
Combined Quay Crane Assignment and Quay Crane Schedul-
ing with Crane Inter-Vessel Movement and Non-Interference Con-
straints

Ghazwan Alsoufi, Xinan Yang, Abdellah Salhi
Department of Mathematical Sciences, University of Essex, Colchester, UK

Abstract

Integrated models of the Quay Crane Assignment Problem (QCAP)and the Quay Crane Scheduling
Problem (DCSP) exist. However, they have shortcomings in that some do not allow movement of quay
cranes between vessels, others do not take into account precedence relationships between tasks, and yet
others do not avoid interference between cranes. Here, an integrated and comprehensive optimisation
model that combines the two distinct QCAP and QCSP problems which deals with the issues raised is
put forward. The model is of the mixed-integer programming type with the objective being to minimise
the tardiness of vessels. Because of the extent of the model and the potential for even small problems
to lead to large instances, exact methods can be prohibitive in computational time. For this reason an
adapted Genetic Algorithm (GA) is implemented to cope with this computational burden. Experimental
results obtained with Branch-and-Cut (B&C) as implemented in CPLEX and GA for small to large scale
problem instances are presented. The paper also includes a review of the relevant literature.

keyword

Container Terminals, Quay Crane Assignment, Quay Crane Scheduling, Branch-and-Cut, Genetic Al-
gorithm

1. Introduction

Container terminals are essential for the distribution of import/export goods to domestic markets around
the world. Quay cranes are important and valuable equipment used in these terminals. They, therefore,
must be used optimally whenever possible. However, determining the optimum number of quay cranes
to assign to a given vessel moored in a container port, and the optimum sequence in which to perform
the tasks of unloading and loading the vessel constitute some of the most important operations at ports.
These operations potentially lead to distinct problems as follows.

1. The Berth Allocation Problem (BAP);

2. The Quay Crane Assignment Problem (QCAP);

3. The Quay Crane Scheduling Problem (QCSP).

Comprehensive reviews of these three problems (seaside problems) individually and when integrated pair-
wise as in BAP&QCAP, and QCAP&QCSP, can be found in (Steenken et al., 2004; Bierwirth and Meisel,
2010). Each one of these problems considered individually, is complex enough. However, solving them
individually and without consideration of the others may lead to suboptimal solutions. For this reason
the pairwise integrated problems are investigated to obtain near optimal solutions.

After berth allocation, (Alsoufi et al., 2016), quay cranes must be assigned to each docked vessel. The
number of quay cranes assigned to a vessel impacts on its processing time and therefore the working
efficiency of the port. If the number of quay cranes assigned to a vessel is below requirement, the vessel
will take unnecessarily longer processing time. This may result in a delay of the vessel’s departure, which

1

will, potentially, have a knock-on effect on the allocation of berths to waiting vessels, and other port
operations. Equally, if the number of assigned quay cranes is more than what is needed, it may lead to
high handling cost for this vessel and potentially delay the processing of other vessels. The other prob-
lem faced by the decision maker after assigning quay cranes to vessels is finding the optimum sequence
in which to perform tasks (unload and load containers from and onto vessels). This is the problem of
scheduling quay cranes to carry out all tasks efficiently and without interference between them.

QCAP and QCSP are closely related as the former feeds the latter with the number of quay cranes
as input. Without the solution of the latter one cannot see the accurate processing time of a vessel given
the fixed number of quay cranes assigned to it.

Few attempts have been made at combining QCAP and QCSP, as in (Diabat, 2014; Fu, 2014). This
could possibly be due to the complexity of the mathematical formulation and especially its computa-
tional demands. It is also the case that, to our best knowledge, previous works that combine QCAP
and QCSP do not allow quay cranes to move between vessels while the latter are still being processed,
(Daganzo, 1989; Peterkofsky and Daganzo, 1990; Tavakkoli-Moghaddam et al., 2009).

This paper focuses on the integration of QCAP and QCSP to form QCASP, an extended decision making
problem that can be solved in real applications. Contributions are two fold:

1. to formulate a mathematical model that combines QCAP and QCSP and allows quay cranes to
move between vessels while they are still being processed. In other words, it allows the number of
quay cranes allocated to any vessel to change during the handling of the vessel;

2. to solve realistic instances of the problem using an adapted variant of the Genetic Algorithm (GA).

The paper is organised as follows. Section 2 is a literature review of QCSP, BAP combined with QCAP,
and QCAP combined with QCSP. Section 3 presents a mathematical model that combines QCAP and
QCSP. In Section 4, a variant of GA is suggested for QCASP. In Section 5, the computational results are
reported and discussed. Section 6 concludes the paper and suggests further directions of research on this
topic.

2. Container port operations: a review

As said earlier, assigning and scheduling quay cranes is at the heart of container port operations. Here,
we review the relevant literature on these problems and related ones.

2.1. The Quay Crane Scheduling Problem (QCSP)

The solution of QCSP is the optimal sequence of moves for quay cranes to perform (unloading and loading
containers from and unto the vessel) in order to minimize the handling time of the vessel.

(Kim and Park, 2004) studied QCSP and formulated it as a mixed integer programme. They used Branch-
and-Bound (B&B) in conjunction with the Greedy Randomized Adaptive Search Procedure (GRASP)
(Feo, 1995), to overcome the difficulties of B&B on its own. (Moccia et al., 2006), formulated QCSP
as a vehicle routing problem with additional constraints like the precedence relationships between tasks.
CPLEX was used to solve small scale instances and the Branch-and-Cut (B&C) algorithm to solve large
scale instances. (Sammarra et al., 2007) proposed a tabu search heuristic for QCSP in order to minimize
the completion time for unloading and/or loading containers from/into vessels. They considered prece-
dence and non-simultaneity between tasks. They also observed that QCSP can be decomposed into a
routing problem and a scheduling problem. (Lee et al., 2008) presented a mixed integer programming
model of QCSP and proved that it is NP-complete; they used a GA to solve problem instances to near
optimality. (Bierwirth and Meisel, 2009) noticed the shortcomings of earlier models of QCSP, and in par-
ticular with respect to the quay crane interference avoiding constraints which did not do the job properly.

