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Abstract

This thesis aims to improve the leader-follower team formation flight performance

of Unmanned Aerial Vehicles (UAVs) by applying nonlinear robust and optimal

techniques, in particular the nonlinear H∞ and the iterative Linear Quadratic Reg-

ulator (iLQR), to stabilisation, path tracking and leader-follower team formation

control problems.

Existing solutions for stabilisation, path tracking and leader-follower team forma-

tion control have addressed a linear or nonlinear control technique for a linearised

system with limited disturbance consideration, or for a nonlinear system with an

obstacle-free environment. To cover part of this area of research, in this thesis,

some nonlinear terms were included in the quadrotors’ dynamic model, and exter-

nal disturbance and model parameter uncertainties were considered.

Five different controllers were developed. The first and the second controllers, the

nonlinear suboptimal H∞ control technique and the Integral Backstepping (IBS)

controller, were based on Lyapunov theory. The H∞ controller was developed with

consideration of external disturbance and model parameter uncertainties. These

two controllers were compared for path tracking and leader-follower team forma-

tion control. The third controller was the Proportional Derivative square (PD2),

which was applied for attitude control and compared with the H∞ controller. The

fourth and the fifth controllers were the Linear Quadratic Regulator (LQR) control

technique and the optimal iLQR, which was developed based on the LQR control

technique. These were applied for attitude, path tracking and team formation

control and there results were compared.

Two features regarding the choice of the control technique were addressed: sta-

bility and robustness on the one hand, which were guaranteed using the H∞ con-

trol technique as the disturbance is inherent in its mathematical model, and the

improvement in the performance optimisation on the other, which was achieved

using the iLQR technique as it is based on the optimal LQR control technique.

Moreover, one loop control scheme was used to control each vehicle when these

controllers were implemented and a distributed control scheme was proposed for

the leader-follower team formation problem.
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Each of the above mentioned controllers was tested and verified in simulation for

different predefined paths. Then only the nonlinear H∞ controller was tested in

both simulation and real vehicles experiments.
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Chapter 1

Introduction

1.1 Introduction

In recent years, research on the control of Unmanned Aerial Vehicles (UAVs) has

been growing due to its simplicity in design and low cost. Quadrotor helicopters

have several advantages over fixed-wing air crafts, such as taking off and landing

vertically in a limited space and hovering easily over fixed or dynamic targets,

which gives them efficiency in applications that fixed-wing air crafts cannot do,

in addition to being safer [1–3]. Quadrotor UAVs can be used to perform several

tasks in the applications of dangerous areas for a manned aircraft in a high level

of accuracy. They can be utilised in different applications, such as inspection of

power lines, oil platforms, search and rescue operations, and surveillance [4, 5].

Increasing the applications of quadrotors encourages the growth in their tech-

nologies and raises the requirements on autonomous control protocols. Moreover,

using swarm robotics has advantages over individual robots in that they perform

their tasks faster with high accuracy and use a minimum number of sensors by

distributing them to the robots [6]. Researchers are focusing on the design and

implementation of many types of controllers to control the take-off, landing and

hovering of individual quadrotor UAVs with some applications which require the

1
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creation of a trajectory and tracking in three dimensions, benefiting from the wide

developments in sensors.

Research in the field of control of individual and multi-robot quadrotor team for-

mation is still facing some challenges. Challenges of individual quadrotor control

come from the complexity of modelling its dynamic system because of its complex

structure and the design issue. The dynamic model equations present four input

forces with six output states, which means that the system is in under-actuated

range [5, 6]. Further challenges of multi-robot control come from evaluating the

control architecture and communication network limitations.

The formation problem of quadrotors has had a vast area of interesting research

in the past few years. Researchers have been motivated to contribute to this

field of research by the development of materials, sensors and electronics used in

designing quadrotors, which consequently has an effect on minimising their size,

weight and cost. Working as a team of quadrotors has many benefits over using a

single quadrotor in several applications.

Team formation control includes many problems to be addressed, including com-

munication loss, delay between the robots or packet drop problems [7–10]. Simul-

taneous localisation and mapping is another problem in team formation control,

in which the vehicle builds up its maps and estimates its location precisely at

the same time; this problem has also been addressed in [11–13]. The third prob-

lem is the collision and obstacle avoidance, which includes avoiding collisions with

both other robots and static or moving unknown obstacles while flying to their

destination and maintaining their positions. Solutions to this problem have been

handled by [11, 14]. Now, team formation control adopts a combination of some

functions; the first is to perform the mission between two points, the second is

to preserve the comparative positions of the robots over the formation and main-

tain the shape consequently, the third is to avoid obstacles and the forth is to

divide the formation. In this thesis, we focus on designing only a control law for

the leader-follower team formation problem with collision avoidance between team

members by maintaining the distance between the leader and the follower.
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In the leader-follower approach, at least one vehicle performs as a leader and the

other robots are followers. The leader vehicle tracks a predefined path, whereas

the followers maintain a certain distance with the leader and among themselves to

obtain the desired shape. Each robot has its own controller and the robots keep

the desired relative distance between themselves. However, two types of control

architecture may be used to control the vehicle: one loop control scheme and

two loop control scheme. If a two loop control scheme is used to control each

vehicle, the outer loop is used for position control and its x and y output is the

desired roll and pitch angles. These desired angles with the desired yaw angle are

used to calculate the vehicle torques; in other words, they stabilise the quadrotor

angles. This type of control is built according to time scale separation, where the

attitude dynamics are much faster than translation dynamics. In the one loop

control scheme, on the other hand, separation of the vehicle dynamics to attitude

and translation is not considered. In this case, the position tracking error is used

directly to calculate the vehicle torques to achieve its path tracking. According

to these definitions, leader-follower team formation requires attitude stabilisation

and path tracking to be achieved.

Abundant literature exists on the subject of attitude stabilisation, path tracking

and leader-follower team formation control. Several control techniques have been

demonstrated to control a group of quadrotors varying between the linear PID,

PD or LQR controllers to more complex nonlinear controllers as neural networks

and BS controllers. These controllers achieved good results and some of them

guaranteed the performance, such as the LQR controller, and some of them guar-

anteed their stability. The performance of an individual quadrotor or a group of

quadrotors in formation control is often affected by external disturbances such as

payload changes (or mass changes), wind disturbance, inaccurate model parame-

ters, etc. Therefore, the controller must be robust enough in order to reject the

effect of disturbances and handle the change in model parameter uncertainties.

Robust state feedback controllers are very demanding in this case. The H∞ con-

trol approach is able to attenuate the disturbance energy by measuring a ratio

between the energy of cost vector and the energy of disturbance signal vector.
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For this reason, a robust nonlinear H∞ state feedback controller is used in this

thesis for the quadrotors flight problem. On the other hand, improving the control

performance optimality is another aspect. An iLQR controller is addressed based

on the optimal LQR control technique to improve the control performance.

Several control techniques have been explored in this thesis in both the simulations

and the experiment. First, a robust nonlinear H∞ state feedback controller was

developed to stabilise the quadrotor attitude, track a predefined path and address

the team formation control problems with external disturbance consideration by

solving Hamilton-Jacobi inequality. The controller stability was analysed via Lya-

punov function and robustness conditions were obtained. The main advantages of

applying the nonlinear H∞ optimal control approach are various. Firstly, it is able

to attenuate the disturbance energy by measuring a ratio between the energy of

cost vector and the energy of disturbance signal vector [15]. Secondly, although it

is a nonlinear control approach, the performance criterion can be included in the

control objective. Thirdly, robustness of stability and performance is guaranteed.

Finally, solving the control action law leads to tuning parameters, which is easy

to find better parameters [16]. Due to these reasons, the nonlinear H∞ optimal

control approach was chosen in this thesis. The controller was tested in simu-

lations and real work under different scenarios. On the other hand, an optimal

control approach was developed based on the LQR control approach. The iLQR

controller was applied for the full quadrotor nonlinear dynamic model, and the

dynamic model was linearised at each time step as an equilibrium point. Third,

Proportional Derivative square PD2, IBS and LQR controllers were applied for

comparison purposes. All these controllers were tested in simulation with several

scenarios.

Dynamic model representation of the quadrotors is a major demand for designing

these controllers. In this thesis, two techniques were used to represent the quadro-

tors: Euler angles and unit quaternion methods. The quaternion method was

used to overcome the singularity problem which faced the researchers who used

the Euler angles representation. A singularity emerges from the so called gimbal

lock and it is appearing when dividing the pitch angles θ = ±90 by zero.
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Figure 1.1: AscTec. Hummingbird Quadrotor

Many researchers have started to build their own quadrotors and use them to

achieve the required tasks. One of these researcher groups, a small student group

from Germany, developed a simple quadrotor toy and, in 2003, established their

own company called Ascending Technology (AscTec.). The quadrotor used in our

research is from this company (see Figure 1.1). This quadrotor has two micro-

controllers: a low level micro-controller for attitude stabilisation and a high level

micro-controller for translation control. In the high level micro-controller, the

desired roll and pitch are calculated and sent to the low level micro-controller to

be used for angles stabilisation control. More details of the vehicle features will

be illustrated later in 3.6.1.

1.2 Motivations

Nowadays, the demand on the cooperative multi-robot system is widely increasing

to handle the vast area of applications that individual robots cannot do, which

is forcing researchers to concentrate on controlling a group of UAV quadrotors

to improve the overall performance and also achieve their tasks effectively in a
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cooperative way. One such technique of cooperative problem control is formation

control. Formation control is utilised to solve the problem of maintaining a group

of vehicles while performing their task, taking advantage of energy saving and

sensors sharing.

Although there are different approaches to formation control design, the main

approaches are the leader-follower approach, the virtual leader approach and the

behavioural approach. In the leader-follower approach, one robot in the group

is selected as a leader and it is assumed to manage the path tracking algorithm,

while the remainder of the group are chosen as followers. These followers should

follow the leader and maintain the relative position and orientation according to

the leader’s position and orientation. The main drawback of this approach is that

the response of the farthest robot from the leader will be very poor compared

with the closest one to the leader. In the virtual leader approach, the computer

sends the same position information of the path to be tracked to each robot in

the team and they are required to track it, which means that no real leader exists

in the team. The main disadvantage of this approach is the absence of feedback

from the virtual leader to the formation. Finally, in the behavioural approach, the

behaviours set for each robot should be determined. Then the control action of

each robot for each behaviour is weighted. The behaviour examples are obstacle

avoidance, collision avoidance, and formation keeping [17] The drawback of this

approach is that the formation stability is not guaranteed and it needs massive

information. In this thesis, we focus on the leader-follower approach to maintain

the desired distance, the desired bearing angle and the desired incidence angle

among the robots. To reach this target, a considerable work should be done as a

preface, such as attitude stabilisation and tracking predefined paths.

Successively, designing a controller for an individual quadrotor or a team of quadro-

tors should consider various vehicles’ features, in addition to the nonlinear and

multivariate characteristics of its dynamics. Some of these features are the uncer-

tainties of sources in the system, such as external disturbances and communication

time delay. The controller is also affected by the aerodynamics of the four rotor
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blades, gyroscopic effects and inertial change. To overcome these effects, robust

controllers were developed in this thesis.

1.3 Aims and Objectives

This thesis focuses on flight control of an individual quadrotor UAV and two

quadrotors in the leader-follower formation. As mentioned before, the reason for

choosing this type of vehicle is that it is still facing some challenges in the control

field of individual vehicles and teams of vehicles when some nonlinear parts are

included in their dynamic model. Hence, this thesis aims to improve the perfor-

mance of the vehicle’s flight in complex environments and different circumstances.

To achieve these tasks the following objectives were carried out:

• The dynamic model of the vehicle is derived including nonlinear parts, and

is implemented in MATLAB Simulink.

• A H∞ control technique is developed considering the external disturbances

in its mathematical derivation.

• An optimal iLQR control algorithm is developed to improve the speed of the

vehicle behaviour.

• The above two controllers were tested in simulation.

• The IBS, PD2 and LQR controllers were derived and tested in simulation

for comparison purposes.

• The H∞ controller was tested practically in real vehicles.

In conclusion, the H∞ and iLQR controllers aim to improve the vehicle perfor-

mance by guaranteeing the rejection of the external disturbances and the speed of

target catching.
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1.4 Thesis Scope

Many authors have proposed to control an individual quadrotor and team of

quadrotors to achieve several tasks. Linear and nonlinear dynamic models have

been used with several control techniques. Although some of them have addressed

a limited disturbance in their tests, it has not been included in the control law

derivation. It was obvious that, when a linear controller was applied to a nonlinear

dynamic model, it displayed good results in a free environment only; and when a

nonlinear controller was applied, the vehicle consumed a long time to catch the

target and some times it it was not able to reject high disturbances. It was con-

cluded that including the external disturbances in the control law derivation and

improving the speed of the vehicles’ response were needed.

The scope of this thesis is to develop control techniques where the external distur-

bances can be included in the mathematical derivation and improve the vehicles’

response speed. These are achieved by developing two control techniques, a non-

linear robust H∞ controller and an iLQR optimal controller, when they applied

to the quadrotors’ nonlinear dynamic model.

1.5 Contributions

Quadrotor attitude, path tracking and team formation control pose many inter-

esting research problems that have remained open. This thesis concentrates on

two controllers, H∞ and iLQR, to solve these problems taking into consideration

disturbances and model uncertainty parameters change. The objective is to ensure

the asymptotic stability of each system state of the closed loop nonlinear system.

The main contributions of this thesis are the theoretical development and imple-

mentation of the H∞ and iLQR controllers, as well as practically testing the H∞

controller. These contributions can be summarised as follows:

1. As the quadrotor is an unstable vehicle, a state feedback controller for atti-

tude stabilisation, path tracking and team formation problems of quadrotors
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was deducted. A robust controller was synthesised via the H∞ optimal de-

sign approach. Solving the nonlinear H∞ optimal control problem using state

feedback was reduced to finding a solution to a HJI. This control method

focused on the stability and robustness when the external disturbances were

considered.

2. Sufficient conditions for the stability of (i) attitude (quaternion parameter-

s/Euler angles), (ii) path tracking, and (iii) team formation, considering the

disturbance rejection and change recovery in the uncertainty model param-

eters, were obtained. However, these conditions were used to find out the

suitable controllers’ parameters.

3. An integral backstepping controller for path tracking and leader-follower

team formation problems was derived and implemented in simulation for

comparison purposes. Stability analyses were carried out based on Lyapunov

functions.

4. A dynamic programming method that uses quadratic approximations to the

optimal cost-to-go function – iLQR controller – was developed for both indi-

vidual quadrotor and leader-follower team formation control problems. The

controller is an iterated one based on a linear quadratic regulator approach.

The main advantage of using the iLQR controller is its ability to overcome

the noise of the nonlinear dynamic system.

5. The LQR controller was also developed and implemented for attitude, path

tracking and leader-follower team formation problems of UAVs for compar-

ison purposes with the iLQR controller results.

6. Experimental evaluations of the H∞ controller for individual quadrotor path

tracking and two-quadrotor leader-follower formation was conducted to val-

idate the proposed controller.
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1.6 Thesis Structure

The rest of the thesis is structured as follows.

Chapter 2 : provides a brief explanation about the two controllers – H∞ and

iLQR – as well as their applications in robotics. Then, the advantages of using

the unit quaternion over the Euler angles method in the quadrotor dynamic model

representation is described. Next, a literature review that surveys various types

of controllers used in quadrotor applications are outlined with specific reference to

attitude stabilisation, path tracking and leader-follower team formation. At the

end, a conclusion of the literature review is provided.

Chapter 3 : includes a review on the nonlinear H∞ optimal control approach fol-

lowed by the main results when that approach is applied for attitude stabilisation

and path tracking problems. The control is built upon a single loop architecture

where the four outputs – the thrust and the torques – are achieved, using the

state feedback H∞ controller. The controller is used when the system is repre-

sented based on unit quaternion and based on Euler angles in simulation with

consideration of external disturbances and model parameter uncertainties. The

simulation results are presented to show the performance of the proposed con-

troller. Then, the controller is implemented on a real vehicle and experimental

results verify the robustness of the proposed controller.

Chapter 4 : describes the leader-follower team formation control problem. Then,

the main results and the necessary conditions of the nonlinear H∞ optimal control

approach are provided when the latter is applied to the follower vehicle. The

simulation results are obtained when the vehicle dynamic model is represented

based on unit quaternion and based on Euler angles with consideration of external

disturbances and model parameter uncertainties effect. At the end, experimental

results of two real identical vehicles using the proposed H∞ controller are provided.

Chapter 5 : gives the derivation of the IBS control approach based on the deriva-

tion of the BS control approach followed by its stability analysis. The controller is

used for an individual vehicle’s flight control and then for the leader-follower team
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formation problem. The simulation results of attitude stabilisation using the PD2

controller and of path tracking and leader-follower team formation using IBS are

presented for comparison purposes with those of the H∞ controller.

Chapter 6 : presents the optimal iLQR control technique developed based on

the LQR control technique to control and stabilise the attitude and altitude of an

individual quadrotor. Then, the technique is used to control two quadrotors in

leader-follower team formation. The controller is verified using MATLAB Simulink

simulation and the results of these simulations are provided and compared with

those of the LQR controller.

Chapter 7 : summarises our findings and provides a discussion based on the

results acquired in the previous chapters. It also includes suggestions for future

work.



Chapter 2

Literature Review

2.1 Research Background

Formation of quadrotor UAVs is considered as a key point for the team of UAVs

to perform their task cooperatively. More recently, team formation of multi-robot

UAVs have attracted increasing interest in the field of control. Several researchers

have investigated many control algorithms to achieve the formation of a team

of quadrotors. In this chapter, a literature review is presented for the nonlinear

H∞ control and the iLQR technique. Then the chapter addresses the issue of

stabilisation, path tracking and team formation of quadrotors based on Euler

angles and quaternion representation.

2.1.1 Nonlinear H∞ Control Technique

The leader-follower formation control performance of a multi-quadrotor system is

often affected by external disturbances, such as payload changes (or mass changes),

wind disturbance, inaccurate model parameters, etc. Therefore, a robust formation

controller is needed in order to reject the effect of disturbances and cover the change

in model parameter uncertainties.

12
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A nonlinear H∞ optimal control approach is hardly ever discussed in the prob-

lem of the quadrotors team formation for the difficulties in solving the multi-

variable partial differential equation (or inequality) of Hamilton-Jacobi. Solving

the Hamilton-Jacobi equation to find its generic solution is the main deadlock of

the nonlinear H∞ optimal control approach. Then an approximation approach is

used to solve it [15, 16].

To the best of my knowledge, the main previous works in quadrotor control ap-

plication using the nonlinear H∞ optimal control approach are [18–20]. Authors

in [18, 19] present an H∞ optimal control technique for stabilisation of quadrotor

angles, while a full state control is derived in [20] with quaternion dynamic system

representation.

2.1.2 iLQR Control Technique

iLQR is a dynamic programming technique developed based on the LQR technique

with the use of quadratic approximations to the optimal cost-to-go function [21].

The main idea is that the nonlinear dynamic model is linearised around a nominal

predefined path at each time step. Then the proposed iLQR technique calculates

the optimal control law based on Reccati equation. The iLQR controller has rarely

been used in literature. There are a few examples, however, where it was used

to estimate an approximation of the optimal cost to be learned via supervised

learning algorithm in [22]. It was also presented in [23] for wheeled mobile robot

trajectory tracking. L. Weiwei and T. Emanuel presented the iLQR controller to

control a musculo-skeletal arm and calculate the movement optimal energy [24].

In this thesis, the iLQR controller is used to track the attitude quaternion states,

the position states of a quadrotor and team formation control.
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2.1.3 Euler Angles and Unit Quaternion

It has been shown that the rotations of the UAV or any rigid body can be derived

using different approaches and are composed of translational and rotational dy-

namics. Newton-Euler, which is based the Euler angles approach, has been widely

used in this status but it has three important drawbacks. Firstly, the Euler angles

representation of the attitude suffers from the singularity problem which is also

called “gimbal lock”. The singularity problem occurs by losing one degree of free-

dom of the attitude when dividing the pitch angles θ = ∓90 by zero. Secondly,

it is very slow in computation because it has sine and cosine terms. Thirdly, the

jacobian cost function of the system states requires a long time in computation

because its matrices almost have at least sine or cosine terms in each element,

which may lead to crushing the system.

The possible solutions for these problems can be concluded in the following: 1)

limiting the Euler angles (the problem of this approach is that it will not be able

to reject the external disturbances); 2) using the Direction Cosine Matrix (DCM)

approach (the drawbacks of this approach is the orthogonal relationship of the

axes to each other and their unit length; and 3) using the quaternion approach

(this approach was used to overcome the above drawbacks and its only drawback

is that it must be of unit length).

2.2 Literature Review

2.2.1 Attitude Stabilisation

The first most important task of quadrotor UAV control is the stabilisation in

a certain point. Stabilisation means controlling the take-off of a quadrotor UAV

to a certain point, staying at this point and then landing with a pitch angle, roll

angle, yaw angle, motion in x-direction and motion in y-direction equalling to zero.

Various control algorithms have been implemented to address the stabilisation

problem with nonlinear or linearised dynamic systems.
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2.2.1.1 Linear Controllers

A classical linear Proportional-Integral-Derivative (PID), a Proportional-Integral

(PI), a Proportional-Derivative (PD), a Linear Quadratic (LQ) and a LQR con-

troller have been applied for the quadrotor’s stabilisation problem. Some of these

linear algorithms are as follows: a path tracking strategy was implemented to

achieve this task by tracking reference trajectory signals; a quadrotor platform

was built and stabilised using a PD controller in indoor environment; this plat-

form was contacted and controlled wirelessly, with a built-in micro-controller, two

gyros, a magnetic compass, a mounted wireless camera, and zigbee and accelerome-

ter sensors [1]. Experimental results show a good flight performance stability. The

design and control of a quadrotor UAV was implemented by [25], in which PID

and LQ controllers were proposed to stabilise the rotation angles of the quadrotor.

Experimental results validate the success of the controllers with minor disturbance

consideration.

A simple PD controller was tested in a practical test platform using the error

quaternion which comes from the estimated rotation and the QUEST algorithm

quaternion output. This controller ensures the stability of the quadrotor even

when it is affected by the sensors noise, modelling errors and measurement refer-

ence frames [26]. A PD controller for vertical take-off and landing of a quadrotor

UAV was presented in [3] in normal circumstances with an on-board camera to cal-

culate the quadrotor altitude. The integration of IMU measurement was involved

with the PID pose-controllers to recover the Ascending Hummingbird quadrotor

behaviour. The platform had a mounted camera in addition to the basic sensors.

The PID controllers showed a good performance in terms of stable autonomous

take-off and hovering in real time over fixed markers with some oscillations [27].

Schmidt [28] introduced an angle platform control using a MATLAB and Simulink

PID controller to achieve the angles stability. The platform was implemented with

the substantial parts and sensors. The PID controller was flashed in a processor

within the platform. The platform was tested in ideal conditions with no sensors

effect and air friction or drags effect. PI and PID controllers were also implemented
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in [29]. The PI controller was used to control the height of the quadrotor, whereas

the three angles and vertical placement were stabilised using the PID controller.

The controllers were tested by adding the effect of drags and gravitational forces

and the results assert the robustness of the controllers.

Jaromir D. et al. [30] introduced an orientation controller based on LQ-optimal

state-feedback combined with an eigenaxis rotation. The controller was tested ex-

perimentally to achieve the quadrotor attitude stabilisation and the results show a

successful performance with less than one degree errors. A PD2 feedback controller

and a PD controller were proposed in [31] to obtain the global exponential atti-

tude stabilisation of the quadrotor. The first controller had three terms: the pro-

portional term affected the quaternion parameters, and the two derivative terms

affected the quaternion parameters rate and the angular velocities. The second

controller had two terms: the proportional term affected the quaternion param-

eters while the derivative term affected the angular velocities. Both controllers

were tested practically on a quadrotor with small angles and low speed motion.

The results prove the efficiency of the controllers against small disturbance.

A single loop PID controller was applied to a linearised dynamic model in [32] for

attitude and altitude stabilisation. The simulation results illustrated the stability

of the quadrotor after 3 seconds shock adjustment. A comparison between the gain

scheduled PID controller and the Model Reference Adaptive Controller (MRAC)

was achieved in [33] by testing them on a normal and a faulty vehicle. The result

shows that the first controller was easy to implement while the second controller

was more robust. Esteves et al. [34] demonstrated several Kalman estimator tech-

niques and a LQR controller for the Quadr-ANT quadrotor stabilisation problem.

The indoor test revealed a good stabilisation performance within a 6-10 cm error in

altitude and around 1 degree errors in angles. These linear controllers performed

well in terms of stability with some oscillations or accepted errors in the absence

of high disturbances or dynamic uncertainties.



Chapter 2. Literature Review 17

2.2.1.2 Nonlinear Controllers

Some nonlinear control algorithms have been utilised to achieve the stability of the

rotational movement of quadrotor UAVs. In [2], a MRAC was presented with the

assistance of a modular simulation environment for a quadrotor nonlinear dynamic

system in the presence of actuator failures and loss of control effectiveness. The

controller showed a stable performance during the loss of control effectiveness

and actuator failures. On the other hand, a nonlinear proportional squared P 2

control algorithm was proposed in [35] for attitude control. The controller was

implemented to a linear quaternion simulator of the quadrotor and the simulation

results indicated a good tracking performance.

A PD sliding mode controller based on quaternion model representation gathering

with a filter was implemented and tested practically on a quadrotor to achieve the

position and attitude stabilisation [36]. The filter was used to filter the signals of

the angular velocities and their rate. The xperimental results showed very good

performance and the stability was guaranteed. To guarantee the stability of the

controllers, a continuous-time MRAC based on Lyapunov function was applied

for the nonlinear system based quaternion model, in addition to implementing

a Model Identification Adaptive Controller to a quadrotor in order to overcome

the inertia variations [37]. A bounded control law was presented to obtain the

attitude stabilisation of the quadrotor and the controller was designed to control

the bounded torque using a saturation function which depends on the quaternion

parameters. This approach aimed to ensure the effectiveness of the actuators

without affecting the stability of the quadrotor [38].

