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Abstract

Conjugate gradient methods are widely used for solving large-scale unconstrained
optimization problems, because they do not need the storage of matrices. In this
paper, we propose a general form of three-term conjugate gradient methods which
always generate a sufficient descent direction. We give a sufficient condition for
the global convergence of the proposed general method. Moreover, we present a
specific three-term conjugate gradient method based on the multi-step quasi-Newton
method. Finally, some numerical results of the proposed method are given.

keyword; Unconstrained optimization, three-term conjugate gradient method, sufficient

descent condition, global convergence

1 Introduction

In this paper, we deal with conjugate gradient methods for solving the following uncon-

strained optimization problem:

minimize f(x),

where f is a continuously differentiable function. We denote its gradient ∇f by g. Usually,

iterative methods are used for solving unconstrained optimization problems, and they are

of the form

xk+1 = xk + αkdk,

where xk ∈ Rn is the k-th approximation to a solution, αk is a positive step size and

dk ∈ Rn is a search direction.

In 1952, Hestenes and Stiefel [15] first proposed a conjugate gradient method for

solving a linear system of equations with a symmetric positive definite coefficient matrix,
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or equivalently for minimizing a strictly convex quadratic function. Later on, in 1964,

Fletcher and Reeves [6] applied the conjugate gradient method to general unconstrained

optimization problems. Recently, conjugate gradient methods are paid attention to as

iterative methods for solving large-scale unconstrained optimization problems, because

they do not need the storage of matrices. The search direction of conjugate gradient

methods is defined by the following:

dk =

{
−gk, for k = 0,
−gk + βkdk−1, for k ≥ 1,

(1.1)

where gk denotes ∇f(xk) and βk ∈ R is a parameter that characterizes the method.

It is known that choices of βk affect numerical performance of the method, and hence

many researchers studied choices of βk. Well-known formulas for βk are the Hestenes-

Stiefel (HS) [15, 16], Fletcher-Reeves (FR) [6], Polak-Ribière (PR) [16], Polak-Ribière

Plus (PR+) [10], and Dai-Yuan (DY) [4] formulas, which are respectively given by

βHS
k =

gT
k yk−1

dT
k−1yk−1

, βFR
k =

‖gk‖2

‖gk−1‖2
,

βPR
k =

gT
k yk−1

‖gk−1‖2
, βPR+

k = max

{
gT

k yk−1

‖gk−1‖2
, 0

}
, βDY

k =
‖gk‖2

dT
k−1yk−1

,

(1.2)

where yk−1 is defined by

yk−1 = gk − gk−1

and ‖ · ‖ denotes the `2 norm. Furthermore, we define

sk−1 = xk − xk−1,

which is used in the subsequent sections. Note that these formulas for βk are equivalent

each other if the objective function is a strictly convex quadratic function and αk is the

one dimensional minimizer. There are many researches on convergence properties of these

methods (see [13,16], for example).

For this decade, many other conjugate gradient methods are proposed and these are

classified by two classes. The first approach makes use of the second-order information

of the objective function to accelerate conjugate gradient methods. Dai and Liao [3] pro-

posed a conjugate gradient method based on the secant condition and proved its global

convergence property. Later some researchers proposed its variants based on other se-

cant conditions, and they proved global convergence properties of their proposed meth-

ods [9,18,22]. Although these methods are effective for solving large-scale unconstrained

optimization problems in our numerical experiments, they do not necessarily satisfy the

descent condition (i.e. gT
k dk < 0 for all k). The second approach aims to generate a descent

search direction. Dai and Yuan [4] proposed a conjugate gradient method which generates

descent search directions under the Wolfe conditions. Later Yabe and Sakaiwa [17] gave
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its variant which also generates descent search directions. Independently of Dai-Yuan’s

research, Hager and Zhang [12] proposed a conjugate gradient method which generates

the descent search direction under the Wolfe conditions. However, these methods depend

on line searches to satisfy the descent condition. Conjugate gradient methods which have

the both characteristics of the two approaches above have not been proposed.

More recently, Zhang, Zhou and Li. [19–21] proposed three-term conjugate gradient

methods which always satisfy the sufficient descent condition:

gT
k dk ≤ −c̄‖gk‖2 for all k, (1.3)

for a positive constant c̄, independently of line searches. They proposed the modified FR

method [20] defined by

dk = −θ̄kgk + βFRdk−1,

where θ̄k = dT
k−1yk−1/‖gk−1‖2. Since this search direction satisfies gT

k dk = −‖gk‖2 for all

k, it can be rewritten by the three-term form:

dk = −gk + βFRdk−1 − θ
(1)
k gk, (1.4)

where θ
(1)
k = gT

k dk−1/‖gk−1‖2. They also proposed the modified PR method [19] and the

modified HS method [21], which are respectively given by

dk = −gk + βPRdk−1 − θ
(2)
k yk−1, (1.5)

dk = −gk + βHSdk−1 − θ
(3)
k yk−1, (1.6)

where θ
(2)
k = gT

k dk−1/‖gk−1‖2 and θ
(3)
k = gT

k dk−1/d
T
k−1yk−1. Cheng [2] gave another modi-

fied PR method:

dk = −gk + βPR
k

(
I − gkg

T
k

gT
k gk

)
dk−1 = −gk + βPR

k dk−1 − βPR
k

gT
k dk−1

gT
k gk

gk. (1.7)

They showed their global convergence properties under appropriate line searches. We

note that these methods always satisfy gT
k dk = −‖gk‖2 < 0 for all k, which implies the

sufficient descent condition with c̄ = 1.