2

They revised one such model due to (Sammarra et al., 2007) to take care of interference between quay
cranes. They also proposed a Unidirectional Schedule (UDS) heuristic for when the quay cranes do not
change moving direction from their initial position and have identical directions of movement both from
upper and lower bays. (Chung and Choy, 2012) proposed a variant of GA to solve (Kim and Park, 2004)
model’s of QCSP. Their results compared well with those obtained by most well established algorithms.
(Kaveshgar et al., 2012) introduced an efficient GA for QCSP. Their algorithm improved the efficiency of
GA search by using an initial solution based on the S-LOAD rule and by reducing the number of genes
in the chromosomes to reduce search time. (Nguyen et al., 2013) suggested two representations of QCSP
one for GA and the other for Genetic Programming (GP), (Koza, 1992). GA uses permutation to decide
the priority of tasks, whereas GP relied on a priority function to calculate the priority of tasks. (Unsal
and Oguz, 2013) proposed a constraint programming approach for solving QCSP with container groups.

2.2. The Combined Berth Allocation and Quay Crane Assignment Problem
(BACAP)

QCAP is the problem of finding the optimum number of quay cranes that should be assigned to every
vessel that docks at a container terminal. This problem can be seen as trivial since knowing the workload
of a vessel and the work rate of a quay crane should allow to estimate the number of quay cranes required
for the vessel. However, if quay cranes of different work rates are used and are allowed to move from
one ship to another while work on the ships is ongoing, then their assignment is no longer so simple.
BACAP is the problem of allocating berthing times and berthing positions to vessels and, at the same
time, determining the optimum number of quay cranes to service them.

(Legato et al., 2008), addressed QCAP with a predetermined berth position and time following the
solution of BAP. They assumed that quay cranes could not move between vessels before all tasks are
performed and the vessels processing is completely finished. A mathematical model was presented to
determine the optimum number of quay cranes for each vessel that is ready for processing. (Meisel and
Bierwirth, 2009) integrated BAP, and QCAP into BACAP. The proposed problem is formulated tak-
ing into account some of the real issues faced by the decision maker at the port. In addition to the
mathematical model, they also suggested two meta-heuristic approaches for the problem: the Squeaky
Wheel Optimization (SWO), and Tabu Search (TS). (Cheong et al., 2010) considered the multi-objective
optimization aspect of BACAP; indeed, it involves simultaneous optimization of two highly-coupled con-
tainer terminal operations. Optimization results show that the multi-objective approach offers the port
manager flexibility in selecting a desirable solution for implementation. (Yang et al., 2012) suggested to
deal with BACAP by solving simultaneously BAP and QCAP. They formulated a mathematical model
which integrates the BAP constraints of (Guan and Cheung, 2004) and the QCAP constraints of (Legato
et al., 2008). The objective function for this model is the combination of the objective functions of the
BAP and QCAP models. An evolutionary algorithm was developed to find the solution to this coarse
combined problem.

2.3. The Combined Quay Crane Assignment and Quay Crane Scheduling
Problem (QCASP)

The decision maker in QCASP focuses on determining the number of quay cranes for each vessel and
finding the best sequence in which tasks will be performed by these quay cranes. There is obviously a
strong relationship between the two goals.

(Daganzo, 1989) addressed quay crane scheduling for multiple vessel arrivals. They proposed both an
exact and an approximate solution approach with the objective being to minimise the tardiness of all
vessels. (Peterkofsky and Daganzo, 1990) developed a B&B algorithm to solve QCSP. Both of these pa-
pers did not consider the interference between quay cranes. (Tavakkoli-Moghaddam et al., 2009) studied
QCASP. They formulated a mixed integer programme to determine the optimal number of quay cranes
for every vessel that will arrive at the terminal and at the same time the optimal sequence in which the

3

tasks should be carried out on the vessel. An evolutionary approach (GA) is suggested to solve large scale
instances of this type of problem. (Unsal and Oguz, 2013) extended their constraint programming model
for QCSP and converted it into an integrated Quay Crane Assignment and Scheduling problem (QCASP)
in which QCs are assigned to vessels and scheduled to work on multiple vessels, based on a berthing plan
of vessels. (Diabat, 2014; Fu, 2014) also proposed a combined model for QCASP and implemented a
variant of GA to solve large scale instances of the problem. Their model allows the movement of quay
cranes between vessels while the processing of vessels is ongoing. This is achieved by discretizing the time
horizon and using a time index. The interference avoiding constraint is represented simply by the posi-
tion of quay cranes at each short time interval. This increases the number of variables in the model and
potentially makes the problem difficult to solve (curse of dimensionality). Note that time discretization
makes the model less accurate. The omission of quay crane travelling time between bays/vessels makes
the solution of (Fu, 2014) impractical, especially when the frequency of quay crane movement is high.
Precedence and simultaneity constraints are also not considered. Note that the results reported in (Fu,
2014) in Table 3 for instance do not make sense. The GAMS results which presumably are exact, cannot
possibly be worse that those returned by GA for most of the problem instances considered.

3. Mathematical formulation

This section describes a mixed integer programming model of a container terminal with a continuous
berth, the solution of which is the optimum number of quay cranes to be assigned to each docked vessel
and their scheduling to carry out all necessary moves with the objective being to minimise tardiness.
Note that the number of quay cranes assigned to a vessel at the beginning of the operation may not be
the same as at the end because our model allows quay cranes to move between vessels. Comparing with
handling these two problems individually, the combined model as proposed here, does not require us to
estimate the processing time when allocating quay cranes to vessels. Therefore, it allows in general to
find more accurate solutions.

