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Abstract

This thesis consists of three chapters on the dynamics of asset returns, with a focus on

global stocks and bonds. The first chapter investigates the contagion effect between the

European stock and bond markets, and between the Greek bond market and other Euro-

pean bond markets. The perspectives of nonlinear contagion effects and the predictability

of contagion are also investigated in the first chapter. The main findings are as follows.

Firstly, the European sovereign debt crisis generally leads to contagion effects between

domestic stock and bond markets, and this is more likely in relatively smaller countries.

The financial crisis had generally led to a higher level of flight-to-quality, whilst this has

also been found over the tranquil period, especially in the relatively larger countries. Sec-

ondly, the contagion effect between the Greek and other European bond markets started

appearing at least four months earlier than the beginning of the European debt crisis1.

Thirdly, strongly significant copula estimation results reinforce the findings of the exis-

tence of nonlinear contagion effect in the Eurozone area. In addition, the information

asymmetry carried by the counterpart of the GJR model significantly increases the ability

of the Student-t copula to detect changes of dependence structure. Finally, conditional

volatility as an explanatory variable is found to be statistically significant in explaining

and predicting the contagion across at least five countries, and the level of exchange rate

shows its predictive power in contagion for at least four countries. The interest rate (the

level of risk free rate for the Eurozone area) is found to have the weakest predictive power

amongst all the explanatory variables considered.

The second chapter examines the bi-directional relationships between stock returns

1The beginning of the European debt crisis is defined as the time the Greek government asks
for the bailout from the institutions of IMF/EU, namely 23 April 2010, (Dajcman, 2012).
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and trading volume, and between trading volume and volatility. By using the nonlinear

Granger causality test, we find the existence of both bi-directional relations between stock

returns and trading volume, and between trading volume and volatility. Further to this,

from limiting the sample period to the widely known tranquil period (1994 to 2006), an

interesting result is found. In comparison to the full sample test, statistically significant

nonlinear results are also observed from the tranquil period. However, the nonlinear feed-

back from stock returns to trading volume, and the nonlinear feedback from volatility to

trading volume are shown to be much stronger during the tranquil sample period than the

other way round.

The third chapter evaluates the effects of fundamental factors on international stock

returns. Dividend, earnings and interest rate are considered as fundamental factors. The

results from the international stock markets are mixed: some markets see dividends playing

a more significant role in explaining the variation of stock returns, and some markets see

earnings playing a more significant role. However, neither dividend nor earnings can predict

the returns changes in a few markets. In order to investigate this problem, we take one

step further through estimating the effects of changes of interest rates upon dividend and

earnings discount models. However, our analysis only finds a slight influence there. This

suggests that other unexamined factors are more important, consequently, further research

is required for clarification.
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Overview

International equity markets, especially the stock and sovereign bond markets, have

attracted tremendous interest from both academics and practitioners. Two topics

related to the international equity markets are of particular interest for this disser-

tation. Firstly, the effect of contagion and flight-to-quality effects across assets and

markets, and secondly the correlation between equity returns and endogenous vari-

ables. This research paper aims to generate an understanding of the characteristics

of equity returns, such as the interdependence of different assets’ returns, and their

driving factors. This is undertaken in order to answer questions, including how to

forecast the changes of market returns, and how to lower loss-making due to unstable

and risky market conditions.

The first topic deals with the problem of contagion across assets and countries,

and in first chapter contagion is defined as co-movements and co-exceedances of re-

turns. This topic has been extensively researched over the past few decades. The

early effort of Engle and Sheppard (2001) puts forward the theory of dynamic con-

ditional correlation (DCC). Their associated methodological approach models the

dynamic comovements of returns across assets and countries. The DCC-GARCH

model currently is a popular model for researching the topic of contagion and flight-

to-quality across equity markets. Apart from the DCC-GARCH model, there are

also several other approaches that can investigate the contagion and flight-to-quality

phenomenon. These include the moving average indicator originated by Dajcman

(2012), multinomial logistic regression, and the copula-GARCH model, amongst oth-
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ers. These approaches have gained increasing importance in correlation researches,

and therefore are all employed in the first chapter.

The first chapter of this thesis engages in the analysis of the contagion effect,

we estimate contagion effect using four approaches for different perspectives. The

multi-methodology used in this chapter includes several approaches. These include

contagion and flight-to-quality indicators, dynamic conditional correlation (DCC)

GARCH, two-period copula-GARCH and multinomial logistic regression. The con-

tributions are introduced after every summary of methodological approach. First

of all, our estimation starts by following the basic approach of Dajcman (2012)

(dynamic conditional correlation and moving average indicator of flight-to-quality),

this develops the core contagion that the sharp fall of one market may transfer the

panic to another markets. This will thus cause a joint decline of stock and bond

index returns. Contagion in this chapter is also defined as jointly linked decline

in several markets, as per Baur and Lucey (2009) and Baig and Goldfajn (1999).

Following the same line of reasoning for the flight-to-quality indicator (FTQ), we

build a bespoke contagion indicator (CI), this allows comprehensive examination of

the co-movements of stock and bond returns. In order to develop our research, the

DCC-GARCH model is used to display dynamically the correlations between stocks

and bonds. In this approach, we contribute an uprated CI model that is addition-

ally defined and constructed. It allows the joint analysis of CI and FTQ to help

more accurately find the dominant phenomenon during the different periods. The

second approach that we use to look into the comovement of bond index returns

for the cross-country perspective is based on Chiang, Jeon, and Li (2007), where

the DCC-GARCH model is also employed. The Greek bond market is assumed by

many commentators and academics, as the source country of the European sovereign

debt crisis, and contagion is widely delimited as high levels of both correlations and

dynamic volatility. To the best of our knowledge, we operate the first use of the

DCC-GARCH model to look into contagion across European bond markets. Con-
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sequently, this chapter contributes more insights of the bond markets in Europe

into the limited academic literature. This analysis brings new evidence, finding that

contagion occurs during the European debt crisis, with neighbouring bond markets

indeed being affected by this contagion effect. Based mainly on Adel and Salma

(2012) and Huang, Lee, Liang, and Lin (2009), the third approach estimates the

nonlinear contagion effect using a two-period copula GARCH model. Our contribu-

tion to this approach is made unique, by integrating a factor examining the infor-

mation asymmetry into the copula estimation. This allows the models assumptions

to be much closer to reality2. Finally, the predictability of contagion is evaluated

via multinomial logistic regression, with three possible covariates including condi-

tional volatility, exchange rate and interest rate all considered. We relate the Logit

estimations to the European bond markets, this means that the covariations of the

covariates and the probability of contagion occurrence can be observed clearly.

The main results from this study are as follows. First, the results show that the

dynamic conditional correlations between stock and bond index returns are gener-

ally negative (with exceptions of Portugal, Spain and Greece), this possibly implies

the flight-to-quality. Second, the global financial crisis tends to increase the flight-

to-quality indicator and the European debt crisis tends to increase the contagion

indicator. Third, contagion across the European bond markets becomes increas-

ingly significant at least four months before the Greek government requests a bailout

from the International Monetary Fund. Fourth, the modified copula-GARCH model

helps find the nonlinear contagion caused by the European debt crisis. In addition,

it appears that adding asymmetry information into the copula-GARCH structure,

that sees increases in the explanatory power of the Student-t copula in capturing

the changes of tail dependence. Finally, the estimations of the multinomial logistic

regression suggest that conditional volatility significantly explains contagion across

2Using asymmetry information carried by GJR is able to make the estimations much closer to
reality. See Huang, Lee, Liang, and Lin (2009).
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five markets. Whilst the level of exchange rate could significantly explains the con-

tagion across four markets. However, the explanatory power of the level of interest

rate is significantly weaker than that of volatility and exchange rate. This is highly

similar to the results attained by Bae, Karolyi, and Stulz (2003) when they studied

stock markets.

The results of first chapter are related to some academic papers. First, the

research on the contagion effect is classified into two branches. One branch of the

literature focuses on the causal factors of contagion. These include various monetary

and financial sectors’ vulnerability and the contagious crisis, see Almeida, Campello,

Laranjeira, and Weisbenner (2012), Rose and Spiegel (2010), Frankel and Saravelos

(2010) and Tong and Wei (2011). The other branch emphasizes that contagion

spreads through financial institutions (For related articles, see Allen and Gale (2000),

Lagunoff and Schreft (2001) and Van Rijckeghem and Weder (2000)). This chapter is

closely related to the first branch of literature that studies contagion amongst global

financial markets during contagious crises. Finally, King and Wadhwani (1990)

studied the evidence for the formation of contagion, showing that the decline of

prices in one market can impact on the value of assets in other markets, thus giving

rise to changes in their prices through the unobservable information channels. All

the related articles show that contagion can be observed if one uses the appropriate

approaches.

The second topic of this study, which has also been extensively studied in the

existing academic literature, relates to the relationship between stock returns and

trading volume, and the relationship between trading volume and volatility. Market

participants tend to attach a lot of importance to trading volume as it carries infor-

mation about future changes of asset prices. In order to examine the properties of

trading volume, the second chapter linearly and nonlinearly estimates both the rela-

tions between return and volume and between volume and volatility. This approach
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follows the basic structure of Hiemstra and Jones (1994). Our work nevertheless

adds to the literature via the following aspects: (1) We additionally generate esti-

mations for correlation between volatility and volume. (2) The correlations between

volatility and volume can be similarly evaluated through both linear and nonlinear

Granger causality tests. (3) The estimation of the relationships between stock re-

turns and trading volume, and between trading volume and conditional volatility

are implemented in a joint system.

In the second chapter, we examine both linear and nonlinear relations between

stock return and volume, and between trading volume and volatility. Following

Granger (1969) and Hiemstra and Jones (1994), we adopt both linear and nonlinear

Granger causality tests. In addition, conditional variance as modeled by Nelson

(1990)’s EGARCH is used to create estimations via a nonlinear Granger causality

test. Our research contributes to the existing literature in two central ways. First,

we use a joint vector autoregression system with three variables in the nonlinear

Granger causality test, i.e., stock returns, return volatility, and trading volume. The

joint vector autoregression system allows for a comprehensive analysis of these three

variables’ relationships and avoids potential inefficient or biased statistical inferences

(see Pagan (1984) and the references therein). In this modified system, we especially

model conditional variance by EGARCH, which allows negative as well as positive

shocks. The model is consistent with the real variations of stock returns’ distribution,

as authoritatively asserted by Nelson (1990). Second, this chapter allows for both

linear and nonlinear Granger causality estimations as investigating the correlations

between three variables of stock returns, trading volume and volatility. As far as

we are aware, this is the first study that simultaneously takes stock returns, trading

volume and conditional volatility into account in the nonlinear Granger causality

estimations. This makes the model more flexible, and allows its potential to identify

structural breaks in the relationship between the variables.

The empirical findings are as follows. First, a statistically significant bi-directional
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nonlinear causality is found between the factors in all markets studied in this pa-

per, this is contrary to the results gained in linear estimations which only suggest

a one-directional causality for some markets. Second, we carry out robustness tests

for both linear and nonlinear Granger causality. We limit the sample period from

the beginning of the year 1994 to the end of the year 2006. This period has the

best known tranquil market conditions without the effects of banking and financial

crisis. Some interesting results are found. First, the linear Granger causality test

results are much stronger when compared to the full sample results. Second, similar

to what we find for the full sample period, we also find a significant bi-directional

causality relationship for the tranquil period with the nonlinearity test. However, we

noticed that the two uni-directional causalities from returns to trading volume and

from volatility to trading volume are much stronger than those the other way round.

The overall evidence therefore shows that certain market conditions (i.e., a specific

crisis or a calm period) may lead to these relations becoming more significant. This

relationship is not only found in our paper, but also in Griffin, Nardari, and Stulz

(2007). They find the more significant feedback from stock returns to trading volume

with waved, volatile and capricious market conditions.

The second chapter is also highly relevant to some academic articles. Chen, Firth,

and Rui (2001) asserted that stock returns cause trading volume, and more informa-

tion can be derived through the joint dynamics of trading volume and stock returns

than that from research with univariate dynamics of stock returns. The results of

Chen, Firth, and Rui (2001) show surprisingly the similar results to what we find

in the robustness tests we undertake upon the tranquil market conditions. As Gal-

lant, Rossi, and Tauchen (1992) stated, previous empirical findings often emphasize

the contemporaneous causal relationship between prices and volume. However, it is

worth noting that there are a few articles focusing on cross correlations, for example,

Hiemstra and Jones (1994), they applied linear and nonlinear Granger causality tests

to explore the dynamic relationship between stock returns and volume for the US
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market. In addition, Andersen (1996) used a theoretical microstructure to examine

the relationship between trading volume and return volatility.

Third, what drives stock prices up? This has become an important topic with

many different factors advocated by researchers. Examples are fundamental factors

such as dividend and earnings (Lamont (1998), Shiller (1990), and Hodrick (1992)),

investor behavior factors (Bizjak, Brickley, and Coles (1992)), interest rate (Kang,

Pekkala, Polk, and Ribeiro (2011), Hjalmarsson (2010) and Cremers (2002)), and

bubble factors (Diba and Grossman (1988) and Wang (2003)). In the third chapter,

we examine three of these specific factors: dividend, earnings and interest rates. We

study three of these factors effects on the international stock and sovereign bond

returns.

This element is a widely studied area, with a body of academic literature argu-

ing over stock price influences, the research is nebulous and not evidentially clear.

Gourieroux and Jasiak (2001), Park (2010) and Uddin and Chowdhury (2005) docu-

ment a positive impact of dividend on stock returns, however Uddin and Chowdhury

(2005) and Fama and French (1988) document a negative effect. Concerning the ef-

fect of earnings, Campbell and Shiller (1987), Datta and Dhillon (1993) and Wang

(2003) find a positive effect, whilst conversely Jaffe, Keim, and Westerfield (1989)

find that the effect changes and can be uncertain over time. Seelig (1974) claims

positive impacts of interest rates on stock returns, and Shiller and Beltratti (1992)

claim negative impact of interest rates on stock returns, respectively. The main

model used in this chapter is a dynamic present value model, based on Campbell

and Shiller (1988) and later further developed by Campbell and Shiller (1988a),

Kanas (2005) and Jiang and Lee (2005). We contribute to the literature by devel-

oping the 3-variable VAR system into a 4-variable system, and make it possible to

incorporate interest rates into the joint system estimations.

For the estimation of the joint system, we find some interesting results in this
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chapter. First, our findings document the explanatory power of dividend on stock

prices. Second, the explanatory power of earnings in predicting stock prices is also

documented for some markets. Finally, we find that neither the dividend discount

model nor the earnings discount model are able to predict the future changes of

stock returns. Due to the different standpoints for the effect of interest rate on stock

prices, we exclude the influence of interest rate on the dividend discount model and

earnings discount model. Instead, we create a new constraint via analysis without

interest rate in a nonlinear Wald test. We thus find that the predictive power of

these models improves in Norway and Colombia, but remains unchanged for Chile

and Argentina. The fundamental prices of Norway and Colombia are therefore much

closer to actual market prices.

We finally relate the findings of the third chapter to seminal academic articles.

The relatively earlier research examining stock returns, dividend and earnings to-

gether is best emphasized in Campbell and Shiller (1988). The results of Campbell

and Shiller (1988) with VAR system show that the ratio of earnings to prices has a

strong explanatory power for the changes of stock returns. This result is also found

in Lewellen (2004) and Easton and Harris (1991). Further to this, Fama and French

(1988), Ang and Bekaert (2007) and Lewellen (2004) document a predictability of

stock returns from using dividend. Interest rate in predicting the stock price is the

least discussed area in the existing literature, such as Shiller and Beltratti (1992),

Shiller and Beltratti (1992) and Connolly, Stivers, and Sun (2005). However, Camp-

bell and Ammer (1993) find evidence that the correlation between risk-free interest

rate and stock returns is too weak to be significant. All in all, it is difficult to find a

unified and definite empirical result for the impact of interest rate on stock returns.
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Chapter 1

Contagion in the Markets of the
European Sovereign Debt Crisis

1.1 Introduction

The European sovereign debt crisis starting from the Greek debt crisis gives a back-

ground to this paper. Since the Greek bailout request in the year 2010, European

sovereign bond markets have been highly volatile. As the Greek government asked

for the bailout from International Monetary Fund and abnormally excessive deficit

of Greek government had been found by European Commission, the systematic risk

across European bond markets attracted a lot of attention (Dajcman, 2012). The

bailout itself resulted in a package of EUR 20 billion, which was thus supported and

financed for the countries whose fiscal policies are difficult to further sustain.

Our study focuses on the contagion risks in these countries, which is a big worry

for European investors. For example, Constancio (2011) suggests the restructuring

of Greek debt may give rise to new financial crises spreading across the neighbouring

sovereign bond markets. The German minister of Finance argues it is hard to sustain

both the domestic fiscal policies and financial support for Greece, which can lead

to a chain reaction caused by a sovereign default. Our study seeks to generate

an understanding of how to find and estimate the European bond contagion, and

searching for the driving factors of European area contagion. This can be of help

for investors to rationally avoid the risk of contagion by making adjustments to
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their investment portfolios, and properly predict the contagion by observing the

fundamental factors to lower the future possible loss-making in time.

The specific focus is on the European bond contagion caused by the Greek debt

crisis, and the study therefore generates two central researching goals. First, we seek

to analyse the sovereign bond contagion across assets and countries in both linear

and nonlinear ways. Second, we seek to identify the factors that can predict the

bond contagion in European area. The research questions are as follows: first, how

do the comovements of stock and bond index returns change over time? Second,

can contagion effects propagate from the Greek bond market to neighbouring bond

markets? Finally, which of following factors can predict the probability of contagion

occurrence, conditional volatility, exchange rates or interest rates?

The empirical analysis leads to five important findings. First, for cross-asset

prospective, we find volatile and overall negative dynamic correlations between stock

index returns and sovereign bond index returns over a recent decade. This is related

to the findings of Dajcman (2012) and Baur and Lucey (2009), and is consistent

with a phenomenon of flight-to-quality. Second, the findings show that the Global

financial crisis increases the flight-to-quality indicator (FTQ) for most countries

and the European debt crisis increases the contagion indicator (CI) across European

stock and bond markets, more pronounced in small countries. Third, from the Greek

debt crisis, non-zero dynamic conditional correlation is found between Greek bond

market and each of eight European bond markets. Most interestingly, our results

show that cross-country bond contagion appears at least four months earlier than the

time the Greek government asks for the bailout from International Monetary Fund,

possibly implying that the information of sovereign bond markets is easily accessed,

and investors find it easier to predict the future changes of bond markets than to

predict the future changes of stock markets1. Fourth, we nonlinearly estimate the

1Chiang, Jeon, and Li (2007) find the evidence that the stock contagion appears after the time
the Asian financial crisis happened in the source country of Thailand.
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contagion in the turmoil period (during the European debt crisis). After adding

the asymmetry information carried by the counterpart of GJR model with normal

distribution, the Student-t copula becomes more powerful to capture the changes of

tail dependence. Finally, the predictability of contagion occurrence is found with

multinomial logistic regression. In order to derive the evidence for the predictability

of contagion, we employ three covariates, such as conditional volatility, exchange

rate and interest rate, and data covering the period from 2001 to 2014. The results

suggest that conditional variance is strongly significant to explain the contagion

across at least five countries, exchange rate is able to explain the contagion across

at least four countries. However, interest rate has a weaker significance to predict

the contagion occurrence across European bond markets.

