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 Abstract i 
 

Abstract 
 

Picornaviuses replicate in the cytoplasm, but there is growing evidence that the cell 

nucleus is affected by infection e.g. transcription factor cleavage, relocation of nuclear 

proteins and alteration to nucleo-cytoplasmic shuttling. It was previously observed that 

Parechovirus genus members affect the distribution of the nuclear paraspeckle protein 

PSPC-1, which is an RNA-binding protein involved in splicing and RNA export. To 

investigate if this is a general feature of picornaviruses infection, coxsackie virus A9 

(CAV-9) was studied. This is a typical member of the large and most medically-

important picornavirus genera Enterovirus, which is genetically divergent from 

Parechovirus. Using an EGFP-PSPC-1 fusion, we found that infection changes the 

distribution of PSPC-1 from nuclear paraspeckles to cytoplasmic granules that do not 

seem to correspond to known cytoplasmic foci of RNA-binding proteins e.g. stress 

granules and P-bodies. They also do not correspond to CAV-9 replication complexes. 

Two other paraspeckle proteins (PSF and NONO) colocalise with PSPC-1 in these 

structures. The effect does not seem to be due to cleavage of these proteins by virus 

proteases, phosphorylation at two sites known to be involved in PSF translocation or 

sumoylation. It is dependent on part of PSF, between amino acids 452-606, which is also 

needed for paraspeckle localization and which is involved in key interactions between 

PSF, PSPC-1 and NONO. There are few reports on the significance of paraspeckle 

proteins in virus infection. Our results suggest that we have identified a novel cellular 

compartment, or a structure induced by virus infection. If this is proved to be required by 

the virus, then it could be a potential drug target for the development of a new class of 

antiviral agents against this important group of viruses.   
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1.1 Picornaviruses 

1.1.1 Taxonomy 

Picornaviruses are member of the Picornaviridae family that belongs to the Order 

Picornavirales and consists of 31 genera. Picornaviruses infect mainly mammals and 

birds, although they have also been found recently in fish and amphibians. There are 

currently 50 species. (Knowles et al., 2012, Adams et al., 2015). The name picornavirus 

is derived from their structure, as pico means small and RNA is the nucleic acid type 

(Hunt, 2010). The 31 genera can be divided into 5 subgroups based on sequence identity 

in the 3CD region. (Figure 1-1). 

1.1.2 Importance of Picornaviruses 

Picornaviruses are responsible for a wide range of clinical outcomes that affect humans 

as well as animals. These diseases range from mild and self-limiting to severe and 

serious conditions that can be life threatening (Oberste et al., 1999). These, include foot 

and mouth disease (FMD) that is caused by Aphthovirus, fever, rash, hand-foot-mouth 

syndromes, common cold and meningitis caused by Enterovirus, Hepatitis A that occurs 

as a result of infection by Hepatovirus, some respiratory illness in horses is due to 

Erbovirus, and Teschen-Talfan disease in pigs caused by Teschovirus (Palma et al., 

2008). 
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Figure 1-1 Picornavirus taxonomy tree.The genera are divided into 5 subgroups based 
on the 3CD sequence (Zell, Unpublished). The tree includes all species and unassigned 
viruses and the species within the 31 genera are marked by brackets. The genera can be 
grouped into 5 supergroups of more related viruses. 
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1.1.2.1 Enterovirus 

Enteroviruses got their name due to their ability to reproduce initially in the 

gastrointestinal tract (Longo et al, 2012). This is a large genus and causes human 

infection varying from mild and asymptomatic to serious and fatal diseases (Hsiung and 

Wang, 2000). There are over 250 serotypes that infect humans, which means that it is not 

possible to produce a vaccine against all the different viruses. The genus Enterovirus 

consists of 12 species (Enterovirus A, Enterovirus B, Enterovirus C, Enterovirus D, 

Enterovirus E, Enterovirus F, Enterovirus G, Enterovirus H, Enterovirus J, Rhinovirus 

A, Rhinovirus B and Rhinovirus C.) (Adams et al., 2015). Species names are abbreviated 

EV-A, EV-B etc. Several enteroviruses have been known for many years and newly 

discovered viruses were originally classified as polioviruses, coxsackie A or B viruses or 

echoviruses, based on the symptoms of infection in new-born mice. This classification 

was found not to be useful, as some viruses classified in the same group were later found 

to be relatively different when sequences were compared (Hyypiä et al., 1992). More 

recently identified human enteroviruses are named Enterovirus plus a number (68-118), 

together with a species letter e.g. Enterovirus 71 (EV-A71) which belongs to the species 

Enterovirus A (often the species letter is omitted unless the taxonomy of the virus is 

being discussed) (Knowles et al, 2011). Members of each species of Enterovirus can be 

responsible for a number of infections, including mild or asymptomatic infection and 

paralytic poliomyelitis (Murphy and Almond, 1996). There is not a clear distinction 

between the kind of diseases caused by different species, but of the enteroviruses that 

often infect humans (Enterovirus A-D) paralytic disease can be caused by members of 

Enterovirus C, particularly polioviruses, respiratory illnesses and skin rash (including 
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hand-foot-and-mouth disease) by members of Enterovirus A, aseptic meningitis, 

myocarditis and pancreatitis by members of Enterovirus B, conjunctivitis by members of 

Enterovirus D and respiratory infection, including the common cold, by Rhinovirus A-C. 

Enterovirus infections are common and are often asymptomatic, but serious illness can 

occur in a small proportion of cases (Muehlenbachs et al., 2015). For instance, only about 

1 % of people infected with poliovirus will show paralytic disease. Poliovirus is still the 

most important enterovirus and is still present in several countries, even though there has 

been a global campaign to eradicate the virus for many years (Muehlenbachs et al., 

2015). EV-71 is a major problem in the Far East and can cause serious neurological 

symptoms. Enteroviruses are a major cause of aseptic meningitis in children and 

echoviruses 30, 6, 16, 13 are the enteroviruses most frequently associated with this 

condition (Vollbach et al., 2015). 

Rhinoviruses are the major cause of the common cold. This is usually thought to be a 

mild disease but it can cause serious disease in people with existing medical conditions, 

such as asthma. The common cold is also very important economically and a 2002 study 

estimated the cost every year in the USA was around $25 billion, due to absence from 

work and loss of efficiency (Bramley et al., 2002). Colds are also estimated to be the 

cause of 30 % of missed school days in Canada (Worrall, 2008). The proportion of 

common colds that are caused by rhinoviruses is thought to be 30-50 % and so these 

viruses are very important economically (Mäkelä et al., 1998). 



 

 Chapter 1 
Introduction 

 
 6 

 
 

1.1.2.1.1 Coxsackie virus: 

In the 1947 there were several outbreaks of poliomyelitis in New York investigated by 

Dalldorf and Sickles (1948). In particular they were looking for polioviruses that could 

replicate in mice to facilitate research. They made fecal suspensions from two children 

suspected to have poliomyelitis and inoculated these into adult and suckling mice but 

only suckling mice showed paralysis The damage responsible for limb paralysis was 

widespread lesions in skeletal muscles, not in the central nervous system as occurs with 

poliovirus. Further study revealed that the viruses could be distinguished serologically 

from poliovirus. In 1949 Dalldorf suggested that the new viruses be called Coxsackie 

viruses, because the first recognized human cases were residents of Coxsackie village in 

NY (Dalldorf  and Gifford 1951).   

Coxsackie virus is a picornavirus of the Enterovirus genus that was originally classified 

by clinical manifestations in mice and serology into coxsackie A (23 serotypes) and 

coxsackie B (6 serotypes) groups (Muckelbauer et al., 1995). Most commonly, the 

coxsackie virus group A causes the hand -foot- and- mouth disease. Most reported 

enterovirus encephalitis cases are due to coxsackie viruses types A9, B2 and B5 (Moreau 

et al., 2011). Coxsackie virus A9 (CAV9) causes a number of other human infections 

including central nervous system (CNS) infection, myocarditis and wide range of milder 

illnesses (Williams et al., 2004). 

1.1.2.2 Parechovirus 

Human parechoviruses (HPeVs) (16 serotypes) circulate commonly in human 

populations and cause common infections in young children without signs and 
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symptoms. HPeVs can be responsible for many more serious infections ranging from 

gastroenteritis and respiratory infections to neurological disease and sepsis-like disease, 

particularly in new-born babies (Harvala and Simmonds, 2009, Yau et al., 2011). HPeV-

3 is usually causes most cases of sepsis-like disease, but HPeV-4 can also be involved 

(Kolehmainen et al., 2014).  Parechovirus is comprised of two species, Parechovirus A 

(formerly named Human parechovirus) and Parechovirus B (formerly named Ljungan 

virus). A new virus, Sebokele virus 1, from rodents may represent a third species in the 

genus. A fourth virus, ferret parechovirus has recently been described (Smits et al., 

2013). 

1.1.2.3 Aphthovirus 

Aphthovirus is the most important genous in the Picornaviridae that infect animal other 

than humans, as it contains Foot- and-mouth disease virus (FMDV) (Chakraborty et al., 

2014).  Foot-and-mouth disease was the first disease of mammals to be shown to be 

caused by a virus, and FMDV was first discovered by Friedrich Loeffler back in 1898. 

Because it is so important it has been studied extensively. it considered to be one of the 

highly infectious viral disease amongst cloven-footed animal that cause debilitation, pain 

and loss of productivity (Chakraborty et al., 2014).  The genus Aphthovirus consists of 

four species Bovine rhinitis A virus, Bovine rhinitis B virus, Equine rhinitis A virus and 

Foot-and-mouth disease virus. FMDV also became economically important as in the UK 

in 2001 the viral infection resulted in slaughtering over 6 million animal which cost over 

£ 8 billion, it also result in the need of the vaccine that support ‘vaccinate to live’ policy. 

Vaccine is based on the use of inactivated virus (Porta et al., 2013). Countries like 
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America, New Zealand, Australia and most of the Europe are free from FMD while it is 

still endemic in the Africa, most of the South America and several parts of the Asia 

including India (Chakraborty et al., 2014).  

1.1.2.4 Hepatovirus 

The genus Hepatovirus consists of a single species, Hepatovirus A (formerly named 

Hepatitis A virus). A previous member of the genus, avian encephalomyelitis virus, was 

assigned to a new genus, Tremovirus (Adams et al., 2015). HAV was identified more 

than 35 years ago when it was visualised by immune electronic microscopy.  It is 

responsible for common acute hepatitis in human. In the early 1990s the licence for a 

safe and very effective vaccine was given after the successful inactivation of the virus 

(Martin and Lemon, 2006). The vaccine, which is around 95 % effective if two doses are 

given into a muscle, is recommended for everyone living in areas where there is a 

significant risk of infection and for travellers to these areas (Ott et al., 2012). Outbreaks 

of hepatitis A are rare in endemic countries where immunity occurs at an early age, but 

large epidemics can occur where immunity is low, for example there was an outbreak in 

Shanghai in 1988, where about 3000,000 people were infected from contaminated sea 

food (Ott et al., 2012).  

1.1.3 Structure of particle and genome 

Picornaviruses are very small with a genome consisting of a positive polarity RNA and a 

capsid that is non enveloped (naked) so does not have a lipid membrane (envelop). The 

capsid architecture is similar in all genera which is spherical structure of 27 to 30 nm 

http://www.picornaviridae.com/hepatovirus/hepatovirus_a/hepatovirus_a.htm
http://www.picornaviridae.com/tremovirus/tremovirus_a/tremovirus_a.htm
http://www.picornaviridae.com/tremovirus/tremovirus.htm
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diameter. The RNA is 6700 nt (Aquamavirus) to 9800 nt (Sicinivirus) nucleotides long 

and the icosahedral nucleocaspid symmetry is made up of 60 identical subunits 

(protomers), each made up of four capsid proteins VP1 through VP4 originate from one 

protomer known as P1 that is cleaved to give the different capsid components. VP1 

components are clustered around the fivefold axes of symmetry while VP2 and 3 

alternate around the threefold axes (Figure 1-2) (Tuthill et al., 2010, Smyth and Martin, 

2002, Stanway and Hyypiä, 1999). The picornavirus RNA is different from mRNA by 

having a virus encoded peptide called VPg, that attaches at the 5' whereas mRNA has a 

methylated cap group at its 5 ' terminal (Lin et al., 2009b). It also contains a poly (A) tail 

at the 3' terminal with variable length between 65 and 100 nt, which is genetically 

encoded and not added post-transcriptionally, unlike cellular mRNA (Hunt, 2010). The 5' 

region is non coding (5' UTR) followed by an open reading frame encoding a polyprotein 

that is processed to capsid proteins (VP1-VP4), derived from the P1 precursor and seven 

nonstructural proteins 2A-C, 3A-D, from P2 and P3 (Figure 1-3) (Hu et al., 2011). The 5' 

UTR plays an important role in translation, while the structural proteins from the capsid 

that surrounded the genome, and nonstructural proteins play a major role in virus 

replication (Harvala et al., 2002). The viral RNA has a large segment at its 5' untranslated 

region (UTR), about 400 nt in length, which called internal ribosome entry site (IRES). 

This site is about 200 nt downstream to the 5' end. IRES elements vary from one genus of 

picornavirus to another but they are functionally similar. The open reading frame is 

followed by a 3' and a poly A tail (Jang et al., 1989). 
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1.1.3.1 Outline of picornavirus replication 

Picornaviruses have a positive sense, single strand RNA genome with a protein coat that 

surrounds the genetic material. Infection of a cell starts with an interaction between the 

virus coat and one or more receptors at the cell surface. This leads to entry, usually in a 

vesicle that forms from the cell membrane. In the host cell, the capsid releases the 

genome to act as mRNA in order to create viral proteins. Some proteins are structural and 

are assemble to make new capsids, while the others are non-structural are involved in 

viral replication or cell lysis. After the translation, negative sense ssRNA is synthesized 

from the original genome, and then this is used as a template in order to produce the 

positive sense ssRNA. Some of the new positive sense ssRNA molecules are also 

translated to give more protein, while others are packed into the newly assembled 

capsids. Many picornaviruses are cytolytic, as they cause a lysis of the host cell after 

replication. As a result, the new virus is released to infect new cells (Broyles and Arnold, 

2009). 
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Figure 1-2 The structure of Coxsackie A9 (CAV-9) virus 
particle determined by X-ray crystallography 
(http://www.picornaviridae.com). The image is colour-coded 
from blue through yellow to green, representing the distance 
from the centre of the particle. Valleys are blue and peaks 
yellow. Red arrow shows the 5 axes fold, the yellow arrow 
shows the 2 axes fold and the blue arrow shows the 3 axes 
fold.   

 

 

Figure 1-3 Schematic representation of a Enterovirus genome showing the coding regions 
for structural (VP4-VP1) and nonstructural (2A-2C and 3A-3D) proteins, the 5’ and 3’ 
untranslated regions (5’UTR; 3’UTR), the poly A tail and the genome-linked protein VPg. 
2A (2Apro) is only a protease in some picornaviruses e.g. enteroviruses, while 3C (3Cpro) is a 
protease in all picornaviruses. 3D (3Dpol) is the picornavirus polymerase. 

http://www.picornaviridae.com/
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1.1.4 Enterovirus replication 

As described in the previous section, picornavirus replication involves many steps, which 

include receptor binding, entry, un-coating, RNA translation, protein processing,  

genome replication, assembly, maturation and cell lysis (Figure 1-4). There are some 

differences between different picornaviruses genera and as enteroviruses are the best 

understood, replication in these viruses will be described mainly.  

1.1.4.1 Receptor binding 

It has been found that some enterovirus types use cell-surface molecules that belong to 

the immunoglobulin superfamily (IgSF) as their cellular receptors (Rossmann et al., 

2002). These molecules have an amino terminal domain (D1) that interacts with the 

invading viruses, plus a transmembrane domain and a short cytoplasmic region. Some 

rhinoviruses and enteroviruses use a canyon-like structure on their surfaces to bind to 

their receptor this binding initiates the un-coating step. IgSF members such as CAR, 

ICAM1 and CD155 are used by different picornaviruses. Another important receptor 

type is the integrins (used by CAV-9, echovirus 9 (E-9) and E-1). CAV-9 and E-9 have 

an arginine-glycine-aspartic acid (RGD) motif which is located in VP1 (Chang et al., 

1989) in a 15 amino acid insertion at the VP1 C- terminus.  This binds to integrin αvβ6, 

an integrin also used by FMDV and several HPeVs (Williams et al., 2004). However, 

previous studies showed that for CAV-9, there are two different entry routes into the host 

cell and only one of them depends on the RGD sequence (Hughes et al., 1995). E-1 binds 

to integrin α2β1 by a non-RGD mechanism. Lack of this integrin gave much lower levels 
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of viral infection (Marjomäki et al., 2015). Many enteroviruses are using DAF as a 

receptor (Zocher et al., 2014). Another receptor used by EV71 is SCARB2 located in 

lysosome and endosome and has N and C terminals cytoplasmic tail (Yamayoshi et al., 

2009). The PSGL2 is sialomucin membrane protein expressed on leukocytes that plays 

an important role in the early infection as EV71 bind to the N terminal of the PSGL2 

receptor in order to allow the virus entry (Nishimura et al., 2009). Heparan Sulphate is a 

wide known receptor that bind to some picornavirus such as echoviruses and foot-and-

mouth disease virus, CVB3 (Zautner et al., 2003) and some CAV-9 isolates (McLeish et 

al., 2012). 

1.1.4.2   Entry 

After interacting with the receptor on the cell surface, other interactions occur. Receptors 

are often concentrated in areas of the cell surface such as lipid rafts or clathrin-coated pits 

(Mercer et al, 2010). These parts of the cell surface are taken into the cell as vesicles, 

surrounded by proteins like clathrin, caveolin or flotillin containing the virus and some of 

these vesicles will fuse with endosomes, or other structures, in the cytoplasm (Mercer et 

al, 2010). Several vesicle types have been defined, based on the proteins surrounding the 

vesicles and other proteins involved in detaching the vesicle from the cell surface. For 

CAV-9, lipid rafts seem to be important in entry and entry depends on several proteins 

including β2-microglobulin, dynamin, and Arf6 (Triantafilou and Triantafilou, 2003, 

Heikkilä et al., 2010). It has recently been shown that CAV-9 entry involves 

multivesicular structures (Huttunen et al., 2014).  
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1.1.4.3 Un-coating 

The step following entry is un-coating. The viral capsid should be stable in order to allow 

the virus to be transmitted between hosts and to protect the RNA genome, but it must be 

dissociated in the infected cell to release the genome and this dissociation often starts as 

a result of interaction with the receptor (Smyth and Martin, 2002). The very first step in 

the un-coating event is the loss of VP4 and interactions between VP4, which is 

hydrophobic, and the vesicle membrane may allow a pore to form which allows the RNA 

to be released from the vesicle into the cytoplasm (Panjwani et al., 2014). The genome 

and VP4 leave the capsid when a myristate group attached to the N-terminus of VP4 

interacts with the host cell membrane. In addition to the loss of VP4, the VP1 N-terminus 

is moved from its internal position to an external location via a channel in the virus 

particle. Therefore mutations in VP1 and VP4 can lead to inhibition of the un-coating 

(Smyth and Martin, 2002). It was believed that the RNA genome was released through 

this channel, but it now seems likely that during entry the virus particle changes shape 

and a channel through the coat is formed close to the 2-fold axis to allow the release of 

the virus (Shingler et al., 2013).  It is thought that un-coating can occur at the cell surface 

or inside a number of different endocytic vesicles (Mercer et al, 2010), for example the 

plasma membrane for CBV-3 and PV, the cytoplasm for E-12 and the lysosome for PV 

(Zeichhardt et al., 1985). 

1.1.4.4 Translation 

Eukaryotic mRNA translation involves several steps (Yu et al., 2011). Several proteins, 

including eIF4G and eIF4E, assemble at the 5' cap structure on the mRNA to initiate 
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Figure 1-4 Diagram of viral Translation Showing the attachment of a picornavirus to the 
cell surface through receptors and penetration into the cytoplasm. The viral RNA then 
translated into polyprotein precursor that proteolytically processed. Viral proteins form 
replication complexes associated with membrane vesicles where the viral RNA undergoes 
replication, further translation of viral proteins, viral assembly and release (cell lysis).   
(Stanway, unpublished). 
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translation. These recruit the 40S ribosomal subunit which scans along the RNA until it 

reached the AUG where the 60S subunits is added and the RNA translated. The 

Enterovirus rely on host cell translation machinery (Yu et al., 2011). Thus, they have 

developed potent mechanisms to compete with host (cap-dependent) translation during 

infection, such as: the inhibition of cap-dependent translation by inducing the 

dephosphorylation of eIF4E binding protein; reducing the translation of host mRNA by 

cleaving the poly-adenosine binding protein (PABP); proteolysis of eIF4G by the 

enterovirus 2Apro to inhibit the initiation of cap-dependent translation of host mRNA 

(Grubman and Baxt, 2004). Virus translation occurs by a process that involves the 

internal ribosome entry site (IRES) and is cap-independent (Pelletier and Sonenberg, 

1988). VPg is cleaved from the picornavirus RNA by cellular enzymes before the 

translation step, so this protein cannot be used to assemble proteins needed for 

translation. Picornaviridae is therefore different from another positive sense RNA virus 

family the Caliciviridae where VPg is involved in translation initiation (Goodfellow, 

2011). There is also no cap to recruit these proteins and so picornavirus translation is 

cap-independent and instead relies on the IRES (Grubman and Baxt, 2004). The 

difference between cap-dependent and picornavirus IRES-dependent translation is partly 

based on the way that eIF4G functions. Cleaved eIF4G is not functional in initiation of 

cap-dependent translation, but still functions in IRES-driven translation initiation 

(Ehrenfeld and Teterina, 2002). Picornaviruses can be divided into 5 groups on the basis 

of IRES structure (Figure 1-5). IRES types I-III and V are about 450 nt in length, while 

IRES type IV is shorter. The picornavirus IRESs require several proteins not usually 

needed in translation of cell mRNA and these are called ITAFs (IRES transactivating 



 

 Chapter 1 
Introduction 

 
 17 

 
 

factors) (Lin et al., 2008). For instance, IRES type I (e.g. Enterovirus) binds to the La 

protein in order to enhance RNA translation and type II (e.g. Cardiovirus, Aphthovirus, 

Parechovirus, Erbovirus) binds to PTB and PCBP2. Type I and type II IRESs are 

efficient, but the type III IRES (only seen in Hepatovirus) has a lower activity.  Another 

feature for its function is that it requires the intact form of eIF4F for its function. It is also 

inhibited by the La protein that enhances the type I IRES. IRES type IV (e.g. 

Teschovirus, Tremovirus, Sapelovirus, Senecavirus) is very similar in structure to the 

IRES found in hepatitis C virus, which belongs to a different family of positive sense 

RNA viruses, Flaviviridae (Belsham, 2009, Hellen and de Breyne, 2007). It also lacks 

some of the features that are common on the other 4 types, such as a polypyrimidine 

tract. It cannot be inhibited or stimulated by 2Apro unlike other IRES types (Belsham, 

2009, Hellen and de Breyne, 2007).  

In enteroviruses, the IRES binds to several host proteins (ITAFs) in addition to the usual 

eIFs (canonical initiation factors) and this plays a major role in specifying the cell type to 

be infected by the virus (McLeish et al., 2012). The ITAFs act as RNA chaperones to 

enhance IRES- mediated translation (Ho et al., 2011).  Some cellular ITAF are involved 

in picornaviral IRES-mediated translation such as PTB, La, PCB P1,2, Unr, hnRNP A1, 

ITAF45, Nucleolin/C23, dsRNA binding protein76:NF45 heterodimer, FBP2 (Lin et al., 

2009c).  

1.1.4.5 Polyprotein processing 

The picornavirus genome encodes a single polyprotein and there is a heavy reliance on 

processing to produce the individual proteins required (Castelló et al., 2011, Ryan and 
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Flint, 1997). Processing also generates some intermediate products (precursors) that may 

also be important e.g. 3CDpro. In enteroviruses the first step of processing is cleavage by 

2Apro at its own N-terminus, which separates the capsid protein precursor (P1) from the 

non-structural precursor (P23) (Toyoda et al., 1986). In some other picornaviruses 2A is 

not a protease, but close to the P1/P23 boundary an NPGP-motif allows separation of P1 

from P23 during translation by an unusual mechanism, and this suggests that this early 

separation is important (Donnelly et al., 2001). Most, and in some picornaviruses 

probably all because no other virus protease is known, cleavages in picornaviruses 

involve 3Cpro or 3CDpro. L is a protein found only in some picornaviruses and is located 

at the N-terminus of the polyprotein. L belongs to different protein types in different 

picornaviruses, but is a protease (Lpro) in Aphthovirus and Erbovirus and cleaves itself 

from the polyproteins (Agol and Gmyl, 2010). 

1.1.4.6 Genome replication 

During RNA replication, the genomic RNA (positive sense) is copied to give several 

negative sense copies and these are copied to give many more positive sense RNA copies 

(virus genomes). These steps occur in replication complexes, made by virus proteins 

from cell membranes. Genome replication involves the protein VPg (product of the 3B 

gene), which is a protein primer of RNA synthesis, and 3Dpol, the virus polymerase. 

Firstly, Tyr-3 (Y3) of VPg is modified by 3Dpol to produce VPg-pUpU. This process 

known as uridylation (Shen et al., 2008). VPg-pUpU then acts as a primer for the 

production of antigenomic then genomic RNAs, by base pairing with As in the 3’poly A 

tail of genomic RNA and 2 As at the 3’ end of antigenomic (negative sense) virus RNA.  
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It was found that a region of the human rhinovirus 14 genome encoding the VP1 protein 

contains an RNA structure necessary for RNA replication (McKnight and Lemon, 1998). 

Structures with similar properties were seen in cardioviruses (Lobert et al., 1999) and 

poliovirus (Goodfellow et al., 2000), then in several other picornaviruses (Steil and 

Barton, 2009). These structures were named the cre and it was found that the 

uridylylation of VPg occurs at the cre (Paul et al., 2000). The cre is a stem-loop structure 

containing an A residue (often part of the sequence CAAAC) in the loop (Al-Sunaidi et 

al., 2007). This A acts as the template for adding the first pU to VPg and the mechanism 

involves a slide back step, so that the same A the cre loop structure acts as a template for 

the addition of the second pU residue (Pathak et al., 2007). 

1.1.4.7 Virus assembly and maturation and cell lysis 

A new virion (virus particle) is formed by encapsidating the positive polarity viral RNA 

by capsid proteins in order to compete the replication. The 2C in the replication complex 

seems to interact with the capsid protein VP3 and this may bring the new RNA and 

capsid proteins together. The P1 capsid precursor is released from the polyproteins to 

initiate the assembly of the new virions. This is subsequently folded by the chaperone 

protein Hsp90 and processed by 3CD in order to release VP0, VP1 and VP3. These 

capsid proteins assemble to form the protomer, assemble into a pentamer and 12 

pentamers assemble to give the empty virus particle, which is then filled with the RNA 

by an unknown mechanism (Marjomäki et al., 2015). Recently, the structure of Ljungan 

virus was obtained and the RNA seems to have more fixed position in the virus particle 
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than in enteroviruses. This may suggest that the assembly pathway is different and each 

pentamer binds to the RNA before the pentamers assemble (Zhu et al., 2015).   

The RNA-induced cleavage of VP0 precursor into capsid proteins VP2 and VP4 is 

needed to produce the mature infectious virus particles. The mechanism of this cleavage 

is not known but may be due to amino acids in VP0, including a conserved histidine, 

together with the virus RNA (Curry et al., 1997). The newly formed virus particle is then 

released by the host cell lysis (Marjomäki et al., 2015). 
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Figure 1-5 The different Picornavirus IRES Types structures (Stanway, unpublished), 
showing the structures of the 5’UTR in the five different picornavirus IRES types (TYPE I-
V). Types I, II and III all have an essential GNRA tetraloop in the largest RNA secondary 
structure. One of the secondary structures (red box) is similar in structure between types II 
and V 
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1.1.5 Viral Non-structural proteins 

1.1.5.1 2A 

In picornaviruses, proteins are named from their position in the virus polyprotein. Most 

proteins with the same name have closely-related functions and structures, but L (which 

only occurs in some picornaviruses) and 2A are very diverse proteins when different 

picornaviruses are compared (Agol and Gmyl, 2010, Hughes and Stanway, 2000).  

