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Abstract. We model the neuronal circuit of the C.elegans soil worm in
terms of a Hindmarsh-Rose system of ordinary differential equations,
dividing its circuit into six communities which are determined via the
Walktrap and Louvain methods. Using the numerical solution of these
equations, we analyze important measures of dynamical complexity,
namely synchronicity, the largest Lyapunov exponent, and the ΦAR
auto-regressive integrated information theory measure. We show that
ΦAR provides a useful measure of the information contained in the
C.elegans brain dynamic network. Our analysis reveals that the C.elegans
brain dynamic network generates more information than the sum of its
constituent parts, and that attains higher levels of integrated information
for couplings for which either all its communities are highly synchronized,
or there is a mixed state of highly synchronized and desynchronized
communities.

1 Introduction

Single-cell organisms manage to survive without possessing neurons. For example,
bacteria in a petri-dish respond to a drop of a toxic substance by clamping together. Pre-
sumably, neurons appeared in evolution when multicellular organisms were sufficiently
complicated that it became “useful” to have a designated system of communication.
Organisms with even very simple nervous systems exhibit more complex behaviors
than organisms without neurons. For example, the C.elegans soil worms, which have
302 neurons, feed alone if food is available and if the environment is quiet; however, if
food is scarce and if they detect a threat (such as an unpleasant odour), they feed in
groups. Presumably, this behavior is unconscious [1].

The identification of objective criteria for distinguishing conscious from unconscious
processes still remains an important open problem. In recent years, an attempt has
been made to “mathematise” consciousness [3–9]. Indeed, in his beautiful book “Phi, a
Voyage from the Brain to the Soul” [10], the well-known neuroscientist and psychiatrist
G. Tononi claims that the only way to understand consciousness is to express it in
terms of mathematical equations. Furthermore, Tononi claims that “consciousness is



2 Will be inserted by the editor

integrated information theory”, and the latter takes indeed the form of a concrete
mathematical expression.

In what follows, we focus on the brain dynamic network (BDN) of the C.elegans
soil worm [11] whose connectome is almost completely mapped [12]: However, we must
point out that the Hindmarsh-Rose (HR) type of neuronal dynamics we impose on our
BDN (see Section 3 below) may not be an adequate representation of the “real biology”
of the C.elegans. Thus, our results should be viewed as indicative of the general behavior
expected from a biologically realistic neuronal network. Our work primarily focuses on
several quantities that describe the dynamical complexity of this brain network, and
after computing these quantities, we make comparisons and draw a number of useful
conclusions with respect to chaotic behavior, neural synchronization and a measure
that quantifies the amount of integrated information generated by this network.
More specifically, we employ concepts of nonlinear dynamics and complexity [13–15]
and investigate their possible connections with the notion of integrated information
theory [4, 7, 9]. In particular, we apply measures of synchronization [17–21] and
chaos [22] with integrated information theory [23] to better analyze and understand
the numerical solution of a BDN model describing the C.elegans brain.

It is well-known that a defining feature of all neural circuits (including the primitive
radiata) is their connectivity. Note that the larger the number of neurons, the larger
the number of available connectivity profiles, hence the greater the potential for
richer behavior. Neuronal network modeling provides a rigorous mathematical way
of quantifying this behavior. Indeed, building on the seminal work of Hodgkin and
Huxley [24] there now exist several different systems of ordinary differential equations
(ODEs) which can be used to model a given neural circuit. The numerical solution of
these ODEs exhibits typical features of the behavior of a neuronal circuit, including
chaotic behavior characterized by spiking and bursting.

2 Materials and Methods

2.1 C.elegans Data

C.elegans is a 1mm long soil worm with a simple nervous system that consists of 302
neurons and about 7000 synapses [25]. Its nervous system is divided into two distinct
and independent components: A large somatic nervous system and a small pharyngeal
nervous system. In the present study, we adopt the connectome of the large somatic
nervous system found in Ref. [11] consisting of 277 neurons, and use for simplicity
the undirected version of the relevant adjacency matrix. We then couple the different
neurons via ODEs using the corresponding adjacency matrix obtained from the brain
connectivity of the C.elegans.