We contribute to the literature in several ways: first, by following the approach

of Adel and Salma (2012) and Huang, Lee, Liang, and Lin (2009), we integrate the

asymmetry information of GJR model with the innovations following the normal

and student-t distributions into the estimation of two-period copula-GARCH. The

method with asymmetry information will help make the assumption much closer to

reality. Second, to the best of our knowledge, we are the first to apply multinomial

logistic regression to the European bond markets. It may offer more insights into a

limited strand of the literature on contagion across European bond markets. Third,

we additionally show the CI in moving window, and combine the analysis of FTQ

with the analysis of CI. The comparison of two indicators will help identify the

most dominant effect from flight-to-quality and contagion for the specific periods.

The variation and the degree of contagion and flight-to-quality can be intuitively

observed over time, as well. Finally, we expand the data period to the year 2014.

In comparison to the existing literature, the expanded sample period includes the

entire crisis information, may offer more insights for a strand of existing literature.

In order to address the research questions properly, we employ a multi-methodology

including dynamic conditional correlation GARCH (DCC-GARCH), moving average
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indicators of flight-to-quality and contagion, copula-GARCH and multinomial logis-

tic regression to discuss the European bond contagion for cross-asset perspective,

cross-country perspective, nonlinearity perspective and predictability perspective.

First, based on the approaches of Engle and Sheppard (2001) and Dajcman (2012),

we adopt DCC-GARCH model and compute the moving average indicators for flight-

to-quality and contagion. In this approach, we additionally define the contagion

indicator (CI) in the same way as defining FTQ, and combine the analysis of CI

with FTQ to find the most dominant phenomenon. Hence, the first methodology

we organize is to characterize the dynamic conditional correlations (DCC) between

European stock and bond index returns, FTQ and CI for cross-asset perspective.

Second, we apply the DCC-GARCH again to look into the contagion for cross-

country perspective during the European debt crisis. We follow the approach of

Chiang, Jeon, and Li (2007)2 to set Greek sovereign bond market as a source market

of European debt crisis, and then the dynamic correlations are estimated between

the Greek bond index return and each of eight index returns of Germany, France,

the UK, Belgium, Denmark, Netherland, Portugal and Spain. Multivariate GARCH

models with the similar univariate counterparts of DCC-model have been extensively

used to observe the market volatility (See, for instance, Bollerslev (1990), Hamao,

Ronald, and Victor (1990), Illmanen (2003), Skintzi and Apostolos (2006) and Lon-

gin and Bruno (1995).). The DCC-GARCH model based on multivariate GARCH

model can produce the covariances over time, and helps characterize the time-varying

correlation between two variables. To the best of our knowledge, the earliest effort

for using the DCC approach is tried by Engle and Sheppard (2001). Thereafter,

the DCC approach is widely developed and well documented by Baur and Lucey

(2009), Chiang, Jeon, and Li (2007), Engle (2012), Papavassiliou (2014). Third, we

also explore the nonlinear contagion3 across countries in both pre- and post-crisis

2Chiang, Jeon, and Li (2007) decide the Thai stock market to be a source market of the Asian
financial crisis.

3To differentiate linear and nonlinear dependence, we do a brief explanation. The dependence
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periods by using copula GARCH approach. The combination of approaches of Adel

and Salma (2012) and Huang, Lee, Liang, and Lin (2009) is implemented in this

paper. We follow Adel and Salma (2012) to use both tranquil and volatile periods

for the estimations of two-period copula-GARCH, and follow Huang, Lee, Liang,

and Lin (2009) as well to add the asymmetry information by using the GJR model

with the mean innovations following the normal and student-t distributions. The

advantages of our approach are that two-period estimations will help observe the

dependence structure changes over two periods intuitively, and the results from the

estimations with asymmetry information will be much closer to reality. Finally, the

probability of contagion occurrence is evaluated over a recent decade with multi-

nomial logistic regression. We similarly use the multinomial logistic regression of

Bae, Karolyi, and Stulz (2003) with three covariates, which are conditional vari-

ance, exchange rate and interest rate. The evidence for the relationships between

bond returns and the chosen covariates has been well documented in the existing

literature. For example, conditional volatility, exchange rate and interest rate are

separately taken into the account with bond returns by Heath, Jarrow, and Morton

(1992), Fidora, Fratzscher, and Thimann (2007) and Downing and Zhang (2004).

The documented evidence improves our model to include three variables into the

joint system of multinomial logistic regression. In addition, by following Greene

(2012), we compute the marginal effect based on the coefficients of multinomial lo-

gistic regression. The marginal effect will be conducive to observe the changes of

probability of contagion occurrence following the unit changes of covariates.

As yet, the existing researches provide the definitions and a number of empir-

ical works on flight-to-quality and contagion. For example, in the financial crisis,

is called linear if, the correlation between two returns r1,t and r2,t is one, then r1,t � α � βr2,t,
for α P R and β ¡ 0 for positive correlation and β   0 for negative correlation. The nonlinear
dependence is classified into two cases. First, two returns can be uncorrelated but dependent in the
squares: an increase in volatility involves an increase in the other’s volatility. Second, two returns
can be uncorrelated but dependent only on the tails: returns comove only as seeing the extreme
movements. In this part, we mainly discuss the latter case. See Joe (1997).
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investors may move capital from riskier stock markets to the safer sovereign bond

markets, this herding behavior may lead to the decrease in stock prices and the

increase in bond prices. The uni-directional transmission of the capitals from risky

stock markets to bond markets creates a flight-to-quality effect. Flight-to-quality

is well documented by a strand of articles (e.g. Afonso, Arghyrou, and Kontonikas

(2012), Cox and Rennie (2008), Baele, Bekaert, Inghelbrecht, and Wei (2013), Baur

and Lucey (2009) and Dajcman (2012)). In addition, two definitions of contagion

are used in this paper. The first defines contagion as the simultaneous decline of the

assets’ returns, namely a positive correlation of the assets prices (Baur and Lucey,

2009). Second, contagion also can be defined as coexceedances such as Bae, Karolyi,

and Stulz (2003). For example, the exceedance is chosen from the smallest and

largest five percent returns from one return series, and that the exceedances across

the countries are found on the same trading days is called coexceedance also defined

as contagion. The contagion effects are documented in a strand of contagion lit-

erature (see, Bae, Karolyi, and Stulz (2003), Baig and Goldfajn (1999), Kaminsky

and Reinhart (2000), Baur and Lucey (2009) and Aloui, Aissa, and Nguyen (2011)).

Specifically, the contagion effects across different assets in the European markets

are investigated by Mink and Haan (2013), Afonso, Furceri, and Gome (2011) and

Castellacci and Choi (2015). In this paper, we add to this literature on the European

bond contagion with more insights and findings. However, some are critical to the

contagion literature. For example, Forbes and Rigobon (2002) and Briere, Chapelle,

and Szafarz (2012) claim that there is no real contagion effect, only interdependence

caused by a common unobservable factor. However, in our paper, the contagion

caused by the comprehensive information is observed and captured by the chosen

empirical ways.

The chapter is structured as follows: In section 2, we present the econometric

framework of DCC-GARCH model for stock index return and bond index return,

define the moving average indicators of flight-to-quality and contagion, specify the
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copula-GARCH approach with asymmetry information and characterize the multi-

nomial logistic regression with the covariates of conditional variance, exchange rate

and interest rate. The sample data series and their preliminary statistics are also

presented. In section 3, we explicate the empirical findings, and discuss the DCC,

FTQ and CI for cross-asset and cross-country perspectives. The changes of the tail

dependence and the driving factors of contagion occurrence are also demonstrated

and discussed by using two-period copula GARCH and multinomial logistic regres-

sion. Section 4 concludes.
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1.2 Flights and Contagion

1.2.1 Econometric Framework

Our methodology includes the DCC-GARCH model, moving average indica-

tors, two-period copula-GARCH and multinomial logistic regression. The multi-

methodology used has four advantages. First, DCC-GARCH approach models co-

variance matrix for two variables over time. It is conducive to observe the dynamic

correlations along with sample period. Second, using moving average indicators will

help show the level of contagion and flight-to-quality more intuitively and clearly.

The most dominant phenomenon can also be found by comparing both indicators.

Third, two-period copula-GARCH is advantageous to nonlinearly model the con-

tagious effect. The changes of dependence structure can be evaluated with two

classified periods including the tranquil and turmoil market conditions. In addition,

the asymmetry information carried by GJR-model and residuals following student-

t distribution benefits for making the assumption much closer to reality. Finally,

multinomial logistic regression exogenously estimates the probability of contagion

occurrence. Through inserting the covariates, it helps find the impact of endogenous

variables on probability of contagion events.

DCC-GARCH Model, FTQ and CI

Comovement of the different assets is widely researched by using multivariate

GARCH models in a strand of articles (Berben and Jensen (2009); Arouri, Bellah,

and Nguten (2010); Baur and Lucey (2009); Engle and Sheppard (2001); Dajc-

man (2012) and Engle (2002)). The DCC-GARCH model as a typical multivariate

GARCH model attracts a large of academic attention. In our paper, we use DCC-

GARCH model by following Engle and Sheppard (2001) to observe the comovement

of stock index returns and sovereign bond index returns for nine European markets

of Germany, France, the UK, Belgium, Denmark, Netherland, Portugal, Spain and
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Greece. DCC-GARCH model assumes that the demeaned value of returns, rkt
4, from

k assets is conditionally normal with zero expectation value and covariance matrix

Ht, where rkt denotes the return of one asset from k assets at time t. The returns

series of stock index and sovereign bond index of a particularly selected country,

including the information set available at time t-1, have the following distribution (

the similar theory of Engle and Sheppard (2001)):

rt|ζt�1 � Np0, Htq

and

Ht � DtRtDt (1.1)

where Dt is the K � K diagonal matrix of time varying conditional SDs from the

univariate GARCH models with
?
hit on the ith diagonal, and Rt is the time-varying

correlation matrix. Next, the log likelihood of this estimator is written as follows:

L � �1

2

Ţ

t�1

pklogp2πq � logp|Ht|q � r
1

tH
�1
t rtq

� �1

2

Ţ

t�1

pklogp2πq � logp|DtRtDt|q � r
1

tD
�1
t R�1

t D�1
t rtq

� �1

2

Ţ

t�1

pklogp2πq � 2log|Dt| � logp|Rt| � ε
1

tR
�1
t εtq (1.2)

where εt satisfies the distribution of εt � Np0, Rtq, which is the residual standardized

by their conditional standard deviation. The factors of Dt are written by univariate

GARCH models:

hit � wi �
Pi̧

p�1

αipr
2
it�p �

Qi̧

q�1

βiqhit�p (1.3)

4Engle and Sheppard (2001) assert that all assets’ returns, before putting into the DCC-GARCH
model, need to be demeaned. The expected value of demeaned returns series is close to zero.
Additionally, as Engle (2002) points out, the standard errors of the DCC-GARCH model do not
depend on the model choice of filtration. In our paper, following Engle and Sheppard (2001), we
use the simplest mean equation of GARCH (1,1) to filter the return series.
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for i � 1, 2, . . . , k, equation 1.3 has the usual GARCH restrictions of non-negativity

and stationarity. For example, the variances exhibit non-negativity, and
°Pi
p�1 αip �°Qi

q�1 βiq   1, where lag length p, q are unnecessary to be same. The specification of

GARCH model is not limited to the simple GARCH(p,q), however can choose any

GARCH-type models with normally distributed errors satisfying with the stationar-

ity condition and non-negativity restriction.

The expression of dynamic conditional correlation is defined as:

Qt � p1 �
M̧

m�1

αm �
Ņ

n�1

βnqQ̄�
M̧

m�1

αmpεt�mε1t�mq �
Ņ

n�1

βnQt�n (1.4)

and

Rt � Q��1
t QtQ

��1
t (1.5)

where M is the lag length of the innovation term, and N is the lag length of lagged

correlation matrices. Q̄ is the unconditional covariance of the standardized residuals

derived from the first-stage estimation, and Q�
t is a diagonal matrix consisted of

square root of the diagonal elements of Qt:

Q�
t �

�
���������

?
q11,t 0 0 . . . 0

0
?
q22,t 0 . . . 0

...
...

...
...

...

0 0 0 . . .
?
qkk,t

�
���������

(1.6)

The elements of Rt will be

ρij,t � qij,t?
qii,tqjj,t

(1.7)

ρij,t is the conditional correlation between asset i and asset j. The DCC estima-

tors are tested for each of sample markets, with the demeaned stock index returns

and demeaned bond index returns. After computing the dynamic conditional cor-

relation, and by following the approach of Dajcman (2012) and Dajcman (2013),
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indicator of flight-to-quality (FTQ) is defined as that a negative stock index return

and a negative change of sovereign bond yield5 coexist on the same trading day.

In the similar way, the indicator of contagion (CI) is also defined as that a nega-

tive stock market return and a positive change of sovereign bond yield coexist on

the same trading day. In order to observe the phenomena of flight-to-quality and

contagion during the different periods, we calculate a moving window indicators of

flight-to-quality and contagion around a particular day t in Excel6 by using raw

stock index returns and sovereign bond yield. A simple moving window average for

any time t is computed based on the previous 20 trading days equal to an available

calendar month. For the FTQ, the moving window can take the value of either one

(if a negative stock market return and a negative bond yield change can be observed

in every trading day of 20 observations) or zero (if a negative stock market return

and a negative bond yield return cannot be observed in any one of 20 trading days).

For the CI, the moving window can take the value of either one (if a negative stock

market return and a positive bond yield return can be observed in every trading day

of 20 observations) or zero (if a negative stock market return and a positive bond

yield return cannot be observed in any one of 20 trading days). Therefore, the FTQ

and the CI are located between the value of 0 and 1. When the FTQ or the CI

infinitely get closer to 1 at time t, flight-to-quality or contagion phenomena could

be extremely durable around the time t.

5In accordance with Gulko (2002), in the period of financial crisis, investors tend to bid up the
price of sovereign bond by moving the capital from the risky place to the safer place, such as bond
market, so that the reduced bond yield will be observed (negative bond yield changes).

6a. For the FTQ (flight-to-quality indicator), we first use IF function in which we create a
condition of choosing negative returns of stock index and negative changes of bond yield at a
particular time t, and 1 for true and 0 for false. For two new series calculated from the negative
stock index return and negative changes of bond yield only with the value of 1 and 0, we use IF
function again and create a condition that the sum of two new series is equal to 2, to filtrate the
situation that a negative stock market return and a negative bond yield return are observed on the
same trading day. Finally, we compute the moving window average to derive the FTQ.
b. For the CI (contagion indicator), we use the similar approach, but just create the new logical
conditions.
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Two-period Copula-GARCH Approach

To capture the nonlinear contagion, we apply the bi-variate copula-GARCH ap-

proach to look into the changes of tail dependence. First of all, following Huang,

Lee, Liang, and Lin (2009), we construct marginal distributions based on the basic

GARCH and GJR models 7. The simplest GARCH (1,1) is considered with both of

standard normal distribution and standardized student-t distribution, which is:

xt � µ� ωt

ωt � σtεt

σ2
t � α0 � α1ω

2
t�1 � βσ2

t�1

εt � Np0, 1q or εt � tΦ

(1.8)

where, we have µ=Epxtq=EpEpxt|It�1qq=Epµtq=µ which is the unconditional

mean of return, and conditional variance is σ2
t � V arpxt|It�1q � V arpωt|It�1q, It�1

is information set at time t-1. The GARCH model has the restrictions, such as

α0 ¡ 0, α1 ¥ 0 , β ¥ 0, and α1 � β   1. With a standardized student-t distri-

bution, the condition of GARCH is α1V arpεtq � β   1. Φ is degree of freedom.

Maximum likelihood is used to estimate the GARCH parameters, with information

set It�1 � ω0, ω1, � � � , ωt�1. Then, the joint density function could be expressed as

fpω1, � � � , ωtq � fpωt|It�1qfpωt�1|It�2q � � � fpω1|I0qfpω0q. The maximum likelihood

test function for the series ω1, � � � , ωt is:

LLF �
t�1̧

k�0

fpωt�k|It�k�1q (1.9)

εt following distributions (normal or student-t) can be evaluated by using volatility

equation, and maximum likelihood estimates are gained by equation 1.9. Before

7Being different from GARCH model, GJR model includes the counterpart with the asymmetric
effort, which may help copula to show the dependence structure better and make assumption closer
to reality.
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building the copulas, the marginal distribution of Xt�1 is calculated from series of

px1, x2, � � � , xtq, as follows:

P pXt�1 ¤ x|Itq � P pωt�1 ¤ px� µq|Itq

� P pεt�1 ¤ px� µqa
α0 � α1ω2

t � βσ2
t

|Itq

Then

� Np px� µqa
α0 � α1ω2

t � βσ2
t

|Itq, if εt � Np0, 1q

� tΦp px� µqa
α0 � α1ω2

t � βσ2
t

|Itq, if εt � tΦ

(1.10)

The GJR model with innovations following normal and student-t distributions

will be introduced next.

xt � µ� ωt

ωt � σtεt

σ2
t � α0 � α1ω

2
t�1 � βσ2

t�1 � γst�1ω
2
t�1

εt � Np0, 1q or εt � tΦ

(1.11)

Where, st is dummy variable which takes the value of one as εt is negative, zero

otherwise, satisfying with the condition of st �
�

1, ωt 0
0, ωt¥0

�
. Similarly, the GJR model

also has the constraints that α0 ¡ 0, α1 ¥ 0 , β ¥ 0, γ�β ¥ 0 and α1 �β� 1
2
γ   1.

Being better than the traditional GARCH(1,1), the GJR model involves the

counterpart with the asymmetry information which is carried by dummy variable and

its coefficient γ in equation 1.11. If γ is positive, the negative waves will produce more

significant volatility than the same size of positive waves. The marginal distribution

for GJR model is similar to the one for the traditional GARCH in equation 1.10,
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which is written as:

P pXt�1 ¤ x|Itq � P pεt�1 ¤ px� µqa
α0 � α1ω2

t � βσ2
t � γstε2t

|Itq

Then

� Np px� µqa
α0 � α1ω2

t � βσ2
t � γstε2t

|Itq, if εt � Np0, 1q

� tΦp px� µqa
α0 � α1ω2

t � βσ2
t � γstε2t

|Itq, if εt � tΦ

(1.12)

The marginal series obtained from equation 1.10 and 1.12 as variables will be used

into copula estimations, which is introduced in next section.

All types of copulas are built based on Sklar’s theorem 8 which shows very impor-

tant basic structure of copulas. Let D be an n-dimensional function with margins

F1, F2, � � � , Fn, and then there should be a copula C for the real x1, � � � .xn,

Dpx1, � � � , xnq � P pX1 ¤ x1, � � � , Xn ¤ xnq

� CpP pX1 ¤ x1q, � � � , P pXn ¤ xnqq

� CpF1px1q, � � � , Fnpxnqq

(1.13)

If distribution function D is continuous, then in the light of Sklar’s theorem, the

probability distribution function could be divided into the parts of a marginal dis-

tribution and a dependence structure. A dependence structure is represented by a

copula, and the changes of dependence structure are reflected by the relevant pa-

rameters of copulas. This could be clearly seen that the density of D is expressed as

follows:

dpx1, � � � , xnq � BnDpx1, � � � , xnq
Bx1, � � � , Bxn

� BnCpF1px1q, � � � , Fnpxnqq
BF1, � � � , BFn �

i¹
1

BFipxiq
Bxi

� cpuq �
¹
i

fipxiq

(1.14)

8See Sklar (1959).
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Where, ui � Fipxiq, i � 1, 2, � � � , n. cpuq is a copula density function. If all marginal

variables are continuous, copula distribution C is unique and in general, otherwise

is determined by the range of marginal distributions functions, Range of F1 � � � � �
Range of Fn (Sklar, 1959).