 In enteroviruses, 2A is a protease (2Apro) that consists of 149 amino acids and belongs to 

the cysteine protease group. However, it is structurally related to cellular proteins of the 

chymotrypsin family (Figure 1-6), particularly S. griseus proteinase A, which have a 

serine at the active site (Seipelt et al., 1999). It is autocatalytically processed cleave the 

virus polyprotein between VP1 C- terminus and 2A N-terminus. It plays an important 

role in viral replication. The 2Apro has many functions that are essential in virus 

proliferation. It is known for inducing the cytopathic effect (Castelló et al., 2011).  2A 

plays an essential role in eIF-4G degradation, which causes an inhibition of cap-

dependent translation of cellular mRNAs. The shut off of cellular cap-dependent 

translation allows the efficient IRES-driven translation of the virus open reading frame 

(Lu et al., 1995). 

In other picornaviruses 2A is not a protease and has different structures and largely 

unknown function (Agol and Gmyl, 2010, Hughes and Stanway, 2000). Several 

picornaviruses have a 2A which contains two conserved motifs, an H-box and an NC 

motif and this type of 2A is related to several human proteins which have the same 
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motifs (Agol and Gmyl, 2010, Hughes and Stanway, 2000).  Several picornaviruses 

contain an NPGP motif, that is part of a short sequence which performs a ribosome 

skipping mechanism where a peptide bond is not formed between the amino acids G and 

P and translation then continues. This means that the virus polyprotein is made in two 

separate pieces (Donnelly et al., 2001). Some picornaviruses have more than one type of 

2A for example Ljungan virus has two and aalivirus A1 has six different 2A sequences 

(Wang et al., 2014b).  

1.1.5.2 2B 

2B is a small (97 amino acids in enteroviruses) hydrophobic protein. It is variable among 

different picornaviruses, but is always contains at least two hydrophobic regions which 

may interact with membranes (de Jong et al., 2008). It has been reported to inhibit 

apoptosis, affect intracellular calcium levels and disrupt intracellular protein trafficking 

(Campanella et al., 2004, de Jong et al., 2008). As part of the precursor 2BC it is believed 

to cause membrane rearrangement in the cell (van Kuppeveld et al., 1997).  

1.1.5.3 2C 

The 2C is a nonstructural protein found in the P2 region of the viral genome. 2C and its 

precursor 2BC migrate to rough ER during the infection in order to form smooth 

membrane vesicles that colocalize with viral RNA synthesis and are called the replication 

complex (Sweeney et al., 2010). 2C has ATPase and GTPase, membrane binding and 

RNA-binding activities (Banerjee and Dasgupta, 2001). 2C and the 2BC precursor are 

able to shut off protein shuttling between the ER and Golgi and the expression of 
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proteins on the cell surface. The 2C protein is the largest membrane-binding component 

of the virus RNA replication complex. 

 It has 318 amino acids and a predicted amphipathic helix at the N-terminus that allows it 

to bind to cell membranes. However, the specificity of binding by 2C is still unknown 

(Sweeney et al., 2010).  

1.1.5.4 3A 

Like 2B, 3A is a small (89 amino acids in enteroviruses) hydrophobic protein. It forms a 

homodimer which is needed for virus infectivity (González-Magaldi et al., 2012). In 

most picornaviruses 3A has a single hydrophobic region close to the C-terminus which 

interacts with membranes. 3A seems to have several functions such as affecting protein 

trafficking and membrane permeability (Wessels et al., 2006). As part of the precursor 

3AB it has an important role in RNA replication by positioning 3B (VPg) in the 

replication complex and acting as an RNA chaperone, possibly by binding to and 

protecting new virus RNA or affecting the structure of the cre (Yang et al., 2015). 

1.1.5.5 3B 

3B (usually called VPg) is the smallest picornavirus protein (23 amino acids in 

enteroviruses), except for the short NPGP-containing 2A found in some picornaviruses, 

which is only 18 amino acids long. VPg was found to be covalently attached to the 5’ end 

of the picornavirus genome and this is due to its role as a protein primer of RNA 

replication, as described earlier. 
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1.1.5.6 3Cpro and 3CDpro 

3C is the main is the main protease (3Cpro) in all picornaviruses, as it is responsible for 

cleaving all of the polyprotein in some picornaviruses and most in the others, including 

VP2-VP3 and VP3-VP1 in P1, 2A-2B and 2B-2C in P2 and the whole of P3 (Lu et al., 

2011). Some of these are performed by the precursor 3CDpro. Like the enterovirus 2Apro, 

3Cpro is part of an unusual group of cysteine protease which have a serine like protease 

fold (Malcolm, 1995). Its structure is related closely to chymotrypsin (Figure 1-6) 3Cpro 

is found in the nucleus of infected cells, as the 3CDpro precursor contains the NLS 

sequence that allows the protein to localise in the nucleus (Lin et al., 2009b). It is 

involved in shut-off of host cell transcription. It can cleave a number of cellular factors 

and regulators such as TATA-box binding protein (TBP) and transcription activator p53. 

It also induces the viral cytopathic effect by cleaving microtubulin, as well as inducing 

cell apoptosis. It is able to process the cellular PCBPs which involved in IRES-dependent 

translation (Lin et al., 2009c). It functions as a constituent of the viral replication 

complex through binding to 5'UTR of the viral RNA genome in the form of the precursor 

3CD. It helps the virus to avoid the host antiviral immunity by interaction with or 

cleavage of several host factors (Lu et al., 2011). 

1.1.5.7 3Dpol 

3Dpol is the longest picornavirus protein and the most conserved between different 

genera. It is the picornavirus polymerase which forms VPgpUpU at the cre and also 

extends this to make new copies of the virus genome (Kerkvliet et al., 2010).  
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Figure 1-6 The structure of the virus proteases  (the example shown is from 
hepatitis A [HAV]) and 2Apro (the example shown is from human rhinovirus 2 
[HRV2]) compared to cellular proteins.  3Cpro is most closely related to 
chymotrypsin, while 2Apro is most closely related to the bacterial protein S. 
griseus proteinase A (SGPA). (taken from Seipelt et al. (1999)) 
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1.2 The effect of viruses on cells 

The interaction of viruses with host cells mainly cause death of infected cells. Viruses 

have the ability to exploit pre-existing cell mechanisms such as apoptosis. Apoptosis is 

mediated by a number of factors. The final step of apoptosis is characterized by 

nucleolytic internucleosomal degradation of chromosomal DNA, compaction and 

fragmentation of chromatin, cellular shrinkage, and cytoplasmic blebbing and 

fragmentation (Tolskaya et al., 1995). 

1.2.1 The effect on translation 

The pathological effects as a result of viral infection are often caused by the viral ability 

to kill host cells directly. The picornavirus non-structural proteins are more conserved 

than the capsid proteins and their function is preserved across Picornaviridae members, 

which suggests that they play many roles in the interaction with cells (Buenz and Howe, 

2006). In enteroviruses, the first phase of viral infection is the cleavage of eIF4G by the 

viral 2A protease. Enterovirus translation uses the C-terminal fragment of the eIF4G 

(Goldstaub et al., 2000). However, this cleavage prevents cap-dependent cleavage, which 

is used to translate most cellular RNAs. Dephosphorelation of the eIF4E- binding 

protiens (4E-BPs) also occurs in picornavirus-infected cells and correlates with the 

inhibition of host cell mRNA translation. Picornavirus translation utilizes a mechanism 

where the ribosomes are recruited to the RNA by an internal ribosome entry site (IRES) 

This mechanism allows virus RNA translation in cells where cellular mRNA translation 

has been shut off (Thompson and Sarnow, 2000). The cellular protein poly (rC) binding 

protein (PCBP2) is also required in enterovirus translation and binds to the stem loop IV 
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RNA structure of viral IRES. This binding causes an indirect recruitment of ribosomes to 

the viral RNA. During viral infection, PCBP2 is cleaved by 3Cpro or the precursor 3CDpro 

proteinase, that results in disability of PCB2 to interact with other cellular factors 

involved in viral translation initiation and ribosome recruitment (Toyoda et al., 2007). 

This switches off virus RNA translation and switches on RNA replication. 

1.2.2 The effect on cytoplasmic membranes and 
secretion 

Several cytopathic effects occur in the infected cells including changes in cell 

morphology and production of large number of cytoplasmic membrane vesicles (Armer 

et al., 2008). These vesicles are originally from the endoplasmic reticulum (ER) or from 

COP II- coated vesicles, which transports proteins to Golgi apparatus. During viral 

translation, the expression of picornavirus 3A proteins causes swelling to the ER and as a 

result, inhibits the membrane protein traffic between ER and Golgi apparatus (Moffat et 

al., 2005). In some viruses, 2C or 2BC are involved in this inhibition (Sweeney et al., 

2010). Protein movement depends on COP-I coats and is regulated by the GTPase ADP- 

ribosylation factor 1 (Arf1) that can be activated by binding to GBF1. It has been found 

that 3A protein blocks Arf1 by interaction with GBF1, trapping it on membranes, which 

results in inhibiting the protein movement via COP-I (Wessels et al., 2006).  

Virus-induced loss of γ- tubulin from the microtubule organizing centre leads to a lack of 

tethering of the microtubule, which causes changes in the distribution of microtubule and 

intermediate filament components. This then changes the structure of the cell (Armer et 

al., 2008).  
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1.2.3 The effect on replication complexes 

In the replication of most positive sense RNA viruses, enzymatic and non-enzymatic 

viral proteins play a role in the assembly of membrane vesicles called replication 

complexes (Denison, 2008). Host cell proteins are also required for the virus replication. 

The RNA replication complexes are released from the host cell membranes during 

purification. This destroys the catalytic activity showing that the intracellular membranes 

are needed to form a functional virus replication complex. During picornavirus infection, 

the RNA replication occurs in the cytoplasmic vesicles that are derived from the ER 

while it occurs in mitochondrial membranes during infection with other RNA viruses. 

Membranes may function to expedite the assembly of replication complexes, to 

protect/sequester viral RNAs, and also to help segregate the products from templates 

during replication (Tao and Ye, 2010).    

1.2.4 The effect on autophagosome 

Autophagosomes play an important role in cellular survival under stress conditions such 

as viral infection. These organelles involve sequestration of the cytoplasmic proteins and 

granules in phospholipid membranes vesicles called autophagosomes, which shuttle to 

the lysosome for degradation. Viruses would use some cellular supply to inactivate the 

cellular antiviral defence and regulate the cellular processes for viral replication. The 

autophagy plays an important role during viral infection, they can act as intrinsic immune 

defence against viruses by forming xenophagosome which are then targeted for 

degradation instead of the autophagosomes. In addition, autophagy gene may limit viral 

replication (Kudchodkar and Levine, 2009). Interestingly, some viruses such as vesicular 
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stomatitis virus (VSV) are invading the cellular autophagosome for their replication. 

Other viruses such as HSV-1, BHV-1, HCMV, KSHV, HVS and MCV are able to 

develop counteracting mechanism to avoid degradation by autophagosomes and supress 

the organelles. While some DNA viruses activate the autophagy pathways to enhance 

their replication. Enteroviruses such as PV and CVB4 induce autophagosome in order to 

provide cell membrane for RNA replication (Tang et al., 2012).   

1.2.5 The effect on stress granules and P bodies 

Host mRNAs which shuttling between translation and non-translation. The RNA which 

not being translated are organised in cytoplasmic granules for RNA known as stress 

granules (SG) and processing bodies (P-bodies). These play an important role in host 

mRNA inhibition and degradation, particularly in response to cell stresses, and thus 

potentially affect viral RNA. During infection, viruses interact with SG and P-bodies to 

control viral replication and cellular antiviral responses, although hosts cell start 

producing SG soon after the viral infection starts (Reineke and Lloyd, 2013).  Different 

viruses can be grouped according to how they interact with SG and P-bodies. PV triggers 

the formation of SG at early stage of replication, but then manipulate the SG produced. 

Other viruses such as HSV and influenza virus can effectively repress SG formation 

throughout infection. PV 3Cpro cleaves the protein G3BP (a key protein for SG 

formation), which inhibits the co-localization of ribosome subunits and mRNA in SG, 

which results in aggregation of TIA1 protein (Lloyd, 2012). FMDV also trigger the 

formation of SG but as a result of cleaving G3BP by Lpro (Polacek et al., 2014 

).  
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The interaction between viruses and P-bodies is poorly understood. RNA viruses may 

have to regulate host RNA processes within RNA granules such as P-bodies to prevent 

viral RNA degradation. Some interaction between viruses and P-bodies may also occur 

due to gene expression being closely linked to these structures. During viral infection, 

viruses are able to repress P-bodies and cause relocation of P-bodies components for 

RNA replication. Depletion of P-bodies proteins such as GW182 (key protein for the P-

bodies) causes a reduction in viral RNA (Reineke and Lloyd, 2013). Picornavirus 

infection also causes disruption to the cytoplasmic (P bodies) (Dougherty et al., 2011) for 

example, enterovirus infection causes a complete disruption of P-bodies foci during the 

mid stage of viral replication  (Reineke and Lloyd, 2013). 

1.2.6 The effect of picornaviruses on the nucleus 

Most DNA viruses replicate inside the nucleus because the eukaryotic nucleus provides 

all the components and the perfect environment for DNA replication, transcription, and 

RNA-processing. For most RNA viruses, all essential replication, translation, and RNA 

synthesis processes occur in the host cell cytoplasm and can take place in nuclei-free 

cytoplasts or cytoplasmic extracts (Porter et al, 2006). However, in order to proceed 

efficiently with their reproduction, these viruses require non-essential materials that 

occur in the nucleus to optimise their infectious cycle. The nuclear pore complexes 

(NPCs) allow the transportation of proteins between the cytoplasm and nucleus, and they 

span the nuclear envelope (NE) (Porter et al, 2006). So enteroviruses disrupt this 

transportation by disrupting NPCs, which causes accumulation of nuclear proteins in the 

cytoplasm, due to an increase of nuclear protein efflux. Nup proteins are key components 
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of the NPC and enteroviruses manipulate the nucleus/cytoplasm shuttle pathway during 

viral infection by changing Nup proteins. This is caused by the proteolytic protein 2Apro 

which causes degradation of Nups (Bardina et al, 2009). The NPC found in human cells 

contains over 30 different Nup proteins, of which several (e.g. Nup62, Nup98, and 

Nup153 for rhinoviruses) can be cleaved by 2Apro (Watters and Palmenberg, 2011) and 

inhibition of  Nup cleavage reduces viral RNA replication which result in reduction of 

the production of viral protein (Flather and Semler, 2015). Cardioviruses also disrupt the 

function of the NPC and allow nuclear proteins out of the nucleus. However, this is due 

to hyperphosphorylation of Nups, caused by the L protein, not protease cleavage (Porter 

and Palmenberg, 2009). 

It has been observed that some picornaviruses proteins are detected in the host cell nuclei 

(Porter et al, 2006). 2A and 3C proteases target different histones and nuclear 

transcription factors. 2A protein interacts with a ribosome precursor in order to cause 

alteration in the translation control of the host cell nuclei (Porter et al, 2006). Other 

nuclear changes occur in response to picornavirus infections. Picornavirus infection 

triggers translcation of a number of nuclear proteins into the cytoplasm in order to 

stimulate viral replication and relocalization (Lidsky et al, 2006). Viral replication is 

enhanced when the nuclear polypyrimidine tract binding protein (PTB) which 

redistributes to the cytoplasm. Virus induced changes also cause the cells to be unable to 

mount a viable interferon-dependent anti-viral response to infection (Porter et al, 2006). 
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1.3 Nucleus structures 

There are number of sub-nuclear bodies within the mammalian cell nucleus, including 

nucleoli, splicing speckles, paraspeckles, cajal bodies, and PML bodies. These bodies are 

known to interact with many nuclear proteins. However, any disruption in nuclear 

proteins organization may result in defect in cell functions (Fox et al., 2002). 

1.3.1 PML bodies 

Generally all mammalian cells have promyelocytic leukemia (PML) nuclear bodies 

(PML-NBs) in their nucleus (Dellaire and Bazett‐ Jones, 2004) also known as PML 

oncogenic domain (POD), nuclear domain 10 (ND10), or kremer bodies (Kr). 

Approximately, there are 5-30 bodies per nucleus, with a variable diameter ranging 

between 0.2 and 1 μm. These structures are associated with the nuclear matrix (Grande et 

al., 1996). These particles play a major role in cell differentiation and cell growth (Ching 

et al., 2005). Moreover, these nuclear bodies are also associated with basic cellular 

functions including, transcriptional regulation, viral infection, DNA repair and apoptosis 

(Reichelt et al., 2011). The direct contact of chromatin thread and RNA with the surface 

of the bodies might help to stabilize nuclear body structure (Brand et al., 2010). 

Disruptions of the PML gene are seen in acute promyelocytic leukemia (APL) and was 

identified as a chromosomal translocation (Grande et al., 1996). PML-NBs are dynamic 

structures that release protein, mediate their post translation modifications and promote 

specific nuclear events in response to cellular stress (Bernardi and Pandolfi, 2007). The 

significant protein of PML-NBs is the promyleocytic leukemia gene (PML) product as 

PML-negative cells are unable to form nuclear bodies and other PML-NB components 
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show dispersed nuclear disruption (Brand et al., 2010). This protein belongs to the TRIM 

protein super family that contains TRI partite Motifs that have a C3HC4 zinc ring finger 

(Figure 1-7). PML mediates INF- regulated cellular functions including growth and 

tumour suppressor activities and induces a block in the G1 phase of the cell cycle (Yang 

et al., 2004). 

1.3.2 Speckles 

Speckles are subcellular structures that are also known as inter-chromatin granule 

clusters (IGC). These nuclear domains are enriched in pre-mRNA splicing factors and are 

located in the inter chromatin regions of the nucleoplasm of mammalian cells. These 

clusters are irregular punctate structures that vary in shape and size. Speckles are 

dynamic structures and their protein and RNA protein can easily exchange between 

nucleoplasm and other nuclear locations including the active translocation site (Lamond 

and Spector, 2003, Spector and Lamond, 2011). Nuclear speckles are rich in RNA 

splicing factors including SC35, SF21ASF. These structures act as storage, assembly or 

modification domains for splicing factors, and recruit splicing factors to active 

transcription sites constituting nascent polymerase II transcript- containing perichromatin 

fibrils (Inoue et al., 2008). Some studies found that speckles usually form in regions that 

contain little or no DNA throughout the nucleoplasm. They may have a functional 

relationship with gene expression as they are located close to highly active transcription 

sites (Lamond and Spector, 2003). ASF/SF2 and SC35 belong to a highly conserved 

family of nuclear proteins called SR proteins which play a crucial role in splicing of pre-

mRNA and influence selection of alternative splice sites. These proteins are required for 
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the early step in spliceosome assembly. Previous studies showed that a high 

concentration of SR proteins is able to circumvent the need for U1 snRNP in in vitro 

splicing. They are characterized by a C-terminal  region rich in arginine-serine dipeptide 

repeats (RS region) and one or more N-terminally located RNP-type RNA recognition 

motifs (RRM) (Figure 1-8) (Tackel and Manley, 1995). 

1.3.3  Paraspeckles 

Paraspeckles are sub-nuclear structures that were discovered relatively recently, when a 

nuclear protein was found localized to nucleoplasmic foci which did not overlap with any 

known subnuclear markers. These foci were called paraspeckles as they were found in 

the interchromatin space close to speckles (Bond and Fox, 2009). These structures are 

RNA-protein structures that are formed between long non-protein-coding RNA species 

and DBHS members (Drosophila Behavior Human Splicing) family (Fox and Lamond, 

2010). Paraspeckles plays a major role in the regulation of gene expression through 

retention of RNA in the nucleus. RNA nuclear retention is involved in several nuclear 

and cellular processes such as viral infection, stress response and circadian rhythm 

maintenance. They are also involved in reprogramming cell differentiation by altering the 

key protein expression by RNA nuclear retention (Fox and Lamond, 2010). Paraspeckles 

also contain long ncRNA nuclear- enriched abundant transcript 1 (NEAT1) (Morimoto 

and Boerkoel, 2013). NEAT1 plays an architectural role in the formation and localization 

of paraspeckles proteins. The knock down of NEAT1 by siRNA leads to absence and 

depletion in the number of paraspeckle while the over expression of NEAT1 increase the 

number of paraspeckles (Nakagawa and Hirose, 2012).  
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When paraspeckles were analyzed proteomically three proteins were originally 

characterised.  These were non.POU (Pit1/oct1/UNC-86) domain contain octamer 

binding (NONO/ P54NRB) , paraspeckle protein 1 (PSP1), paraspeckle protein 2 (PSP2) 

(Morimoto and Boerkoel, 2013).  Other paraspeckle proteins are defined by their co-

localization in foci with these DBHS members of PSPC-1/PSP-1, P54 NRB/ NONO or 

PSF /SFPQ/PSP-2 (Bond and Fox, 2009). DBHS members can be found in the 

nucleoplasm, nuclear caps and paraspeckles (Yarosh et al., 2015). They can be homo or 

heterodimers and compose of two major regions; N-terminal RNP type RNA recognition 

motifs and a C-terminal coiled-coil domain (Figure 1-9) (Bond and Fox, 2009). In 

addition, PSF contain additional domain that not found in NONO or PSPC-1 (Yarosh et 

al., 2015). The knock down of NONO or SFPQ by RNAi leads to the loss of 

paraspeckles, while PSPC-1 is less critical for paraspeckle formation (Morimoto and 

Boerkoel, 2013). PSF/SFPQ is a nuclear protein that plays an important role in range of 

RNA biogenesis processing from basic splicing to nuclear export and transcription (Heyd 

and Lynch, 2010). The PSF is a PTB associated protein as it got its name from as a PTB 

associated splicing factor (PSF) as it was firstly identified as a required protein for pre-

mRNA splicing which interact with splicing regulated by the PTB proteins (Yarosh et al., 

2015). Recent study identified another 35 paraspeckle proteins including RNA binding 

proteins, hnRNPs that binds to RNA pol II transcripts (Morimoto and Boerkoel, 2013). 
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Figure 1-7 A Schematic representation of the PML protein. R: RING finger domain, B: 
B-boxes, CC: coiled-coil domain, NLS: nuclear localization signal. Based on the genomic 
breakpoint in the PML gene, either a short (PM/RAR-alpha-B) or long (PML/RAR-alpha-A) 
isoform is generated. Drawn from information given in the PML Genecard 
(http://www.genecards.org/cgi-bin/carddisp.pl?gene=PML) 
 

 

Figure 1-8 A Schematic representation of the (SC-35) protein. It contains one or two N 
terminal RNA recognition motifs (RRM) and a C-terminal domain that is rich in alternating 
serine and arginine residues (RS) domain. Drawn from information given in the SF2 
Genecard (http://www.genecards.org/cgi-bin/carddisp.pl?gene=SRSF1) 
 

 

Figure 1-9 A Schematic representation of the paraspeckle proteins. It shows the domain 
structures of paraspeckle-localized DBHS proteins. The two major regions are Gln/Glu Pro 
rich domain, RNP type RNA recognition motifs (RRM) and a C-terminal coiled-coil domain. 
 Redrawn from (Fox and Lamond, 2010).  
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1.4 Nucleolus structures 

Nucleolus is nuclear subdomain that assembles ribosomal subunits. It has became clear 

that they play a role in RNA related function such as RNA processing and assembly of 

ribonuclear proteins (RNPs). The active nucleoli contain at least two ultrastructures 

component, the nuclear dense fibrillar component and granular component which contain 

mature pre-ribosomal compartments. In addition, some nucleoli contain a fibrillar centre 

(Shaw and Brown, 2012, Olson and Dundr, 2010) 

1.4.1 Nucleolin 

Nucleolin is one of the distinct nuclear proteins, which, plays a crucial role in ribosome 

biogenesis (Ghisolfi-Nieto et al., 1996). It may also be involved in other cellular 

processes as is also found in the cytoplasm and on the cell membrane. It was originally 

called C23 because of its properties on a two dimensional gel (Ginisty et al., 1999). It is 

associated with intranuclear chromatin and pre-ribosomal particles (Lapeyre et al., 1987). 

Nucleolin is also required for the transcription by RNA polymerase I, assembly of 

ribosome, proliferation of the cell and cell cycle (Cong et al., 2012). Nucleolin protein 

activates the cellular apoptotic process by regulating the fundamental proteins such as 

Bcl-2, P53 and retinoblastoma protein (Rb). It also leads to cancer cell transformation by 

binding to tumour suppressor retinoblastoma protein and the expression of nucleolin is 

enhanced in tumour cells (Destouches et al., 2011). It has a number of key domains 

(Figure 1-10). 
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1.4.2 Fibrillarin 

Fibrillarin is found in the fibrillar region of the nucleolus (de Silva et al., 2012) and it is a 

conserved nucleolus protein that is involved in ribosome biogenesis including pre-m 

RNA processing and methylation, it plays a crucial role in viral infection as it binds to 

viral RNPs. It is also plays a structural and functional role in rRNA- containing dense 

fibrillar and fibrillar centre regions of the nucleolus (Ochs et al., 1985).  It contains 

several domains. It has 320 amino acids (Rakitina et al., 2011). The N-terminal domain is 

formed by a GAR domain that contains the NLS sequence, which facilitates the 

migration of fibrillarin into nucleoli. The RNA binding domain binds to RNA 

(ribonuclear protein) in order to localize the fibrillarin in nucleoli. The protein C terminal 

region contains a short α- helical domain (Figure 1-11) (Barygina et al., 2010).  

1.4.3 B23 

B23/nucleophosmin (NPM) is also called nuclear protein NO 38 or numartin is a multi 

functional nuclear protein that plays an important role in cells growth and proliferation 

(Okuwaki, 2008). B23 is associated with nuclear ribonucleoprotein structures and binds 

single stranded nucleic acids. It also colocalizes with ribosomal subunit proteins in the 

cytoplasm, nucleus and nucleolus. The absence of B23 leads to the inhibition of the 

nuclear export of ribosomal subunits that reduce the availability of cytoplasmic 

polysomes which decrease the synthesis of proteins. This also leads to a cellular 

proliferation block (Maggi et al., 2008). B23 exists in two isoforms designated as B23.1 

and B23.2, 294 and 259 amino acid respectively which differ only in their carboxyl- 

terminal short sequences and they both are highly acidic. The B23.1 carboxyl domain is 
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essential in RNA-binding activity. The N-terminal 257 residues of the two isoforms are 

identical. The crystal structure of Xenopus nucleoplasmin-core, Drosophila 

nucleoplasmin- like protein (NLP) shows that the two pentomeric rings form a decamer 

associated in a head-to-head form. This decamer act as chaperone and binds with core 

histone to form a large complex  (Figure 1-12) (Lee et al., 2007). It is also involve in 

many diverse cellular processes such as ribosome biogenesis, centrosome duplication, 

cancer and apoptosis. B23 localization and mobility within cells is highly regulated by 

phosphorylation events (Ramos‐ Echazábal et al., 2012). 

1.5 The effect of the viruses on PML-NB, 
speckles, paraspeckles, nucleolin, 
fibrillarin and B23 

Infection by viruses, particularly DNA viruses, has been shown to affect several nuclear 

structures. 

1.5.1 The effect of the viruses on PML 

There are number of studies suggesting that the interaction between viral genomes and 

PML-NBs happens that associate with host factors plays an important role in the early 

stages of virus infections (Everett, 2001). Certain changes in the appearance, distribution 

or composition of  PML-NBs as a result of viral infection. The viruses may require either 

all PML-NBs compartments or some of them for their replication. PML- NBs are 

modified in different ways during viral infection (Leppard and Dimmock, 2004). Some 

virus proteins interact with CK2 and USP7 in order to increase the phosphorylation of 
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PML proteins. This triggers PML polyubiquilation and degradation (Frappier, 2010). In 

herpes viruses, inhibition of viral-gene expression by INF is blocked by virus protein 

ICPO which disrupts PML- NBs during viral infection by inducing proteasome- 

dependent degradation of both PML and SP100 (Gu and Roizman, 2009). Poliovirus 

infection stimulates PML phosphorylation by the extracellular signal regulated kinase 

pathway, increases PML SUMOylation, and induces its movement from the nucleoplasm 

to the nuclear matrix (Pampin et al., 2006). Infection by picornaviruses leads to a 

decrease in PML protein levels, which is carried out by 3C protease. At an early stage of 

the infection, viruses induce PML transfer from the nucleoplasm to the nuclear matrix, 

which leads to an increase in PML-NBs size. This process causes PML degradation 

occurring in a proteasome and SUMO-dependent manner but does not involve the 

SUMO-interacting motif of PML (El Mchichi et al., 2010). 