In this paper, by modifying (1.1), we propose a general form of three-term conju-

gate gradient methods which always satisfy (1.3), independently of choices of βk and line

searches. Moreover, we establish its global convergence property. The present paper is

organized as follows. In Section 2, we construct a general form of three-term conjugate

gradient methods which satisfy (1.3), and give a sufficient condition for its global conver-

gence. In Section 3, we propose a specific three-term conjugate gradient method based

on the multi-step quasi-Newton method, and prove its global convergence by using the

result of Section 2. Finally, in Section 4, some numerical experiments are presented.
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2 Three-term conjugate gradient method and its con-

vergence property

In this section, we consider a three-term conjugate gradient method to obtain a descent

search direction. Section 2.1 presents a general form of three-term conjugate gradient

methods and Section 2.2 shows its global convergence property.

2.1 Three-term conjugate gradient method

We propose a new three-term conjugate gradient method of the form:

xk+1 = xk + αkdk, (2.1)

dk =

{
−gk k = 0,

−gk + βk(g
T
k pk)

†{(gT
k pk)dk−1 − (gT

k dk−1)pk} k ≥ 1,
(2.2)

where βk ∈ R is a parameter, pk ∈ Rn is any vector and

a† =


1

a
a 6= 0,

0 a = 0.

We emphasize that the method (2.1)–(2.2) always satisfies

gT
k dk = −‖gk‖2, (2.3)

independently of choices of pk and line searches. It means that the sufficient descent

condition (1.3) holds with c̄ = 1.

Note that (2.2) can be rewritten by

dk =


−gk if k = 0 or gT

k pk = 0,

−gk + βkdk−1 − βk
gT

k dk−1

gT
k pk

pk otherwise.
(2.4)

Accordingly, if gT
k pk 6= 0 is satisfied, the form (2.2) becomes

dk = −gk + βk

(
I − pkg

T
k

gT
k pk

)
dk−1. (2.5)

The matrix (I − pkg
T
k /gT

k pk) is a projection matrix into the orthogonal complement of

Span{gk} along Span{pk}. Especially, if we choose pk = gk, then (I − gkg
T
k /‖gk‖2) is an

orthogonal projection matrix.

If we use the exact line search and pk such that gT
k pk 6= 0, then our method (2.4)

becomes the nonlinear conjugate gradient method (1.1). The most simple choices are
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pk = gk and pk = yk−1. On the other hand, if we choose pk = dk−1, then (2.2) implies

dk = −gk for all k.

We should note that the present method includes the three-term conjugate gradient

methods proposed by Zhang et al. [19–21]. The method (2.1)–(2.2) with βk = βFR
k and

pk = gk becomes the method by [20] (see (1.4)), and, if gT
k yk−1 6= 0, the method (2.1)–(2.2)

with βk = βPR
k and pk = yk−1 becomes the method by [19] (see (1.5)). If gT

k yk−1 6= 0, the

method (2.1)–(2.2) with βk = βHS
k and pk = yk−1 becomes the method by [21] (see (1.6)).

In addition, the method (2.1)–(2.2) with βk = βPR
k and pk = gk becomes the method

by [2] (see (1.7)).

2.2 Convergence analysis

In order to establish the global convergence property, we make the following standard

assumptions for the objective function.

Assumption 2.1.

1. The level set L = {x|f(x) ≤ f(x0)} at x0 is bounded, namely, there exists a constant

â > 0 such that

‖x‖ ≤ â for all x ∈ L. (2.6)

2. In some neighborhood N of L, f is continuously differentiable, and its gradient is

Lipschitz continuous with Lipschitz constant L > 0, i.e.

‖g(u) − g(v)‖ ≤ L‖u − v‖ for all u, v ∈ N .

Assumption 2.1 implies that there exists a positive constant γ̂ such that

‖g(x)‖ ≤ γ̂, for all x ∈ L. (2.7)

In the line search, we require αk to satisfy the Wolfe conditions:

f(xk) − f(xk + αkdk) ≥ −δαkg
T
k dk, (2.8)

g(xk + αkdk)
T dk ≥ σgT

k dk (2.9)

where 0 < δ < σ < 1, or the strong Wolfe conditions: (2.8) and

|g(xk + αkdk)
T dk| ≤ σ|gT

k dk| (2.10)

where 0 < δ < σ < 1.

In the rest of this section, we assume gk 6= 0 for all k, otherwise a stationary point has

been found.

Under Assumption 2.1, we have the following well-known lemma which was proved

by Zoutendijk (see [16]). The following lemma is the result for general iterative methods

with the Wolfe condition (2.8) and (2.9).
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Lemma 2.1. Suppose that Assumption 2.1 is satisfied. Consider any method in the form

(2.1), where dk is a descent search direction and αk satisfies the Wolfe conditions (2.8)

and (2.9). Then

∞∑
k=0

(gT
k dk)

2

‖dk‖2
< ∞.