Garcia et al. [39] introduced a nested saturation control technique as the best

controller in terms of smooth UAV behaviour and energy consumption compared

with Backstepping (BS) and Sliding Mode (SM) techniques when they were tested

in real time to stabilise the UAV beneficiary from a mounted camera to measure the

quadrotor position and speed. The experimental results showed good stabilisation

in using the three controllers. A BS nonlinear control technique was compared

with the SM one when it was applied to control the quadrotor UAV [40]. The
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experimental results showed better performance of rotation angles stabilisation

compared with the PID and LQ used in their previous work [25].

A filtered BS controller was implemented to control the attitude of a quadrotor

represented using the unit quaternion approach [41]. The filter was a second order

quaternion filter and it was used for the quaternion parameters and their rate

calculation. It should be noted that the computation of the angular derivative

vector depended on the quaternion rate calculated by the filter. The proposed

controller was used for attitude stabilisation and path tracking problems, and a

stable simulation performance was obtained in disturbance-free state. A simulation

of the BS based PID technique combined with PD controllers was presented in [42]

to stabilise the take-off and landing of a quadrotor UAV dynamic model derived

using the Newton-Euler technique. An optimisation method was introduced here

to obtain the parameter values.

Cabecinhas et al. [43] introduced a robust controller to ensure the robustness of

the quadrotor UAV’s take-off and landing to overcome the problem of dynamics

change when the quadrotor contacts the land. In [44], a combination of torque PD

and second order SM controllers was proposed to control the position and attitude

of a quadrotor, respectively. However, the quadrotor was modelled based on a unit

quaternion method and the controllers yielded interesting results in the practical

test.

Asymptotic exponential attitude stability was achieved by designing a model in-

dependent and model dependent controllers. These robust controllers were tested

on a simulation model based on the quaternion quadrotor and they contributed

to a stable tracking for the angular velocities and angles [45]. Tayebi et al. [46]

suggested a velocity-free attitude stabilisation control scheme for the attitude sta-

bilisation problem of the quadrotor. The approach depended on the measurements

of the body vector only, which in turn depends on the inertial measurement vec-

tors. The simulation results proved the effectiveness of the proposed approach in

normal circumstances. An event-triggered feedback nonlinear control was practi-

cally tested in [47] on a quadrotor to obtain the attitude stabilisation. This type of
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control was used to minimise both control cost function and communications. The

feedback controller was designed relying on a state space based on the quaternion

model and it was only valid in bounded state space domain.

2.2.1.3 Intelligent Controllers

Another type of controllers that has been developed in the attitude stabilisation

field is intelligent controllers such as, fuzzy logic (FL) and neural networks (NNs)

controllers. A FL controller displays some benefits upon other aspects of control

laws, particularly in terms of modelling uncertainties and high nonlinearity han-

dling. Furthermore, designing a fuzzy controller might be conjectural with little

information about the system. Therefore, some researchers have chosen the FL

control system to build the quadrotor UAVs’ take-off, flight and landing controller.

However, the main challenge of using the FL to control the quadrotor UAVs is that

it requires knowledge and experience about the behaviour of the system to find

the memberships and build the rules of the controller.

Starting with the BS based FL and BS least mean square controllers, these were

presented in [48] to stabilise the attitude of the quadrotor UAV. To guarantee the

stability of the controllers a recursive Lyapunov function was applied. The results

proved that the fuzzy controller outperforms the other controller in stabilising the

rotation angles. A robust adaptive fuzzy control technique was proposed to obtain

the stabilisation of quadrotor UAVs’ attitude [49]. A set of alternate membership

functions were used to avoid the drift in membership centres and a Lyapunov sta-

bility theory was applied to ensure the system stability. The simulation results

proved the stability and robustness of the controller against a sinusoidal distur-

bance. Raza and Gueaieb [50] compared two types of FL controller, Mamdani and

Takagi Sugeno Kang, when these were applied to control the six outputs of the

quadrotor in simulation and real system in normal environment.

Sharma and Barve [51] also compared the simulation results of a PID controller

with a FL one in take-off, hovering and landing stabilisation of the quadrotor

for a constant angle of each rotor. The simulation results demonstrated a better



Chapter 2. Literature Review 20

performance when using the FL controller than when using the PID controller. The

benefit of the FL controller was also established in [52] when the controller was

tested in a simulation model of the quadrotor. Abeywardena et al. [53] proposed

a Mamdani FL controller for stable flying of quadrotor velocities, in which the

controller was tested on the MATLAB Simulink of the nonlinear dynamic model

with disturbances. The main benefit of fuzzy nonlinearity was demonstrated by

using the hybrid fuzzy PID controller together with a conventional PID to control

the quadrotor in simulation.

On the other hand, a direct inverse neural control technique was introduced in [54]

for a mathematical model of quadrotor while disregarding the impact of gyroscopes

and air drag. The main drawbacks of using NNs in quadrotor control is that the

controller needs the plant model itself or a perfect identified system to ensure

the stability. The application of a mimic NN model to the PIλDµ controller was

applied for the quadrotor UAV. The training technique of Levenberg–Marquardt

optimisation was utilised for the training data [55]. The NN was trained to find

the parameters of the finite impulse response approximator related to the time

varying parameters of the controller.

2.2.2 Path Tracking

Path tracking is the second task in controlling a quadrotor in our path to achieve

the team formation control. Path tracking control has received a great research

attention in the last decay and a significant advances have been obtained in this

field. There is a wide range of control algorithms which were proposed for the path

tracking problem in different circumstances in the presence or absence of dynamic

effects.

2.2.2.1 Linear Controllers

Classical PID and PD control technique were found to be popular techniques in

the literature; for example, simple PD and PID controllers were implemented on a
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linearised model to control the path tracking to the desired point on a desired path

for a quadrotor UAV while having wind disturbance and modelling uncertainties

[56]. The results revealed that classical controllers, such as PD or PID, were not

adequate under wind disturbance and uncertainty conditions. Hoffmann et al.

[57] designed a novel path tracking control algorithm focusing on the compound

problems of the average of the control input update and path planning in the

desired speed; PD and PID controllers were used for this purpose. Mellinger et

al. [58] also presented the PID controller to stabilise the orientation of an AscTec.

Hummingbird quadrotor, where they designed a gripper added to the vehicle to

assist in its perching and landing. The controllers were modified to hold the two

and three dimensions trajectory tracking and eventually to achieve the perching

and landing purposes.

An explanation of a successful autonomous path generation with obstacle avoid-

ance capability utilising the vision data which originate from Google Earth only in

virtual environment was presented in [59]. This autonomous path generation was

obtained using a PID controller in the low level mode. A dynamic programming

technique was proposed in [60] using a simulation of PD and nonlinear based input-

output feedback controllers to address the problem of swing-free suspended load

trajectory tracking in a quadrotor UAV. An iterative learning based PD controller

was presented in [61]. The dynamic model was linearised and all the dynamic

effects were neglected. The controller was tested in simulation and in an off-line

tracking experiment. These controllers show a good performance when they were

applied to a linearised system in the absence of disturbance and model parameter

uncertainties.

LQR control is another linear control technique which was introduced for address-

ing the path tracking problem in [62]. The D-methodology was integrated with

the anti-wind-up technique to obtain a zero steady state error. The linearised

model was simulated to track a 3D trimming path, then the controller was tested

experimentally to demonstrate the successfulness of the controller with small er-

rors. The authors of [63] implemented and practically tested the LQR controller

with and without the Model Free Control algorithm to track a predefined path.
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The results of these two approaches showed the effectiveness of using the Model

Free Control algorithm. A nested P and PID control structure was presented in

[64] to control the quadrotor position. The controller was implemented and tested

in simulation and practically in an open source quadrotor.

2.2.2.2 Combination of Two Controllers

It was found that combining two control techniques achieved better flight perfor-

mance than using one control technique. Raffo et al. [18] introduced a Model

Predictive Controller (MPC) for translational control combined with a nonlinear

H∞ controller for attitude stabilisation. Similarly, the authors in [19] reused the

nonlinear H∞ controller for attitude stabilisation combined with a BS controller

for translational movement. The simulation results in both studies showed a good

performance in the presence of dynamic inertia effect.

A special state space model was presented depending on the gathering of the

tracking error of the BS technique and Lyapunov function. The new state space

model had some complex parameters and it was controlled using the Sliding Mode

(SM) controller to track a way point path in [65]. A switching control methodol-

ogy between the inertial and imaging sensors was proposed in [66], in which the

PID controller and the integral SM controller were used to stabilise the linearised

quadrotor UAV model once when the latter was moving in constant velocity over

a detected road and another when it was not. The experimental result illustrated

the stability of the switching method to reject the external disturbances.

Stabilisation of a quadrotor with onboard sensors was achieved in [67] by using a

PID controller to ensure the horizontal position, while three PD controllers were

used to cover the control of the three attitude angles. Two mounted cameras were

added to the vehicle; the first one was to assist in path tracking and perching

control at high speed flying, and the other was used for visual simultaneous lo-

calisation and mapping algorithm in unstructured environment navigation. The

experimental results of the PD and PID controllers were compared with the results

of a nonlinear control algorithm with some assumptions and limitations.
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The altitude and attitude stabilisation results of nested PID and LQ controllers

applied to the simulation model of a quadrotor UAV showed that the nested PID

was better than the LQ controller [68]. While in the hovering case, the result of

sensitively mixed H∞ and µ-synthesis controllers was compared with that of PID

and LQ controllers in path tracking and parameter uncertainty.

2.2.2.3 Nonlinear Controllers

Various techniques based on the BS approach were proposed and tested practically

in [5, 69–71] to control the attitude and position of different quadrotors’ platforms.

For instance, the IBS controller was implemented and tested practically on a

OS4 quadrotor platform to perform a autonomous take-off, hovering, landing and

collision avoidance [5]. A nonlinear adaptive state feedback based on Lyapunov

and the BS controller was presented in [69] to follow a time dependent path and

constant force disturbances rejection. The proposed controller was tested on a

radio controlled Blade mQX quadrotor to verify the controller validation. The

controller was developed and retested to reject unknown force disturbances in

[70]. However, there are still considerable concerns about the use of external

disturbances as these works did not include the latter in the control law derivation.

Moreover, the performance was not guaranteed and it had high relative errors.

Therefore, there is a need to guarantee and optimise the performance. To this

end, the nonlinear H∞ and iLQR controllers are employed to cover these features.

Choi and Ahn [71] presented a new nonlinear controller based on a BS-like feed-

back linearisation technique for a fully autonomous quadrotor system. The new

controller was compared practically in outdoor take-off with PID and other two

nonlinear controllers. The experimental results showed a good performance among

the other controllers. A new approach of BS control was proposed to stabilise the

quadrotor and track the way point route in the Cartesian mode [72]. The con-

trolled system was divided into three subsets: horizontal position, altitude and yaw

angle, and the propeller dynamics. It was found that the controller performed well

in normal environment.
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Moreover, some researchers addressed controllers based on BS for the path tracking

problem for quadrotors based on quaternion representation, as demonstrated, for

instance, in [73–75]. In [73] a BS control using a decoupling quaternion parametri-

sation was proposed and the controller depended on the decoupling of two rotations

of quaternion. The stability of the proposed architecture was verified by an ex-

perimental test. A global tracking control using a one-step ahead BS controller

depending on standard BS and Lyapunov’s theorem was implemented and tested

in simulation for a quadrotor in [74]. The dynamic model of the quadrotor was

represented by a combination of quaternions and Euler angles. The results proved

the asymptotic convergence in bounded controls. An et al. [75] proposed a BS

based inverse optimal attitude controller for quadrotor representation based on

quaternions and the simulation result was compared with that of a PD controller.

The controller had two parts: the BS to deal with the quaternion parameters

model set and the inverse optimal technique to deal with the Hamilton Jacobi

Bellman equation computation. This approach focused on some limitations in the

input torque for a large angle flight.

A SM controller approach is another popular technique utilised for path tracking in

[44, 76, 77]. Parra-Vega et al. [76] proposed two novel model-free second order SM

controllers for attitude stabilisation and path tracking. The work was composed of

two theorems: the first one was to ensure semi-global exponential and robust path

tracking of a closed-loop system with a zero yaw angle, while the second one was

deduced for final stability. The simulation results showed a smooth performance

in the free disturbance state and a small spike in the disturbed condition. A

SM controller surface based on quaternion representation for time-parametrisation

control of a quadrotor was introduced by [77]. The controller was obtained via

exponential and terminal stabilisation. Robust performance with small errors was

achieved under several simulated scenarios. In [44] a PD gathering with second

order SM controllers was implemented to solve the problems of path tracking

control and attitude stabilisation, respectively. The controllers were tested in

simulation and practically to show their effectiveness in normal circumstances.
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Some researchers focused on the other nonlinear control algorithms to solve the

path tracking problem. Sorensen [78] compared the simulation and real time

stabilisation for a AscTec. quadrotor using two controllers, LQR controller and

robust H∞ controller, when these were tested in tracking of a high speed trajectory.

The compared results showed that the H∞ controller could not track the trajectory

in real time while the LQR controller gave a good tracking in both the simulation

and real time tests.

A strategy of adaptive scheme with learning reinforcement control was demon-

strated experimentally in [79]. The proposed technique showed successful perfor-

mance when the quadrotor performed a piece’s transformation from one point to

another. A nonlinear controller was designed for attitude and position control of a

quadrotor in [80]. The controller was tested practically with constant disturbance

consideration. An adaptive robust controller was proposed in [81] to cover the

model uncertainty error and reject the disturbance. The controller was developed

via a Lyapunov-like energy function. The results obtained by testing the proposed

controller in a real quadrotor showed the validation of this theory.

A MPC controller was used for path tracking control of the quadrotor in [82].

The path destinations were found by nonlinear guidance logic, and the controller

was tested for obstacle avoidance as well. The Authors in [83] presented a non-

linear model-based position controller for the quadrotor path tracking problem.

The controller was tested in simulation and real phase. Practical results showed a

good performance in terms of overshot and settling time. In [84] a differential flat-

ness technique of a quadrotor to follow a vector field as an input to the quadrotor

was addressed. The mathematical model was derived and applied in simulation

and experiment. In [85] an I/O translational linearisation and reduced quaternion

parameter of the attitude was presented for the quadrotor position control prob-

lem. The proposed feedback linearisation method was tested successfully on a real

quadrotor.

Other nonlinear control techniques were illustrated in [86, 87]. In [86] a nonlin-

ear robust tracking control based on quaternions in a particular Euclidean set
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was utilised to follow the position and attitude commands. The controller was

simulated to reject considerable disturbances when it followed a complicated tra-

jectory. The simulation results showed around 10 cm errors when the disturbance

was considered. Moreover, A robust adaptive tracking controller was implemented

and practically tested to achieve the attitude command tracking of a quadrotor.

The controller was designed to track the attitude without relying on the quadro-

tor inertia information and ensure the unstructured disturbances rejection with

relative high angular velocity error [87].

On the other hand, Elias et al. [88] presented a nonlinear quaternion mathematical

model to describe the attitude of the quadrotor. They implemented an LQR gain

scheduling simulation controller to obtain the trajectory and attitude stability

task. A high relative error in simulation results was shown in the normal state.

A path tracking controller using a so-called quasi-static feedback linearisation

for the quadrotor dynamics was introduced in [85] to reduce the translational

dynamics order. It consisted of two phases: the first relating to the altitude

and consequently to the thrust and the second to splitting up the altitude from

the other two directions. The attitude was described in two degrees of freedom.

The experimental results proved the validation of the proposed approach without

observable delay.

2.2.2.4 Intelligent Controllers

Some researchers focused on the other nonlinear control algorithms to solve the

path tracking problem. Example of these algorithms were used in [89–95]. Castillo

et al. [89] focused on a stabilisation control algorithm based on Lyapunov analysis

using nested saturations to control the quadrotor UAV in real time. A satisfactory

result was obtained when a real vehicle tracked a 3D path. The results of trajectory

tracking of self-tuning PID based on the FL controller were demonstrated and

compared with that of a conventional PID controller when they were applied to

control the quadrotor UAV with variable payload. The use of the FL controller
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displayed good results compared with the PID controller in terms of handling the

uncertainty of the system, which occurred as a result of the payload variation [90].

Yacef et al. [91] addressed an adaptive fuzzy control scheme for the trajectory

tracking problem. The controller was based on the Lyapunov direct method and

backstepping techniques. The proposed control method did not require the quadro-

tor dynamic model. A robust control approach based on the Takagi-Sugeno fuzzy

model together with the Linear Matrix Inequality technique was demonstrated in

[92]. The use of the fuzzy model leads to a linear model that is valid in several

operational points. The proposed controller was designed with the pole placement

approach and its simulation results were compared with those of LQR controller.

Zareb et al. [93] presented a fuzzy-PID hybrid control system for the quadrotor

autonomous flight. The controller consisted of a Mamdani fuzzy controller for

attitude stabilisation and a PID controller for roll, pitch and altitude control. The

simulation results showed the stability and robustness of the proposed controller.

A smart self-tuning fuzzy PID controller based on Extended Kalman Filter algo-

rithm was addressed for the quadrotor’s angles and position control problem in

[94]. The smart selection method was used to select the active fuzzy parameters

in order to minimise the calculation time, and a Dijkstra’s technique was used to

find the shortest path and help in obstacle avoidance. The proposed controller

showed good performance compared with a traditional PID controller. Authors in

[95] proposed a fuzzy radial basis function neural network PID control system for

a quadrotor based on particle swarm optimisation to control the quadrotor. The

results of the proposed controller were compared with those of PID, fuzzy PID,

neural network PID and fuzzy neural network PID controllers. The comparison

verified the effectiveness of the proposed controller.

2.2.2.5 Path Generation

Path generation and tracking is another field in quadrotor control and it is beyond

the scope of this thesis. Our work is limited to the stabilisation and tracking of a

generated path. In [96] a nonlinear BS controller was implemented for quadrotor
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tracking trajectory generated by three different types of visual servoing, 2D, 3D

and 2D1/2 techniques, in with presence of disturbance. The results demonstrated

undesirable rotational movement when using 2D visual servoing while using 3D

visual servoing led the quadrotor out of the camera scope and using 2D1/2 tech-

nique resulted in better performance than the other techniques. Chamseddine et

al. [97] presented a flatness-based flight trajectory planning/replanning technique

for a quadrotor UAV to solve the problem of trajectory planning in terms of time

of the mission and the constraints of the actuators. Control laws for linearised

dynamic equations of a quadrotor UAV were presented to decide if there was a

necessity to design complicated control techniques for unmodelled UAV or not.

2.2.3 Team Formation

In the last decade, the focus on control single unit quadrotors has expanded to

controlling a team of quadrotors for these to be able to achieve their tasks in vari-

able weather and complicated environments. Team formation flight also provides

advantages over the use of an individual quadrotor in both civil and military ap-

plications, such as inspection of an inaccessible area, disaster management, and

search and rescue in risky circumstances, etc. Most of these applications demand

more than one quadrotor to accomplish the desired objective [81, 98]. The leader-

follower approach is one of the main approaches of formation control design.

Distributed and decentralised control techniques were used in the literature to solve

the leader-follower control problem. The distributed control technique assumes

that not all followers receive the leader’s information and there is a kind of coop-

eration among them [7–9, 13, 99–106], while the decentralised control technique

proposes that all followers are able to receive the leader’s information [10, 107–

115]. Different controllers have been implemented with both distributed and de-

centralised control techniques.
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2.2.3.1 Distributed Control Technique

A robust LQR controller was proposed for individual quadrotors and team for-

mation as well in [7]. The controller was designed for a linearised system around

the hovering point. The simulation results indicated the ability of the controller

to overcome the changes in communication topology among the robots with no

dynamic effects. A NNs controller was presented in [99] for addressing the leader-

follower problem. These two studies used Lyapunov theory to analyse the con-

troller stability.

A BS controller was discussed in [102] based on graph theory to maintain the dis-

tance among the robots and in [101] with balanced graph and strong connection

among the robots. The quadrotors’ dynamic systems were linearised around the

hovering point and a good performance was obtained in normal circumstances. A

distributed cohesive motion control scheme was presented in [103] for 3D motion

to maintain the distance among robots. This technique was developed to become a

decentralised technique and significant attempts to deal with decentralised control

techniques have been made. Three time scale controllers based on the SM con-

troller were proposed in [100] for dealing with the quadrotor formation problem.

The controllers were used for the path tracking, attitude tracking and velocity in

order to keep the formation and maintain the distance among the robots with the

presence of external disturbance affecting the leader robot only. The simulation

results proved the effectiveness of the proposed scheme.

A nonlinear control theory was presented to ensure the stability of quadrotors

team formation in [8]. The wireless networks communication among the team

was obtained via medium access control protocols. Experimental tests verified

the proposed algorithm with time delay consideration. In [104] the problem of the

leader-follower consensus of a swarm of rigid body space crafts system was analysed

based on quaternion representation using a distributed control technique. They

assumed that the communication between two neighbouring followers is bidirec-

tional and that all followers can receive the leader information. Stability analysis

was obtained via Lyapunov theory and the simulation results proved the attitude
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and angular velocity tracking stability. In [13] a MPC technique with integrated

trajectory planning was analysed with a planning horizon for both team forma-

tion and obstacle avoidance. The method showed good simulation results. A

distributed coordinated control scheme was proposed by [105] to solve the prob-

lem of time-delay in leader-follower team formation communication of quadrotors

and the simulation results under sufficient conditions demonstrated the validity

of the presented control technique. Xiwang et al. [9] proposed a consensus-based

approach for the time varying formation control problem. The simulation and the

practical test of five quadrotors demonstrated the validation of the proposed con-

trol approach. A vision-based servoing distributed control approach was presented

in [106], where the quadrotors equipped cameras to track a moving target which

provided the position information to be used for controllers.

2.2.3.2 Decentralised Control Technique

Abdessameud and Tayebi [107] proposed a procedure which depends on a quater-

nion representation and is split up into translational and rotational control design

under the upper bounded translational control input. Analysis of the closed-loop

system stability was achieved using Lyapunov theory. The proposed strategy took

8 seconds to catch the desired formation shape. A hybrid supervisory control

based on a polar partitioning approach was suggested in [108] for the team for-

mation problem and for collision avoidance as well. The combination of discrete

quadrotors dynamic system and the supervisor was achieved using the parallel

composition and the simulation results displayed that this method allows the su-

pervisors to achieve a free collision in normal environments. A MPC technique

was proposed in [112], where its hierarchical control effectiveness was compared

with the potential field technique. The stability of the feedback controller based

on fluid dynamic models in [109] was obtained based on smoothed-particle hy-

drodynamic. The simulation results of the above methods validated the proposed

approaches.
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Authors in [110] proposed the trajectory planners and feedback controllers for

following the planned trajectory. Next they proposed a nonlinear decentralised

controller for an aggressive formation problem in the micro quadrotors team in

[111]. Communication failures and network time delays impact on team formation

efficiency were considered. Local information of neighbour robots in the team

was used for individual trajectory planning. Preserving the required form was

based on the status estimation of neighbour robots. Then the authors presented

two approaches to overcome the problem of concurrent assignment and planning

of trajectories (CAPT) for the quadrotors team, a decentralised D-CAPT and

centralised C-CAPT in [10]. The decentralised D-CAPT and centralised C-CAPT

results were compared in simulation and practice and the experimental results

demonstrated a good performance in indoor application.

In [116] a human user for teleoperation with a haptic device was proposed for the

quadrotor team formation control problem with the cooperation of a BS controller.

The simulation results revealed the ability of the human user to teleoperate in order

to perform the formation. A triangle formation control of three quadrotors using

optimal control techniques via the Pontryagin maximum principle was presented in

[117] and the simulation results showed the effectiveness of using team formation

rather than using an individual quadrotor in terms of fuel consumption. In [118]

a consensus problem of swarm systems was discussed to obtain the time-varying

formation based on double-integrator system modelling. The experimental results

of the three quadrotors in formation verified the effectiveness of the proposed

approach in dynamic-free conditions.

A new developed framework gathering with a nonlinear MPC technique was pre-

sented in [119] to solve the problem of coalition formation. The simulation results

showed a zero steady state error in free disturbance and dynamic circumstances.

Koksal et al. [113] presented an adaptive formation scheme for quadrotors leader-

follower formation. They proposed a distributed control scheme for the kinematic

part, an adaptive LQ controller for pitch and roll angles, proportional control for

yaw angle and a PID controller for altitude. Several scenarios were implemented

in simulation and experiment to validate the algorithm. In [114] a combination
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of LQR and SM controllers were proposed for a 2D quadrotors leader-follower

formation, where the LQR controller was used for position control while two SM

controllers were used for the attitude and for maintaining the distance between

the robots. The simulation results demonstrated the successfulness of combining

the two control techniques. A BS control approach with nonlinear controllers was

introduced for handling the team formation problem in [115] and the simulation

results proved the effectiveness of the proposed controllers.

The results in most of the previous papers on leader-follower formation control of

multi-quadrotor system did not consider the effect of external disturbances, such

as payload changes (or mass changes), wind disturbance, inaccurate model param-

eters, etc., which often affected the quadrotors’ control performance. Therefore,

a quadrotor controller must be robust enough in order to reject the effect of dis-

turbances and cover the change in model parameter uncertainties and external

disturbances. Robust state feedback controllers are very demanding when dealing

with the quadrotor control problem. The H∞ control approach was able to at-

tenuate the disturbance energy by measuring the ratio between the energy of cost

vector and the energy of disturbance signal vector [15].