In our case, based on the different copulas’ specialities, we choose three copulas

from the large copula family, such as Gaussian, Student-t and Clayton copulas. For

example, the Student-t copula is good at describing the symmetric tail dependence

and tail independence, and Clayton copula is good at describing the asymmetry tail

dependence9.

(1)Gaussian Copula

We set ui to represent probability function Fipxiq. Gaussian is one type of copulas

with the multivariate normal distribution which is defined by follows:

CGaussianpu1, u2; ρq � ϕρpϕ�1pu1q, ϕ�1pu2qq (1.15)

ϕρ is a joint distribution, which is consisted of the multivariate normal distribu-

tions, ρ is dependence parameter of Gaussian copula, and ϕ is a standard normal

distribution function.

(2)Student-t Copula

The traditional correlation to show the dependence structure implies Student-t

copula which is based on the multivariate t distribution. Student-t copula is most

closely related to Gaussian copula, which can be expressed by:

CT
ρ pu1, u2; ρ,Φq � tρpt�1

Φ pu1; Φq, � � � , t�1
Φ pu2; Φq; ρ,Φq (1.16)

where tρ is the cumulative density function (CDF) of a multivariate student’s t

distribution, and the degree of freedom parameter is Φ. Due to the dependence

between degrees of freedom and degree of tail dependence, Student-t copula attracts

9See Rodriguez (2007).
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the increasing attention. The extremely large value for degrees of freedom will make

distribution infinitely get close to Gaussian one, and a small value for Φ will increase

the degree of tail dependence. Briefly, as the degree of freedom increases to infinite,

the Student-t copula converges to the Gaussian copula. Compared with Gaussian

copula, Student-t copula draws heavy tail events, and shows tail dependence struc-

ture better.

(3)Clayton Copula

The Clayton copula is put forward by Clayton (1978). The CDF is defined as:

CClaytonpu1, u2; δq � pu�δ1 � u�δ2 � 1q� 1
δ (1.17)

where δ belongs to the range of r�1,8q.
For marginal functions and copulas, we employ the maximum likelihood method

to estimate the parameters in two steps, which will save amount of computer time.

First, the log-likelihood function for both of marginal function and copula is written

as:

Lpθq �
Ţ

i�1

ln cpF1px1i; θ1q, F2px2i; θ2q, � � � , Fnpxni; θnqq �
Ţ

i�1

ņ

j�1

lnfjpxji; θjq (1.18)

where, we have a set of parameters for marginal and copula functions, θ. Through

maximizing the equation 1.18, the maximum likelihood estimator can be obtained:

θ̂MLE � arg max lpθq (1.19)

After the maximum likelihood estimation, we further apply the Inference Functions

for Margins Method (IFM) proposed by Shih and Louis (1995). IFM method is used

in two steps, two-step procedure is much easier than one step method with only

maximum likelihood estimation, saving the computer time a lot. The first stage is

to estimate the parameters for marginal functions, θ1, and the expression is shown
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as:

θ̂1 � arg max θ1

Ţ

i�1

ņ

j�1

ln fjpxji; θ1q (1.20)

Equation 1.20 shows the performance of estimation for the univariate marginal dis-

tributions. In second step, with the estimator of θ̂1, we estimate for the copula

parameters (the first part of 1.18) in the following function:

θ̂2 � arg max θ2

Ţ

i�1

ln cpF1px1i; θ1q, F2px2i; θ2q, � � � , Fnpxni; θnq; θ2, θ̂1q (1.21)

Then, we have Inference Function for Margins estimator as:

θIFM � pθ̂1, θ̂2q1 (1.22)

For two estimated stages, we use maximum likelihood method on them equally.

Multinomial Logistic Regression

The predictability of contagion is evaluated by following another approach of

multinomial logistic regression of Bae, Karolyi, and Stulz (2003). The multinomial

Logit model is summarized as follows. In addition, based on the coefficients of

multinomial Logit model, marginal effect is also computed by following the method

of Greene (2012).

In the majority of researches, exceedances 10 with respect to the extreme posi-

tive and negative returns are usually modeled as a dichotomous variable. However,

according to the researching requests in our paper, modeling coexceedances 11 to

find the contagion needs to classify the categories to construct the polychotomous

variable. The categories are classified on the basis of the number of coexceedances

across European bond markets. The advantage of multinomial logistic regression

10Exceedance in this paper is defined as 5% largest positive value on the top tail of returns
distribution and 5% smallest negative value on the bottom tail of returns distribution.

11Coexceedance is therefore defined as that exceedances across countries are observed on the
same trading days.
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is exogenous estimating the probabilities in a polychotomous variable, and showing

the value of probabilities intuitively. The probability associated with the category

i of k possible categories is symbolled as Pi, thus a multinomial distribution can be

expressed by,

Pi � exppβ 1

ixq{r1 �
k�1̧

j

exppβ 1

jxqs (1.23)

x is the covariates vector and βi is the coefficient of covariate for the ith category.

The model can be estimated by log likelihood function, which is given by

logL �
ņ

i�1

ķ

j�1

IijlogPij (1.24)

where Iij is a unit vector, the elements of the unit vector are equal to one if ith

observation satisfies with the condition of jth category, and zero otherwise. Pij

is the function of coefficients β. Like all kinds of regressions, Goodness-of-fit of

multinomial logistic regressions can be measured, by the pseudo-R2 approach12.

pseudoR2 � 1 � rlogLθ{logLγs (1.25)

where log(.) is the natural logarithm. The rationale of this formula is that log

L playing a role in nonlinear regression is analogous to the sum of squares of the

residual in linear regression. Consequently, the higher value pseudo-R2 we find, the

better model fitness will be. This formula is coincident with a proportional reduction

in ’error variance’. Lθ is unrestricted likelihood for the estimators of model, and Lγ

is restricted likelihood for the constant only.

In order to estimate the coexceedances across European bond markets in multino-

mial logistic regression, we clarify the categories for possible events in polychotomous

variable. According to the number of coexceedances13, and so as to capture more

12This is McFadden (1974)’s pseudo R-square. Goodness-of-fit of multinomial logistic regression
cannot be estimated by the equivalent R-square in OLS regression. However, it can be interpreted
through pseudo R-square, the higher value pseudo-R2 we find, the better model fitness will be.

13See Table 1.8: Summary statistics of coexceedances for both of positive and negative tails.
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possible results, we restrict our categories into 6 levels for 6 events. For example,

event 0 indicates that there is no coexceedance found on the same trading day, and

event 6 indicates 5 or more than 5 coexceedances found on the same trading day,

likewise for other events. In the Logit model, the category 0 is the benchmark line

whose estimations are not reported. In table 1.9, the categories from 1 to 5 are

exogenously tested for both top and bottom tails. Following the basic approach of

Bae, Karolyi, and Stulz (2003), three covariates are tested in our models, such as

conditional volatility, the level of exchange rate and the level of interest rate 14. Our

estimations are separately applied for both of top and bottom tails. Finally, the

probability of contagion occurrence at each specific category, Pi, can thus be calcu-

lated in the function 1.26. And, with the unconditional mean values, the covariates

can be separately and endogenously estimated for each of six categories.

P �
i � exppβ 1

ix
�q{r1 �

k�1̧

j�1

exppβ 1

jx
�qs (1.26)

Following the approach of Greene (2012) 15, we choose x� as unconditional mean

value of x, and marginal effect 16 of the event probability is computed to show that

as every unit of the independent covariates increases, how the probability of events

will change.

14Conditional volatility of return is modeled by a simple univariate EGARCH(1,1) model. The
level of Exchange rate is calculated by the exchange rates from British pound to US dollar, Danish
krone to US dollar and Euro to US dollar. The level of interest rate in the model is calculated by
the typical three-month short term rates of interest. For the level of exchange rate, we calculate
weighted average of three exchange rates for the European region. And, we also calculate weighted
average of interest rate as the level of interest rate of European region. The data covering the
period of Jan 2, 2001 to May 22, 2014 is extracted from Datastream International.

15See Greene (2012), Chapter 18.
16In Greene (2012), marginal effect is computed as the partial derivatives of probability to co-

variates.
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1.2.2 Data Description and Preliminary Statistics

We employ the data covering the period from 2 Jan 2001 to 22 May 2014 which

encompasses all recent financial and debt crises. By following Baur and Lucey (2009),

the sample data selects daily continuously compounded MSCI stock index of Ger-

many, France, the UK, Belgium, Denmark, Netherland, Portugal and Spain, and JP

Morgan bond index of the UK, Belgium, Denmark, Netherland, Portugal and Spain.

For Greek stock index return, and German, French and Greek sovereign bond indices

returns, we collect them from datastream17. Sovereign bond indices are sovereign

total return indices with more than ten years maturities. We also calculate the re-

turn of stock index and the return of sovereign bond index with logarithm formula

of lnpPtq� lnpPt�1q (where Pt is index value at time t). In order to build the moving

average indicators of flight-to-quality and contagion, we also employ the JP Morgan

government bond yield with more than 10 years maturities as well, the logarithm for-

mula of return is lnpPtq � lnpPt�1q. All sample data are obtained from Datastream

database and all indices are chosen in local currency.

Table 1.1 presents all preliminary statistics of sample data. It reports mean, stan-

dard deviation, JB statistics for normality, first order autocorrelation and LM test

for ARCH effects with 10 lags. For the statistics of bond markets, Greek sovereign

bond market has the lowest mean return among sample markets. The Greek bond

index also has the lowest standard deviation that shows the relatively smooth varia-

tion. JB statistics reject normality for all countries. Bond index returns show a small

autocorrelation for most of markets, the relatively higher first order autocorrelation

is found in Portuguese, Spanish and Greek bond markets, respectively. The LM tests

produce statistically significant results for ARCH effects with 10 lags, it shows that

bond index returns strongly rely on their past values. For the second part of table

1.1, we also report some descriptive statistics for stock markets. The Greek stock

market has the negative and lowest stock index return, and has the lowest standard

17We can directly find the required data from the equity and bond categories of Datastream.
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deviation as well. Normality is rejected for all markets at 1% significance level by

the JB statistics. Stock markets show the even smaller autocorrelation than that

of bond markets. And the significant ARCH effects are found in all countries. The

results of LM test finally suggest the Goodness-fit of the GARCH-type models to

our data series. It allows using any GARCH-type models into our latter estimations.

Table 1.2 reports the results of time series’ stationarity estimated by unit root

tests. The stationarity of data series is examined by choosing Augmented Dickey-

Fuller test(Simplest ADF(1)). The strong rejection of null hypothesis shows that

stationary process in the raw stock index returns and sovereign bond index returns

can be found for all countries. It meanwhile means that the employed data has been

ready to enter into our tests.

We report unconditional stock-bond returns correlation matrix in table 1.3. In

table 1.3, unconditional correlation coefficients are negative in Germany, France, the

UK, Belgium, Netherland and Denmark, with the exception of Spain, Portugal and

Greece. Although the unconditional correlation coefficients are positive in Spain,

Portugal and Greece, they are relatively unremarkable, only are 0.0705, 0.1182 and

0.2058. As a result, when investors’ profits overall increase (decrease) in the bond

markets, profits will decrease (increase) in the stock markets in most of European

countries. The unconditional correlation shows the disadvantage that the results

cannot display the changes of correlation between assets over time.
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1.3 Empirical Results

1.3.1 Cross-asset Analysis, FTQ and CI indicators

Before the DCC estimations, Ljung-Box Q-statistics are computed for residuals,

the results of Q-statistics show that the null hypothesis of no serial correlation can-

not be rejected for the time series of residuals. To estimate the DCC across stock

and bond, we use the bond index returns rather than bond yield to evaluate the dy-

namic conditional correlations, because the produced results intuitively exhibit the

correlations, are easy to read. The plots of DCCs are shown in figures 1.1 to 1.9. For

each figure (a) of nine figures, all of them show volatile comovement between stock

index returns and sovereign bond index returns. The volatile comovement between

stock index returns and sovereign bond index returns is similarly obtained in Baur

and Lucey (2009), Dajcman (2012), Gulko (2002), Connolly, Stivers, and Sun (2005)

and Dajcman (2013). The overall negative correlations of nine countries are observed

over the sample period, the results are similar to Baur and Lucey (2009), Dajcman

(2012) and Dajcman (2013). From the figures, we can see that the turmoil periods

somewhat cause the sharp changes of dynamic conditional correlation, and the effect

of the different crises on dynamic conditional correlations is slightly different. For

example, the effect of IBB (International Bubble Burst) on the DCCs between stock

and bond lasts for a relatively longer time, and the impact of MEC (Middle East

Financial Markets Crash) on the DCCs is moderate. Along our sample period, the

global financial crisis and the European debt crisis attracting the academic atten-

tion cause the positive or negative changes of dynamic correlations in the European

region. In other words, we find mixed results of dynamic conditional correlations for

the different turmoil periods. We point out the important crises18 along the sample

18Our sample includes: WTC (Sep 11 attacks on World Trade Center); IBB, Internet Bubble
Burst (IBB is pointed out on 21 May 2002, at the same time, the Dow Jones Industrial reached
the peak point.); MEC, Middle East financial markets crash (From the beginning of May 2006);
GFC, Global financial crisis (From 16 September 2008, the Lehman Brothers close to bankrupt is
denoted); GDC, Greek Debt Crisis(On 23 April 2010, the Greek government requested a bailout
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period, and the countries on which these crises have the negative impact, such as

WTC ( with the negative impact on Germany, France, Belgium, Denmark, Nether-

land, Portugal and Spain), IBB (with the negative impact on Germany, France, UK,

Denmark, Netherland, Spain and Greece), MEC( with the negative impact on Den-

mark and Greece), GFC (with the negative impact on Germany, France, Belgium,

Denmark, Netherland, Portugal Spain and Greece), GDC (with the negative impact

on Germany, France, Belgium, Denmark and Netherland), IDC (with the negative

impact on France, Belgium, Netherland and Spain), PDC (with the negative impact

on France and Portugal) and ITDC (with the negative impact on Germany, France,

Belgium, Denmark, Netherland, Portugal and Spain). For the majority of sample

countries, dynamic conditional correlation turns positive and more volatile around 2

Jan 2012. The DCCs of France, Portugal and Spain turn positive significantly after

global financial crisis denoted from 16 September 2008.

Our motivation prompts us to focus on the period of the European sovereign

debt crisis, starting from the Greek debt crisis. Portugal, Spain and the source

country Greece show the DCCs turning positive obviously, after the time the Greek

government requested the bailout from International Monetary Fund (namely, the

time for the Greek debt crisis denoted, or the start of the European debt crisis.), we

can see that the influence of the European debt crisis on Portugal, Spain and Greece

lasts to ”today”. Highly positive correlations may imply cross-asset contagion, and

the decline of their stock markets. This is related to a worry of Constancio (2011)

and Mink and Haan (2013). They worry about that a restructuring of Greek debt

may give rise to a new financial crisis in the European Union, especially in France

and Germany, which is highly exposed to Greece. Due to the worry of Constancio

(2011) and Mink and Haan (2013), we finally report the DCCs of Germany and

from the EU/IMF); IDC, Ireland Debt Crisis (1 September 2010); PDC, Portugal Debt Crisis
(From 16 May 2011, a bailout of financial support from Eurozone was approved for Portugal.) and
ITDC, Italy Debt Crisis (From the early July 2011, the financial markets expectation for Italy
bailout request reached a level, at which other European markets with sovereign crisis had asked
for a support yet).
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France.

For Germany, in the turmoil periods, the dynamic conditional correlation be-

comes significantly negative, and stays at a low level, such as WTC (-0.6), IBB (-0.4),

GFC(-0.7), GDC(-0.7), IDC(-0.65) and ITDC(-0.65). For France, WTC, IBB, GFC,

GFC, GDC, IDC, PDC and ITDC show negative DCCs at average levels of -0.55,

-0.45, -0.3, -0.65, -0.65, -0.65, -0.65 and -0.65, respectively. Indicating high levels

of the possible flight-to-quality, the lowest correlations may show that the German

and French stock markets are impacted most by the Global Financial crisis and the

European debt crisis. Through defining the specific conditions of flight-to-quality

and contagion, we may obtain more accurate information by analysing the moving

average indicators (FTQ in fig.(b)and CI in fig.(c)).

We compute the moving average indicators to show the dynamic level of flight-

to-quality and contagion. It makes sense that the higher the indicator is, the more

remarkable the phenomenon will be. In the latter analysis, flight-to-quality indicator

is denoted as FTQ, contagion indicator is denoted as CI, and we combine the analysis

of CI with FTQ to find the most dominant phenomenon. From the fig.1.1 to fig.1.9,

WTC and IBB increase FTQ obviously for most European countries, except for

Denmark and Netherland. The global financial crisis exploding from the year 2008

influences European markets heavily. For example, GFC increases FTQ significantly

for all countries, and FTQ is much higher than CI. It possibly implies that during

the period of GFC, European investors tend to move their capitals from the stock

markets to the sovereign bond markets, so that the price of stock drops and the

price of sovereign bond increases. The European debt crisis starting from the year

2010 (from the Greek debt crisis onward) also causes big waves of the correlations

between European stocks and bonds, and mixed results are found. We will show

more details in the following paragraph.

More specifically, before the year 2007, the German FTQ has been remaining an

average level of 0.4 which is higher than the contemporaneous CI that is only 0.2
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on average. And then, the global financial crisis increases the German FTQ to a

level of 0.5, and FTQ increases to a higher level in the period of the European debt

crisis including GDC, IDC, PDC and ITDC. Similar results are obtained for France.

The French CI drops to a level of zero many times, it lowers the average level of

CI and indicates that after the global financial crisis the French CI remains a lower

level than FTQ. The flight-to-quality of France is the dominant phenomenon over

the observed period. Comparing the British FTQ with the British CI, both of FTQ

and CI equally reach a level of 0.4 on average before the middle of 2007. The equal

levels of FTQ and CI reflect a long lasting tranquil market condition of the UK.

However, the tranquil market condition of the UK starts changing from the period

of the global financial crisis (Sep 2008). The British FTQ increases dramatically

to the maximum level of 0.65. In contrast, CI has a lower level, only remains an

approximate level of 0.2. The changes of FTQ and CI imply that the global financial

crisis decreases the stock returns and increases the bond returns. The investors of

the UK seem to promptly move their capital from the stock market to sovereign

bond market. During the European debt crisis between the year 2010 and 2012,

FTQ of the UK still remains a relatively high level, approximately 0.45. The level of

the contemporaneous CI is only 0.1. In this case, we infer that the European debt

crisis unlikely strikes the British investors’ confidence in investing the local sovereign

bond, their herding investment behaviour make the bond safer and more profitable.

After the analysis of the large countries, we also find some interesting results from

the relatively smaller countries.