The improvement on solving QCAP and QCSP in succession, is that we do not force the number of
quay cranes allocated to a vessel to be fixed during the whole processing period of the vessel. If neces-
sary, a quay crane may move from one vessel to another before the processing of this vessel has finished.
This is more flexible than using a fixed number of quay cranes to handle a vessel; it has the potential to
give better working plans (Alsoufi et al., 2015), and also, to some extent, to mitigate uncertainty linked
to the performance of quay cranes.

To illustrate the case of better plans, consider the situation in which two quay cranes are available
to handle two vessels with data as given in Table 1, and each vessel has two tasks to be carried out. In

Table 1: Input data of Example 1
Ready (crane) 0 2
Initial location (crane) 11 16
Arrival time 0 0
Processing time of tasks ,vessel 1 85 29
Processing time of tasks ,vessel 2 18 33
Location task, vessel 1 1 2
Location task, vessel 2 1 2
Expected departure time of vessel 85 33
Berthing position 10 15
Tardiness cost (per unit time) 5 1
Earliness income (per unit time) 1 1

the previous models where a fixed number of quay cranes is allocated to every vessel during the whole
processing period, the optimal working plan is described in Figure 1 with the objective value being equal
to 171 (150 units of tardiness belong to the first vessel and 21 units of tardiness belong to the second

4

vessel). Even though quay crane 2 finished its work on vessel 2 at 54 (2+18+1+33), it is not allowed
to move away from vessel 2 according to the previous mathematical models. This wastes the effective
working time of this quay crane which will result into a sub-optimal solution. In contrast, in our model,
a variable number of quay cranes is used during the processing period, which allows the second quay
crane to move to vessel 1 to perform other tasks as shown in Figure 2. As a result, vessel 1 processing
is completed 87 time units earlier than in the previous plan with an objective value of 31 (10 units of
tardiness are due to the first vessel and the other 21 units, to the second vessel); this is due to making
the best use of both quay cranes. Note that we only allow the quay crane to move after it has finished
its work on vessel 2. Our model also allows quay cranes to share tasks on the same vessel to which they

Figure 1: Previous model solution Figure 2: Suggested model solution

are allocated. Consider the input data for two vessels arriving at a container terminal as given in Table
2. In Example 2, the objective value returned by previous models is 70 time units (33 units of tardiness

Table 2: Input data of Example 2
Ready (crane) 0 0
Initial location (crane) 22 24
Arrival time 0 0
Processing time of tasks,vessel 1 28 22
Processing time of tasks,vessel 2 39 34
Location task, vessel 1 1 2
Location task, vessel 2 1 2
Expected departure time of vessel 28 39
Berthing position 20 25
Tardiness cost (per unit time) 1 1
Earliness income (per unit time) 1 1

are due to the first vessel and the other 37 units to the second vessel), (see Figure 3). Since we allow
quay cranes to move between vessels if no interference constraints are violated, the solution of our model
returns an objective value of only 35 time units (1 unit of tardiness due to the first vessel and 34 units
due to the second vessel), as can be seen in Figure 4.

5

Figure 3: Previous model solution Figure 4: Suggested model solution

3.1. Assumptions

Consider a continuous berth container terminal with fixed length and berth allocation already decided.
Now assume that

1. the berthing position and berthing time of vessels are given as inputs;

2. each vessel is divided longitudinally into bays; all bays have the same length. Thus, the length of
a vessel is given as the number of bays;

3. the safety distance between each pair of adjacent quay cranes depends on the width of a bay;

4. once a quay crane starts processing a task, it can leave only after it has finished the workload of
this task;

5. quay cranes are on the same rail and thus they cannot cross over each other;

6. some tasks must be performed before others and there are some tasks which cannot be performed
simultaneously.

3.2. Indices

Q Number of quay cranes (q, qi, qj = 1, 2,Q).
V Number of vessels (v, vi, vj = 1, 2, ..., V).
Bv Number of tasks on vessel v (b, bi, bj = 1, 2, ..., Bv).

3.3. Parameters

pvb Time required to perform task b on vessel v.
lvb Location of task b on vessel v expressed by the ship bay number on vessel v.
rq Earliest available time of the qth quay crane.
Iq0 Initial location of quay crane q which is relative to the ship-bay number.
tqvbibj Travel time of the qth quay crane from the location lvbi of task bi to the location lvbj of task

bj . t
qv
b0bj

Represents the travel time from the initial position Iq0 of the qth quay crane to the

6

location lvbj of the task bj on vessel v.
Tv Berthing time of vessel v.
dv Requested departure time for vessel v.
Wv Tardiness cost (per-hour) of vessel v per time unit.
Rv Earliness incoming of vessel v per time unit .
Ψ Set of pairs of tasks that cannot be performed simultaneously. When tasks bi and bj cannot

be performed simultaneously, then (bi, bj) ∈ Ψ.
Φ Set of ordered pairs of tasks for which there is a precedence relationship. When task bi must

precede task bj , then we have (bi, bj) ∈ Φ.
M Arbitrary large positive number.

3.4. Binary decision variables

Xqv
bibj

=

{
1 if the qth quay crane performs task bj immediately after performing task bi on vessel v.

0 otherwise

Tasks b0 and bBv+1 are considered as the dummy initial and final states of each quay crane, respectively.
Thus, when task bj is the first task of the qth quay crane on vessel v then Xqv

b0bj
= 1. Similarly, when

task bj is the last task of the qth quay crane on vessel v then Xqv
bjbBv+1

= 1.

Zvbibj =

{
1 if task bj starts later than the finish time of task bi on vessel v.

0 otherwise.

Y qvivj =

{
1 if the qth quay crane is assigned to vessel vj immediately after finishing its task on vessel vi.

0 otherwise.

α
vivj
bibj

=

{
1 if task bj on vessel vj is located below task bi on vessel vi.

0 otherwise.

