy environments, but its performance on the spread may be
limited by the (m − 1)-D model. Therefore, it is not good at
multimodal problems.

VII. CONCLUSION

In this paper, we have analyzed the de-noising performance
of the regularity model in noisy environments and the behavior
of the regularity model embedded in NSGA-II (RM-NSGA-II)
for noisy MOPs. Due to the effectiveness of the regularity
model, RM-NSGA-II can obtain the solution set with both
satisfactory convergence and diversity in noisy environments,
which is shown by our experiments. The contributions of this
paper are summarized as follows.

1) De-Noising Ability of Regularity Model: Although the
regularity model has been applied in RM-MEDA, it is
the first time used for handling noisy MOPs. In this
paper, we find the effectiveness of the regularity model
in noisy MOPs. The reason comes from two aspects,
one is from the natural de-noising characteristics of
modeling, the other one is from the dimension-reduced
complexity by considering the features of MOPs.

2) Improving Existing MOEAs on Noisy Problems: The
regularity model has very good transportability in exist-
ing MOEAs. Thus, those MOEAs that are not good at
noisy problems can be improved by embedding the reg-
ularity model. With the regularity model like a patch
in the system of MOEAs, existing MOEAs can solve
noisy MOPs.

Although the regularity model can help existing MOEAs to
solve noisy MOPs satisfactorily, there are still several issues
that should be studied in the future.

1) The convergence of RM-NSGA-II on multimodal prob-
lems such as DTLZ3 is not good enough.

2) In the regularity model, only the even disturbance around
PS is assumed. Hence, the regularity model may not
perform well for discontinuous MOPs or MOPs with
unsymmetrical mapping from the decision space to the
objective space.

3) The diversity exploration ability of the regularity model
on the WFG problems should be improved.
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