1. Hong Y, Hay DL, Quirion R, Poyner DR (2012). The pharmacology of Adrenomedullin 2/Intermedin. Br J Pharmacol 166: 110-120. 2. Russell FA, King R, Smillie SJ, Kodji X, Brian SD (2014). Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 94:1099-1142 3. Edvinsson L, Warfvinge K (2013). CGRP receptor antagonism and migraine therapy. Curr Protein Pept Sci 14: 386-392. 4. Kato J, Kitamura K (2015). Bench-to-bedside pharmacology of adrenomedullin. Eur J Pharmacol 764: 140-148. 5. Fritz-Six KL, Dunworth WP, Li M, Caron KM (2008). Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest 118: 40-50. 6. Ichikawa-Shindo Y, Sakurai T, Kamiyoshi A, Kawate H, Iinuma N, Yoshizawa T, et al. (2008). The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity. J Clin Invest 118: 29-39. 7. Roh J, Chang CL, Bhalla A, Klein C, Hsu SY (2004). Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem 279: 7264-7274. Downloaded from http://www.jbc.org/ at UNIVERSITY OF ESSEX on August 27, 2016 8. Holmes D, Campbell M , Harbinson M and Bell D (2013). Protective effects of intermedin on cardiovascular, pulmonary and renal diseases: comparison with adrenomedullin and CGRP. Curr Protein Pept Sci 14: 294-329 9. Takei Y, Inoue K, Ogoshi M, Kawahara T, Bannai H, Miyano S (2004). Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator. FEBS Lett 556: 53-58. 10. Smillie SJ, Brain SD (2011). Calcitonin gene-related peptide (CGRP) and its role in hypertension. Neurpeptides 45: 93-104 11. Kataoka Y, Miyazaki S, Yasuda S, Nagaya N, Noguchi T, Yamada N, et al. (2010). The first clinical pilot study of intravenous adrenomedullin administration in patients with acute myocardial infarction. J Cardiovasc Pharmacol 56: 413-419. 12. Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, et al. (2002). International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 54: 233-246. 13. LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, et al. (1998). RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393: 333-339. 14. Hay DL, Poyner DR, Smith DM (2003). Desensitisation of adrenomedullin and CGRP receptors. Regul Pept 112: 139-145. 15. Walker CS, Conner AC, Poyner DR, Hay DL (2010). Regulation of signal transduction by calcitonin gene-related peptide receptors. Trends Pharmacol Sci 31: 476-483. 16. Woolley MJ, Conner AC (2013). Comparing the molecular pharmacology of CGRP and adrenomedullin. Curr Protein Pept Sci 14: 358-374. 17. Wiley JW, Gross RA, MacDonald RL (1992). The peptide CGRP increases a high-threshold Ca2+ current in rat nodose neurones via a pertussis toxin-sensitive pathway. J Physiol 455: 367-381. 18. Disa J, Parameswaran N, Nambi P, Aiyar N (2000). Involvement of cAMP-dependent protein kinase and pertussis toxin-sensitive G-proteins in CGRP mediated JNK activation in human neuroblastoma cell line. Neuropeptides 34: 229-233. 19. Kim D (1991). Calcitonin-gene-related peptide activates the muscarinic-gated K+ current in atrial cells. Pflugers Arch 418: 338-345. 20. Main MJ, Brown J, Brown S, Fraser NJ, Foord SM (1998). The CGRP receptor can couple via pertussis toxin sensitive and insensitive G proteins. FEBS Lett 441: 6-10. 21. Kuwasako K, Kitamura K, Nagata S, Hikosaka T, Kato J (2010). Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2. Biochem Biophys Res Commun 392: 380-385. G protein bias in CLR-based receptors 22. Dowell SJ, Brown AJ (2002). Yeast assays for G-protein-coupled receptors. Receptors Channels 8: 343 352. 23. Ladds G, Goddard A, Davey J (2005). Functional analysis of heterologous GPCR signalling pathways in yeast. Trends Biotechnol 23: 367-373. 24. Weston C, Poyner D, Patel V, Dowell S, Ladds G (2014). Investigating G protein signalling bias at the glucagon-like peptide-1 receptor in yeast. Br J Pharmacol 171: 3651-3665. 25. Weston C, Lu J, Li N, Barkan K, Richards GO, et al. (2015). Modulation of glucagon receptor pharmacology by RAMP2. J Biol Chem 290: 23009-23022. 26. Miret JJ, Rakhilina L, Silverman L, Oehlen B (2002). Functional expression of heteromeric calcitonin gene-related peptide and adrenomedullin receptors in yeast. J Biol Chem 277: 6881-6887. 