The Belgian FTQ and CI are only around 0.2 from the beginning of MEC. That

there is approximate 0.2 unit increase of FTQ could be found from the period of

the global financial crisis. Although this change of the Belgian FTQ is moderate,

the strong flight-to-quality and the weak contagion are still captured by contempo-

raneously comparing FTQ (0.5) and CI (0.2). We surprisingly notice that both of

the Belgian FTQ and CI have the low value below 0.4 at the very beginning of the
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European debt crisis (the periods of the Greek debt crisis and the Irish debt crisis).

However, at the later stage of the European debt crisis, CI starts climbing up to a

level of 0.55, which is much higher than its contemporaneous FTQ. From the fig-

ures, the Belgian stock and bond markets slowly react to the negative information of

the European debt crisis, but once the Belgian investors realize the general market

risk they will have a violent reaction, and then adjustment in time. In contrast

with other countries, Denmark likely has a durable investment preference, because

FTQ has been staying at an average level of 0.5 from the global financial crisis af-

terward (for at least four years). The higher FTQ and the lower CI indicate the

strong preference of the bond investment in Denmark. For Netherland, CI shows

the most volatile contagion, but the level of contagion is not significant. The FTQ

of Netherland reaches a maximum level of 0.5 at the beginning of the European

debt crisis, even reaches a level of 0.7 in the Irish debt crisis, showing that Dutch

investors heavily rely on the local sovereign bond even if the neighbouring bond

markets have the strong general market risk. The overall results of Netherland are

analogous to what we observed in Denmark, their overall FTQ is higher than their

CI. All above concludes that the general market risk of the source market of the

European debt crisis may not necessarily affect the performance of the neighbouring

countries. Figure 1.7 (b) (c) and figure 1.8 (b) (c) present the results for FTQ and

CI of Portugal and Spain. Like all results concluded from above, the global financial

crisis pushes their FTQ. From the year 2010 to the year 2011, contagion becomes

more dominant due to the CI level of 0.6. Most importantly, as a source country

of the European debt crisis, Greece inevitably captures more attention. It in fact

produces many significant results in our paper. First, fig.1.9 (a) shows that over

the period from the beginning to the year 2009, DCC always remains negative, until

the year 2010. Second, after the Greek debt crisis, the Greek dynamic correlation

turns positive and increases to an incredibly high level. In our opinion, it implies

highly positive comovements of the Greek stock and bond returns. Similar variation
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of DCC is found from Portugal and Spain. In this case, the stock and bond markets

of Portugal and Spain may have higher exposure to the shocks of the Greek bond

market, the relatively small economic entities, such as Portugal and Spain, may be

more likely to be influenced by the waves of the Greek bond market. The high CI

(0.65) of Greece may indicate that the explosion of the Greek debt crisis undoubt-

edly impacts on Greek sovereign bond market, simultaneously, also sorely affect its

stock market.

35



1.3.2 Cross-country Sovereign Bond Analysis on Contagion

From Figure 1.9, we are able to see the sharp increase of the Greek dynamic

correlation between stock and bond during the European debt crisis, and similar

changes are found from Portugal and Spain as well. This result motivates our em-

pirical works to engage in contagion investigations for cross-country perspective,

during the European debt crisis from 23 April 2010 (GDC) to the early July 2011

(ITDC). We follow the cross-country DCC-GARCH approach of Chiang, Jeon, and

Li (2007), and choose the Greek sovereign bond market to be a source market of the

European debt crisis. We also follow their approach to limit our estimated sample

period to the turmoil period. The estimated sample therefore includes the period

from the middle of the year 2009 to the middle of the year 2012, it ensures the

limited sample period that can include all turmoil information of the European debt

crisis, and all possible insights on the cross-country contagion of the European debt

crisis will be produced.

We present the logarithm returns of sovereign bond indices in Fig.1.10 to vi-

sualize the returns for nine markets. A clustering phenomenon of larger volatility

simultaneously appears in nine countries after the mid-year 2010 (the time for the

Greek debt crisis denoted), and sustains for a long time. This phenomenon is not

only observed in figure 1.10, but it also is successfully modeled by the existing liter-

ature of (Bollerslev, Chou, and Kroner, 1992) with the traditional GARCH model.

Before we estimate the dynamic correlation coefficients, the statistics of Greek bond

index return are stressed. The statistics show negative returns on average, the sta-

tistically significant ARCH effect is found by LM (Lagrange Multiplier) test with

10 lag-length. The results of preliminary statistics indicate that the GARCH-type

model will fit the data very well, and goodness-fit of the GARCH-type models is

found for all European countries.

By following the theory of Chiang, Jeon, and Li (2007), cross-country contagion
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is defined as a comovement of stocks, the comovement is modeled by the DCC-

GARCH. The appearance of stock contagion during the Asian financial crisis is

denoted by the significantly high level of dynamic conditional correlation, the range

of ”high level” is defined from 0.3 to 0.47. In other words, contagion can be found if

DCC falls into the range from 0.3 to 0.47. This range as the benchmark value will

be considered in the latter analysis. In addition, if a increasingly positive correlation

is found, it means that the turmoil information increases the contagion more or less.

In our paper, we apply this approach to the European bond markets, and observe

the contagion caused by the European debt crisis. The usage of DCC-GARCH helps

us to produce covariance matrices and estimate the changes of covariance matrices

over time.

In addition, we show the time-varying conditional volatility over the whole sample

period in Figure 1.11. The conditional volatility increases sharply from the end

of 2009 and starts decline in the middle of 2012. The cross-country contagion is

denoted if the high level of DCC and conditional volatility is found simultaneously.

The period with the high level of volatility also indicates the duration of tranquil

period.

The approach of Chiang, Jeon, and Li (2007) is employed in our paper and

equation 1.7 is expressed for the bivariate case:

ρ12,t � p1 � α � βqq12 � αu1,t�1u2,t�1 � βq12,t�1b
rp1 � α � βqq11 � αu2

1,t�1 � βq11,t�1s
b
rp1 � α � βqq22 � αu2

2,t�1 � βq22,t�1s
(1.27)

We follow Engle and Sheppard (2001), the DCC-GARCH model can be used to

maximize the log-likelihood function (equation 1.2) by using a two-step approach.

Hence, the equation 1.2 is rewritten as:

ltpϑ, ϕq � r�1

2

Ţ

t�1

pnlogp2πq�log|Dt|2�ε1tD�2
t εtqs�r�1

2

Ţ

t�1

plog|Rt|�u1

tR
�1
t ut�u1

tutqs
(1.28)
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ϑ denotes the parameters in Dt, and ϕ denotes the parameters in Rt. The first

part of the right-hand side of equation (1.28) is the volatility counterpart, this part

includes the sum of individual GARCH likelihoods. The estimated parameters in

Dt can be used to maximize the likelihood function in the first stage (first part

of equation 1.28). The second stage (the second part of the right-hand side of the

equation 1.28) encompasses the correlation component of the likelihood function, this

part can be maximized to estimate the correlation coefficients. Chiang, Jeon, and

Li (2007) show the advantage of the dynamic correlation coefficient which is more

flexible in finding the comovement between two return series than the unconditional

correlation coefficient. Dynamic conditional correlation also intuitively reflect the

variations of comovement over time.

Figure 1.12 show the estimates of dynamic conditional correlations between the

Greek sovereign bond market and each of eight European bond markets, such as

Germany, France, UK, Belgium, Denmark, Netherland, Portugal and Spain. During

the year 2010 and the year 2011 19, we find a high level of the dynamic conditional

correlations for all countries, with the exception of France. However, before the year

2010, the dynamic conditional correlation of France shows a dramatic increase for

approximately four months. The DCC across the Greek and Spanish bond markets

even reach a maximum level of 0.8 at very beginning of 2010, and the effect lasts for

more than a year. So, the relatively high level of DCC between Greece-Spain possibly

implies that the Spanish bond market had the high exposure to the Greek bond

market. This result is highly coincident with the cross-asset result of the Spanish

markets. Most interestingly, the overall increase of all DCCs is found around the

year 2010. The time for the start of the DCCs’ increase is at least four month earlier

than the time the Greek government asked for a bailout from the institutions (the

19We also plot the time-varying dynamic conditional correlations, from the start of the year 2001.
The results show that dynamic conditional correlations substantially stay at high level, maybe due
to the very similar tranquil market conditions across the European bond markets. That we find the
high dynamic conditional coefficients from the end of 2009 to the middle of 2012 (with extremely
high level of conditional volatility, in figure 1.11) is more likely attributed to contagion.
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time for the Greek debt crisis denoted on 23 April 2010). In other words, the herding

behaviour of bond returns appears earlier than the time for the debt crisis denoted.

The opportunity of anticipating the bond contagion may be implied by the early

herding behaviours.

We compare the results of the European bond markets with the literature of

Chiang, Jeon, and Li (2007) on the Asian stock markets. Chiang, Jeon, and Li

(2007) claim that the impact of the Asian financial crisis at the beginning phases

only stays at the source country of Thailand, and only affects the local investment

decisions. However, the investors’ panic starts spreading from the source country

to the neighbouring markets in the mid-phases of the Asian financial crisis. This

phenomenon shows that the herding behaviours of stock returns appear after the time

for the Asian financial crisis denoted. Obviously, the results concluded by Chiang,

Jeon, and Li (2007) are quite different from what we found from the European

bond markets. Hence, the earlier appearance of bond contagion is explained in

the possible sense that the public information of sovereign debt situation is easily

captured by investors, so that the investors may be easier to predict the covariation

of the European bond markets than to predict the covariation of the stock markets.

The contagion found in this part can be explained as that the European investors

would like to follow the major investment decisions made by the majority of investors

in the source country of Greece, in order to avoid the possible systematic risks.

Mink and Haan (2013) fear that in the European debt crisis Germany and France

highly exposed to Greece. However, in our paper, the dynamic conditional corre-

lations between the Greece and each of the UK, Germany and France are 0.3 on

average, are relatively moderate around the year 2010. The contemporaneous DCCs

of Belgium, Denmark and Spain are relatively higher than that of the UK, Germany

and France. It means the relatively smaller countries are more susceptible than the

relatively larger countries. In addition, that the DCC of the UK has the similar

variation of the DCC of Germany may be explained as the very similar exposure of
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the British and German bond markets to the Greek bond market. It is worth noting

that the DCC of France appears a brief and significant increase before the European

debt crisis claimed, and then drops down to zero on average. This unawares phe-

nomenon and the subsequently long time tranquil market conditions dazzle us a lot,

and may be further researched and explained by the future efforts.
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1.3.3 Contagion Analysis: Copula-GARCH Approach

The sample includes daily returns of nine European sovereign bond indices, from

2 Jan 2001 to 22 May 2014. In order to estimate the changes of dependence structure,

the whole sample period is decomposed into two sub-periods20. One period takes

the tranquil market conditions in account, the other one is relatively turmoil period.

The decomposition of the sample period is based on with three reasons. First,

Dajcman (2012) denotes that the time for the occurrence of the Greek Debt Crisis

is 23 April 2010, which is the time the Greek government requested a bailout from

the institution of EU/IMF. Second, Adel and Salma (2012) claims a tranquil period

that is characterized by calm volatility, and a turmoil period that is characterized by

frantic volatility (The relevant evidence can be partially summarized from fig.1.10).

Finally, the evidence summarized from fig.1.11 shows that for most of countries,

the occurrence of contagion happened at least four months prior to the time the

Greek government requested a bailout from EU/IMF. In summary, we determine

the bound date between ”a tranquil period” and ”a crisis period” in the light of all

above evidences. The bound date should be earlier than the dates summarized from

above evidence, so that the post-crisis period will include all turmoil information of

the European debt crisis. Therefore, the bound date is decided to be 1 Sep 2009.

Thus, the pre-crisis period of European sovereign debt crisis is from 2 Jan 2001 to 1

Sep 2009, and the post-crisis period is from 2 Sep 2009 to 22 May 2014.

In the approach of copula-GARCH, we consider the marginal method presented

in section 1.2.1, and the traditional GARCH model and GJR model following normal

and student-t distributions to add the asymmetry information. Specifically, we use

the univariate GARCH model to derive the univariate marginal model. Allowing the

univariate GARCH model helps produce the probability distributions and the results

of maximum likelihood (See table 1.4 and 1.5). In table 1.4 and 1.5, parameters of

20Following two-period approach of Adel and Salma (2012) will help observe the changes of the
copula parameters.
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the GARCH-normal, GARCH-t, GJR-normal and GJR-t are respectively estimated

and reported. As a result, all parameters for two-period are statistically significant

and non-zero, which therefore are sufficient for the copula estimation. We also

present the results for the AIC (Akaike information criterion) and BIC (Bayesian

information criterion). The results show all estimated AIC and BIC lying between

-11 and -8.

Three copulas are applied in our estimation, they are Gaussian, Student-t and

Clayton, respectively. We continue to test the parameters of three chosen copulas,

the results are shown in table 1.6 and 1.7. We use Inference function for margins

(IFM) method as a default copula estimation method. Following Rodriguez (2007),

Kendall’s tau is used to estimate the parameters of Student-t Copula, is defined as:

ρτ � 2

π
arcsinpρq (1.29)

.

Table 1.6 reports the estimations for the dependence parameters of three copulas

and model fitness, during the period of 2 Jan 2001 to 1 Sep 2009. And table 1.7

reports those during the period of 2 Sep 2009 to 22 May 2014. We first focus on

the copula fit for the pre-crisis sample. For GARCH models, with the relatively

smaller values of AIC and BIC, Gaussian and Student-t seem to be better fitting

copulas overall. For GJR models, Gaussian and Student-t copulas are overall better

fitting copulas as well. And then, during the the period of 2 Sep 2009 to 22 May

2014 (post-crisis sample), we find the mixed results for the copula fitness. Although

there are big differences among AIC and BIC of different countries, they are still

acceptable.

From table 1.6 and 1.7, all parameters for dependence between Greece and each of

eight European countries are positive and strongly significant. We surprisingly find

a significant increase for all dependence parameters of copulas from the table 1.6 and
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1.7. The high level of nonlinear dependence somewhat reflects the strongly nonlinear

contagion and indicates that all European sovereign bond markets are highly exposed

to the Greek bond market. The nonlinear results of copula GARCH model support

the conclusions obtained by cross-country DCC-GARCH approach. After adding the

asymmetry information by using GJR-normal model, the parameters of Student-t

copula sharply increases from 0.004 to 0.1380 on average (the most growth). This

growth is significantly larger than the increase of the other dependence parameters.

Hence, we consider that the asymmetry information of GJR-normal model will be

robust in improving the explanatory power of Student-t copula. The Student-t

copula becomes more sensitive to detecting changes in the dependence structure.

Relating this result to Rodriguez (2007), they put forward that Student-t copula is

often used on the symmetric tail dependence and tail independence. Nonetheless,

we find that Student-t copula will be more powerful to detect the changes of tail

dependence, with the asymmetry counterpart of GJR-normal model.

All in all, sovereign bond contagion has been found by the two-period analysis

of dependence parameters. Furthermore, different types of GARCH-type models,

especially in GJR-normal model, may increase or decrease the copula’s ability of

estimating the changes of the extreme tail dependence.
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1.3.4 Contagion analysis within European region: Multino-

mial Logistic Regression

In addition to most research that defines contagion as co-movement of index

returns, in order to properly implement multinomial logistic regression, we adopt

another contagion definition that is return coexceedance. The exceedance is defined

as the returns falling into the set of the lowest and highest 5% observations on

the return distribution, and coexceedance therefore is defined as the number of the

returns’ exceedances observed on the same trading day. The negative coexceedances

represent the level of negative contagion for the region, the more coexceedances are

found, more contagious the crisis will be in this region. According to the requirement

of multinomial Logit model, we firstly summarized the number of the trading days

for coexceedances. The results are reported in table 1.8. More specifically, we report

coexceedances for the bottom tail (negative extreme value) on the left hand side of

table, and top tail (positive extreme value) on the right hand side. For each of the

sample countries, we compute the joint exceedances of one country on the particular

trading day with the other eight markets. If on one trading day, a extreme return

is observed in benchmark market and i21 in the other eight, it would be signed as

i+1 coexceedances for this market. In the light of the number of coexceedances, we

classify seven categories indicating counts of the number of joint exceedances. First,

the coexceedances on the bottom tail are summarized. Out of 3493 observations,

2884 trading days fall into the category of that there is no extreme return in any

market. The number of trading days with only one negative exceedance is 273 in

total. From table 1.8, we derive almost symmetric statistics between top tail and

bottom tail. For 2853 trading days out of 3493 observations, there is no positive

coexceedance found in the top tail. 283 trading days with only one exceedance are

found. There is a slight asymmetry found from the category of two coexceedances

21i could be equal to 0, 1, 2, ..., 8.
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in the top tail and bottom tail. For instance, 137 observations with 2 coexceedances

are found in the top tail, but only 112 trading days with 2 coexceedances can be

computed in the bottom tail. Besides, the number of trading days with more than

6 coexceedances in the bottom tail is greater than that in the top tail. We therefore

conjecture that the impact of the negative events may be stronger than the impact

of the positive events on the European bond markets. In table 1.8, we not only

present total counts of the number of coexceedances, but we also show the markets’

frequency of extreme returns in sample period.

The markets with the most frequent negative coexceedances are Belgium and

Netherland which have 73 trading days with more than six markets’ coexceedances,

22 and 27 out of all 31 days with five markets’ coexceedances in bottom tail. France

also shows highly regular negative coexceedances, there are 72 out of all 73 days with

more than six coexceedances, and 26 out of all 31 days with 5 coexceedances. France

and Netherland are the countries with the most regular positive coexceedances. In

France and Netherland, there are all of 59 trading days with more than 6 coex-

ceedances and, 31 and 39 out of all 41 trading days with 5 coexceedances in top tail.

Greece sees the largest number of trading days with only one exceedance, 72 for the

bottom tail and 77 for the top tail. It means that Greece has the most volatile mar-

ket conditions over the whole sample period. Actually, the Greek bond market does

not always have a large number of negative coexceedances with the other neighbour-

ing markets, it may make sense that the changes of Greek bond returns are prior to

the changes of neighbouring bond returns, therefore the Greek coexceedances across

neighbouring countries cannot be always found on the same trading days.

Table 1.9 and 1.10 provide the estimations of the multinomial Logit model for

the European markets. The results will help answer the central research questions

of what and how the covariates can explain the probability of contagion occur-

rence. We separately estimate the coefficients of models for negative and positive

extreme returns, and also calculate the marginal effect. The negative and positive
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coexceedances are estimated in six models. Models (1) to (3) exogenously estimate

the negative coexceedances, and the others estimate the positive coexceedances. In

model (1), we estimate for the bottom tail with constants only, model (2) includes

the estimations of constants and one covariate of conditional volatility, and model

(3) endogenously estimate the constants, and three covariates of volatility, exchange

rate and interest rate. For top tail, models (4) to (6) repeat. For the first model

of the bottom tail, only estimations of intercept are reported, and the constants in

model (1) imply the corresponding probability of events for each category. Model

(1) suggests the probability of 85.7% for the case that there is no exceedance in any

European market (not reported in tables). β1 of -2.357 denoting the coefficient for

the contagion across one market (event of Y=1) implies the occurrence probability

of 7.98% 22. In the same way, for the other events of bottom tail, the probabilities

of contagion occurrence across two to five countries (Y=2, 3, 4 and 5) are 3.28%,

2.21%, 1.46% and 0.91%, respectively. Based on the constants of model (4), we also

calculate the probabilities of contagion occurrence for top tail. They from event 1

to event 5 are 8.1%, 3.9%, 2.0%, 1.4% and 2.9%, respectively. Without the influence

of covariates, the probabilities of contagion occurrence across countries are much

closer to the frequency summarized in table 1.8. In model (2), we add a covariate

of conditional variance to the multinomial logistic regression, and the statistically

significant results are found for all categories from event 1 to 5.