Using Lemma 2.1, we have the following lemma, which is useful in showing the global

convergence of our method.

Lemma 2.2. Suppose that Assumption 2.1 is satisfied. Consider the method (2.1)–(2.2),

where αk satisfies the Wolfe conditions (2.8) and (2.9). If

∞∑
k=0

1

‖dk‖2
= ∞ (2.11)

holds, then the following holds:

lim inf
k→∞

‖gk‖ = 0. (2.12)

Proof. If (2.12) is not true, there exists a constant ε > 0 such that

‖gk‖ ≥ ε

for all k. Therefore from (2.3) and (2.11), we have

∞∑
k=0

ε4

‖dk‖2
≤

∞∑
k=0

‖gk‖4

‖dk‖2
=

∞∑
k=0

(gT
k dk)

2

‖dk‖2
= ∞.

Since this contradicts Lemma 2.1, the proof is complete. 2

Now we consider a sufficient condition to establish the global convergence property

of the method (2.1)–(2.2). First, we estimate the norm of the search direction of the

proposed method. If gT
k pk = 0, the following relation

‖dk‖ = ‖gk‖ (2.13)

holds. Otherwise, by squaring both sides of (2.5), we have from the orthogonality of gk

and (I − pkg
T
k /gT

k pk)dk−1

‖dk‖2 =

∥∥∥∥−gk + βk

(
I − pkg

T
k

gT
k pk

)
dk−1

∥∥∥∥2

= β2
k

∥∥∥∥(
I − pkg

T
k

gT
k pk

)
dk−1

∥∥∥∥2

+ ‖gk‖2,
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and hence it follows from

∥∥∥∥I − pkg
T
k

gT
k pk

∥∥∥∥ =
‖gk‖‖pk‖
|gT

k pk|
that

‖dk‖2 ≤ β2
k

(
‖gk‖‖pk‖
|gT

k pk|

)2

‖dk−1‖2 + ‖gk‖2. (2.14)

Therefore, by defining

ψk = βk‖gk‖‖pk‖(gT
k pk)

†, (2.15)

relations (2.13) and (2.14) yield

‖dk‖2 ≤ ψ2
k‖dk−1‖2 + ‖gk‖2 (2.16)

for all k.

For standard conjugate gradient methods, Gilbert and Nocedal [10] derived Property (∗),
which shows that βk will be small when the step sk−1 is small (see also Dai and Liao [3]).

The following property corresponds with Property (∗) except for using ψk instead of βk.

Property A. Consider the method (2.1)–(2.2). Assume that there exists a positive con-

stant ε such that ε ≤ ‖gk‖ holds for all k. Then we say that the method has Property A

if there exist constants b > 1 and ξ > 0 such that for all k:

|ψk| ≤ b, (2.17)

and

‖sk−1‖ ≤ ξ =⇒ |ψk| ≤
1

b
. (2.18)

We note that (2.17) implies that if there exists a positive constant ε such that ε ≤ ‖gk‖
for all k, then

|βk| ‖pk‖ |gT
k pk|† ≤ c (2.19)

holds with c = b/ε.

The next lemma corresponds to Lemma 3.4 in Dai and Liao [3].

Lemma 2.3. Suppose that Assumption 2.1 is satisfied. Consider the method (2.1)–(2.2),

where αk satisfies the strong Wolfe conditions (2.8) and (2.10). Assume that there exists

a positive constant ε such that the following relation holds ε ≤ ‖gk‖ holds for all k. If the

method has Property A and βk ≥ 0 holds, then dk 6= 0 and the following relation holds

∞∑
k=0

‖uk − uk−1‖2 < ∞,

where uk = dk/‖dk‖.
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Proof. Since dk 6= 0 follows from (2.3) and ε ≤ ‖gk‖, the vector uk is well-defined.

Using Lemma 2.2 and ε ≤ ‖gk‖, we have

∞∑
k=0

1

‖dk‖2
< ∞. (2.20)

By defining

vk = −
(
gk + βk(g

T
k pk)

†(gT
k dk−1)pk

) 1

‖dk‖
and ηk = βk(g

T
k pk)

†(gT
k pk)

‖dk−1‖
‖dk‖

,

equation (2.2) is written as

uk = vk + ηkuk−1.

Then we have from the fact that ‖uk‖ = ‖uk−1‖ = 1,

‖vk‖ = ‖uk − ηkuk−1‖ = ‖ηkuk − uk−1‖. (2.21)

It follows from βk ≥ 0 and (2.21) that

‖uk − uk−1‖ ≤ (1 + ηk)‖uk − uk−1‖
= ‖uk − ηkuk−1 + ηkuk − uk−1‖
≤ ‖uk − ηkuk−1‖ + ‖ηkuk − uk−1‖
= 2‖vk‖. (2.22)

From (2.19), we have

βk|gT
k pk|†‖pk‖ ≤ c

for all k. Therefore by (2.10), (2.3), (2.7) and (2.19), we have

βk|gT
k dk−1||gT

k pk|†‖pk‖ ≤ σβk|gT
k−1dk−1||gT

k pk|†‖pk‖
= σβk|gT

k pk|†‖pk‖‖gk−1‖2

≤ σcγ̂2.