2.3 Discussions

Stabilisation, path tracking and team formation of the quadrotor were achieved

using various types of controllers based on Euler angles and quaternion represen-

tations. Most of these control approaches were tested in practice and some of

them in simulation. However, the majority of these control approaches have some

drawbacks such as the requirement of a great deal of system information in order

to build the controller and the discount of the effect of disturbances and parameter

model uncertainties. Moreover, most of the above control approaches (PID, LQR,

Backstepping, Fuzzy system and Neural Networks) were tested on the quadrotor

with a linearised system.
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On the other hand, most of the approaches described above side-step the vehicle

control problem by either technique assuming that the vehicle dynamics are ex-

tremely simple or that an inner-loop controller that solves the problem exists. As

UAV designs become smaller, lighter, and more agile, these assumptions no longer

hold. While the approach described in [44] includes adaptation in the outer-loop

control of the vehicle kinematics, this approach does not accommodate local er-

rors in the vehicle dynamics, or global errors, such as the error in the overall

configuration of the vehicles.

This thesis addresses the problem of control of multi-vehicle UAVs in the presence

of disturbance and uncertainty by including adaptation in the control loop and

adapting to both local and global errors. Moreover, the iterative method is also

discussed to achieve fast track and minimum steady state errors. In addition, as

most of the work mentioned in the literature used a two loops control scheme, an

inner loop to control the attitude and altitude and an outer loop to control x and

y directions, a single loop control technique is used in this thesis.
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Attitude Stabilization and Path

Tracking Using H∞ Controller

As mentioned before, quadrotors are underactuated and unstable nonlinear sys-

tems; each quadrotor has 6 DOFs and four inputs only to be controlled. Therefore,

designing a robust controller is a substantial task to guarantee the quadrotor sta-

bility and robustness. In addition, quadrotors are probably affected by external

disturbances such as wind disturbance and model parameters uncertainties. The

contribution of this chapter is the design of a state feedback controller for attitude

stabilisation and the path tracking problem of a UAV quadrotor. The quadrotor

attitude is represented by unit quaternion once and then by Euler angles, and

external disturbances and model parameter uncertainties are taken into consid-

eration. A robust controller is synthesised via the H∞ optimal design approach.

Solving the nonlinear H∞ optimal control problem using state feedback is melted

down to finding a solution to a HJI. Based on the quadrotor attitude and trans-

lation dynamics, appropriate parametrised Lyapunov functions are selected and

the corresponding state feedback controllers are derived. Then the parameters are

found from a HJI. The resultant state feedback controllers can lead to a closed-loop

nonlinear system having L2-gain less than or equal to a constant γ, and establish

the asymptotic stability of the closed-loop nonlinear system without external dis-

turbance.

34
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The controllers were implemented and tested in a MATLAB quadrotor simulater.

In simulation, the controllers were tested for various disturbances, including the

model parameter uncertainties (mass and inertia) and torque disturbance d. The

simulation results of the proposedH∞ controller are discussed later in this Chapter.

For comparison purposes, a PD2 controller obtained in [31] was also tested for

attitude stabilisation. For path tracking, an IBS controller was derived, imple-

mented and tested in a MATLAB quadrotor simulater and its stability analysis

was achieved based on a selected Lyapunov function. The simulation results are

demonstrated in Chapter 5.

3.1 H∞ Suboptimal Control Approach

The major task in the H∞ optimal control of a nonlinear system is to find the

solution of the nonlinear state feedback H∞ control problem with the presence of

disturbance which affects the dynamic feedback measurement. Then the next step

is the relation of L2-gain of a nonlinear system with the H∞ norm. This is because

the H∞ norm is a norm on transfer matrices and only the L2-induced norm if it

is translated into time domain (from the input to the output time functions with

initial state zero). This norm is appropriate for a nonlinear system and it is called

L2-gain of the nonlinear system.

In this section, an overview on the H∞ suboptimal control approach is summarised

for affine nonlinear systems of the form:

ẋ = f(x) + g(x)u + k(x)d (3.1)

y = h(x)

where x ∈ Rn is a state vector, u ∈ Rm is an input vector, y ∈ Rp is an output

vector, and d ∈ Rq is a disturbance vector. Detailed information on H∞ control

approach can be found in [15].
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We assume the existence of an equilibrium x∗, i.e. f(x∗) = 0, and we also assume

h(x∗) = 0. Given a smooth state feedback controller, u = l(x)

l(x∗) = 0.
(3.2)

The H∞ suboptimal control problem considers the L2-gain from the disturbance

d to the vector of z = [yT ,uT ]T . This problem is defined below.

Problem 1. Let γ be a fixed nonnegative constant. The closed loop system con-

sisting of the nonlinear system (3.1) and the state feedback controller (3.2) is said

to have L2-gain less than or equal to γ from d to z if

∫ T

0

‖z(t)‖2dt ≤ γ2

∫ T

0

‖d(t)‖2dt+K(x(0)) (3.3)

for all T ≥ 0 and all d ∈ L2(0, T ) with initial condition x(0), where 0 ≤ K(x) <∞

and K(x∗) = 0.

For the nonlinear system (3.1) and γ > 0, define the Hamiltonian Hγ(x, V (x)) as

below:

Hγ(x, V (x)) =
∂V (x)

∂x
f(x) +

1

2

∂V (x)

∂x

[
1

γ2
k(x)kT (x)− g(x)gT (x)

]
∂TV (x)

∂x

+
1

2
hT (x)h(x). (3.4)

where g(x) and k(x) are the input and disturbance matrices respectively, and it

is obtained in the nonlinear system (3.1).

Theorem 3.1. [15] If there exists a smooth solution V ≥ 0 to the Hamilton-Jacobi

inequality

Hγ(x, V (x)) ≤ 0

V (x∗) = 0, (3.5)
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then the closed-loop system for the state feedback controller

u = −gT (x)
∂TV (x)

∂x
(3.6)

has L2-gain less than or equal to γ, and K(x) = 2V (x).

The nonlinear system (3.1) is called zero-state observable if for any trajectory x(t)

such that y(t) = 0,u(t) = 0,d(t) = 0 implies x(t) = x∗.

Proposition 1. [15] If the nonlinear system (3.1) is zero-state observable and there

exists a proper solution V ≥ 0 to the HJI (3.5), then V (x) > 0 for x(t) 6= x∗ and

the closed loop system (3.1), (3.6) with d = 0 is globally asymptotically stable.

3.2 Flight Control Based On Quaternion Repre-

sentation

3.2.1 Attitude Stabilisation

The attitude or orientation of a quadrotor is described by a rotation with an

angle α above the axis k ∈ R3. The corresponding rotation matrix is R, which

falls in the special orthogonal group of degree three SO(3) = {R ∈ R3×3|RTR =

RRT = I, det(R) = 1}. To describe the orientation of a quadrotor, the quaternion

representation is used in this section, which is able to alleviate the singularity

problem caused by the Euler angles representation. The dynamic model of a

quadrotor including the gyroscope effects G(ω) can be written as:

ṗ = v

v̇ = −ge + f
m
Rqe q̇0

q̇

 = 1
2

 −qTω

(q0I + S(q))ω


Jω̇ = −S(ω)Jω −G(ω) + τq

. (3.7)
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where m is the quadrotor mass, ω = [ωx, ωy, ωz]
T is the angular velocity in the body

frame, J is the 3 × 3 diagonal matrix representing three inertial moments in the

body frame, τq is the torque vector applied on the quadrotor, the unit quaternion

[q0, q1, q2, q3]T = [q0,q
T ]T where q = [q1, q2, q3]T is the vector part and q0 is the

scalar part of the quaternion, v = [vx, vy, vz]
T is the linear velocity, p = [x, y, z]T

is the position vector, the vector e = [0, 0, 1]T , and I is the 3 × 3 unit matrix.

The rotation matrix Rq is related to the unit quaternion through the Rodrigues

formula

Rq = (q0
2 − qTq)I + 2qqT + 2q0S(q)

and S is the skew-symmetric cross product matrix

S(q) =


0 −q3 q2

q3 0 −q1

−q2 q1 0

 .

More details of the quadrotor model derivation based on unit quaternion repre-

sentation are described in Appendix B.

The essential purpose of the attitude stabilisation is to design a controller τ which

can asymptotically drive the quadrotor to an equilibrium point from an initial

attitude and the effect of added disturbances tends to disappear. The equilibrium

point for the attitude stabilisation problem is the point with Rq = I, ω = 0 or

the two equilibrium points (desired point) in quaternion representation (q0d =

±1,qd = [0, 0, 0]T , ωd = [0, 0, 0]T ), which represent the same physical point. In

mathematical form, the attitude stabilisation controller should satisfy the following

conditions: 
limt→∞ q̃0 = limt→∞(q0d − q0) = 0

limt→∞ q̃ = limt→∞(qd − q) = 0

limt→∞ ω̃ = limt→∞(ωd − ω) = 0

. (3.8)
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The total reference thrust from the propellers is considered to be

f = mg

and the rotational part of the quadrotor dynamic model is
 q̇0

q̇

 = 1
2

 −qTω

(q0I + S(q))ω


Jω̇ = −S(ω)Jω −G(ω) + τq

. (3.9)

Now we consider a robust control approach to the attitude stabilisation problem.

When considering d as the torque disturbance, then d = [dωx , dωy , dωz ]
T is applied

to the nonlinear system (3.9). Let x = [q0,q
T , ωT ]T and u = G(ω̃) − τq. The

attitude system (3.9) with the disturbance d can be written into an affine nonlinear

form:

ẋ = f(x) + g(x)u + k(x)d (3.10)

where

f(x) =


1
2
q̃T ω̃

−1
2

(q̃0I + S(q̃)) ω̃

J−1S(ω̃)Jω̃



g(x) =


01×3

03×3

J−1



k(x) =


01×3

03×3

J−1

 .
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3.2.2 H∞ Suboptimal Controller

The H∞ suboptimal controller is designed for the attitude stabilisation problem

in this section. The following form of V is suggested for the attitude stabilisation

model (3.9):

V (x) =
1

2

[
q̃T ω̃T

] 03×3 JKq

JKq JKω

 q̃

ω̃

+ 2Cq(1− q̃0) (3.11)

where diagonal matrices Kq > 0 and Kω > 0 are the proportional and derivative

gains for translational and rotational parts. Cq > 0 is constant, and its partial

derivative is
∂V (x)

∂x
= [−2Cq JKqω̃ JKqq̃ + JKωω̃].

Accordingly the controller is

u = −gT (x)
∂TV (x)

∂x

= −
[
Kqq̃ +Kωω̃

]
. (3.12)

For the equilibrium points x∗ = [q0,q
T , ω]T = [±1, 01×3, 01×3]T , the following

diagonal weighting matrices are chosen W2 = W T
2 > 0,W4 = W T

4 > 0;

h(x) = [
√
W2q̃

T
√
W4ω̃

T ]T

which satisfies h(x∗) = 0. When the rotational angle α is taken between −π and

π, we have 0 ≤ q0 ≤ 1 and this will exclude [−1, 01×3, 01×3]T from the equilibrium

points. For the equilibrium point, x∗ = [1, 01×3, 01×3]T . And we know

V (x∗) = 0.

Now the attitude stabilisation problem of the quadrotor under the disturbance d

is defined below.
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Problem 2. Find the parameters Kq, Kω, Cq in order to enable the closed-loop

system (3.10) with the above controller u (3.12) to have L2-gain less than or equal

to γ.

Next we want to show our main result in the following theorem.

Theorem 3.2. If the following conditions are satisfied, the closed-loop system

(3.10) with the above controller u (3.12) has L2-gain less than or equal to γ. And

the closed loop system (3.10),(3.12) with d = 0 is globally asymptotically stable.

CqKω ≥ JK2
q

Cq = KqKω

(
1

γ2
− 1

)
‖Kq‖2 ≥ γ2‖W2‖

γ2 − 1
(3.13)

‖Kω‖2 ≥ γ2(‖W4‖ −
√

3‖J‖‖Kq‖)
γ2 − 1

(3.14)

‖W2‖ > 0; ‖W4‖ > 0

Proof. With the given conditions, we need to show (1) V (x) ≥ 0 and (2) the

Hamiltonian Hγ(x, V (x)) ≤ 0. Then the first part of the theorem can be proved

by using Theorem 3.1.

(1) Since

2(1− q̃0) = (1− q̃0)2 + q̃T q̃

≥ q̃T q̃,
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then

V (x) =
1

2

[
q̃T ω̃T

] 03×3 JKq

JKq JKω

 q̃

ω̃

+ 2Cq(1− q̃0)

≥ 1

2

[
q̃T ω̃T

] 03×3 JKq

JKq JKω

 q̃

ω̃

+ Cqq̃
T q̃

=
1

2

[
q̃T ω̃T

] CqI JKq

JKq JKω

 q̃

ω̃

 .

Thus the condition for V (x) ≥ 0 is

CqKω ≥ JK2
q .

(2)

Hγ(x, V (x)) =− q̃TCqω̃ −
1

2
ω̃TJKq(q̃0I + S(q̃))ω̃ + q̃TKqS(ω̃)Jω̃ + ω̃TKωS(ω̃)Jω̃

+
1

2

(
1

γ2
− 1

)
‖Kqq̃ +Kωω̃‖2 +

1

2
‖W2‖‖q̃‖2 +

1

2
‖W4‖‖ω̃‖2.

By choosing

Cq = KqKω

(
1

γ2
− 1

)
,

then

Hγ(x, V (x)) =− 1

2
ω̃TJKq(q̃0I + S(q̃))ω̃ + q̃TKqS(ω̃)Jω̃ + ω̃TKωS(ω̃)Jω̃

+
1

2

(
1

γ2
− 1

)(
‖Kq‖2‖q̃‖2 + ‖Kω‖2‖ω̃‖2

)
+

1

2
‖W2‖‖q̃‖2

+
1

2
‖W4‖‖ω̃‖2.

By using ‖S(ω̃))‖ = ‖ω̃‖, ‖(q̃0I+S(q̃))‖ ≤
√

3, |ω̃TJKq(q̃0I+S(q̃))ω̃| ≤ ‖Kq‖‖J‖‖ω̃‖2‖(q̃0I+

S(q̃))‖, q̃TKqS(ω̃)Jω̃ = 0 and ω̃TKωS(ω̃)Jω̃ = 0, we have
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Hγ(x, V (x)) ≤−
√

3

2
‖Kq‖‖J‖‖ω̃‖2 +

1

2

(
1

γ2
− 1

)
(‖Kq‖2‖q̃‖2 + ‖Kω‖2‖ω̃‖2)

+
1

2
‖W2‖‖q̃‖2 +

1

2
‖W4‖‖ω̃‖2.

Thus, the conditions for Hγ(x, V (x)) ≤ 0 are

1

2

(
1

γ2
− 1

)
‖Kq‖2 +

1

2
‖W2‖ ≤ 0

−
√

3

2
‖J‖‖Kq‖+

1

2

(
1

γ2
− 1

)
‖Kω‖2 +

1

2
‖W4‖ ≤ 0,

i.e.

‖Kq‖2 ≥ γ2‖W2‖
γ2 − 1

‖Kω‖2 ≥ γ2(‖W4‖ −
√

3‖J‖‖Kq‖)
γ2 − 1

.

It is trivial to show that the nonlinear system (3.10) is zero-state observable.

Further, due to the fact that V (x) ≥ 0 and it is a proper function (i.e. for

each β > 0 the set {x : 0 ≤ V (x) ≤ β} is compact), the closed loop system

(3.10),(3.12) with d = 0 is globally asymptotically stable according to Proposition

1. This proves the second part of the theorem.

Finally from u, we can find τq:

τq = −u +G(ω̃)

= Kqq̃ +Kωω̃ +G(ω̃). (3.15)

3.2.3 Path Tracking Control

The full mathematical model of the quadrotor (3.7) is used to control the quadrotor

to track 3D paths. In what follows, an individual controller is designed using H∞
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to track various scenarios by using tracking errors as inputs and providing the

propellers speed as outputs.

Then the tracking errors can be written as:

p̃ = pd − p

ṽ = vd − v q̃0

q̃

 =

 q0d − q0

qd − q


ω̃ = ωd − ω.

Then equation (3.7) can be rewritten in an error form as:

˙̃p = ṽ

˙̃v = ge− f
m
Rqe ˙̃q0

˙̃q

 = 1
2

 q̃T ω̃F

− (q̃0I + S(q̃)) ω̃


J ˙̃ω = S(ω̃)Jω̃ +G(ω̃)− τq

. (3.16)

The control aim is to asymptotically drive the quadrotor towards the desired po-

sition pd from an initial position with the effect of added disturbances tending

to disappear and changed parameters tending to be recovered by satisfying the

following conditions:


limt→∞ p̃ = limt→∞(pd − p) = 0

limt→∞ q̃0 = limt→∞(q0d − q0) = 0

limt→∞ q̃3 = limt→∞(q3d − q3) = 0.

(3.17)

Now we consider the robust control approach to the path tracking problem when

considering d = [dTv ,d
T
ω ]T = [dvx, dvy, dvz, dωx , dωy , dωz ]

T as the disturbance applied

to the nonlinear system (3.16). Those disturbances are used here to model the

changes of mass and moment, and the wind disturbances.
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Let

x =



p̃

q̃0

q̃

ṽ

ω̃


u =

 ge− f
m
Rqe

G(ω̃)− τq

 .

The dynamic system (3.16) with the disturbance d can be written into an affine

nonlinear form:

ẋ = f(x) + g(x)u + k(x)d (3.18)

where

f(x) =



ṽ

1
2
q̃T ω̃

−1
2

(q̃0I + S(q̃)) ω̃

03×1

J−1S(ω̃)Jω̃



g(x) =



03×3 03×3

01×3 01×3

03×3 03×3

I 03×3

03×3 J−1



k(x) =



03×3 03×3

01×3 01×3

03×3 03×3

I 03×3

03×3 J−1


.
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3.2.4 H∞ Suboptimal Path Tracking Controller

The H∞ suboptimal controller is designed for the path tracking problem in this

section. The following form of V is suggested for the dynamic model (3.18):

V (x) =
1

2

[
p̃T q̃T ṽT ω̃T

]

CpI 03×3 Kp 03×3

03×3 03×3 03×3 JKq

Kp 03×3 Kv 03×3

03×3 JKq 03×3 JKω




p̃

q̃

ṽ

ω̃

+ 2Cq(1− q̃0). (3.19)

where diagonal matrices Kp > 0, Kq > 0, Kv > 0, Kω > 0 are the proportional

and derivative gains for translational and rotational parts. Cp > 0, Cq > 0 are

constants. And

∂V (x)

∂x
=
[
Cpp̃ +Kpṽ −2Cq JKqω̃ Kpp̃ +Kvṽ JKqq̃ + JKωω̃

]
.

Accordingly the controller is

u = −gT (x)
∂TV (x)

∂x

= −

 Kpp̃ +Kvṽ

Kqq̃ +Kωω̃

 . (3.20)

The following diagonal weighting matrices are chosen W1 > 0, W2 > 0, W3 > 0

and W4 > 0;

h(x) = [
√
W1p̃

T
√
W2q̃

T
√
W3ṽ

T
√
W4ω̃

T ]T

which satisfies h(x∗) = 0, where the equilibrium point x∗ = [01×3, 1, 01×3, 01×3, 01×3]T .

And we know

V (x∗) = 0.
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Now the path tracking problem of the quadrotor under the disturbance d is defined

below.

Problem 3. Given the equilibrium point x∗, find the parametersKp, Kq, Kv, Kω, Cp,

Cq in order to enable the closed-loop system (3.18) with the above controller u

(3.20) to have L2-gain less than or equal to γ.

Next we want to show our main result in the following theorem.

Theorem 3.3. If the following conditions are satisfied, the closed-loop system

(3.18) with the above controller u (3.20) has L2-gain less than or equal to γ. And

the closed loop system (3.18), (3.20) with d = 0 is asymptotically locally stable for

the equilibrium point x∗.

CpCq ≥ 0

CpKv ≥ K2
p

CpCqKvKω ≥ CpJK
2
qKv − JK2

qK
2
p + CqK

2
pKω

Cp = KpKv

(
1− 1

γ2

)
Cq = KqKω

(
1

γ2
− 1

)
‖Kp‖2 ≥ γ2‖W1‖

γ2 − 1
(3.21)

‖Kq‖2 ≥ γ2‖W2‖
γ2 − 1

(3.22)

‖Kv‖2 ≥ γ2(‖W3‖+ 2‖Kp‖)
γ2 − 1

(3.23)

‖Kω‖2 ≥ γ2(‖W4‖ −
√

3‖J‖‖Kq‖)
γ2 − 1

(3.24)

‖W1‖ > 0; ‖W2‖ > 0; ‖W3‖ > 0; ‖W4‖ > 0.

Proof. With the given conditions, we need to show (1) V (x) ≥ 0 and (2) the

Hamiltonian Hγ(x, V (x)) ≤ 0. Then the first part of the theorem can be proved

by using Theorem 3.1.
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(1) Since

2(1− q̃0) = (1− q̃0)2 + q̃T q̃

≥ q̃T q̃,

then

V (x) ≥ 1

2

[
p̃T q̃T ṽT ω̃T

]

CpI 03×3 Kp 03×3

03×3 CqI 03×3 JKq

Kp 03×3 Kv 03×3

03×3 JKq 03×3 JKω




p̃

q̃

ṽ

ω̃

 .

Thus the conditions for V (x) ≥ 0 are

CpCq ≥ 0

CpKv ≥ K2
p

CpCqKvKω ≥ CpJK
2
qKv − JK2

qK
2
p + CqK

2
pKω

(2)

Hγ(x, V (x)) = p̃TCpṽ − q̃TCqω̃ + ṽTKpṽ −
1

2
ω̃TJKq(q̃0I + S(q̃))ω̃

+ q̃TKqS(ω̃)Jω̃ + ω̃TKωS(ω̃)Jω̃ +
1

2

(
1

γ2
− 1

)
‖Kpp̃ +Kvṽ‖2

+
1

2

(
1

γ2
− 1

)
‖Kqq̃ +Kωω̃‖2 +

1

2
‖W1‖‖p̃‖2 +

1

2
‖W2‖‖q̃‖2

+
1

2
‖W3‖‖ṽ‖2 +

1

2
‖W4‖‖ω̃‖2.

By choosing

Cp = KpKv

(
1− 1

γ2

)
Cq = KqKω

(
1

γ2
− 1

)
,
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then

Hγ(x, V (x)) = ṽTKpṽ + q̃TKqS(ω̃)Jω̃ − 1

2
ω̃TJKq(q̃0I + S(q̃))ω̃

+ ω̃TKωS(ω̃)Jω̃ +
1

2

(
1

γ2
− 1

)
(‖Kp‖2‖p̃‖2 + ‖Kv‖2‖ṽ‖2)

+
1

2

(
1

γ2
− 1

)
(‖Kq‖2‖q̃‖2 + ‖Kω‖2‖ω̃‖2) +

1

2
‖W1‖‖p̃‖2

+
1

2
‖W2‖‖q̃‖2 +

1

2
‖W3‖‖ṽ‖2 +

1

2
‖W4‖‖ω̃‖2.

By using ‖S(ω̃))‖ = ‖ω̃‖, |ṽTKpṽ| ≤ ‖Kp‖‖ṽ‖2, ‖(q̃0I+S(q̃))‖ ≤
√

3, |ω̃TJKq(q̃0I+

S(q̃))ω̃| ≤ ‖Kq‖‖J‖‖ω̃‖2‖(q̃0I+S(q̃))‖, q̃TKqS(ω̃)Jω̃ = 0 and ω̃TKωS(ω̃)Jω̃ = 0,

we have

Hγ(x, V (x)) ≤ −
√

3

2
‖Kq‖‖J‖‖ω̃‖2 + ‖Kp‖‖ṽ‖2 +

1

2

(
1

γ2
− 1

)
(‖Kp‖2‖p̃‖2 + ‖Kv‖2‖ṽ‖2) +

1

2

(
1

γ2
− 1

)
(‖Kq‖2‖q̃‖2

+ ‖Kω‖2‖ω̃‖2) +
1

2
‖W1‖‖p̃‖2 +

1

2
‖W2‖‖q̃‖2 +

1

2
‖W3‖‖ṽ‖2

+
1

2
‖W4‖‖ω̃‖2.

Thus, the conditions for Hγ(x, V (x)) ≤ 0 are

1

2

(
1

γ2
− 1

)
‖Kp‖2 +

1

2
‖W1‖ ≤ 0

1

2

(
1

γ2
− 1

)
‖Kq‖2 +

1

2
‖W2‖ ≤ 0

‖Kp‖+
1

2

(
1

γ2
− 1

)
‖Kv‖2 +

1

2
‖W3‖ ≤ 0

−
√

3

2
‖J‖‖Kq‖+

1

2

(
1

γ2
− 1

)
‖Kω‖2 +

1

2
‖W4‖ ≤ 0;
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i.e.

‖Kp‖2 ≥ γ2‖W1‖
γ2 − 1

‖Kq‖2 ≥ γ2‖W2‖
γ2 − 1

‖Kv‖2 ≥ γ2(‖W3‖+ 2‖Kp‖)
γ2 − 1

‖Kω‖2 ≥ γ2(‖W4‖ −
√

3‖J‖‖Kq‖)
γ2 − 1

.

It is trivial to show that the nonlinear system (3.18) is zero-state observable for

the equilibrium point x∗. Further, due to the fact that V (x) ≥ 0 and it is a

proper function (i.e. for each β > 0 the set {x : 0 ≤ V (x) ≤ β} is compact), the

closed-loop system (3.18), (3.20) with d = 0 is asymptotically locally stable for

the equilibrium point x∗ according to Proposition 1. This proves the second part

of the theorem.

Remark 1. It should be noted that the proof of Theorem 3.3, limt→∞ p̃ = 0,

limt→∞ q̃ = 0, limt→∞ ṽ = 0 and limt→∞ ω̃ = 0, meet the conditions of (3.17).