β
vivj
bibj

=

{
1 if task bj on vessel vj starts later than the finish time of task bi on vessel vi

0 otherwise.

3.5. Continuous decision variables

Ev Earliness of vessel v.
Av Tardiness of vessel v.
Sqv Starting time of qth quay crane on vessel v.
Dv
bi

Completion time of task bi on vessel v.

Cqv Completion time of qth quay crane on vessel v.
Fv Finishing (departure) time of the vessel v.

7

3.6. The mathematical model

min(Z) =

V∑
v=1

WvAv −
V∑
v=1

RvEv (1)

s.t

dv − Fv = Ev −Av, ∀v (2)

V∑
vj=1

Y qv0vj = 1, ∀q (3)

V∑
vi=1

Y qvi(V+1) = 1, ∀q (4)

V+1∑
vj=1

Y qvvj −
V∑

vj=0

Y qvjv = 0, ∀v, q (5)

V∑
vi=0

Q∑
q=1

Y qvivj ≥ 1, ∀vj (6)

Sqv ≥ rq −M(1− Y qv0v), ∀v, q (7)

Sqv ≥ Tv −M(1−
V+1∑
vj=1

Y qvvj), ∀v, q (8)

Sqvj ≥ Cqvi −M(1− Y qvivj), ∀vi, vj ; vi 6= vj ; q (9)

Bv∑
bj=1

Xqv
b0bj

=

V∑
vi=0

Y qviv, ∀v, q (10)

Bv∑
bj=1

Xqv
bjbBv+1

=

V∑
vi=0

Y qviv, ∀v, q (11)

Bv+1∑
bj=1

Xqv
bbj
−

Bv∑
bj=0

Xqv
bjb

= 0, ∀b, v, q (12)

Q∑
q=1

Bv∑
bi=0

Xqv
bibj

= 1, ∀bj , v (13)

Bv∑
bi=0

Bv+1∑
bj=1

Xqv
bibj
≤M

V∑
vi=0

Y qviv, ∀v, q (14)

Dv
bi + pvbi + tqvbibj −D

v
bj ≤M(1−Xqv

bibj
), ∀bi, bj , v, q (15)

Sqv + pvbj + tqvb0bj −D
v
bj ≤M(1−Xqv

b0bj
), ∀bj , v, q (16)

Dv
bj − Cqv ≤M(1−Xqv

bjbBv+1
), ∀bj , v, q (17)

Cqv − Fv ≤M(1−
V+1∑
vj=1

Y qvvj), ∀v, q (18)

Dv
bi + pvbj ≤ D

v
bj , ∀(bi, bj) ∈ Φv; bj 6= bi;∀v (19)

Dv
bi −D

v
bj + pvbj ≤M(1− Zvbibj), ∀bi, bj ; bi 6= bj ;∀v (20)

8

Zvbibj + Zvbjbi = 1, ∀(bi, bj) ∈ Ψv; bj 6= bi;∀v (21)

Q∑
θ=0

Bv∑
κ=0

Xθv
κbj −

Q∑
θ=0

Bv∑
κ=0

Xθv
κbi ≤M(Zvbibj + Zvbjbi), ∀bi, bj ; j 6= i; lbi < lbj ;∀v, q (22)

Pvi + lvbi ≤ Pvj + lvbj +M(1− αvivjbibj
), ∀bi, bj , vi, vj ; vj 6= vi (23)

Dvi
bi
−Dvj

bj
+ p

vj
bj
≤M(1− βvivjbibj

), ∀bi, bj , vi, vj ; vj 6= vi (24)

β
vivj
bibj

+ β
vjvi
bjbi

+ α
vjvi
bjbi
≥

Bv∑
κ=0

Xqivi
κbj

+

Bv∑
κ=0

X
qjvj
κbi
− 1, ∀bi, bj , vi, vj , qi, qj ; vj 6= vi; qi < qj (25)

Xqv
bibj

, Zvbibj , Y
q
vivj , α

vivj
bibj

, β
vivj
bibj
∈ {0, 1}, (26)

Cqv, Fv, D
v
bj , Pv, Tv ≥ 0. (27)

In the objective function (1), the first term
∑V
v=1WvAv represents the tardiness cost if the departure

time of a vessel is greater than its due time. The second term
∑V
v=1RvEv represents the earliness income

if the finishing time of a vessel is less than its due time. Note that in practice this reward for earliness
may be zero. Constraints (2) calculate the earliness or tardiness of a vessel depending on the difference
between its due time and its finishing time.

The constraints (3-6) represent the main conditions for QCAP. However, constraints (3) and (4) re-
spectively select the first and the last ships for each quay crane. Constraints (5) guarantee that ships are
processed in a well-defined sequence. Constraints (6) guarantee that each vessel be handled by at least
one quay crane.

The constraints (7-9) determine the starting time of quay cranes. Constraints (7) force the starting
time of the earliest vessel that is to be done by the qth quay crane to be after the ready time of the qth

quay crane. Note that vessel v0 is a dummy vessel from which the working sequence starts. Constraints
(8) say that the starting time of the qth quay crane on the vessel v is no earlier than the berthing time
of vessel v if the qth quay crane is assigned to serve this vessel. Constraints (9) ensure that the starting
time of the qth quay crane on vessel vj is no earlier than the finishing time of its predecessor vessel vi.

Constraints (10) ensure that if a quay crane is assigned to a vessel, then it will start its processing
with one of the tasks on that vessel. Constraints (11) ensure that if a quay crane is assigned to a vessel,
then it will finish its processing with one of tasks on that vessel. Constraints (12) show a flow balance
ensuring that tasks are performed in a well-defined sequence on every vessel. Constraints (13) ensure
that every task on each vessel must be handled by exactly one quay crane. Constraints (14) ensure
that tasks on a vessel are handled by a quay crane only if this quay crane is allocated to that vessel.
Constraints (15) simultaneously determine the completion time for each task and eliminate sub-tours;
sub-tours here are the looping on tasks which have already been done. To illustrate, let Task 1, Task 2,
and Task 3, be carried out in this order. A sub-tour would be to do Task 1, Task 2, Task 3, and Task 2
again, for instance. Constraints (15) remove this possibility. Constraints (16) determine the quay crane
starting time on vessel v and the completion time of the same quay crane is computed by constraints
(17). Constraints (18) determine the finishing time of each vessel.