Thus (2.22), (2.7) and (2.20) yield

∞∑
k=0

‖uk − uk−1‖2 ≤ 4
∞∑

k=0

‖vk‖2

≤ 4
∞∑

k=0

(‖gk‖ + βk|gT
k dk−1||gT

k pk|†‖pk‖)2 · 1

‖dk‖2

≤ 4(γ̂ + σγ̂2c)2

∞∑
k=0

1

‖dk‖2

< ∞.
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Therefore the lemma is proved. 2

Let N denote the set of all positive integers. For λ > 0 and a positive integer ∆, we

define the set of indices:

Kλ
k,∆ := {i ∈ N | k ≤ i ≤ k + ∆ − 1, ‖si−1‖ > λ}.

Let |Kλ
k,∆| denote the number of elements in Kλ

k,∆. The following lemma shows that if the

gradients are bounded away from zero and (2.17)–(2.18) hold, then a certain fraction of the

steps cannot be too small. This lemma corresponds to [3, Lemma 3.5] and [10, Lemma 4.2].

Lemma 2.4. Suppose that all assumptions of Lemma 2.3 hold. If the method has Property A,

then there exists λ > 0 such that, for any ∆ ∈ N and any index k0, there is an index

k̂ ≥ k0 such that

|Kλ
bk,∆

| >
∆

2
.

P roof. We prove this lemma by contradiction. Assume that for any λ > 0, there exist

∆ ∈ N and k0 such that

|Kλ
k,∆| ≤

∆

2
(2.23)

for all k ≥ k0. Let b > 1 and ξ > 0 be given in Property A. For λ = ξ, we choose ∆ and

k0 such that (2.23) holds. Then from (2.17), (2.18) and (2.23), we have

k0+(i+1)∆∏
k=k0+i∆+1

|ψk| =
∏

k∈Kλ
k′,∆

|ψk|
∏

k∈/Kλ
k′,∆

|ψk| ≤ b∆/2

(
1

b

)∆/2

= 1 for any i ≥ 0, (2.24)

where k′ = k0 + i∆ + 1. If ψk = 0 holds, then the search direction becomes dk =

−gk. Therefore, if ψk equals zero infinitely many times, the search direction becomes

the steepest descent direction infinitely many times, which implies that lim inf
k→∞

‖gk‖ = 0.

Otherwise, we have ψk 6= 0 for k sufficiently large. Therefore we assume without loss of

generality that

ψk 6= 0 (2.25)

for all k ≥ 1. It follows from (2.24) that

k0+i∆∏
j=2

|ψj| =

(
k0∏

j=2

|ψj|

)
·

(
k0+∆∏

j=k0+1

|ψj|

)
. . .

 k0+i∆∏
j=k0+(i−1)∆+1

|ψj|

 ≤
k0∏

j=2

|ψj| for any i ≥ 0,

which implies by (2.25)

k0+i∆∏
j=2

ψ−2
j ≥

k0∏
j=2

ψ−2
j for any i ≥ 0. (2.26)
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By summing (2.26), we have

∞∑
k=2

k∏
j=2

ψ−2
j ≥

∞∑
i=0

k0+i∆∏
j=2

ψ−2
j ≥

∞∑
i=0

k0∏
j=2

ψ−2
j = ∞. (2.27)

From Lemma 2.1 and the assumption 0 < ε ≤ ‖gk‖, we have

∞∑
k=0

(gT
k dk)

2

‖dk‖2‖gk‖2
≤

∞∑
k=0

(gT
k dk)

2

ε2‖dk‖2
< ∞.

Thus there exist a integer j0 and a constant c2 > 0 such that

k∏
j=j0

(
1 −

(gT
j dj)

2

‖gj‖2‖dj‖2

)
≥ c2 (2.28)

holds for any k ≥ j0. On the other hand, (2.16) and (2.3) yield

‖dk‖2 ≤ ψ2
k‖dk−1‖2 + ‖gk‖2 = ψ2

k‖dk−1‖2 +
(gT

k dk)
2

‖gk‖2
,

and hence it follows from (2.28) that

‖dk‖2 ≤
(

1 − (gT
k dk)

2

‖gk‖2‖dk‖2

)−1

ψ2
k‖dk−1‖2

≤ · · ·

≤
k∏

j=j0

(
1 −

(gT
j dj)

2

‖gj‖2‖dj‖2

)−1 (
k∏

j=j0

ψ2
j

)
‖dj0−1‖2

≤ ‖dj0−1‖2

c2

(
j0−1∏
j=2

ψ−2
j

) (
k∏

j=2

ψ2
j

)

≤ c3

k∏
j=2

ψ2
j

for all k ≥ j0, where c3 =
‖dj0−1‖2

c2

j0−1∏
j=2

ψ−2
j . Note that c3 is a positive constant, because

j0 is a fixed integer in (2.28). Therefore, we get by (2.27)

∞∑
k=j0

1

‖dk‖2
≥ 1

c3

∞∑
k=j0

k∏
j=2

ψ−2
j = ∞.