27. Watkins HA, Chakravarthy M, Abhayawardana RS, Gingell JJ, Garelja M, et al. (2016). Receptor Activity-Modifying Proteins 2 and 3 generate adrenomedullin receptor subtypes with distinct molecular properties. J Biol Chem 291: 11657-11675. 28. Wootten D, Reynolds CA, Smith KJ, Mobarec JC, Koole C et al. (2016). The extracellular surface of the GLP-1 receptor is a molecular trigger for biased agonism. Cell 165: 1632-43. 29. Wootten D, Reynolds, CA, Koole C, Smith KJ, Mobarec JC, et al (2016) A hydrogen-bonded polar network in the core of the glucagon-like peptide-1 receptor is a fulcrum for biased agonism: lessons Downloaded from http://www.jbc.org/ at UNIVERSITY OF ESSEX on August 27, 2016 from Class B crystal structures. Mol Pharmacol 89: 335-47.! 30. Yang D, de Graaf,C, Yang L, Song G, Dai A, et al. (2016) Structural determinants of binding the seven transmembrane domain of the glucagon-like peptide-1 receptor (GLP-1R). J Biol Chem 291: 12991 3004.! 31. Yang L, Yang D, de Graaf C, Moeller A, West GM, et al. (2015) Conformational states of the full length glucagon receptor. Nat comm 6: 7859.! 32. Singh R, Ahalawat N, Murarka RK (2015) Activation of corticotropin-releasing factor 1 receptor: insights from molecular dynamics simulations. J Phys Chem B 119: 2806-17.! 33. Li Y, Sun J, Li D, Lin J. (2016) Activation and conformational dynamics of a class B G-protein-coupled glucagon receptor. Phys Chem Chem Phys 18: 12642-50. 34. Black JW, Leff P (1983). Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220: 141-162. 35. Lin YC, Boone M, Meuris L, Lemmens I, Van Roy N, Soete A, et al. (2014). Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun 5: 4767. 36. Stillman BW, Gluzman Y (1985). Replication and supercoiling of simian virus 40 DNA in cell extracts from human cells. Mol Cell Biol 5: 2051-2060. 37. Wootten DL, Lindmark H, Kadmiel M, Willcockson HH, Caron KM, Barwell J, Drmota T, Poyner D (2013). Receptor activity modifying proteins (RAMPs) interact with the VPAC 2 receptor and CRF1 receptors and modulate their function. Br J Pharmacol 168: 822-834. 38. Qi T, Dong M, Watkins HA, Wootten D, Miller LJ, Hay DL (2013). Receptor activity-modifying protein-dependent impairment of calcitonin receptor splice variant Δ(1-47) hCT((a)) function. Br J Pharmacol 168: 644-657. 39. Hay DL, Walker, CS, Gingell JJ, Ladds G, Reynolds CA, Poyner DR (2016). Receptor Activity Modifying Proteins; multifunctional G protein-coupled receptor accessory proteins. Biochem Soc Trans 44: 568-573. 40. Atwood BK, Lopez J, Wagner-Miller, J Mackie K, Straiker A (2011). Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC genomics 12: 14 41. Figueroa KW, Griffin MT, Ehlert FJ (2009). Selectivity of agonists for the active state of M1 to M4 muscarinic receptor subtypes. J Pharmacol Exp Ther 328: 331-342. 42. Takasaki J, Saito T, Taniguchi M, Kawasaki T, Moritani Y, Hayashi K, Kobori M (2004) A novel Gαq/11-selective inhibitor. J Biol Chem 279: 47438-47445. G protein bias in CLR-based receptors 43. Wunder F, Rebmann A, Geerts A, Kalthof B (2008). Pharmacological and kinetic characterization of adrenomedullin 1 and calcitonin gene-related peptide 1 receptor reporter cell lines. Mol Pharmacol 73: 1235-1243. 44. Watkins HA, Walker CS, Ly KN, Bailey RJ, Barwell J, Poyner DR, et al. (2014). Receptor activity modifying protein-dependent effects of mutations in the calcitonin receptor-like receptor: implications for adrenomedullin and calcitonin gene-related peptide pharmacology. Br J Pharmacol 171: 772-788. 45. Aiyar N, Disa J, Stadel JM, Lysko PG (1999). Calcitonin gene-related peptide receptor independently stimulates 3',5'-cyclic adenosine monophosphate and Ca2+ signaling pathways. Mol Cell Biochem 197: 179-185. 46. Christopoulos G, Perry KJ, Morfis M, Tilakaratne N, Gao Y, Fraser NJ, Main MJ, Foord SM, Sexton PM (1999) Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 56: 235-242 47. Shimekake Y, Nagata K, Ohta S, Kambayashi Y, Teraoka H, Kitamura K, Eto T, Kangawa K, Matsuo H. (1995) Adrenomedullin stimulates two signal transduction pathways, cAMP accumulation and i(Ca2+) mobilization, in bovine aortic endothelial cells. J Biol Chem 270: 4412-4417. 