When required, constraints (19) force task bi to be completed before the start of task bj for all the
task pairs (bi, bj) ∈ Φ. Constraints (20) define Zvbibj such that Zvbibj = 1 when the operation of task bj on

vessel v starts after the completion of task bi on the same vessel. Constraints (21) ensure that the pair
of tasks that are members of the set Ψ will not be handled simultaneously.

Constraints (22) remove the possibility of interference between quay cranes. Suppose that tasks bi and bj
are performed simultaneously and li < lj , then Zvbibj + Zvbjbi = 0. Note that both quay cranes and tasks
are ordered in an increasing order of their relative locations in the direction of increasing ship-bay number.

9

Suppose that, for q1 < q2, quay crane q1 performs tasks bj and quay crane q2 performs task bi. Then, in-

terference between quay cranes q1 and q2 results as in such case,
∑q1
θ=1

∑Nv
κ=0X

θv
κj −

∑q1
θ=1

∑Nv
κ=0X

θv
κi = 1.

This violates constraints (22), since we have Zvbibj + Zvbjbi = 0 as mentioned earlier.

Constraints (23) define α
vivj
bibj

such that α
vivj
bibj

= 0 if the berthing position of vessel vi plus the loca-
tion of task bi on that vessel is greater than the berthing position of vessel vj plus the location of task
bj on that vessel. Figures 5 and 6 illustrate how the value of α

vivj
bibj

is computed. The value of α
vivj
bibj

Figure 5: No location overlap between two ves-
sels Figure 6: Location overlap between two vessels

in Figure 5 can be 1 because Pvi + lvbi ≤ Pvj + lvbj . The value of α
vivj
bibj

in Figure 6 equals 0, because
Pvi + lvbi > Pvj + lvbj . This means there is overlap in the position between these two tasks on these two
vessels.

Constraint (24) defines β
vivj
bibj

such that β
vivj
bibj

= 0 if the finishing time of task bi on vessel vi plus the
processing time of task bj on vessel vj is greater than the finishing time of task bj on vessel vj . Figures
7 and 8 illustrate how the value of β

vivj
bibj

is computed. The value of β
vivj
bibj

in Figure 7 can be 1 because

Figure 7: No location overlap between two ves-
sels Figure 8: Location overlap between two vessels

Dvi
bi

+ p
vj
bj
≤ D

vj
bj

, whereas the value of β
vjvi
bjbi

in the same figure equals 0 because D
vj
bj

+ pvibi > Dvi
bi

. The

value of β
vivj
bibj

in Figure 8 equals 0 because Dvi
bi

+ p
vj
bj
> D

vj
bj

and the value of β
vjvi
bjbi

in the same figure

equals 0 because D
vj
bj

+ pvibi > Dvi
bi

. This means there is overlap in the time between these two tasks on

10

these two vessels. Constraints (25) prevent the interference between quay cranes depending on the values
of β

vivj
bibj

and α
vivj
bibj

, respectively.

4. Application of the Genetic Algorithm to QCASP

Once an instance of the model is defined and the data is available, submitting it to CPLEX is straight-
forward. However, to apply GA requires that we define a representation for the problem solutions as
well as other algorithmic components necessary for its implementation as can be seen later. GA is an
adaptive heuristic method based on evolution through natural selection ideas due to Darwin and others,
(Holland, 1975). It is a population based approach, i.e. it searches for solutions by maintaining a popula-
tion of solutions that are then updated from generation to generation using a number of possible genetic
operators such as Crossover, Mutation, and Reproduction. Over successive generations, the population
evolves towards an optimal solution. GA is particularly effective on difficult problems referred to as being
NP-Hard. QCASP has been shown to be NP-hard, (Tavakkoli-Moghaddam et al., 2009; Lee et al., 2008;
Garey, 1979).

4.1. Solution representation: chromosome

GA starts with a randomly generated population of solutions. Each solution is called a chromosome and
consists of a sequence of genes, here representing a sequence of holds (tasks) for all docked vessels. The
value of a gene is randomly picked from the index set of all holds; it cannot, therefore, be duplicated,
i.e. each gene is unique. Each chromosome consists of v × b genes, where v represents the number of
vessels and b the number of tasks on each vessel. A simple chromosome for the case of two vessels, each
with three tasks, is illustrated in Figure 9. Here, genes (1,2,3) represent the tasks on the first vessel
and genes (4,5,6) represent those on the second vessel. Based on the sequence of tasks for all vessels

1 4 3 6 5 2

Figure 9: Chromosome representation

represented by the chromosome, a quay crane schedule can be constructed using the following steps that
are the extension of the procedure proposed by (Lee et al., 2008) used for each vessel separately. In this
paper, however, we assume that the berth allocation plan (berthing time and berthing position of each
vessel arriving at the container terminal) and the initial position of each quay crane at the beginning of
scheduling are known.

Quay crane scheduling procedure, (Lee et al., 2008):

Begin

Step 1: Based on the current position of each quay crane, determine which quay cranes can handle
the first unassigned task in the chromosome without interference with other quay cranes. If only
one quay crane is available, this task is assigned to this quay crane and it is deleted from the
chromosome; the position and the completion time of the assigned quay crane are updated. The
completion time of task i is also computed. If two quay cranes are available, go to Step 2.