It follows from Lemma 2.2 that lim inf
k→∞

‖gk‖ = 0 holds. Since this contradicts the assump-

tion 0 < ε ≤ ‖gk‖, we obtain the desired result. 2

Now we can give a sufficient condition for the global convergence of the method (2.1)–

(2.2) by using Lemmas 2.3 and 2.4 and Property A. This theorem corresponds to Theorem

3.6 in [3] and the proof is exactly same as that of Theorem 3.6, but we write it for the

readability.
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Theorem 2.1. Consider the method (2.1)–(2.2) that satisfies the following conditions:

(C1) βk ≥ 0 for all k,

(C2) Property A holds.

Assume that αk satisfies the strong Wolfe conditions (2.8) and (2.10). If Assumption 2.1

holds, then the method converges in the sense that lim inf
k→∞

‖gk‖ = 0.

P roof. Since we prove this theorem by contradiction, we assume that there exists

ε such that 0 < ε ≤ ‖gk‖ holds for all k. Then Lemmas 2.3 and 2.4 hold. From the

definition of uk, we have for any l and k with l ≥ k,

xl − xk−1 =
l∑

i=k

‖si−1‖ui−1

=
l∑

i=k

‖si−1‖uk−1 +
l∑

i=k

‖si−1‖(ui−1 − uk−1).

It follows from this relation, the fact ‖uk−1‖ = 1 and (2.6) that

l∑
i=k

‖si−1‖ ≤ ‖xl − xk−1‖ +
l∑

i=k

‖si−1‖‖ui−1 − uk−1‖

≤ 2â +
l∑

i=k

‖si−1‖‖ui−1 − uk−1‖,

which implies that

2â ≥
l∑

i=k

‖si−1‖(1 − ‖ui−1 − uk−1‖). (2.29)

Let λ > 0 be given by Lemma 2.4 and define ∆ = d8â/λe to be the smallest integer not

less than 8â/λ. By Lemma 2.3, we can find an index k0 such that

∞∑
i=k0

‖ui − ui−1‖2 ≤ 1

4∆
. (2.30)

For ∆ and k0 defined above, Lemma 2.4 gives an index k ≥ k0 such that

|Kλ
k,∆| >

∆

2
. (2.31)

By (2.30) and the fact that ‖v‖1 ≤
√

n‖v‖ for any vector v ∈ Rn, we have

‖ui − uk−1‖ ≤
i∑

j=k

‖uj − uj−1‖

≤ (i − k + 1)1/2

(
i∑

j=k

‖uj − uj−1‖2

)1/2

≤ ∆1/2

(
1

4∆

)1/2

=
1

2
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for any i (k ≤ i ≤ k + ∆ − 1). Therefore it follows from (2.29) with l = k + ∆ − 1, the

definition of Kλ
k,∆ and (2.31) that

2â ≥ 1

2

k+∆−1∑
i=k

‖si−1‖ >
λ

2
|Kλ

k,∆| >
λ∆

4
.

Thus we get ∆ < 8â/λ, which contradicts the definition of ∆. Therefore, the theorem is

true. 2

Theorem 2.1 plays an important role to establish global convergence properties of various

kinds of three-term conjugate gradient methods. For instance, we obtain the following

convergence results as a corollary of Theorem 2.1.

Corollary 2.1. Suppose that Assumption 2.1 is satisfied. Consider the method (2.1)–

(2.2), where αk satisfies the strong Wolfe conditions (2.8) and (2.10). Then the following

hold :

(i) The method with βk = βPR+
k and pk = yk−1 (or pk = gk) converges in the sense that

lim inf
k→∞

‖gk‖ = 0.

(ii) The method with βk = βHS+
k ≡ max{βHS

k , 0} and pk = yk−1 (or pk = gk) converges

in the sense that lim inf
k→∞

‖gk‖ = 0.

P roof. In each case, since βk ≥ 0 holds, condition (C1) of Theorem 2.1 is satisfied. It

suffices to prove that (C2) holds in each case. Accordingly, we assume that there exists ε

such that 0 < ε ≤ ‖gk‖ holds for all k.

(i) It follows from βk = βPR+
k and pk = yk−1 that

|ψk| =

∣∣∣∣max

{
gT

k yk−1

‖gk−1‖2
, 0

}
‖gk‖‖yk−1‖(gT

k yk−1)
†
∣∣∣∣

≤ ‖gk‖‖yk−1‖
‖gk−1‖2

≤ 2Lγ̂â

ε2
= b̄.

If b̄ is not greater than 1, define b = 1+ b̄, so that b > 1 and b ≥ b̄, else define b = b̄. Now,

we define ξ = ε2/(Lγ̂b). If ‖sk−1‖ ≤ ξ, we have

|ψk| ≤
Lγ̂‖sk−1‖

ε2
≤ 1

b
,

which implies that Property A holds.

Next we consider the case of βk = βPR+
k and pk = gk. Then we have

|ψk| =

∣∣∣∣max

{
gT

k yk−1

‖gk−1‖2
, 0

}∣∣∣∣ ≤ ‖gk‖‖yk−1‖
‖gk−1‖2

,

12



and hence we can prove that Property A holds for the case pk = gk in the same way as

for the case pk = yk−1. Therefore the proof of (i) is complete.