48. Permpoonputtana K, Porter JE, Govitrapong (2016). Calcitonin gene-related peptide mediates an inflammatory response in Schwann cells via cAMP-dependent ERK signaling cascade. Life Sci 144: 19 49. Harikumar KG, Simms J, Christopoulos G, Sexton PM, Miller LJ (2009) Molecular Basis of Association Downloaded from http://www.jbc.org/ at UNIVERSITY OF ESSEX on August 27, 2016 of Receptor Activity-Modifying Protein 3 with the Family B G Protein-Coupled Secretin Receptor. Biochemistry 48: 11773-11785. 50. Rasmussen SGF, DeVree BT, Zou YZ, Kruse AC, Chung KY, et al (2011) Crystal structure of the beta(2) adrenergic receptor-Gs protein complex. Nature 477: 549-U311. 51. Ladds G, Davis K, Hillhouse EW, Davey J (2003). Modified yeast cells to investigate the coupling of G protein-coupled receptors to specific G proteins. Mol Microbiol 47: 781-792. 52. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. (2003). The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278: 11312-11319. 53. Gietz RD, Schiestl RH (2007). Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2: 35-37. 54. Gingell JJ, Qi T, Bailey RJ, Hay DL (2010). A key role for tryptophan 84 in receptor activity-modifying protein 1 in the amylin 1 receptor. Peptides 31: 1400-1404. 55. Ladds G, Zervou S, Vatish M, Thornton S, Davey J (2009). Regulators of G protein signalling proteins in the human myometrium. Eur J Pharmacol 610: 23-28 56. Spandidos A, Wang X, Wang H and Seed B (2010). PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucl Acids Res 38: D729-799 57. Eswar N, Webb B, Marti-Renom MS, Madhusudham DE. Shen MY, et al (2007). Comparative Protein Structure Modeling with MODELLER. Curr Protoc Bioinformatics 2.9.1-2.9.31. 58. Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, et al (2013). Structure of the human glucagon class B G-protein-coupled receptor. Nature 499: 444-449. 59. Hollenstein K, Kean J, Bortolato A, Cheng RKY, Dore AS, et al (2013). Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499: 438-443. 60. Booe JM, Walker CS, Barwell J, Kuteyi G, Simms J, et al (2015). Structural Basis for Receptor Activity-Modifying Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled Receptor. Mol cell 58:1040-1052. 61. Koth CM, Murray JM, Mukund S, Madjidi A, Minn A, et al (2012). Molecular basis for negative regulation of the glucagon receptor. Proc Natl Acad Sci U S A 109: 14393-14398. 62. Hoang HN, Song K, Hill TA, Derksen DR, Edmonds DJ, et al (2015). Short Hydrophobic Peptides with Cyclic Constraints Are Potent Glucagon-like Peptide-1 Receptor (GLP-1R) Agonists. J Med Chem 58: 4080-4085. G protein bias in CLR-based receptors 63. Perez-Castells J, Martin-Santamaria S, Nieto L, Ramos A, Martinez A, et al (2012). Structure of micelle-bound adrenomedullin: a first step toward the analysis of its interactions with receptors and small molecules. Biopolymers 97: 45-53. 64. Jo S, Kim T, Iyer VG, Im W (2008). CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29: 1859-1865. 65. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983). Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys. 79: 926-935 66. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004). PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32: W665-W667. 67. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65: 712-725. 68. Walker RC, Dickson CJ, Madej BD, Skjevik AA, Betz RM, Teigen K, Gould IR (2014). Amber lipid force field: Lipid14 and beyond. Abstr Pap Am Chem S 248. 69. Dickson CJ, Madej BD, Skjevik AA, Betz RM, Teigen K, Gould IR, Walker RC (2014). Lipid14: The Amber Lipid Force Field. J Chem Theory Comput 10: 865-879. 70. Case DA, Betz RM, Botello-Smith W, Cerutti DS, Cheatham TE, III, et al (2016), AMBER 2016, University of California, San Francisco. Downloaded from http://www.jbc.org/ at UNIVERSITY OF ESSEX on August 27, 2016 71. Harvey MJ, Giupponi G, De Fabritiis G (2009) ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. J Chem Theory Comput 5: 1632-1639. 72. Brown AJ, Dyos SL, Whiteway MS, White JH, Watson MA, Marzioch M, et al. (2000). Functional coupling of mammalian receptors to the yeast mating pathway using novel yeast/mammalian G protein alpha-subunit chimeras. Yeast 16: 11-22. ! ! G protein bias in CLR-based receptors Figure legends