2.2 The Hindmarsh-Rose Neural Model

We model the dynamics of each “neuron” by a single HR neuron system. Namely,
following Refs. [19, 26], we endow the nodes (i.e. neurons) of the C.elegans BDN with
the dynamics characterized by the following system of ODEs [27]:

ṗ = q − ap3 + bp2 − n+ Iext,

q̇ = c− dp2 − q, (1)

ṅ = r[s(p− p0)− n],

where p is the membrane potential, q characterizes the fast ion current (i.e. Na+

or K+), and n the slow ion (adaptation) current, for example Ca2+. In this neuron
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system, p, q and n are expressed in dimensionless units [27]. The parameters a, b, c,
d, which model the function of the fast ion channels, and s, p0 are given by a = 1,
b = 3, c = 1, d = 5, s = 4 and p0 = −8/5 (see Refs. [19,26,27]) and are the same for
all neurons. The parameter r, which modulates the slow ion channels of the system,
is set to 0.005 for all neurons, and the parameter Iext, which is the current that
enters the neuron, is set to 3.25 for all neurons. For the above values, each neuron can
exhibit chaotic behavior and the solution for p(t) exhibits typical multi-scale chaos
characterized by spiking and bursting activity consistent with the membrane potential
observed in experiments on single neurons in vitro [27]. Thus, chaos not only allows
the simulated BDNs to reproduce behaviors empirically observed in experiments with
single neurons, but also allows the network to process information generated via an
external stimulus [28].

Since the neuron activity of C.elegans is not generally expected to be spiking, we
carried out the same study at another parameter point (b = 2.5, Iext = 3.5) supporting
only bursting behavior. In particular, we have considered three characteristic coupling
pairs in the parameter space of Fig. 1, one in the yellow region of high synchronization,
(gn, gl) = (0.02, 1.7), one in the blue region of low synchronization (gn, gl) = (0.1, 0.3)
and a third at (gn, gl) = (0.23, 1.6) in the red region of large dynamical instability.
Our results regarding the integrated information measures ΦAR are very similar to
what we have found at the other pair of parameters (with the exception of ΦqAR in the

red region being one order of magnitude higher). Thus, we feel that our findings are
not strongly affected by whether the dynamics is in the spiking or bursting regimes,
even though this is an interesting point that requires further investigation.

We couple the HR system to create an undirected BDN of Nn neurons connected
simultaneously by linear diffusive coupling and nonlinear coupling synapses [26] as
follows:

ṗi = qi − ap3i + bp2i − ni + Iext − gn(pi − Vsyn)

Nn∑
j=1

BijS(pj)− gl
Nn∑
j=1

GijH(pj),

q̇i = c− dp2i − qi, (2)

ṅi = r[s(pi − p0)− ni],

φ̇i =
q̇ipi − ṗiqi
p2i + q2i

, i = 1, . . . , Nn,

where φ̇i is the instantaneous angular frequency of the i-th neuron, with φi being the
phase defined by the fast variables (pi, qi) of the i-th neuron [29]. The functions H and

S are chosen as H(pi) = pi and S(pj) = [1 + e−λ(pj−θsyn]−1 [19, 26]. S is a sigmoidal
function that acts as a continuous mechanism for the activation and deactivation of
the chemical synapses and, also allows for analytical calculations of the synchronous
modes and synchronization manifolds of the coupled system of Eqs. (2) [19]. The
remaining parameters are chosen as follows: For the parameters θsyn, λ, and Vsyn,
we set θsyn = −0.25, λ = 10, and Vsyn = 2 is chosen so as to yield an excitatory
BDN [19,26].

The parameters gn and gl, which are varied in the parameter spaces of all figures
of the paper, denote the strength associated with the nonlinear excitatory and linear
diffusive coupling between the corresponding synapses, respectively, and are assigned
after the break-down of the brain network into communities, for both community
detection methods used in this work (see Subsec. 2.5).

Regarding the physical meaning of these parameters, we note that the authors
in Ref. [12] have suggested that there exist chemical and self-consistent gap junction
synapse networks in the C.elegans brain. In our model, we have used a simplified
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version, in which neurons in different communities are coupled chemically (through
nonlinear excitatory connections) whereas those in the same community are coupled
electrically (through linear diffusive connections). It would be interesting to extend
our study to more complex brain networks such as those described in Ref. [12].