Finally from u, we can have

u =

 ge− f
m
Rqe

G(ω̃)− τq


= −

 Kpp̃ +Kvṽ

Kqq̃ +Kωω̃

 .
Then the total force and the torque vector are applied to the quadrotor, f and

τq ∈ R3,

f =(kpz z̃ + kvzṽz + g)
m

q2
0 − q2

1 − q2
2 + q2

3

(3.25)

τq = Kqq̃ +Kωω̃ +G(ω̃). (3.26)
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Symbol Definition Value Units
Jx Roll Inertia 4.4× 10−3 kg.m2

Jy Pitch Inertia 4.4× 10−3 kg.m2

Jz Yaw Inertia 8.8× 10−3 kg.m2

m Mass 0.5 kg
g Gravity 9.81 m/s2

l Arm Length 0.17 m
Jr Rotor Inertia 4.4× 10−5 kg.m2

Table 3.1: Quadrotor Parameters

Figure 3.1: One Loop Control Block Diagram

3.3 Simulations

In order to determine the efficiency of the proposed controller, a MATLAB quadro-

tor simulater is used to test it numerically. The one loop control block diagram is

used to control the overall quadrotor dynamics, which is illustrated in Figure 3.1.

In this case, the x and y position errors are used directly in the torque control

law of q1 and q2/ θ and ϕ. The design parameters of the quadrotor used in the

simulater are listed in Table 3.1.

3.3.1 Attitude Stability

The aim is to control the attitude of the quadrotor to the equilibrium point. The

proposed controller was tested for various disturbances, including the model pa-

rameter uncertainties (mass and inertia) and torque disturbance d. The constant γ

was chosen to be γ = 1.05 and the norm of the two weighting matrices was chosen
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to be W2 = diag(0.0235, 0.0235, 0.0009) and W4 = diag(0.0043, 0.0043, 0.00156).

Under these parameters the norm of feedback control matrices can be obtained

by solving the conditions in (3.13) and (3.14) to be Kq = diag(0.5, 0.5, 0.095) and

Kω = diag(0.07, 0.07, 0.025).

Figure 3.2 shows the performance of quaternion components using the H∞ con-

troller under the action of the designed torque compared with that of the H∞

controller with the torque disturbances shown in (3.27) and (3.28) and ±30%

model parameter uncertainties. It can be seen that the H∞ controller perfor-

mance achieved a zero steady-state error in less than two seconds and it could

reject the disturbances and cover the change in model parameter uncertainties.

d1 =0.01 + 0.01 sin(0.024πt) + 0.05 sin(1.32πt) (3.27)

d2 =0.1 + 0.1 cos(0.24πt) + 0.5 sin(1.32πt). (3.28)

The performance of the angular velocities under the use of the H∞ controller and

the H∞ controller with the effect of disturbances and model parameter uncertain-

ties is shown in Figure 3.3. It illustrates that the angular velocities performance

using the H∞ controller achieved the stability conditions very fast.

Table 3.2 illustrates the Root Mean Square Error (RMSE) of the quaternion com-

ponents in all the five circumstances. It is clear that the RMSE values of the

quaternion parameters were very small when using the H∞ controller in the nor-

mal condition and with the disturbances, while they slightly increased by 0.0003

with the model parameter uncertainties. In general, H∞ controller yielded a good

result in terms of RMSE value, time-consuming, disturbance rejection and model

parameter uncertainties change cover.

3.3.2 Path Tracking

Two different paths are tested in order to demonstrate the robustness of the pro-

posed controller. The added disturbances include ±30% of the model parameter



Chapter 3. Attitude Stabilisation and Path Tracking 53

0 2 4 6
0

0.5

1

1.5

 sec 

 q
0 

0 2 4 6
−0.2

0

0.2

0.4

0.6

 sec 

 q
1 

 

 
Nominal
Distirbanced d1
Distirbanced d2
+30% Mass
−30% Mass

0 2 4 6
−0.2

0

0.2

0.4

0.6

 sec 

 q
2 

0 2 4 6
−0.2

0

0.2

0.4

0.6

 sec 

 q
3 

Figure 3.2: Quaternion Components under H∞ Controller
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Figure 3.3: Angular Velocities under H∞ Controller
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RMSE q0 q1 q2 q3

H∞ 0.0055 0.0012 0.0034 0.0011
H∞ + d1 0.0056 0.0012 0.0034 0.0012
H∞ + d2 0.0059 0.0012 0.0034 0.0014
H∞ + 30% 0.0092 0.0011 0.0037 0.0045
H∞ − 30% 0.0110 0.0013 0.0031 0.0068

Table 3.2: Quaternion Parameter RMSE Values under H∞ Controller

uncertainties (mass and inertia) and a force disturbance.

In the first path, the initial conditions of the quadrotor are p(0) = [0, 0.5, 0]T

metres and Q(0) = [−1, 0, 0, 0]T , and the desired path is xd = 0.5 sin(tπ/2) ; yd = 0.5 cos(tπ/2)

zd = 1 + 0.1t ; q3d = 0
.

The constant γ is chosen to be γ = 1.05 and the weighting matrices are cho-

sen to be W1z = 1150, W2 = diag(0.0235, 0.0235, 0.0009), W3z = 10 and W4 =

diag(0.0043, 0.0043, 0.00156). Under these parameters the feedback control matri-

ces can be obtained by solving the conditions in (3.21), (3.22), (3.23) and (3.24) to

be kpz = 112, kvz = 50, Kq = diag(0.5, 0.5, 0.095) andKω = diag(0.07, 0.07, 0.025).

In the second path, the initial conditions of the quadrotor are p = [0, 0, 0]T metres

and Q = [−1, 0, 0, 0]T , and the desired path is a combination of two parts: the

first part is  xd = 0 ; yd = 0

zd = 3− 2 cos(tπ/20) ; q3d = 0

when 0 ≤ t < 10 seconds, while the second part is xd = 2 sin(tπ/20) ; yd = 0.1 tan(tπ/20)

zd = 5− 2 cos(tπ/20) ; q3d = 0

when 10 ≤ t ≤ 30 seconds. The constant γ is chosen to be γ = 1.05 and the weight-

ing matrices are chosen to be W1z = 1025, W2 = diag(0.0235, 0.0235, 0.0009),

W3z = 25 and W4 = diag(0.0043, 0.0043, 0.00156). Under these parameters the

control matrices can be obtained by solving the conditions in (3.21), (3.22), (3.23)
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and (3.24) to be kpz = 105, kvz = 50, Kq = diag(0.5, 0.5, 0.095) and Kω =

diag(0.07, 0.07, 0.025).

The testing results of tracking the first path using the proposed controller are

obtained with the conditions (1) no disturbance, (2) force disturbance dvz = −2Nm

at 10 ≤ t ≥ 10.25 seconds, dvx = 2Nm at 20 ≤ t ≥ 20.25 seconds, dvy = 2Nm at

30 ≤ t ≥ 30.25 seconds and the attitude part is disturbed using (3.27), (3) +30%

model parameter uncertainty, and (4) −30% model parameter uncertainty. The

tracking trajectories, positions, quaternions, and angular velocities are shown in

Figures 3.4, 3.5, 3.6, and 3.7, respectively.

The testing results of tracking the second path using the proposed controller are

obtained with the conditions (1) no disturbance, (2) force disturbance dvz = −2Nm

at 10 ≤ t ≥ 10.25 seconds, dvx = 2Nm at 15 ≤ t ≥ 15.25 seconds, dvy = 2Nm at

25 ≤ t ≥ 25.25 seconds and the attitude part is disturbed using (3.27), (3) +30%

model parameter uncertainty, and (4) −30% model parameter uncertainty. The

tracking trajectories, positions, quaternions, and angular velocities are shown in

Figures 3.8, 3.9, 3.10, and 3.11, respectively.

In Figures 3.4, 3.5, 3.8 and 3.9 the desired path (black) is tracked by the proposed

controller (:red) and it is caught with less than 3 seconds. In addition, the con-

troller under disturbance (–blue) can track the desired path and recovers from the

disturbances within less than one second. The controller under +30% model pa-

rameter uncertainty (:magenta) and −30% model parameter uncertainty (–black)

can track the desired path with very short time. The same result can be found in

Figures 3.6, 3.7, 3.10 and 3.11 with even more obvious disturbance rejection.

It can be seen that the proposed controller is able to track the desired trajectories.

The expected robustness is demonstrated by the disturbance rejection and the

recovery from changes caused by the parameter uncertainties.
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Figure 3.5: First Path Positions under H∞ Controller Based on Quaternion
Representation
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Figure 3.6: First Path Quaternion Components under H∞ Controller Based
on Quaternion Representation
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Quaternion Representation
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Figure 3.8: Second Path Tracking under H∞ Controller Based on Quaternion
Representation
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Figure 3.9: Second Path Positions under H∞ Controller Based on Quaternion
Representation
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Figure 3.10: Second Path Quaternion Components under H∞ Controller
Based on Quaternion Representation
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Path 1 Path 2
RMSE x(m) y(m) z(m) q3 x(m) y(m) z(m) q3

H∞ 0.019 0.0062 0.0088 0.00003 0.0266 0.0061 0.0013 0.0005
H∞ + d 0.0221 0.0419 0.0255 0.0018 0.0132 0.0112 0.0384 0.0005
H∞+30% 0.019 0.0062 0.0088 0.00003 0.0324 0.0102 0.0136 0.0017
H∞−30% 0.019 0.0062 0.0088 0.00003 0.0319 0.0088 0.0062 0.0006

Table 3.3: Position and q3 RMSE Values for the Two Paths under H∞ Con-
troller Based on Quaternion Representation

Path 1 Path 2
Max.
Error

x(m) y(m) z(m) q3 x(m) y(m) z(m) q3

H∞ 0.0258 0.0241 0.0530 0.0296 0.0416 0.0022 0.0405 0.0764
H∞ + d 0.2705 0.1136 0.0575 0.0992 0.4354 0.4218 0.0408 0.0017
H∞+30% 0.0276 0.0240 0.0530 0.0973 0.0848 0.0081 0.1597 0.0007
H∞−30% 0.0256 0.0242 0.0530 0.0337 0.0447 0.0025 0.0283 2e−5

Table 3.4: Position and q3 Maximum Error Values for the Two Paths under
H∞ Controller Based on Quaternion Representation

3.4 Flight Control Based On Euler Angles Rep-

resentation

In this section, we follow the procedure described earlier in Section 3.2 but with

the use of Euler angles to represent the quadrotor dynamical model. External

disturbances and model parameter uncertainties change are considered as well. A

robust controller is derived and tested in simulation via the H∞ optimal design

approach. The stability analysis is obtained via a selected Lyapunov function.

3.4.1 Attitude Stabilisation

The full quadrotor dynamic model is



ṗ = v

v̇ = −ge + f
m
Rθe

Ṙθ = RθS(ω)

Jω̇ = −S(ω)Jω −G(ω) + τE

(3.29)
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and the rotational matrix Rθ from the inertial frame to the body frame is

Rθ =


cψcθ cψsθsϕ− sψcϕ cψsθcϕ+ sψsϕ

sψcθ sψsθsϕ+ cψcϕ sψsθcϕ− cψsϕ

−sθ cθsϕ cθcϕ

 .

More details of the quadrotor model derivation based on Euler angles representa-

tion are described in Appendix A.

Assuming that ϕ, θ, ωx, ωy and ωz are very small, ζ = [ϕ, θ, ψ]T , η = ζ̇ =

[ϕ̇, θ̇, ψ̇]T = [ωx, ωy, ωz]
T and η̇ = [ϕ̈, θ̈, ψ̈]T = [ω̇x, ω̇y, ω̇z]

T , then Equation (3.29)

can be written for the attitude control purpose as:

f = mg

ϕ̈ = θ̇ψ̇ Jy−Jz
Jx

+ Jr
Jx
θ̇Ω + τϕ

Jx

θ̈ = ϕ̇ψ̇ Jz−Jx
Jy
− Jr

Jy
ϕ̇Ω + τθ

Jy

ψ̈ = ϕ̇θ̇ Jx−Jy
Jz

+
τψ
Jz

. (3.30)

The main goal is to asymptotically drive the quadrotor angles towards the desired

angles ζd = [0, 0, 0]T from initial angles with ηd = [0, 0, 0]T and the effect of added

disturbances d = dη = [dϕ̇, dθ̇, dψ̇]T tending to disappear and changed parameters

tending to be recovered. In mathematical terms, the aim is to satisfy the following

conditions:  limt→∞ ζ̃ = limt→∞(ζd − ζ) = 0

limt→∞ η̃ = limt→∞(ηd − η) = 0
. (3.31)

Then the rotational part of Equation (3.29) can be written in the error state form

as: 
˙̃ζ = η̃

J ˙̃η = S(η̃)Jη̃ +G(η̃)− τE
. (3.32)
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Let x = [ζ̃T , η̃T ]T and u = [G(η̃) − τE]T . The nonlinear system (3.32) with the

disturbance d can be written into an affine nonlinear form:

ẋ = f(x) + g(x)u + k(x)d (3.33)

where

f(x) =

 η̃

J−1S(η̃)Jη̃



g(x) = k(x) =

 03×3

J−1

 .

The H∞ suboptimal control approach described earlier in this chapter is used in

this section as well. By selecting the following Lyapunov function,

V (x) =
1

2

[
ζ̃T η̃T

] CζI JKζ

JKζ JKη

 ζ̃

η̃

 (3.34)

where diagonal matrices Kζ > 0 and Kη > 0 are the proportional and derivative

gains for translational and rotational parts. Cζ > 0 is constant, and its derivative

∂V (x)

∂x
= [Cζ ζ̃ + JKζ η̃ JKζ ζ̃ + JKηη̃],

then the controller is

u = −gT (x)
∂TV (x)

∂x

= −
[
Kζ ζ̃ +Kηη̃

]
. (3.35)

The following diagonal weighting matrices are chosen W2 > 0 and W4 > 0;

h(x) =
[ √

W2ζ̃
T
√
W4η̃

T

]T
,
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which satisfies h(x∗) = 0, where the equilibrium point x∗ = [01×3, 01×3]T . Then

the following conditions are obtained:

CζKη ≥ JK2
ζ

Cζ = KζKη

(
1− 1

γ2

)
‖Kζ‖2 ≥ γ2‖W2‖

γ2 − 1
(3.36)

‖Kη‖2 ≥ γ2(‖W4‖+ 2‖J‖‖Kζ‖)
γ2 − 1

(3.37)

‖W2‖ > 0; ‖W4‖ > 0

using the norms ‖η̃TJKηS(η̃)η̃‖ = 0, |η̃TJKζ η̃| ≤ ‖J‖‖Kζ‖‖η̃‖2 and |ζ̃TJKηS(η̃)η̃| =

0.

Then the total torque applied to the quadrotor is obtained as below:

u = −
[
Kζ ζ̃ +Kηη̃

]
= G(η̃)− τE.

Then

τE = Kζ ζ̃ +Kηη̃ +G(η̃). (3.38)

3.4.2 Path Tracking Control

The full mathematical model of the quadrotor (3.29) is used to control the quadro-

tor to track 3D paths. In this section, the procedure described in Section 3.2.3 is
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followed. The tracking errors can be written as:

p̃ = pd − p

ṽ = vd − v

η̃ = ηd − η

ζ̃ = ζd − ζ

and Equation (3.29) can be rewritten in an error form as:

˙̃p = ṽ

˙̃v = ge− f
m
Rθe

˙̃ζ = η̃

J ˙̃η = S(η̃)Jη̃ +G(η̃)− τE

. (3.39)

The main goal is to asymptotically drive the quadrotor towards the desired po-

sition pd from an initial position with the effect of added disturbances tending

to disappear and changed parameters tending to be recovered by satisfying the

following conditions:  limt→∞ p̃ = limt→∞(pd − p) = 0

limt→∞ ψ̃ = limt→∞(ψd − ψ) = 0
. (3.40)

Now we consider the robust control approach to the path tracking problem when

considering d = [dTv ,d
T
η ]T = [dvx, dvy, dvz, dϕ̇, dθ̇, dψ̇]T as the disturbance applied

to the nonlinear system (3.39). Those disturbances are used here to model the

changes of mass and moment, and the wind disturbances.
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Let

x =


p̃

ζ̃

ṽ

η̃


u =

 ge− f
m
Rθe

G(η̃)− τE

 .

The dynamic system (3.29) with the disturbance d can be written into an affine

nonlinear form:

ẋ = f(x) + g(x)u + k(x)d (3.41)

where

f(x) =


ṽ

η̃

03×1

J−1S(η̃)Jη̃



g(x) = k(x) =


03×3 03×3

03×3 03×3

I 03×3

03×3 J−1

 .

By choosing the following V function
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V (x) =
1

2

[
p̃T ζ̃T ṽT η̃T

]

CpI 03×3 Kp 03×3

03×3 CζI 03×3 JKζ

Kp 03×3 Kv 03×3

03×3 JKζ 03×3 JKη




p̃

ζ̃

ṽ

η̃

 (3.42)

where diagonal matrices Kp > 0, Kζ > 0, Kv > 0, Kη > 0 are the proportional

and derivative gains for translational and rotational parts. Cp > 0, Cζ > 0 are

constants. And

∂V (x)

∂x
= [ Cpp̃ +Kpṽ Cζ ζ̃ + JKζ η̃ Kpp̃ +Kvṽ JKζ ζ̃ + JKηη̃ ],

the controller is

u = −gT (x)
∂TV (x)

∂x

= −

 Kpp̃ +Kvṽ

Kζ ζ̃ +Kηη̃

 . (3.43)

The following diagonal weighting matrices are chosen W1 > 0, W2 > 0, W3 > 0

and W4 > 0;

h(x) = [
√
W1p̃

T
√
W2ζ̃

T
√
W3ṽ

T
√
W4η̃

T ]T ,

which satisfies h(x∗) = 0, where the equilibrium point x∗ = [01×3, 01×3, 01×3, 01×3]T .

And we know

V (x∗) = 0.

Now the path tracking problem of the quadrotor under the disturbance d is defined

below.
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Problem 4. Given the equilibrium point x∗, find the parametersKp, Kζ , Kv, Kη, Cp,

Cζ in order to enable the closed-loop system (3.41) with the above controller u

(3.43) to have L2-gain less than or equal to γ.

Next, our main result is represented in the following theorem.

Theorem 3.4. If the following conditions are satisfied, the closed-loop system

(3.41) with the above controller u (3.43) has L2-gain less than or equal to γ. And

the closed loop system (3.41), (3.43) with d = 0 is asymptotically locally stable for

the equilibrium point x∗.

CpCζ ≥ 0

CpKv ≥ K2
p

CpCζKvKη ≥ CpJK
2
ζKv − JK2

ζK
2
p + CζK

2
pKη

Cp = KpKv

(
1− 1

γ2

)
Cζ = KζKη

(
1− 1

γ2

)
‖Kp‖2 ≥ γ2‖W1‖

γ2 − 1
(3.44)

‖Kζ‖2 ≥ γ2‖W2‖
γ2 − 1

(3.45)

‖Kv‖2 ≥ γ2(‖W3‖+ 2‖Kp‖)
γ2 − 1

(3.46)

‖Kη‖2 ≥ γ2(‖W4‖+ 2‖J‖‖Kζ‖)
γ2 − 1

(3.47)

‖W1‖ > 0; ‖W2‖ > 0; ‖W3‖ > 0; ‖W4‖ > 0.

Proof. With the given conditions, we need to show (1) V (x) ≥ 0 and (2) the

Hamiltonian Hγ(x, V (x)) ≤ 0. Then the first part of the theorem can be proved

by using Theorem 3.1.
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(1) From Equation (3.43) the conditions for V (x) ≥ 0 are

CpCζ ≥ 0

CpKv ≥ K2
p

CpCζKvKη ≥ CpJK
2
ζKv − JK2

ζK
2
p + CζK

2
pKη

(2)

Hγ(x, V (x)) = p̃TCpṽ + ṽTKpṽ + ζ̃TCζ η̃ + η̃TJKζ η̃ + ζ̃TJKζS(η̃)η̃

+ η̃TJKηS(η̃)η̃ +
1

2

(
1

γ2
− 1

)
‖Kpp̃ +Kvṽ‖2

+
1

2

(
1

γ2
− 1

)
‖Kζ ζ̃ +Kηη̃‖2 +

1

2
‖W1‖‖p̃‖2 +

1

2
‖W2‖‖ζ̃‖2

+
1

2
‖W3‖‖ṽ‖2 +

1

2
‖W4‖‖η̃‖2.

By choosing

Cp = KpKv

(
1− 1

γ2

)
Cζ = KζKη

(
1− 1

γ2

)
,

then

Hγ(x, V (x)) = ṽTKpṽ + η̃TJKζ η̃ + ζ̃TJKζS(η̃)η̃ + η̃TJKηS(η̃)η̃

+
1

2

(
1

γ2
− 1

)(
‖Kp‖2‖p̃‖2 + ‖Kv‖2‖ṽ‖2

)
+

1

2

(
1

γ2
− 1

)(
‖Kζ‖2‖ζ̃‖2 + ‖Kη‖2‖η̃‖2

)
+

1

2
‖W1‖‖p̃‖2

+
1

2
‖W2‖‖ζ̃‖2 +

1

2
‖W3‖‖ṽ‖2 +

1

2
‖W4‖‖η̃‖2.

By using |ṽTKpṽ| ≤ ‖Kp‖‖ṽ‖2, ‖S(η̃)‖ = ‖η̃‖, ‖η̃TJKηS(η̃)η̃‖ = 0, |η̃TJKζ η̃| ≤

‖J‖‖Kζ‖‖η̃‖2 and |ζ̃TJKηS(η̃)η̃| = 0, we have
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Hγ(x, V (x)) = ‖Kp‖‖ṽ‖2 + ‖J‖‖Kζ‖‖η̃‖2 +
1

2

(
1

γ2
− 1

)
(‖Kp‖2‖p̃‖2

+ ‖Kv‖2‖ṽ‖2) +
1

2

(
1

γ2
− 1

)(
‖Kζ‖2‖ζ̃‖2 + ‖Kη‖2‖η̃‖2

)
+

1

2
‖W1‖‖p̃‖2 +

1

2
‖W2‖‖ζ̃‖2 +

1

2
‖W3‖‖ṽ‖2 +

1

2
‖W4‖‖η̃‖2.

Thus, the conditions for Hγ(x, V (x)) ≤ 0 are

1

2

(
1

γ2
− 1

)
‖Kp‖2 +

1

2
‖W1‖ ≤ 0

1

2

(
1

γ2
− 1

)
‖Kζ‖2 +

1

2
‖W2‖ ≤ 0

‖Kp‖+
1

2

(
1

γ2
− 1

)
‖Kv‖2 +

1

2
‖W3‖ ≤ 0

‖J‖‖Kζ‖+
1

2

(
1

γ2
− 1

)
‖Kη‖2 +

1

2
‖W4‖ ≤ 0;

i.e.

‖Kp‖2 ≥ γ2‖W1‖
γ2 − 1

‖Kζ‖2 ≥ γ2‖W2‖
γ2 − 1

‖Kv‖2 ≥ γ2(‖W3‖+ 2‖Kp‖)
γ2 − 1

‖Kη‖2 ≥ γ2(‖W4‖+ 2‖J‖‖Kζ‖)
γ2 − 1

.

It is trivial to show that the nonlinear system (3.41) is zero-state observable for

the equilibrium point x∗. Further, due to the fact that V (x) ≥ 0 and it is a

proper function (i.e. for each β > 0 the set {x : 0 ≤ V (x) ≤ β} is compact), the

closed-loop system (3.41), (3.43) with d = 0 is asymptotically locally stable for

the equilibrium point x∗ according to Proposition 1. This proves the second part

of the theorem.
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Remark 2. It should be noted that the proof of Theorem 3.4, limt→∞ p̃ = 0,

limt→∞ ζ̃ = 0, limt→∞ ṽ = 0 and limt→∞ η̃ = 0 meets the conditions of (3.40).

Finally from u, we can have

u =

 ge− f
m
Rθe

G(η̃)− τE


= −

 Kpp̃ +Kvṽ

Kζ ζ̃ +Kηη̃

 .
Then the total force and the torque vector applied to the quadrotor, f and τE ∈ R3,

are

f =(kpz z̃ + kvzṽz + g)
m

cϕcθ
(3.48)

τE = Kζ ζ̃ +Kηη̃ +G(η̃). (3.49)

3.5 Simulations

The proposed H∞ controller was tested in a MATLAB quadrotor simulator. To

test the robustness of the proposed controller, the model parameter uncertainties

(mass and inertia) were increased and decreased by ±30% and a force disturbance

of 2N was added in different operation times to the positions for 0.25 seconds du-

ration, while the disturbances added to the attitude were of the form described in

(3.27) and (3.28). The quadrotor parameters used in the simulation are described

in Table 3.1.

3.5.1 Attitude Stability

Attitude control simulation testing included monitoring the response to the ex-

ternal disturbances (3.27) and (3.28) and ±30% model parameter uncertainties
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Figure 3.12: Euler Angles under H∞ Controller

with non-zero initial conditions. Running the simulator using the attitude con-

troller (3.38) with no external disturbances and model parameter uncertainties

(Nominal), with external disturbance in (3.27) (Disturbanced d1), with external

disturbance in (3.28) (Disturbanced d2), +30% model parameter uncertainties

(+30% Mass) and −30% model parameter uncertainties (−30% Mass) shows that

the external disturbance disrupted the attitude performance slightly and it was

rejected after one second (Figure 3.12). The thrust and torques applied to the

system were illustrated in Figure 3.13. Additionally, the controller was able to

recover the model parameter uncertainties over the running time interval.