Step 2: Compare the completion time of the two available quay cranes, and assign this task to the
quay crane with earlier completion time. This task is then deleted from the chromosome, and both
the position and the completion time of the assigned quay crane are updated. The completion time
of task i is computed. If their completion times are equal, go to Step 3.

11

Step 3: Compare the distances between this task and the two available quay cranes, respectively,
and assign the task to the quay crane with the shorter distance. This task is deleted from the chro-
mosome, and both the position and the completion time of the assigned quay crane are updated.
The completion time of task i is also computed. If the distances are equal, go to Step 4.

Step 4: Assign this task to the quay crane with the smaller order number. Then, delete this task
from the chromosome, and update both the position and the completion time of the assigned quay
crane. Compute the completion time of task i.

Step 5: Steps 1–4 are repeated until all the tasks in the chromosome are assigned.

Stop

4.2. Solution validation

To validate chromosomes/solutions, three important situations must be considered. The first one is the
precedence relationship between tasks. For instance, some of the bays of a given vessel may need to
be unloaded and loaded. The discharging of containers from a bay must precede the loading of the
bay. For this reason the generated chromosome should be checked to see if it satisfies this condition, i.e.
constraints (19). The second situation is the non-simultaneity of some tasks, i.e. constraints (21) must
also be satisfied. Finally, the interference between quay cranes is avoided by introducing non-interference
constraints which consider both the potential interference of tasks on the same vessel (constraints (22))
and those on different vessels (constraints (25)). If either of constraints (19) or (21) or (22) or (25) are
violated or both are violated, the generated chromosomes are discarded by adding a high penalty to their
fitness values.

4.3. Evaluation of fitness

The objective of the QCASP is to minimise the tardiness of vessels. The completion time of each quay
crane can be computed by summing up the processing time of all the tasks that have been performed by
this quay crane plus the travel time which it takes to move from one hold to another. The tardiness of
each vessel can be computed by subtracting the finishing time from the expected departure time. The
finishing time represents the maximum processing time of the vessel required by the quay cranes assigned
to it. The objective function used by the GA in Matlab is the same objective function as that of the
mathematical model. Thus, the fitness value of a chromosome is calculated by Equation (28).

Fitness(chromosome) =
1∑V

v=1WvAv −
∑V
v=1RvEv

(28)

4.4. Generating new populations

From the initial randomly generated population, subsequent generations of children, i.e. new populations,
must be created. This is achieved by using genetic operators such as crossover, mutation and reproduc-
tion (copying of individuals unmodified into subsequent populations), (Salhi and Fraga, 2011; Salhi and
VSzquez-Rodŕıguez, 2014; VSzquez-Rodŕıguez and Salhi, 2006b,a).

4.4.1. Selection process

The selection process picks chromosomes from the current population to be parents to new individuals
(children/solutions) in the new population created using one of many genetic operators as listed above. To
give priority to the best chromosomes to pass their genes into the next generation, the fitness proportionate
selection approach is implemented using a roulette wheel. High fitness individuals/solutions have high
probability to be selected to contribute to the next population. In other words there is a bias toward
their selection which means their genes are likely to be passed into the next generation.

12

4.4.2. Crossover operator

To produce a new chromosome (offspring) the ‘Order Crossover’ of (Gen and Cheng, 1997) is used. Order
Crossover is a permutation-based crossover. It works as follows. A subsequence of consecutive alleles
from parent 1 is selected and used to partially make the offspring; the remaining alleles to complete the
creation of the offspring are chosen from parent 2 avoiding any repetitions. The same procedure is then
applied starting from parent 2 to make the second offspring. The crossover operator always creates two
offspring. Figures 10 and 11 illustrate the Order Crossover.

Parent1 7 12 5 3 6 1 10 8 11 2 4 9

Offspring1 7 12 5 3 8 2 6 4 11 9 10 1

Parent2 8 2 5 6 7 4 11 9 12 3 10 1

Figure 10: Offspring 1

Parent1 7 12 5 3 6 1 10 8 11 2 4 9

Offspring2 8 2 5 6 7 12 3 1 10 11 4 9

Parent2 8 2 5 6 7 4 11 9 12 3 10 1

Figure 11: Offspring 2

4.4.3. Mutation operator

To prevent the population getting trapped in a local optimum, the mutation operator is used to enable
the GA search to escape and explore the search space globally by changing one or more genes. In this
algorithm, two genes from the chromosome are randomly selected and then swapped with each other.
Figure 12 illustrates the mutation operator.

8 4 3 6 5 2 7 9 1

8 4 9 6 5 2 7 3 1

Figure 12: Mutation operator

4.5. Stopping criteria

Two stopping criteria are used in the genetic algorithm: the maximum number of generations, and the
number of generations without any improvement in the best solution found so far; this number is pre-set
by the user.

5. Computational experiments

Twenty instances of the above mathematical model of QCASP with different numbers of vessels, tasks,
and quay cranes have been solved using CPLEX and GA. They are recorded in Tables 3 and 4. All
instances have randomly generated processing time of tasks for each hold from the uniform distribution
U (10,50).

CPLEX solved problems 1 to 10. These are relatively small in size. They were solved in acceptable
times, although 28, 68, 18 and 46 hours were required for problems 6 to 9, respectively. These times
are hardly acceptable in the context of container terminal operations. The rest of the problems, 11 to
20, which are the realistic instances, could not be solved with CPLEX in acceptable times (> 100 hours
of CPU time). In some cases they could not be solved at all due to the limitations of the computing

13

platform used. The runs of these instances were terminated after 3 hours.

GA, coded in Matlab, managed to solve all 20 instances. For the small size problems of Table 3, the
GA parameters of population size, rate of crossover, rate of mutation, and the maximum number of
generations are set to 150, 0.2, 0.1, and 500, respectively. In the case of the large size instances of Table
4, population size, crossover and mutation rates, and the maximum number of generations are set to 300,
0.25, 0.2, and 1000, respectively.