For the chosen parameters, we have taken |pi| < 2, and (pi−Vsyn) always negative
for excitatory networks. If two neurons are connected via an excitatory synapse, then
if the presynaptic neuron spikes, it induces the postsynaptic neuron to spike. We adopt
only excitatory nonlinear synapses in our analysis. Gij accounts for the way neurons
are linearly (diffusively) coupled and is represented by a Laplacian matrix

Gij = Kij −Aij , (3)

where A is the binary adjacency matrix of the linear connections and K is the degree

identity matrix based on A; thus
∑Nn

j=1 Gij = 0. By binary we mean that if there is a
connection between two neurons then the entry of the matrix is 1, otherwise it is 0. Bij

is a binary adjacency matrix and describes how the neurons are nonlinearly connected

and therefore its diagonal elements are equal to 0, thus
∑Nn

j=1 Bij = ki, where ki is the
degree of the i-th neuron, i.e. ki represents the number of nonlinear links that neuron i
receives from all other j neurons in the network. A positive off-diagonal value of both
matrices in row i and column j means that neuron i perturbs neuron j with an intensity
given by glGij (linear diffusive coupling) or by gnBij (nonlinear excitatory coupling).
Therefore, the binary adjacency matrix C of the complex networks considered in this
work is given by

C = A + B. (4)

We use as initial conditions for each neuron i the following: pi = −1.30784489 + ηri ,
qi = −7.32183132 + ηri , ni = 3.35299859 + ηri and φi = 0, where ηri is a uniformly
distributed random number in [0, 0.5] for all i = 1, . . . , Nn (see Refs. [19,26] for details).
These initial conditions have been chosen so that the dynamics will eventually lead to
one of the many possible attractors that coexist in the phase space of the system. It
does not make any difference though which attractor is chosen, since for all of them
a similar dynamical behavior is observed. Thus, there is less need to consider longer
transients.

2.3 Numerical Simulations Details

We have integrated numerically Eqs. (2) using the Euler integration method (first
order) with time step δt = 0.01. We have decided to employ a first order scheme in
order to reduce the numerical complexity and CPU time of the required simulations
to feasible levels. A preliminary comparison of the trajectories computed for the same
parameters (i.e. δt, initial conditions, etc.) via integration methods of order 2, 3 and 4
produced similar results.

We have calculated the largest Lyapunov exponent λ1 using the well-known method
of Ref. [22]. The numerical integration of the HR system of Eqs. (2) was performed
for a total time of tf = 5000 units and the computation of the various quantities
needed in our analysis, such as the largest Lyapunov exponent λ1, were computed
after a transient time tt = 300 in order to make sure that orbits have converged to an
attractor of the dynamics.

2.4 Synchronization Measures in BDNs

It is known that burst synchronization of neural systems can be strongly influenced
by many factors, including coupling strengths and types [17], noise [30], and the
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existence of clusters in neural networks [31]. Here, we use the order parameter ρ to
account for the synchronization level of the neural activity of the C.elegans BDN and
its communities [18]. This notion, which originates from the theory of measures of
dynamical coherence of a population of Nn oscillators of the Kuramoto type [32], can
be computed via the expression [18]

z(t) = ρ(t)eiΨ(t) =

Nn∑
j=1

eiφj(t), (5)

where Nn denotes the number of neurons of the BDN and φj(t) is the phase variable of
the j-th neuron of the HR system given by the fourth equation in Eq. (2). The modulus
ρ(t) of the complex number z(t), which takes values in [0, 1], measures the phase
coherence of the population of the Nn neurons, and Ψ(t) measures the average phase of
the population of oscillators. In fact, we average ρ(t) over time and compute the order
parameter ρ ≡ 〈ρ(t)〉t to determine how ρ evolves. The value ρ = 1 implies complete
synchronization of the oscillators, whereas ρ = 0 means complete desynchronization.

We use Eq. (5), adapted accordingly, for the computation of the synchronization
level of the C.elegans BDN, and of its communities (for a discussion of communities
see Subsec. 2.5). In particular, Nn is the number of neurons of the BDN and j runs
through all Nn = 277 neurons of that network, whereas in the case of communities,
Nn represents the number of neurons of the particular community and j refers to the
particular neurons which are members of this community.

2.5 Analysis of Networks and Communities

2.5.1 C.elegans Brain Network

We have identified the communities of the C.elegans brain network using two different
approaches: We first used the Walktrap method [33] employing the igraph software
using six steps [26], and then the Louvain method [34] (with resolution 1) employing
the NetworkX software [35].