1.5.2 The effect of viruses on speckles protein SC35 

It had been found that viruses cause inhibition to host cell splicing, and redistribution of 

SC35. In herpes viruses, ICP27 protein is involved in changes of snRNPs distribution. 

The C-terminus region of ICP27 is required for the splicing inhibition and is also 

involved in ICP27 and SC35 redistribution. During the infection, the level of splicing 

target RNA remains constant (Sandri-goldin et al., 1995). Viral proteins accumulate in 

the speckles, which cause rounding and morphological changes of the domain that 

interfere with the normal function. The interaction between the viral protein and speckles 

may reflect a recruitment function to promote viral gene expression (Schneider et al., 

2009). 
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Figure 1-10 Schematic diagram of the domain structure of nucleolin. It includes, RNA 
binding domain; RBD1, RBD2, RBD3 and RBD4 and the C-terminal GAR domain. Drawn 
from information given in the nucleolin (C23) Genecard http://www.genecards.org/cgi-
bin/carddisp.pl?gene=NCL&keywords=Nucleolin)   
 

 

Figure 1-11 A schematic representation of the fibrillarin protein structure. The RGG 
box, the RNA binding domain (RBD), and the α helix are indicated. Drawn from information 
given in the fibrillarin Genecard (http://www.genecards.org/cgi-
bin/carddisp.pl?gene=FBL&keywords=fibrillarin) 
 

 

Figure 1-12 A schematic representation of the B23.1 protein. The N-terminal region 
includes a non-polar region involved in oligomerisation and one or more acidic domains rich 
in aspartic and glutamic acid residues. These are followed by two acidic stretches that are 
important for binding to histones. The central portion is required for ribonuclease activity, 
together with the C-terminal domain, which contains basic regions followed by an aromatic 
stretch, In addition, B23 includes a nuclear-localization signal (NLS) and a nuclear-export 
signal (NES). Drawn from information given in the B23 Genecard 
(http://www.genecards.org/cgi-bin/carddisp.pl?gene=NPM1)  
 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=NCL&keywords=Nucleolin
http://www.genecards.org/cgi-bin/carddisp.pl?gene=NCL&keywords=Nucleolin
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1.5.3 The effect of the viruses on paraspeckles 

It has been found that PSF plays an important role in regulation of some viruses 

replication such as HIV, HDV and influenza virus. PSF interacts with HIV- encoded rev, 

as siRNA causes a depletion of PSF resulting in decrease of HIV unspliced viral RNA 

which leads to decrease of viral production. PSF can also decrease the expression of HIV 

rev dependent transcription by binding to the viral mRNA through cis-acting regulatory 

element (INS) (Yarosh et al., 2015). Influenza virus requires PSF for RNA multiplication 

and replication. siRNA knock down of PSF cause decrease in viral production and  

reduce or delay the viral gene expression as well as decrease the viral transcription 

(Yarosh et al., 2015) PSF also interact with stem loop domain of HDV RNA in order to 

disrupt host cell processing (Yarosh et al., 2015). 

1.5.4  The effect of viruses on nucleolin 

Some studies have shown that viral particles bind to nucleolin and dramatically relocalize 

it from nucleoli to the cytoplasm, due to the relocalization ability of nucleolin between 

nucleolus, nucleus and cytoplasm, which is important for RNA virus replication. This 

localization could cause ribosome biogenesis alteration in the host cell that enhances 

virus protein expression (Masiuk, 2008). Herpes infection causes a wide redistribution of 

nucleolin throughout the nucleus of HSV-1 infected cells with the involvement of UL24 

protein in this nuclear modification. The UL24 N-terminal is the main cause of nucleolin 

distribution in the absence of other viral protein (Bertrand et al., 2010). Nucleolin plays a 

functional role in the early stage of the poliovirus life cycle that effects virus replication. 

Immunofluorescence analysis demonstrated a nucleocytoplasmic relocalization of 
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nucleolin, which induce the inhibition of translation and cellular transcription (Waggoner 

and Sarnow, 1998). The C-terminus of Adenovirus protein V also cause a redistribution 

of nucleolin to cytoplasm (Matthews, 2001).   

1.5.5 The effect of viruses on Fibrillarin 

During infection with the herpes virus HSV-1, fibrillarin is redistribution throughout the 

nucleoli as small spots, some of which also colocalize with centromeres. This 

relocalization can be grouped into UL24 –independent and UL24 –dependent events 

(Lymberopoulos and Pearson, 2010). In human influenza H3N2 virus, the NS1 protein 

interacts with nuclear proteins such as fibrillarin. This direct interaction causes 

colocalization with fibrillarin in the nucleolus (Melén et al., 2012).  

1.5.6  The Effect of the viruses on B23 

It has been found that nucleophosmin/ B23 has a potential role as a chaperone for viral 

chromatin assembly. It acts as template-activating factor-III (TAF-III) which stimulate 

adenovirus DNA replication when it interacts with viral core protein V and the precursor 

of core protein VII (pre-VII) at the late phase of infection (Samad et al., 2007). The 

depletion of B23 increases the association of cellular histones and viral DNA with viral 

core protein (Samad et al, 2012). B23 also plays an important role in intracellular 

localization of core protein and replication of Japanese encephalitis virus (JEV). During 

viral infection, B23 translocates from nucleoli to cytoplasm. The cytoplasmic B23 

colocalized with the core protein of wild type JEV (Tsuda et al., 2006). The 2A viral 

protein of encephalomyocarditis virus is associated with B23. This association helps to 
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traffic 2A into nucleoli by the putative nuclear localization signal (NoLS) (Aminev et al., 

2003). Recent studies suggested that B23 is also playing a role as a chaperone in the 

assembly of core protein into the viral core (Samad et al., 2012). 

1.6 Aims 

There is growing evidence that although picornaviruses replicate in the nucleus they 

redistribute and use some nuclear proteins during infection. Most work has been done on 

a few picornaviruses and it is important to extend the range of viruses that have been 

studied to find how common these changes are, to assess if they could be the basis for 

new antivirus drugs. In addition, the effect of picornavirus infection on only a limited 

number of nuclear proteins have been studied. 

The aim of the project was to: 

Investigate the effect of infection by coxsackievirus A9 (CAV-9), as a representative of 

the medically important Enterovirus B species of picornaviruses, on a panel of nuclear 

proteins to identify any that are redistributed from their normal location and understand 

the molecular basis of the effect and how it may enhance virus replication. 
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2.1 Materials 

The sources of the materials used are shown in the following sections. All solutions were 

made with deionised water purified using the Purite system. 

2.1.1  Tissue culture reagent 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich). 

Fetal Bovine Serum (FBS) (Lonza or Sigma-Aldrich). 

Gentamicin (Sigma-Aldrich). 

Penicillin streptomycin (Pen Strep) (Sigma-Aldrich). 

Non-essential amino acid (Sigma-Aldrich). 

OPTIMEM GlutMax™-1 1X (Invitrogen). 

Trypsin-EDTA 10X (Fisher). 

Lipofectin transfection reaction (Life technology). 

X fect tranfection reagent (Clonetech). 

TurboFect transfection reagent (Thermo Scientific) 

Hoechst 33342, Trihydrochloride Trihydrate (Invitrogen). 

Vectashield hard set, antifade mounting media with DAPI (H-1500, Vector laboratories). 
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2.1.2 Tissue culture buffers 

2.1.2.1 Phosphate buffer saline (PBS) 

Each 1 tablet of PBS (Fisher) was dissolved in 100 ml of water then autoclaved to make 

1X PBS. 

2.1.2.2 Mowiol mounting medium 

In a 50 ml Falcon tube 6 g of glycerol was added to 2.4 g mowiol (CalBiochem) and 

stirred to mix. Then 6 ml of water was added and incubated at room temperature (RT) for 

2 hr. 12 ml of 2 M Tris buffer (pH 8.5) was added and incubated in a water bath at 50-60 

oC for 10 min until the mowiol dissolved, then the sample was centrifuged at 5800 g for 

15 min in order to remove non-dissolved solid. The media was aliquotted into a 1.5 ml 

Eppendorf tube and stored at -20 oC. 

2.1.2.3  Carboxy methyl cellulose (CMC) plaque overlay 

media 

2 g of agarose and 2 g of CMC (sigma-Aldrich) were added to 100 ml of water then it 

was autoclaved. 

2.1.2.4  Crystal violet stain 

0.5 g of crystal violet dye was dissolved in 495 ml of water and 5 ml of absolute ethanol. 
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2.1.3  Virus strains 

CAV-9 Griggs  was the main virus used in this study and the sample used was obtained 

from the cDNA clone pCAV-9 and propagated on GMK cells (Hughes et al., 1995). 

HPeV-1 Harris was obtained from the cDNA clone pHPeV-1 and propagated on HT29 

cells (Nateri  et al., 2000).  

2.1.4  Cell Fixation for microscopy 

Cell fixation using 4 % Formalin 

1 ml of 40 % formaldehyde (Fisher Chemicals) added to 10 ml 1X PBS. 

Cell washing using glycine solution 

0.3754 g of glycine (Fisher) was added to 50 ml 1X PBS to make a 100 mM solution. 

Cell permeablization 

125 μl of Triton X100 (Sigma-Aldrich) was added to 50 ml of 1X PBS to make a 0.25 % 

solution. 

Cell Blocking (0.05 % Tween 20, 1 % BSA, 2 % serum) 

0.1 g BSA (Bovine serum albumin) (Fraction V, Sigma), 200 μl of FBS and 50 μl of 

Tween 20 (Sigma-Aldrich) were added to 10 ml of 1X PBS. 

Antibody diluent 

0.1 g BSA and 50 μl of Tween 20 were added to 10 ml 1X PBS. 
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2.1.5 Antibodies 

The different antibodies used are summarised in Table 2-1. 

2.1.6 Plasmid DNA 

The DNA constructs used are shown in Table 2-2. 

2.1.7 Oligonucleotides 

All the sequences of oligonucleotides used in order to make DNA constructs are shown 

in Table 2-3.  Oligonucleotides were made by Fisher and supplied as a dry powder. They 

were dissolved in water to give a 100 µM solution.  

2.1.8 Polymerase Chain Reaction (PCR) reagents 

Pfu DNA Polymerase (Fermentas) 

10X Pfu buffer was provided and contained 20 mM Tris-HCl (pH 8.2), 1 mM DTT, 0.1 

mM EDTA, 100 KCl, 0.1 % (v/v) nonidet P40, 0.1 % (v/v) Tween 20 and 50 % (v/v) 

glycerol. 

Taq DNA Polymerase (Fermentas) 

10X Taq buffer was provided and contained 20 mM Tris-HCl (pH 8.2), 1 mM DTT, 0.1 

mM EDTA, 100 KCl, 0.5 % m(v/v) nonidet P40, 0.1 % (v/v) tween 20 and 50% (v/v) 

glycerol. 

dNTP Mix 10 mM each (Fermentas) 

Nuclease free water (Thermo Scientific)  
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Table 2-1 The antibodies used showing types and sources 

Antibody Clone Type Company 

Alexa fluor 555-labelled  Goat anti mouse IgG (secondary) Life technology 

Alexa fluor 568-labelled Goat anti rabbit  IgG  (secondary) Life technology 

Alexa fluor 488-labelled Goat anti-rabbit IgG (secondary) Life technology 

Anti-G3BP (ab 56574) Mouse monoclonal IgG1 (primary) Abcam 

Anti-coxsackievirus A9  
(mab 947) Mouse monoclonal IgG2b (primary) Millipore 

Anti-PSPC1 Rabbit polyclonal (primary) Sigma Aldrich 

Anti-PSF (H-80) Rabbit polyclonal (primary) Santa Cruz 

Anti -B23  Mouse monoclonal IgG1 (primary) Sigma Aldrich 

Anti-PTBP-2 Rabbit polyclonal (primary) Santa Cruz 

Anti-GW182 Rabbit polyclonal (primary) Sigma Aldrich 

Anti-dsRNA (J2) Mouse monoclonal IgG2 (primary) Scicons 
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Table 2-2 All the constructs that were used and their sources 

Construct Source 

EGFP-PSF  Professor B.K. Felber  

EYFP-PSPC-1 Professor A.I. Lamond 

EGFP-NONO (NRB54) Professor B.K. Felber  

EGFP-PML Professor M. Vihinen-Ranta  

EGFP-Nuclolin Professor J. Hiscox 

EGFP-Fibrillarin Professor J. Hiscox 

EGFP-B23 Professor J. Hiscox 

ERFP-LC3 Professor J.L. Iovanna  

TP53INP1-EGFP Professor J.L. Iovanna  

pT7EGFP-C1HsTNRC6A (GW182, P body) Dr. E. Izaurralde's (Addgene) 

pT7EGFP-C1HsRCK (DDX6, P body) Dr. E. Izaurralde's (Addgene) 

pEGFP-N1HDAC6 (HDAC6, Stress 
granule) Dr. Tso-Pang Yao (Addgene) 

 

 

  

https://www.addgene.org/browse/pi/965/
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Table 2-3 Oligonucleotides used.  Yellow highlights indicate restriction enzyme sites 
and red highlights show the site of mutations.  
 
Oligonucleo
tide 

Description Sequence (5’ to 3’)  Enzymes 

OL 2006 2A CAV-9 Forward TCT  CGA  GCT  GGT  GCC  

TTC  GGA  CAA  CAA  TCC  

GGG  GCC  GT  

 XhoI 

OL 2007 2A CAV-9 Reverse AGG  ATC  CTT  ACT  GCT  

CCA  TAG  CGT  CAT  CCT  

CTA  ACC  A 

BamHI 

OL 2008 3C CAV-9 Forward ACT  CGA  GCT  GGT  CCC  

GCA  TTT  GAA  TTC  GCC  

GTT  GCA  ATG 

XhoI 

OL 2009 3C CAV-9 Reverse AGG  ATC  CTT  ATT GTT  

CAT CAT  TGA  AGT  AGT 

GCT TGA GAA G 

BamHI 

OL 2063 HPeV-1 3C Forward CTC GAG  CTC GGG AGT T

CA  AAA  ATG  AAG  CTC 

XhoI 

OL 2064 HPeV-1 3C Reverse GGA  TCC  TTA  TTG  ATC  

AGA  CAT  GTC ATT TTT A 

BamHI 

OL 2133 HPeV-1 3C mutant 

with S Forward 

GTT  AAA  TCT  TGC  AAA  

GGA  ATG TCC  GGT  GGC  

CTA  CTT   ATT  TCA 

 

OL 2134 HPeV-1 3C mutant 

with S reverse 

TGA  AAT  AAG  TAG  GCC  

ACC  GGA  CAT  TCC  TTT  

GCA  AGA  TTT  AAC 
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Oligonucleo
tide 

Description Sequence (5’ to 3’)  Enzymes 

OL 2086 HPeV-1 3C mutant 

with A Forward 

GTT  AAA  TCT  TGC  AAA  

GGA  ATG  GCT  GGT  GGC  

CTA  CTT  ATT   TCA  AAA  

GT 

 

OL 2087 HPeV-1 3C mutant 

with A Reverse 

ACT  TTT  GAA  ATA  AGT  

AGG  CCA  CCA  GCC  ATT  

CCT  TTG  CAA  GAT  TTA  

AC 

 

OL 1637 EGFP  Forward 

(for sequencing) 

CTG  GAG TAC  AAC  TAC  

AAC  AGC  CA 

 

OL 2167 PSF Forward TCT  CGA  GCT  TCT  CGG  

GAT  CGG  TTC  CGG  AGT  

CGT 

XhoI 

OL 2168 PSF Reverse TGT  CGA  CTA  AAA  TCG  

GGG  TTT  TTT  GTT  TGG  

GCC TTC 

SalI 

OL 2169 P54  NRB (NONO) 

 Forward 

GAA  GCT  TCG  CAG  AGT  

AAT  AAA  ACT  TTT  AAC  

TTG  GAG  AAG  CA 

HindIII 

OL 2170 P54  NRB (NONO) 

 Reverse 

AGG  ATC  CTA  GTA  TCG  

GCG  ACG  TTT  GTT  TGG  

GGC  A 

BamHI 

OL 2177 PSPC-1 Forward GAA GCT  TCG  ATG  TTA  

AGA  GGA  AAC  CTG  AAG  

CAA  GTG 

HindIII 
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Oligonucleo
tide 

Description Sequence (5’ to 3’)  Enzymes 

OL 2178 PSPC-1 Reverse 

 Fragment-1 

TGG  ATC  CTA  CTG  AGA  

AAA  TGC  TTG  CTC  TAG  

CAG 

BamHI 

OL 2179 PSPC-1 Reverse  

fragment-2 

TGG  ATC  CTA  TTG  GTT  

ACC  AGC  AGG  GGC  TGG  

GCT 

BamHI 

OL 2182 PSPC-1 

(for sequencing) 

AGG  CAA  GAT  CTA  ATG  

AGG  CGT  CAA  G 

 

OL 2228 PSF WT  Forward TCT  CGA  GCT  TCT  CGG  

GAT  CGG  TTC  CGG  AGT  

CGT  GGC  GGT 

XhoI 

OL 2235 PSF WT  Reverse TCA  TGG  GTG  TAT  CAT  

CCA  GTT  CGG  CT 

 

OL 2226 PSF Y to E Forward AGG  CCT  GGA  GAG AAA  

ACT  GAG ACA  CAG  CGA  

TGT  CGG  T 

 

OL 2227 PSF Y to E Reverse ACC  GAC  ATC  GCT  GTG  

TCT  CAG  TTT  TCT CTC  C

AG  GCC  T 

 

OL 2224 PSF Y to F Forward AGG  CCT  GGA  GAG  AAA  

ACT  TTC  ACA  CAG  CGA  

TGT   CGG  T 
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Oligonucleo
tide 

Description Sequence (5’ to 3’)  Enzymes 

OL 2225 PSF Y to F Reverse ACC  GAC  ATC  GCT  GTG  

TGA  AAG  TTT  TCT  CTC  

CAG  GCC  T 

 

OL 2233 PSF S to A Forward TCT  CGA  GCT  TCT  CGG  

GAT  CGG  TTC  CGG  GCT  

CGT  GGC  GGT 

 

OL 2234 PSF S to E Forward TCT  CGA  GCT  TCT  CGG  

GAT  CGG  TTC  CGG  GAG  

CGT  GGC  GGT 

 

OL 2240 PSF S to A 

(for sequencing) 

CTG  GAG  GCT  GGT  GGT  

GCG  CTG  CCT  ACT 

 

OL 2241 PSF Y to F 

(for sequencing) 

TGC  CGC  CTT  TGG  GAC  

CAC  CCG  GA 

 

OL 2250 PSF Deletion-1 (XX

)  

Forward 

TCG  AGC TGG CAA AGG 

ATT CGG ATT TAT TAA 

GCT TGA AT 

XhoI 

OL 2251 PSF Deletion-1 (XX

)  

Reverse 

CTA GAT TCA AGC TTA 

ATA AAT CCG AAT CCT 

TTG CCA GC 

Xbal 

OL 2252 PSF Deletion-2 For

ward 

 (XB) 

CTA GAG CTT TGG CTG 

AAA TTG CCA AAG CCG 

AAC TGG 

Xbal 
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Oligonucleo
tide 

Description Sequence (5’ to 3’)  Enzymes 

OL 2253 PSF Deletion-2 Rev

erse 

 (XB) 

GAT CCC AGT TCG GCT 

TTG GCA ATT TCA GCC 

AAA GCT 

BamHI 

OL 2254 Truncated PSF 

Forward (for 

sequencing) 

GTT GGG AAT CTA CCT 

GCT GAT ATC ACG GAG 

 

OL 2255 Truncated PSF Reve

rse 1 

AGG ATC CAG GAA GAC 

CAT CTT CAT CAT CTA 

GTT G 

BamHI 

OL 2256 Truncated PSF Reve

rse 2 

AGG ATC CAC CCA TTC 

GCA TGT CTC TTT CCC GT 

BamHI 

OL 2257 Sumoylation mutant 

PSF Reverese 

CAA AGC TCT AGA TTC 

AAG GGC AAT AAA TCC 

GAA TCC T 
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2.1.9 Agarose gel electrophoresis 

Agarose (Fisher Scientific) 

50X ELFO buffer 

242 g Tris base was added to 100 ml EDTA solution (0.5 M pH 8.8), adjusted to pH 7.7 

with glacial acetic acid and made up to 1 L with water. 

1X ELFO 

100 ml of 50X ELFO was added to 4900 ml water. 

5X clear loading dye 

5X ELFO, 50 % (v/v) glycerol 

SafeView nucleic acid stain (NBS Biological) 

1 kb DNA ladder (Fermentas) 

10 μl 1 kb ladder (1 μg/ml) was added to 10 μl 6X loading buffer and the volume was 

made up to 60 μl with water. 

2.1.10 Gel purification 

QIAquick Gel Extraction Kit (QIAGEN) 

2.1.11 Ligation 

T4 DNA ligase supplied with 10X ligase buffer (400 mM Tris-HCl (pH 7.8 ), 100 mM 

MgCl2, 100 mM DTT, 5 mM ATP) (Fermentas). 
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pGEM-T easy vector kit (Promega): 

The high copy number pGEM®-T Easy Vector contains T7 and SP6 RNA polymerase 

promoters flanking a multiple cloning region within the alpha-peptide coding region of 

the enzyme beta-galactosidase. Insertional inactivation of the alpha-peptide allows 

recombinant clones to be directly identified by blue/white screening on indicator plates. 

The linearised vector has a single T added to each 3’ end to allow cloning of PCR 

fragments generated by or treated with Taq polymerase, which adds a non-templated A 

nucleotide to each 3’ end of the product. pfu polymerase was used for most PCR 

reactions as it has proof-reading activity. As pfu does not add the non-templated A, the 

PCR product was treated with Taq polymerase for 15 minutes at 72 oC to allow the 

pGEM®-T Easy Vector to be used. The vector was provided with 2X Rapid Ligation 

Buffer (60mM Tris-HCl (pH 7.8), 20mM MgCl2, 20mM DTT, 2mM ATP 10% 

polyethylene glycol (MW8000, ACS Grade). 

2.1.12 Competent cells transformation 

Escherichia coli (E.coli) top 10 strain was used for cloning DNA. 

Genotype F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 

Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG 

Luria Broth (LB) 

10 g of sodium chloride (NaCl) was added to 10 g tryptone and 5 g of yeast extract, 

water was added to make up a volume of 1 L and the solution was adjusted to pH 7.0 

with 5 N NaOH. The mixture was autoclaved. 
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Luria Agar (LA) 

15 g of agar was added to 10 g of sodium chloride (NaCl), 10 g of tryptone and 5 g of 

yeast extract in 1 L of water after the solution had been adjusted to pH 7.0 The mixture 

was autoclaved. 

Blue and white colony selection plates 

A solidified LA was melted and left at RT to cool down to approximately 37 oC. 100 μl 

of IPTG (100 mM) was added to 100 ml LA with 100 μl of 100 mg/ml ampicillin and 20 

μl Xgal (2 % solution). The mixture was poured into 100 mm Petri dishes (~25 ml/plate) 

and allowed to solidify. 

2.1.13 DNA isolation from bacteria 

QIAprep Spin Miniprep Kit (QIAGEN) 

HiSpeed Plasmid Midi Kit (QIAGEN) 

2.1.14  Restriction enzymes 

The following enzymes were used: 

EcoRI (Invitrogen) 

BamHI (Invitrogen) 

HindIII (Invitrogen) 

Xbal (Invitrogen) 

XhoI (Invitrogen) 
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SalI (Invitrogen) 

the buffer recommended by the supplier was used in each case. 

2.1.15 Western blot 

2.1.15.1 Separating gel 

20 ml of Acrylamide solution (30% solution) was mixed with 9.2 ml of water, 10 ml of 

1.5 M TRIS (pH 8.8), 400 μl of 10% SDS, 400 μl of 10% APS and 16 μl TEMED. The 

prepared plate was then filled with 8 ml of the mixture and the liquid covered with 

isopropanol. The gel was then left for 30 min to be polymerised. 

2.1.15.2 Stacking gel 

In a 50 ml tube, 5.7 ml of water was added and mixed with 1.25 ml of Acrylamide 

solution (30% solution), 1.89 ml of 0.5 M TRIS (pH 8.8), 90 μl of 10% SDS, 90 μl of 

10% APS and 9 μl of TEMED. The isopropanol was removed from the plate and the gel 

was washed with water to remove the remaining isopropanol. The stacking gel was then 

poured on the top of the 15% acrylamide gel and a 1.5 mm comb was inserted.  

2.1.15.3 Semi-dry blotting 

4 trays were labelled as Anode I, Anode II, Cathod and membrane. 6 pieces of Whatman 

paper were cut at the dimensions 10 cm x 7 cm. 2 pieces for Anode1, 1 piece for Anode 

II, and 3 for the cathode tray. A Western blotting membrane was cut into 9 cm x 6 cm 

(1/gel) and activated by methanol. The trays were then filled with anode and cathode 
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solutions to soak the paper. The gel was washed with water to remove excess SDS. The 

paper from Anode I was rolled over it to remove air bubbles, then same to Anode II. The 

gel was then gently placed on the top of the paper.  

2.1.15.4 Milk solution 

1.5 g of milk + 50 ml TBST buffer 

2.1.15.5 3% Blocking  

0.3 g of BSA + 10 ml TBST. 3 ml of the blocking mixture + 6 μl antibody. 

2.2 Methods 

2.2.1 Tissue culture 

2.2.1.1 Cell culture 

Green Monkey Kidney (GMK) cells were used for most experiments and were provided 

by Dr. Merja Roivainen. Cells were grown on 25 cm2 flasks in a growth medium 

consisting of DMEM supplemented with 10% FBS, 0.2 % Gentamycin or Pen Strep and 

1 % Non- essential amino acid in a humidified incubator at 37 ° C. 

2.2.1.2 Cell splitting 

GMK cell monolayers were washed twice with 1X PBS after removing the media. They 

were then incubated with Trypsin 1X (Sigma-Aldrich, 100 µl) on a rocking plate at room 

temperature until the cells detached (3-5 min). The cells were re-suspended by adding 
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fresh medium (20 ml) and 5 ml aliquots were was dispensed into new flasks to give a 

splitting ratio of 1:4. The cells were split every 3-4 days. Cells were also split in the same 

way into 6 well tissue culture plates, where each well contained a sterile, glass cover-slip. 

The cells were dispensed at 2 ml per well and incubated over-night. 

2.2.1.3  DNA transfection 

Three transfection methods were applied in this study. 

2.2.1.3.1  Lipofectin transfection method 

5 μl of Lipofectin (Invitrogen) was incubated with 100 μl Optimem GlutMax™-1 1X in 

tube A for 1hr at RT. 5 μl (1-5 μg) of DNA (or 5 μl of both DNAs in co-localization 

experiments) were placed in tube B, together with 100 μl optimum GlutMax™-1 1X for 

1 hr at RT. Both tubes were mixed together and incubated for 20 min at RT. Cells were 

washed twice with Optimem GlutMax™-1 1X then 800 μl of the optimum GlutMax™-1 

1X was added to the tubes. The mixture was added to the cell line and incubated for 24 

hrs at 37 °C. Then, the medium was replaced with 2 ml of fresh growth medium for 24 

hrs at 37 °C. After 24 hrs, cells were either infected with the virus or washed twice with 

1X PBS and the nucleus stained with Hoechst 33342 and mounted on the slides using 

Mowiol mounting medium.  

2.2.1.3.2  X fect transfection method 

5 μl of DNA (as described above) was added into 95 μl of the buffer provided. 1.5 μl of 

polymer were added into 98.5 μl of the buffer. Both mixtures were combined and 

incubated for 10 min at RT. Then, 1 ml of the cell culture media was removed and the 
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mixture was added to the cell culture and incubated for 4 hr at 37 °C. Then, the liquid 

was removed and 2 ml of DMEM was added and incubated for a maximum 48 hrs at 37 

°C. Cells were stained with 0.5 μl Hoechst 33342 per 1 ml of warm DMEM and 

incubated at 37 °C for 20 min. Cells were washed twice with 1X PBS and cover slips 

were mounted on the slides using Mowiol mounting medium.  