In model (3), we add three covariates, which are conditional volatility, the level

of exchange rate and the level of interest rate. We calculate the weighted average

of the exchange rates (Ex.) from euro, Danish Krone and British pound to US

dollar, and interest rate (Int.) is calculated by the equally-weighted average of

interest rates in local currency. There are three results summarized from model

(3). First, the coefficients of conditional volatility are strongly significant for the

22The probability of contagion occurrence can be calculated by the function, exppβ1q{r1 �°
k exppβ0kqs.
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events from ”Y=1” to ”Y=5”. Second, the coefficients of exchange rate for all

events are statistically significant, with one exception of the event ”Y=5”. Finally,

the coefficients of interest rate are less significant than volatility and exchange rate.

The significant coefficients of interest rate are only found for the events of ”Y=1”

and ”Y=2”. Top tail in model (6) presents the analogous results. For example,

the coefficients of conditional volatility are significant for the contagion across in at

least five countries, and coefficients of exchange rate are significant for the contagion

across at least four countries. The interest rate is also weakly significant for the

contagion across the European bond markets.

In order to look into the specific influence of the covariates on the probability of

contagion occurrence, the marginal effect based on the coefficients displayed in table

1.9 is computed by following the approach of Greene (2012). The marginal results are

presented in table 1.10. In model (2), we find a strongly significant marginal effect

for conditional volatility for all five categories. The strong significance denotes that

the conditional volatility is able to explain and predict the contagion across at least

five countries or more than five countries. In addition, the positive marginal effect

also indicates that as every unit of conditional volatility increases, it will increase

the probability of contagion occurrence (from ”Y=1” to ”Y=5”) more or less, but

the power of the marginal effect along the line of categories from ”Y=1” to ”Y=5”

gradually subsides. For example, if conditional volatility increases by one unit, then

the probability of event ”Y=1” will increase by 0.479 unit, and the event ”Y=5”

will increase by 0.043 unit. Symmetric effects of conditional volatility for top tail

coexceedance is found in model (5). The marginal effect derived from model (3)

will help us to answer the question of whether conditional volatility, exchange rate

and interest rate significantly impact on the probability of contagion occurrence for

bottom tail. As a result, the significant marginal effect of conditional volatility for

all five categories shows that as the conditional volatility stays at very high level,

it will increase the probability of contagion occurrence across at least five countries.
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In other words, conditional volatility is able to strongly explain the contagion across

the European bond markets. The level of exchange rate is also able to explain the

contagion across at least four countries. The level of interest rate weakly explains

the contagion in the European region. Model (6) estimates three covariates for top

tail. The significant results for both of conditional volatility and exchange rate are

found for all five categories. However, the marginal effect result of exchange rate for

the top tail is mixed. For instance, two negative marginal effects at 5% significance

level and two positive marginal effects at 10% significance level are observed. This

indicates when the level of exchange rate increases, it may decrease the probability of

positive coexceedances (at 5% level), and it also may increase the probability (at 10%

level). In other words, exchange rate changes have bi-lateral effect on the probability

of positive coexceedances. Consistent with Bae, Karolyi, and Stulz (2003), we also

obtain the result that interest rate has only very limited explanatory power for either

bottom tail or top tail coexceedances. It is worth noting that adding covariates of

exchange rate and interest rate raises the Pseudo � R2, and the models of bottom

tail have a little higher Pseudo � R2 than the models of top tail. It means that

the models with three covariates will explain the negative coexceedances better than

the positive coexceedances. However, there is a weird result that the explanatory

power of interest rate for top tail is strongly significant for the events of ”Y=3” and

”Y=5”, but is strongly insignificant for other events of ”Y=1”, ”Y=2” and ”Y=4”.

In addition, two significant marginal coefficients of interest rate for bottom tail are

of opposite signs.

We surprisingly find that our results derived from the European bond markets

are closely related to the results estimated by Bae, Karolyi, and Stulz (2003) in the

international stock markets. They claim that conditional volatility and exchange

rate are statistically significant in predicting the contagion across the international

stock markets, and interest rate shows the relatively weak explanatory power and

similarly weird results. In our opinion, stock and sovereign bond markets may share
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the common underlying information channel linking with three covariates. The

covariates possibly transmit the information to the stock and bond markets by a

joint unobservable channel.

Overall, three findings are concluded from table 1.9 and 1.10. First, there is no

evidence that the events (Y=1, 2, 3, 4, 5) are less or more likely for the top tail

than for the bottom tail. Second, with the statistically significant partial derivatives

(marginal effect) in the bottom tail, it can be seen that the influence of the exchange

rate on the probability of contagion occurrence is almost same as of conditional

volatility. In other words, both conditional volatility and exchange rate can strongly

explain the contagion in the bottom tail. Finally, interest rate can merely explain

the contagion across the European bond markets in bottom tail, and even does

not have any explanatory power for contagion across 3, 4, and 5 or more than 5

countries in bottom tail, and across 1, 2 and 4 countries in top tail. Because our

initially research focus is on the predictability of contagion in the European area,

we additionally estimate the models with lagged covariates in the same way. The

general results are same as of tests with contemporary covariates. That is to say,

for both the bottom tail and top tail, we find the statistically significant results for

conditional volatility and exchange rate, and the weak predictive power of interest

rate. They therefore are not reported in tables.
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1.4 Conclusion

This part concludes the chapter’s methodology, overall findings and the recent

articles related to our research.

We used multi-methodology to investigate contagion across the European stock

and bond, the contagion across the European bond markets, nonlinear contagion and

the predictability of contagion in the European area. The applied approaches are

dynamic conditional correlation GARCH model, moving average indicators, two pe-

riod copula-GARCH model and multinomial logistic regression, respectively. First,

for a cross-asset perspective, we used the DCC-GARCH model to estimate the cor-

relations between the European stock and bond indices returns. In addition, by

following the approach of Dajcman (2012) and the relevant notions of Gulko (2002),

we constructed two moving average indicators of flight-to-quality and contagion,

so that the phenomena of flight-to-quality and contagion could be intuitively ob-

served over time. Second, for cross-country perspective, by following the approach

of Chiang, Jeon, and Li (2007), we still used the DCC-GARCH model to estimate

contagion across the European bond markets. A relatively high level of the comove-

ments between Greek bond return and each of eight European bond markets were

found. Third, for nonlinear perspective, we proposed to use the two-period copula

GARCH model by following Adel and Salma (2012), and incorporated the counter-

parts with the asymmetry information into the copula approach. In fact, adding the

asymmetry information helps offer more new insights on the changes of dependence

structure tested by using diverse copulas. Finally, predictability of contagion was

estimated by following the similar multinomial Logit model of Bae, Karolyi, and

Stulz (2003). In our paper, we incorporated the covariates of conditional volatility,

exchange rate and interest rate in the model, as well. Based on the coefficients of

multinomial logistic regression, the marginal effect of Greene (2012) was computed

thereafter.
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By using the multi-methodology, more specific findings are produced to answer

the research questions from different perspectives. First, for cross-asset perspective,

overall negative correlations were found for sample European countries. It is closely

related to the results of Baur and Lucey (2009). The correlations estimated by

DCC-GARCH model are strongly effected by the turmoil period, so are FTQ and

CI. Generally, flight-to-quality and contagion over the sample period are volatile

in all the European countries. The financial crisis tends to decrease the DCC and

increase flight-to-quality for most countries, and the debt crisis tends to increase

the DCC and increase the contagion especially in the relatively smaller countries,

such as Portugal, Spain and Greece. For example, the DCCs of Portugal, Spain and

Greece increase dramatically from the beginning of the European debt crisis, and

their contagion stays at the extremely high level as well. However, the impact of

the European debt crisis is not always on all European countries, especially in the

relatively larger countries, such as Germany, France and the UK. In other words, the

sample period of the European debt crisis produced inconsistent results in the Euro-

pean region. Second, for cross-country perspective, we divided a sample period into

the particularly turmoil period, namely the European debt crisis. As a result, the

relatively high DCCs denote that during the European debt crisis, contagion defined

as comovement stays at the relatively high level, and generally starts decreasing

around the middle of 2011. Compared with DCCs during the middle of 2011 to

2012, the contagion (denoted by the relatively high level of DCCs) appears at least

four month earlier than the beginning of the European debt crisis (denoted by the

Greek debt crisis). It means that the herding behaviours of investors in sovereign

debt crisis appears earlier than that in financial crisis. In other words, it implies that

the investors possibly find it easier to forecast the general market risk in sovereign

bond markets than to forecast the risk in stock markets.

Nonlinear estimation was also implemented with the modified two-period copula

GARCH approach, and two main findings were established. First, after the explo-
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sion of the European debt crisis, the dependence parameters of all copulas increase

dramatically. The significant increase in the nonlinear dependence structure shows

the likely contagion between the Greek bond market and the others. Second, af-

ter adding asymmetry information by using the counterparts of GJR-normal model,

the Student-t copula becomes more sensitive to the changes of dependence struc-

tures. In our opinion, the different GARCH-type models may be able to improve

the explanatory power of some copulas to a certain extent.

Finally, for the perspective of predictability of the bond contagion, three driving

factors were evaluated with multinomial logistic regression. The main findings are

also presented. First, according to the intercepts of multinomial logistic regression

without covariates, we computed the probability of contagion occurrence across i

countries, i could be equal to 1 to 5 or more than 5. Second, the statistically

significant results denote that conditional volatility is able to explain the contagion

across at least five countries, and exchange rate is significant to explain the contagion

across at least four countries. The interest rate too weak to explain contagion, and

also produces some puzzling results. Third, based on the coefficients of multinomial

logistic regression, we compute the marginal effect to look into the specific impact of

the significant factors, conditional volatility and exchange rate. For a unit increasing

conditional volatility and exchange rate, the probability of contagion occurrence will

somewhat increase. It shows that the conditional volatility and exchange rate have

a particular effect on the bond contagion, and this effect will gradually subside as

our estimation includes more countries. Relating our results to Bae, Karolyi, and

Stulz (2003), we surprisingly found that they, from the international stock markets,

find extremely similar results as what we found from the European bond markets.

They claimed that conditional volatility can explain the stock contagion across at

least five countries, exchange rate can explain the contagion across four countries

at least, and interest rate has weaker explanatory power and produces the similar

puzzling results. This surprising similarity may suggest that there may be a joint
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unobservable channel delivering the information of significant driving factors to both

of stock and bond markets.

The most important findings can be concluded by three viewpoints. First, con-

tagion indeed exists across the different markets and assets, especially in stock and

sovereign bond markets. Second, contagion can be effectively captured a few months

ahead of time by using one or several ways. Finally, three factors of conditional

volatility, the level of exchange rate and the level of interest rate are able to help

investors predict the probability of contagion occurrence. Referring to these results,

investors can adjust their portfolios in time and lower amount of loss-making in their

investment.

At the end of this chapter, we relate our findings to quite recent studies. Although

only a limited strand of current studies investigate the contagion in European area,

as expected, some articles on the contagion during the European debt crisis are

still found, such as Mink and Haan (2013), Afonso, Furceri, and Gome (2011) and

Castellacci and Choi (2015). Their findings confirm the existence of contagion, are

generally coincident with what we found by using multi-methodology. However,

there are some researches having the different opinions. For example, Forbes and

Rigobon (2002) claim that there should be not a contagion in the markets, only the

high interdependence caused by a common unobservable factor. The coherent find-

ings of Forbes and Rigobon (2002) are theoretically developed by Briere, Chapelle,

and Szafarz (2012). Our empirical evidence shows that the contagion is caused by

complex reasons, so that it is difficult to say that the comovement is only driven by

a common factor. That the resultant effect of multi-factors on the comovement of

returns is significantly apparent may be interpreted as contagion more reasonably.

In other word, contagion is caused by the effect of the multiple elements, or the com-

prehensive effect of the crisis. Consequently, our empirical works provide evidence

that contagion already existed, and as the existing standpoints expressed, could be

defined as comovement and coexceedances across assets and countries.
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Table 1.1: Summary statistics for bond and stock index returns

Markets Germany France UK Belgium Denmark Netherland Portugal Spain Greece
Bond markets
Mean 1.02E-4 1.07E-4 1.99E-4 2.11E-4 2.00E-4 1.99E-4 2.11E-4 2.06E-4 5.47E-05
Stdev 0.0013 0.0011 0.0037 0.0026 0.0027 0.0024 0.0057 0.0035 9.33E-4
JB-stat 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A1 0.083 0.0069 0.031 0.171 0.031 0.047 0.213 0.155 0.202
ARCH(10) 214.78��� 358.32��� 422.47��� 722.72��� 422.48��� 279.11��� 177.32��� 240.47��� 153.27���

Stock markets
Mean 5.49E-5 2.77E-4 1.64E-4 1.08E-4 3.45E-4 6.22E-5 -1.93E-5 1.87E-4 -1.17E-4
Stdev 0.0221 0.0893 0.0122 0.0139 0.0127 0.0144 0.0117 0.0157 0.0475
JB-stat 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A1 -0.016 -0.034 -0.047 0.057 0.026 -0.017 0.061 0.006 0.066
ARCH(10) 661.52��� 638.58��� 827.30��� 561.58��� 870.19��� 924.22��� 372.87��� 465.37��� 406.10���

Note: Mean is average value of daily logarithm returns of bond and stock index. Stdev is standard deviation. JB-stat

denotes the Probability of Jarque-Bera test for normality. A1 refers to the first-order autocorrelation. ARCH (10)

indicates the chi-square of the lagrange Multiplier (LM) test for autoregressive conditional heteroskedasticity effects

with 10 lag-length. � � � indicates that the null hypothesis is rejected at 1% significance level

Table 1.2: The standard unit root test (ADF(1) test) for bond and stock returns

Germany France UK Belgium Denmark Netherland Portugal Spain Greece

Rb -54.382 -55.185 -36.736 -49.723 -57.295 -56.362 -18.783 -32.587 -19.200
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Rs -60.022 -29.386 -28.604 -55.788 -57.553 -28.355 -55.555 -37.204 -55.270
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: Rb is daily bond index returns of Germany, France, the UK, Belgium, Denmark, Netherland, Portugal, Spain
and Greece and Rsis daily stock index returns.

Table 1.3: The unconditional stock-bond correlation matrix

Germany France UK Belgium Netherland Spain Portugal Denmark Greece
Germany -0.4350 0.8374 0.7769 0.6592 0.5609 0.2903 0.1438 0.8565 0.0220
France 0.8990 -0.3491 0.6829 0.8350 0.8551 0.5005 0.2193 0.7359 0.1356
UK 0.8252 0.9021 -0.3741 0.5722 0.7851 0.2768 0.1573 0.7537 0.7769
Belgium 0.7329 0.8082 0.7698 -0.2116 0.7597 0.6367 0.3100 0.6024 0.1953
Netherland 0.8537 0.9272 0.8678 0.8128 -0.4076 0.3588 0.1905 0.9058 0.9056
Spain 0.7894 0.8697 0.7891 0.7191 0.8136 0.0705 0.4050 0.2068 0.2902
Portugal 0.6180 0.6841 0.6420 0.5897 0.6421 0.7063 0.1182 0.1284 0.3692
Denmark 0.6205 0.6826 0.6748 0.6218 0.6609 0.6017 0.5474 -0.2997 0.8565
Greece 0.4228 0.4523 0.4218 0.4091 0.4382 0.4474 0.4392 0.4252 0.2058

Note: Main diagonal reports unconditional correlation between stock and bond. The upper triangular matrix
reports the information of unconditional value of bond-bond correlation and lower triangular matrix embraces
unconditional stock-stock correlation between each market. The correlation coefficients on diagonal line contain the
unconditional value of stock-bond correlation.
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Table 1.4: Parameter estimates of GARCH with normal and Student-t distributions for pre-crisis period (2 Jan 2001-1 Sep 2009).

GARCH-normal
Greece Germany France UK Belgium Denmark Netherland Portugal Spain

Para. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std.
µ 0.017 0.001 8.27E-5 2.71E-5 9.16E-4 2.68E-4 7.52E-4 2.69E-4 0.002 4.49E-5 0.002 0.004 0.002 4.34E-5 0.001 4.17E-3 0.002 4.65E-5

p0.006qa p0.002qa p0.000qa p0.005qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

α0 0.001 4.39E-5 0.002 6.13E-4 1.60E-4 6.39E-5 1.92E-4 6.46E-4 0.005 1.98E-4 0.004 1.56E-4 0.004 1.67E-4 0.002 9.69E-4 6.78E-3 2.48E-5

p0.007qa p0.037qb p0.024qb p0.002qa p0.010qb p0.018qb p0.024qb p0.074qc p0.006qa

α1 0.039 0.006 0.037 0.006 0.033 0.006 0.041 0.006 0.039 0.006 0.041 0.006 0.038 0.006 0.031 0.005 0.042 0.006
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

β 0.950 0.009 0.956 0.007 0.959 0.007 0.951 0.008 0.952 0.008 0.951 0.009 0.955 0.008 0.957 0.006 0.946 0.009
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

LLF 9114.8 11708.0 11759.6 11641.0 9853.5 10158.7 9919.0 9983.1 9795.2
AIC -8.726 -10.352 -10.398 -10.293 -9.434 -9.726 -9.497 -9.558 -9.378
BIC -8.716 -10.342 -10.388 -10.283 -9.423 -9.716 -9.486 -9.547 -9.367

GARCH-t
Greece Germany France UK Belgium Denmark Netherland Portugal Spain

Para. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std.
µ 0.002 6.3E-4 9.94E-4 2.70E-5 0.001 2.67E-4 8.51E-3 2.70E-4 0.002 4.45E-4 0.002 3.81E-4 0.002 4.32E-4 0.002 4.10E-4 0.003 4.61E-4

p0.002qa p0.000qa p0.000qa p0.001qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

α0 1.14E-3 5.77E-4 1.85E-3 8.37E-4 1.88E-3 8.65E-4 1.69E-3 7.97E-4 7.06E-4 3.15E-4 4.53E-4 2.35E-4 5.28E-4 2.57E-4 2.40E-4 1.51E-4 9.56E-5 4.07E-4

p0.048qb p0.017qb p0.029qb p0.033qb p0.025qb p0.054qc p0.040qb p0.025qb p0.019qb

α1 0.042 0.009 0.038 0.008 0.033 0.007 0.040 0.008 0.041 0.009 0.040 0.009 0.039 0.009 0.034 0.008 0.044 0.010
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

β 0.948 0.012 0.954 0.010 0.957 0.010 0.953 0.010 0.943 0.013 0.949 0.013 0.950 0.012 0.962 0.010 0.939 0.014
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

Φ 9.7132 2.2895 10.5916 2.7325 11.2032 3.0046 9.4100 2.0268 8.6037 1.9265 7.0921 1.2692 9.1394 2.1586 8.2302 1.7076 8.6936 1.9840
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

LLF 9129.5 11720.8 11771.3 11658.5 9871.0 10187.1 9934.7 10003.4 9812.2
AIC -8.740 -10.363 -10.408 -10.308 -9.450 -9.753 -9.511 -9.577 -9.394
BIC -8.726 -10.351 -10.395 -10.296 -9.437 -9.739 -9.498 -9.564 -9.380

a.b.c. denotes the marginal significance level at 1%, 5% and 10%
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Table 1.4 (continued): Parameter estimates of GARCH with normal and Student-t distributions for post-crisis period (2 Sep 2009-22
May 2014).