The Walktrap algorithm detects communities using a series of short random walks
based on the idea that vertices encountered on any given random walk are more
likely to lie within a community. The algorithm initially treats each node as its own
community, and then merges them into larger communities, followed by still larger ones,
and so on. Essentially, given a graph, this algorithm tries to find densely connected
subgraphs (i.e. communities) via random walks. The idea is that short random walks
tend to stay in the same community. Using the above procedure we have been able to
identify 6 communities in the C.elegans brain network.

The Louvain algorithm involves two phases: In the first phase, it looks for “small”
communities by optimizing modularity locally, and in the second phase the algorithm
aggregates nodes of the same community and builds a new network whose nodes are
the communities. These steps are repeated iteratively until a maximum of modularity
is achieved. By focusing on ad-hoc networks with known community structure, it
has been shown that the Louvain method is very accurate. Moreover, due to its
hierarchical form which is reminiscent of renormalization strategies, this method
allows one to look for communities at different resolutions. The output therefore
yields several partitions: The partition found after the first step typically consists of
many communities of small sizes; at subsequent steps, larger and larger communities
are found due to the aggregation mechanism, and this process naturally leads to a
hierarchical decomposition of the network. This algorithm is obviously an approximate
method and nothing ensures that the global maximum of modularity is attained.
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However, several tests have confirmed that the Louvain algorithm is quite accurate
and often provides a decomposition into communities with a modularity close to the
optimal. The Louvain algorithm outperforms other methods in terms of computation
time, and this allows one to analyze networks of unprecedented size [34]. Following
this methodology we were able to identify again 6 communities in the C.elegans brain
network. However, the communities identified by the Walktrap and Louvain methods
are not identical, neither in size nor in their members. This was realized by comparing
directly the community structures identified by these methods.

2.6 Integrated Information Theory Measures

In Ref. [23] the authors present some practical methods for measuring integrated
information [4] from time-series data. Based on recently introduced measures of
integrated information (see for example Refs. [3, 6,9]), they analyze quantities that
measure the extent to which a system generates more information than the sum of its
constituent parts as it transitions between different states. The authors in Ref. [23]
propose two new such measures, ΦE (empirical) and ΦAR (auto-regressive), that
overcome limitations faced by older versions of analogous quantities, and can be
computed using time-series data derived from measurements of realistic or model
systems. Thus, these measures offer promising approaches for revealing relations
between integrated information, consciousness, and other neurocognitive quantities in
real and model systems.

The auto-regressive measure Φ (ΦAR) is well-suited for cases where the time-
series is non-Gaussian distributed but nevertheless stationary and stochastic. By
construction, when applied to Gaussian-distributed, stationary data, it is equivalent
to the well-known empirical version of Φ for integrated information, ΦE. However,
these measures already differ when applied to non-Gaussian, stationary data. Indeed,
ΦAR provides a useful measure of integrated information based on relations between
conditional entropy, partial covariance and linear regression prediction error.

Next, we briefly describe the derivation of ΦAR following Ref. [23]: We start

from two multivariate random variables X = (X1, . . . , Xn)T and Y = (Y 1, . . . , Y m)T ,
where T denotes the transpose of a matrix or a vector. Their linear regression is then
given by

X = a+A · Y + E, (6)

where A is the regression matrix, a is a vector of constants, and E the prediction error.
E is a random vector uncorrelated with Y . Given that the distributions of X and Y
are defined by

A =
∑

(X,Y )
∑

(Y )−1, (7)

a = x̄−A · ȳ, (8)

it follows that the linear regression is unique. In this framework, (Y )−1 denotes the
inverse of the covariance matrix of Y ,

∑
(X) denotes the n× n matrix of covariances,∑

(X,Y ) the n×m matrix of cross-covariances, and x̄, ȳ are the means of the random
variables X and Y respectively. E has zero mean and its covariance is the partial
covariance of X given Y ,∑

(E) =
∑

(X|Y ) =
∑

(X)−
∑

(X,Y )
∑

(Y )−1
∑

(X,Y )T . (9)

Provided that
∑

(Y ) is an invertible covariance matrix, Eq. (9) holds for any random
variables X and Y , whether they are Gaussian or not.
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If it happens that X and Y are Gaussian distributed random multivariate variables,
then the conditional entropy of X given that Y = y, y ∈ Rm satisfies the equation