(ii) It follows from βk = βHS+
k , pk = yk−1 and (2.10) that

|ψk| =

∣∣∣∣max

{
gT

k yk−1

dT
k−1yk−1

, 0

}
‖gk‖‖yk−1‖(gT

k yk−1)
†
∣∣∣∣

≤ ‖gk‖‖yk−1‖
(1 − σ)‖gk−1‖2

≤ 2Lγ̂â

(1 − σ)ε2
= b̄.

If b̄ is not greater than 1, define b = 1+ b̄, so that b > 1 and b ≥ b̄, else define b = b̄. Now,

we define ξ = (1 − σ)ε2/(Lγ̂b). If ‖sk−1‖ ≤ ξ, we have

|ψk| ≤
Lγ̂‖sk−1‖
(1 − σ)ε2

≤ 1

b
,

which implies that Property A holds.

Next we consider the case of βk = βHS+
k and pk = gk. Then we have

|ψk| =

∣∣∣∣max

{
gT

k yk−1

dT
k−1yk−1

, 0

}∣∣∣∣ ≤ ‖gk‖‖yk−1‖
(1 − σ)‖gk−1‖2

,

and hence we can prove that Property A holds for the case pk = gk in the same way as

for the case pk = yk−1. Therefore the proof of (ii) is complete. 2

3 Three-term conjugate gradient method based on

multi-step quasi-Newton method

In this section, we propose a three-term conjugate gradient method based on the multi-

step quasi-Newton method. In order to introduce a new choice of βk and pk, let us briefly

refer to the multi-step quasi-Newton method by Ford and Moghrabi [7, 8]. The search

direction dk of their method is given by dk = −Hkgk, where Hk approximates the inverse

Hessian of the objective function and it is updated by the multi-step BFGS formula:

Hk =

(
I −

ŵk−1r̂
T
k−1

r̂T
k−1ŵk−1

)T

Hk−1

(
I −

ŵk−1r̂
T
k−1

r̂T
k−1ŵk−1

)
+

r̂k−1r̂
T
k−1

r̂T
k−1ŵk−1

and

r̂k−1 = sk−1 − φ̂ksk−2, ŵk−1 = yk−1 − φ̂kyk−2 and φ̂k =
gT

k sk−1

gT
k sk−2

.

Incorporating a parameter tk ≥ 0 into ŵk, we redefine

ŵk−1 = yk−1 − tkφ̂kyk−2.

13



If Hk−1 ≡ I, then the above multi-step BFGS method becomes the multi-step limited-

memory BFGS method, where the memory equals 1. Since gT
k r̂k−1 = 0, the search direc-

tion dk is given by

dk = −
(

I −
ŵk−1r̂

T
k−1

r̂T
k−1ŵk−1

)T (
I −

ŵk−1r̂
T
k−1

r̂T
k−1ŵk−1

)
gk −

r̂k−1r̂
T
k−1

r̂T
k−1ŵk−1

gk

= −gk +
gT

k ŵk−1

r̂T
k−1ŵk−1

r̂k−1.

This search direction can be rewritten as the form:

dk = −gk + βMS
k dk−1 − βMS

k φkdk−2, (3.1)

where

φk =
gT

k dk−1

gT
k dk−2

, (3.2)

rk−1 = dk−1 − φkdk−2, (3.3)

wk−1 = yk−1 − tk
αk−1

αk−2

φkyk−2, (3.4)

and

βMS
k =

gT
k wk−1

rT
k−1wk−1

. (3.5)

Since (3.2) cannot be defined for the case gT
k dk−2 = 0, we replace (3.2) with

φk = gT
k dk−1(g

T
k dk−2)

† (3.6)

as a safeguard, and by considering (2.2), the direction (3.1) can be rewritten by

dk = −gk + βMS
k (gT

k dk−2)
†{(gT

k dk−2)dk−1 − (gT
k dk−1)dk−2}. (3.7)

We note that this corresponds to the three-term conjugate gradient method (2.2) with

pk = dk−2 and βk = βMS
k . In addition, in order to establish the global convergence of our

method, we modify (3.5) as follows:

βMS+
k = max

{
gT

k wk−1

rT
k−1wk−1

, 0

}
. (3.8)

If we use the exact line search, then φk = 0 and βMS+
k = max{gT

k yk−1/d
T
k−1yk−1, 0}, and

hence our method reduces to a modified HS (HS+) method.

Now we consider the global convergence of the proposed method. For this purpose,

we make the following additional assumptions.

Assumption 3.1.
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1. Assume that there exists a positive constant τ1 such that, for all k,

‖gk‖‖dk−2‖|gT
k dk−2|† ≤ τ1. (3.9)

2. Assume that there exists a positive constant τ2 such that, for all k,

|gT
k−1rk−1| ≥ τ2|gT

k−1dk−1|. (3.10)

3. Assume that there exists a constant τ3 that satisfies 0 ≤ τ3 < 1 and

tk
αk−1

αk−2

|φk| ≤ τ3 min
{
|gT

k yk−1||gT
k yk−2|†, |rT

k−1yk−1||rT
k−1yk−2|†

}
for all k. (3.11)

Using Theorem 2.1, we obtain the following global convergence property.