As a result of solving the conditions (3.36) and (3.37) using γ = 1.05, W2 =

diag(10, 235, 235) and W4 = diag(0.01, 5.7, 5.7), the controller parameters were

Kζ = diag(10, 50, 50) and Kη = diag(0.1, 8.09, 8.4).
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Figure 3.13: Thrust and Torques Input under H∞ Controller

3.5.2 Path Tracking

This section presents the path tracking simulation results done with H∞ control

laws (3.48) and (3.49). Two different paths were used to validate the proposed

controller in simulation. The first desired path used was defined by xd = 2 cos(tπ/80) ; yd = 2 sin(tπ/80)

zd = 1 + 0.1t ; ψd = π/6
.

The quadrotor initial positions were [x, y, z]T = [2, 0, 0]T metres and the initial

angles were [ϕ, θ, ψ]T = [0, 0, 0]T radian. The second desired path used was defined

by  xd = 0.5 sin(0.5t) ; yd = 0.5 cos(0.5t)

zd = 1 + 0.1t ; ψd = 0
.

The quadrotor initial positions were [x, y, z] = [0, 0.5, 0] metres and the initial

angles were [ϕ, θ, ψ]T = [0, 0, 0]T radian. The constant γ was chosen to be γ =

1.05 and the norms of the weighting matrices were chosen to be W1z = 760,
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W2 = diag(10, 235, 235), W3z = 50 and W4 = diag(0.01, 5.7, 5.7). Under these

parameters the feedback control matrices were obtained to be kpz = 90, kvz = 50,

Kζ = diag(10, 50, 50) and Kη = diag(0.1, 8.09, 8.4).

The performance of tracking the first path is illustrated in Figures 3.14 - 3.16, while

Figures 3.17 - 3.19 display the tracking performance of the second path using the

proposed H∞ controller. These figures have the conditions (1) no disturbance,

(2) force disturbance dvz = −2Nm during 10 ≤ t ≤ 10.25 seconds, dvx = 2Nm

during 20 ≤ t ≤ 20.25 seconds, dvy = 2Nm during 30 ≤ t ≤ 30.25 seconds and

the attitude disturbed using (3.27) during the flight interval, (3) +30% model

parameter uncertainty, and (4) −30% model parameter uncertainty.

As can be seen in Figures 3.14 - 3.19, simulations of the proposed H∞ controller

showed good performance in terms of position tracking errors. The desired path

was tracked by the proposed controller and it was caught with less than 3 seconds.

In addition, the controller under disturbance was able to track the desired path

and recover from the disturbances within less than 2 seconds. The controller under

+30% model parameter uncertainty and −30% model parameter uncertainty was

able to track the desired path as the nominal path.

Table 3.5 demonstrates the positions and yaw angle RMSE values of the two paths.

It is clear that the RMSE values of the proposed H∞ controller were almost the

same when using the H∞ controller in normal conditions and with ±30% model

parameter uncertainty in both paths, while they slightly increased with the use

of disturbances. In general, it can be seen that the proposed controller was able

to track the desired trajectories. The expected robustness was demonstrated by

the disturbance rejection and the recovery from changes caused by the parameter

uncertainties.
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Figure 3.14: First Path tracking under H∞ Controller Based on Euler Angles
Representation

0 5 10 15 20 25 30 35 40
−2

0

2

4

 x
 (

m
) 

 

 
Desired
Nominal
Distirbanced
+30% Mass
−30% Mass

0 5 10 15 20 25 30 35 40
0

1

2

3

 y
 (

m
) 

0 5 10 15 20 25 30 35 40
0

2

4

6

 Time sec 

 z
 (

m
) 

Figure 3.15: First Path Position under H∞ Controller Based on Euler Angles
Representation



Chapter 3. Attitude Stabilisation and Path Tracking 75

 Time (sec) 

0 5 10 15 20 25 30 35 40

 Y
a
w

 (
ra

d
) 

0

0.1

0.2

0.3

0.4

0.5

0.6

Nominal

Distirbanced

+30% Mass

-30% Mass

Figure 3.16: First Path Yaw Angle under H∞ Controller Based on Euler
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Figure 3.18: Second Path Position under H∞ Controller Based on Euler An-
gles Representation
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Path 1 Path 2
RMSE x(m) y(m) z(m) ψ(deg.) x(m) y(m) z(m) ψ(deg.)
H∞ 0.0004 0.0028 0.0857 0.0004 0.0004 0.0004 0.0857 0
H∞ + d 0.0030 0.0106 0.0857 0.0004 0.0071 0.0108 0.0868 6e−6
H∞+30% 0.0004 0.0028 0.0857 0.0004 0.0020 0.0081 0.0857 0
H∞−30% 0.0004 0.0028 0.0857 0.0004 0.0020 0.0081 0.0857 0

Table 3.5: Position and ψ RMSE Values for the Two Paths under H∞ Con-
troller Based on Euler Angles Representation

3.6 Experiments

3.6.1 Quadrotor Platform Setup

The experimental platform available at the robot arena laboratory at the uni-

versity of Essex and used in this thesis is a Hummingbird quadrotor designed by

Ascending Technology shown in Figure 1.1. It is mounted by two micro-controllers

with a (60MHz) CPU clock, running at (1KHz) and executing several tasks simul-

taneously. It also has two standard XBee-PRO wireless serial link modules to

send and receive the packet data from the computer to the UAV and vice versa

through 12 direct sequence channels and its actual transmission rate is up to 100

Hz sending IMU and gyro data. Moreover, the vehicle has useful indoor and out-

door application sensors with small neglected errors, such as IMU, whereas the

others have significant errors in indoor applications, and are useful only outdoors,

such as GPS and Barometer [120][121].

The AscTec. Hummingbird quadrotor UAV has four motors. Each one creates a

vertical force fi which depends on its angular speed according to Equation (3.50),

fi = KfΩ
2
i (3.50)

whereKf ≈ 6.11×10−10 N
rpm2 . The moment is also produced according to Equation

(3.51).

Mi = KMΩ2
i (3.51)
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where KM ≈ 1.5× 10−9 Nm
rpm2 . The motor mathematical model is a first order dif-

ferential equation that illustrates the rotor speed depending on the desired speed.

Ω̇i = Km(Ωdesi − Ωi) (3.52)

where Km = 20s−1 [122].

The information used to control the quadrotor was received from an IMU, mounted

on the quadrotor itself, and from a Vicon Motion Capture System which was fixed

in the robot arena laboratory. The speed and the angular velocity of the quadrotor

were received from the IMU sensor while the estimated position of the quadrotor

was received from the Vicon system. Figure 3.20 shows the control diagram used

in this work; it can be noticed that the communication between the computer

and the quadrotor was achieved via two Xbees: the first one was mounted on the

quadrotor while the second one was connected to the computer. The position of

the quadrotor was obtained and calculated by the Vicon system at 50 Hz and

received by the computer, which also ran at 50 Hz, to be used in the controller

calculations. Then the controller’s action was sent via the Xbee to the high level

on-board microcontroller in the vehicle, which directly controls the motors’ speed.

Two of this type of quadrotor will be used in Chapter 4 as leader and follower in

real tests.

3.6.2 Quadrotor Flight Performance

In order to validate the proposed H∞ controller and assess its robustness to the

external disturbances and weight changes, the controller was implemented on the

vehicle and tested to follow three different paths in indoor flights with a consid-

eration of the external disturbances and weight changes. The quadrotor in path

tracking flight is shown in Figure 3.28. The three trajectories that were followed

by the vehicle were as follows.
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(1) It took off at the origin point and hovered at 1.5 metres, then it moved 1 metre

towards the x-direction. After that, it drew a square of 2 metres side length and

then landed.

(2) It took off and hovered at 1.5 metres above the origin point. Then it moved 1

meter towards the x-direction, drew a circle of a 2 metres diameter and landed.

(3) It took off and hovered at 0.5 metres, flew around a vertical spiral of 1.5 metres

height and a 2 metres circle diameter, moved 1 meter towards the origin point and

then landed.

The results are illustrated in Figures 3.21 - 3.27 with (:red) is the normal per-

formance, (:magenta) is the performance of +20% mass, and (–blue) is the per-

formance with disturbances (the external disturbance input is introduced by a

wooden stick).

Figure 3.21 shows the take-off for 1.5 metres, hovering for 60 seconds and land-

ing with disturbances in different times and directions. Figure 3.22 illustrates the

performance of the vehicle tracking the first trajectory in three dimensions, and

Figure 3.23 shows its top view. Figures 3.24 and 3.25 demonstrate the perfor-

mance of the quadrotor following the second path in a three dimensions and a

two dimensions X − Y horizontal plane, respectively. The results of tracking the

third path in three dimension and its positions are illustrated in Figures 3.26 and

3.27 respectively. The disturbances of the trajectories in these figures were caused

by the external force exerted on the vehicle. As depicted in these figures, the

controller achieved good tracking performance with a very small overshoot and a

steady state error. The results also show the very good robustness in the presence

of weight changes and external disturbances. The controller reveals the ability

to recover the effect of external disturbance and the weight changes quickly and

smoothly. It should be noted that the proposed controllers were able to track dif-

ferent trajectories, reject the external disturbances and cover the model parameter

uncertainties practically with very small errors.
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Figure 3.20: Experimental Control Block Diagram
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Figure 3.21: Takeoff, Hovering and Landing
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Figure 3.22: Takeoff, Square and Landing in 3D
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Figure 3.23: Takeoff, Square and Landing, Top View
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Figure 3.24: Takeoff, Circle and Landing in 3D
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Figure 3.25: Takeoff, Circle and Landing, Top View
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Figure 3.26: Takeoff, Spiral and Landing in 3D
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Figure 3.27: Takeoff, Spiral and Landing, Top View
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Figure 3.28: Individual Quadrotor in Path Tracking Flight

3.7 Discussions

This chapter has illustrated the theory and derivation procedure of the H∞ to

find a suboptimal controller for the rotational and translational parts of a quadro-

tor to perform autonomous flight with the presence of external disturbances and

model parameter uncertainties effects. The control strategy had a feedback loop

to control the quadrotor. Our controllers were derived for the quadrotor dynamic

system represented based on quaternions and Euler angles with a nonlinear dy-

namic effect. The stability issue of the proposed H∞ suboptimal controller was

examined and its conditions were obtained via choosing suitable Lyapunov func-

tions. The overall controllers were successfully tested in simulation through several

paths. Experientially the position controller was efficiently tested on an AscTec.

Hummingbird quadrotor to track various paths. In simulation and experiment

flight, the proposed controllers showed the ability to cover the model parameter

uncertainties change and quick external disturbances rejection. The quadrotor

controlled in this chapter is reused as a leader in leader-follower team formation

control in next chapter. The H∞ theory is also reused in the next chapter for team

formation control design to find the follower controllers.



Chapter 4

Team Formation Control

4.1 Introduction

The multi-robot formation control problem has received a lot of attention in the

last decades. In this chapter, theH∞ control technique described earlier in Chapter

3 was extended to the leader-follower formation control problem of quadrotor

UAVs, with no change to the process of designing a state feedback controller.

The leader-follower formation control problem to be solved in this chapter was a

distributed control scheme; i.e. the leader and the follower had their own individual

controllers without the need for a centralised unit. Therefore, the controllers

derived in Chapter 3 for individual quadrotor path tracking were used as a leader in

formation control. The follower controllers were designed to track the leader with

the presence of external disturbances, once when the quadrotors were represented

based on quaternion and the other when they were represented based on Euler

angles. The stability and robustness conditions of the follower controllers were

presented by selecting a suitable Lyapunov function.

Two identical quadrotors were used as leader-follower in simulation and practical

tests. Two different predefined paths were presented to prove the robustness of

the H∞ control technique in simulation and several paths were also presented in

the practical phase.

85
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4.2 The Leader-Follower Formation Problem Based

on Quaternion Representation

To describe the orientation of a quadrotor, the quaternion representation is used.

The full dynamic model (3.7) of a quadrotor can be written as:

ṗi = vi

v̇i = −ge + fi
mi
Riqe q̇i0

q̇i

 = 1
2

 −qTi ωi

(qi0I + S(qi))ωi


Jiω̇i = −S(ωi)Jiωi −G(ωi) + τiq

. (4.1)

4.2.1 The Leader-Follower Formation Control Problem

One leader and one follower are considered in the leader-follower formation control

problem to be solved in this chapter. The leader control problem is formulated

as a trajectory tracking, and the follower control problem is also formulated as a

tracking problem, but with a different tracking target.

The follower keeps its yaw angle (qF0, qF3) the same as the leader when it maintains

the formation pattern. It moves to a desired position pFd, which is determined by

a desired distance d, a desired incidence angle ρ, and a desired bearing angle σ.

A new frame F ′ is defined by the translation of the leader frame L to the frame

with the desired follower position pFd as the origin. As shown in Figure 4.1, the

desired incidence angle is measured between the desired distance d and the x− y

plane in the new frame F ′, and the desired bearing angle is measured between the

x axis and the projection of the d in x− y plane in the new frame F ′. The desired

position pFd is

pFd = pL −RT
Lqd


cos ρ cosσ

cos ρ sinσ

sin ρ

 .
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Now, the formation control problem for the follower is to satisfy the following

conditions: 
limt→∞(pFd − pF ) = 0

limt→∞(qL0 − qF0) = 0

limt→∞(qL3 − qF3) = 0

. (4.2)

The leader just tracks a desired trajectory represented by (pLd, qL0d, qL3d). So, the

formation control problem for the leader is to satisfy the following conditions:


limt→∞(pLd − pL) = 0

limt→∞(qL0d − qL0) = 0

limt→∞(qL3d − qL3) = 0

. (4.3)

In summary, the leader-follower formation control problem to be solved in this

chapter is a distributed control scheme. Assume both the leader and the follower

are able to obtain their own pose information and the follower is able to obtain

the leader’s pose information via wireless communication. The design goal of the

controllers is to find the state feedback control law for the thrust and torque inputs

for both the leader and the follower. The leader-follower formation control problem

is solved if both conditions (4.2) and (4.3) are satisfied.

The communication among the robots is assumed to be available. The position

pL, quaternion components qL0 and qL3 of the leader L and their first and second

derivatives q̇L0, q̈L0, q̇L3 and q̈L3 are assumed available and measurable. The linear

velocity of the leader L and its derivative vL and v̇L are assumed bounded and

available for the follower.

4.3 Formation H∞ Controllers

The controller design for the leader and the follower is based on H∞ suboptimal

control. The follower H∞ controller is designed by following the introduction of
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Figure 4.1: Body Frames in Formation

an error state model, and the introduction of a H∞ control theorem for general

affine systems. The leader H∞ controller was presented in the previous chapter.

4.3.1 Follower State Error Model

The control strategy for the follower is to track the desired position pFd. The

tracking errors for the follower according to the nonlinear dynamic system (4.1)
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can be written as:

p̃F = pFd − pF

ṽF = vFd − vF q̃F0

q̃F

 =

 qF0d − qF0

qFd − qF


ω̃F = ωFd − ωF

where vFd = ṗFd is the desired linear velocity, [qF0d,qFd]
T = [qL0, 0, 0, qL3]T is the

desired quaternion, and [ωFd] = [0, 0, 0]T is the desired angular velocity.

4.3.2 Follower H∞ Controller

The control strategy for the follower is to track the leader trajectory. The tracking

errors for the follower according to the nonlinear dynamic system (4.1) can be

written as:



˙̃pF = ṽF

˙̃vF = v̇Fd + ge− fF
mF
RFqe ˙̃qF0

˙̃qF

 = 1
2

 q̃TF ω̃F

− (q̃F0I + S(q̃F )) ω̃F


JF ˙̃ωF = S(ω̃F )JF ω̃F +G(ω̃F )− τFq

. (4.4)

Consider the external disturbances dF = [dTvF ,d
T
ωF ]T applied to the nonlinear

system (4.4).
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Let

xF =



p̃F

q̃F0

q̃F

ṽF

ω̃F


uF =

 v̇Fd + ge− fF
mF
RFqe

G(ω̃F )− τFq

 .
The nonlinear dynamic system (4.4) with the disturbance vector dF can be written

into an affine nonlinear form:

ẋF = f(xF ) + g(xF )uF + k(xF )dF (4.5)

where

f(xF ) =



ṽF

1
2
q̃TF ω̃F

−1
2

(q̃F0I + S(q̃F )) ω̃F

03×1

J−1
F S(ω̃F )JF ω̃F



g(xF ) =



03×3 03×3

01×3 01×3

03×3 03×3

I 03×3

03×3 J−1
F



k(xF ) =



03×3 03×3

01×3 01×3

03×3 03×3

I 03×3

03×3 J−1
F


.
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The H∞ suboptimal control approach is used to design the follower controller. By

defining an energy function, the follower controller is obtained as below by follow-

ing a similar procedure to that described in Section 3.2.3 for stability analysis.

The total force and the torque vector are applied to the follower, fF and τFq ∈ R3;

fF =(kFz z̃F + kFvz ṽFz + v̇Lz − d(Rq31 cos ρ cosσ +Rq32 cos ρ sinσ +Rq33 sin ρ) + g)

mF

q2
F0 − q2

F1 − q2
F2 + q2

F3

τFq = KFqq̃F +KFωω̃F +G(ω̃F )

where

R̈T
Lq =


Rq11 Rq12 Rq13

Rq21 Rq22 Rq23

Rq31 Rq32 Rq33

 .

4.4 Simulations

A scenario of two identical quadrotors using a MATLAB simulator was considered

to track a desired path for the leader and maintain the desired distance, desired

incidence angle and desired bearing angle between them for the follower. The

quadrotor parameters used in the simulation are described in Table 3.1.

Two predefined or desired paths were tested. The first path for the leader to track

was  xLd = 2 cos(tπ/80) ; yLd = 2 sin(tπ/80)

zLd = 1 + 0.1t ; qL3d = 0

with the initial conditions pL = [2, 0, 0]T metres and [qL0,q
T
L]T = [−1, 0, 0, 0]T .

The follower tried to maintain the desired distance with the leader d = 2 metres,

the desired incidence angle ρ = 0 and the desired bearing angle σ = −π/12. The

initial condition of the follower was pF = [0.1, 0.5, 0]T metres and [qF0,q
T
F ]T =

[−1, 0, 0, 0]T .
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The second path was xLd = sin(tπ/20) ; yLd = cos(tπ/20)

zd = 1 + 0.1t ; qL3d = 0

with the initial conditions pL = [0, 1, 0]T metres and [qL0,q
T
L]T = [−1, 0, 0, 0]T .

The follower tried to maintain the desired distance with the leader d = 2 metres,

the desired incidence angle ρ = π/6 and the desired bearing angle σ = 0. The

initial condition of the follower was pF = [−1.7, 1, 0]T metres and [qF0,q
T
F ]T =

[−1, 0, 0, 0]T .

For the first path, the constant γ was chosen to be γL = γF = 1.05 and the

weighting matrices were chosen to be WL1z = 1150, WF1z = 1575, WL2 = WF2 =

diag(0.0235, 0.0235, 0.0009), WL3z = 10, WF3z = 675, andWL4 = WF4 = diag(0.0043

, 0.0043, 0.00156). Under these parameters, the feedback control matrices were ob-

tained to be kLz = 111, kLvz = 50, kFz = 130, kFvz = 100, KLq = KFq =

diag(0.5, 0.5, 0.095) and KLω = KFω = diag(0.07, 0.07, 0.025).

For the second path, the constant γ was chosen to be γL = γF = 1.05, and

the weighting matrices were chosen to be WL1z = WF1z = 1150, WL2 = WF2 =

diag(0.0235, 0.0235, 0.0009), WL3z = WF3z = 10 and WL4 = WF4 = diag(0.0043

, 0.0043, 0.00156). Under these parameters, the feedback control matrices were

obtained as, kLz = kFz = 111, kLvz = kFvz = 50, KLq = KFq = diag(0.5, 0.5, 0.095)

and KLω = KFω = diag(0.07, 0.07, 0.025).

The obtained results are shown in Figures 4.2 - 4.8 with the conditions (1) no

disturbance, (2) force disturbance dviz = −2Nm at 10 ≤ t ≥ 10.25 seconds,

dvix = 2Nm at 20 ≤ t ≥ 20.25 seconds, dviy = 2Nm at 30 ≤ t ≥ 30.25 seconds

and the attitude part for the leader and the follower is disturbed using (3.27), (3)

+20% model parameter uncertainty, and (4) −20% model parameter uncertainty.

The above conditions were applied for the leader and the follower at the same

time.



Chapter 4.Team Formation Control 93

3
2

1

 x (m) 

0
-1

-2-1

0

 y (m) 

1

2

5

4

3

2

1

0

6

3

 z
 (

m
) 

Nominal

Disturbanced

+20% Mass

-20% Mass

Figure 4.2: Leader-Follower Formation in First Path under H∞ Controller
Based on Quaternion Representation

Figures 4.2 and 4.5 show the formation trajectories of two quadrotors obtained

using the H∞ controllers when they tracked path 1 and path 2, respectively. From

these figures we can see that the H∞ controllers produced good formation perfor-

mances with small acceptable errors, fast rejection of the external disturbances,

and quick recovery of the model parameter uncertainties. The quaternions of the

leader and the follower for path 1 and path 2 are shown in Figures 4.3, 4.4, 4.6,

and 4.7 with small oscillations. The distances between the leader and the follower

for the two paths are shown in Figure 4.8. Again, less oscillation in disturbance

rejection was observed from the result of both paths.

Figures 4.9 and 4.10 show the performance of both paths when only the leader

was affected by force disturbance dvLz = −4Nm during 10 ≤ t ≥ 10.25 seconds,

dvLx = 4Nm during 20 ≤ t ≥ 20.25 seconds, dvLy = 4Nm during 30 ≤ t ≥ 30.25

seconds, and the leader attitude part is disturbed using (3.27).

It is clear that the follower tracked the leader and maintained the distance with

very small errors in all circumstances.
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Figure 4.5: Leader-Follower Formation in Second Path under H∞ Controller
Based on Quaternion Representation
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4.5 The Leader-Follower Formation Problem Based

on Euler Angles Representation

The full dynamic model based on Euler angles (3.29) of a quadrotor can be written

as: 

ṗi = vi

v̇i = −ge + fi
mi
Riθe

ζ̇i = ηi

Jiη̇i = S(ηi)Jiηi +G(ηi)− τiE

(4.6)

and the formation problem is to satisfy the following conditions: limt→∞(pFd − pF ) = 0

limt→∞(ψL − ψF ) = 0
(4.7)

and  limt→∞(pLd − pL) = 0

limt→∞(ψLd − ψL) = 0
(4.8)

where

pFd = pL −RT
Lθd


cos ρ cosσ

cos ρ sinσ

sin ρ

 .

The communication among the robots is assumed to be available. The position

pL, yaw angle ψL of the leader L and its first and second derivatives ψ̇L and ψ̈L

are assumed to be available and measurable. The linear velocity of the leader L

and its derivatives vL and v̇L are assumed bounded and available for the follower.
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4.6 Formation H∞ Controllers

The controller design for the leader and the follower is based on H∞ suboptimal

control as well. The follower H∞ controller is designed by following the introduc-

tion of an error state model, and the introduction of a H∞ control theorem for

general affine systems. The leader H∞ controller was presented in Section 3.4.2.

4.6.1 Follower State Error Model

The control strategy for the follower is to track the desired position pFd. The

tracking errors for the follower according to the nonlinear dynamic system (4.6)

can be written as:

p̃F = pFd − pF

ṽF = vFd − vF

ζ̃F = ζFd − ζF

η̃F = ηFd − ηF

where vFd = ṗFd is the desired linear velocity, [ζFd] = [0, 0, ψL]T is the desired

angles, and [ηFd] = [0, 0, 0]T is the desired angles derivative.

4.6.2 Follower H∞ Controller

Equation (4.6) can be rewritten in an error form as:

˙̃pF = ṽF

˙̃vF = v̇Fd + ge− fF
mF
RFθe

˙̃ζF = η̇F

JF ˙̃ηF = S(η̃F )JF η̃F +G(η̃F )− τFE

. (4.9)

Consider the external disturbances dF = [dTvF ,d
T
ηF ]T applied to the nonlinear

system (4.9).
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Let

xF =


p̃F

ζ̃F

ṽF

η̃F


uF =

 v̇Fd + ge− fF
mF
RFθe

G(η̃F )− τFE

 .
The nonlinear dynamic system (4.9) with the disturbance vector dF can be written

into an affine nonlinear form:

ẋF = f(xF ) + g(xF )uF + k(xF )dF (4.10)

where

f(xF ) =


ṽF

η̃F

03×1

J−1
F S(η̃F )JF η̃F



g(xF ) =


03×3 03×3

03×3 03×3

I 03×3

03×3 J−1
F



k(xF ) =


03×3 03×3

03×3 03×3

I 03×3

03×3 J−1
F

 .

The H∞ suboptimal control approach is used to design the follower controller. By

defining an energy function, the follower controller is obtained as below by follow-

ing a similar procedure to that described in Section 3.4.2 for stability analysis.
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Then from uF , we can have

uF =

 v̇Fd + ge− fF
mF
RFθe

G(η̃F )− τFE


= −

 KFpp̃F +KFvṽF

KFζ ζ̃F +KFηη̃F

 .
Then the total force and the torque vector are applied to the follower, fF and

τFE ∈ R3;

fF =(kFz z̃F + kFvz ṽFz + v̇Lz − d(Rθ31 cos ρ cosσ +Rθ32 cos ρ sinσ +Rθ33 sin ρ) + g)

mF

cϕLcθL

τFE = KFζ ζ̃F +KFηη̃F +G(η̃F )

where

R̈T
Lθ =


Rθ11 Rθ12 Rθ13

Rθ21 Rθ22 Rθ23

Rθ31 Rθ32 Rθ33

 .

4.7 Simulations

Two paths were presented in the simulation to show the performance of using the

proposed controller with four different circumstances. The first desired path to be

tracked by the leader was xLd = 2 cos(tπ/80) ; yLd = 2 sin(tπ/80)

zLd = 1 + 0.1t ; ψLd = π/6
.