2.2.1.3.3 TurboFect transfection method 

 In 6 wells plate of 2 ml media in each plate and 50-70 % of confluent cells, 1 μg of DNA 

was diluted in 100 μl of Optimem GlutMax™-1 1X. 2 μl of TurboFect was added to the 

diluted DNA and the solution was mixed thoroughly by pipetting. The mixture was 

incubated for 15-20 min at R.T. Mixture was added to the plate was rocked gently to 

evenly distribute the mixture. Plate was then incubated for 24-48 hr at 37 °C. Cells were 

then fixed and examined by microscope.  

2.2.1.4 Microscopy 

Cells were examined with a BX41 microscope, wild field microscope or confocal 

microscope, using a 60x oil immersion magnification using red (TRITC), green (FITC) 

and blue (DAPI) filters/channels. 

2.2.1.4.1 Confocal microscope 

A Nikon A1si confocal microscope was used with a plan-apochromatic VC1.4 N.A. 60x 

magnifying oil-immersion objective. Software used for image acquisition; NIS-Elements 

AR 4.13.01(Build 916). Images were acquired in four channels, using one-way 

sequential line scans. DAPI was excited at 400 nm with laser power 7.2 arbitrary units, 
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and its emission collected at 450/50 nm with a PMT gain of 118. GFP was excited at 488 

nm with laser power 5.8, its emission collected at 525/50 nm with a PMT gain of 90. 

mCherry signal was excited at 560 nm with laser power 3.2, and collected at 595/50 nm 

with a PMT gain of 121. Scan speed was ¼ frames/s (galvano scanner). The pinhole size 

was 47.5 µm, approximating 1.2 times the Airy disk size of the 1.4 N.A. objective at 525 

nm. Scanner zoom was centred on the optical axis and set to a lateral magnification of 60 

nm/pixel. Axial step size was 105 nm, with 80-100 image planes per z-stack. Identical 

settings were used for all acquired datasets, Following Nyquist–Shannon reconstruction 

theorem (Nyquist, 1928, Shannon, 1949) with a pixel size of 60 nm.  

2.2.1.4.2 Wide field microscope 

A Nikon A1 plus wild field microscope was used with a plan-apochromatic VC1.4 N.A. 

60x magnifying oil-immersion objective. Software used for image acquisition; NIS-

Elements AR 4.13.01(Build 916) using camera Andor Luca-R DL-626. Images were 

acquired in four channels, using one-way sequential line scans. DAPI was excited at 

398.7 nm with laser power 13.0 arbitrary units, and its emission collected at 450/50 nm 

with a PMT gain of 118. GFP was excited at 488 nm with laser power 6.8, its emission 

collected at 525/50 nm with a PMT gain of 90. mCherry signal was excited at 560.5 nm 

with laser power 3.2, and collected at 595/50 nm with a PMT gain of 121. Scan speed 

was ¼ frames/s (galvano scanner). The pinhole size was 47.8 µm, approximating 0.25 

times the Airy disk size of the 1.4 N.A. objectives at 525 nm. Scanner zoom was centred 

on the optical axis and set to a lateral magnification of 60 nm/pixel. Axial step size was 

105 nm, with 80-100 image planes per z-stack. Identical settings were used for all 
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acquired datasets, Following Nyquist–Shannon reconstruction theorem (Nyquist, 1928, 

Shannon, 1949) with a pixel size of 60 nm.  

2.2.1.5 Viral infection and detection of infected cells 

In order to study the effect of the virus on the nucleus or nucleolus, 100 μl (106 pfu) of 

the virus (CAV-9 Griggs strain or HPeV-1 Harris) was added to 500 μl of DMEM and 

applied to the cells. Cells were incubated at RT on a rocking plate for 30-45 min then 

incubated in a 37 °C in a humidified incubator for (1, 2, 3, 4, 6 or 8 hrs). Then, cells were 

fixed with 1 ml of 4 % formalin for 20-30 min on a rocking plate at RT, then washed 

with 1X PBS/100mM Glycine for 5 min. Cells were permeabilized with 1X PBS/0.25% 

Triton X 100, washed twice with 1X PBS and blocked with 1X PBS containing 1% BSA 

and 0.05% Tween 20. Fixed and premeablized cells were incubated overnight in the dark 

at 4 °C with diluted mouse anti coxsackie virus A9 labeled primary antibody at 1:112 in 

PBS/1% BSA or ds RNA antibody (Scicons) labelled primary antibody at 1:500 μg/ml in 

PBS/1% BSA. Cells were washed with 1X PBS for 10 min and incubated with diluted 

Alexa Fluor 555 goat anti-mouse secondary antibody at 1:500 μg/ml in PBS/1% BSA for 

2 hrs in the dark at 4 °C. Cells were washed for 10 min with PBS and coverslips were 

mounted using Vectashield hard set, antifade mounting media with DAPI.   

2.2.1.6 Plaque assay 

In order to determine virus concentrations, plaque assays were performed. From a 

confluent flask of the cell line, the old media was removed and 1 ml of fresh media was 

added. 100 μl of a diluted virus (102, 103, 104, 105 dilutions) was added to the flask and 
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incubated for 30-45 min at RT on a rocking plate. A 1:3 mixture of agarose/CMC to 

growth medium mixture was prepared by melting the agarose/CMC in a microwave, 

adding to medium and keeping at 56 °C to prevent setting.  3ml of the mixture was added 

to each flask and incubated in a humidified incubator at 37 °C for 2-3 days or until the 

plaques formed. The overlay was removed and cells were washed with 1X PBS before 

being stained with 0.1 % crystal violet in 1 % ethanol for 5 min.  

2.2.1.7 Virus propagation 

The old media from flasks containing confluent cells was removed and replaced with 900 

μl of fresh growth media. 100 μl of the virus was added to the flask and incubated at RT 

for 45-60 min on a rocking plate, then 4 ml of fresh growth media was added and 

incubated at 37 oC for 3-4 days or until CPE was observed. Then, the infected cells were 

frozen at -20 oC and thawed at RT three times. The infected cell lysate was aliquotted 

into 1.5 ml eppendorf tubes and stored at -80 oC. 

2.2.1.8 Cell line storage 

A confluent cell line flask was washed twice with PBS. 200-300 μl of Trypsin 1X was 

added and incubated for 3-5 min on a rocking plate. 1 ml of FBS was added to the flask 

and mixed gently. 1 ml of that mixture was placed in a cryo tube and 111 μl of DMSO 

was added. The tube was placed in an insulated container to ensure slow freezing and 

placed at -80oC. 

In order to recover the stored cells, one tube was thawed quickly at 37 oC. 1 ml of the 

tube was taken and 4 ml of fresh growth media was added and incubated at 37 oC for 24 
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hr. When the cells were confluent the media was replaced with fresh growth media. Then 

the cells were split into 1:2 or 1:3 once, before being treated as normal.  

2.2.2 Molecular methods 

2.2.2.1 DNA constructs  

In order to make the required DNA constructs encoding the viral non-structural proteins 

or cellular proteins, fused to EGFP or mCherry, the virus genomic sequence of CAV-9 

Griggs or HPeV-1 Harris was extracted from the database, via the Picornavirus Home 

Page (http://www.picornaviridae.com/), and the mRNA sequence encoding cellular 

proteins was extracted using the NCBI site (http://www.ncbi.nlm.nih.gov/). The 

sequences were analysed using the program webcutter 2 

(http://rna.lundberg.gu.se/cutter2/)to choose restriction enzyme sites present in the 

polylinker of the vector (pEGFP-C1 or mCherry-C1) that are not present in the DNA to 

be inserted. These, and any nucleotides needed to keep the correct frame, were added to 

the 5’end of oligonucleotides designed to amplify the required coding region by PCR. 

The oligonucleotides were synthesized commercially by Fisher on a 50 nmole scale and 

were dissolved in water to a concentration of 100 μM.  

2.2.2.2  Polymerase chain reaction (PCR) 

2.2.2.2.1  Basic PCR 

To amplify the desired DNA sequence PCR was performed in a 50 μl total reaction 

volume. 5 μl of 10X buffer (containing MgSO4), 1 μl of 10 mM dNTP, 1 μl of sample 
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DNA or cDNA (10 ng), 1 μl of each forward and reversed primers (100 pmoles), 1 μl of 

pfu DNA polymerase and 40 μl of nuclease free H2O were combined. The typical PCR 

conditions are shown in Figure 2.1. Where DNA amplified using pfu polymerase was 

going to be ligated into pGEM-T Easy, 1 μl of Taq polymerase was added after the PCR 

reaction and the sample was incubated at 70 oC for 15 min, to add an A residue to each 

end of the DNA. The typical PCR conditions are shown in Figure 2-1. 

2.2.2.2.2   Overlap PCR 

Overlap PCR was used for mutagenesis. This gives the products PCR1, using an internal 

reverse mutagenesis primer and a forward primer, and PCR2, using an internal forward 

mutagenesis primer and a reverse primer. PCR1 and PCR2 overlap, as the mutagenesis 

primers cover the same region, and a joining PCR is performed on the purified PCR1 and 

PCR2 products using the external forward and reverse primers. The typical PCR 

conditions are shown in Figure 2-1.   

2.2.2.2.3 Colony PCR 

Colony PCR was used for examining the ligation and if the plasmid inserted from E.coli 

colonies. Colony PCR was performed in a 50 μl total reaction volume. 5 μl of 10X buffer 

(containing MgSO4), 1 μl of 10 mM dNTP, 1 μl of each forward and reversed primers 

(100 pmoles), 1 μl of Taq DNA polymerase and 41 μl of nuclease free H2O were 

combined with a small amount of colony by a sterile tooth pick or a fine yellow pipette 

tip and the mixture was mixed well by pipetting. The typical PCR conditions are shown 

in Figure 2-1. 
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2.2.2.3 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to analyse or purify DNA samples, usually using a 

1 % agarose gel. This was made by mixing 0.5 g of agarose with 50 ml 1X ELFO buffer 

and heating in a microwave for 2 min until the agarose dissolved. It was allowed to cool 

down at RT to about 37 oC and 5 μl of Safeview (NBS biological) was added, before the 

mixture was poured into a mould with either a small or large comb to form wells in the 

gel. When the gel was set, for an analytical gel 5-10 μl of the DNA was mixed with 1/5th 

the volume of 5X loading dye and loaded into a small well. 5 μl of 1 kb ladder was added 

to the first well of each row as a size marker. For DNA purification, 45-50 μl DNA 

samples were used and after adding loading buffer (1/5th volume) the samples were 

loaded into larger wells. The electrophoresis was carried out at 100-150 V 

(corresponding to ~ 100 mA) for 10-20 min. The gel was then visualised under blue light 

and images were taken using gel documentation (ingenius 3) system software (gene sene 

sys version 1.3.9.0, data base version 1.72). 

2.2.2.4 Gel purification 

The DNA was observed under a blue light (Syngene) and the desired band was cut from 

the gel using a clean scalpel blade. DNA isolation was done using a Qiagen DNA band 

isolation kit. The DNA slice was incubated with QG buffer  (300 μl per 100 mg of gel) 

and incubated for 10-15 min at 50 oC with regular vortexing until the gel slice dissolved 

completely. 1 gel volume of iso-propanol was then added and the sample mix was 

transferred into a QIAquick spin column in a 2 ml collection tube. The sample was 

centrifuged for 1 min at 16000 x g to allow the DNA to bind to the column. The flow-
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through was discarded and 500 μl of QG buffer was added to the column and centrifuged 

for 1 min. The flow-through was discarded and the column was washed with 750 μl of 

PE buffer, then centrifuged for 1 min. The flow-through was discarded and the column 

was centrifuged for 1 min to get rid of remaining ethanol present in the PE buffer. The 

column was then placed into a 1.5 ml eppendorf tube and 50 μl of EB buffer was added 

to the centre of the column to elute the DNA by centrifuging for 1 min. 5 μl of the 

purified DNA was analysed using an agarose gel and the purified DNA concentration 

was also measured using the nano drop system (ND-1000 spectrophotometer). 
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Figure 2-1 PCR reactions. Starting at 95 oC to activate the polymerase enzyme followed by 
35 cycles of denaturation at 95 oC to separates two strands DNA, annealing at 45-55 oC, 
where the primers bind to specific areas of the target gene, and DNA polymerase, extension 
at 72 oC. A final extension at 72 oC confirms that strand synthesis has been completed, before 
the reaction is stopped by cooling to 4 oC. The annealing temperature depends on the melting 
temperature of the primers and the length of the 72 oC extension may vary based on the 
length of the amplified DNA fragment. pfu polymerase requires a time of 2 min per 1000 
bases amplified. 
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2.2.2.5 Ligation into pGEM-T Easy 

The components provided by the manufacturer of the pGEM-T Easy kit (Promega) were 

used. 2 μl of the purified DNA was added to 1 μl pGEM-T Easy vector, with 1 μl of T4 

ligase, 5 μl of 2X rapid T4 DNA ligase buffer and 1 μl of nuclease free H2O to make up a 

volume of 10 μl. The mixture was incubated for 1 hr at RT or overnight at 4 oC. 

2.2.2.6 Ligation in EGFP or mCherry vectors 

Using 4-15 μl of purified DNA was added to 2 μl 10X T4 buffer, 1 μl T4 enzyme, 2 μl 

vector and nuclease free water to make up a volume of 20 μl. The mixture was incubated 

for 10 min at RT or overnight at 4 oC.  

2.2.2.7 Transformation of E.coli 

2.2.2.7.1 Competent cells preparation 

A single colony of E. coli XL1-blue was selected and inoculated into 10 ml LB and 

incubated in a shaker at 37 oC overnight set at 250 rpm. 200 μl of the culture was 

transferred to 10 ml LB media and incubated for 3-4 hrs at 37 oC in a shaker set at 250 

rpm. The culture was centrifuged at 2750x g for 10 min at 4 oC and the pellet was 

suspended with 5 ml cold 0.1 M CaCl2 and incubated in ice for 30 min. The cells were 

centrifuged at 2750x g for 10 min at 4 oC and the pellet was suspended with 500 μl cold 

0.1 M CaCl2 and incubated in ice for 60 min in order to obtain ready to use competent 

cells. 
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2.2.2.7.2 Transformation 

100 μl of competent cells was added to 5 μl of ligated DNA and incubated in ice for 30 

min. After the incubation time a heat shock was performed by incubating the sample 

mixture at 42 oC for 2 min,  then in ice for 1 min in order to allow the competent cells to 

take up the ligated DNA. 250 μl of LB was added the sample and incubated in a shaker 

for 1 hr at 37 oC at 250 rpm.  150 μl of the mixture was spread onto a petri dish 

containing LB agar and 100 μg/ml ampicillin or 50 μg/ml kanamycin. For blue/white 

selection plates also included IPTG and 20 X-gal. Plates were incubated overnight at 37 

oC. After the incubation time the petri dishes were incubated in a fridge for 2 hr and at 

RT for 2 hr in order to get definite white and blue colonies. White colonies were streaked 

onto an LB plate then the same toothpick was placed into 10 ml LB containing 100 μg/ml 

ampicillin and incubated for 24 hrs at 37 oC in a shaker at 250 rpm. For pEGFP or 

mCherry transformations several colonies were picked and usually screened by colony 

PCR before positive colonies were picked into LB. 

2.2.2.8 Mini prep (QIAgen) 

The cells were harvested by centrifuging 1-5 ml of an overnight LB culture containing 

transformed bacteria colonies and incubated ON at 6000x g for 10 min at RT. The 

supernatant was discarded and the pellet was re suspended in 250 μl of P1 buffer and 

transferred to an eppendorf tube. 250 μl of P2 buffer was added and mixed thoroughly by 

inverting the tube. 350 μl of N3 buffer was added and the mixture was centrifuged for 10 

min at 15000 x g. The supernatant was placed onto a QIAprep spin column by pipetting, 

then centrifuged for 1 min. The supernatant in the collection tube was discarded and the 
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spin column was replaced onto the collection tube and washed with 750 μl PE buffer. 

The spin column was centrifuged for 1 min and the flow through was discarded and an 

additional 1 min centrifugation was performed to get rid of the ethanol residue. The spin 

column was then placed onto a 1.5 ml eppendorf tube and the DNA was eluted with 50μl 

EB buffer by centrifuging for 1 min. Purified DNA was analysed by agarose gel 

electrophoresis and the concentration was measured using the nano drop system.  

2.2.2.9 pGEM-T Easy ligation analysis 

In order to check the ligation into pGEM-T Easy, a double digestion using EcoRI 

restriction enzyme was performed. 5 μl of purified DNA was added to 1 μl EcoRI, 1 μl 

1x EcoRI buffer and 3 μl nuclease-free H2O to make up a volume of 10 μl. The mixture 

was incubated at 37 oC in a water bath for 1 hr. 2 μl of 10X clear loading dye was added 

to the mixture and it was ran on a 1% agarose gel electrophoresis as described in 2.2.2.3. 

The gel was visualised under blue light (Syngene) to check the DNA bands and if the 

expected result was obtained 10 μl of the purified DNA was sent to be sequenced 

commercially (Source Biosciene Life Science).  

2.2.2.10 Double digestion 

To obtain DNA fragments for ligating into EGFP or mCherry vectors double digestion 

was performed. 5 μl of the purified DNA was added to 2 μl of both restriction enzymes, 5 

μl of 10X buffer and 36 μl of nuclease free H2O. The buffer used was selected by 

comparing charts to fine a buffer where both enzymes work efficiently. The mixture was 

incubated for 1-2 hr at 37 oC in a water bath. 2 μl of 10X clear loading dye was added to 
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the mixture and separated by 1% agarose gel electrophoresis as described in section 

2.2.2.3 The gel was visualised under blue light to check the DNA bands. The desired 

band at the correct size was cut with a clean scalpel and purified as described in 2.2.2.4. 

2.2.2.11 Midi Prep (Qiagen system) 

When the sequencing results validated the plasmid DNA, a colony from the streak plate 

was picked and incubated in 10 ml LB with a selective antibiotic and incubated for 6 hr 

at 37 oC in a shaker at 250 rpm. Then 200 μl of the selective antibiotic was added to 200 

ml LB and the growth mixture was transferred to the 200 ml LB and incubated overnight 

at 37 oC in a shaker at 250 rpm. The growth culture was then centrifuged for 15 min at 4 

oC and 6000x g. The bacterial pellet was then resuspended in 6 ml P1 buffer. 6 ml of P2 

buffer was added and mixed by inverting 4-6 times and incubated for 5 min at RT. The 

pellet was then lysed in 6 ml of chilled P3 buffer. The lysate was then poured into a 

prepared QIafilter Cartridge and incubated at RT for 10 min. During the incubation time, 

the HiSpeed Midi Tip was equilibrated with 4 ml QBT buffer. The cell lysate was then 

filtered into the equilibrated filter by gravity flow. The QIAGEN-tip was then washed 

with 20 ml QC buffer. The filter tip was then placed on a clean bottle and the DNA was 

eluted with 5 ml QF buffer. The DNA was then precipitated by adding 3.5 ml iso-

propanol and incubated for 5 min at RT. A 20 ml syringe was prepared by removing the 

plunger and attaching the QIAprecipitator onto the outlet nozzle. The eluted mixture was 

then transferred into the syringe and the plunger was inserted with a constant pressure to 

filter the DNA. The QIAprecipitator was removed and the plunger pulled out, then the 

QIAprecipitator was re-attached and 2 ml of 70 % ethanol was added in order to wash the 
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DNA. The membrane was the dried by pressing air through the QIAprecipitator using 

constant pressure, this step was repeated 3 times. A 5 ml syringe was prepared and the  

QIAprecipitator was attached onto the outlet nozzle and 1 ml of buffer TE was added and 

the DNA was elute into the collection tube using constant pressure. The QIAprecipitator 

was removed and the plunger was pulled out then the QIAprecipitator was reattached and 

the eluate was transferred to the 5 ml syringe and eluted for the second time into the 

same collection tube. The DNA was then aliquotted (200 μl aliquots) into 5 1.5 ml tubes. 

2.2.2.12 Western Blot 

Cells were grown in 2 wells of a 6 well plate 24 hr prior to infection. Cells were then 

infected with CAV-9 for 0, 2, 8 hr in duplicate (0 hr was the mock to use as control). 

Cells were then harvested. In an eppendorf tube, the media from the well were collected 

and cells were washed with 200 μl of BPS X1 and transferred to the tube. 200 μl of 

trypsin was added to the well in order to detach the cells and incubated for 3 min and 

moved the tube. Cells were then washed with the mixture to make sure that all the cells 

were harvested. Cells were then collected in the eppendorf tube and centrifuged for 10 

min. Cells were then resuspended in 250 μl of lysate buffer and incubated for 20 min in 

ice, then centrifuged for 10 min at 4oC. The supernatant was removed and kept at -20 oC 

until needed. 

Protein determination was performed using the Pierce BCA protein assay kit (Thermo 

Fisher scientific) as described by the manufacturer. 50 μg of the protein was added to 10 

μl loading buffer and boiled for 5 min, cooled in ice for 5 min then spun for 1 min. 1.5 of 

the marker (Lonza) was loaded into the prepared gel (section 2.1.15.1 and 2.1.15.2). 
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Samples were also loaded and the gel was run using Bio Rad Power PAC 300 at 80 V for 

30 min then increased to 130 V for 1 hr.  

The membrane was semi-dry blotted as described in (2.1.15.3) then transfer was done for 

40 min using a Biometra standard Power Pack P25, on constant A at 0.06 Amp, and 8W, 

limiting the voltage at 20V. Then the membrane was washed with panacea (red stain) 

then the membrane was transferred to the milk solution for blocking. It was shaken for 1 

– 1.5 hr then washed with TBST buffer and incubate with primary anti body (anti PSPC-

1 or anti PSF) overnight. The membrane was washed with TBST buffer 3 times before 

being incubated with the secondary antibody (Horse reddish peroxidase) (1 hr 

incubation). The membrane was then rinsed with TBST buffer, then milk for 15 – 20 min 

on the shaker. The images were then taken by Fusion FX Vilber Lourmat using Fusion 

software. After the viral infection and the cell lysis  the western blot work was carried 

out by Andrea Moher and her team.  
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3.1 Introduction 

Many viruses, particularly DNA viruses, access and manipulate the nucleus for 

replication (Cohen et al., 2011). It is becoming clear that infection by other viruses can 

affect the nucleus, even when virus replication is confined to the cytoplasm. 

Transcription factors may be cleaved by virus proteases, some viruses change the 

permeability of the nuclear membrane by affecting the nuclear pore complex and the 

nucleoli are modified in some cases (Castelló et al., 2011, Park et al., 2008, Rawlinson 

and Moseley, 2015).  

The nucleus has a number of small domains such as (PML-NBs), nuclear speckles and 

paraspeckles, while nucleoli are much larger than these structures. PML-NBs are nuclear 

substructures found in most mammalian cells and regulate functions such as DNA 

replication, transcription and epigenetic silencing (Jeanne et al., 2010). PML-NBs 

(named after the key protein PML) play an important role in innate immunity during viral 

infection, as they are able to increase transcription when interferon I and II (IFNs) bind 

IFN- stimulated response elements (ISRE) and IFN-activation site (GAS) elements on 

PML (Nardella et al., 2011). Paraspeckles are small sub-nuclear structures that are 

associated with the long non-coding RNA NEAT-1 (Naganuma et al., 2012). These 

bodies act as regulators of gene expression in cells by nuclear retention of RNA. 

Paraspeckles contain many proteins that play an important role in RNA processing and 

transcription. The key protein of paraspeckles is PSF/SFPQ (Bond and Fox, 2009). PSF, 

together with P54NRB (NONO), is responsible for paraspeckle formation and 

maintenance. Depletion of these proteins leads to paraspeckle disorganisation (Nakagawa 
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and Hirose, 2012). Nucleolin, fibrillarin and B23 are proteins largely found in the 

nucleoli and are involved in ribosome biogenesis and signalling pathways (Destouches et 

al., 2011, Ghisolfi-Nieto et al., 1996).  

 It has been previously found that infection with human parechovirus (Parechovirus 

genus of Picornaviridae) redistributes the paraspeckle protein PSPC-1 and the nucleolar 

protein B23 (Mutabagani, 2012). This study has investigated if this is a general feature of 

picornaviruses by investigating coxsackievirus A9 (CAV-9), a member of a different and 

genetically distant picornavirus genus (Enterovirus), in order to examine if this may be 

an important feature of picornavirus infection.  

3.2 Approach 

A number of DNA constructs were obtained which encode fusions of the nuclear protein 

under test fused to EGFP (Table 2-2). GMK cells on glass coverslips were transfected 

with the constructs. 24 hr post transfection, cells were fixed with 4% formalin for 30 min 

on a rocking table then washed with 1X PBS containing glycine. Nuclei were stained 

with DAPI included in the hard-set mounting media. The images were taken by confocal 

microscopy using a Nikon A1 si confocal microscope. 

To test the effect of infection, after infection cells were fixed, permeablised and blocked, 

then a primary mouse monoclonal antibody against CAV-9 and goat anti-mouse IgG 

(labeled with Alexa 555) secondary antibody were used to identify infected cells. Cells 

were then mounted on a glass slide using DAPI hard set mounting media. Slides were 

then visualized using a Nikon A1 si confocal microscope.  
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3.3 EGFP distribution 

To ensure that any apparent effect of infection on the nuclear proteins was not due to 

over-expression or the presence of EGFP, initially pEGFP-C1 was transfected into GMK 

cells, after infection (8hr) EGFP fluorescence was detected and it can be seen that these 

is no significant difference between the EGFP signal distribution in infected and non 

infected cells (Figure 3-1).  

3.4 PML (EGFP-PML) distribution 

3.4.1 EGFP-PML distribution in uninfected cells 

In order to study the distribution of PML, pEGFP-PML was transfected. The 

fluorescence images show the expected distribution of PML (Jul-Larsen et al., 2010), as 

the protein showed a punctate distribution with many spots throughout the nucleus 

(Figure 3-2). In some cells the stain was much more intense, but still punctate in the 

nucleus (data not shown). 

3.4.2 The effect of CAV-9 infection on EGFP-PML 
distribution 

In order to examine the effect of CAV-9 on PML distribution, GMK cells were 

transfected with pEGFP-PML then infected with CAV-9 virus. In this experiment and 

most experiments looking at other nuclear proteins, the results from 6 and 8 hr time point 

are shown. A more complete time series (2, 4, 6 and 8 hr) was examined in some cases, 

but it is difficult to detect virus infected cells at earlier time points and preliminary work 
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showed that cells became rounded and detached at later time points (data not shown). 

The result showed that there was no clear change in the distribution of EGFP-PML in the 

infected cells after 6 or 8 hr (Figure 3-2). However, the EGFP-PML protein has only a 

small number of spots in the nucleus after 8 hr of infection, which is the same result that 

was shown during 6 hr infections. In both cases, the number is less than seen in the 

uninfected cells. 

3.5 Nucleolin (EGFP-Nucleolin) distribution 

3.5.1 EGFP-nucleolin distribution in uninfected cells 

 In order to study the distribution of nucleolin, GMK cells were transfected with pEGFP-

Nucleolin. The fluorescence shows the expected distribution of nucleolin (Dambara et 

al., 2007, Emmott and Hiscox, 2009) as the protein showed slight diffusion in the nucleus 

with a strong signal accumulated in 2-3 irregular structures (Figure 3-3). These structures 

are presumably nucleoli as they correspond to areas in the nucleus which are not stained 

with DAPI. 

3.5.2 The effect of CAV-9 infection on nucleolin 
distribution 

In order to examine the effect of CAV-9 infection on nucleolin, GMK cells were 

transfected with pEGFP-Nucleolin then infected with CAV-9 virus for 6 and 8 hr. 

Results showed that the EGFP-Nucleolin has no clear change in distribution after 6 hr of 

infection, although some of the nucleolar detail seems to be lost. After 8 hr of infection 
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there is more diffusion into the nuclear matrix and also some into the nucleoplasm, but 

most remains in the nucleolus (Figure 3-3). 