H(X|Y = y) =
1

2
log
(

det
(∑

(E)
))

+
1

2
n log(2πe), ∀y ∈ Rm, (10)

where det() denotes the determinant of the matrix. This is a relation between the
conditional entropy and linear regression prediction error valid for Gaussian systems.
Under these assumptions, the effective information φ can be written as

φ
[
X; τ, {M1,M2}

]
=

1

2
log

(
det(

∑
(X))

det(
∑

(EX))

)
− 1

2

2∑
k=1

log

(
det(

∑
(Mk))

det(
∑

(EMk))

)
, (11)

where {M1,M2} is the bipartition of X, EM
k

, k = 1, 2, and EX are the prediction
errors in the linear regressions

Mk
t−τ = AM

k

·Mk
t + EM

k

t , (12)

Xt−τ = AX ·Xt + EXt . (13)

Here, the notation Xt−τ denotes the τ steps past state (i.e. time lag) from the current
state Xt.

If the system under consideration is not Gaussian distributed, then Eq. (11) does
not hold. However, the right hand side of Eq. (11) is a quantity that is well defined
and can be measured empirically. This quantity is actually the basis of the alternative
measure ΦAR, i.e. the auto-regressive measure Φ for integrated information proposed
in Ref. [23].

Summarizing, we assume that X is a stationary, not necessarily Gaussian, multi-

variate random variable, and let φAR

[
X; τ, {M1,M2}

]
represent the right hand side

of Eq. (11). Then, ΦAR is simply φAR for the bipartition B = {M1,M2} of X that
minimizes φAR divided by the normalization factor

L(B) =
1

2
log

(
min
k

{
(2πe)|M

k| det
(∑(

Mk
))})

. (14)

Under these considerations, ΦAR
[
X; τ

]
is defined by

ΦAR
[
X; τ

]
= φAR

[
X; τ,Bmin(τ)

]
, (15)

where

Bmin(τ) = argBmin

{
φAR[X; τ,B]

L(B)

}
. (16)

The function ΦAR, defined by Eq. (15), is formulated in terms of the linear
regression prediction error, which essentially compares the whole system to the sum
of its parts in terms of the log-ratio of the variance of the past state to the variance
of the prediction errors of the linear regression of the past on the present. It can be
understood as a measure of the extent to which the present global state of a system
is predicted by the past global state, as compared to predictions based on the most
informative decomposition of the system into its component parts. In other words, it
is a measure that quantifies the extent to which a system generates more information
than the sum of its constituent parts.
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In closing, it is important to note that in this work we have computed Φ using a
macroscopic partition of the associated network, as explained in the Results section.
For the human brain it is an unproven hypothesis that macro-level Φ results correlate
with micro-level Φ values. The interpretation of our results for the C.elegans brain,
therefore, with respect to integrated information, is based on a similar hypothesis.

A final question, which has not been addressed in the present study, concerns the
effect of directionality of information flow in the BDN we have used to analyze the
C.elegans brain. Currently, we are investigating various directional networks aiming
to explore how their dynamics differs from the undirected case and results will appear
in a future publication.

3 Results

Our analysis is based on the numerical solution of the ODEs of Eq. (2). Using
the Walktrap method, we have divided the C.elegans BDN into 6 communities (the
Louvain method also produced 6 communities), and have computed the synchronization
measure ρ (see Eq. (5)), as well as the synchronization measures {ρci}61 for each of
the 6 communities using both methods. These parameters are plotted in panel (a)
(for ρ) and panels (c)-(h) (for ρc1 -ρc6) of Fig. 1 as functions of the nonlinear coupling
strength gn and the linear coupling strength gl. The former characterizes the strength
of the links between the different communities, whereas the latter the strength of the
links within each community. These graphs show that for low nonlinear couplings
and moderate to higher linear couplings, all communities, as well as the full network
become highly synchronized with ρ > 0.9 (depicted by the yellow and orange area
in the parameter space). This corresponds to the case where the internal synapses
within each community are stronger with respect to the synapses that link the different
communities. However, this synchronization pattern starts to change as the nonlinear
coupling increases to higher values. Interestingly, synchronization patterns start to
emerge after gn > 0.15 and for large enough linear couplings: In this regime, the
third and sixth communities become synchronized, whereas the other communities
remain in a highly desynchronized state. This situation is reminiscent of the so-
called “chimera states” that have been recently observed in simple network models of
coupled HR oscillators, where synchronized and asynchronous populations are found
to coexist [36,37].