All experiments have been performed on a PC with Intel Core i5 and 3.20 GHz CPU with 8 GB RAM
running Windows 7 Operating System. The 20 problems and their corresponding results are presented
in Tables 3 and 4, containing small problems 1 through 10 and problems 11 through to 20, respectively.

5.1. Results

On the small size problems of Table 3, the number of constraints, the number of decision variables, and
the CPLEX computational time grow exponentially with the increase in the number of vessels, tasks and
quay cranes. Note, however, that in column 13 of Table 3 showing the CPU time required by GA to
solve these problems, this time does not change much with the increase in the problem size. It is also
important to note that in most cases, GA obtains the optimal or near optimal solution. CPLEX did

Table 3: Computational results for small scale instances
No. Problem Information Problem Size CPLEX GA Gap(%)

Vessels Tasks Q.Cranes Constraints Dec.Vars Int.Vars Obj.Val CPU(hh:mm:ss) Best Obj.Val Mean St.Dev CPU(s)
1 2 3 5 538 270 243 70 00:00:05 70 70 0.0 15 0.0
2 4 2 5 1030 444 389 242 00:06:11 244 244 0.0 14 0.8
3 3 3 5 1141 474 431 405 00:40:54 405 412.5 8.3 13 0.0
4 2 5 5 1244 566 535 105 04:41:12 105 105 0.0 18 0.0
5 4 2 8 2152 636 560 156 00:34:34 156 156 0.0 14 0.0
6 4 3 4 1412 632 580 865 28:59:44 884 904.6 28.7 17 2.1
7 3 4 6 2472 807 756 1264 68:06:22 1268 1268 0.0 14 0.0
8 3 5 5 2776 1014 965 1035 33:56:21 1035 1038.5 20.9 15 0.0
9 3 5 8 6013 1392 1328 770 46:09:14 780 780 0.0 15 1.2
10 2 8 8 5972 1766 1720 320 06:05:31 320 320 0.0 18 0.0

not solve some of the large scale instances, shown in Table 4. GA, however, finds the optimal or near
solutions for all the instances in reasonable CPU times (see column 13 of Table 4).

Table 4: Computational results for large scale instances
No. Problem Information Problem Size CPLEX GA

Vessels Tasks Q.Cranes Constraints Dec.Vars Int.Vars Obj.Val CPU(hh:mm:ss) Best Obj.Val Mean St.Dev CPU(s)
11 5 10 8 67966 9675 9538 2275 03:00:00 667 670 2.5 93
12 5 8 12 94942 8235 8072 975 03:00:00 542 549.5 6.6 82
13 4 16 10 92060 11084 10954 1777 03:00:00 1030 1073.5 25.9 115
14 6 8 10 98336 9642 9466 3731 03:00:00 651 669.8 11.4 95
15 5 12 8 97426 13575 13428 2878 03:00:00 884 912.2 13.1 111
16 4 16 8 107096 16652 16520 4302 03:00:00 1112 1130.8 8.9 113
17 4 12 12 130400 12492 12348 2440 03:00:00 690 710.8 17.6 89
18 4 16 12 230784 21388 21228 not responding 1026 1071.1 34.4 115
19 5 16 10 263700 26385 26200 not responding 1379 1417.8 20.1 137
20 6 12 12 313236 22338 22116 not responding 1045 1080.6 22.4 124

6. Conclusion

This paper describes QCASP, a mathematical formulation of the combined problem of Quay Crane As-
signment and Quay Crane Scheduling. It is a mixed integer programming model which allows quay
cranes to move between two holds of the same ship and between two holds on different vessels. The
time it takes for these cranes to move between holds is taken into account in the optimisation process.

14

Moreover, the model takes into account the fact that not all quay cranes start at the same time; some
only become available after some delay due to other occupations. Therefore, the initial position for each
quay crane is taken into account in order to compute the exact time of quay crane traveling. Precedence
and simultaneity constraints are also taken into account. Interference between quay cranes is avoided by
introducing non-interference constraints which consider both the potential interference of tasks on the
same vessel and those on different vessels. The Branch-and-Cut algorithm as implemented in CPLEX 12.6
has been used to find the optimal solutions of relatively small instances of QCSAP. It cannot cope with
larger instances of the problem which are of practical size. GA, however, coped well with all problems. It
required almost the same CPU time for all problems of small size and CPU times of the same magnitude
for the larger instances. Moreover, on most of the 10 instances that CPLEX managed to solve, GA also
found the optimum. Overall the GA, however, coped well with all problems. It required almost the same
CPU time for all problems of small size and CPU times of the same magnitude for the larger instances.
This shows that GA, while substantially more efficient than B&C, is also quite robust on most instances
considered as this average discrepancy shows.

The combined model presented here is obviously the way forward as it is more likely to provide bet-
ter solutions than those found by solving seaside operations problems individually. It is also a substantial
improvement on combined variants which do not allow for quay crane movement between vessels. How-
ever, there is scope for doing even better by combining Berth Allocation, Quay Crane Assignment and
Quay Crane Scheduling into a single model. We are currently working on this problem and will report
our findings in a future paper.

Acknowledgment

We would like to thank Tom Corkhill and Stephen Peck of the Port of Felixstowe for providing real
instances of the problems considered, as well as practical insights into port operations. We also like to
thank the Iraqi Ministry of Higher Education and Scientific Research for sponsoring this work.

References

Alsoufi, G., Yang, X., and Salhi, A. (2015). A combinatorial benders’ cuts approach to the seaside
operations problem in container ports. Presented in the 11th metahueristics international conference,
Agadir, Morocco, june 7-10.

Alsoufi, G., Yang, X., and Salhi, A. (2016). Robust berth allocation using a hybrid approach combining
branch-and-cut and the genetic algorithm. In International Workshop on Hybrid Metaheuristics, pages
187–201. Springer.