3.6 Fibrillarin (EGFP-Fibrillarin) distribution 

3.6.1 EGFP-Fibrillarin distribution in uninfected 
cells 

In order to study the structure of fibrillarin, GMK cells were transfected with pEGFP-

Fibrillarin. The fluorescence shows the expected distribution of fibrillarin (Emmott and 

Hiscox, 2009), as it accumulated in the nucleolus (Figure 3-4), but in some cells the 

EGFP-Fibrillarin is also distributed throughout the nucleus, with some fluorescence in 

the cytoplasm.  

3.6.2 The effect of CAV-9 infection on EGFP-
fibrillarin distribution 

In order to examine the effect of CAV-9 on fibrillarin, GMK cells were transfected with 

pEGFP-Fibrillarin, then infected with CAV-9 virus for 6 and 8 hr. After 6 and 8 hr of 

infection the results showed that there is no change to the nucleolar distribution, as the 

EGFP-fibrillarin protein is concentrated in the nucleolus in 2-3 spots (Figure 3-4). 

Uninfected cells in the fields have a very similar distribution of EGFP-Fibrillarin to the 

infected cells.  
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Figure 3-1 The effect of CAV-9 on the redistribution of EGFP. GMK cells were grown on 
coverslip and transfected with EGFP using lipofectin.  Cells were then infected with CAV-9 
for 8 hr. Nuclei were stained with DAPI in the mounting medium before being visualized 
using a Nikon A1 si confocal fluorescence microscope. Nuclei were observed using DAPI 
(blue), EGFP using the EGFP channel (green) and infected cells in the Alexa 555 channel 
(red). 
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Figure 3-2 The effect of CAV-9 infection on the distribution of EGFP-PML. GMK cells 
were grown on coverslips and transfected with pEGFP-PML using Lipofectin. Cells were 
then either left uninfected (Control) or infected with CAV-9 for 6 and 8 hr, before being 
stained with CAV-9 primary/goat anti-mouse IgG secondary antibody labelled with 
Alexafluor 555. Nuclie were stained with DAPI in the mounting medium. Images were 
visualized using a Nikon A1 si confocal microscope. Nuclei were observed using the DAPI 
channel (blue), EGFP-PML in the EGFP channel (green) and infected cells in the Alexa 555 
channel (red). 
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Figure 3-3 The effect of CAV-9 infection on the distribution of EGFP-Nucleolin. GMK 
cells were grown on coverslips and transfected with pEGFP-Nucleolin using Lipofectin. Cells 
were then either left uninfected (Control) or infected with CAV-9 for 6 and 8 hr, before being 
stained with CAV-9 primary/goat anti-mouse IgG secondary antibody labelled with 
Alexafluor 555. Nuclei were stained with DAPI in the mounting medium. Images were 
visualized using a Nikon A1 si confocal microscope. Nuclei were observed using the DAPI 
channel (blue), EGFP-Nucleolin in the EGFP channel (green) and infected cells in the Alexa 
555 channel (red). 
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Figure 3-4 The effect of CAV-9 infection on the distribution of EGFP-Fibrillarin. GMK 
cells were grown on coverslips and transfected with pEGFP-Fibrillarin using Lipofectin. 
Cells were then either left uninfected (Control) or infected with CAV-9 for 6 and 8 hr, before 
being stained with CAV-9 primary/goat anti-mouse IgG secondary antibody labelled with 
Alexafluor 555. Nuclei were stained with DAPI in the mounting medium. Images were 
visualized using a Nikon A1 si confocal microscope. Nuclei were observed using the DAPI 
channel (blue), EGFP-Fibrillarin in the EGFP channel (green) and infected cells in the Alexa 
555 channel (red). The scale bars represent 20 μm. In the CAV-9 infected samples, (white 
arrows) is similar to in infected cells (red arrows). 
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3.7 B23 (EGFP-B23) distribution 

3.7.1 EGFP-B23 distribution in uninfected cells 

In order to study the structure of B23 and the distribution of its proteins, GMK cells were 

transfected with pEGFP-B23. The images were taken using a BX41 fluorescence 

microscope 24 hr post transfection. The fluorescence shows the expected distribution of 

B23 (Emmott and Hiscox, 2009), as the protein showed a strong nucleolus signal (Figure 

3-5).  

3.7.2 The effect of CAV-9 infection on EGFP-B23 
distribution 

In order to examine the effect of CAV-9 on B23 GMK cells were transfected with 

pEGFP- B23 then infected with CAV-9 virus for 6 and 8 hr. Slide was then visualized 

using a BX41 fluorescence microscope. No cells that were both infected and transfected 

could be found after 6 hr of infection. At the 8 hr of infection, EGFP-B23 did not show 

any obvious change in its distribution, as the protein was diffused in the nucleus with 1-2 

very bright spots corresponding to nucleoli (Figure 3-5). 
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3.8 Paraspeckle (EGFP-PSPC-1) distribution 

3.8.1 EGFP-PSPC-1 distribution in uninfected cells 

 In order to study the structure of paraspeckles in GMK cells and the distribution of one 

paraspeckle protein, PSPC-1, GMK cells were transfected with pEGFP-PSPC-1. The 

images were taken by the fluorescence microscope BX41 24 hr post transfection. The 

fluorescence show the expected distribution of PSPC-1 (Fox et al., 2002) as the protein 

showed a punctate structure in the nucleus (Figure 3-6).  

3.8.2 The effect of CAV-9 infection on EGFP-PSPC-
1 distribution 

In order to examine the effect of CAV-9 infection on paraspeckles, GMK cells were 

transfected with pEGFP-PSPC-1 then infected with CAV-9 virus for 6 and 8 hr. The 

fluorescence images show changes in the distribution of the EGFP-PSPC-1 after both 6 

and 8 hr of infection. A huge redistribution of the protein was observed, as the protein 

was mainly located in bright spots in the cytoplasm (Figure 3-6).  
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Figure 3-5 The effect of CAV-9 infection on the distribution of EGFP-B23. GMK cells 
were grown on coverslips and transfected with pEGFP-B23 using Lipofectin. Cells were then 
either left uninfected (Control) or infected with CAV-9 for 6 and 8 hr, before being stained 
with CAV-9 primary/goat anti-mouse IgG secondary antibody labelled with Alexafluor 555. 
Nuclei were stained with DAPI in the mounting medium. Images were visualized using a 
Nikon A1 si confocal microscope. Nuclei were observed using the DAPI channel (blue), 
EGFP-B32 in the EGFP channel (green) and infected cells in the Alexa 555 channel (red). 
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Figure 3-6 The effect of CAV-9 infection on the distribution of EGFP-PSPC-1. GMK 
cells were grown on coverslips and transfected with pEGFP-PSPC-1 using Lipofectin. Cells 
were then either left uninfected (Control) or infected with CAV-9 for 6 and 8 hr, before being 
stained with CAV-9 primary/goat anti-mouse IgG secondary antibody labelled with 
Alexafluor 555. Nuclei were stained with DAPI in the mounting medium. Images were 
visualized using a BX41 fluoresence microscope. Nuclei were observed using the DAPI 
channel (blue), EGFP-PSPC-1 in the EGFP channel (green) and infected cells in the Alexa 
555 channel (red). In the CAV-9 infected samples, the distribution in uninfected cells (white 
arrows) is very different to infected cells (red arrows). 
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3.9 Other paraspeckle (EGFP-PSF and 
EGFP-NONO) distribution 

3.9.1 EGFP-PSF and EGFP-NONO distribution in 
uninfected cells 

 In order to examine whether the protein (PSPC-1) changing distribution due to CAV-9 

infection is a general feature for paraspeckle proteins or seen only for PSPC-1, two other 

paraspeckle proteins were examined (NONO/P54 NRB and PSF). GMK cells were 

grown on coverslips 24 hr prior to transfection. Cells were then transfected with pEGFP-

NONO and pEGFP-PSF. The images were taken using a BX41 fluorescence microscope 

48 hr post transfection (Figure 3-7 and Figure 3-8). For EGFP-NONO (Figure 3-7), the 

expected paraspeckle distribution was seen (Zolotukhin et al., 2003), as the protein 

showed a punctate structure throughout the nucleus.  For EGFP-PSF, there was a more 

diffuse nuclear localization (Figure 3-8). 

3.9.2 The effect of CAV-9 infection on EGFP-PSF 
and EGFP-NONO distribution 

 GMK cells were grown on coverslips for 24 hr prior to transfection then transfected with 

pEGFP fusion contain (NONO/P54 NRB or PSF). 48hr post transfection, cells were 

infected with CAV-9 and at different time intervals (2, 4, 6 and 8 hr). Cells were then 

visualized with a BX41 fluorescence microscope. 

It is difficult to identify infected cells after 2 hr as there is not enough virus protein 

present to detect with the antibodies. For EGFP-NONO, some cells showed a more 
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diffuse nuclear localization which may be the result of infection (Figure 3-7). The EGFP-

NONO showed a slight change after 4 hr of infection, with more diffuse nuclear 

distribution and a small amount of the protein in the cytoplasm with a small number of 

speckles. After 6 and 8 hr, there was more relocalization out of the nucleus to 

cytoplasmic spots.  

For EGFP-PSF, there was no obvious change in the distribution after 2 hr of infection 

(Figure 3-8).  Unfortunately, there were no cells that were found to be both 

transfected/infected after 4 hr (data not shown). After 6 and 8 hr of infection EGFP-PSF 

had mainly left the nucleus and redistributed in the cytoplasm with a large number of 

punctate structures.  

EGFP-NONO and EGFP-PSF were also examined after 8 hr of infection using a Nikon 

wide field A 1 plus microscope in order to show a more detailed image (Figure 3-9 and 

Figure 3-10). Both EGFP-PSF and EGFP-NONO disappeared from the nucleus and 

completely redistributed in the cytoplasm showing a large number of the punctate 

structures throughout the cytoplasm.  

3.10 The PSF/NONO and PSPC-1 complex 

It is known that PSF, NONO and PSPC-1 interact together (Gao et al., 2014). In order to 

examine these paraspeckle proteins to find if they are translocated similarly after 8 hr of 

CAV-9 infection, cotransfection/infection experiments were performed on the 

paraspeckle proteins. A pmCherry fusion of PSPC-1 was made by cutting pEGFP-PSPC-

1 with the restriction enzymes EcoRI and BamHI to remove the PSPC-1 sequence, which 
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was then ligated into  pmCherry. GMK cells were grown on coverslips for 24 hr then 

cotransfected with pmCherry-PSPC-1 and pEGFP-NONO or pEGFP-PSF. Cells were 

then infected with CAV-9 for 8 hr then fixed with formalin. Slides were then visualized 

with a Nikon A1 si confocal microscope (Figure 3-11). Infected cells were identified on 

the basis of the characteristic relocalization of PSPC-1. Results of both EGFP-NONO 

and EGFP-PSF showed that both proteins perfectly colocalized with mCherry-PSPC-1 in 

the cytoplasm (Figure 3-11). This shows that all three paraspeckle proteins are 

relocalised to the same cytoplasmic compartment during CAV-9 infection. 

3.11 Endogenous paraspeckles 

In order to examine if the paraspeckle protein redistribution due to CAV-9 is a genuine 

feature for paraspeckle proteins, not an artefact of the EGFP/mCherry fusions or over-

expression of the proteins, an experiment on endogenous paraspeckles was conducted. 

GMK cells were grown on a coverslip for 24hr. Cells were infected with CAV-9 for 8 hr 

then fixed with formalin and permeablised then blocked, a specific antibody for PSPC-1 

was applied then a goat anti rabbit antibody was used as a secondary antibody.  Cells 

were then mounted with mounting media containing DAPI in order to stain the nucleus. 

Cells were then visualized with Nikon A1 si confocal microscope. The result shows that 

the endogenous protein gave the expect distribution of paraspeckles as the non infected 

cells gave the punctate structure in the nucleus while the protein in the infected cells 

showed redistribution to the cytoplasm with some brighter spots in the cytoplasm (Figure 

3-12).  
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Figure 3-7 The effect of CAV-9 infection on the distribution of EGFP-NONO (time 
interval). GMK cells were grown on coverslips and transfected with pEGFP-NONO using 
Lipofectin. Cells were then either left uninfected (Control) or infected with CAV-9 for 2, 4, 6 
and 8 hr, before being stained with CAV-9 primary/goat anti-mouse IgG secondary antibody 
labelled with Alexafluor 555. Nuclei were stained with DAPI in the mounting medium. 
Images were visualized using a BX41 fluoresence microscope. Nuclei were observed using 
the DAPI channel (blue), EGFP-NONO in the EGFP channel (green) and infected cells in the 
Alexa 555 channel (red). 
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Figure 3-8 The effect of CAV-9 infection on the distribution of EGFP-PSF (time 
interval). GMK cells were grown on coverslips and transfected with pEGFP-PSF using 
Lipofectin. Cells were then either left uninfected (Control) or infected with CAV-9 for 2, 6 
and 8 hr, before being stained with CAV-9 primary/goat anti-mouse IgG secondary antibody 
labelled with Alexafluor 555. Nuclei were stained with DAPI in the mounting medium. 
Images were visualized using a BX41 fluoresence microscope. Nuclei were observed using 
the DAPI channel (blue), EGFP-PSF in the EGFP channel (green) and infected cells in the 
Alexa 555 channel (red). In the CAV-9 infected samples, the distribution in uninfected cells 
(white arrows) is very different to infected cells (red arrows). 
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Figure 3-9 The effect of 8 hr infection on EGFP-NONO. GMK cells were grown on 
coverslip and transfected with EGFP-NONO using lipofectin. Cells were then infected with 
CAV-9 for 8 hr before being stained with CAV-9 primary/goat anti-mouse IgG secondary 
antibody labelled with Alexafluor 555. Nuclei were stained with DAPI in the mounting 
medium. Images were visualized using a Nikon A1 si confocal microscope. Nuclei were 
observed using the DAPI channel (blue), EGFP-NONO in the EGFP channel (green) and 
infected cells in the Alexa 555 channel (red). 

 

 Merged DAPI EGFP Alexafluor 555 
 

 

 

 

Figure 3-10 The effect of 8 hr infection on EGFP-PSF. GMK cells were grown on 
coverslip and transfected with EGFP-PSF using lipofectin. cells were grown on coverslips 
and transfected with EGFP-PSF. Cells were then infected with CAV-9 for 8 hr. Nuclei were 
stained with DAPI and infected cells with CAV-9 primary/goat anti-mouse IgG secondary 
antibody labelled with Alexafluor 555, before being visualized using a Nikon A1 plus wide 
field fluorescence microscope. Nuclei were observed using the DAPI channel (blue), EGFP-
PSF using the EGFP channel (green) and infected cells in the Alexa 555 channel (red). 
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Figure 3-11 The effect of CAV-9 on the redistribution of EGFP-NONO/PSF and 
mCherry PSPC-1 complex. GMK cells were grown on coverslip and cotransfected with 
EGFP-PSF/or NONO and mCherry PSPC-1 using lipofectin.  Cells were then infected with 
CAV-9 for 8 hr. Nuclei were stained with DAPI in the mounting medium before being 
visualized using a Nikon A1 si confocal fluorescence microscope. Nuclei were observed 
using DAPI (blue), EGFP-NONO/PSF using the EGFP channel (green) and mCherry-PSPC-
1 using the mCherry channel (red). 
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Figure 3-12 The effect of CAV-9 on the endogenous PSPC-1. GMK cells were grown on 
coverslip then infected with CAV-9 for 8 hr. Cells were then fixed and labelled with PSPC-1 
antibody and Alexa fluor 568 as secondary antibody. Nuclei were then stained with DAPI  
and visualized using a Nikon A1 si confocal fluorescence microscope. Nuclei were observed 
using DAPI (blue),Alexa fluor 568 (red channel).    
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3.12 Discussion 

Picornavirus infection causes several changes to the host cell by the interaction between 

viral proteins and cellular proteins. These cause alteration in host cells synthetic, 

signaling and secretory mechanisms, and improve viral replication (Younessi et al., 

2012). There is growing evidence showing that picornaviruses cause disruption in 

nuclar/cytoplasmic shuttling by inhibiting nuclear pore functions which results in 

relocalization of nuclear proteins into the cytoplasm (Younessi et al., 2012). In addition, 

virus proteases may remove the nuclear localization signals (NLS) of nuclear proteins 

and this causes relocalisation to the cytoplasm (Haugwitz, 2002). Some studies showed 

that La is located in the nucleus but during PV infection, the protein redistributed in the 

cytoplasm in the presence of 3Cpro in infected cells, which suggested that 3Cpro remove 

the NLS from the La C-terminus. La binds to the IRES of PV, CVB3 and hepatitis A 

virus and stimulates viral translation (Lin et al., 2009c). Another protein that is altered by 

picornavirus infection is PTB. PTB is a member of the nuclear RNP (hnRNP) family 

which normally shuttle between nucleus and cytoplasm. During infection with PV PTB 

stimulates viral IRES-dependent translation (Chase and Semler, 2012), although it has 

also been reported that cleavage by poliovirus 3Cpro causes redistribution of PTB to the 

cytoplasm and inhibits IRES-dependent translation (Back et al., 2002). To investigate 

whether the distribution of other nuclear proteins may be affected by virus infection, we 

studied several proteins (PML, nucleolin, fibrillarin, B23, PSPC-1, NONO and PSF) by 

using EGFP/mCherry fusions and infecting cells with CAV-9.  

PML, found in PML NBs, is a protein that is found to be affected by infection with 
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several DNA viruses (Everett, 2001).  Nucleolin, fibrillarin and B23 are found in 

different part in the nucleolus and these structures have been found to be involved or 

modified during infection by several viruses (Emmott and Hiscox, 2009). Nuclear 

paraspeckles are less well-understood, but there is recent evidence that these structures, 

or proteins/NEAT-1 located in these structures, are important in host-virus interactions in 

the case of HIV-1 infections (Copeland et al., 2013, Zhang et al., 2013). The effect of 

CAV-9 infection on the distribution of these proteins is summarised in Table 3-1. 

EGFP-PML was completely localized in the nucleus in most cells and displayed a 

predominantly nucleoplasmic pattern with several dots (Figure 3-2). The sub-nuclear 

distribution of PML was then examined during CAV-9 infection. There was no clear 

difference, but the result show a reduced number of nuclear spots in the EGFP-PML 

distribution (Figure 3-2). Previous studies showed that poliovirus infection affects PML 

phosphorylation and causes alteration in PML body localization and transfer from the 

nucleoplasm to the nuclear matrix (Pampin et al., 2006). Another study examined the 

effect of encephalomyocarditis virus (EMCV) infection on PML bodies and found that 

EMCV infection increase PML body size, which leads to a decrease in PML protein 

expression (El Mchichi et al., 2010). This seems to be related to SUMOylation of PML.  

It was also found that the absence of PML results in an increase of EMCV replication, 

while the presence of PML inhibited virus replication. The results suggest that CAV-9, as 

PV and EMCV do, may manipulate PML to enhance virus replication. 

Poliovirus infection results in redistribution of nucleolin from the nucleus to the 

cytoplasm (Yu et al., 2005). Nucleolin binds to the IRES after the relocalization and this 
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stimulates IRES-dependent translation (Maramorosch et al., 2011 2001). Nucleolin also 

interacts with the poliovirus 3’ UTR in order to be involved in synthesis of negative 

strand RNA (Zakaryan and Stamminger, 2011). It also stimulates translation in FMDV 

(Foot-and-Mouth-Disease virus) by interacting with the 5’UTR and stimulating the IRES 

(Pacheco and Salas, 2010).  Other RNA binding proteins can bind to the picornavirus 

5’UTR and have a negative effect on virus replication. Some studies showed that AUF1 

acts as restricting factor during enterovirus infection. It is relocalised from the nucleus to 

the cytoplasm by the virus protease 2Apro and binds to the virus 5’UTR causing inhibition 

of translation, but this is overcome by 3Cpro/3CDpro cleavage of AUF1 (Cathcart et al., 

2013). AUF1 is also relocalised from the nucleus to the cytoplasm during EMCV 

infection. Unlike enterovirus infection, AUF1 is not cleaved by EMCV 3Cpro/3CDpro, 

which suggests that it does not inhibit infection of all picornaviruses, but could act as 

selective restricting factor targeting enterovirus (Cathcart and Semler, 2014). hn(RNP) 

A1 is redistributed to the cytoplasm during infection. It is a trans acting factor that binds 

to the EV71 5’ UTR and regulates the IRES-dependant translation (Lin et al., 2009a). As 

a large change in nucleolin distribution has been previously for PV it was seen surprising 

that the changes seen in CAV-9-infected cells were relatively minor. There was loss in 

the nucleolar details and some movement to the nuclear matrix plus a small amount to 

the cytoplasm (Figure 3.2) when infected with CAV-9. This may suggest that nucleolin 

may not play an important role in CAV-9 replication. 

In contrast to nucleolin, there was no effect of CAV-9 infection on either fibrillarin or 

B23 (Figure 3-4 and Figure 3-5). It has been found that EMCV 2A enters the host cell 
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nucleus due to colocalisation with B23, which acts as a nuclear shuttling chaperone 

protein (Castelló et al., 2011). EMCV 2A contains a short motif (KRVRPFRLP), which 

seems to act as an NLS as well as facilitating the colocalisation with B23. It has been 

suggested that 2A may target the nucleolus to alter ribosomal biogenesis in some way, 

promoting viral IRES-dependent translation and/or 2A inclusion within ribosomes. The 

EMCV 3BCD precursor also associates with B23 and enters the nucleolar compartment 

through the present of an NLS in the 3D (Flather and Semler, 2015). The EMCV 2A is a 

different type of protein from any found in enteroviruses, and so these interactions seen 

between EMCV and B23 may not occur in infections by CAV-9 and other enteroviruses 

(Hughes and Stanway, 2000). It has also been found that not all nucleus proteins are 

redistributed during PV infection, for instance fibrillarin and SC35 (Castelló et al., 2011). 

It was previously observed that the PSPC-1 is redistributed by human parechovirus 

(HPeV) infection, but not proteins associated with other NBs such as PML or the nuclear 

speckle protein SC35 (Mutabagani, 2012). This redistribution was within the nucleus. It 

was interesting that CAV-9 also causes a redistribution of PSPC-1, although this 

redistribution is much more radical as it involves the relocalisation to intense foci in the 

cytoplasm (Figure 3-6). PSPC-1 is a member of the DBHS family of proteins along with 

PSF and NONO and these proteins are key component of the paraspeckles (Passon et al., 

2012). Both PSF and NONO are also redistributed into the same cytoplasmic structures 

as PSPC-1, as seen in the colocalisation experiment (Figure 3-11). This redistribution 

was also shown to occur to endogenous PSPC-1 in infected cells (Figure 3-12) and so is a 

real effect, rather than being due to the over expressed EGFP and mCherry fusion 
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proteins.  It has been known that PSF plays an important role in cellular processes, but it 

was also been reported that PSF plays a key role in regulating RNA virus replication. 

PSF protein (and the PSF/NONO dimer) is important in HIV-1 replication and 

accelerates the production of viral transcripts, while the knockdown of the protein causes 

a decrease in unspliced viral RNA (Zolotukhin et al., 2003). PSF is also required for 

multiplication and replication of the influenza viral RNA and the depletion of PSF by 

siRNA causes a delay in virus gene expression and decrease in viral transcription 

(Yarosh et al., 2015).  

Recently, a high throughput screen of proteins which bind to the poliovirus 5’ UTR was 

performed and identified both NONO and PSF (Lenarcic et al., 2013). NONO was 

studied in detail and it was found that NONO directly binds to PV RNA in order to 

enhance virus amplification. NONO was knocked down at an early stage of infection and 

the results showed a great reduction in the virus titre (10-30 fold decrease). It was 

concluded that absence of this host cell factor caused a delay in viral production. It was 

also found that NONO had no effect on PV translation, but the knockdown of the protein 

triggered a 10 fold decrease in positive strand RNA and a 2 fold decrease in minus strand 

RNA, which suggests that it is involved in RNA replication. This would suggest that the 

cytoplasmic spots seen after CAV-9 infection are related to RNA replication and this will 

be investigated in Chapter 5.  

Picornaviruses are cytoplasmic replicating viruses, but several host proteins used by 

these viruses are nuclear or cycle between the nucleus and cytoplasm. PV infections 

cause a disruption in nuclear-cytoplasmic pathway by degrading several nucleoporins 
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which result in relocalization of nuclear host protein to cytoplasm (Lenaric et al., 2013). 

Cleavage of some proteins is another mechanism that changes distribution. Of the 

proteins studied, CAV-9 infection had the clearest effect on the paraspeckle proteins. As 

there has been little work on these proteins in relation to picornavirus infection, they 

were studied in more detail as described in chapters 4 and 5.  
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Table 3-1.  The normal location of nuclear proteins studied in this thesis, together 
with the effects of infection by CAV-9 

Protein Structure Change 

PML PML NBs Reduced number of nuclear 
spots 

Nucleolin Fibrillar centre 

Loss of details and some 
movement to nuclear 
matrix with small amount 
in the cytoplasm 

Fibrillarin Dense fibrillar component No change 

B23 NPM1/Nucleophosmin 
(granular component) No change 

PSPC-1 
PSF 
NONO 

Paraspeckles Relocalization to bright 
cytoplasmic spots 
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4.1 Introduction 

Proteolytic cleavage of the picornavirus polyprotein, to give precursors and the final 

virus proteins, is essential for virus replication (Castelló et al., 2011, Lin et al., 2009b). 

Most of the picornavirus proteins are homologous in structure and function when the 

same protein is compared between genera. However, there is more diversity in the 2A 

protein (Agol and Gmyl, 2010, Hughes and Stanway, 2000). The 2A protein of §It is also 

believed that parechoviruses are different from enteroviruses by not shutting off the 

synthesis of host cell protein during infection (Chang, 2015, Stanway et al., 1994). In 

contrast, the enterovirus 2A (2Apro) is a cysteine protease that starts the processing of the 

virus precursor polyprotein by cleaving between the VP1 C-terminus and 2A N-terminus 

(Toyoda et al., 1986). 2Apro also makes several changes to the cell such as interfering 

with nuclear traffic and hijacking the transcription machinery. 2Apro also shuts off the 

host cap-dependant translation, by cleaving eIF4GI/II, in order to avoid competition for 

synthesis of the viral polyprotein (Wu et al., 2013). The proteolytic protein 3C 

(3Cpro/3CD precursor) is the main protease in all picornaviruses (Ryan and Flint, 1997) 

as it cleaves the other junction sites within the polyprotein, including, 2A-2B and 2B-2C 

in P2 and the whole of P3. As part of the precursor 3CDpro it also cleaves the junctions 

between VP2-VP3 and VP3-VP1 in P1 (Ypma-Wong et al., 1988). 3Cpro helps to shut off 

host translation by cleaving eIF4AI and also by cleaving poly (A) binding protein 

(PABP) (Lin et al., 2009b). It has been found that 3C induces apoptosis in neuronal cells 

and blocks type I interferon (IFN) responses to antiviral activities (Lei et al., 2010). 3Cpro 

has a unique structure among proteases, as it has a cysteine at the active site but 

http://europepmc.org/abstract/med/25562970/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=VP2&sort=score
http://europepmc.org/abstract/med/25562970/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=VP3&sort=score
http://europepmc.org/abstract/med/25562970/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=VP3&sort=score
http://europepmc.org/abstract/med/25562970/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=VP1&sort=score
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chymotrypsin-like serine protease structure (May Wang and Chen, 2007, Ryan and Flint, 

1997). It includes the classic motif GXCG (GXSG is seen in most other members of this 

protease family) and C-H-D/E catalytic triad (Wang et al., 2014a). As the virus proteases 

2Apro and 3Cpro interfere with several different events in the virus-infected cell, 2Apro and 

3Cpro of the enterovirus CAV-9, and 3Cpro, as well as 2A (not a protease), from HPeV1 

were investigated to see if they are involved in changes to the nuclear protein 

distributions seen in Chapter 3. 