GARCH-normal
Greece Germany France UK Belgium Denmark Netherland Portugal Spain

Para. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std.
µ 0.002 0.001 0.001 0.000 0.001 0.004 0.006 0.004 0.003 6.00E-4 0.002 8.14E-4 0.002 6.53E-4 0.003 9.70E-4 0.004 8.68E-4

p0.060qc p0.095qc p0.002qa p0.050qb p0.000qa p0.026qb p0.000qa p0.072qc p0.000qa

α0 1.80E-3 8.06E-4 7.91E-3 2.53E-3 8.39E-3 2.30E-3 4.55E-3 2.61E-3 3.42E-3 5.59E-4 1.35E-3 4.92E-4 9.59E-4 3.53E-4 4.04E-3 7.77E-4 2.69E-3 5.08E-4

p0.026qb p0.002qa p0.003qa p0.081qc p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

α1 0.030 0.007 0.057 0.011 0.090 0.015 0.031 0.008 0.135 0.015 0.048 0.009 0.048 0.009 0.322 0.014 0.125 0.009
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

β 0.958 0.010 0.910 0.019 0.870 0.023 0.953 0.015 0.825 0.016 0.939 0.0108 0.937 0.012 0.783 0.007 0.871 0.009
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

LLF 5750.7 6262.9 6366.5 6136.1 6378.7 6061.8 6382.8 5163.6 5791.7
AIC -8.180 -10.160 -10.329 -9.955 -9.074 -8.623 -9.080 -7.345 -8.239
BIC -8.166 -10.144 -10.312 -9.938 -9.059 -8.618 -9.065 -7.330 -8.224

GARCH-t
Greece Germany France UK Belgium Denmark Netherland Portugal Spain

Para. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std.
µ 0.002 0.001 0.001 0.004 0.001 0.003 7.42E-3 4.55E-3 0.003 5.82E-5 0.002 7.90E-5 0.003 6.37E-5 0.003 9.43E-5 0.003 7.87E-5

p0.088qc p0.003qa p0.001qa p0.013qb p0.000qa p0.010qa p0.001qa p0.006qa p0.000qa

α0 1.73E-3 9.60E-4 6.47E-3 2.95E-3 6.84E-3 2.65E-3 4.43E-3 3.08E-3 4.27E-3 1.10E-3 1.31E-3 6.47E-4 8.05E-4 4.04E-4 2.38E-3 8.40E-4 3.51E-3 1.18E-3

p0.071qc p0.029qb p0.010qa p0.015qb p0.000qa p0.043qb p0.046qb p0.004qa p0.003qa

α1 0.030 0.009 0.058 0.015 0.086 0.019 0.035 0.011 0.157 0.028 0.056 0.013 0.054 0.122 0.412 0.115 0.148 0.025
p0.001qa p0.002qa p0.000qa p0.002qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

β 0.959 0.012 0.916 0.023 0.882 0.027 0.950 0.019 0.796 0.029 0.933 0.015 0.935 0.014 0.731 0.028 0.850 0.020
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

Φ 11.209 3.104 9.617 2.469 8.949 2.151 12.294 4.061 6.018 1.018 9.040 2.311 10.144 2.822 2.681 0.249 4.844 0.654
p0.000qa p0.000qa p0.000qa p0.003qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

LLF 5760.5 6274.3 6380.5 6142.6 6412.5 6074.6 6393.0 5389.1 5850.9
AIC -8.193 -10.178 -10.350 -9.963 -9.121 -8.640 -9.093 -7.664 -8.322
BIC -8.174 -10.157 -10.329 -9.923 -9.102 -8.621 -9.075 -7.646 -8.303

a.b.c. denotes the marginal significance level at 1%, 5% and 10%
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Table 1.5: Parameter estimates of GJR with normal and Student-t distributions for pre-crisis period (2 Jan 2001-1 Sep 2009).

GJR-normal
Greece Germany France UK Belgium Denmark Netherland Portugal Spain

Para. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std.
µ 0.002 6.47E-5 9.40E-3 2.77E-3 9.71E-4 2.74E-5 8.23E-3 2.77E-3 0.001 4.60E-5 0.001 4.00E-5 0.002 4.44E-5 0.002 4.28E-5 0.002 4.75E-4

p0.003qa p0.000qa p0.000qa p0.002qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

α0 1.21E-3 4.55E-4 1.39E-3 5.75E-3 1.39E-4 5.95E-5 1.88E-3 6.28E-3 4.68E-4 1.94E-4 3.46E-4 1.55E-4 3.53E-4 1.61E-4 1.78E-4 9.89E-5 5.66E-4 2.35E-4

p0.008qa p0.015qb p0.019qb p0.002qa p0.016qb p0.025qb p0.028qb p0.072qc p0.016qa

α1 0.050 0.010 0.046 0.008 0.040 0.008 0.049 0.009 0.050 0.098 0.054 0.009 0.053 0.010 0.041 0.008 0.054 0.010
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

β 0.949 0.010 0.959 0.007 0.961 0.007 0.951 0.008 0.953 0.009 0.953 0.009 0.956 0.008 0.967 0.006 0.950 0.009
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

γ -0.021 0.012 -0.022 0.009 -0.016 0.009 -0.017 0.011 -0.023 0.011 -0.028 0.010 -0.031 0.011 -0.020 0.009 -0.026 0.011

p0.078qc p0.019qb p0.072qc p0.015qb p0.035qb p0.003qa p0.003qa p0.019qb p0.022qb

LLF 9116.2 11710.3 11760.9 11642.1 9855.6 10162.6 9923.1 9985.6 9797.5
AIC -8.727 -10.354 -10.399 -10.293 -9.435 -9.729 -9.500 -9.560 -9.380
BIC -8.714 -10.341 -10.386 -10.281 -9.422 -9.716 -9.487 -9.547 -9.375

GJR-t
Greece Germany France UK Belgium Denmark Netherland Portugal Spain

Para. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std.
µ 0.003 6.35E-4 0.001 2.72E-4 0.001 2.69E-5 8.94E-4 2.72E-4 0.002 4.48E-4 0.002 3.82E-4 0.002 4.34E-4 0.002 4.13E-4 0.003 4.64E-4

p0.001qa p0.000qa p0.000qa p0.001qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

α0 1.09E-3 5.69E-4 1.66E-3 7.68E-3 1.69E-3 8.09E-4 1.65E-3 7.80E-4 6.50E-4 3.01E-4 3.97E-4 6.22E-5 4.71E-4 2.38E-5 2.31E-4 1.48E-4 8.24E-4 3.76E-4

p0.055qc p0.031qb p0.036qb p0.034qb p0.031qb p0.073qc p0.047qb p0.019qb p0.028qb

α1 0.050 0.012 0.046 0.011 0.040 0.010 0.046 0.011 0.050 0.013 0.051 0.013 0.052 0.013 0.043 0.011 0.054 0.014
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

β 0.949 0.012 0.957 0.009 0.959 0.009 0.953 0.010 0.947 0.013 0.952 0.013 0.953 0.011 0.963 0.009 0.943 0.014
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

γ -0.016 0.014 -0.021 0.012 -0.015 0.012 -0.013 0.013 -0.018 0.015 -0.022 0.013 -0.028 0.018 -0.018 0.012 -0.021 0.015

p0.026qb p0.083qc p0.021qb p0.040qb p0.021qb p0.073qc p0.043qb p0.027qb p0.016qb

Φ 9.916 2.407 10.890 2.893 11.454 3.146 9.521 2.087 8.881 2.055 7.324 1.361 9.612 2.405 8.445 1.809 9.031 2.138
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

LLF 9130.1 11722.3 11772.1 11658.9 9871.8 10188.6 9937.0 10004.7 9813.2
AIC -8.740 -10.364 -10.408 -10.308 -9.450 -9.754 -9.513 -9.577 -9.394
BIC -8.723 -10.349 -10.393 -10.293 -9.434 -9.737 -9.496 -9.561 -9.378

a.b.c. denotes the marginal significance level at 1%, 5% and 10%
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Table 1.5 (continued): Parameter estimates of GJR with normal and Student-t distributions for post-crisis period (2 Sep 2009-22 May
2014).

GJR-normal
Greece Germany France UK Belgium Denmark Netherland Portugal Spain

Para. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std.
µ 0.002 0.001 0.001 4.15E-3 0.001 3.85E-3 8.55E-3 4.64E-4 0.002 6.16E-3 0.003 8.21E-4 0.002 6.61E-4 0.002 0.001 0.002 8.89E-4

p0.056qc p0.007qa p0.001qa p0.065qc p0.000qa p0.008qa p0.001qa p0.009qa p0.045qb

α0 1.26E-3 4.81E-4 7.11E-3 2.35E-3 8.43E-3 2.38E-3 2.36E-3 1.12E-3 3.27E-3 5.27E-4 9.14E-4 3.82E-4 7.89E-4 3.17E-4 4.30E-3 8.24E-4 1.62E-3 3.22E-4

p0.008qa p0.003qa p0.000qa p0.035qb p0.000qa p0.016qb p0.013qb p0.000qa p0.000qa

α1 0.031 0.006 0.062 0.013 0.101 0.018 0.032 0.008 0.113 0.018 0.053 0.010 0.057 0.011 0.386 0.018 0.016 0.006
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.007qa

β 0.972 0.007 0.918 0.018 0.869 0.024 0.974 0.007 0.832 0.015 0.952 0.009 0.944 0.011 0.779 0.007 0.920 0.006
p0.003qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

γ -0.024 0.008 -0.018 0.015 -0.020 0.020 -0.029 0.009 0.030 0.020 -0.027 0.011 -0.024 0.012 -0.117 0.025 0.126 0.011

p0.003qa p0.027qb p0.032qb p0.002qa p0.014qb p0.015qb p0.038qb p0.000qa p0.000qa

LLF 5753.0 6263.2 6366.9 6139.2 6379.4 6063.9 6384.4 5167.0 5811.1
AIC -8.182 -10.160 -10.327 -9.958 -9.074 -8.625 -9.081 -7.348 -8.265
BIC -8.164 -10.139 -10.307 -9.937 -9.055 -8.606 -9.062 -7.329 -8.246

GJR-t
Greece Germany France UK Belgium Denmark Netherland Portugal Spain

Para. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std. Value Std.
µ 0.002 0.001 0.001 4.03E-4 0.001 3.61E-4 9.12E-4 4.54E-4 0.002 5.87E-4 0.002 7.93E-4 0.002 6.40E-4 0.002 6.40E-4 0.002 7.93E-4

p0.043qb p0.002qa p0.000qa p0.044qb p0.000qa p0.005qa p0.000qa p0.000qa p0.020qb

α0 1.27E-3 5.82E-4 6.03E-4 2.80E-3 6.75E-3 2.64E-3 2.56E-3 1.68E-3 4.12E-3 1.05E-4 9.96E-4 5.51E-4 6.78E-4 3.68E-4 6.78E-4 3.68E-4 1.86E-3 6.07E-4

p0.029qb p0.031qb p0.011qb p0.000qa p0.071qc p0.065qc p0.065qc p0.068qc

α1 0.030 0.008 0.060 0.018 0.095 0.024 0.037 0.011 0.128 0.032 0.061 0.015 0.061 0.015 0.061 0.015 0.003 0.008
p0.000qa p0.001qa p0.000qa p0.001qa p0.000qa p0.000qa p0.000qa p0.000qa p0.068qc

β 0.974 0.008 0.920 0.022 0.882 0.027 0.969 0.011 0.804 0.029 0.942 0.013 0.940 0.013 0.940 0.013 0.922 0.012
p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

γ -0.026 0.010 -0.009 0.020 -0.017 0.026 -0.029 0.013 0.042 0.037 -0.024 0.016 -0.021 0.016 -0.021 0.016 0.147 0.026

p0.013qb p0.065qc p0.052qc p0.022qb p0.049qb p0.014qb p0.020qb p0.007qa p0.000qa

Φ 11.510 3.231 9.676 2.555 8.964 2.168 13.445 4.851 5.980 1.012 9.337 2.486 10.50 3.031 10.500 3.030 5.042 0.679
p0.000qa p0.000qa p0.000qa p0.006qa p0.000qa p0.000qa p0.000qa p0.000qa p0.000qa

LLF 5762.4 6274.4 6380.7 6144.7 6413.1 6075.5 6393.7 6393.7 5868.42
AIC -8.194 -10.145 -10.349 -9.965 -9.121 -8.640 -9.093 -9.093 -8.345
BIC -8.172 -10.151 -10.323 -9.940 -9.098 -8.632 -9.070 -9.070 -8.323

a.b.c. denotes the marginal significance level at 1%, 5% and 10%
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Table 1.6: Parameter estimates of copula families-GARCH and model selection statistics for pre-crisis period (2 Jan 2001-1 Sep 2009).

GARCH-normal
Copula Para. Germany France UK Belgium Denmark Netherland Portugal Spain
Gaussian ρ 0.0450 0.0431 0.0455 0.0604 0.0479 0.0491 0.0412 0.0530

LLF 217.864 282.181 390.093 590.124 342.278 477.110 378.193 450.789
AIC -435.339 -563.961 -776.186 -1178.247 -680.552 -950.219 -752.386 -897.577
BIC -434.181 -562.819 -764.739 -1172.601 -669.263 -938.931 -741.098 -886.289

Student-t ρ 0.0411 0.0468 0.0400 0.0450 0.0480 0.0455 0.0451 0.0513
Φ 1.5 1.7 2.1 2.0 1.7 1.8 2.7 1.4
LLF 171.467 279.958 304.661 464.339 472.464 514.300 393.818 478.426
AIC -342.734 -559.715 -607.321 -926.678 -942.828 -1026.599 -785.636 -954.853
BIC -342.161 -559.143 -601.597 -921.034 -937.284 -1020.955 -779.992 -949.208

Clayton δ 0.7801 0.7747 0.5229 0.5842 0.5141 0.5963 0.5679 0.5902
LLF 144.342 187.166 198.262 276.240 264.446 324.118 249.492 302.743
AIC -288.485 -374.133 -394.524 -550.480 -526.891 -646.236 -496.983 -603.487
BIC -287.912 -373.561 -388.800 -544.836 -521.247 -640.592 -491.339 -597.843

GARCH-t
Gaussian ρ 0.0411 0.0423 0.0534 0.0460 0.0492 0.0444 0.0481 0.0531

LLF 199.195 281.621 418.937 282.019 335.490 344.316 413.989 318.245
AIC -397.990 -562.843 -833.873 -560.038 -666.979 -684.632 -823.978 -632.489
BIC -396.845 -561.699 -822.426 -548.750 -655.691 -673.344 -812.690 -621.201

Student-t ρ 0.0461 0.0439 0.0342 0.0461 0.0531 0.0454 0.0511 0.0490
Φ 1.5 1.7 2.1 2.0 1.7 1.8 2.7 1.4
LLF 211.359 275.807 164.125 335.501 465.566 384.511 268.637 355.776
AIC -422.519 -551.414 -326.249 -669.001 -929.132 -767.023 -535.274 -709.552
BIC -421.946 -550.841 -320.526 -663.357 -923.488 -761.379 -529.630 -703.908

Clayton δ 0.7803 0.8500 0.5301 0.5668 0.8500 0.5592 0.5235 0.5725
LLF 136.248 247.609 66.641 343.632 2282.755 187.500 91.475 195.201
AIC -272.297 -495.018 -131.282 -685.263 -563.510 -372.999 -180.949 -388.401
BIC -271.725 -494.446 -125.559 -679.619 -557.866 -367.355 -175.305 -382.757

Note:ρ is the dependence parameter of Gaussian copula and Student-t copula. Φ is degree of freedom parameter. δ is the dependence parameter of Clayton copula.
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Table 1.6 (continued): Parameter estimates of copula families-GJR and model selection statistics for pre-crisis period (2 Jan 2001-1 Sep
2009).

GJR-normal
Copula Para. Germany France UK Belgium Denmark Netherland Portugal Spain
Gaussian ρ 0.0460 0.0460 0.0431 0.0422 0.0001 0.0529 0.0523 0.0530

LLF 206.018 282.194 426.334 413.983 292.475 381.608 277.053 339.369
AIC -411.635 -563.989 -848.668 -823.966 -580.950 -759.215 -550.105 -674.737
BIC -410.491 -562.844 -837.221 -812.678 -569.663 -747.927 -538.817 -663.450

Student-t ρ 0.0020 0.0075 0.0013 0.0012 0.0049 0.0050 0.0050 0.0051
Φ 1.5 1.7 2.1 2.0 1.7 1.8 2.7 1.4
LLF 233.340 265.966 198.012 606.316 472.878 412.580 287.005 316.660
AIC -466.480 -531.733 -394.025 -1210.632 -943.756 -823.160 -572.009 -1263.201
BIC -465.907 -531.160 -388.301 -1204.988 -938.112 -817.516 -566.365 -1240.900

Clayton δ 0.7406 0.7811 0.4469 0.3665 0.5151 0.3920 0.3461 0.3827
LLF 154.945 187.351 37.470 41.146 264.668 122.932 -12.092 84.637
AIC -309.691 -373.929 -72.939 -80.291 -527.336 -243.863 26.184 -167.274
BIC -309.119 -370.501 -67.216 -74.648 -521.692 -238.219 31.828 -161.630

GJR-t
Gaussian ρ 0.0400 0.0441 0.0479 0.0502 0.0481 0.0396 0.0597 0.0495

LLF 232.686 281.628 418.969 154.745 335.403 222.647 127.903 186.961
AIC -464.972 -561.711 -833.938 -305.489 -666.805 -441.293 -251.806 -369.921
BIC -463.827 -559.856 -822.491 -294.201 -655.517 -430.005 -240.518 -358.633

Student-t ρ 0.0466 0.0364 0.0391 0.0506 0.0510 0.0225 0.0500 0.0571
Φ 1.5 1.7 2.1 2.0 1.7 1.8 2.7 1.4
LLF 234.818 258.080 28.073 160.966 117.048 218.818 96.912 175.681
AIC -469.437 -515.387 -63.869 -319.931 -232.095 -435.635 -191.824 -349.361
BIC -468.865 -510.960 -58.146 -314.287 -226.451 -429.991 -186.180 -343.717

Clayton δ 0.7435 0.8500 0.5068 0.5424 0.8500 0.5536 0.5325 0.5493
LLF 154.368 247.659 249.404 369.426 283.331 422.403 330.808 394.901
AIC -308.536 -495.119 -496.808 -736.851 -564.662 -842.805 -659.615 -787.801
BIC -307.964 -494.547 -491.084 -731.207 -559.018 -837.161 -653.971 -782.157

Note:ρ is the dependence parameter of Gaussian copula and Student-t copula. Φ is degree of freedom parameter. δ is the dependence parameter of Clayton copula.
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Table 1.7: Parameter estimates of copula families-GARCH and model selection statistics for post-crisis period (2 Sep 2009-22 May 2014).