Theorem 3.1. Suppose that Assumptions 2.1 and 3.1 are satisfied. Consider the method

(2.1)–(2.2) with (3.8) and pk = dk−2. Assume that αk satisfies the strong Wolfe conditions

(2.8) and (2.10). Then the method converges in the sense that lim inf
k→∞

‖gk‖ = 0.

P roof. By (3.8), βk ≥ 0 clearly holds. So we only prove that the proposed method

satisfies condition (C2) of Theorem 2.1. To this end, we assume that there exists a

constant ε > 0 such that

‖gk‖ ≥ ε for all k.

It follows from (3.4) and (3.11) that

|gT
k wk−1| ≤ |gT

k yk−1| + tk
αk−1

αk−2

|φkg
T
k yk−2|

≤ (1 + τ3)|gT
k yk−1|

≤ (1 + τ3)L‖gk‖‖sk−1‖. (3.12)

By (3.4), (3.11) and the fact gT
k rk−1 = 0, we have

|rT
k−1wk−1| ≥ |rT

k−1yk−1| − tk
αk−1

αk−2

|φkr
T
k−1yk−2|

≥ (1 − τ3)|rT
k−1yk−1|

= (1 − τ3)|gT
k−1rk−1|. (3.13)

It follows from (3.10) and (2.3) that

|gT
k−1rk−1| ≥ τ2|gT

k−1dk−1| = τ2‖gk−1‖2.

Therefore (3.13) yields

|rT
k−1wk−1| ≥ τ2(1 − τ3)‖gk−1‖2. (3.14)
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By (3.8), (3.12) and (3.14), we have

βMS+
k ≤ |gT

k wk−1|
|rT

k−1wk−1|

≤ (1 + τ3)L‖gk‖‖sk−1‖
τ2(1 − τ3)‖gk−1‖2

≤ (1 + τ3)Lγ̂‖sk−1‖
τ2(1 − τ3)ε2

. (3.15)

Since the choice pk = dk−2 in (2.2) and (2.15) yield

ψk = βMS+
k ‖gk‖‖pk‖(gT

k pk)
† = βMS+

k ‖gk‖‖dk−2‖(gT
k dk−2)

†,

(3.15) and (3.9) give

|ψk| ≤ τ1(1 + τ3)Lγ̂‖sk−1‖
τ2(1 − τ3)ε2

≤ 2τ1(1 + τ3)Lâγ̂

τ2(1 − τ3)ε2
= b̄.

We define b = 1 + b̄ and

ξ =
τ2(1 − τ3)ε

2

τ1(1 + τ3)Lγ̂b
.

Then, if ‖sk−1‖ ≤ ξ, we have

|ψk| ≤
τ1(1 + τ3)Lγ̂ξ

τ2(1 − τ3)ε2
≤ 1

b
.

Therefore, Property A holds. Thus from Theorem 2.1, the theorem is true. 2

If gT
k dk−2 equals zero infinitely many times, the search direction becomes the steepest

descent direction infinitely many times, which implies that lim infk→∞ ‖gk‖ = 0. So it

is sufficient to consider the case gT
k dk−2 6= 0 for all k sufficiently large. We note that

assumption (3.9) yields

|gT
k−1rk−1| ≥ |gT

k−1dk−1| − |φk||gT
k−1dk−2| ≥

(
1 − τ1σ

2‖gk−2‖2

‖gk‖‖dk−2‖

)
|gT

k−1dk−1|.

If σ is chosen to be sufficiently small and
‖gk−2‖2

‖gk‖‖dk−2‖
is bounded, then (3.10) holds. If

‖gk−2‖2

‖gk‖‖dk−2‖
is unbounded, then lim infk→∞ ‖gk‖‖dk−2‖ = 0 holds from (2.7), and it implies

lim infk→∞ ‖gk‖ = 0 or lim infk→∞ ‖dk‖ = 0. By Lemma 2.2, lim infk→∞ ‖dk‖ = 0 leads

lim infk→∞ ‖gk‖ = 0, which is the desired result. Thus if (3.9) holds, then assumption

(3.10) is not unreasonable. In our numerical experiments of Section 4, if (3.9) with

τ1 = 1015 does not hold, then we use the steepest descent direction. However, such a case

did not occur in our numerical results.
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4 Numerical results

In this section, we report some numerical results. We investigated numerical performance

of the proposed algorithms on 79 problems in the CUTEr [1,11] library. Except for 8 prob-

lems, we used the default value of parameter included in each problem. Dimensions of

the test problems lay on the range from 2 to 10000. We examined the following methods,

where we denote CG and 3TCG by conjugate gradient methods and three-term conjugate

gradient methods, respectively:

1. CG-DESCENT : CG by Hager and Zhang [12,14]
2. HS : CG with βk = βHS

3. PR+ : CG with βk = βPR+

4. FR : CG with βk = βFR

5. DY : CG with βk = βDY

6. 3HS+ : 3TCG with βk = βHS+ and pk = yk−1

7. 3PR+ : 3TCG with βk = βPR+ and pk = yk−1

8. 3MS+ : 3TCG with βk = βMS+, pk = dk−2 and tk = 1.