4.2 EGFP/mCherry constructs containing  2A 
and 3C  from  CAV-9 and HPeV-1  

4.2.1 Primer design, PCR amplification and 
validation of the constructs: 

Primers specific to the sequences encoding the N-terminal and C-terminal regions of 2A 

and 3C of CAV-9 Griggs cDNA were designed (Table 2-3). The 2A forward primer (OL 

2006), 29 nucleotides long, recognises position 3345-3373 from the CAV-9 DNA 

sequence and the restriction site sequence for XhoI was added to the primer, as well as 2 

nucleotides after the restriction site to keep the frame when ligated into both pEGFP and 

pmCherry vectors. In order to design the 2A reverse primer (OL 2007), 27 nucleotides 

were chosen from position 3768-3794 from the CAV-9 DNA. A stop codon was added, 

plus the restriction site for BamHI. Then the sequence was reversed using the reverse 

complement tool (http://www.bioinformatics.org/sms/rev_comp.html). These primers 

were then used in the PCR reaction (2.2.2.2.1). The same procedure was followed in 
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order to make CAV-9 3C primers (OL 2008 and OL 2009). The forward sequence was 

chosen from the position 5412-5441 and the reverse sequence was chosen from the 

position 5931-5960. For both the 2A and 3C constructs, the Web Cutter tool 

(http://rna.lundberg.gu.se/cutter2/) was used in order to choose the restriction enzyme 

sites added to the primers, to ensure that these sites do not occur in the virus cDNA. PCR 

was performed using pfu polymerase, followed by Taq-treatment to add A residues to the 

3’ ends of the PCR products. PCR gave the expected bands and these were cloned into 

pGEMT-Easy. A DNA fragment was cut from the pGEMT-Easy clones using enzymes 

XhoI and BamHI, and then ligated into pEGFP-C1 or pmCherry-C1 cut with the same 

enzymes (Figure 4-1). The final constructs were confirmed by sequencing and found to 

have the correct sequence, with no unexpected mutations (Appendix 1).  

Primers specific to N-terminal and C-terminal areas of the 3C encoding region of HPeV-

1 cDNA were designed (Table 2-3) using the HPeV-1 DNA sequence. In order to design 

HPeV-1 3C primer (OL 2063) a 22 nucleotide base were chosen from the position 5243-

5264 from the HPeV-1 DNA sequence and restriction site for XhoI sequence was added 

to the primer as well as 2 nucleotide bases (CT) were added after the restriction site to 

keep the frame when ligated in pmCherry vector. In order to design the reverse primer 

(OL 2064) a 24 nucleotide bases were chosen from the position 5821-5842 from the 

HPeV-1 DNA. Then the sequence was reversed using reverse complement tool 

(http://www.bioinformatics.org/sms/rev_comp.html). Restriction site nucleotide 

sequence for BamHI was added plus a stop codon to keep the frame. The PCR was 

performed as illustrated in section (2.2.2.2.1). PCR gave the expected bands and these 
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were cloned into pGEMT-Easy. Few steps were carried out in order to construct mCherry 

fusion containing HPeV-1 3C (Figure 4-2). The final constructs were confirmed by 

sequencing and found to have the correct sequence, with no unexpected mutations 

(Appendix 2).  

In addition to the HPeV-1 pmCherry-3C construct, a mutant form containing a mutation 

C to A mutation in the active site, made by Lisa Nicol, was also used.   
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Figure 4-1 Schematic representation of CAV-9 2A and 3C manipulation. 
It shows how the CAV-9 Griggs fusion protein constructs (pEGFP-2A, 
pEGFP-3C, pmCherry-2A and pmCherry-3C) were generated. 
 

 

 

Figure 4-2 Schematic representation of the manipulation of HPeV-1 
mCherry 3C. It shows how the fusion protein (mCherry-3C) isolated from 
the HPeV-1 Harris strain used for transfection 
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4.3 Approach 

The 2A and 3C constructs were used together with the nuclear protein constructs which 

were studied in the work described in Chapter 3. GMK cells were grown on glass cover 

slips were co-transfected with different combinations of the protease and nuclear protein 

constructs. Cells were fixed with 4% formalin for 30 min on a rocking table then washed 

with 1X PBS containing glycine. Nuclei were stained with DAPI included in the hard-set 

mounting media. The images were taken by confocal microscopy using a Nikon A1 si 

confocal microscope. In some cases a BX41 fluorescence microscope was used to 

examine the slides. 

4.4 Transfection of CAV-9 2A and 3C 

In order to examine the effect of pEGFP and pmCherry fusions containing CAV-9 2A 

and 3C, these were transfected into GMK cells using lipofectin and cells were imaged 15 

hr post-transfection. After the pEGFP/pmCherry 2A fusion was transfected into the 

GMK cells no fluorescence was seen (Figure 4-3). Several experiments were performed 

to observe the fluorescence at different time post-transfection but no fluorescence was 

observed. The cells were then treated with Sodium Pyrrolidine DithioCarbamate (PTDC) 

at 100 μM or 50 μM. The drug is known to bind to zinc and can inhibit enteroviruse 

replication by inactivating 2A (Krenn et al., 2005). However, the drug caused cell 

toxicity (data are not shown).  When GMK cells were transfected with CAV-9 pmCherry 

2A using TurboFect, a few fluorescent cells were seen at 48 hr post-transfection. As 

shown in Figure 4-4, in some cells the fluorescence of mCherry-2A was distributed 
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throughout the cell nucleus and in others the protein seems to have caused degradation to 

the cell nucleus. pEGFP/pmCherry-3C gave few transfected cells (Figure 4-3). 

Expression of the protein again seemed to cause major change to the nucleus (Figure 4-5) 

4.5  Transfection of HPeV-1 2A and 3C and 
3C mutant 

In order to study the effect of HPeV-1 2A and 3C, GMK cells were transfected with 

pmCherry fusions containing 2A and 3C. Results from cells transfected with pmCherry-

3C show that the transfected nuclei are compressed, suggesting that HPeV-3C has an 

apoptotic effect (Figure 4-6). In order to study the possible apoptotic effect of HPeV-1 

3C further, a protease negative mutant (with a cysteine to alanine change in the active 

site) was used. This had no obvious effect on the nuclei of transfected cells. Results were 

initially visualized with a BX41 fluorescent microscope (Figure 4-6). Slides were then 

visualized with a Nikon A1 si confocal microscope to obtain more detailed images.  

HPeV-1 mCherry-2A showed a fluorescence signal throughout the cytoplasm and 

nucleus with no obvious changes to the structure of the nucleus (Figure 4-7). The results 

also showed that the fluorescence of mCherry-3C was distributed in the cytoplasm of the 

cells, mainly in spots near the nucleus (Figure 4-8). The 3C mutant distribution was 

unlike the wild type. It was found throughout the cytoplasm, possibly associated with 

membranes or cytoskeleton. There was no significant change to the cell nucleus which 

suggests that the effect on the nucleus caused by the wild type 3C is due to the protease 

activity of 3C (Figure 4-9).   
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Figure 4-3 The effect of CAV-9 mCherry 2A and 3C on the cells. GMK cells were grown 
on cover slips and transfected with the mCherry fusion containing CAV-9 2A and 3C using 
lipofectin. 15 hr post transfection nuclei were stained with DAPI in the mounting medium. 
Images were visualized using a BX41 fluorescent microscope. Nuclei were observed in the 
blue channel (DAPI), and mCherry fusions in the red channel (TRITC). The nuclear 
morphology of transfected cells is different than in non transfected cells (red arrow). 
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Figure 4-4 The effect of CAV-9 mCherry 2A on the cells. GMK cells were grown on cover 
slips and transfected with the pmCherry fusion containing CAV-9 2A using TurboFect. 48 hr 
post transfection nuclei were stained with DAPI in the mounting medium. Images were 
visualized using a Nikon A1si confocal microscope. Nuclei were observed in the blue 
channel (DAPI), and red channel (mCherry). The nuclear morphology of transfected cells is 
different than in non transfected cells (red arrow). 
 

 Merged DAPI mCherry 
 

 

 

 

Figure 4-5 The effect of CAV-9 mCherry 3C on the cells. GMK cells were grown on cover 
slips and transfected with the pmCherry fusion containing CAV-9 3C using TurboFect. 48 hr 
post transfection nuclei were stained with DAPI in the mounting medium. Images were 
visualized using a Nikon A1si confocal microscope. Nuclei were observed in the blue 
channel (DAPI), and red channel (mCherry). The nuclear morphology of transfected cells is 
different than in non transfected cells (red arrow). 
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Figure 4-6 The effect of HPeV-1 mCherry 2A and 3C wild type and mutant on the cells. 
GMK cells were grown on cover slips and transfected with the pmCherry fusion containing 
HPeV-1 2A, 3CW and 3CM using lipofectin. 15 hr post transfection nuclei were stained with 
DAPI in the mounting medium. Images were visualized using a BX41 fluorescent 
microscope. Nuclei were observed in the blue channel (DAPI), and red channel (mCherry). 
The nuclear morphology of transfected cells is different than in non transfected cells (red 
arrows).  
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Figure 4-7 The effect of HPeV1 mCherry 2A wild type on the cells. GMK cells were 
grown on cover slips and transfected with the pmCherry fusion containing HPeV1 2A using 
TurboFect. 48 hr post transfection nuclei were stained with DAPI in the mounting medium. 
Images were visualized using a Nikon A1si confocal microscope. Nuclei were observed in 
the blue channel (DAPI), and red channel (mCherry).  
 

Figure 4-8 The effect of HPeV1 mCherry 3C wild type on the cells. GMK cells were 
grown on cover slips and transfected with the pmCherry fusion containing HPeV1 3C using 
TurboFect. 48 hr post transfection nuclei were stained with DAPI in the mounting medium. 
Images were visualized using a Nikon A1si confocal microscope. Nuclei were observed in the 
blue channel (DAPI), and red channel (mCherry). The nuclear morphology of transfected 
cells is different than in non transfected cells (red arrows). 
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Figure 4-9 The effect of HPeV1 mCherry 3C mutant on the cells. GMK cells were grown 
on cover slips and transfected with the pmCherry fusion containing HPeV1 3C mutant using 
TurboFect. 48 hr post transfection nuclei were stained with DAPI in the mounting medium. 
Images were visualized using a Nikon A1si confocal microscope. Nuclei were observed in 
the blue channel (DAPI), and red channel (mCherry).  
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4.6 Cotransfection of CAV-9 and HPeV-1 2A 
and 3C with nuclear proteins 

In order to study the effect of the virus on nuclear and nucleolar proteins , CAV-9 and 

HPeV-1 2A and 3C pmCherry fusion were cotransfected into GMK cells with pEGFP 

fusion containing (PSPC-1, PML, Nucleolin, Fibrillarin and B23). GMK cells were 

transfected with pmCherry 3C or 2A and pEGFP (PSPC-1, PML, Nucleolin, Fibrillarin 

and B23). Images were taken with Nikon A1 si confocal microscopy in 24hr post 

transfection.  

For CAV-9 2A (time interval) no fluorescent cells were observed, and so the effect of 

this protein could not be studied (data not shown). There is no huge effect of CVA-9 3C 

on the distribution of any of the nuclear and nucleolar proteins (Figure 4-10). All 

remained within the nucleus.  

HPeV-1 mCherry-2A also had little effect on the EGFP-B23, EGFP-PSPC-1, EGFP-

PML, EGFP-Nucleolin or EGFP-Fibrillarin distributions (Figure 4-11). Finally, HPeV-

3C was analysed. The results shown that both HPeV-1 mCherry-3C wild type and HPeV-

1 mCherry-3C mutant have no effect on the distribution of most of the nuclear and 

nucleolus proteins (Figure 4-12 and Figure 4-13).  However, EGFP-Nucleolin was re-

distributed throughout the cell in cells transfected with the wild type 3C construct. 

Surprisingly, the mCherry-3C mutant caused a huge redistribution of PML to the 

cytoplasm and also had some effect on fibrillarin. Cells transfected with mCherry-3C 

wild type show some changes in nucleus morphology.   
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Figure 4-10 The Effect of CAV-9 mCherry 3C on nucleus and nucleolus proteins. GMK 
cells were grown on coverslips and cotransfected with DNA constructs fusions pEGFP 
containing (B23, PML, PSPC-1, Nucleolin and fibrillarin) and pmCherry fusion containing 
CAV-9 3C using TurboFect. 24 hr post transfection nuclei were stained with DAPI in the 
mounting medium. Images were visualized using a Nikon A1si confocal microscope. Nuclei 
were observed in the blue channel (DAPI), green channel (EGFP) and red channel 
(mCherry). The scale bars represent 20 μm. Reading from the top the rows show EGFP-B23, 
EGFP-PML, EGFP-PSPC-1, EGFP-Nucleolin then EGFP-fibrillarin 
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Figure 4-11 The Effect of HPeV-1 mCherry 2A on nucleus and nucleolus proteins. GMK 
cells were grown on coverslips and cotransfected with DNA constructs fusions pEGFP 
containing (B23, PML, PSPC-1, Nucleolin and fibrillarin) and pmCherry fusion containing 
HPeV-1 2A using TurboFect. 24 hr post transfection nuclei were stained with DAPI in the 
mounting medium. Images were visualized using a Nikon A1si confocal microscope. Nuclei 
were observed in the blue channel (DAPI), green channel (EGFP) and red channel 
(mCherry). 
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Figure 4-12 The Effect of HPeV-1 mCherry 3C Wild type on nucleus and nucleolus 
proteins. GMK cells were grown on coverslips and cotransfected with DNA constructs 
fusions pEGFP containing (B23, PML, PSPC-1, Nucleolin and fibrillarin) and pmCherry 
fusion containing HPeV-1 3C wild type using Turbofect. 24 hr post transfection nuclei were 
stained with DAPI in the mounting medium. Images were visualized using a Nikon A1si 
confocal microscope. Nuclei were observed in the blue channel (DAPI), green channel 
(EGFP) and red channel (mCherry). 
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Figure 4-13 The Effect of HPeV-1 mCherry 3C mutant on nucleus and nucleolus 
proteins. GMK cells were grown on coverslips and cotransfected with DNA constructs 
fusions pEGFP containing (B23, PML, PSPC-1, Nucleolin and fibrillarin) and pmCherry 
fusion containing HPeV-1 3C mutant using TurboFect. 24 hr post transfection nuclei were 
stained with DAPI in the mounting medium. Images were visualized using a Nikon A1si 
confocal microscope. Nuclei were observed in the blue channel (DAPI), green channel 
(EGFP) and red channel (mCherry).  
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4.7 The effect of other HPeV-1 non structural 
protein on paraspeckles: 

The proteins most affected by infection with CAV-9 were the paraspeckle proteins 

PSPC-1, NONO and PSF (chapter 3). None of the 2A or 3C constructs tested caused the 

same redistribution of PSPC-1 seen in infected cells. Different virus non-structural 

protein constructs were therefore cotransfected with pEGFP-PSPC-1.  

GMK cells were co transfected with pmCherry constructs encoding HPeV-1 2B, 2C, 3A 

together with pEGFP-PSPC-1 and images were visualised with a BX41 fluorescent 

microscope (Figure 4-14). The results shown that HPeV-1 mCherry-2B changed the 

distribution of EGFP-PSPC-1. The EGFP-PSPC-1 was redistributed into two clusters in 

the nucleus, with smaller punctate structures diffused throughout the nucleus. These 

clusters corresponded with areas of the nucleus not stained with DAPI, presumably 

nucleoli. HPeV-1 mCherry 2C and 3A caused some redistribution of EGFP-PSPC-1into 

clusters, but this was less clear than mCherry-2B.  

For 3D only an EGFP-3D construct was available and this was used with mCherry-

PSPC-1 (Figure 4-15). Results showed that there is no obvious change in the PSPC-1 

protein distribution and the protein is still in the nucleus. 

 

 



 

 Chapter 4 
The Effect of Non Structural Proteins on Nuclear 

Proteins 

 

 127 

 
 

4.8 The effect of other CAV-9 non structural 
protein on paraspeckles: 

The same experiment was done with several CAV-9 non-structural protein constructs 

(Figure 4-16). There was no huge change in the EGFP-PSPC-1 when cotransfected with 

CAV-9 2BC, but the protein was redistributed in the nucleus when cotransfected with 

CAV-9 2C as the protein was diffused throughout the nucleus with few small punctate 

structures. EGFP-PSPC-1 was redistributed in the nucleus into two clusters when 

cotransfected with CAV-9 pmCherry-3A. The distribution is very similar to that seen 

when HPeV-1 pmCherry-2B was used (Figure 4-14)  
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Figure 4-14 The Effect of HPeV-1 non-structural protien on EGFP-PSPC-1 
distribution.  GMK cells were grown on coverslips and cotransfected with HPeV-1 non-
structural protiens fusions in pmCherry containing (2B, 2C and 3A) and pEGFP fusion 
containing PSPC-1 using lipofectin. 15 hr post transfection nuclei were stained with DAPI in 
the mounting medium. Images were visualized using a BX41 fluorescent microscope. Nuclei 
were observed in the DAPI filter, EGFP-PSPC-1 in FITC filter and mCherry (2B, 2C and 
2A) in TRITC filter.  
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Figure 4-15 The Effect of HPeV-1 3D on mCherry-PSPC-1 distribution. GMK cells were 
grown on coverslips and cotransfected with HPeV-1 pEGFP 3D and pmCherry-PSPC-1 
using lipofectin. 15 hr post transfection nuclei were stained with DAPI in the mounting 
medium. Images were visualized using a Nikon A1 si confocal microscope. Nuclei were 
observed in the blue channel (DAPI), green channel (EGFP) and red channel (mCherry).  
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Figure 4-16 The Effect of CAV-9 non structural proteins on EGFP-PSPC-1 distribution. 
GMK cells were grown on cover slip then co transfected, using lipofectin, with the DNA 
construct of EGFP-PSPC-1 and mCherry CAV-9 2BC, 2C and 3A After 48 hr nucleus were 
stained by Hoechst, cells were mounted using Mowoil mounting medium nd were visualized 
using a BX41 microscope. Nuclei were observed using a blue (DAPI) filter, EGFP-PSPC-1 
using a green (FITC) filter and mCherry CAV-9 (2BC, 2C and 3A) using red (TRITC) filter.  
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4.9 Discussion 

To investigate whether the redistribution of nuclear proteins, particularly paraspeckle 

proteins, caused by CAV-9 infection (chapter 3) is due to the effect of the proteases 3Cpro 

and 2Apro, EGFP/mCherry fusion constructs of these proteins were produced for 

cotransfections (Figure 4-1). The same proteins from HPeV-1 were also studied (Figure 

4-2). It was found that CAV-9 3Cpro and 2Apro, and HPeV-1 3Cpro caused nuclear 

degradation, as the nuclei in transfected cells appeared to be more compressed or 

fragmented than those in non-transfected cells (Figure 4-3 to Figure 4-9). This 

degradation could be due to the toxic effect of over-expressing these proteolytic 

enzymes, which leads to apoptosis. It has been found that PV 2Apro expression causes 

apoptotic cell death as does the expression of EV71 2Apro (Kuo et al., 2002). As we 

found for CAV-9 2Apro, expression of GFP-2A in transfected cells led to condensed or 

fragmented nuclei. The authors concluded that these findings indicated that enterovirus 

2Apro plays an important role in eliciting the apoptotic features seen when cells are 

infected. It is known that 2Apro cleaves host cells proteins such as eIF4G1 which plays a 

key role in cap dependent translation and it has been proposed that the shut off of cap-

dependent translation is a major phase of apoptosis that leads to rapid cell death (Kuo et 

al., 2002). As CAV-9 is an enterovirus, it is likely that its 2Apro has a similar effect and 

that is the why we observed the nuclear changes in the few transfected cells that could be 

found (Figure 4-4). It is also likely that more transfected cells were not seen as these 

were killed by the expressed 2Apro.  
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 It has also been shown that other viral proteins can contribute to apoptosis, such as 3Cpro 

of many enteroviruses, including PV 3Cpro that activates the caspase which results in 

killing of cells by apoptosis, and CVB-3 3Cpro that also induces cell death by activating 

caspases (Barco et al., 2000, Carthy et al., 1998). A previous study by Li et al. (2002) 

demonstrated that EV71 3Cpro proteolytic activity is also involved in caspase dependent 

apoptosis. The authors also altered two amino acids of the catalytic triad by changing the 

C146 and H39 to G. The mutant 3C did not only lose the protease activity, but the 

apoptosis-inducing effect was also lost. When cells were transfected with EV71 3C a 

number of alteration in cellular morphology were observed when cells were transfected 

with wild type 3C, whereas there was no change observed when cells were transfected 

with the mutant 3C (Li et al., 2002). These findings give clear evidence that the 

enterovirus 3Cpro plays a major role in inducing cell apoptosis. CAV-9 is closely related 

to CBV-3 as they belong to the same species (Enterovirus B) and it is likely the CAV-9 

3Cpro will have a similar effect on cells (Figure 4-5). 

The HPeV-1 3Cpro has not been studied previously and since this belongs to a different 

picornavirus genus (Parechovirus) from the Enterovirus genus where most work has 

been done, it could have a different effect. However, in our work when GMK cells were 

transfected with HPeV-1 mCherry-3C, the results again showed some damaged nuclei in 

transfected cells (Figure 4-6 and Figure 4-8). To investigate this further, a mutant version 

of HPeV-1 mCherry-3C was constructed by changing the cysteine of the active site motif 

(GXCG) to alanine. There were no significant changes to the nuclei in cells transfected 

with the mCherry-3C mutant, unlike the wild type construct (Figure 4-6 and Figure 4-9). 
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Although apoptosis was not studied directly, this finding probably means that HPeV-1 

3Cpro has an apoptotic effect on cells particles due to its protease activity, while the 

mutant 3C lost the apoptotic effect as it has not protease activity.  

The HPeV-1 2A is not a protease and its function is not yet known (Hughes and 

Stanway, 2000). It had no clear effect on the nucleus in transfected cells (Figure 4-7) and 

so probably does not cause apoptosis. 

The constructs were made to investigate if virus proteases are involved in the 

relocalization of proteins seen during virus infection (Chapter 3). There was no similar 

effect of the expression of protease proteins on the nuclear and nucleolus proteins as seen 

in the infected cells. CAV-9 infection causes a major change in paraspeckle proteins 

distribution by translocating the proteins from the nucleus to the cytoplasm. In cells 

transfected with CAV-9 3Cpro, the PSPC-1 was still in the damaged nucleus (Figure 4-10) 

and it can be concluded that the 3Cpro itself may not be able to cause the relocalization of 

the protein.  

On the other hand, CAV-9 2Apro did not give visual results as no cotransfected cells 

could be found. So, it is still possible that the relocalization could be due to this protein. 

Attempts to inhibit the 2Apro activity to allow enough expression of the nuclear protein 

for detection, by treating it with the drug PTDC, were unsuccessful. Studies showed that 

the PTDC is an antiviral compound that inhibits the replication of some enteroviruses 

and influenza virus. The drug did not interfere with the receptor binding or 

internalization by receptor mediated endocytosis, but it inhibits the viral polyprotein 

processing which results in inhibition of viral replication (Krenn et al., 2005). The drug is 
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metal binding compound and a number of viral processes, particularly 2Apro activity in 

enteroviruses, are influenced by various metal binding function of PTDC as part of the 

antiviral effects. Another attempt to reduce the expression of CAV-9 2Apro was also tried 

by using dilutions of the CAV-9 2Apro constructs, but again no results were obtained. It 

may be useful to use an inducible system, e.g. Tet on/Tet off and turn on the 2Apro 

expression after enough of the EGFP/nuclear protein fusions has been produced.  

There was no effect seen of the expression of HPeV-1 2A on EGFP/nuclear protein 

fusions (Figure 4-11). For HPeV-1 3C there was a large change to nucleolin distribution 

(Figure 4-12). A previous study (Mutabagani, 2012) showed that HPeV-1 virus infection 

caused a redistribution of PSPC-1 in the nucleus. This was much less clear than the 

redistribution out of the nucleus caused by CAV-9 infection. There was some change to 

PSPC-1 distribution within the nucleus caused by expression of HPeV1 mCherry-3C 

(Figure 4-12), but as transfected cells had damaged nuclei it is not clear if 3C expression 

is a specific cause of PSPC-1 relocalization.    

Surprisingly, HPeV-1 3C mutant caused a translocation of EGFP-PML from the nucleus 

to the cytoplasm (Figure 4-13). The PML gene is located on chromosome 15 and consists 

of 9 exons (Carracedo et al., 2011, Salomoni and Bellodi, 2007). The NLS which is 

located in exon 6 of PML isoforms restricts the majority of PML localization to the 

nucleus. However, PML transcripts undergo a number of alternative splicings which 

gives several nuclear and cytoplasmic isoforms. The NES located in exon 9 of the C 

terminal of PML1 allows the protein to shuttle between the nucleus and cytoplasm. It has 

been suggested that the expression of PML isoform 1 may correlate with the 
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transformation status of the cell, while PML isoform VII lacks the NLS and is mainly 

cytoplasmic PML (Carracedo et al., 2011, Salomoni and Bellodi, 2007). This suggested 

that the relocalization of the PML could be due to changes in splicing, as the mutant has 

no protease activity and so should not be able to cleave PML. 

Mutant mCherry-3C showed a localization in the cytoplasm, unlike the wild type 

proteolytic protein, which mainly distributed in the nucleus (Figure 4-9 and Figure 4-13). 

As these fusion proteins are both small enough to diffuse into the nucleus, the mutant 

either has a definite cytoplasmic localization e.g. bound to membranes or the 

cytoskeleton, or contains a NES. The distribution of the mutant 3C suggests that it is 

localized in structures in the cytoplasm, rather than being evenly distributed in a soluble 

form. It may be that 3C has other functions in the infected cells as well as protease 

activity. It might be useful to perform co-immunoprecipitation followed by mass 

spectrometry, using the mutant 3C, in order to identify the proteins that 3C binds to, 

which might help in studying the other function of the protein. 

It is known that PML, as well as being a mainly nuclear protein involved in transcription, 

is a regulator of apoptosis and can be found in the endoplasmic reticulum and 

mitochondria-associated membranes in stressed cells (Giorgi et al., 2010). Over 

expression of the mutant 3C or binding to cellular proteins could cause stress and lead to 

the change in PML distribution from the nucleus to the cytoplasm. 

As there was no clear effect of the 2A and 3C fusion constructs on PSPC-1 distribution, 

the effects of fusions of other non-structural proteins from both CAV-9 and HPeV-1 

were analysed (Figure 4-14 - Figure 4-16). None gave the same changes as seen when 
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cells are infected with CAV-9, but some of the proteins had an unexpected effect on 

PSPC-1 distribution. CAV-9 2B and HPeV-1 3A fusions caused the PSPC-1 to relocalise 

within the nucleus, to structures which were probably nucleoli. The distribution of PSPC-

1 and also NONO within the nucleus is cell cycle dependent and during telophase these 

proteins are present in peri-nucleolar caps (Fox et al., 2005). These are structures around 

the edge of the nucleoli and PSPC-1/NONO are also found in these structures when 

transcription is prevented. The paraspeckle protein PSF is redistributed to spots near to 

the nucleoli when cells are blocked at G1/S, possibly due to phosphorylation allowing 

binding to different protein partners (Shav-Tal et al., 2001). It is possible that expression 

of CAV-9 2B and HPeV-1 3A may lead to a cell cycle block and this would be an 

interesting area for study in the future. 
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5.1 Introduction 

The only clear effect of CAV-9 infection on nuclear proteins seen in the work described 

in Chapter 3 was on several nuclear paraspeckle proteins. Paraspeckles are found in close 

proximity to nuclear speckles as a variable number of foci enriched in characteristic RNA 

binding proteins (Naganuma et al., 2012). The 3 paraspeckle proteins studied in Chapter 

3 (PSPC-1, NONO/p54nrb and SFPQ/PSF) belong to the Drosophila melanogaster 

behaviour and human splicing (DBHS) protein family and are believed to be the key 

proteins involved in paraspeckle formation (Fox and Lamond, 2010). All these DBHS 

proteins are localised mainly in the nucleus and bind to RNA and DNA and it has been 

found that they are involved in number of nucleus process such as transcriptional 

regulation, RNA processing and DNA repair (Fox and Lamond, 2010). It also has been 

found that an abundant long noncoding RNA (lnc-RNA), the nuclear paraspeckles 

assembly transcript 1 (NEAT1), is localised to paraspeckles and forms an essential 

structural component (Hirose et al., 2014). PSF and NONO bind directly to NEAT-1 and 

PSPC-1, NONO and PSF also interact with one another (Gao et al., 2014).  