GARCH-normal
Copula Para. Germany France UK Belgium Denmark Netherland Portugal Spain
Gaussian ρ 0.1242 0.1270 0.1011 0.0945 0.0903 0.1225 0.1000 0.1117

LLF 296.940 -294.093 388.667 -204.350 148.618 103.873 -369.649 -367.148
AIC -608.113 592.186 -791.567 412.699 -293.235 -203.746 743.297 738.296
BIC -597.880 602.419 -781.334 423.195 -282.739 -193.251 753.793 748.792

Student-t ρ 0.2029 0.1000 0.1161 0.1042 0.0955 0.1638 0.1337 0.1688
Φ 1.9 1.7 2.3 2.2 2.0 1.9 1.6 1.8
LLF 244.330 -293.269 298.458 -171.493 242.698 148.351 -352.978 -424.303
AIC -314.802 441.520 -437.684 344.986 -483.396 -294.702 707.955 850.605
BIC -312.230 443.795 -431.238 350.234 -478.148 -289.454 713.203 855.853

Clayton δ 0.9349 1.0342 1.0000 1.3084 1.4881 1.5149 0.6104 1.0372
LLF 308.309 -301.794 321.858 -259.459 112.598 66.734 -389.584 -437.204
AIC -623.733 605.587 -650.831 520.917 -223.195 -131.468 781.168 876.408
BIC -618.617 610.703 -645.715 526.165 -217.947 -126.220 786.416 881.656

GARCH-t
Gaussian ρ 0.1282 0.0955 0.1264 0.0763 0.0884 0.0995 0.1002 0.1362

LLF 300.340 -297.449 461.935 -201.150 143.963 14.938 -373.791 -460.150
AIC -614.913 598.897 -938.103 407.594 -283.926 -25.876 751.581 924.300
BIC -604.680 609.129 -927.870 408.588 -273.431 -15.380 762.077 934.795

Student-t ρ 0.1350 0.1239 0.1482 0.0975 0.1440 0.1006 0.1499 0.0943
Φ 1.9 1.7 2.3 2.2 2.0 1.9 1.6 1.8
LLF 46.734 -175.093 98.791 -176.232 227.909 62.168 -356.90 -511.396
AIC -240.575 390.541 -895.401 354.464 -453.818 -122.337 715.810 1024.791
BIC -237.508 395.080 -890.805 359.712 -448.570 -117.089 721.058 1030.039

Clayton δ 1.9351 1.0349 1.0462 1.3500 1.8500 0.8573 2.0218 1.0371
LLF 311.696 -305.218 325.269 1516.832 1509.776 12.276 -356.905 -521.866
AIC -630.507 612.435 -657.655 -3031.664 -3017.552 -22.552 715.810 1045.731
BIC -625.391 617.551 -652.538 -3026.416 -3012.304 -17.304 721.058 1050.979

Note:ρ is the dependence parameter of Gaussian copula and Student-t copula. Φ is degree of freedom parameter. δ is the dependence parameter of Clayton copula.
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Table 1.7 (continued): Parameter estimates of copula families-GJR and model selection statistics for post-crisis period (2 Sep 2009-22
May 2014).

GJR-normal
Copula Para. Germany France UK Belgium Denmark Netherland Portugal Spain
Gaussian ρ 0.0970 0.0925 0.1000 0.1279 0.1890 0.1175 0.1447 0.1231

LLF 296.287 -294.093 412.414 -201.985 150.394 52.240 -449.601 -340.418
AIC -606.807 592.186 -839.061 407.970 -296.787 -100.479 903.202 684.835
BIC -596.574 602.419 -828.828 418.467 -286.290 -89.982 913.699 695.332

Student-t ρ 0.1647 0.1110 0.1384 0.1087 0.1212 0.1502 0.1678 0.1422
Φ 1.9 1.7 2.3 2.2 2.0 1.9 1.6 1.8
LLF 105.420 -318.273 94.563 -169.061 243.672 83.443 -468.742 -355.971
AIC -360.717 522.128 -570.591 340.122 -485.343 -164.886 939.483 713.941
BIC -353.846 528.100 -563.910 345.370 -480.094 -159.638 944.731 719.189

Clayton δ 1.0000 1.0149 1.0001 1.3100 1.4890 0.4415 1.0560 1.0683
LLF 307.546 -413.002 321.109 -258.534 113.770 -35.846 -480.539 -410.532
AIC -622.208 828.003 -649.335 519.068 -225.540 73.692 963.077 823.063
BIC -617.092 833.120 -644.218 524.316 -220.292 78.941 968.325 828.311

GJR-t
Gaussian ρ 0.1149 0.1186 0.1096 0.0991 0.0970 0.1289 0.0997 0.1378

LLF 299.689 -296.650 320.528 -206.445 145.743 -50.949 -371.855 -344.783
AIC -613.610 597.300 -655.288 416.890 -287.485 105.898 747.710 693.565
BIC -603.377 607.532 -645.055 427.387 -276.988 116.395 758.207 704.062

Student-t ρ 0.1296 0.1268 0.1220 0.1129 0.1177 0.1027 0.1024 0.1110
Φ 1.9 1.7 2.3 2.2 2.0 1.9 1.6 1.8
LLF 156.779 -556.778 94.780 -425.137 237.981 -22.329 -354.641 -572.641
AIC -298.357 541.524 -562.071 852.274 -473.962 46.658 711.281 1147.281
BIC -295.040 548.298 -556.133 857.522 -468.713 51.906 716.529 1152.529

Clayton δ 1.9814 1.0342 1.9546 1.8500 1.8500 1.4905 1.1625 1.0699
LLF 459.265 -304.543 449.204 1527.919 1521.424 102.560 -392.656 -414.774
AIC -2916.529 611.085 -298.640 -3053.838 -3040.848 -203.120 787.312 831.548
BIC -2911.412 616.201 -289.129 -3048.5901 -3035.600 -197.871 792.561 836.797

Note:ρ is the dependence parameter of Gaussian copula and Student-t copula. Φ is degree of freedom parameter. δ is the dependence parameter of Clayton copula.
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Table 1.8: Summary statistics of co-exceedances for daily emerging market index returns, Jan 1, 2001 to May 22, 2014.

Number of negative co-exceedances Number of positive co-exceedances
¥ 6 5 4 3 2 1 0 0 1 2 3 4 5 ¥ 6

Greece 9 7 24 30 53 72 2884 2853 77 51 26 9 6 5
Germany 69 25 31 18 22 9 2884 2853 20 16 19 33 33 53
France 72 26 28 15 19 14 2884 2853 14 22 17 31 31 59
UK 55 20 21 27 8 43 2884 2853 47 15 23 19 25 45
Belgium 73 22 27 22 15 15 2884 2853 10 35 21 30 24 54
Denmark 64 18 29 25 23 15 2884 2853 21 24 28 23 27 51
Netherland 73 27 40 21 9 4 2884 2853 2 16 21 37 39 59
Portugal 30 3 8 30 37 66 2884 2853 60 52 26 7 9 20
Spain 59 11 9 22 38 35 2884 2853 32 43 29 11 11 48
Total 73 31 50 70 112 273 2884 2853 283 137 70 50 41 59

Note: The positive (negative) exceedances for daily index returns are described as the highest (lowest) five percent of all returns lying on the top tail (bottom tail) of distribution.

Coexceedance is defined as the joint appearance of exceedances across daily international indices. We set up seven categories from 0 to 6, which represent the number of markets having

an exceedance on the same trading day. If on one trading day, the extreme return is observed in benchmark market and i (i could be equal to 0, 1, 2, ..., 8.) in the other eight markets, it

would be signed as i+1 coexceedances for this market. For example, the category 6 indicates more than six coexceedances observed on the same trading day. The table is summarized from

3493 observations.
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Table 1.9: Summary statistics of co-exceedances for daily European market index returns (Coefficients), Jan 1, 2001 to May 22, 2014.

Bottom tails Top tails
(1) (2) (3) (4) (5) (6)

Europe Coeff. Prob. Coeff Prob. Coeff. Prob. Coeff. Prob. Coeff Prob. Coeff Prob.
β01(Con.) -2.357 0.000a -3.407 0.000a -3.411 0.000a -2.310 0.000a -3.145 0.000a -3.142 0.000a

β02 -3.248 0.000a -4.388 0.000a -4.459 0.000a -3.036 0.000a -4.074 0.000a -4.083 0.000a

β03 -3.718 0.000a -5.074 0.000a -5.073 0.000a -3.707 0.000a -4.696 0.000a -4.743 0.000a

β04 -4.054 0.000a -5.132 0.000a -5.138 0.000a -4.044 0.000a -5.197 0.000a -5.213 0.000a

β05 -4.532 0.000a -5.199 0.000a -3.852 0.000a -3.350 0.000a -4.284 0.000a -4.319 0.000a

β11(Vol.) 8.262 0.000a 8.181 0.000a 7.002 0.000a 6.958 0.000a

β12 8.175 0.000a 8.754 0.000a 8.029 0.000a 7.881 0.000a

β13 9.551 0.000a 9.566 0.000a 7.800 0.000a 7.491 0.000a

β14 8.388 0.000a 8.379 0.000a 8.534 0.000a 8.389 0.000a

β15 6.091 0.000a 5.134 0.000a 7.523 0.000a 7.229 0.000a

β21(Ex.) 7.278 0.002a -2.787 0.021b

β22 4.365 0.000a -5.891 0.051c

β23 4.385 0.034b 2.381 0.073c

β24 7.700 0.009a 1.853 0.094c

β25 3.068 0.394 1.488 0.123
β31(Int.) 5.898 0.059c 2.761 0.136
β32 1.924 0.070c -1.776 0.111
β33 1.552 0.262 -4.571 0.000a

β34 1.361 0.711 -1.016 0.172
β35 1.762 0.535 -3.921 0.000a

Log-likelihood -2548.55 -2302.12 -2284.17 -2573.65 -2358.64 -2340.40
Pseudo�R2 0.0967 0.1037 0.0835 0.0906

Note: The level of coexceedance of bond index return is modeled as polychotomous variable. For example, if probability is defined as Pi, thus i is associated with the number of coexceedances
observed on the same trading day, which, in this paper, could be classified into six hierarchies of 0, 1, 2, 3, 4, 5 meaning 0, 1, 2, 3, 4, 5 and more coexceedances separately. In our multinomial
Logit model, covariates of conditional volatility (Vol.), daily exchange rate (Ex.) and short-term interest rate (Int.) are added, and calculated on their equally-weighted value for European
region. The conditional volatility is derived by the simplest EGARCH (1, 1).
a.b.c. denotes the marginal significance level at 1%, 5% and 10%
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Table 1.10: Summary statistics of co-exceedances for daily European market index returns (Marginal effect), Jan 1, 2001 to May 22, 2014.

Bottom tails Top tails
(1) (2) (3) (4) (5) (6)

Europe Mar. Prob. Mar. Prob. Mar. Prob. Mar. Prob. Mar. Prob. Mar. Prob.
β11(Vol.) 0.479 0.000a 0.470 0.000a 0.438 0.000a 0.439 0.000a

β12 0.198 0.000a 0.187 0.000a 0.227 0.000a 0.221 0.000a

β13 0.122 0.000a 0.122 0.000a 0.115 0.000a 0.104 0.000a

β14 0.088 0.000a 0.087 0.000a 0.084 0.000a 0.080 0.000a

β15 0.043 0.000a 0.023 0.000a 0.161 0.000a 0.147 0.000a

β21(Ex.) 0.414 0.004a -2.010 0.015b

β22 0.327 0.000a -1.899 0.045b

β23 0.048 0.029b 0.415 0.040b

β24 0.079 0.070c 0.926 0.078c

β25 0.061 0.169 1.374 0.099c

β31(Int.) -0.437 0.074c 0.377 0.106
β32 0.459 0.070c -0.514 0.143
β33 0.218 0.270 -0.717 0.000a

β34 0.069 0.347 -0.088 0.152
β35 0.021 0.554 -0.903 0.000a

Note: Based on the models in table 5, we calculate the partial derivatives of probability associated with independent variables at their mean value
a.b.c. denotes the marginal significance level at 1%, 5% and 10%
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Figure 1.1: Germany: DCC, FTQ and CI

Figure.1.(a) The dynamic correlation between stock market returns and the sovereign bond market returns for

Germany.

Figure.1.(b) FTQ indicator for Germany.

Figure.1.(c) CI indicator for Germany.
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Figure 1.2: France: DCC, FTQ and CI

Figure.2.(a) The dynamic correlation between stock market returns and the sovereign bond market returns for

France.

Figure.2.(b) FTQ indicator for France.

Figure.2.(c) CI indicator for France.
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Figure 1.3: The UK: DCC, FTQ and CI

Figure.3.(a) The dynamic correlation between stock market returns and the sovereign bond market returns for the

UK.

Figure.3.(b) FTQ indicator for the UK.

Figure.3.(c) CI indicator for the UK.
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Figure 1.4: Belgium: DCC, FTQ and CI

Figure.4.(a) The dynamic correlation between stock market returns and the sovereign bond market returns for

Belgium.

Figure.4.(b) FTQ indicator for Belgium.

Figure.4.(c) CI indicator for Belgium.
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Figure 1.5: Denmark: DCC, FTQ and CI

Figure.5.(a) The dynamic correlation between stock market returns and the sovereign bond market returns for

Denmark.

Figure.5.(b) FTQ indicator for Denmark.

Figure.5.(c) CI indicator for Denmark.

70



Figure 1.6: Netherland: DCC, FTQ and CI

Figure.6.(a) The dynamic correlation between stock market returns and the sovereign bond market returns for

Netherland.

Figure.6.(b) FTQ indicator for Netherland.

Figure.6.(c) CI indicator for Netherland.
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Figure 1.7: Portugal: DCC, FTQ and CI

Figure.7.(a) The dynamic correlation between stock market returns and the sovereign bond market returns for

Portugal.

Figure.7.(b) FTQ indicator for Portugal.

Figure.7.(c) CI indicator for Portugal.
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Figure 1.8: Spain: DCC, FTQ and CI

Figure.8.(a) The dynamic correlation between stock market returns and the sovereign bond market returns for Spain.

Figure.8.(b) FTQ indicator for Spain.

Figure.8.(c) CI indicator for Spain.
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Figure 1.9: Greece: DCC, FTQ and CI

Figure.9.(a) The dynamic correlation between stock market returns and the sovereign bond market returns for

Greece.

Figure.9.(b) FTQ indicator for Greece.

Figure.9.(c) CI indicator for Greece.
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Figure 1.10: Daily sovereign bond returns (1/2/2001-5/22/2014). All sovereign bond
returns are first differences of natural logarithms of the bond indices.
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Figure 1.11: Conditional variance (1/2/2001-5/22/2014). The consistent volatility
is modeled by the simplest GARCH model.
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Figure 1.12: Dynamic correlation estimates for sovereign bond index returns of
Greece and those of the other eight European countries.
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Chapter 2

The nonlinear relationship
between stock returns, trading
volume, and volatility:
International evidence

2.1 Introduction

The relationship between stock returns and trading volume and that between trad-

ing volume and volatility have been extensively studied in the literature. For the

former, a large and voluminous literature has documented evidence of positive rela-

tion between stock returns and trading volume (see, for example, Copeland (1976),

Jennings, Starks, and Fellingham (1981) and more recently Griffin, Nardari, and

Stulz (2007)); while others show that the relation is negative (see Brennan, Chor-

dia, and Subrahmanyam (1998), Datar, Naik, and Radcliffe (1998), and Chordia,

Subrahmanyam, and Anshuman (2001) among others). Meanwhile, the relationship

between trading volume and volatility has attracted no less attention in the litera-

ture as accurate modeling and forecasting of volatility is essential for asset pricing,

portfolio management, and risk management (see, for example, Lamoureux and Las-

trapes (1990), Jones, Kaul, and Lipson (1994), Darrat, Rahman, and Zhong (2003),

and Fleming and Kirby (2011)). In existing literature, both relationships are widely
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researched in linear way, and are estimated solely. Hiemstra and Kramer (1993)

assert that nonlinear model has a better accuracy in estimations than linear way.

This motivates us to find nonlinear relationships between stock returns, trading vol-

ume and volatility. In order to further improve the research, both relationships are

estimated in a joint system, sharing the same information.

Building upon this basic model, Baek and Brock (1992) put forward a nonpara-

metric statistical method for unveiling the nonlinear relations that are not detected

by conventional linear causality tests. This method is widely adopted in many fields,

such as money and income (Baek and Brock, 1992), aggregate stock returns and

macroeconomic elements (Hiemstra and Kramer, 1993), and producer and consumer

price indices (Jaditz and Jones, 1993).

In this paper, we re-investigate the relations between stock returns, return volatil-

ity, and trading volume in a unified framework by simultaneously studying the re-

lationship between the three variables. The existing literature seldom analyzes the

joint system of these three variables simultaneously.1 However, the partial evalua-

tion of pair-wise relationship of the variables can potentially hide the true underlying

dynamics and result in inefficient or biased statistical inference (see Pagan (1984)

and the references therein).

When conducting econometric tests, we follow the seminal paper by Hiemstra

and Jones (1994) and allow both linear and nonlinear Granger causality relations

between stock returns, return volatility, and trading volume. Hiemstra and Jones

(1994) modify the nonlinear Granger causality model of Baek and Brock (1992)

to study the dynamic relation between stock returns and trading volume of the

1 For example, Darrat, Rahman, and Zhong (2003) follow a two-step procedure in which volatil-
ity is first modeled via GARCH before tests on trading volume and volatility are performed.
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DJIA stock index. They show that allowing a nonlinear causality relation provides

additional insight and reveals a significant bi-directional Granger causality between

returns and volume. The linear Granger causality test in their results only reports

a uni-directional causality from returns to trading volume.

In this paper, we link the above strands of literature and make two contributions.

First and foremost, we implement a simultaneous estimation of stock returns, return

volatility, and trading volume in a joint vector autoregression (VAR) system. In this

way, the dynamics of the three variables can be modeled together to provide a com-

prehensive analysis of their relationship. In particular, we specify stock returns and

trading volume in the VAR to study the causal relation between the two variables.

At the same time, the variance of stock returns, endogenously generated from the

EGARCH model, also enters the VAR together with trading volume to measure the

causal relation between volatility and trading volume.

The second contribution is that we allow both linear and nonlinear Granger

causality in exploring the relationship between the three variables. To the best of

our knowledge, this is the first study to conduct nonlinear Granger causality test on

the relationship between stock returns, return volatility, and trading volume.2 The

nonlinear causality test has become increasingly prominent in the literature as it is

more flexible and able to capture potential structural breaks in the relation between

variables (see, for example, Qiao and Lam (2011), Beine, Capelle-Blancard, and

Raymond (2008), Anoruo (2011), and Cakan (2013)). The importance of testing

nonlinear relationship is also documented in different asset classes, including the

stock index futures market (Abhyankar (1998)) and the energy market (Benhmad

2 Chuang, Liu, and Susmel (2012) study the simultaneous relationship between the three vari-
ables using data from 10 Asian markets but they only allow linear causality relation.
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(2012)), among others.

With data from 12 emerging and 12 developed markets over a long sample period,

our empirical results show that there is a strong bi-directional nonlinear causality

between stock returns and trading volume, and between trading volume and volatil-

ity for all markets. This is contrary to the linear Granger causality test results,

which suggests only uni-directional causality for some of the markets.

