Commonplace observations about syntactically flexible idioms (SFIs)

- An SFI can be split across a main clause and a restrictive relative clause (RRC):
 (1) The strings that I pulled for you will get you that job.
- An SFI cannot be split across a main clause and a non-restrictive relative clause (NRC):
 (2) The strings, which I hereby promise I will pull for you, will get you that job.

Note that (2) is well-formed under a literal reading, in which case it has a 'totally' interpretation (I promise to pull all the aforementioned strings), and the NRC has an independent illocutionary force (it is a promise). These properties guarantee that it is a genuine NRC (rather than a parenthetical RRC, for example).

Standard explanation for the above observations

Assumption 1. The parts of an SFI have to be adjacent at some level of the syntactic derivation.

Assumption 2. RRCs and NRCs differ syntactically:
- RRCs are syntactically integrated. → The adjacency requirement of an SFI can be met at some level of the derivation.
- NRCs are syntactically un integrated. → The adjacency requirement of an SFI cannot be met (see, e.g. Fabb 1990, Espin 1991). Hence (2) is disallowed.

However, examples like (3) are a challenge to accounts of this sort:

(3) The strings that were pulled for you before, [which I hereby promise I will pull for you again] will get you that job.

The second instance of pull is not adjacent to an instance of strings at any syntactic level, so (3) should be as bad as (2), but it is fully acceptable.

Our Goal

To provide an alternative account of these facts based on the account of SFIs in Bargmann (2014), which rejects Assumption 1, and an account of NRCs like that in Arnold (2007), which treats NRCs as syntactically integrated (rejecting Assumption 2). The semantic architecture is a version of Discourse Representation Theory (DRT, e.g. Kamp & Reyle 1993).

A Semantic Account of SFIs (pull strings)

Bargmann (2014) analyses SFIs as syntactically regular and semantically compositional. The SFI pull strings, for example, is taken to be composed of two separate word-level lexical entries: idiomatic pull and idiomatic strings.

These entries are subject to specific co-occurrence constraints at the Semantic Representation (SEM), where each lexical entry has a unique SEM-value, on the basis of which it can be clearly identified. The lexical entries of idiomatic pull and idiomatic strings look as follows:

A. Idiomatic pull

\[
\text{Syn} = \{ \text{pull} \}
\]

\[
\text{Sem} = \text{Pull}.
\]

Constraint: Idiomatic pull is licensed iff, after resolving anaphoric dependencies, the second argument of Pull is also an argument of idiomatic strings, i.e. Strings-

B. Idiomatic strings

\[
\text{Syn} = \{ \text{strings} \}
\]

\[
\text{Sem} = \text{Strings}.
\]

Constraint: Idiomatic strings is licensed iff, after resolving anaphoric dependencies, the argument of Strings, is also the second argument of idiomatic pull, i.e. Pull.

Neither lexical entry refers to the syntax (SYN) of the other, and they combine according to standard syntactic rules. However, both entries contain a constraint on the semantic representation of the sentence containing them. These constraints ensure that when one of the idiom is present in a well-formed discourse, then so is the other.

NB: The constraints are slightly simplified. What idiomatic pull requires is not the plural form of a particular lexeme, but a semantic predicate over a plurality. Plural morphology provides this, but so in expressions like a string or two and string after string, see Bargmann (2015).

A Syntactically-integrated Account of NRCs

Arnold (2007), in common with others such as Potts (2005), analyses NRCs as fully integrated syntactically (just like RRCs). Semantically, they are analysed as independent clauses, with standard syntactic rules. However, both entries contain a constraint on the semantic representation of the NRC, i.e. Strings.

Combining Bargmann (2014) with Arnold (2007): NRCs

Treating NRCs as independent clauses requires a modification to the process of semantic composition. The SEM of the NRC daughter is not composed with that of the head NP. Instead, the SEM of the head NP becomes the SEM of the mother, and the SEM of the NRC becomes an element of the mother’s TB value (more precisely, the SEM of the NRC applied to the index of the NP becomes an element of the mother’s TB).

The representation of (7), a simplification of (2), is given in (8). In contrast to (5), the NRC is adjoined to NP rather than Nom, and the relative pronoun is treated as a normal pronoun in that it introduces a novel discourse referent. The crucial difference is that the content of the NRC is contributed as an element of TB, rather than SEM, and percolated to the top.

The effect of this is that when discourse update occurs, as in (9), the NRC content and the main clause content are treated independently, either as in (9a) or (9b)—depending on whether we first update the TB content, or the SEM content. In neither case are the conditions on idiomatic pull strings met.

Handling the Problem Case in (3)

Now consider (10), which is a simplification of the problematic case in (3):

(10) The strings that I pulled, which I will always pull, were decisive.

This has a derivation where the constraints on idiomatic interpretation can be met—if the discourse is updated with the main clause content first, as in (11a), then the occurrence of Pull in the NRC is licensed when the discourse is updated further, as in (11b).

Notice that this would also be what happens with an example involving nominal anaphora:

(12) The strings that I pulled were decisive. I will always pull them.