There is little information on the effect of virus infection on nuclear paraspeckles, but it 

has been suggested that viral (herpes simplex virus and influenza virus) infection or poly 

I:C treatment induces NEAT-1 expression, and this lnc-RNA then binds to PSF and 

causes the relocation of the protein within the nucleus, from the IL8 promoter to the 

paraspeckles, in order to activate the IL8 antiviral factor (Imamura et al., 2014). HIV-1 

infection is enhanced by paraspeckles  (Zhang et al., 2013).There are no reports of DBHS 

proteins being relocated to cytoplasmic structures similar to those seen following CAV-9 
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infection, but phosphorylation and sumoylation has been associated with changes in 

distribution within the nucleus and from the nucleus to the cytoplasm (Wilson and 

Anderson, 2009).  Virus infection induces or manipulates structures such as stress 

granules, P-bodies and autophagosomes, and replication of positive sense RNA viruses, 

including picornaviruses, requires the generation of replication complexes (Reineke and 

Lloyd, 2013, Chiramel et al., 2013, den Boon et al., 2010).  

The aim of the work described in this chapter is the definition of regions of the DBHS 

proteins needed for relocalisation during CAV-9 infection and the identification of the 

cytoplasmic structures where the proteins are found in infected cells. 

5.2 Approach 

A number of DNA constructs were obtained which encode fusions of the paraspeckle 

proteins under test fused to EGFP/EYFP/mCherry (Table 2-2). Cells were co-transfected 

with DNA constructs which encode marker proteins of cellular structures fused to 

EGFP/EYFP/ERFP (Table 2-2) and were examined by confocal microscopy. Some cell 

proteins were identified using antibodies (Table 2-1).  

5.3 PSPC-1 truncations at predicted 3Cpro 
cleavage sites 

Although no clear effect of virus proteases on the location of DBHS proteins was shown 

in Chapter 4, as picornavirus proteases have been shown to be involved in the 

relocalisation of other nuclear proteins, we examined the effect of truncating one of the 

DBHS proteins (PSPC-1) at possible virus protease recognition sites (Cathcart et al., 
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2013). A weblogo of the 3Cpro/3CDpro cleavage sites predicted for CAV-9 Griggs is 

shown in Figure 5-1. It can be seen that there is a strong preference for the sequence 

AXXQ↓G (cleavage between Q and G). The PSPC-1 sequence was scanned to identify if 

this sequence occurs and the motif was found at position 413-417 (AGNQ↓G) and 

partially at position 175-179 (AFSQ↓F). Two truncated PSPC-1 mutants were produced, 

each truncated at one of these sites. Primers OL2177, OL2178 and OL2179 (Table 2-3) 

were designed and PCR was performed using PSPC-1 as DNA template. PCR products 

were then purified and ligated into pGEM-T easy vector. After sequence confirmation, 

the inserted were ligated into pEGFP-C1 in order to obtain pEGFP-PSPC-1 fragment 1 

(contains PSPC positions 1-178) and pEFGP-PSPC-1 fragment 2 (PSPC-1 positions 1-

416) (Figure 5-2).  

GMK cells were transfected with these fusion constructs. Cells were then fixed and 

nuclei were stained with DAPI included in mounting media. Slides were then visualized 

with a BX41 fluorescent microscope. The results (Figure 5-3) showed that EGFP-PSPC-

1 fragment 1 protein distribution was different from the EGFP-PSPC-1 wild type 

distribution in non-infected cells. It was more similar to the distribution of EYFP protein 

used as a control, as the fluorescent was throughout the nucleus and the cytoplasm. 

EGFP-PSPC-1 fragment 2 showed a typical paraspeckles distribution, as the protein was 

distributed in the nucleus showing the speckled structures with only a small amount of 

protein in the cytoplasm.  

In another experiment, 24 hours after transfection cells were infected with CAV-9 for 8 

hr then fixed, immunostained and mounted on glass slides (Figure 5-4). Results were 

visualized with a Nikon A1plus wide field microscope. No cells were found to be both 
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infected and transfected with EGFP-PSPC-1 fragment-1. In infected cells EGFP-PSPC-1 

fragment 2 was mainly redistributed into the cytoplasm in punctate structures.  The 

relocalisation was similar to that seen for EGFP-PSPC-1.  

If cleavage of EGFP-PSPC-1 is enough to relocalise the protein to the cytoplasmic 

structures, it would be expected that one of the truncated proteins would be found in 

these structures in uninfected cells. This was not seen, and so possibly the predicted 

cleavage sites are not correct or the cytoplasmic structures are only present in infected 

cells. EGFP-PSPC-1 fragment 2 behaves similarly to the wild type protein, which 

suggests that the region deleted is not necessary for paraspeckle localization or for the 

redistribution in infected cells. EFPF-PSPC-1 fragment 1 contains much less of the full 

PSPC-1 and nuclear/paraspeckle distribution is completely lost. No infected/transfected 

cells could be found and so it is not known if there is enough of the protein to allow it to 

distribute into the cytoplasmic structures.  

In order to find if there is any proteolytic cleavage of PSPC-1 or PSF during infection, a 

Western blot was performed. GMK cells were infected for 0, 2 and 8 hr with CAV-9, 

protein extracts were made, and equal amounts of protein were analysed run on an 

acrylamide gel and blotted (protein determination and western blot was performed by 

Andrea Moher and her team). The results show that there is an up-regulation of both 

proteins after 2 hours, but the levels decrease after 8 hours (Figure 5-5). 
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Figure 5-1 Weblogo of the sites believed to be cleaved by 3C/3CD in the CAV-9 Griggs 
polyprotein.(Chang et al., 1989). 6 amino acids (positions 1-12) N-terminal (N) or C-
terminal (C) of the predicted cleavage site (marked with an arrow) are shown and the size of 
the letter is proportional to the number of times that amino acid occurs at the position shown. 
The weblogo was created using the on-line tool at the University of Berkley 
(http://weblogo.berkeley.edu/logo.cgi). 
 

 

Figure 5-2 Schematic diagram for truncated PSPC-1.Illustrating the PCR truncations of 
the region encoding PSPC-1 protein at the predicted 3Cpro/3CDpro cleavage sites. The 
structures of the EGFP fusion proteins are also shown. 
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Figure 5-3 The distribution of the EGFP-PSPC-1 truncated proteins in uninfected cells. 
GMK cells were grown on coverslips and transfected with pEYFP, pEGFP-PSPC-1, pEGFP-
PSPC-1 fragment 1 or pEGFP-PSCP-1 fragment 2 using lipofectin. Cells were fixed and 
nuclei were stained with DAPI before being visualized with a BX41 fluorescent microscope. 
Nuclei were observed using a DAPI filter, expression of EYFP, EGFP-PSPC-1 and EGFP-
fragments were visualized with a FITC filter.  
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Figure 5-4 The effect of CAV-9 infection on the distribution of EGFP-PSPC-1 
fragments.  GMK cells were grown on coverslip and transfected with pEYFP, pEGFP-
PSPC-1, pEGFP-PSPC-1 fragment 1 or pEGFP-PSPC-1 fragment 2 using lipofectin. Cells 
were then infected with CAV-9 for 8 hr. Nuclei were stained with DAPI before being 
visualized using a Nikon A1 plus Wide field microscope. Nuclei were observed using DAPI 
(blue channel), expression of EGFP-PSPC-1 (green channel) and infected cells identified 
using anti-CAV-9 antibody and secondary antibody labelled with Alexa 555 (red channel). 
No transfected and infected cells could be found for pEGFP-PSPC-1 fragment 1. 
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Figure 5-5 the effect of CAV-9 infection on paraspeckle 
proteins. Western blot was performed on the endogenous PSPC-
1 and PSF. GMK cells were infected for 0, 2 and 8 hr. Cells were 
lysed and a protein extract was made. The protein concentration 
was determined and equal amounts were loaded onto the gel. 
After separation the membrane was blotted and protein were 
detected by using specific primary antibody (anti PSPC-1, anti 
PSF) and secondary antibody A PSPC-1 B PSF  
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5.4 PSF phosphorylation and sumoylation 

In order to examine whether the translocation of the EGFP-PSF protein after infection is 

caused by phosphorylation or sumoylation, a number of mutations to the PSF protein that 

prevent phosphorylation or sumoylation were constructed. The primer OL 2233 was 

designed in order to make the mutant S8A, OL 2224 to make Y293F and OL 2257 to 

construct a K338A mutant which cannot be sumoylated. PSF DNA was used as DNA 

template to perform PCR with the help of DMSO in order to improve the amplification 

of a GC rich region. In the case of Y293F, an overlap PCR was conducted as the 

mutation is not located near to useful restriction enzyme site. S8 is located close to the N-

terminus of the protein and K338 is located near to a unique XbaI site, so single PCR 

reactions using mutated primers could be done. PCR products were purified and ligated 

into pGEM-T easy vector. The ligated DNA was then transformed into E. coli, and after 

confirming the sequence of the clones produced, DNA was cut with Xbal  and XhoI (as 

there is a unique site in pEGFP-C1) and ligated into pEGFP-PSF cut with the same 

enzymes, giving pEGFP-PSF S8A, pEGFP-PSF Y293F and pEGFP-PSF sumo K338A 

(Figure 5-6). 

GMK cells were transfected with the pEGFP-PSF mutation constructs. 24 hr post 

transfection cells were infected or mock-infected with CAV-9 for 8 hr. Cells were then 

fixed, permeabilised, blocked and immunostained then mounted on glass slides using 

hard set mounting media containing DAPI then visualized by Nikon A1si confocal 

microscope.  
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The results showed that in mock-infected cells EGFP-PSF S8A was diffused throughout 

the nucleus with a smaller number of speckled structures than seen in the wild type 

(Figure 5-7). It was completely redistributed into the cytoplasm after 8 hr of infection, 

giving a pattern similar to the wild type protein (Figure 5-8). EGFP-PSF Y293F had a 

punctate distribution in the nucleus, with some a relocation in the cytoplasm as speckled 

structures. The protein was completely redistributed in the cytoplasm after 8 hr of 

infection with CAV-9. EGFP-PSF Sumo was distributed as punctate with some diffusion 

in the nucleus, with some diffuse signal in the cytoplasm. After infection the protein was 

redistributed to cytoplasmic speckles (Figure 5-7 and Figure 5-8).  

The results showed that the mutations possibly had some effect on protein distribution in 

the nucleus, but none on the redistribution after infection. In order to study this more, 

GMK cells were cotransfected with mCherry-PSPC-1 and EGFP PSF mutants. In all 

cases the mCherry-PSPC-1 and EGFP mutants colocalised in both mock-infected and 

infected cells after 8 hr infection (Figure 5-9 and Figure 5-10). In mock-infected cells, 

the S8A and Y293F mutants had a punctate distribution, while the Sumo mutant was 

more diffuse. After 8 hr infection all the mutants and mCherry-PSPC-1 were in granules 

in the cytoplasm (Figure 5-9 and Figure 5-10). The results confirmed that the mutations 

do not affect the movement to these granules. 
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Figure 5-6 A schematic diagram for PSF dephsphorylation and sumoylation. Illustrating 
the PSF protein mutagenesis that makes protein dephsphorylation and sumoylation. 
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Figure 5-7 The distribution of the EGFP-PSF protein and EGFP-PSF mutations 
(mock). GMK cells were grown on the coverslips and transfected with pEGFP-PSF, pEGFP-
PSF S8A, pEGFP-PSF Y293F, EGFP-PSF Sumo using lipofectin. Cells were fixed and 
nuclei were stained with DAPI being visualized using a Nikon A1si confocal microscope. 
Nuclei were observed using DAPI (blue channel), expression of EGFP-PSF and EGFP 
truncated (green). 
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Figure 5-8 The effect of CAV-9 on the distribution of EGFP-PSF protein and EGFP-
PSF mutation. GMK cells were grown on coverslip and transfected with pEGFP-PSF, 
pEGFP-PSF S8A, pEGFP-PSF Y293F, pEGFP-PSF Sumo using lipofectin. Cells were then 
infected with CAV-9 for 8 hr. Nuclei were stained with DAPI being visualized using a Nikon 
A1si confocal microscope. Nuclei were observed using DAPI (blue channel), expression of 
EGFP-PSF (green channel), and infected cells identified using anti-CAV-9 antibody and 
secondary antibody labelled with Alexa 555 (red channel).  
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Figure 5-9 The distribution of EGFP-PSF mutations and mCherry PSPC-1 complex 
(mock). GMK cells were grown on coverslip and cotransfected with pEGFP-PSF mutation 
and pmCherry PSPC-1 using lipofectin.  Nuclei were stained with DAPI being visualized 
using a Nikon A1si confocal microscope. Nuclei were observed using DAPI (blue channel), 
expression of EGFP- PSF Mutation (green channel), and expression of mCherry-PSPC-1 (red 
channel).  
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Figure 5-10 The effect of CAV-9 on the localization of EGFP- PSF Mutation and 
mCherry PSPC-1 complex. GMK cells were grown on coverslip and cotransfected with 
pEGFP-PSF mutation and pmCherry PSPC-1 using lipofectin. Cells were then infected with 
CAV-9 for 8 hr. Nuclei were stained with DAPI being visualized using a Nikon A1si 
confocal microscope. Nuclei were observed using DAPI (blue channel), expression of EGFP- 
PSF Mutation (green channel), and expression of mCherry-PSPC-1 (red channel).  
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5.5 PSF truncations 

In order to study which part of the PSF is responsible for the protein redistribution, 

constructs were made to truncate the PSF into smaller pieces. pEGFP-PSF was cut with 

BamHI (in the vector at the 3’ end of the PSF) and XbaI (internal site). Oligonucleotides 

OL 2252 and OL 2253 were annealed to give a linker with BamHI and XbaI ends, that 

was ligated to the cut pEGFP-PSF to give the mutant pEGFP-PSF XB (Figure 5-11). 

This was transfected into GMK cells which were either mock-infected or infected for 8 

hours. The cells were visualized with a Nikon A1 plus wide field microscope. The results 

showed that the EGFP-PSF XB was distributed throughout the cell in mock-infected cells 

and there was no movement to the cytoplasm in infected cells (Figure 5-12).  

Another two different truncation constructs were produced (Figure 5-11). These were 

D1, which includes amino acid positions 1-452, and D2, which includes positions 1-606.  

PCR was performed with OL 2254 and OL 2255 or OL 2256 primers and the fragments 

were ligated into pGEM-T easy and their sequence was checked. The PSF DNA was then 

cut from the vector with XbaI and BamHI and ligated into pEGFP-PSF cut with same 

restriction enzymes, in order to make pEGFP-PSF D1 and pEGFP-PSF D2 (Figure 5-11).  

When transfected and the cells visualized with BX41 microscope, EGFP-PSF D1 was 

diffuse in the both the nucleus and the cytoplasm. EGFP-PSF D2 was present in the 

nucleus and diffuse, but there were several  punctate structures in the cell cytoplasm with 

a large number of spots (Figure 5-13). No cell could be found both infected/transfected 

with EGFP-PSF D1. Infected EGFP-PSF D2 was completely redistributed in the 

cytoplasm into typical spots similar to the wild type (Figure 5-14). 
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Figure 5-11 A Schematic diagram illustrating the manipulations of the truncated PSF 
proteins. The green box indicates EGFP, the blue box is PSF DNA and the red box is a 
short annealed oligonucleotide pair which gives Xbal and BamHI overlap. 
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Figure 5-12 The effect of CAV-9 on the redistribution of EGFP- PSF Mutation XB. 
GMK cells were grown on coverslip and transfected with pEGFP-PSF XB using lipofectin. 
Cells were then infected with CAV-9 for 8 hr. Nuclei were stained with DAPI being 
visualized using Nikon A1si confocal microscope. Nuclei were observed using DAPI (blue 
channel), expression of EGFP- PSF Mutation (green channel), and infected cells identified 
using anti-CAV-9 antibody and secondary antibody labelled with Alexa 555 (red channel).  
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Figure 5-13 The distribution of the EGFP-PSF truncated proteins (mock). GMK cells 
were grown on the coverslips and transfected with pEGFP-PSF, pEGFP-PSF D1, pEGFP-
PSF D2. Cells were fixed and nuclei were stained with DAPI being visualized with BX 41 
fluorescent microscope. Nuclei were observed with DAPI filter, EGFP-PSF and EGFP-PSF 
deletions were visualized with FITC filter. 
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Figure 5-14 The effect of CAV-9 on the distribution of EGFP-PSF truncated protein. 
GMK cells were grown on the coverslips and transfected with pEGFP-PSF, pEGFP-PSF D1, 
pEGFP-PSF D2 using lipofectin. Cells were infected with CAV-9 for 8 hr and nuclei were 
stained with DAPI being visualized with a BX41 fluorescent microscope. Nuclei were 
observed with DAPI filter, EGFP-PSF, EGFP-PSF deletions were visualized with FITC filter 
and and infected cells identified using anti-CAV-9 antibody and secondary antibody labelled 
with Alexa 555 with TRITC filter.  
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To find if the patterns seen in Figure 5-13 and Figure 5-14 were the same or different 

from wild type protein, GMK cells were cotransfected with pmCherry-PSPC-1 and 

pEGFP mutant fusions (pEGFP-PSF D1and pEGFP-PSF D2). Cells were also infected 

with CAV-9 for 8 hr or mock-infected then visualized with a Nikon A1si confocal 

microscope. Infected cells were identified by the typical relocalisation of mCherry-

PSPC-1. There was no colocalization between EGFP-PSF D1 and mCherry-PSPC-1 in 

either mock infected or 8 hr infected cells (Figure 5-15). The EGFP-PSF D1 protein was 

distributed throughout the nucleus and cytoplasm, while mCherry-PSPC-1 distributed in 

the nucleus in speckled structures. EGFP-PSF D2 mainly colocalized with mCherry-

PSPC-1 in the nucleus, with a minor relocation of EGFP-PSF D2 in the cytoplasm in the 

mock infection cell. No mCherry-PSPC-1 was seen in the cytoplasm. Both EGFP-PSF 

D2 and mCherry PSPC-1 were found in the cytoplasm and colocalized after 8 hr of 

infection (Figure 5-15).  

The results suggest that the sequences deleted in the pEGFP-PSF XB and pEGFP-PSF 

D1 constructs are needed for both paraspeckle localization and movement to the 

cytoplasmic granules. 
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Figure 5-15 The effect of CAV-9 on the localization of EGFP- PSF truncated proteins 
and mCherry PSPC-1 complex. GMK cells were grown on coverslip and cotransfected 
with pEGFP-PSF truncations and pmCherry PSPC-1 using lipofectin.  Cells were then 
infected with CAV-9 for 8 hr. Nuclei were stained with DAPI being visualized using a Nikon 
A1 si confocal fluorescent microscopy. Nuclei were observed using DAPI (blue channel), 
expression of EGFP- PSF deletions using (green channel), expression of mCherry-PSPC-1 
(red channel).  
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5.6 Cytoplasmic structures which could be the 
location of DBHS proteins after infection 
with CAV-9 

In order to investigate further the translocation of the DBHS proteins PSF, PSPC-1 and 

NONO into cytoplasmic granules after CAV-9 infection and to identify what these 

granules are, a number of cytoplasmic candidates were examined. 

5.6.1 Replication complexes 

GMK cells were transfected with pEGFP (PSCP-1, PSF and NONO). 24 hr post 

transfection cells were infected with CAV-9 for different time intervals (2, 4, 6 and 8 hr). 

Cells were then fixed, premeabilised, blocked and immunostained with primary antibody 

for replication complexes (Anti-dsRNA monoclonal) and alexafluor 555 (goat anti 

mouse) as secondary antibody. Nuclei were stained with DAPI in mounding media and 

visualized with a Nikon A1si confocal microscope. In the EGFP-PSPC-1 experiment few 

infected cells were identified after 2 hr, presumably because not enough replication 

complexes were formed early in replication. EGFP-PSPC-1 had the expected distribution 

in the nucleus with the usual speckled structures through the nucleus. EGFP-PSPC-1 was 

redistributed in the cytoplasm after 4 hr infection with no colocalization with the 

replication complexes that were also distributed in the cytoplasm. Similarly, after 6 and 7 

hr of infection EGFP-PSPC-1 redistributed completely in the cytoplasm with 

colocalization with the replication complexes (Figure 5-16). In the EGFP-PSF 

experiment, it was hard to find cells that were both infected and transfected at 2 and 4 hr 

after infection. After 6 and 8 hr of infection, the protein started to redistributed in the 
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cytoplasm with no obvious colocalization with the replication complexes (Figure 5-17). 

There was no change in the EGFP-NONO protein distribution after 2 hr of infection. 

EGFP-NONO showed a slight redistribution to the cytoplasm after 4 hr of infection but 

no colocalization was spotted. After 6 and 8 hr of infection, EGFP-NONO showed a 

complete redistribution from the nucleus to cytoplasm but also no colocalization was 

shown with replication complexes (Figure 5-18).    

5.6.2 Stress granules 

GMK cells were grown on coverslips and transfected with pEGFP-PSPC-1, pEGFP-PSF 

D1 or pEGFP-PSF D2 then infected with CAV-9 for 8 hr. Cells were then fixed and 

immunostained with a monoclonal primary antibody specific for the stress granule 

protein G3BP and goat anti-mouse antibody as secondary antibody (Alexafluor 555). 

Cells were visualized with a Nikon A1si confocal microscope. Results showed that there 

is no clear colocalization of the EGFP-PSPC-1 into stress granules, as in the infected 

cells the anti-G3BP does not have the punctate stress granule distribution that was 

observed in the non-infected cells. For the pEGFP-PSF D1 experiment, the stress granule 

stain was not punctate and was in the cytoplasm, as was the EGFP signal, but there was 

no clear co-localization. There was no obvious colocalisation between EGFP-PSF D2 

and stress granules (Figure 5-19). HDAC6 has been reported to be a critical component 

of stress granules (Kwon et al., 2007). GMK cells were therefore cotransfected with the 

construct pEGFP-N1HDAC6 and pmCherry PSPC-1. 24 hr post transfection cells were 

infected with CAV-9 for 2, 4, 6 and 8 hr then fixed and coverslips mounted on glass 

slides using mounting media including DAPI. Slides were then visualized with Nikon 
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A1si confocal microscope. In non-infected cells the EGFP-NHDAC6 was distributed 

through the cellular cytoplasm with a lack of the punctate structures seen using G3BP 

(Figure 5-20). There was no clear difference in the distribution in the stress granule 

marker in infected cells at any time after infection and no colocalization with mCherry-

PSPC-1 cytoplasmic granules (Figure 5-20). 

5.6.3 P body 

GMK cells were grown on coverslips and three samples were transfected with pT7EGFP-

C1HsRCK, as HsRCK [Homo sapiens] RCK (DDX6) is reported to be a P-body marker 

(Tritschler et al., 2009). One sample was cotransfected with pmCherry-PSPC-1 then 

infected with CAV-9 for 6 hr and one was just infected with CAV-9 for 6 hr. Cells were 

then fixed and the infected pT7EGFP-C1HsRCK sample was immunostained for CAV-9. 

Results showed that in the non-infected cells EGFP-C1HsRCK was distributed in the 

cytoplasm with clear punctate structures, which probably correspond to P-bodies, and a 

more diffused background. After 6 hr of infection, in cells positive for anti-CAV-9 

staining the cytoplasmic spots had mostly disappeared and as well as being in the 

cytoplasm EGFP-C1HsRCK was in the nucleus. In cells cotransfected with pmCherry-

PSPC-1 and identified as infected due to the relocalisation of the pmCherry signal, there 

was no colocalisation between mCherry PSPC-1 and EGFP-C1HsRCK (Figure 5-21).  

GMK cells were also cotransfected with pT7EGFP-C1HsRCK and pmCherry PSPC-1 

then 24 hr post-transfection cells were infected with CAV-9 for the time intervals 2, 4 

and 6 hr, then fixed and coverslips mounted on glass slides using mounting media 

including DAPI. Slides were then visualized with a Nikon A1 plus wide field 
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microscope. In non-infected cells the P-body protein fused to EGFP was distributed 

through the cellular cytoplasm with a punctate structures (Figure 5-22). No colocalization 

between mCherry PSPC-1 and the P-body marker was observed through the infection 

time intervals (Figure 5-22).  
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Figure 5-16 The localization of PSPC-1 with the replication complexes (time interval).  
GMK cells were grown on coverslip and transfected with pEGFP-PSPC-1 using lipofection. 
Cells were then infected with CAV-9 for 2, 4, 6 and 8 hr. Nuclei were stained with DAPI 
being visualized using a Nikon A1si confocal microscope. Nuclei were observed using DAPI 
(blue channel), expression of EGFP- PSPC-1 (green channel), and infected cells identified 
using anti-dsRNA antibody and secondary antibody labelled with Alexa 555 (red channel). 
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Figure 5-17 The localization of PSF with the replication complexes (time interval).  
GMK cells were grown on coverslip and transfected with pEGFP-PSF using lipofection. 
Cells were then infected with CAV-9 for 2, 4, 6 and 8 hr. Nuclei were stained with DAPI 
being visualized using a Nikon A1si confocal microscope. Nuclei were observed using DAPI 
(blue channel), expression of EGFP- PSF (green channel), and infected cells identified using 
anti-dsRNA antibody and secondary antibody labelled with Alexa 555 (red channel). 
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Figure 5-18 The localization of NONO with the replication complexes (time interval).  
GMK cells were grown on coverslip and transfected with pEGFP-NONO using lipofection. 
Cells were then infected with CAV-9 for 2, 4, 6 and 8 hr. Nuclei were stained with DAPI 
being visualized using a Nikon A1si confocal microscope. Nuclei were observed using DAPI 
(blue channel), expression of EGFP- NONO  (green channel), and infected cells identified 
using anti-dsRNA antibody and secondary antibody labelled with Alexa 555 (red channel). 
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Figure 5-19 The effect of CAV-9 infection on the paraspeckels localization into stress 
granules (G3BP1). GMK cells were grown on coverslip and transfected with pEGFP-PSPC-
1 or pEGFP-PSF deletions using lipofectin. Cells were then infected with CAV-9 for 8 hr. 
Nuclei were stained with DAPI being visualized using a Nikon A1si confocal microscope. 
Nuclei were observed using DAPI (blue channel), expression of EGFP- paraspeckeles using 
(green channel), stress granules identified using anti-G3BP1 antibody and secondary 
antibody labelled with Alexa 555 (red).  
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Figure 5-20 The effect of CAV-9 on the colocalization of mCherry-PSPC-1 and stress 
granules (Time interval). GMK cells were grown on coverslip and cotransfected with 
pEGFP-N1HDAC6 and pmCherry PSCP-1 using lipofectin. Cells were then infected with 
CAV-9 for 2, 4, 6 and 8 hr. Nuclei were stained with DAPI being visualized using a Nikon 
A1si confocal microscope. Nuclei were observed using DAPI (blue channel), the expression 
of pEGFP-N1HDAC6 using EGFP (green channel), the expression of mCherry PSPC-1 using 
mCherry (red channel).  
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GMK cells were also grown on coverslips and transfected with pEGFP-PSF D1 or 

pEGFP-PSF D2, then infected with CAV-9 for 8 hr. Cells were then fixed and 

immunostained with a polyclonal primary antibody specific for the P-body protein 

GW182 and goat anti-rabbit antibody as secondary antibody (Alexa fluor 568). 

Coverslips were then mounted on glass slides with mounting media including DAPI in 

order to stain the nuclei and visualized with a Nikon A1si confocal microscope (Figure 

5-23). The GW182 distribution was punctate but not as clear as that seen using the 

pT7EGFP-C1HsRCK construct. There was little change in the cells shown to be infected 

due to the relocalisation of the EGFP-PSF D2 and no colocalisation between EGFP-PSF 

D2 and GW182. Infected cells cannot be identified in the EGFP-PSF D1 sample as this 

protein is not relocalised. 

Overall, the results show that P-bodies are disrupted in CAV-9 infections, based on the  

EGFP-C1HsRCK experiment and there is no colocalisation between P-bodies and the 

PSPC-1 cytoplasmic granules in infected cells. 