In order to compare three-term conjugate gradient methods with conjugate gradient meth-

ods, we coded HS, PR+, FR, DY, 3HS+, 3PR+ and 3MS+ by using the software package

CG-DESCENT developed by Hager and Zhang [12, 14], in which the line search and

parameters were set as default. Since CG methods except for CG-DESCENT do not gen-

erally generate a descent search direction, we restart as the direction of steepest descent

when a descent search direction is not produced. As stated in Section 3, for 3MS+, if

‖gk‖‖dk−2‖|gT
k dk−2|† ≤ 1015, then we use the restart technique. However, such a case

did not occur in our numerical experiments. We recognize that these numerical experi-

ments are against 3HS+, 3PR+ and 3MS+, because the code CG-DESCENT is suitably

tuned to the CG method by Hager and Zhang. Computational costs of 3HS+, 3PR+

and 3MS+ may be reduced by effectively tuning the code, but it is beyond the scope of

this paper. In the line search, we used the Wolfe conditions (2.8) and (2.9). Although

we also tested 3HS+, 3PR+ and 3MS+ with the strong Wolfe conditions (2.8) and (2.10)

for some problems, the results are not so different from results of the methods using the

Wolfe conditions.

As stated in Section 2, if gT
k yk−1 6= 0, the search directions of 3HS+ and 3PR+ become

those given by Zhang et al. [19, 21]. However their line search is not same as ours, and

hence 3HS+ and 3PR+ are different from the algorithms by Zhang et al.

The stopping condition was

‖gk‖1 ≤ 10−6.

We stopped the algorithm if CPU time exceeds 500(sec) or if a numerical overflow occurs

while the method tries to compute f(xk + αkdk). However the second case did not occur.

We adopt the performance profiles by Dolan and Moré [5] to compare the performance

among the tested methods. Figure 1–4 are the performance profile measured by CPU time,
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the number of iterations, the number of function evaluations and the number of gradient

evaluations, respectively. In Figure 1, CG-DESCENT performed well from the viewpoint

of CPU time. Since the code was not tuned for our methods, there was a case where our

methods needed more CPU time. For example, for small-scale problems, there are the

cases that CPU time of CG-DESCENT is 0.01(sec) and CPU time of 3MS+ is 0.02(sec),

and hence the line of 3MS+ in Figure 1 much goes up at τ = 2. Accordingly, the numerical

performance should be compared by measures different from CPU time. This is a reason

why we give Figures 2–4. In Figures 2–4, we see that CG-DESCENT also performed well,

and 3PR+, 3HS+ and PR+ are comparable with CG-DESCENT. On the other hand,

3MS+ is slightly outperformed by CG-DESCENT and is comparable with HS.

From our numerical experiments, we see that 3TCG (especially 3PR+ and 3HS+)

performed as well as CG-DESCENT did. However, there is room to improve 3TCG.

Especially, since the line search in CG-DESCENT is also tuned for CG by Hager and

Zhang, we need to develop a suitable line search for 3TCG. It is our further work.
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Figure 1: Performance profile by CPU time

ø

ø

ø

ø
ø ø

ø

ø ø
ø ø

ø ø ø ø ø ø
ø ø ø ø ø ø ø ø ø ø ø ø

ø ø

ò

ò

ò
ò

ò ò
ò
ò ò ò

ò ò ò
ò ò

ò ò
ò ò ò ò ò ò ò

ò ò ò ò ò ò ò

æ

æ

æ

æ æ
æ
æ
æ
æ æ æ

æ æ æ æ
æ æ æ æ

æ æ æ æ æ æ æ
æ æ æ æ æ

à

à

à

à

à

à à
à
à à à

à
à à à à à à à

à à à à à à à à à à à
à

ì

ì

ì
ì

ì
ì
ì ì

ì ì

ì ì ì ì ì ì
ì ì ì ì ì

ì ì ì ì ì ì ì ì ì ì

ô

ô
ô
ô
ô
ô ô

ô ô
ô
ô ô

ô ô ô ô ô ô ô
ô ô ô ô

ô ô ô ô
ô ô ô ô

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

Τ

PH
Τ
L

3MS+
ô 3HS+
ì 3PR+

DY
à FR
æ PR+
ò HS
ø CG-Descent

Figure 2: Performance profile by iterations
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Figure 3: Performance profile by function evaluations
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Figure 4: Performance profile by gradient evaluations
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5 Conclusion

In this paper, we have proposed a general form of three-term conjugate gradient methods

which always satisfy the sufficient descent condition independently of line searches and a

choice of βk. Moreover, we have given a sufficient condition for the global convergence of

the proposed method. We have also proposed a new three-term conjugate gradient method

based on the multi-step quasi-Newton method as a specific method. We have given the

numerical results of our method by using commonly used benchmark problems, and have

shown that our method perform effectively. Our further works are to find a suitable choice

of pk and to develop an efficient line search for three-term conjugate gradient methods.
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