The largest Lyapunov exponent λ1 is depicted in Fig. 1b). This graph shows
that λ1 is rather large (red region) in the region of the parameter space where the
synchronization levels remain quite low. Since higher values of λ1(> 0) are associated
with a higher degree of chaos, this implies an “inverse” relation between synchronization
levels and the level of dynamical instability (i.e. chaos) of neural activity. Of course,
depending on the coupling strengths, there are also regions where both quantities are
low.

We have computed the auto-regressive ΦAR for both the membrane potential p(t)
and fast ion current q(t). Indeed, for each pair of values in the plane of nonlinear and
linear coupling parameters, the numerical simulation produces a recorded time-series
Xp(t) = {p1(t), . . . , p277(t)} and Xq(t) = {q1(t), . . . , q277(t)} of the neural activity of
all 277 neurons (for an explanation why we used 277 out of 302 neurons see Subsec. 2.1).
The C.elegans brain network was divided into 6 unequally distributed communities.
Thus, it is more convenient for the estimation of ΦpAR and ΦqAR, to compute for each

community ci, i = 1, . . . , 6, the following averaged time-series

Xp
ci(t) =

1

|ci|
∑
j∈ci

Xp
j (t), (17)
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and

Xq
ci(t) =

1

|ci|
∑
j∈ci

Xq
j (t), (18)

where |ci| is the number of neurons in community i.
The next step is to prepare the community-averaged time-series in such a way as

to be able to calculate ΦpAR and ΦqAR, based on the averaged Xp
ci and Xq

ci versions

of the data. Before doing so though, we have performed a preliminary study and have
checked that the neural dynamics of the individual neurons of single communities are
similar throughout their time-evolution, and that this is valid for all communities, both
for the Walktrap and Louvain methods. This allows us to transform Xp

ci and Xq
ci into

stationary time-series by performing initially a detrending procedure (subtracting from
the time-series their mean), reducing differences in their variance by computing the
logarithm with base 10 of Xp

ci and Xq
ci , and removing the parts of the trajectories that

correspond to quiescent periods (i.e. absence of neural activity such as stereotypical
spiking behavior). In this way, we obtain the stationary versions X̄p

ci and X̄q
ci , which

can be seen as multivariate (six variates for each X̄ci) analogues of stochastic-like
random stationary processes. These quantities are then used for the estimation of
ΦpAR and ΦqAR.

For the estimation of these two quantities we use the Matlab code “ARphidata.m”
for stationary data provided in the Supporting Information of Ref. [23]. We thus
present the results of these computations for τ = 1 (associated with the Walktrap
community detection method) in panels i), j) of Fig. 1. Panel i) is the parameter
space for the quantity ΦpAR and panel j) for the quantity ΦqAR. In the context of the

integrated information theory of consciousness [3–5, 7], ΦAR ≥ 0, being zero when
a system generates the same amount of information with the sum of its parts as it
transitions between states. If one is to attribute a physical meaning to ΦpAR and ΦqAR,

one would say that the higher their values, the higher the level of consciousness. In
this sense, we cannot say that a certain value of Φ is small, unless it is compared
with other Φ values in the same figure. For this reason, we do not normalize ΦpAR
and ΦqAR. We observe that ΦpAR reaches high values in the range of low nonlinear

and relatively moderate to high linear couplings; these are precisely the values where
the synchronization levels of all communities (panels c) to h)) and the whole BDN
(panel a)) of the C.elegans are also quite high. On the other hand, ΦqAR attains high

values in the range of high nonlinear and relatively low to high linear couplings; this
is the region of parameter space where the synchronization level of the sixth (see
panel h)) and possibly the third community (see panel e)) are very high, despite the
asynchronous behavior of the rest of the communities.