5.6.4 Autophagosome 

LC3 is a well-known marker for autophagosomes (Cherra et al., 2010) while TP53INP1 

is also located in autophagosomes (Seillier et al., 2012). Constructs encoding these 

proteins were used to find if the DBHS protein cytoplasmic granules were related to 

autophagosomes. GMK cells were grown on coverslips and transfected with pERFP-LC3 

or TP53INP1-pEGFP.  Some cells were co-transfected with pERFP-LC3 or pEGFP-

PSPC-1 and infected, in order to study the localization while other were co-transfected 

with pERFP-LC3 and TP53INP1-pEGFP in order to study whether the autophagosome 
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proteins are distributed similarly or not. 24 hr post transfection cells were infected with 

CAV-9 for 8 hr or mock infected and fixed then imunostained. Then nuclei were stained 

with DAPI included in the hard-set mounting and cells were observed with a BX41 

fluorescent microscope. The ERFP-LC3 in non-infected cells was distributed more in the 

nucleus than the cytoplasm, showing some distinctive speckled structures in the 

cytoplasm, while the ERFP-LC3 in infected cells was also diffused more in the nucleus 

with a small number of fine speckled structure in the cytoplasm (Figure 5-24).  Non-

infected TP53INP1-EGFP showed speckled structures in the cytoplasm with more 

distribution in the nucleus, while it is more diffused in the nucleus and the cytoplasm of 

the infected cells (Figure 5-24). The two autophagosome markers colocalised. In the cells 

cotransfected with pEGFP-PSPC-1 and pERFP-LC3, infected cells could be identified 

from the EGFP-PSPC-1 cytoplasmic granules which are seen in infected cells. In the 

infected cells there was some possible colocalisation between these PSPC-1 granules and 

ERFP-LC3 spots, but they did not perfectly colocalise (Figure 5-24).   

  



 

 Chapter 5 
Paraspeckle Proteins Mutation and Translocation 

 
 171 

 
 

 
Merged Alexa EGFP Alexa 555 

 

pT7EGFP-
C1HsRCK 
(control) 

 

 

pT7EGFP-
C1HsRCK 
(infected) 

 

pT7EGFP-
C1HsRCK 
(cotrans-
fected/ 

infected) 

 

Figure 5-21 The effect of CAV-9 on the distribution of P body (pT7EGFP-C1HsRCK). 

GMK cells were grown on coverslip and transfected with pT7EGFP-C1HsRCK, or 
cotransfected with pT7EGFP-C1HsRCK and pmCherry PSPC-1 using lipofectin. Cells were 
then infected with CAV-9 for 8 hr. Nuclei were stained with DAPI being visualized using a 
Nikon A1 plus wide field microscope. Nuclei were observed using DAPI (blue channel), 
expression of pT7EGFP- C1HsRCK (green channel), and infected cells identified using anti-
CAV-9 antibody and secondary antibody labelled with Alexa 555 (red),  or expression of 
mCherry PSPC-1 (mCherry).  
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Figure 5-22 The effect of CAV-9 on the colocalization of mCherry-PSPC-1 and P body 
(Time interval). GMK cells were grown on coverslip and cotransfected with pT7EGFP-
C1HsRCK and pmCherry PSCP-1 using lipofectin. Cells were then infected with CAV-9 for 
2, 4 and 6 hr. Nuclei were stained with DAPI being visualized using a Nikon A1 plus wide 
field microscope. Nuclei were observed using DAPI (blue channel), the expression of 
pT7EGFP-C1HsRCK using EGFP (green channel), the expression of mCherry PSPC-1 using 
mCherry (red channel).  
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Figure 5-23 The effect of CAV-9 on the localization of EGFP-PSF deletions and P body. 
GMK cells were grown on coverslip and transfected with pEGFP-PSF deletions using 
lipofectin. Cells were then infected with CAV-9 8 hr. Nuclei were stained with DAPI being 
visualized using a Nikon A1si confocal microscope. Nuclei were observed using DAPI (blue 
channel), EGFP- PSF deletions using (green channel), and P body identified using anti-
GW182 antibody and secondary antibody labelled with Alexa 568 (red).  
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Figure 5-24 The effect of CAV-9 infection on the distribution of the 
Autophagosome structures and localization of these structures with 
EGFP-PSPC-1. GMK cells were grown on coverslip and transfected with 
pERFP-LC3/ TP53INP1-pEGFP. Cotrasnfected with pERFP-LC3 and 
pEGFP-PSPC-1 using lipofectin. Cells were then infected with CAV-9 for 
8 hr. Nuclei were stained with DAPI being visualized using a BX41 
fluorescent microscope. Nuclei were observed using DAPI filter (blue), 
expression of TP53INP1-EGFP / EGFPPSPC-1 or Alexa 488 using FITC 
filter (green), ETFP-LC3/ Alexafluor 555 with TRITC filter (red).  
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5.7 Discussion 

This chapter describes work done to find the basis of the movement of the DBHS 

proteins PSF, PSPC-1 and NONO to cytoplasmic granules and to find if the cytoplasmic 

granules are the same as any known cellular structures.  

5.7.1 Protease digestion 

It has been found that some cellular proteins are cleaved by picornavirus proteases during 

infection and this inactivates the proteins or causes redictribution in the cell (Castelló et 

al., 2011). One of these proteins is eIF4G and Gradi et al. (2003) studied the cleavage site 

of the enteovirus 2Apro on the human eIF4G, to find that the rhinovirus 2A cleaves the 

eIF4G protein at the sequence LSTR↓GPP, after position 681. The 2Apro of enterovirus 

and rhinovirus was analysed previously by making a sequence logo from 22 unique 2Apro 

cleavage sites. The weblogo showed that the site R↓G is one of the 2Apro possible 

cleavage sites in these viruses (Blom et al., 1996). This analysis also shows that a 2Apro 

cleavage site has the sequence (V,I,L)X(S/T) X↓G. Other previous studies observed that 

the rabbit eIF5B is cleaved proteolytically during enterovirus infection by the CVB3 

3Cpro at VVEQ↓G and it was remarked that it is expected to be at the same position 

(sequence VMEQ↓G) in human eIF5B (de Breyne et al., 2008).  

In this study we examined the predicted cleavage sites of the 2Apro and 3Cpro of CAV-9 

Griggs on the PSPC-1, in order to study the possible effect of these proteins on 

paraspeckle localization. No possible 2A cleavage sites were found in the PSPC-1 

protein (data not shown). A weblogo analysis (Figure 5-1) showed that 3Cpro cleavage 
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sites in CAV-9 have the preferred sequence AXXQ↓G. A similar sequence was found at 

two positions in the PSPC-1 sequence and two deletion mutants were made that end at 

positions 178 (fragment 1) and 416 (fragment 2) (Figure 5-2). We found that in 

uninfected cells EGFP-PSCP-1 fragment 1 had an EGFP-like distribution, in the cell 

nucleus and cytoplasm, while EGFP-PSPC-1 fragment 2 had an unaffected distribution 

which was the same as EGFP-PSPC-1 (Figure 5-3). This suggested that 3Cpro cleavage 

sites are not likely to be involved in the relocalization, as could be expected that one of 

these deletion mutant proteins would be located in to cytoplasmic granules if 3Cpro 

cleavage was needed for the relocalisation.  In infected cells (Figure 5-4) EGFP-PSPC-1 

fragment 1 showed no relocalisation to the cytoplasmic granules, which suggest that the 

deleted part of the protein is needed for this relocalisation. EGFP-PSPC-1 fragment 2 

was relocalised, showing that the part of the protein deleted is not needed for the 

relocalisation.  

Little is known about PSPC-1 localization to the cytoplasm, but both RRM domains play 

an important role in the DBHS localization to paraspeckles (Passon et al., 2012). In 

fragment 1 part of RRM2 and all the coiled coil were deleted, while in fragment 2 both 

RRM domains and coiled coil domains are present in the deleted protein (Figure 5-25). 

The NLS domain, which is located at the C-terminus of the protein, is lost in both 

deletions.  (Fox et al., 2005) studied the importance of these motifs for PSPC-1 

localization by manipulating series of truncated and mutated forms of EYFP-PSPC1. 

They found that the deletion of N-terminal, C-terminal or both terminals did not affect 

the localization of the protein to paraspeckles. Then they removed one or both RRM 

motifs and coiled coil domain, and they found that the mutant that has both RRM2 and 
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coiled coil was able to localize to the paraspeckles. These findings suggesting that the 

RRM2 and coiled coil domains together are important for the localization. The coiled 

coil domain and most of RRM2 are lost in the fragment 1 deletion (diffuse distribution), 

but are both present in the fragment 2 deletion (paraspeckle distribution in uninfected 

cells, cytoplasmic granules in infected cells) (Figure 5-25). This may suggest that the 

domains needed for the cytoplasmic granule localization in infected cells are the same as 

those needed for paraspeckle localization.   

In order to find if there is any proteolytic cleavage of PSPC-1 or PSF during infection, a 

Western blot was performed. There is no evidence of cleavage as there are no smaller 

bands seen. Western blot analysis is consistent with the idea that there is not a cleavage 

at a specific point by either 2Apro or 3Cpro as no smaller products are produced in infected 

cells (Figure 5-5). Interestingly, PSF and PSPC-1 seem to be up-regulated early in 

infection and the levels decrease later in infection. This should be studied further to find 

if this is a cell response to overcome the virus infection or is induced by the virus to 

make its replication more efficient. 
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Figure 5-25 A schematic representation of the PSPC-1 wild type sequence and 
truncated proteins. The PSPC-1 domains are the N terminal Gln/Glu/Pro-rich domain, two 
RRM domains (1,2), a coiled coil domain, a NOPS region and a C-terminal domain that 
include the NLS. The two deletion mutants (fragment 1 and fragment 2) are aligned with the 
PSPC-1 sequence. 
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5.7.2 PSF phosphorylation sites 

It has been found that the phosphorylation of PSF by BRK causes a relocation of the 

protein to the cytoplasm. A proteomic analysis of BRK found PSF as a BRK-interacting 

protein and also a substrate for BRK, which interacts with the PSF polyproline-rich motif 

at the N terminus, and a tyrosine at the C-terminus, which is then phosphorylated by the 

kinase. This phosphorylation causes the relocalization of PSF into the cytoplasm 

(Lukong et al., 2009). These finding suggested that phosphorylation of PSF during CAV-

9 infection could be the main cause of the translocation to cytoplasmic granules during 

infection. Relocalization of some splicing factors within the nucleus is also believed to be 

due to phosphorylation, in this case of SR domains close to the C-terminus. Although 

PSF does not have SR domain, it shares some features with SR proteins (Shav-Tal et al., 

2001). Another study carried out a proteomic analysis on MAP kinase to identify the 

binding proteins. MAP kinase is involve in cellular translation, as it interacts with cap-

binding initiation factor complex. They identified PSF, together with NONO, as 

interacting proteins and PSF is phosphorylated at two sites by the MAP kinase (S8 and 

S283) (Buxadé et al., 2008). Galietta et al. (2007) used a proteomic approach to identify 

anaplastic lymphoma kinase binding proteins and they found that PSF was interacting 

with the kinase, dependant on the active domain of the kinase. It was also found that PSF 

was phosphorylated at one site (tyrosine 293) and was delocalized to the cytoplasm, 

while when the PSF expressed alone it was distributed in the nucleus.  

In this study we made mutagenesis dephosphorylation of the PSF at S8 and Y293, in 

order to examine the effect of the phosphorylation on the paraspeckle relocalisation to the 
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cytoplasm during CAV-9 infection (Figure 5-8). Results showed that both PSF S8A and 

Y293F were distributed into the cytoplasm similarly to the wild type in infected cells, 

although there were some differences in distribution in uninfected cells (Figure 5-7). It 

might be concluded that neither is important in localization to the cytoplasmic granules, 

but several other PSF sites are known to be phosphorylated and one of these could be 

important. Another possibility is to do a study by making mimic phosphorylation 

constructs of PSF.  

It has been found that sumoylation promote PSF transcriptional repression properties 

(Vethantham. and Manley, 2009). PSF and NONO were also identified as putative 

SUMO targets. It has also been found that SUMO-3 plays a major role in nuclear 

localization of other nuclear proteins, such as PML protein, and is needed for its 

localization into PML-NBs. The knockdown of SUMO-3 caused a decrease in the 

number of PML-NBs (Fu et al., 2005). We constructed a mutant of PSF that cannot be 

sumoylated. In uninfected cells this was diffuse in the nucleus, but was relocated to 

cytoplasmic granules as normal PSF  (Figure 5-7-Figure 5-8).  

To confirm the distribution of PSF mutants, we attempted to do colocalization with 

mCherry-PSPC-1. This seemed to change the distribution of the phosphorylation mutants 

in uninfected cells to be more like the normal PSF distribution and the mutants 

colocalized with the mCherry-PSPC-1 (Figure 5-9) The sumoylation mutant was still 

diffuse in the nucleus and mCherry-PSPC-1 has a similar distribution.  Probably, the 

analysis is complicated by the fact that PSPC-1 and PSF interact and so some of the 

effects of the mutation may be overcome by the presence of large amount of wild type 

PSPC-1. In infected cells, all the mutants seemed to localize to the same cytoplasmic 
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granules containing PSPC-1 (Figure 5-10), which suggests that the mutations are not 

affecting the relocalization, although again the fact that PSPC-1 and PSF interact may 

complicate the results.  

5.7.3 PSF deletion mutants 

PSF protein contains a Gln/Glu/Pro-rich region, two RRM domains, a coiled coil 

domain, NOPS region and two NLSs at the C-terminal end (Figure 5-26). It has been 

found that the loss of RRM2 results in a diffuse PSF accumulation in the nucleus, which 

suggested that RRM2 is required for subnuclear localization. However, PSF is more 

likely to localize to speckles through RRM1 (Dye and Patton, 2001). The localization of 

three truncations of EGFP-PSF was analysed after transfection into GMK cells (Figures 

Figure 5-12-Figure 5-14). A PSF construct lacking the C-terminal half of the protein 

(PSF XB) was completely diffused in the nucleus and cytoplasm (Figure 5-12). Infection 

with CAV-9 did not change the localization. This suggests that sequences needed for 

both paraspeckle and cytoplasmic granule localization are present in the deleted region. 

The same results were obtained from the construct lacking just part of the NOPS region, 

the coiled coil domain and the C-terminal domain (Figure 5-13). The deletion of this part 

of the protein, which contains an the NLS, is probably the reason for the mutant being 

present in the cytoplasm (Figure 5-13) A recent study by (Lee et al., 2015) made a 

truncated EYFP-PSF construct, PSF276-555, which contain both RRM motifs and coiled 

coil domain and found there is no localization to the paraspeckles. They identified, from 

the structure of the protein, a further region, up to position 598, which allows PSF to 
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form polymers and this polymerization domain is required for PSF localization. They 

also found that amino acids 1-275 are not important for paraspeckle localization.  

In our work, another deletion construct, EGFP-PSF D2, was made by adding sequences 

up to position 606, including the rest of the coiled coil domain and the polymerization 

domain shown to be important by (Lee et al., 2015). The results show an improvement in 

the paraspeckle localization in uninfected cells, but there seems to a lot of the mutant 

present in the cytoplasm with a punctate distribution. Cytoplasmic granules were seen in 

infected cells. These finding are partially consistent with the (Lee et al., 2015) data.  

Attempts to colocalize with mCherry-PSPC-1 did not change the EGFP-PSF D1 

distribution. However, EGFP-PSF D2 had a more typical appearance, with more protein 

seen punctate in the nucleus, but with still some present in the cytoplasm in uninfected 

cells. There was good colocalisation into cytoplasmic granules in infected cells (Figure 

5-15).  
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Figure 5-26 A schematic representation of the PSF wild type sequence and truncated 
proteins. PSF contains an N-terminal Gln/Glu/Pro-rich domain, two RRM domains (1,2), a 
coiled coil domain, a NOPS region and a C-terminal domain that include the NLS. The 
deletion mutants PSF XB, D1 and D2 are aligned with the PSPC-1 sequence. 
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5.7.4 Attempts to identify the cytoplasmic granules 

CAV-9 infection clearly causes redistribution of paraspeckle proteins by translocation 

from the nucleus to cytoplasmic granules. In order to investigate the cytoplasmic 

granules to which the proteins were translocated, a number of cytoplasmic candidates 

that are associated with RNA were studied. It is believed that picornavirus infection 

causes rearrangement of cellular membrane into vesicles which then assemble into RNA 

replication complexes. During PV infection, the replication complexes may form the 

required supplements for rapid and efficient RNA replication. The formation of these 

complexes depends on several virus non-structural proteins (Egger et al., 2000).   These 

complexes also help to segregate the products from templates during viral infection (Tao 

and Ye, 2010). In this study we examined the colocalisation of replication complexes and 

PSF, PSPC-1 and NONO at different time points (Figure 5-16-Figure 5-18). Complexes 

were labelled using a monoclonal dsRNA antibody and Alexafluor goat anti-mouse as a 

secondary antibody. The results showed that there is no localization between the 

complexes and paraspeckle protiens. This may suggest that the relocalisation of 

paraspeckle proteins is not involved in virus RNA replication directly. This is unexpected 

as a previous study found that NONO was needed for virus replication in the case of 

poliovirus (Lenarcic et al., 2013). 

Enterovirus infection induces the cellular degradation process which is called autophagy. 

The induction or inhibition of autophagy causes alteration to enterovirus infection 

(Rhoades et al., 2011). Paraspeckle protein localization to autophagosomes was therefore 

also studied. The findings showed no clear colocalization between the parapeckle 
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proteins and autophagosomes, as the punctuate structures distribution seen for 

paraspeckle proteins is largely lacking (Figure 5-24). However, some spots showed some 

colocalisation and this should be studied further. 

It has been found that AUF-1 protein is cleaved during PV or rhinovirus infection by 

2Apro, 3Cpro or 3CDpro, which also play a major role in picornavirus replication. It has 

been reported that the protein is mainly localized in the nucleus, but during PV infection 

there was an alteration of the AUF-1 distribution. 4 hr after infection there was a huge 

localization of AUF-1 to the cytoplasm displayed a distinct localization pattern 

(Rozovics et al., 2012). AUF-1 interacts with the 5’UTR of enteroviruses and cause 

degradation of the viral RNA. Under cellular stress condition it was found that AUF-1 

translocates to stress granules. These stress granules are involved in mRNA translation 

inhibition (David et al., 2007). Several other RNA viruses are known to cause changes to 

stress granules and to another class of RNA-containing cytoplasmic structures, the P-

bodies (reviewed by Reineke and Lloyd, 2013). Several proteins are known to be present 

in stress granules, including G3BP and TIA1. In our experiments, CAV-9 infection 

seemed to disrupt both stress granules and P-bodies formation, as the marker G3BP was 

located throughout the cytoplasm and not in spots in infected cells (Figure 5-19). P-

bodies markers were also redistributed in infected cells, in this case to a diffuse pattern in 

the cytoplasm and nucleus (Figure 5-21-Figure 5-23). There was no colocalisation with 

PSPC-1 cytoplasmic granules.  

It seems that the cytoplasmic granules are not P-bodies and are probably not stress 

granules. However, in a recent study on CBV-3 infection (Wu et al., 2014), it was found 

that stress granules containing G3BP and TIA1, as well as AUF-1, are produced early in 
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infection (3 hours), but while TIA1 remains in granules, G3BP seems to lose its punctate 

appearance later (6 hours), probably due to cleavage by CBV-3 3Cpro, as it is known that 

this occurs in enterovirus infections (Reineke and Lloyd, 2013). As we looked at G3BP 

only after 8 hours, it may be that we missed an early colocalisation with G3BP. It is 

important to do a G3BP timecourse/colocalisation with PSPC-1 and also to investigate if 

TIA1 colocalises with PSPC-1 and the other paraspeckle proteins. However, the other 

stress granule marker that we used, EGFP-N1HDAC6, did not colocalise with PSPC-1 at 

any time point. 

5.7.5 Conclusion 

The experiments performed have shown that redistribution of the DBHS paraspeckle 

proteins is probably not due to proteolytic processing. The redistribution seems to depend 

on the same parts of the protein that are needed for paraspeckle localization, which 

suggests that interactions between these proteins, which are known to involve regions 

like RRM2 and the coiled coil domain, are important to this process.  The cytoplasmic 

structures which contain these proteins do not seem to correspond to any of the 

candidates we tested and could be previously unknown structures, or ones which are 

produced only during virus infection. It will be interesting to define what role these 

structures have in virus infection. 
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Most virus diseases cause self-limiting illnesses and no specific antiviral drug is required 

for therapy. In a few other cases there are effective vaccines.  Currently, there are only 

antiviral drugs available to target four main viruses, HIV-1, herpes virus, hepatitis virus 

and influenza virus (Razonable, 2011). There are several drugs to treat HIV-1, and these 

target a number of different steps of virus replication. All anti-herpes viral drugs are 

based on the inhibition of viral replication and act on viral DNA polymerase. Interferon 

and/or combinations of nucleotide analogues can be used to treat virus hepatitis, 

especially that caused by hepatitis C. The most useful anti-influenza drugs target the 

virus neuranimidase protein and affect release from infected cells. However, there are 

some issues with the available antiviral drugs such as drug resistance. The major 

mechanisms for drug resistance are mutations in genes encoding the target of the drug 

(Razonable, 2011). Targeting cellular proteins or mechanisms may mean that resistance 

is less of a problem, because the target cannot change, although toxicity could be a 

problem.  

The presence of many serotypes (over 250) is a problem for vaccines against members of 

the Enterovirus genus of Picornaviridae. The question is, is it possible to make a drug 

that targets all these related viruses? To do that we need to know more about how these 

viruses interact with the host cell. The thesis concentrated on the changes that occur to 

nuclear proteins when cells are infected with a typical enterovirus, CAV-9. Few 

enteroviruses, mainly PV and EV-71 have been studied in terms of nuclear protein 

redistribution and CAV-9 was used as it belongs to a different Enterovirus species from 

PV and EV-71 and so it is useful to find how general the mechanisms used in replication 

are, as this will give an idea of how useful they are for the design of antivirus drugs.  
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Several nuclear proteins have been shown now to be affected by RNA virus infection and 

have an effect on replication (Table 6-1). We found that CAV-9 had some minor effects 

on some of these proteins, particularly PML and nucleolin, but the clearest effect was on 

DBHS proteins which are key components of the paraspeckles. These nuclear structures 

have been little-studied in virus infected cells and our observation is novel.  

There was a major relocalization in the paraspeckle proteins during viral infection and it  

would be interesting to understand what that means for cell gene expression and also how 

could the virus be using these proteins. Paraspeckles are involved in processes such as 

RNA processing, including splicing, RNA transport and retention in the nucleus. 

Picornaviruses affect transcription (through cleavage of transcription factors such as Oct-

I and the TATA box binding transcription factor) and translation (cleavage of factors 

such as eIF4G, PAPB) (Castelló et al., 2011). Maybe they also affect processing and 

export of cell mRNA and inhibit gene expression through this pathway as well. The 

complete relocalisation of these proteins presumably means that their normal paraspeckle 

functions cannot take place. It would be interesting to analyse the effect of infection on 

splicing and RNA export.  The functional significance of the proteins should be tested by 

knockdown of PSF, NONO or PSPC-1, in order to examine whether the virus grows 

better or not grows at all i.e. do the effects seen benefit the host or the virus? It was 

previously found that knock down of NONO decrease the amplification of PV and that as 

NONO is required for efficient translation and positive sense RNA synthesis (Lenarcic et 

al., 2013).   

In this study we tried to investigate the mechanism of the redistribution. In several 

viruses, proteolytic digestion affects cell proteins, such as eIF4G which was cleaved by 
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rhinovirus 2Apro which results in reduction of capped mRNA translation (Haghighat et 

al., 1996). Another protein cleaved by picornaviruses 3Cpro is PTB, which also inhibited 

the cellular translation (Kanda et al., 2010). La protein was also cleaved by PV 3Cpro 

(Shiroki et al., 1999). CAV-9 proteolytic constructs were made and analyzed. There was 

an issue with CAV-9 2Apro as no cotransfected cells could be obtained. It may be useful 

to use an inducible system, e.g. Tet on/Tet off or a construct with a weaker promoter. 3C 

had a great effect on cells, including nuclear condensation, but the effect on the proteins 

being studied were not similar to redistribution seen in infected cells. In the case of the 

DBHS proteins, it was confirmed that the redistribution is not related to the proteolytic 

activity as seen in the Western blot results, as there was no cleavage of the proteins. So, 

proteolytic digestion may not be important. Non structural proteins such as CAV-9 3A 

and HPeV-1 2B caused relocalization of PSPC-1 to the nucleolus or peri-nucleolar caps. 

Although this was not similar to that seen in infected cells, it may indicate that these non-

structural proteins may be able to affect the cell cycle or host-cell transcription, as PSPC-

1 and NONO are relocated to similar structures when transcription is prevented (Fox et 

al., 2005) and during G1/S arrest (Shav-Tal et al., 2001).  A link between these non-

structural proteins and the nucleus has not been made before and so our work may open 

up a new area for research. 

We produced several PSF mutants. Some of these prevented phosphorylation of sites 

known to be important in PSF relocalisation and one was a mutant where sumoylation 

was not possible. None of these had an effect on relocalisation during CAV-9 infection. 

Other mutants were deletion mutants. These confirmed the importance of sequences 

between positions 452 and 606 of PSF in paraspeckle localization and the same region is 
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also important in cytoplasmic granule localization in infected cells.  Further mutants need 

to be made to find other parts of the protein involved in localization. 

We also tried to study the cytoplasmic structures where the parapeckle proteins are 

localized, but it seems like they do not relocate in these candidates and they might be 

novel structures. A mass spectrometry analysis is suggested to analyze PSF binding 

protein in infected cells, in order to examine whether those are novel structures and what 

else is in them. It would also be interesting to know if they contain NEAT-1 or virus 

RNA by performing FISH. Another experiment that should be performed is testing 

different viruses and examines the effect of these viruses on paraspeckles. It is known 

that infection by HPeV-1 also causes some relocalisation of PSPC-1, but this is within 

the nucleus and less obvious than that seen in CAV-9 infected cells (Mutabagani, 2012). 

However, as HPeV-1 and CAV-9 are quite far apart in the Picornaviridae tree, it 

suggests that paraspeckle proteins may be common targets during virus infections. 

We have identified a novel redistribution of key proteins in the nucleus. If this is proved 

to be required by the virus, then it could be a potential drug target for the development of 

a new class of antiviral agents.  
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Table 6-1 A list of some nuclear proteins were affected by RNA virus infection and 
have an effect on replication 

Nuclear 
protein 

Nuclear 
location Virus Significance Reference 

PML PML-NBs PV 

Stimulates PML phosphorylation 
and induces its movement from 
the nucleoplasm to the nuclear 

matrix 

(Pampin et al., 
2006) 

PML PML-NBs EMCV Decrease in the protein level by 
3Cpro 

(El Mchichi et 
al., 2010 

Nucleolin 
Nucleolus-

dense 
fibrillar 

PV 

Relocalization from nucleus to 
the cytoplasm. Nucleolin 

stimulates viral IRES-mediated 
translation. 

(Waggoner and 
Sarnow, 1998, 

Izumi et al., 
2001) 

B23 Nucleolus EMCV 
Shutdown of RNA Pol II 

transcription, and cap-dependent 
translation 

(Aminev et al., 
2003) 

AUF-1 Nucleus PV 
Cleaved by the viral proteinase 

3CD and AUF1 can then interact 
with the IRES 

(Cathcart et al., 
2013) 

hnRNPA1 Nucleus EV71 Relocalised from nucleus to 
cytoplasm and binds to IRES 

(Lin et al., 
2009a) 
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Appendix 1 Translation results from the constructs encoding CAV-9 fusion 
proteins. A. pEGFP-2A, B.  pmCherry-2A, C. pEGFP- 3C and D. 
pmCherry-3C. Green and red highlighting shows the EGFP and mCherry 
proteins. Yellow shows the vector sequence after the CAV-9 insert. The 
sequence obtained for EGFP-3C had some ambiguities (N) close to the C-
terminus, but the sequence chromatograph showed that the sequence is 
correct. 

 

 

 

Appendix 2 Sequence translation results of fusion protein mCherry-3C. Red 
highlighting shows mCherry proteins. Yellow shows vector sequence after 
the HPeV-1 insert. Red box showing the HPeV-1 3C active site GXCG. 

 