The leader initial positions were [xL, yL, zL]T = [2, 0, 0]T metres and the initial

angles were [ϕL, θL, ψL]T = [0, 0, 0]T radian. Then the follower followed the leader

and maintained the desired distance between them d = 2 metres, the desired

incidence and bearing angles ρ = −π/6, σ = π/6 radian, respectively. The follower
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initial positions were [xF , yF , zF ]T = [0.5, 0, 0]T metres and the initial angles were

[ϕF , θF , ψF ]T = [0, 0, 0]T radian. The second desired path to be tracked by the

leader was  xLd = 4 cos(tπ/40) ; yLd = 4 sin(tπ/40)

zLd = 1 + 0.1t ; ψLd = π/6
.

The leader initial positions were [xL, yL, zL]T = [4, 0, 0]T metres and the initial

angles were [ϕL, θL, ψL]T = [0, 0, 0]T radian. Then the follower followed the leader

and maintained the desired distance between them d = 3 metres, the desired

incidence and bearing angles ρ = 0, σ = π/6 radian, respectively. The follower

initial positions were [xF , yF , zF ]T = [1.4,−1.5, 0]T metres and the initial angles

were [ϕF , θF , ψF ]T = [0, 0, 0]T radian.

Figures 4.11 and 4.14 indicate the response of the proposed H∞ when the leader

tracked the first and second desired paths, respectively. Figure 4.17 shows the

distances between the leader and the follower in the two paths, and Figures 4.12,

4.13, 4.15 and 4.16 illustrate the yaw angle behaviour for the leader and the fol-

lower via the two paths, respectively. Its four circumstances included: (1) no

disturbance, (2) force disturbance dvix = −2Nm during 10 ≤ t ≥ 10.25 seconds,

dviz = 2Nm during 20 ≤ t ≥ 20.25 seconds, dviy = 2Nm during 30 ≤ t ≥ 30.25

seconds in the first path, dvix = −2Nm during 20 ≤ t ≥ 20.25 seconds, dviz = 2Nm

during 60 ≤ t ≥ 60.25 seconds, dviy = 2Nm during 100 ≤ t ≥ 100.25 seconds in

the second path, and the attitude part for the leader and the follower is disturbed

using (3.27), applied at the same time for both the leader and the follower, (3)

+30% model parameter uncertainty, and (4) −30% model parameter uncertainty.

Figures 4.18 and 4.19 show the performance of both paths when only the leader

was affected by force disturbance dvLx = −4Nm during 20 ≤ t ≥ 20.25 seconds,

dvLz = 4Nm during 60 ≤ t ≥ 60.25 seconds, dvLy = 4Nm during 100 ≤ t ≥ 100.25

seconds, and the leader attitude part is disturbed using (3.27).

From Figures 4.11 - 4.19 the overshoots of using the H∞ controller were very small

and the RMSE values of the desired distances between the leader and the follower
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Figure 4.11: Leader-Follower Formation in First Path under H∞ Controller
Based on Euler Angles Representation

were also very small and the controller’s performance was fast in rejecting the

disturbances as well. As a result, the proposed H∞ controller indeed produced

excellent control performance.

4.8 Experimental Results

Experimental results are presented in this section with one leader and one fol-

lower tested by using three different paths in an indoor flight environment with

consideration of external disturbances and weight changes. The leader tracked a

predefined path, then the follower used the leader’s actual position to calculate

its path to follow. The information used to control the leader and the follower

was received from the IMU and the Vicon Motion Capture System. Figure 3.20

shows the control diagram used in this work; here it can be noticed that the com-

munication between the computer and the quadrotors was linked via two Xbees:

the first one was mounted on the quadrotor while the second one was connected
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Figure 4.12: Leader Yaw Angle in First Path under H∞ Controller Based on
Euler Angles Representation
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Figure 4.14: Leader-Follower Formation in Second Path under H∞ Controller
Based on Euler Angles Representation
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Figure 4.15: Leader Yaw Angle in Second Path under H∞ Controller Based
on Euler Angles Representation
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Figure 4.16: Follower Yaw Angle in Second Path under H∞ Controller Based
on Euler Angles Representation
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to the computer. The position of the leader was sent to the computer, and then

it was sent from the computer to the follower to be used for the desired follower

position. Then the controller outputs were sent to the vehicles via the Xbees to

the high level on-board microcontrollers which directly control the motors speed.

The two quadrotors in leader-follower formation flight is shown in Figure 4.24.

In the first test, both the leader and the follower took off to 0.5 metres and the

formation controllers started from this point. Then the leader continued to climb

to 1.5 metres, moved forward for 1 metre toward the x-direction, drew a square

of 2 metres side length and then landed. The follower followed the leader and

maintained the desired distance between them d = 2 metres, the desired incidence

angle ρ = π/12 and the desired bearing angle σ = −π/2. In the second test,

both the leader and the follower took off to 0.5 metres. Then the leader tracked

a helical path of 2 metres circle diameter and 1.5 metres height, moved 1 metre

towards the origin point and then landed. The follower tracked the leader and

maintained the desired distance between them d = 2 metres, the desired incidence

angle ρ = −π/12 and the desired bearing angle σ = −π/2. In the third test, both

the leader and the follower took off to 0.5 metres. Then the leader tracked an

eight-shaped path. The follower tracked the leader and maintained the desired

distance between them d = 2 metres, the desired incidence angle ρ = −π/12 and

the desired bearing angle σ = −π/3.

The experimental trajectories of the first, second and third tests are shown in

Figures 4.20 - 4.22, respectively, with the conditions (1) no disturbance, (2) force

disturbance, and (3) +20% mass. These conditions were applied to both the leader

and the follower. Figure 4.23 illustrates the actual distance between the leader and

the follower during the tests. The disturbances of the trajectories in these figures

were caused by the external force exerted on the vehicles. These experimental

results show that the follower successfully tracked the leader and maintained the

distance, incidence and bearing angles between them with an acceptable error,

less than 5 centimetres. The proposed controllers also show a good stability and

robustness when considering the external disturbances and the mass change.
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Figure 4.21: Leader-Follower Formation in the Helical Path Test
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Figure 4.24: Two Quadrotors in Real Leader-Follower Formation

4.9 Discussions

This chapter has presented the performance of applying the H∞ controller to the

leader-follower formation control problem of quadrotors. The effect of the ex-

ternal disturbance and the model parameter uncertainties were considered. The

controller stability and robustness were analysed and a set of corresponding con-

ditions were given. The controller was tested in the MATLAB simulater. The

simulation results show that the proposed H∞ controller achieved excellent per-

formance. The proposed H∞ controller was tested on the vehicles via several flight

scenarios with external disturbance and mass change consideration. The experi-

mental results verified the robustness and the stability of the proposed controller.

It is important to state two issues in the use of two quadrotors in leader-follower

formation control in the real tests. The first issue is that they require a high speed

Vicon System software. At the start, the Vicon System software was very slow,

and controlling the follower failed several times as it calculated the position of

the leader and sent it to the computer, then from the computer to the follower.

A good solution to solve this problem was the tracking software, which was fast

enough. The second issue is that using one programming software was better than
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combining two of them. The Hummingbird quadrotor could be controlled using

MATLAB and C Language. The MATLAB code was slow in calculations compared

with the C code and it was difficult to combine these two codes. Therefore, in

this work the MATLAB code was tried to control the vehicle but it was difficult

to use, then the C code was used.



Chapter 5

Integral Backstepping Controller

5.1 Introduction

In this chapter, two controllers are investigated for stabilisation, path tracking and

leader-follower team formation and are compared with the H∞ controller. The first

controller is a PD2 obtained in [31] and implemented for attitude stability. The

second controller is an IBS control algorithm presented for the path tracking and

leader-follower team formation problems of quadrotors. This nonlinear control

technique divide the control into two loops, the inner loop is for the attitude

stabilisation and the outer loop is for the position control as shown in Figure 5.1.

In this case, the leader and the follower desired quaternions are assumed to be

qL1d = qL2d = 0 and qF1d = qL1 and qF2d = qL2.

The dynamic model of a quadrotor is represented based once on unit quaternion

and another on Euler angles representation and includes some modelled aerody-

namical effects as a nonlinear part. The IBS controller is designed for the trans-

lational part to track the desired trajectory. Stability analysis is achieved via

a suitable Lyapunov function. The external disturbance and model parameters

uncertainty are considered in the simulation tests to be compared with the H∞

controller results in all circumstances.

113
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Figure 5.1: Two-Loop Control Block Diagram

5.2 Integral Backstepping Technique

Integral backstepping control is one of the popular control approaches for both

individual and multiple quadrotors. In this section, the integral backstepping

control is applied for the individual quadrotor path tracking and leader-follower

formation problems. Its main result is also used later in simulation for evaluating

the robustness of H∞ controllers.

5.2.1 Backstepping Control Concept

Backstepping is a recursive design mechanism to asymptotically stabilise a con-

troller for the following system [123]: ẋ = f(x) + g(x)Γ

Γ̇ = u
. (5.1)

This system is described as an initial system in Figure 5.2, where x ∈ Rn and

Γ ∈ R are the system state and u ∈ R is the control input. f, g : D → Rn

are assumed to be smooth and f(0) = 0. A stabilising state feedback control

law Γ = Φ(x), assuming Φ(0) = 0, exists, in addition to a Lyapunov function
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V1 : D → R+ such that

V̇1(x) =
∂V1

∂x
[f(x) + g(x)Φ(x)] ≤ −Vε(x),∀x ∈ D

where Vε(x) : D → R+ is a positive semidefinite function. Now, the following

algebraic manipulation is required: by adding and subtracting the term g(x)Φ(x)

to/from the subsystem (5.1) we can have the following system:

ẋ = f(x) + g(x)Φ(x) + g(x)s (5.2)

where s = Γ − Φ(x), by this construction, when s → 0, ẋ = f(x) + g(x)Φ(x)

which is asymptotically stable. The derivative of s is

ṡ = Γ̇ − Φ̇(x) = u− Φ̇(x) = υ (5.3)

which is the backstepping, since Φ(x) is stepped back by differentiation as de-

scribed in Figure 5.3. So we have

ẋ = f(x) + g(x)Φ(x) + g(x)s (5.4)

ṡ = υ

This system is equivalent to the initial system (5.1), where Φ̇ = ∂Φ
∂x

ẋ = ∂Φ
∂x

[f(x) + g(x)Γ ].

The next step is to stabilise the system (5.4),and the following Lyapunov function

is considered:

V (x, s) = V1(x) +
1

2
s2.

Then

V̇ =
∂V1

∂x
[f(x) + g(x)Φ(x) + g(x)s] + sυ

≤ −Vε(x) +

[
∂V1

∂x
g(x) + υ

]
s.

Let
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Figure 5.2: Initial System

Figure 5.3: Backstepping System

 υ = −∂V1
∂x
g(x)− εs

ε > 0
.

Then

V̇ ≤ −Vε(x)− εs2 < 0. (5.5)

This signifies that the origin (x = 0, s = 0) is asymptotically stable. Since Φ(0) =

0, then the origin x = 0 and Γ = 0 is also asymptotically stable. In the next step

an integral part is added to the BS controller to eliminate the steady state error

which occurred in the simulation results and is called IBS.

5.2.2 Follower integral backstepping controller

The IBS controller for the follower is to track the leader and maintain a desired

distance between them with desired incidence and bearing angles.
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5.2.2.1 Based on Quaternion Representation

We start with the follower’s translational part, which can be rewritten from the

dynamic model (4.1) as:

p̈F = f(pF ) + g(pF )fF (5.6)

where

f(pF ) =
[
0 0 −g

]T

g(pF ) =


uFx/mF

uFy/mF

(qF0
2 − qF1

2 − qF2
2 + qF3

2)/mF


with  uFx = 2 (qF1qF3 + qF0qF2)

uFy = 2 (qF2qF3 − qF0qF1)
.

Then the position tracking error between the leader and the follower can be cal-

culated as:

p̃F = pFd − pF = pL −RT
Ld


cos ρ cosσ

cos ρ sinσ

sin ρ

− pF (5.7)

and its derivative is

˙̃pF = ṗFd − ṗF = ṗFd − vF (5.8)

where vF is a virtual control, and its desirable value can be described as:

vdF = ṗFd + bF p̃F + kF p̄F (5.9)
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where the integration of the follower position error is added to minimise the steady-

state error.

Now, consider the linear velocity error between the leader and the follower as:

ṽF = vdF − ṗF . (5.10)

By substituting (5.9) into (5.10) we obtain

ṽF = ṗFd + bF p̃F + kF p̄F − ṗF (5.11)

and its time derivative becomes

˙̃vF = p̈Fd + bF ˙̃pF + kF p̃F − p̈F . (5.12)

Then from (5.9) and (5.10) we can rewrite (5.8) in terms of the linear velocity

error as:

˙̃pF = ṽF − bF p̃F − kF p̄F . (5.13)

By substituting (5.6) and (5.13) into (5.12), the time derivative of the linear ve-

locity error can be rewritten as:

˙̃vF =p̈Fd + bF ṽF − b2
F

˙̃pF − bFkF p̄F + kF p̃F − f(pF )− g(pF )fF . (5.14)

The desirable time derivative of the linear velocity error is supposed to be

˙̃vF = −cF ṽF − p̃F . (5.15)

Now, the total thrust fF , the longitudinal uFx and the lateral uFy motion control

can be found by subtracting (5.14) from (5.15) as follows:

fF =(g + v̇Lz + (1− b2
Fz + kFz)z̃F + (bFz + cFz)ṽFz − bFzkFz z̄F − d(Rq31 cos ρ cosσ

+Rq32 cos ρ sinσ +Rq33 sin ρ))
mF

(qF0
2 − qF1

2 − qF2
2 + qF3

2)
(5.16)
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uFx =(v̇Lx + (1− b2
Fx + kFx)x̃F + (bFx + cFx)ṽFx − bFxkFxx̄F − d(Rq11 cos ρ cosσ

+Rq12 cos ρ sinσ +Rq13 sin ρ))
mF

fF
(5.17)

uFy =(v̇Ly + (1− b2
Fy + kFy)ỹF + (bFy + cFy)ṽFy − bFykFyȳF − d(Rq21 cos ρ cosσ

+Rq22 cos ρ sinσ +Rq23 sin ρ))
mF

fF
. (5.18)

For the attitude stability, the following H∞ nonlinear controller is used:

τFq = KFqq̃F +KFωω̃F +G(ω̃F ).

5.2.2.2 Simulations Based on Euler Angles Representation

In this subsection, we derive the IBS controller for the follower when the dynamic

model is represented based on Euler angles. Let us recall the follower translational

part (5.6):

p̈F = f(pF ) + g(pF )fF (5.19)

where

f(pF ) =
[
0 0 −g

]T
g(pF ) =

[
uFx/mF uFy/mF cθF cϕF/mF

]T
where

uFx = (cψF sθF cϕF + sψF sϕF )

uFy = (sψF sθF cϕF − cψF sϕF ).

By following the procedure in the above subsection, the following controllers are

obtained:
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fF =(g + v̇Lz + (1− b2
Fz + kFz)z̃F + (bFz + cFz)ṽFz − bFzkFz z̄F − d(Rθ31 cos ρ cosσ

+Rθ32 cos ρ sinσ +Rθ33 sin ρ))
mF

cθF cϕF
(5.20)

uFx =(v̇Lx + (1− b2
Fx + kFx)x̃F + (bFx + cFx)ṽFx − bFxkFxx̄F − d(Rθ11 cos ρ cosσ

+Rθ12 cos ρ sinσ +Rθ13 sin ρ))
mF

fF
(5.21)

uFy =(v̇Ly + (1− b2
Fy + kFy)ỹF + (bFy + cFy)ṽFy − bFykFyȳF − d(Rθ21 cos ρ cosσ

+Rθ22 cos ρ sinσ +Rθ23 sin ρ))
mF

fF
. (5.22)

For the attitude stability, the following H∞ nonlinear controller is used:

τFE = KFζ ζ̃F +KFηη̃F +G(η̃F ).

Next, we show the stability of the follower’s translational part.

5.2.3 Follower Controller Stability Analysis

The following candidate Lyapunov function is chosen for the stability analysis for

the follower’s translational part with the IBS controller:

V =
1

2
(p̃TF p̃F + ṽTF ṽF + kF p̄TF p̄F ) (5.23)

and its time derivative is

V̇ = p̃TF ˙̃pF + ṽTF ˙̃vF + kF p̄TF ˙̄pF . (5.24)
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By substituting ˙̄pF = p̃F and Equations (5.13) and (5.15) into (5.24), Equation

(5.24) becomes

V̇ = −bF p̃TF p̃F − cF ṽTF ṽF ≤ 0. (5.25)

Finally, (5.25) is less than zero provided bF and cF are positive diagonal matrices,

i.e. V̇ < 0, ∀(p̃F , ṽF ) 6= 0 and V̇ (0) = 0. It can be concluded from the positive

definition of V and applying LaSalle theorem that a global asymptotic stability is

guaranteed. This leads us to conclude that limt→∞ p̃F = 0 and limt→∞ ṽF = 0,

which meets the position condition of (4.7).

5.2.4 Leader integral backstepping controller

The leader is to track a desired trajectory pLd. Its IBS controller is developed by

following the procedure described for the follower quadrotor.

5.2.4.1 Based on Quaternion Representation

The result is that the total force and horizontal position control laws fL, uLx and

uLy can be written using quaternion dynamic model representation as:

fL = (z̈Ld + g + (1− bLz2 + kLz)z̃L + (bLz + cLz)ṽLz − bLzkLz z̄L)

mL

q2
L0 − q2

L1 − q2
L2 + q2

L3

(5.26)

uLx = (ẍLd + (1− bLx2 + kLx)x̃L + (bLx + cLx)ṽLx − bLxkLxx̄L)
mL

fL
(5.27)

uLy = (ÿLd + (1− bLy2 + kLy)ỹL + (bLy + cLy)ṽLy − bLykLyȳL)
mL

fL
(5.28)
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and the linear velocity tracking errors are defined as:
ṽLx = bLxx̃L + ẋLd + kLxx̄L − ẋL
ṽLy = bLyỹL + ẏLd + kLyȳL − ẏL
ṽLz = bLz z̃L + żLd + kLz z̄L − żL

.

The torque vector applied to the leader quadrotor τLq ∈ R3 is designed as:

τLq = KLqq̃L +KLωω̃L +G(ω̃L).

5.2.4.2 Based on Euler Angles Representation

The result is that the total force and horizontal position control laws fL, uLx and

uLy can be written using Euler angles dynamic model representation as:

fL = (z̈Ld + g + (1− bLz2 + kLz)z̃L + (bLz + cLz)ṽLz − bLzkLz z̄L)
mL

cθLcϕL
(5.29)

uLx = (ẍLd + (1− bLx2 + kLx)x̃L + (bLx + cLx)ṽLx − bLxkLxx̄L)
mL

fL
(5.30)

uLy = (ÿLd + (1− bLy2 + kLy)ỹL + (bLy + cLy)ṽLy − bLykLyȳL)
mL

fL
. (5.31)

The torque vector applied to the leader quadrotor τLE ∈ R3 is designed as:

τLE = KLζ ζ̃L +KLηη̃L +G(η̃L).

These leader controllers are used for path tracking tests.
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5.3 Simulations

5.3.1 Based on Quaternion Representation

5.3.1.1 PD2 Controller for Attitude Stabilisation

To compare the attitude stability results obtained by the H∞ controller described

in Subsection 3.3.1, a PD2 controller (5.32) proposed in [31] was implemented and

tested in simulation:

τ = ω × Jω +G(ω̃)− (µ3 + µ2µ1)q̃− µ1J ˙̃q− µ2ω̃. (5.32)

Figures 5.4 and 5.5 show the quaternion components and the angular velocities

performance using the PD2 controller, respectively. The plot with disturbance

effect does not appear in these figures because the system is unstable in this

circumstance. It can be seen that the H∞ controller performance in Figures 3.2

and 3.3 achieved zero steady-state error in less than two seconds and it was able

to reject the disturbances and cover the change in model parameter uncertainties;

while the PD2 controller performance achieved approximately zero steady-state

error after 100 seconds and it was not able to reject the disturbances.

Table 5.1 illustrates the RMSE of the quaternion components using the PD2 con-

troller in the three circumstances. It is clear that the RMSE values of the quater-

nion parameters obtained by using the PD2 controller in normal conditions and

with model parameter uncertainties were high compared with those obtained by

using the H∞ controller. In general, the H∞ controller yielded a good result com-

pared with that of the PD2 controller in terms of RMSE values, time-consumption,

disturbance rejection and model parameter uncertainties change coverage.



Chapter 5.Integral Backstepping Controller 124

0 50 100
−1

−0.5

0

0.5

1

 sec 

 q
0 

0 50 100
−0.5

0

0.5

1

sec 

 q
1 

 

 
Nominal
+30% Mass
−30% Mass

0 50 100
−0.5

0

0.5

1

sec 

 q
2 

0 50 100
−0.5

0

0.5

1

sec 

 q
3 

Figure 5.4: Quaternion Components under PD2 Controller

0 20 40 60 80 100
−0.5

0

0.5

1

 w
x 

 

 
Nominal
+30% Mass
−30% Mass

0 20 40 60 80 100
−0.5

0

0.5

 w
y 

0 20 40 60 80 100
−0.1

0

0.1

 sec 

 w
z 

Figure 5.5: Angular Velocities under PD2 Controller



Chapter 5.Integral Backstepping Controller 125

RMSE q0 q1 q2 q3

PD2 0.1207 0.0226 0.0794 0.0188
PD2 + 30% 0.1315 0.0219 0.0934 0.0163
PD2 − 30% 0.1128 0.0246 0.0643 0.0240

Table 5.1: Quaternion Parameter RMSE Values under PD2 Controller Based
on Quaternion Representation

5.3.1.2 IBS Controller for Path Tracking

In order to compare the results obtained by using IBS with those of the H∞

controller, the same two paths tracked by the quadrotor using the H∞ controller

described in Subsection 3.3.2 are tracked by using the IBS controller. For the

first path, the parameters of controllers were obtained to be b = diag(0.7, 0.3, 3),

c = diag(0.03, 0.017, 4) while k = diag(0.01, 0.04, 0.03), and b = diag(1, 1, 180),

c = diag(0.6, 0.6, 1) and k = diag(0.001, 0.001, 0.001) for the second path.

The simulation results of tracking the desired trajectories using the IBS controller

are shown in Figures 5.6 - 5.13, which describe the tracking trajectories, positions,

quaternions and angular velocities, respectively.

Figures 5.6 and 5.10 illustrate the tracking performance, and the positions of the

two paths are shown in Figures 5.7 and 5.11. It can be seen from the figures that

the integral backstepping controller was able to lead the quadrotor to track the

two desired paths, reject the external disturbance with high errors and oscillations,

and recover no more than ±15% model parameter uncertainties.

From Figures 5.8 and 5.12, the quaternions successfully converged to their desired

values. And Figures 5.9 and 5.13 show the angular velocities of the quadrotor

while tracking the two desired paths. Table 5.2 illustrates the RMSE values of

the positions and q3 for the two paths, in which the RMSE of the positions and

q3 was almost the same and it was significantly higher than the others with the

effect of disturbances. As expected, the controller drove the quadrotor to track

the desired trajectories with a steady-state error. These results show the stability

of the controller although a bounded external disturbance and model parameter

uncertainty were considered.
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Figure 5.6: First Path Tracking under IBS Controller Based on Quaternion
Representation

Path 1 Path 2
RMSE x(m) y(m) z(m) q3 x(m) y(m) z(m) q3

IBS 0.0199 0.0129 0.1276 0.0213 0.1581 0.0219 0.1307 0.0839
IBS + d 0.0672 0.0790 0.1294 0.0673 0.2142 0.0888 0.1311 0.0457
IBS+15% 0.0187 0.0128 0.1274 0.0199 0.1652 0.0180 0.1288 0.0463
IBS−15% 0.0195 0.0126 0.1293 0.0291 0.1602 0.0185 0.1325 0.0517

Table 5.2: Position and q3 RMSE Values for the Two Paths under IBS Con-
troller Based on Quaternion Representation

It can be seen that the tracking behaviour of the IBS controller for all parameters

of the quadrotor were satisfactory. Additionally, it is obvious that it was able to

reject a bounded external disturbance and recover the change of half of the model

parameter uncertainties, which indicated the activity of the controller.

5.3.1.3 Team Formation

The IBS controllers were tested in simulation to track a desired path by the

leader and maintain the desired distance, desired incidence angle and desired bear-

ing angle between them for the follower. The two desired paths to be tracked
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Figure 5.13: Second Path Angular Velocities under IBS Controller Based on
Quaternion Representation

were described in Section 4.4. The parameters chosen for both paths were bL =

diag(180, 0.34, 0.34), cL = diag(0.7, 0.02, 0.02), kL = diag(0.0516, 0.0081, 0.0081),

bF = diag(12, 0.7, 0.7), cF = diag(1.4, 0.02, 0.02) and kF = diag(0.01, 0.001, 0.001).

Figures 5.14 and 5.17 show the formation trajectories of two quadrotors obtained

by using the IBS controller when they tracked path 1 and path 2, respectively.

From these figures we can see that the IBS controller performed with high er-

ror, large oscillation in disturbance rejection and model parameter uncertainty

recovery.

The quaternions of the leader and the follower for path 1 and path 2 are shown in

Figures 5.15, 5.16, 5.18 and 5.19, respectively. High oscillation is observed in all

these figures. The distances between the leader and the follower for two paths are

shown in Figure 5.20. Again, high oscillation can be observed from the results of

both paths.

Figures 5.21 and 5.22 show the performance of both paths using the IBS controller

when only the leader was affected by force disturbance dvLz = −4Nm during
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Figure 5.14: Leader-Follower Formation in First Path under IBS Controller
Based on Quaternion Representation

10 ≤ t ≥ 10.25 seconds, dvLx = 4Nm during 20 ≤ t ≥ 20.25 seconds, dvLy = 4Nm

during 30 ≤ t ≥ 30.25 seconds, and the attitude part is disturbance using (3.27).