Bierwirth, C. and Meisel, F. (2009). A fast heuristic for quay crane scheduling with interference con-
straints. Journal of Scheduling, 12(4):345–360.

Bierwirth, C. and Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in
container terminals. European Journal of Operational Research, 202(3):615–627.

Cheong, C. Y., Habibullah, M. S., Goh, R. S. M., and Fu, X. (2010). Multi-objective optimization of
large scale berth allocation and quay crane assignment problems. In Systems Man and Cybernetics
(SMC), 2010 IEEE International Conference on, pages 669–676. IEEE.

Chung, S. and Choy, K. L. (2012). A modified genetic algorithm for quay crane scheduling operations.
Expert Systems with Applications, 39(4):4213–4221.

Daganzo, C. F. (1989). The crane scheduling problem. Transportation Research Part B: Methodological,
23(3):159–175.

15

Diabat, A., T. E. (2014). An integrated quay crane assignment and scheduling problem. Computers &
Industrial Engineering, 73:115–123.

Feo, T.A., R. M. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization,
6(2):109–133.

Fu, Y-M., D. A. T. I.-T. (2014). A multi-vessel quay crane assignment and scheduling problem: Formu-
lation and heuristic solution approach. Expert Systems with Applications, 41(15):6959–6965.

Garey, M.R., J. D. (1979). Computers and intractability: a guide to NP-completeness. WH Freeman New
York.

Gen, M. and Cheng, R. (1997). Genetic algorithms and engineering design.

Guan, Y. and Cheung, R. K. (2004). The berth allocation problem: models and solution methods. OR
Spectrum, 26(1):75–92.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with appli-
cations to biology, control, and artificial intelligence. U Michigan Press.

Kaveshgar, N., Huynh, N., and Rahimian, S. K. (2012). An efficient genetic algorithm for solving the
quay crane scheduling problem. Expert Systems with Applications, 39(18):13108–13117.

Kim, K. H. and Park, Y.-M. (2004). A crane scheduling method for port container terminals. European
Journal of operational research, 156(3):752–768.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural selection,
volume 1. MIT press.

Lee, D.-H., Wang, H. Q., and Miao, L. (2008). Quay crane scheduling with non-interference constraints
in port container terminals. Transportation Research Part E: Logistics and Transportation Review,
44(1):124–135.

Legato, P., Gull̀ı, D., and Trunfio, R. (2008). The quay crane deployment problem at a maritime container
terminal. In Submitted to the 22th European Conference on Modelling and Simulation.

Meisel, F. and Bierwirth, C. (2009). Heuristics for the integration of crane productivity in the berth
allocation problem. Transportation Research Part E: Logistics and Transportation Review, 45(1):196–
209.

Moccia, L., Cordeau, J.-F., Gaudioso, M., and Laporte, G. (2006). A branch-and-cut algorithm for the
quay crane scheduling problem in a container terminal. Naval Research Logistics (NRL), 53(1):45–59.

Nguyen, S., Zhang, M., Johnston, M., and Chen Tan, K. (2013). Hybrid evolutionary computation
methods for quay crane scheduling problems. Computers & Operations Research, 40(8):2083–2093.

Peterkofsky, R. I. and Daganzo, C. F. (1990). A branch and bound solution method for the crane
scheduling problem. Transportation Research Part B: Methodological, 24(3):159–172.

Salhi, A. and Fraga, E. S. (2011). Nature-inspired optimisation approaches and the new plant propagation
algorithm. In The ICeMATH2011, pages K2–1–K2–8.

Salhi, A. and VSzquez-Rodŕıguez, J. A. (2014). Tailoring hyper-heuristics to specific instances of a
scheduling problem using affinity and competence functions. Memetic Computing, 6(2):77–84.

Sammarra, M., Cordeau, J.-F., Laporte, G., and Monaco, M. F. (2007). A tabu search heuristic for the
quay crane scheduling problem. Journal of Scheduling, 10(4-5):327–336.

Steenken, D., Voß, S., and Stahlbock, R. (2004). Container terminal operation and operations research-a
classification and literature review. OR spectrum, 26(1):3–49.

16

Tavakkoli-Moghaddam, R., Makui, A., Salahi, S., Bazzazi, M., and Taheri, F. (2009). An efficient
algorithm for solving a new mathematical model for a quay crane scheduling problem in container
ports. Computers & Industrial Engineering, 56(1):241–248.

Unsal, O. and Oguz, C. (2013). Constraint programming approach to quay crane scheduling problem.
Transportation Research Part E: Logistics and Transportation Review, 59:108–122.

VSzquez-Rodŕıguez, J. A. and Salhi, A. (2006a). Hybrid evolutionary methods for the solution of complex
scheduling problems. In Advances in Artificial Intelligence, pages 17–28. Springer.

VSzquez-Rodŕıguez, J. A. and Salhi, A. (2006b). A synergy exploiting evolutionary approach to complex
scheduling problems. Computer Aided Methods in Optimal Design and Operations, Series on Computers
and Operations Research, World Scientific Publishing Co. Pvt. Ltd, pages 59–68.

Yang, C., Wang, X., and Li, Z. (2012). An optimization approach for coupling problem of berth allocation
and quay crane assignment in container terminal. Computers & Industrial Engineering, 63(1):243–253.

17

	Introduction
	Container port operations: a review
	The Quay Crane Scheduling Problem (QCSP)
	The Combined Berth Allocation and Quay Crane Assignment Problem (BACAP)
	The Combined Quay Crane Assignment and Quay Crane Scheduling Problem (QCASP)

	Mathematical formulation
	Assumptions
	Indices
	Parameters
	Binary decision variables
	Continuous decision variables
	The mathematical model

	Application of the Genetic Algorithm to QCASP
	Solution representation: chromosome
	Solution validation
	Evaluation of fitness
	Generating new populations
	Selection process
	Crossover operator
	Mutation operator

	Stopping criteria

	Computational experiments
	Results

	Conclusion