A similar study for τ = 1 presented in Fig. 2 for the six communities detected by
the Louvain method reveals analogous results with those for the Walktrap method
shown in Fig. 1. In these two figures, there are, however, some striking differences with
regard to the global synchronization ρ and integrated information theory measure
ΦpAR. Indeed, a comparison between Figs. 1a) and 2a) shows that the whole BDN

of the C.elegans becomes highly synchronized (Fig. 2a)) for gn > 0.25, which is in
contrast to what is depicted in Fig. 1a) for the same range of nonlinear couplings.
The reason is that the number of nonlinear connections for the Louvain method is
larger (742 undirected links) than those of the Walktrap method (586 undirected
links). Additionally, the integrated information theory measures ΦpAR in Figs. 1i) and

2i) attain their highest values (about 0.3 and 0.4 respectively) for different coupling
ranges: Notably, ΦpAR is maximal in Fig. 2i) for gl values in (1.6, 2) and small nonlinear

coupling gn, whereas in Fig. 1i), it is maximal for pairs of couplings for which gl > 0.8
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and gn quite small. On the other hand, when the linear coupling is moderate and
the nonlinear coupling large enough (i.e. gn ≈ 0.28), ΦqAR in Figs. 1j) and 2j) attains

its highest value (of about 0.09 in both cases). It is well-known that, in the context
of the integrated information theory of consciousness, a good practise is to adopt
the τ value that maximizes ΦAR. Here, in order to study the effect of different time
delays in ΦAR, we have also computed similar parameter spaces for both integrated
information theory measures and community detection methods using τ = 2, 3, 4 and
5. Interestingly, we find that the new parameter spaces about both Φ measures for
τ = 2, 3, 4 and 5 are qualitatively similar to those for τ = 1 in Figs. 1 and 2, and thus
there is no need for choosing those that maximize ΦAR. This similarity for different
τ may be due to slow decay of correlations and hence absence of small τ values at
which memory effects are minimal.

In conclusion, both measures attain higher levels for couplings for which either all
communities are strongly synchronized, or there is a mixed state of highly synchronized
and desynchronized communities. Both cases are found to be characterized by low
chaotic behavior, as depicted by the maximal Lyapunov exponent.

4 Discussion

In this work we have attempted to quantify and compare certain important measures of
dynamical complexity: (i) A measure of synchronicity, which is suggestive of integration
between sub-domains as the system exhibits coherent behavior as a whole (see Ref. [38]
in which it is shown that when a simple flickering stimulus is consciously perceived there
is a marked increase in long-range coherence at the stimulus frequency), (ii) the largest
Lyapunov exponent, which provides a measure of chaos (or dynamical instability) and,
(iii) ΦpAR and ΦqAR, which are the auto-regressive information measures associated

with the membrane potential p and fast ion current q, respectively. The latter ones
can be understood as measures of the extent to which the present global state of the
system reflects the past global state, compared with predictions based on the most
informative decomposition of the system into its components.

As argued in Ref. [23], ΦAR possibly reflects levels of consciousness generated
by neural systems. It appears that the notion of ΦAR provides a useful tool for
quantifying the integrated information contained in a given neural system. Thus, in
the context of the integrated information theory of consciousness, if one is to attribute
a physical meaning to ΦAR, one would say that the higher its value, the higher the
level of consciousness.

Combining the results of Figs. 1 and 2, and based on the above interpretation,
our analysis suggests that, for particular coupling strengths, the C.elegans BDN is
able to generate more information than the sum of its constituent parts. Specifically,
we find that the C.elegans BDN attains higher levels of integrated information for
couplings for which either all its communities are highly synchronized, or there is a
mixed state of highly synchronized and desynchronized communities, a situation that
corresponds to low chaotic neural behavior. We find that in the case of the C.elegans
brain network there exist substantial differences between the behaviors of the ΦpAR
and ΦqAR measures.

A complementary approach has been given in Ref. [26] where various statistical
quantities associated with the same C.elegans brain network, such as the global
clustering coefficient, the average of local clustering coefficients, the mean shortest path,
the degree probability distribution function of the network and the small-worldness
measure have been computed. Even though small-worldness captures important aspects
of complex networks at the local and global scale, it does not provide information
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Fig. 1. High synchronization and low dynamical neural instability imply high inte-
grated information theory measure for the C.elegans communities detected by the
Walktrap method. Panel a) is the parameter space of the synchronization measure ρ
for the whole BDN and panel b) is a similar parameter space for the largest Lyapunov
exponent λ1 of the neural dynamics. Panels c) to h) are similar to panel a) for the
synchronization measures ρc1 -ρc6 of the six communities, respectively. Panels i) and j)
show the parameter spaces of the integrated information theory measures ΦpAR and