It is clear that the follower tracked the leader and maintained the distance with

high error and oscillation in all circumstances.

5.3.2 Based on Euler Angles Representation

5.3.2.1 Path Tracking

The IBS controller was tested in a MATLAB quadrotor simulator. The two paths

described in Subsection 3.5.2 were used here for comparison purposes. The IBS

controller constants were chosen to be b = diag(3, 4, 1), c = diag(18, 3.4, 1) and

k = diag(0.03, 1, 0.6).

The performance of tracking the first path is illustrated in Figures 5.23 - 5.25,

while Figures 5.26 - 5.28 show the tracking performance of the second path.
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Figure 5.15: Leader Quaternions in First Path under IBS Controller Based
on Quaternion Representation
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Figure 5.16: Follower Quaternions in First Path under IBS Controller Based
on Quaternion Representation
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Figure 5.17: Leader-Follower Formation in Second Path under IBS Controller
Based on Quaternion Representation
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Figure 5.18: Leader Quaternions in Second Path under IBS Controller Based
on Quaternion Representation
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Figure 5.19: Follower Quaternions in Second Path under IBS Controller Based
on Quaternion Representation
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Path 1 Path 2
RMSE x(m) y(m) z(m) ψ(deg.) x(m) y(m) z(m) ψ(deg.)
IBS 0.0005 0.0040 0.0936 0.0004 0.0030 0.0248 0.0936 0
IBS + d 0.0112 0.0772 0.0943 0.0004 0.1046 1.1018 0.3108 7e−6

IBS+30% 0.0005 0.0040 0.0936 0.0004 0.0030 0.0248 0.0936 0
IBS−30% 0.0005 0.0040 0.0936 0.0004 0.0030 0.0248 0.0936 0

Table 5.3: Position and ψ RMSE Values for the Two Paths under IBS Con-
troller Based on Euler Angles Representation

As shown in these figures, the IBS controller was able to track the desired path

with more than 3 seconds and high position tracking errors. In addition, the

controller under disturbance was able to track the desired path and recover from

the disturbances within more than 4 seconds and long oscillations in the first path

but it could not track the desired path in the second path. The controller under

+30% and −30% model parameter uncertainty was capable of tracking the desired

path with high errors as well.

Table 5.3 demonstrates the RMSE values of the two paths positions and yaw

angle. It is clear that the RMSE values of the IBS controller were almost the

same when using the IBS controller in normal conditions and with ±30% model

parameter uncertainty in both paths, while they significantly increased with the

disturbance and were higher in the second path. In general, it can be seen that

the IBS controller was able to track the desired trajectories with high position

tracking errors and low speed in disturbance rejection.

5.3.2.2 Team Formation

Two paths were presented in the simulation to compare the performance of using

the IBS with that of the H∞ controller with four different circumstances described

in Section 4.7.

Figures 5.29 and 5.32 indicate the response of the IBS controller while the leader

was tracking the first and second desired path, respectively. Figure 5.35 shows

the distance between the leader and the follower via the two paths, and Figures
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Figure 5.23: First Path Tracking under IBS Controller Based on Euler Angles
Representation
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Figure 5.24: First Path Position under IBS Controller Based on Euler Angles
Representation
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Figure 5.25: First Path Yaw Angle under IBS Controller Based on Euler
Angles Representation
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Figure 5.26: Second Path under IBS Controller Based on Euler Angles Rep-
resentation
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Figure 5.27: Second Path Position under IBS Controller Based on Euler An-
gles Representation
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Figure 5.28: Second Path Yaw Angle under IBS Controller Based on Euler
Angles Representation
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Figure 5.29: Leader-Follower Formation in First Path under IBS Controller
Based on Euler Angles Representation

5.30, 5.31, 5.33 and 5.34 illustrate the yaw angles’ behaviour for the leader and

the follower via the two paths respectively.

It can be noticed from these figures that not only the overshoot but also the error

in distance between the leader and the follower was high. It was also slower in

rejecting the disturbances in the first path and was not able to reject them in the

second path.

5.4 Discussions

This section presents a comparison between three different controllers: between

PD2 and H∞ in attitude stabilisation and between IBS and H∞ in path track-

ing and leader-follower formation control problems. The effect of the external

disturbance and the model parameter uncertainties are also considered.
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Figure 5.30: Leader Yaw Angle in First Path under IBS Controller Based on
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Figure 5.31: Follower Yaw Angle in First Path under IBS Controller Based
on Euler Angles Representation
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Figure 5.32: Leader-Follower Formation in Second Path under IBS Controller
Based on Euler Angles Representation
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Figure 5.33: Leader Yaw Angle in Second Path under IBS Controller Based
on Euler Angles Representation
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Figure 5.34: Follower Yaw Angle in Second Path under IBS Controller Based
on Euler Angles Representation
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The simulation results prove that the performance by using the H∞ controller had

significantly smaller errors than that by using the PD2 and the IBS, see Figures

3.2, 3.3, 3.4, 3.8, 3.12, 3.15, 3.18, 5.4, 5.5, 5.6 and 5.10. It is also obvious that

using the H∞ controller led to a smooth and fast performance with very small

overshoot compared with using the IBS, see Figures 4.2, 4.5, 4.11, 4.14, 5.14, 5.17

and 5.21. Moreover, the response of using H∞ controller in rejecting the external

disturbances was faster than that of using the IBS; in fact, the IBS controller was

not reject the disturbances when tracking an aggressive paths as in Figure 5.26

and 5.32.

It is well-known that IBS control is a methodical approach to build the Lyapunov

function ahead with the control input design. Thus by the cancellation of the

indefinite error terms, the stability of the derivative of the Lyapunov function can

be secured. Although the stability of the Lyapunov function is guaranteed, this

does not guarantee the performance of the system. On the other hand, the H∞

control technique converts the control problem to a mathematical optimisation
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problem and solves the latter by finding a suitable controller. The H∞ controller

achieves the stabilisation with performance guaranteed.

In the current study, it can be noticed that adjusting the H∞ controller param-

eters was easier than adjusting those of the IBS. The former had two insulated

parameters and these were calculated mathematically depending on the attenua-

tion parameter value γ. In contrast, the latter had three coupling parameters to

be tuned manually in order to find the suitable values which usually take longer

time and greater effort.

As a result, the proposed H∞ controller indeed produced better control perfor-

mance than the other two controllers in all circumstances.



Chapter 6

Iterative Linear Quadratic

Regulator Controller

6.1 Introduction

Amongst the many control techniques, optimal control techniques are widely de-

veloped to solve the quadrotor control problem as a main approach of research,

due to its successful history. The aim of using the optimal control technique is

to calculate an optimal feedback control law to obtain the closed loop optimal

solutions. LQR is an optimal control technique that utilises a linear/linearised

dynamic model with a quadratic cost index to compute an optimal solution [124].

Based on the LQR technique, an iterative LQR is developed for controlling an

individual quadrotor and two quadrotors for the leader-follower formation problem

in this chapter. The main idea is that the nonlinear dynamic model is linearised

around a nominal predefined path. Then the proposed iLQR technique calculates

the optimal control law. Next, the iterative result is applied to the system to track

the path. These steps are repeated with each sample of the predefined path.

146
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6.2 Nonlinear Dynamic Model

The full quadrotor system has been presented as a translation-rotation dynamic

model. We consider that the dynamic model is subjected to specific assumptions

illustrated in Appendix A and the full mathematical model based on quaternion

representation of (4.1) can be written in the state space form as:

ẋi = f(xi,ui) =



ẋi

2(qi1qi3 + qi0qi2) fi
mi

ẏi

2(qi2qi3 − qi0qi1) fi
mi

żi

−g + (q2
i0 − q2

i1 − q2
i2 + q2

i3) fi
mi

1
2
(−qi1ωix − qi2ωiy − qi3ωiz)

1
2
(qi0ωix − qi3ωiy + qi2ωiz)

1
2
(qi3ωix + qi0ωiy − qi1ωiz)

1
2
(−qi2ωix + qi1ωiy + qi0ωiz)

ωiyωiz
Jiy−Jiz
Jix

− Jir
Jix
ωiyΩi + 1

Jix
τiq1

ωizωix
Jiz−Jix
Jiy

+ Jir
Jiy
ωixΩi + 1

Jiy
τiq2

ωixωiy
Jix−Jix
Jiz

+ 1
Jiz
τiq3

(6.1)

where xi = [xi, ẋi, yi, ẏi, zi, żi, qi0, qi1, qi2, qi3, ωix, ωiy, ωiz]
T .

6.3 iLQR Control

iLQR is one of the optimal control strategies that is formulated to obtain the

control signals that minimises a performance criterion to satisfy the physical model

constraints. The iLQR strategy is utilised based on the LQR technique to design
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the full state quadrotor’s controller. We will not use the notation i in the coming

equations for simplicity. Linearising the nonlinear dynamic model (6.1), we obtain

xk+1 = f(xk,uk) (6.2)

with a quadratic cost function of the form

J =
1

2
(xN − x∗)TQN(xN − x∗) +

1

2

N−1∑
k=0

(xTkQxk + uTkRuk). (6.3)

The proposed strategy starts with initial control signals k = 0, and the linearised

nonlinear system around the control signal uk and the state xk then solves the

LQR problem. Then these steps are repeated (iterated) until a good performance

is achieved. Let the deviations from uk and xk be δuk and δxk, respectively. The

linearisation model is

δxk+1 = Akδxk +Bkδuk (6.4)

where the matrices Ak = Jxf(xk,uk) and Bk = Juf(xk,uk) are denoted by the

Jacobians. These are evaluated along xk and uk, respectively. Based on the linear

model (6.4), the cost function (6.3) can be written as:

J =
1

2
(xN + δxN − x∗)TQN(xN + δxN − x∗) +

1

2

N−1∑
k=0

((xk + δx)TQ(xk + δx)

+ (uk + δu)TR(uk + δu)). (6.5)

Adding a constraint to the cost function (6.5), the value function is

V =
1

2
(xN + δxN − x∗)TQN(xN + δxN − x∗) +

1

2

N−1∑
k=0

((xk + δx)TQ(xk + δx)

+ (uk + δu)TR(uk + δu) + δλTk+1(Akδxk +Bkδuk − δxk+1)) (6.6)



Chapter 6. iLQR 149

The following Hamiltonian function is a first step to proceed towards the optimal

control

Hk =(xk + δxk)
TQ(xk + δxk) + (uk + δuk)

TR(uk + δuk)

+ δλTk+1(Akδxk +Bkδuk) (6.7)

and its derivatives with respect to δxk, δuk and δxN are



∂Hk

∂(δxk)
= δλk

∂Hk

∂(δuk)
= 0

∂Hk

∂(δxN)
= δλN ,

which leads to the following conditions:

δλk = ATk δλk+1 + Q(δxk + xk) (6.8)

0 = R(uk + δuk) +BT
k δλk+1 (6.9)

δλN = Qf (xN + δxN − x∗). (6.10)

Based on the boundary condition (6.10), δλk is assumed to be

δλk = Skδxk + νk (6.11)

for some unknown sequences Sk and νk. The boundary conditions for Sk and νk

are  SN = QN

νN = QN(xN − x∗)
(6.12)

and from the boundary condition (6.9), δuk is obtained as:

δuk = −R−1BT
k δλk+1 − uk. (6.13)
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By solving equations (6.4), (6.9) and (6.11), we obtain

δuk = −Kδxk −Kννk+1 −Kuuk (6.14)

where

K = (BT
k Sk+1Bk + R)−1BT

k Sk+1Ak (6.15)

Kν = (BT
k Sk+1Bk + R)−1BT

k (6.16)

Ku = (BT
k Sk+1Bk + R)−1R. (6.17)

Backward recursion equations are used to solve the entire sequences Sk and νk as:

Sk = ATk Sk+1(Ak −BkK) + Q (6.18)

νk = (Ak −BkK)Tνk+1 −KTRuk + Qxk (6.19)

where the gains K and Ku are built on the Riccati equation while the gain Kν is

reliant on auxiliary sequence (6.19). See Appendix C.

The entire sequences of Sk and νk can be solved by the backward recursion (6.18)

and (6.19) respectively, with the final state weighting matrix boundary condition

SN stated in the cost function (6.5). The control law 6.14 includes three terms.

The gains of the first and the third terms depend on the solution of the Riccati

equation, while the second term gain depends on the auxiliary sequence νk. In

the first term, δxk represents the error between the actual quadrotor state and

the desired state, and in the third term, uk represents the nominal control action.

Once the modified LQR problem is solved, an improved nominal control sequence

can be obtained: u∗k = uk + δuk, where uk is the nominal control and u∗k is the

improved control. Then the total control laws are concluded as follows:
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

δuik = −Kiδxik −Kiννik+1 −Kiuuik

Ki = (BT
ikSik+1Bik + Ri)

−1BT
ikSik+1Aik

Kiν = (BT
ikSik+1Bik + Ri)

−1BT
ik

Kiu = (BT
ikSik+1Bik + Ri)

−1Ri

Sik = ATikSik+1(Aik −BikKi) + Qi

νik = (Aik −BikKi)
Tνik+1 −KT

i Riuik + Qixik

u∗ik = uik + δuik

. (6.20)

6.3.1 Leader and Follower iLQR Controllers

By following the leader-follower formation control problem described in Subsection

4.2.1, the leader control law set is

δfLk = −KLzδzLk −KLzννzLk+1
−KfLfLk

δτLqk = −KLqδqLk −KLqννqLk+1
−KτqLτLqk

fLk = mLg
q2L0k−q

2
L1k−q

2
L2k+q2L3k

f ∗Lk = fLk + δfLk

τ ∗Lqk = τLqk + δτLqk

where

δzLk =

 zLkd − zLk
vLzkd − vLzk



δqLk =

 qLkd − qLk

ωLkd − ωLk


and the follower control law set is
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

δfFk = −KFzδzFk −KFzννzFk+1
−KfFfFk

δτFqk = −KFqδqFk −KFqννqFk+1
−KτqF τFqk

fFk = (g + v̇Lz − d(Rq31 cos ρ cosσ +Rq32 cos ρ sinσ +Rq33 sin ρ))

mF
q2F0k−q

2
F1k−q

2
F2k+q2F3k

f ∗Fk = fFk + δfFk

τ ∗Fqk = τFqk + δτFqk

where

δzFk =

 zFkd − zFk
vFzkd − vFzk



δqFk =

 qLk − qFk

ωFkd − ωFk

 .

6.4 LQR Control

In this section, to linearise the dynamic model (6.1) to be used for the LQR

controller, first order Tayler approximation around an operating point is used.

The hovering point is chosen as an operating point for the linearisation purpose

under the conditions, Q = [q0, q1, q2, q3]T = [1, 0, 0, 0]T , v = [vx, vy, vz]
T = [0, 0, 0]T ,

and ω = [ωx, ωy, ωz]
T = [0, 0, 0]T [88]. Linearisation at this operating point leads

to a time invariant linear system, while using iLQR yields a time variant linear
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system. Then the linearised model can be written as:

ẋ = f(x,u) =



vx

−2q2g

vy

2q1g

vz

f
m

0

1
2
ωx

1
2
ωy

1
2
ωz

1
Jx
τq1

1
Jy
τq2

1
Jz
τq3

. (6.21)

The quadrotor is controlled by its altitude force f and attitude torque vector τ .

The control vector can be defined as u = [f, τq1 , τq2 , τq3 ]
T .

Consider the quadrotor a linearised time invariant system of a state-space form

ẋ = Ax +Bu

y = Cx +Du
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where

A =



03×3 I3×3 03×3 03×1 03×3

01×4 01×4 −2g 0 01×3

01×3 01×4 2g 01×2 01×3

01×3 01×3 0 01×3 01×3

03×3 03×3 01×3 03×3 0.5I3×3

03×3 03×3 03×1 03×3 03×3



B =



05×1 05×1 05×1 05×1

1/m 0 0 0

04×1 04×1 04×1 04×1

0 1/Jx 0 0

0 0 1/Jy 0

0 0 0 1/Jz



C =


1 01×4 01×8

01×2 1 01×10

01×4 1 01×8

01×9 1 01×3


D = [04×4] and y = [x, y, z, q3]T , with the cost function

Jc =
1

2

∫ tf

to

(xTQx + uTRu) (6.22)

and the linearised system state feedback

u = −Kcx = −R−1BTPx

where P can be evaluated from the Ricatti equation

Ṗ (t) + P (t)A+ ATP (t)− P (t)BR−1BTP (t) + Q = 0.
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The goal is to find the gain Kc that minimise the cost function (6.22), by applying

the following law shown in (6.23), which controls the system states:

Kc = R−1BTP. (6.23)

Then the leader control law set is fL

τLq

 = −KLc

 δzL

δqL


and the follower control law set is fF

τFq

 = −KFc

 δzF

δqF

 .

6.5 Simulations

In this section, the performance of the proposed iLQR controller is compared with

that of the LQR controller in attitude stabilisation, path tracking and leader-

follower formation using a numerical MATLAB quadrotors simulater. The design

parameters of the quadrotor used in the simulater are listed in Table 3.1.

6.5.1 Attitude Stabilisation

A Simulink simulation of a complete quadrotor dynamic model was performed

to find the torque’s parameters in order to stabilise the quaternion components.

The simulated performance of using (1) iLQR for one iteration, (2) iLQR for five

iterations and (3) LQR controller are shown in Figure 6.1. The RMSE values of

the quaternion components are illustrated in Table 6.1.
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Figure 6.1: Quaternion Components under iLQR and LQR Controllers

RMSE q0 q1 q2 q3

iLQR (1) 0.0047 0.0046 0.0067 0.0051
iLQR (5) 0.0047 0.0046 0.0066 0.0051
LQR 0.0053 0.0069 0.0072 0.0075

Table 6.1: Quaternion Parameter RMSE Values under iLQR and LQR Con-
trollers

6.5.2 Path Tracking

The simulation results were obtained for the quadrotor to track two different de-

sired trajectories by applying iLQR for one iteration and five iterations and LQR

controllers. These trajectories are illustrated in Subsection 3.4.2.

The constant weighting matrices R = diag(0.0001, 10−6, 10−6, 10−6), Q = diag

(17000, 2500, 1, 0.027, 1, 0.027, 1, 0.1) and QN = diag(0.1, 0.1, 100, 100, 100, 100, 100

100) were chosen for the iLQR controller, while R = diag(1, 10, 10, 10) and Q =

diag(17000, 2500, 35, 0.035, 35, 0.035, 0.001, 0.00015) were chosen for the LQR con-

troller.
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Path 1 Path 2
RMSE x(m) y(m) z(m) q3 x(m) y(m) z(m) q3

iLQR (1) 0.0041 0.0016 0.0041 2.02e-6 0.0370 0.0129 0.0025 6.04e-6
iLQR (5) 0.0040 0.0016 0.0039 2.01e-6 0.0370 0.0129 0.0017 6.03e-6
LQR 0.0178 0.0045 0.0250 1.06e-4 0.0272 0.0106 0.0261 1.5e-4

Table 6.2: Position and q3 RMSE Values for the Two Paths under iLQR and
LQR Controllers

Figures 6.2, 6.3, 6.5 and 6.6 show the 3D and 1D positions performance of tracking

the two desired trajectories using the proposed iLQR (after 1 iteration and after 5

iterations) and the LQR controller, respectively. The quaternion components per-

formance is illustrated in Figure 6.4 in the first path and Figure 6.7 in the second

path. The RMSE values of the position and q3 in the two paths are demonstrated

in Table 6.2.

From these figures and table 6.2, comparing the behaviour of the two controllers

when tracking the two paths, it can be seen that the nominal paths caught the

desired paths faster when iLQR was used than when LQR was used. Moreover, the

error between the nominal and desired paths when using iLQR was smaller than

that when using LQR. It is also clear that the quaternion parameters using iLQR

captured their desired path with less than one second and zero steady-state error

compared with about three seconds to capture the desired quaternion parameters

when LQR was used.

The improvement in performance from the LQR controller to one iteration for

the iLQR controller is obvious. Therefore, it is clear that the iLQR controller

(1 iteration) performed better than the LQR controller because the latter used a

linearised model in a certain operation point while the iLQR controller linearised

the model in each time step. It is also obvious that the performance improved

slightly from one iteration to five iterations for the iLQR controller.

In general, it can be noticed that the tracking behaviour of the proposed iLQR

controller was satisfactory compared with that of the LQR controller, and the

figures show that the response of the iLQR controller was faster than that of the

LQR controller with a smaller error.
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6.5.3 Team Formation

To validate the iLQR control strategy, it was tested in the simulation of two

quadrotors in the leader-follower formation problem described in Subsection 4.2.1.

Two predefined paths were used to test the proposed iLQR algorithm described

earlier in Section 4.4. The two paths were also used to test the LQR control for

comparison purposes.

Figures 6.8 and 6.11 show the response of the leader while tracking the predefined

paths and the follower maintaining the desired distance, the bearing angle and the

incidence angle, respectively. The quaternion components responses of the leader

and the follower in tracking the two paths are shown in Figures 6.9, 6.10, 6.12

and 6.13, respectively. Figure 6.14 shows the distances between the leader and the

follower in the two paths. The error in using the iLQR controller was smaller than

that in using LQR. However, when the iLQR controller ran for five iterations, the

response was slightly improved.
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In conclusion, it is obvious that the proposed iLQR controller maintained the

distance between the leader and the follower faster than LQR controller.

6.6 Discussions

This chapter presented an iLQR controller based on the LQR controller for quadro-

tor UAVs attitude stabilisation, path tracking and leader-follower team formation

problems. One loop control scheme was used in simulation to find the total thrust

and torques. The proposed iLQR controller was based on finding a linearised sys-

tem at each time step of the operation, while the LQR controller was based on

obtaining a linearised system at the operating point (hovering point). The solu-

tions of the two controllers establish the potential of the proposed iLQR law by

improving the tracking accuracy and the speed of catching the desired paths and

maintaining the distances between the leader and the follower compared with the

LQR controller. The iLQR controller performed better than the LQR controller,

especially in quaternion components performance.



Chapter 7

Conclusions and Future Work

The main goal of this research was to investigate the control of stabilisation,

path tracking and leader-follower systems. The research focused on designing two

controllers for these purposes: theH∞ controller to reject the external disturbances

and recover the model parameter uncertainties change and the iLQR controller to

reach the target fast and minimise the steady state error. Each controller was

supported by theoretical derivation, stability analysis and simulation results. To

verify these controllers’ performance, their simulation results were compared with

those of PD2, IBS and LQR controllers. The H∞ controller was tested practically

to verify the simulation results.

The dynamic model of the quadrotor was implemented with nonlinear effects con-

sideration. Then a one loop control scheme was used when H∞, iLQR, PD2 and

LQR controllers were applied and a two loop control scheme was used when the IBS

controller was applied. Contributions and results of this research are concluded in

this chapter. A future work plan is presented in this chapter as well.

7.1 Research Summary

H∞ Controller Van der Schaft [15] illustrated a suboptimal solution of the non-

linear H∞ output feedback robust control problem for affine nonlinear systems.

166
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In this thesis his theory was developed to the quadrotor dynamic system with

external disturbances consideration in its mathematical derivation. In particular,

necessary and sufficient conditions were established for the controller stability by

solving the HJI with a selection of a smooth appropriate Lyapunov function. The

controller was implemented and tested in simulation and real vehicles to perform

different paths and the results show the ability of the proposed controller to reject

the external disturbances and recover the change in model parameter uncertain-

ties. The main advantage of the H∞ controller over the other controllers is that the

external disturbances were included in its mathematical form. Calculation of the

controller gains were dependent on finding an appropriate attenuation constant γ.

PD2 Controller When the PD2 controller was used for attitude stabilisation, it

failed to reject the external disturbances due to the fact that the PD2 controller

was a linear controller and the external disturbances were not included in its

mathematical form, in addition to the fact that it was performed with higher RMS

errors in the other circumstances compared with the performance of H∞ controller.

Figures 3.2, 3.3 and 3.12 together with Tables 3.2 and 5.1 show a comparison

between the attitude control performance of the H∞ and PD2 controllers in terms

of their response and RMSE of the quaternion parameters, respectively.

IBS Controller The IBS controller was developed based on BS control theory

with adding an integral action to minimise the steady state error which appeared

when the BS controller was used for path tracking and leader follower formation

problems. The main drawback of the IBS controller is that its stability is guaran-

teed but the performance is not, and it has three coupling parameters to be tuned

compared with a guaranteed stability and performance of the H∞ controller. An-

other noteworthy drawback of the IBS controller that was noticed in the current

study is the considerable overshoot in its response due to the effect of the inte-

gral parameter and high oscillations when external disturbances were applied to

the system dynamics or when the controller failed to recover in leader-follower

formation.
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iLQR Controller An iLQR controller is essentially based on a LQR controller

with an iteration technique. It has a set of gains equal to the number of operating

samples by linearising the system in each sample of operation. In the current study,

the one iteration iLQR controller performed better than the LQR controller when

tracking the quaternion components, tracking different paths and maintaining the

distance between the leader and the follower in terms of the speed of catching the

desired target and minimising steady state errors. These findings are related to the

linearisation method used for the iLQR controller compared with a single operation

point linearisation technique utilised in the LQR algorithm. A slight improvement

in the performance was noticed after five iterations. The comparison is very clear

in Tables 6.1 and 6.2.

LQR Controller Again a good performance was achieved when the LQR con-

troller was simulated. The LQR controller performance showed an optimal solution

with no overshoot and a very small steady state error. The main advantage of us-

ing the LQR controller is that stability is guaranteed and, by carefully choosing

a couple of parameters, the controller is automatically guaranteed. The disadvan-

tage, however, is that the system is linearised in one operating condition. In this

thesis, an iLQR technique was proposed to overcome this problem.