ΦqAR, respectively. In all panels, gn is the nonlinear coupling, gl the linear coupling,

and τ = 1.
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Fig. 2. High synchronization and low dynamical neural instability imply high inte-
grated information theory measure for the C.elegans communities detected by the
Louvain method. Panel a) is the parameter space of the synchronization measure ρ for
the whole BDN and panel b) is a similar parameter space for the largest Lyapunov
exponent λ1 of the neural dynamics. Panels c) to h) are similar to panel a) for the
synchronization measures ρc1 -ρc6 of the six communities, respectively. Panels i) and j)
show the parameter spaces of the integrated information theory measures ΦpAR and

ΦqAR, respectively. In all panels, gn is the nonlinear coupling, gl the linear coupling,

and τ = 1.
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about the intermediate scale. This can be better described by the modularity, or
community structure of the network.

It is also important to note that the authors in Ref. [12] have gathered and
combined material from many different sources and studies, and report on the whole
set of self-consistent gap junction and chemical synapses of the C.elegans brain. They
identify neurons that may play a central role in information processing, and network
motifs that could serve as functional modules of the brain network. This is in the same
spirit with the notion of communities used in the present study, but involves a more
complicated distribution of chemical and electrical synapses than we have assumed
here. In a future publication, we plan to extend our analysis to investigate dynamical
complexity in more “realistic” neural networks, such as those reported in Ref. [12].

It is also interesting to ask to what extent the results of the present study can
be attributed to the particular C.elegans network used here. As a first step in this
direction, we applied the HR dynamics to an Erdős-Rényi random network and found
that they are quite different: As shown in Fig. 3, the values of ΦAR differ from what
is depicted in Figs. 1 and 2. We also found that the number of communities is also
different (9 instead of 6, applying the same community detection methods) as well as
the location and extent of regions of synchronization (not shown in Fig. 3).

Fig. 3. Results for the integrated information theory measures ΦpAR, ΦqAR and time

delay τ = 5, for the communities of the Erdős-Rényi random network, detected
by the Walktrap and Louvain methods. Panel a) is the parameter space for the
integrated information theory measure ΦpAR and panel b) for ΦqAR, based on the

communities detected by the Walktrap method. Panels c) and d) are similar to a) and
b) for the integrated information theory measures ΦpAR and ΦqAR respectively, for

the communities of the same Erdős-Rényi random network, detected by the Louvain
method. In all panels, gn is the nonlinear and gl the linear coupling.

Finally, inspired by the findings in Ref. [12] regarding the directionality of electrical
and chemical connections in the C.elegans brain network, we have made a preliminary
study computing the ΦpAR and ΦqAR measures for three characteristic coupling pairs

in the parameter space of Fig. 1 c)-h). More specifically, since the directionality of gap
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junctions (electrical) for the C.elegans has not been established, we have assumed that
the network of the electrical connections is undirected and hence can be represented
by a symmetric matrix G. On the other hand, the chemical connections are thought
to be directed [12]. Thus, to investigate the effect of directionality, we have solved Eqs.
(2) modifying the symmetric matrix B of the chemical interactions so as to have 30%
and 50% of its Bij elements equal to 0, while the corresponding Bji are equal to 1.
The results are as follows: At a parameter point (gn, gl) in the blue (desynchronized)
region the ΦAR values are not significantly changed, while at a point in the yellow
(synchronized) region both ΦpAR and ΦqAR increase indicating greater complexity

as uni-directionality increases. On the other hand, for a point on the red boundary
between the two regions, while ΦqAR increases, ΦpAR decreases as the percentage of

uni-directionality grows. These results suggest that directionality affects differently
the integration information in synchronized and desynchronized domains and hence its
implications regarding the level of complexity in these domains needs to be investigated
in detail in a future publication.
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734.

26. Antonopoulos CG, Srivastava S, Pinto SEdS, Baptista MS. Do Brain Networks Evolve by
Maximizing their Information Flow Capacity? PLOS Comput Biol. 2015;11(8):e1004372.

27. Hindmarsh JL, Rose RM. A model of neuronal bursting using three coupled first order
differential equations. Proc R Soc London. 1984;Ser. B 221:87–102.

28. Baptista MS, Kurths J. Transmission of information in active networks. Phys Rev E.
2008;77:026205.

29. Pereira T, Baptista MS, Kurths J. Detecting phase synchronization by localized maps:
Application to neural networks. Europhysics Letters. 2007;77:40006.
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