In conclusion, all the controllers mentioned in this work performed very well in

normal conditions with some differences. The H∞ controller performance showed

high robustness to the external disturbances effect and model uncertainties change,

in addition to the fact that its stability was guaranteed. The PD2 controller failed

to reject the external disturbances. The IBS controller rejected a limited exter-

nal disturbance and sometimes it failed to do so. However, the iLQR controller

performed faster than the LQR controller with less steady state errors.

Of particular interest is the fact that the performance the H∞ and iLQR controllers

was further improved in comparison with previous robust nonlinear approaches.

In simulations, the maximum error was less than 2 cm compared with about 10

cm error obtained by [86] with the presence of external disturbances, and the two

controllers were able to catch the target with less than 3 seconds. In real tests, the



Chapter 7. Conclusions 169

proposed H∞ controller obtained a less than 5 cm error and less than 5 seconds

to achieve the formation compared with more than 8 seconds in [107].

7.2 Future Work

In spite of our promising results, represented by the stability and robustness of

the proposed linear and nonlinear controllers and the effectiveness of the leader-

follower formation scheme presented in this thesis, there are many possibilities on

how to extend the demonstrated work.

Extending the proposed control stability and robustness

The proposed control techniques considered an obstacle-free flight environment.

The future work toward this direction is to enhance the stability and robustness

of the proposed controllers to avoid static and moving obstacles.

Implementing the control techniques in real vehicles

As mentioned in this thesis, only the H∞ controller was tested practically. Firstly,

it would be very interesting to practically implement the iLQR controller on a real

vehicle to further verify its simulation results. Secondly, to further extend the real

quadrotors flight stability, especially in leader-follower team formation laser range

finders, cameras or laser sonars to find the pose of the leader quadrotor are to be

used by the follower to maintain the distance between the leader and the follower.

Thirdly, it is beneficial to test the proposed controllers with flying outside the

Vicon system.

Team formation shape selection

In terms of the shape selection of the leader-follower team formation and the

increase in the number of follower robots, the future work is to relax the desired

incidence and bearing angles. This objective may require more complex control

laws, particularly when the follower has to maintain the distances with several

robots. Upon using the Vicon system to calculate the pose of the quadrotors,
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sending and receiving the pose among the robots and the control law calculation

are likely to consume very long time and cause too much delay. Therefore, sensors

like cameras and laser sonars may prove very useful in this case.

Robustness and performance balancing

As a robust control law with the use of theH∞ controller was found and guaranteed

and optimal performance was achieved by the iLQR controller, the future step

toward this issue is to find a balanced controller by gathering both the H∞ and

iLQR controllers to control the quadrotors.



Appendix A

Dynamical Model Based on Euler

Angles

A.1 Introduction

The quadrotor UAV has four motors with four propellers mounted over the motors,

each opposite pair working together in an opposite direction of rotation to the other

pair. The take-off or vertical motion is generated by increasing or decreasing the

four motors’ speed.

Increasing the speed of the motor of one of each pair and decreasing the other

generate the rotation and motion of the vehicle. Namely, increasing the number

(1) motor’s speed and decreasing the number (3) motor’s speed and vice versa

produce a pitch rotation and a sloping motion. Increasing the number (2) motor’s

speed and decreasing the number (4) motor’s speed and vice versa produce a roll

rotation and a sloping motion, while the difference between each pair propellers

torque produces the yaw rotation [3][40].
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A.2 Mathematical Model

To control the motion and rotation of the quadrotor UAV, first the mathematical

dynamic model should be achieved. The quadrotor UAV system has a nonlinear

dynamic system and complicated structure; therefore, it is difficult to represent

its motion and rotation in a simple model. The dynamic model of the quadrotor

UAV depends on some assumptions [1]:

• The structure of the quadrotor is rigid and symmetrical;

• The propellers are rigid;

• The centre of mass and body fixed frame are coincides;

• Thrust and drugs are proportional to the square of the propellers; and

• The difference of gravity by altitude or the spin of the earth is minor.

According to these assumptions, the mathematical model can be derived to per-

form the quadrotor UAV fuselage dynamics in space, where it will be easy to add

to it the effects of aerodynamic forces generated by the rotation of the propellers.

The coordinate reference system of the quadrotor includes two frames of reference,

the inertial (earth fixed) frame mentioned I(xI , yI , zI) and the rigid (body fixed)

frame mentioned B(xB, yB, zB). Several techniques can be used to perform the rigid

body rotation in space such as Euler angles, Quaternions and Tait-Bryan angles

[102]. The rotation matrix in the space will be described below using the Euler

angles method, in which the front direction is mentioned to the x− axis and the

side direction is mentioned to the y− axis while the z− axis is mentioned by the

vertical direction. And (x, y, z) directions follow the right-hand rule. These three

directions generate the roll, pitch and yaw angles, respectively.

A.2.1 Euler Angle Representation

The orientation of the Cartesian coordinate system is used to parameterise the

Euler angle, one with respect to another, by creating three positive rotations
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using the Right-hand rotation technique. The first rotation is around x − axis,

the second rotation is around the new y−axis whereas the third rotation is around

the new z− axis. The three axes rotations can be depicted by the following three

matrices [102][78].

Rθ(x, ϕ) =


1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

 (A.1)

Rθ(y, θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (A.2)

Rθ(z, ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

.

 (A.3)

Multiplication of these three above matrices (A.1)-(A.3) produces the rotational

matrix from the fixed frame to the body frame;

Rθ(ψ, θ, ϕ) = Rθ(z, ϕ)Rθ(y, θ)Rθ(x, ψ). (A.4)

This results in

Rθ =


cosψ cos θ cosψ sin θ sinϕ− sinψ cosϕ cosψ sin θ cosϕ+ sinψ sinϕ

sinψ cos θ sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ− sinϕ cosψ

− sin θ cos θ sinϕ cos θ cosϕ

 .
(A.5)

A.2.2 Coriolis Equation

Derivation of the Coriolis equation depends on the two frames I and B with steps

given in [125], assuming that the P vector is moving in the B frame and the B

frame is not rotating w.r.t. I frame. The time derivative of the vector P in I and
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B frames is
d

dtI
P =

d

dtB
P. (A.6)

Assuming that the vector P is stationary in the B frame and the frame itself is

rotating w.r.t. I frame, and then we obtain the equation of this rotation as:

P + δP = (1− cos δϕ)$($ · P ) + cos(−δϕ)P − sin(−δϕ)$ × P. (A.7)

Dividing Equation (A.7) by δt and using the approximation of small angle we

obtain
δP

δt
≈ δϕ

δt
$ × P (A.8)

where $ is the instantaneous axis of rotation and δϕ is the right hand rotation

angle. If we take the limit δt = 0 and the angular velocity of the B frame w.r.t. I

frame is ωB/I = $ϕ̇ we get
d

dtI
P = ωB/I × P. (A.9)

Then the Coriolis equation can be obtained by combining Equations (A.6) and

(A.9);
d

dtI
P =

d

dtB
P + ωB/I × P. (A.10)

A.2.3 Quadrotor Kinematics and Dynamics

The Newton Euler formula of the dynamics of a solid shape under the effect of

external forces applied to the centre mass is distinct in the body fixed frame as

shown in [72].

A.2.3.1 For Translational Motion

m
dv

dtI
= f. (A.11)

Applying the Coriolis equation to (A.11) we have

m
dv

dtI
= m(

dv

dtI
+ ωB/I × v) = f. (A.12)
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Applying Equation (A.12) in body coordinates with vB = (u, υ, w)T and ωBB/I =

(ωx, ωy, ωz)
T it will be:

m


u̇

υ̇

ẇ

 = m(0 +


ωx

ωy

ωz

×

u

υ

w

) =


fx

fy

fz

 (A.13)

or 
u̇

υ̇

ẇ

 =


ωzυ − ωyw

ωxw − ωzu

ωyu− ωxυ

+
1

m


fx

fy

fz

.

 (A.14)

A.2.3.2 For Rotational Motion

From Newton’s second law
dhB

dtI
= m. (A.15)

Applying the equation of Coriolis to Equation (A.15) we get

dh

dtI
=

dh

dtB
+ ωB/I × h = m. (A.16)

From the body coordinate we have hB = JωBB/I , then Equation (A.16) can be

resolved in the body coordinate frame. The equations of motion of the quadrotor

UAVs depend on the two frames which can be written as in [126].


Jx 0 0

0 Jy 0

0 0 Jz



ω̇x

ω̇y

ω̇z

 = 0 +


ωx

ωy

ωz

×

Jx 0 0

0 Jy 0

0 0 Jz



ωx

ωy

ωz

 =


τϕ

τθ

τψ


(A.17)

or 
ω̇x

ω̇y

ω̇z

 =


1
Jx

0 0

0 1
Jy

0

0 0 1
Jz

 (


ωyωz(Jy − Jz)

ωxωz(Jx − Jz)

ωxωy(Jx − Jy)

+


τϕ

τθ

τψ

). (A.18)
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or 
ω̇x

ω̇y

ω̇z

 =


ωyωz(Jy−Jz)

Jx

ωxωz(Jx−Jz)
Jy

ωxωy(Jx−Jy)

Jz

+


τϕ
Jx

τθ
Jy

τψ
Jz

 . (A.19)

The relationship between position and velocities is given by

d

dt


x

y

z

 = RT
θ


u

υ

w

 . (A.20)

The relationship between absolute angles [ϕ, θ, ψ] and the angular rates [ωx, ωy, ωz]

is 
ωx

ωy

ωz

 = J


ϕ̇

0

0

+Rθ(x, ϕ)


0

θ̇

0

+Rθ(x, ϕ)Rθ(y, θ)


0

0

ψ̇



=


1 0 − sin θ

0 cosϕ sinϕ cos θ

0 − sinϕ cosϕ cos θ



ϕ̇

θ̇

ψ̇

 . (A.21)

By inverting we obtain
ϕ̇

θ̇

ψ̇

 =


1 sinϕ tan θ − cosϕ tan θ

0 cosϕ sinϕ

0 − sinϕ sec θ cosϕ sec θ



ωx

ωy

ωz

 . (A.22)

Then the six-degree-of-freedom model for the quadrotor kinematics and dynamics

can be summarised as follows [126]:


ẋ

ẏ

ż

 =


cosψ cos θ cosψ sin θ sinϕ− sinψ cosϕ cosψ sin θ cosϕ+ sinψ sinϕ

cos θ sinψ sinϕ sin θ sinψ + cosϕ cosψ sinψ sin θ cosϕ− sinϕ cosψ

− sin θ cos θ sinϕ cos θ cosϕ



u

υ

w


(A.23)
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
u̇

υ̇

ẇ

 =


ωzυ − ωyw

ωxw − ωzu

ωyu− ωxυ

+
1

m


fx

fy

fz

 (A.24)


ϕ̇

θ̇

ψ̇

 =


1 sinϕ tan θ − cosϕ tan θ

0 cosϕ sinϕ

0 − sinϕ sec θ cosϕ sec θ



ωx

ωy

ωz

 (A.25)


ω̇x

ω̇y

ω̇z

 =


ωyωz(Jy−Jz)

Jx

ωxωz(Jx−Jz)
Jy

ωxωy(Jx−Jy)

Jz

+


τϕ
Jx

τθ
Jy

τψ
Jz

 . (A.26)

The total force applied to the quadrotor is given by f = f1 + f2 + f3 + f4 and

the torque applied on the UAV’s body which is created by the propellers τ and is

equal to the difference between each pair of opposite propellers is
τϕ

τθ

τψ

 =


l(f4 − f2)

l(f1 − f3)

f2 + f4 − f1 − f3

 . (A.27)

The gravity is another body force effect on the centre of mass of the quadrotor

and it can be written as:

fg = RT
θ


0

0

−mg

 =


mg sin θ

−mg cos θ sinϕ

−mg cos θ cosϕ

 . (A.28)

Then Equation (A.24) can be rewritten as:


u̇

υ̇

ẇ

 =


ωzυ − ωyw

ωxw − ωzu

ωyu− ωxυ

+


mg sin θ

−mg cos θ sinϕ

−mg cos θ cosϕ

+
1

m


0

0

f

 . (A.29)



Appendix A. Euler Angles 178

Assuming that [ϕ, θ, ωx, ωy, ωz] are small, we obtain the following equations from

Equations (A.25) and (A.26):


ϕ̇

θ̇

ψ̇

 =


ωx

ωy

ωz

 (A.30)


ω̇x

ω̇y

ω̇z

 =


τϕ
Jx

τθ
Jy

τψ
Jz

 . (A.31)

Differentiating Equation (A.30) and substituting Equation (A.31) we obtain:


ϕ̈

θ̈

ψ̈

 =


τϕ
Jx

τθ
Jy

τψ
Jz

 . (A.32)

Other moment effects on the body of the quadrotor are the body gyro effect

G(ω) =


Jr
Jx
θ̇Ω

−Jr
Jy
ϕ̇Ω

0

 (A.33)

and the propeller gyro effect

G(p) =


θ̇ψ̇ Jy−Jz

Jx

ϕ̇ψ̇ Jz−Jx
Jy

ϕ̇θ̇ Jx−Jy
Jz

 . (A.34)

By adding them to (A.32) we get


ϕ̈

θ̈

ψ̈

 =


θ̇ψ̇ Jy−Jz

Jx

ϕ̇ψ̇ Jz−Jx
Jy

ϕ̇θ̇ Jx−Jy
Jz

+


Jr
Jx
θ̇Ω

−Jr
Jy
ϕ̇Ω

0

+


τϕ
Jx

τθ
Jy

τψ
Jz

 . (A.35)
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Differentiating Equation (A.23), substituting Equation (A.29), ignoring Ṙθ and

neglecting the Coriolis terms we obtain
ẍ

ÿ

z̈

 =


0

0

−g

+


cosϕ sin θ cosϕ+ sinψ sinϕ

cosϕ sin θ sinψ − sinϕ cosψ

cosϕ cos θ

 f

m
. (A.36)

The full mathematical model is

ẍ = (cosϕ cosψ sin θ + sinϕ sinψ) f
m

ÿ = (cosϕ sinψ sin θ − sinϕ cosψ) f
m

z̈ = −g + (cosϕ cos θ) f
m

ϕ̈ = θ̇ψ̇ Jy−Jz
Jx
− Jr

Jx
θ̇Ω + l

Jx
τϕ

θ̈ = ϕ̇ψ̇ Jz−Jx
Jy
− Jr

Jy
ϕ̇Ω + l

Jy
τθ

ψ̈ = θ̇ϕ̇Jx−Jy
Jz

+ l
Jz
τψ

(A.37)

where 

f = B(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

τϕ = B(Ω2
4 − Ω2

2)

τθ = B(Ω2
3 − Ω2

1)

τψ = D(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

Ω = Ω2 + Ω4 − Ω1 − Ω3

. (A.38)
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Quaternion Representation

B.1 Quaternion Mathematics

An alternative method used to describe the position and orientation of the quadro-

tor is the quaternion method. This method is used to overcome the singularity

problem which encounter researchers who use the Euler angles representation. It

is a singularity outcome of the so called gimbal lock and it appears when divid-

ing the pitch angles θ = ±90o by zero. It is a hyper complex number of 4-tuple

(q0, q1, q2, q3) ∈ R4 which can be written in many ways as Q = q0 + q1i+ q2j + q3k

and Q = [q0,q
T ]T [127][128][37].

The north east down (NED) coordinate system is used to parametrise the dynamic

model of the quadrotor with an angle of one-axis rotation α around the Euler axis

of unit vector k ∈ R3 which has a direct physical connection and can be written

as:

Q =

 cos α
2

k sin α
2

 (B.1)

where k = q
‖q‖ and α = 2 arccos q0. Moreover, as any complex number the norm,

complex conjugate and inverse of the quaternion can be defined as:

‖Q‖ =
√
q2

0 + q2
1 + q2

2 + q2
3 (B.2)

180
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Q̄ =


q0

−q1

−q2

−q3

 (B.3)

Q−1 =
Q̄

‖Q‖
. (B.4)

The unit quaternion can be used to represent the coordinate transformation be-

tween the inertial frame I and the body frame B by defining the multiplication

and the inverse quaternion. The multiplication of two quaternions Q = [q0,q
T ]T

and Q′ = [q′0,q
′T ]T is defined as:

Q⊗Q′ =

 q0 −qT

q q0I + S(q)

 q′0

q′


=

 q0q
′
0 − qTq′

q′0q + q0q
′ + S(q)q′

 .
The inverse unit quaternion is defined as Q−1 = [q0,−qT ]T for Q = [q0,q

T ]T . A

vector xI ∈ R3 in the inertial frame can be expressed as a vector xB ∈ R3 in

the body frame via xB = RTxI . Using x̄ = [0, xT ]T , the transformation from the

inertial frame to the body frame is expressed as x̄B = Q−1 ⊗ x̄I ⊗Q.

And if the norm of the quaternion is equal to one ‖Q‖ = 1, it means that the inverse

is the same as the conjugate, which is the case used to represent the coordinate

transformation between the inertial frame I and the body frame B by defining the

multiplication and the inverse quaternion. The multiplication of two quaternions

Q = [q0,q
T ]T and Q′ = [q′0,q

′T ]T is defined as:

Q⊗Q′ =

 q0 −qT

q q0I + S(q)

 q′0

q′


=

 q0q
′
0 − qTq′

q′0q + q0q
′ + S(q)q′

 (B.5)
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where S : R4 → R3×3 is the skew-symmetric cross product matrix, and QS : R4 →

R4×4 is the quaternion skew-symmetric cross matrix and they are defined as:

S(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (B.6)

QS(Q) =


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0

 (B.7)

Q̄S(Q) =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 . (B.8)

The derivative of the quaternion Q is linked with the quadrotor angular velocity

as follows:

Q̇′ω(Q,ω′) =
1

2

 0

ω′

⊗Q =
1

2
Q̄S(Q)

 0

ω′

 (B.9)

Q̇ω(Q,ω) =
1

2
Q⊗

 0

ω

 =
1

2
QS(Q)

 0

ω

 . (B.10)

However, as mentioned above, the quaternion is a unit vector which is utilised as

a rotation operator. Then the rotation from the fixed frame to the body frame

requires a rotational matrix which is the same as in the Euler angles method but

it does not contain trigonometric functions which can be evaluated by rotating a

vector from the fixed frame to the body frame as follows: 0

k′

 = Q⊗

 0

k

⊗Q−1 = Q⊗

 0

k

⊗ Q̄
= Q̄S(Q)

T
QS(Q)

 0

k

 =

 1 0T

0 Rq

 0

k

 (B.11)
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where k ∈ R3 is a vector to be rotated from the fixed frame to the body frame and

Rq =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 ; (B.12)

that is k′ = Rqk and k = RT
q k
′.

Computing the quaternion parameters from Euler angles or computing the Euler

angles from the quaternion parameters can be presented using the relationships

[35]:

Q =


cos(ϕ

2
) cos( θ

2
) cos(ψ

2
) + sin(ϕ

2
) sin( θ

2
) sin(ψ

2
)

sin(ϕ
2
) cos( θ

2
) cos(ψ

2
)− cos(ϕ

2
) sin( θ

2
) sin(ψ

2
)

cos(ϕ
2
) sin( θ

2
) cos(ψ

2
) + sin(ϕ

2
) cos( θ

2
) sin(ψ

2
)

cos(ϕ
2
) cos( θ

2
) sin(ψ

2
)− sin(ϕ

2
) sin( θ

2
) cos(ψ

2
)

 (B.13)


ϕ

θ

ψ

 =


arctan 2(2(q0q1 + q2q3), q2

0 − q2
1 − q2

2 + q2
3)

arcsin(2(q0q2 − q1q3))

arctan 2(2(q0q3 + q1q2), q2
0 + q2

1 − q2
2 − q2

3)

 . (B.14)

B.1.1 Quaternion Kinematics

The kinematic equations of the movements of a unit quaternion Q(t) can be driven

by rotating the quadrotor with its angular velocity vector ω in the three directions

to make a slight change in the movement of the quadrotor ∆t and the change will

be as follows [88]:

Q(t+ ∆t) =

 cos(∆α
2

)I + sin(∆α
2

)


0 n3 −n2 n1

−n3 0 n1 n2

n2 −n1 0 n3

−n1 −n2 −n3 0



Q(t) (B.15)
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where ∆α = ω∆t. Then if ∆t is considered small, these expressions hold, cos(∆α
2

) ∼=

1, sin(α
2
) ∼= 1

2
ω∆t. According to these assumptions, Equation (B.15) can be writ-

ten as:

Q(t+ ∆t) =
[

1 + 1
2
S(ω)∆t

]
Q(t). (B.16)

Thus the kinematic quaternion movement is

Q̇ = lim
∆t→0

Q(t+ ∆t)−Q(t)

∆t
=

1

2
S(ω)Q (B.17)

where

SS(ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 . (B.18)

Then the time derivative of the quaternion kinematics can be written in the fol-

lowing two forms:

Q̇ =
1

2
Q⊗

 0

ω

 =
1

2

 0

ω

⊗Q. (B.19)

B.1.2 Quadrotor Kinematics and Dynamics

The quaternion formula of the dynamics of a solid shape under the effect of external

forces applied to the centre mass which is distinct in the body fixed frame can be

separated into translational and rotational motions and it can be defined by recall

(A.11)-(A.20) and (A.27) with the use of the rotation matrix Rq; hence, the effect

of gravity can be written as:

fg = Rq


0

0

−mg

 =


−2mg(q1q3 + q0q2)

−2mg(q2q3 − q0q1)

−mg(q2
0 − q2

1 − q2
2 + q2

3)

 . (B.20)
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Then Equations (A.29) and (A.36) can be rewritten as:


u̇

υ̇

ẇ

 =


ωzυ − ωyw

ωxw − ωzu

ωyu− ωxυ

+


−2mg(q1q3 + q0q2)

−2mg(q2q3 − q0q1)

−mg(q2
0 − q2

1 − q2
2 + q2

3)

+
1

m


0

0

f

 (B.21)


ẍ

ÿ

z̈

 =


0

0

−g

+


2(q1q3 + q0q2)

2(q2q3 − q0q1)

q2
0 − q2

1 − q2
2 + q2

3

 f

m
. (B.22)

In the rotational motion part, instead of using the Euler angles, two differential

equations hold: the quaternion and the angular velocity differential equation. The

quaternion rate equation can be rewritten as:
q̇0

q̇1

q̇2

q̇3

 =
1

2


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




0

ωx

ωy

ωz

 . (B.23)

Then the full model for the quadrotor kinematics and dynamics can be summarised

as follows: 
ẍ

ÿ

z̈

 =


0

0

−g

+


2(q1q3 + q0q2)

2(q2q3 − q0q1)

q2
0 − q2

1 − q2
2 + q2

3

 f

m
(B.24)


q̇0

q̇1

q̇2

q̇3

 =
1

2


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




0

ωx

ωy

ωz

 (B.25)


ω̇x

ω̇y

ω̇z

 =


ωyωz(Jy−Jz)

Jx

ωxωz(Jx−Jz)
Jy

ωxωy(Jx−Jy)

Jz

+


τq1
Jx

τq2
Jy

τq3
Jz

 . (B.26)
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The full mathematical model is

ẍ = 2(q1q3 + q0q2) f
m

ÿ = 2(q2q3 − q0q1) f
m

z̈ = −g + (q2
0 − q2

1 − q2
2 + q2

3) f
m

q̇0 = 1
2
(−q1ωx − q2ωy − q3ωz)

q̇1 = 1
2
(q0ωx − q3ωy + q2ωz)

q̇2 = 1
2
(q3ωx + q0ωy − q1ωz)

q̇3 = 1
2
(−q2ωx + q1ωy + q0ωz)

ω̇x = ωyωz
Jy−Jz
Jx
− Jr

Jx
ωyΩ + l

Jx
τq1

ω̇y = ωzωx
Jy−Jz
Jx

+ Jr
Jx
ωxΩ + l

Jx
τq2

ω̇z = ωxωy
Jy−Jz
Jx

+ l
Jx
τq3

. (B.27)



Appendix C

iLQR Control Law Derivation

Equations (6.14)-(6.19) can be calculated by first substituting Equation (6.8) into

(6.4), which yields

δxk+1 =(I +BkR
−1BT

k Sk+1)−1(Akδxk −BkR
−1BT

k νk+1 −Bkuk) (C.1)

and then substituting Equations (6.11) and (C.1) into (6.8), we get

Skδxk + νk =Qδxk + ATk Sk+1(I +BkR
−1BT

k Sk+1)−1(Akδxk −BkR
−1BT

k νk+1

−Bkuk) + ATk νk+1 + Qxk

Sk and νk can be obtained by applying the matrix inversion as:

Sk =ATk Sk+1(I −Bk(B
T
k Sk+1Bk + R)−1BT

k Sk+1)Ak + Q

and

νk =ATk νk+1 − ATk Sk+1(I −Bk(B
T
k Sk+1Bk + R)−1BT

k Sk+1)BkR
−1BT

k νk+1 − ATk Sk+1

(I −Bk(B
T
k Sk+1Bk + R)−1BT

k Sk+1)BkR
−1BT

k Sk+1)Bkuk + Qxk
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By applying (BT
k Sk+1Bk + R)−1 = R−1 − (BT

k Sk+1Bk + R)−1BT
k Sk+1BkR

−1, the

second term in νk is

−ATk Sk+1Bk(B
T
k Sk+1Bk + R)−1BT

k νk+1,

and the third term is

−ATk Sk+1Bk(B
T
k Sk+1Bk + R)−1Ruk..

By using (6.15), Sk and νk can be written as in (6.18) and (6.19) respectively.

Now, the δuk control law can be obtained by substituting (6.11) and (C.1) into

(6.13) as:

δuk =− (BT
k Sk+1Bk + R)−1BT

k Sk+1Akδxk − (BT
k Sk+1Bk + R)−1BT

k νk+1

− (BT
k Sk+1Bk + R)−1Ruk,

then δuk can be written as in (6.14), by replacing the gains in (6.15)-(6.17).
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