In addition, we perform robustness test for both linear and nonlinear Granger

causality using a shorter sample of relatively tranquil market conditions from the

beginning of 1994 to the end of 2006, just before the onset of the recent banking

and financial crisis. The robustness tests generate interesting results in comparison

to the full sample test results. First, we observe much stronger linear Granger

causality relation between the variables, especially from stock returns to trading

volume, and from volatility to trading volume. For example, for the whole sample

period, that volatility feedback to trading volume is significant only for 2 markets but

this increases to 18 countries for the shorter sample, out of which 14 are significant

at 1% level. Similarly, the number of markets seeing significant Granger causality

from stock returns to trading volume goes up from 11 for the whole sample to 18 for

the shorter sample, out of which 14 are significant at 1% level.

Second, although the significant bi-directional results remain unchanged qualita-

tively for the nonlinear tests, we observe that feedback from stock returns to trading

volume, and that from volatility to trading volume are much stronger than the op-

posite direction for the shorter sample. This is especially true for the feedback from

volume changes to volatility. For the long sample, this is significant at 1% level for

all 24 markets. For the short sample, however, only 7 countries see a 1% significance
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for this causality.

Taken together, the above results suggest that the linear causality test is not

able to detect relationship between the variables when potential structural breaks

exist in the data due to the financial crisis, and the nonlinear causality test is more

flexible and reliable in this regard. In addition, although stock returns and trading

volume, and trading volume and volatility exert significant influence on each other,

the relation can be more dominant in one direction under certain market conditions.

Our paper is also related to Griffin, Nardari, and Stulz (2007), which explores

the return-volume relation in 46 countries. Interestingly, they show that the relation

is stronger in economies that are more opaque, volatile, and less integrated to the

global stock markets. We test a long sample period of 24 developed and developing

countries and find that the nonlinear Granger causality relation is strong in all

markets.

The rest of the paper is organized as follow. In Section 2, we outline the method-

ology for linear and nonlinear Granger causality tests. Section 3 describes data.

We analysis empirical results and robustness tests in Section 4. Finally, Section 5

concludes.

2.2 Methodology

In this section, we follow closely Hiemstra and Jones (1994) and outline the linear

Granger causality test and the bivariate nonlinear causality model first proposed in

Baek and Brock (1992). We adopt the EGARCH model to describe stock return

volatility.
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2.2.1 Linear Granger Causality Test

Following Granger (1969) and, more recently, Hiemstra and Jones (1994), we let

tXtu and tYtu denote two strictly stationary time series. The conditional probability

distribution F pXt|It�1q for tXtu given the bivariate information set It�1 comprising

an Lx-length lagged vector of Xt,

XLx
t�Lx � pXt�Lx, Xt�Lx�1, . . . , Xt�1q,

and an Ly-length lagged vector Yt,

YLy
t�Ly � pYt�Ly, Yt�Ly�1, . . . , Yt�1q,

is expressed as follows:

F pXt|It�1q � F pXt|pIt�1 �YLy
t�Lyqq. (2.1)

The bivariate information set It�1 is defined as a set comprising Lx-length and Ly-

length lagged vectors. If equation 2.1 does not hold, it implies that the past value

of tYtu contains information for predicting the current and future values of tXtu,

and tYtu is said to strictly Granger cause tXtu. Similarly, we can modified the

information set by including the current value of Y as follows:

F pXt|It�1q � F pXt|pIt�1 � Ytqq. (2.2)
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If equation 2.2 does not hold, it indicates that Yt instantaneously Granger causes

Xt. Following Hiemstra and Jones (1994), we adopt a linear reduced form Vector

Autoregression (VAR) and estimate the following system of equations to test Granger

causal relations:

Xt � ApLqXt�1 �BpLqYt�1 � UX,t

Yt � CpLqXt�1 �DpLqYt�1 � UY,t t � 1, 2, 3, . . . ,

where ApLq, BpLq, CpLq, and DpLq are lag polynomials of orders a, b, c, and d

in the lag operator L. The error terms UX,t and UY,t are assumed to be mutually

independent and individually i.i.d distributed with zero mean and constant variance.

If coefficients in BpLq, i.e. Bi pi � 1, . . . , bq, are jointly significantly different from

zero, the null hypothesis that Y does not Granger cause X can be rejected. On the

other hand, if coefficients in CpLq are jointly significantly different from zero, the

null hypothesis that X does not Granger cause Y can be rejected. In addition, the

bi-directional causality (or feedback) exists if the coefficients in BpLq and CpLq are

jointly different from zero.

2.2.2 Nonlinear Granger Causality Test

The nonlinear Granger causality test is based on the bivariate nonlinear model

proposed by Brock (1991), which establishes a simple bivariate nonlinear model and

shows how it can compensate the inadequacy of the linear Granger causality test to

uncover nonlinear predictive power. The model is specified as follows:

Xt � βYt�L �Xt�M � εt, (2.3)
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where tYtu and tεtu are mutually independent and individually i.i.d. Np0, 1q time

series with mean zero and unit variance, β is a parameter, L and M are lag lengths,

and Xt depends on past values of Yt. Building upon this basic model, Baek and

Brock (1992) propose a nonparametric statistical method for unveiling the nonlinear

relations that are not detected by conventional linear causality test. In specific, Baek

and Brock (1992) consider two stationary and weakly dependent time series tXtu

and tYtu, t � 1, 2, . . .. Denote the m-length lead vector of Xt by Xm
t , and denote the

Lx-length and Ly-length lag vectors of Xt and Yt by XLx
t�Lx and YLy

t�Ly, respectively:

Xm
t � pXt, Xt�1, . . . , Xt�m�1q, m � 1, 2, � � � , t � 1, 2, � � � ,

XLx
t�Lx � pXt�Lx, Xt�Lx�1, � � � , Xt�1q, Lx � 1, 2, � � � , t � Lx� 1, Lx� 2, � � � ,

YLy
t�Ly � pYt�Ly, Yt�Ly�1, � � � , Yt�1q, Ly � 1, 2, � � � , t � Ly � 1, Ly � 2, � � � .

(2.4)

For given values of m, Lx, and Ly ¥ 1 and for e ¡ 0, Y does not strictly Granger

cause X if:

Prp||Xm
t �Xm

s ||   e| ||XLx
t�Lx �XLx

s�Lx||   e, ||YLy
t�Ly �YLy

s�Ly||   eq

� Prp||Xm
t �Xm

s ||   e| ||XLx
t�Lx �XLx

s�Lx||   eq, (2.5)

where Prp�q indicates probability and || � || is the maximum norm.3 On the left-hand

side of equation 2.5, the probability is the conditional probability that two arbitrary

m-length lead vectors of Xt are within a distance e of each other, given that the

corresponding Lx-length lag vector of tXtu and the Ly-length lag vector of tYtu are

3 The maximum norm for Z � pZ1, Z2, � � � , ZKq is defined as max(Zi), i � 1, 2, . . . ,K.
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within e of each other. The expression on the right-hand side of equation 2.5 is the

conditional probability that two arbitrary m-length lead vectors of tXtu are within

e of each other, given that their corresponding Lx-length lag vectors are less than e

of each other.

In order to implement a nonlinear Granger causality test based on equation 2.5,

the corresponding ratio of joint probability to the above conditional probability is

proposed.4 Define:

C1pm� Lx, Ly, eq � Prp||Xm�Lx
t�Lx �Xm�Lx

s�Lx ||   e, ||YLy
t�Ly �YLy

s�Ly||   eq,

C2pLx, Ly, eq � Prp||XLx
t�Lx �XLx

s�Lx||   e, ||YLy
t�Ly �YLy

s�Ly||   eq,

C3pm� Lx, eq � Prp||Xm�Lx
t�Lx �Xm�Lx

s�Lx ||   eq,

C4pLx, eq � Prp||XLx
t�Lx �XLx

s�Lx||   eq. (2.6)

The nonlinear Granger causality condition in equation 2.5 can be expressed as:

C1pm� Lx, Ly, eq
C2pLx, Ly, eq � C3pm� Lx, eq

C4pLx, eq , (2.7)

for given values of m,Lx, Ly ¥ 1 and e ¡ 0. To estimate and test the condition in

equation 2.7, we re-write equation 2.6 as the correlation-integral estimators of joint

4 The maximum norm allows Prp||Xm
t � Xm

s ||   e, ||XLx
t�Lx � XLx

s�Lx||   eq to be written as

Prp||Xm�Lx
t�Lx �Xm�Lx

s�Lx ||   e).
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probabilities as follows:

C1pm� Lx, Ly, e, nq � 2

npn� 1q
¸
t s

¸
Ipxm�Lxt�Lx ,x

m�Lx
s�Lx , eq � IpyLyt�Ly,yLys�Ly, eq,

C2pLx, Ly, e, nq � 2

npn� 1q
¸
t s

¸
IpxLxt�Lx,xLxs�Lx, eq � IpyLyt�Ly,yLys�Ly, eq,

C3pm� Lx, e, nq � 2

npn� 1q
¸
t s

¸
Ipxm�Lxt�Lx ,x

m�Lx
s�Lx , eq,

C4pLx, e, nq � 2

npn� 1q
¸
t s

¸
IpxLxt�Lx,xLxs�Lx, eq. (2.8)

with t, s � maxpLx, Lyq � 1, . . . , T � m � 1, n � T � 1 � m � maxpLx, Lyq, and

IpZ1,Z2, eq denote a kernel that equals 1 when two conformable vectors Z1 and Z2

are within the maximum-norm distance e of each other, and 0 otherwise. With

the joint probability estimators of equation 2.8, the nonlinear Granger noncausality

condition in equation 2.5 can be evaluated. Under the condition that all variables

must be strictly stationary and weakly dependent, and if Yt cannot Granger cause

Xt, then we have:

?
n

�
C1pm� Lx, Ly, e, nq
C2pLx, Ly, e, nq � C3pm� Lx, e, nq

C4pLx, e, nq


� Np0, σ2pm,Lx, Ly, eqq. (2.9)

Equation 2.9 is then applied to residuals (uX,t, uY,t) from the VAR model:

zt � Azt�1 � εt, (2.10)

where A is (2�2) matrix of coefficients, zt � pXt, Ytq, and εt is a vector of error term.
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The empirical VAR model in compact form is expressed as follows:

�
��� Xt

Yt

�
��� �

�
��� apLq bpLq

cpLq dpLq

�
���
�
��� Xt�1

Yt�1

�
����

�
��� uX,t

uY,t

�
��� t � 1, 2, . . . , (2.11)

The null hypothesis is that Yt does not strictly Granger cause Xt, and Xt does not

strictly Granger cause Yt.

In this paper, we are interested in exploring the relationship between stock re-

turns, trading volume, and volatility. We adopt the EGARCH model, a popular

method in the literature due to its ability to capture volatility persistence and asym-

metric response to news to measure volatility (Nelson (1990, 1991)). The EGARCH

(p, q) model is specified as follows:

r̃t � εt, ε|It�1 � Np0, σ2
t q

σ̃2
t � α0 � α1 lnpσ̃2

t�1q � � � � � αp lnpσ̃2
t�pq (2.12)

� β1

�
ϕ

�
εt�1a
σ2
t�1

�
� γ

�
|p εt�1a

σ2
t�1

q| �
a

2{π
��

, (2.13)

where r̃t and σ̃2
t denote detrended stock returns and volatility of detrended returns,

respectively.5

We let tXtu and tYtu be the time series of detrended trading volume Ṽt and σ̃2
t .

Equation 2.11 can be re-written as follows:

Ṽt � apLqṼt�1 � bpLqσ̃2
t�1 � uṼ ,t

σ̃2
t � cpLqσ̃2

t�1 � dpLqṼt�1 � uσ̃2,t, t � 1, 2, � � � , T. (2.14)

5 Stock returns and trading volume are detrended to induce stationarity. Volatility is modelled
on detrended returns. See Section 3 for more detail.
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In a similar vein, tXtu and tYtu can also denote the time series of detrended stock

returns and trading volume. Hence equation 2.11 can be expressed as follows:

r̃t � apLqr̃t�1 � bpLqṼt�1 � ur̃,t (2.15)

Ṽt � cpLqṼt�1 � dpLqr̃t�1 � uṼ ,t, t � 1, 2, � � � , T.

Finally, equation 2.9 is applied to the residuals of equations 2.14 and 2.15 to perform

the nonlinear Granger causality test.

2.3 Data

We use daily stock market indices and trading volume for 24 markets obtained

from the Datastream. They include developed markets such as the US, UK, Canada,

Denmark, Germany, France, Switzerland, and Japan, and still developing markets

such as Argentina, Brazil, Chile, Colombia, and Indonesia, and generally cover the

period from 1973-2013. The sample period for each market is summarized in Table

2.1.

We compute stock returns as the logarithmic changes of stock market indices over

consecutive trading days, rt � lnp Pt
Pt�1

q, where Pt and Pt�1 are the stock index on

days t and t�1, respectively. Similarly, we obtain volume changes as the logarithmic

changes of volume over consecutive trading days, Vt � lnp Vt
Vt�1

q, where Vt and Vt�1

are trading volume on days t and t� 1, respectively. Following Hiemstra and Jones

(1994) and Lo and Wang (2000), in order to induce stationarity in the time series we

detrend both stock returns and volume changes by regressing the time series on a

deterministic function of a linear time trend term (see equation (14) in Lo and Wang
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(2000)). This procedure yields the detrended time series for stock returns r̃t and Ṽt

to be utilized in the VAR model. We adopt the EGARCH model on the detrended

returns to estimate return volatility.

Table 2.2 reports the descriptive statistics of the detrended stock returns, volume

changes, and variance series. We also report the first-order autocorrelation, the sum

of the autocorrelations from the first order to fifth order, and the ARCH effect with

10 lag-length for detrended stock returns. Overall the emerging markets show higher

standard deviation than developed markets with Argentina having the highest value

at 0.034, and Canada with the lowest at 0.010. The first-order autocorrelation tends

to be very close to zero for most markets with the exception of India whose first-

order autocorrelation is 0.082. The average sum of the first five autocorrelations is

-0.007 for developed markets, and 0.009 for developing markets. The LM statistics

are statistically significant at the 1% level for all markets, indicating the existence

of the time-varying volatility and that a GARCH-type model is appropriate for

measuring volatility. The Jarque-Bera test, which is not reported to save space,

strongly rejects the normality assumption for stock returns for all markets.

For detrended volume changes, the standard deviation of volume changes is higher

than that of stock returns for all markets but the developed markets tend to have

lower standard deviation than the developing markets (0.346 vs. 0.447). The Jarque-

Bera test has also strongly rejected normality assumption for detrended volume

changes. Trading volume shows similar autocorrelation persistence as stock returns.

The return variance has very small sample mean. Interestingly, return variance shows

substantially higher autocorrelations, which means that it is much more persistent

than stock returns and volume changes.
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Table 2.3 summarizes the results of the augmented Dickey-Fuller (ADF) unit

root test for the three variables considered in our paper (Dickey and Fuller (1979,

1981) and Said and Dickey (1984)). We relate the results of ADF test to the esti-

mation of variables’ stationarity. The probabilities of unit root test for detrended

stock returns, trading volume and variance are all statistically significant. The test

statistics suggest that all detrended variables are stationary and therefore they are

suitable for the VAR model.

2.4 Empirical Results and Analysis

The linear and nonlinear Granger causality test results for the two relationships,

i.e., that between stock returns and trading volume, and between volatility and

trading volume, are summarized in Tables 2.4 to 2.7. Table 2.4 reports the linear

Granger causality test result between stock returns and trading volume, including

lag lengths of both dependent and independent variables, and the F -statistics with

p-values. We notice that Mexico has the longest lags (23) for stock returns, while

the UK, Brazil and Greece have the longest lags (2) for trading volume. Under

the null hypothesis that volume changes do not Granger cause stock returns, the

null remains valid for all markets. This indicates that there is no evidence of uni-

directional causality from trading volume to stock returns during the sample period.

Put differently, knowing volume changes does not help improve forecasts of current

and future stock returns. On the other hand, under the null hypothesis of Granger

noncausality from stock returns to trading volume, the null can be rejected at the

1% level for Denmark, France, Brazil, Philippine and Thailand, at the 5% level

for Germany and Japan, and at the 10% level for the UK, Taiwan, Singapore, and
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Malaysia. These suggest that stock returns tend to have strong feedback effect on

trading volume in these markets. In other words, information contained in stock

returns helps forecast volume changes for these markets.

In Table 2.5, we summarize the linear causal relation between trading volume

and return volatility. First, the Granger causality from trading volume to volatility

is observed in the US at the 1% level and in Germany and Brazil at the 5% level.

Six other countries including the UK, France, Singapore, Argentina, Greece and

Thailand see evidence of this causality at the 10% significance level. On the other

hand, there is weaker evidence for volatility to Granger cause trading volume. For

Denmark and Singapore, the null that volatility does not Granger cause volume

changes is rejected at the 1% and 5% level, respectively. For the rest of the markets,

we found no information in volatility that can help forecast trading volume as the null

hypothesis of no Granger causality cannot be rejected. Taken together, Singapore

is the only market that experiences a bi-directional relation between volume and

volatility. For nine other markets, there is uni-directional feedback effect, and it

tends to be from trading volume to volatility.

Overall, Tables 2.4 and 2.5 suggest that the three variables are rather discon-

nected over the entire sample period with linear causality relationship in only a

few markets. However, our long sample period includes the Asian financial crisis in

1997 and the recent financial and banking crisis since 2007. As a result, the linear

causality test may not be adequate to capture a potentially time-changing relation-

ship between the variables. For example, structural breaks may exist in the relation

between stock returns, trading volume, and volatility during the whole sample. We

therefore employ the modified Baek and Brock test proposed in Hiemstra and Jones
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(1994) which is nonlinear causality test. The values of the lead length m, the lag

lengths Lx and Ly, and Ly and Lz, and the scale parameter e are chosen according

to the Monte Carlo simulations in Hiemstra and Jones (1994).6 The modified model,

shown in equation 2.9, is applied to the estimated VAR residuals.

Table 2.6 re-examines the causality between stock returns and trading volume

via a nonlinear causality test. We estimate the nonlinear causal relation for each

market from lag 1 to lag 8 and report only the test statistics with the smallest

lag and the corresponding lag length for each market in this table. CS and TVAL

denote the difference between the two conditional probabilities in equation 2.7 and

the standardized test statistics in equation 2.9, respectively.

As we can see, the smallest TVAL value is 4.049 and 3.380 for Taiwan and

Denmark, respectively, when testing whether volume Granger causes stock returns

and whether stock returns Granger cause volume. Both statistics are significant

at the 1% significance level. Hence there is a very strong bi-directional nonlinear

Granger causality relation between stock returns and trading volume for all markets.

In addition, this strong bi-directional relation between stock returns and trading

volume holds for all lag lengths from 1 to 8. Put differently, with the more flexible

nonlinear test, we reveal a strong bi-directional feedback between volume and stock

returns so that stock returns contain information that helps improve forecast of

trading volume; at the same time, knowing trading volume also helps forecast current

and future stock returns. Since the TVAL values are larger for rejecting the null that

stock returns do not Granger cause volume changes, there is evidence suggesting that

6 Hiemstra and Jones (1994) give three values of 0.5, 1 and 1.5 to the scale parameter e, the
analogous results could be equally derived with three values of e. However, in specific, to implement
the test we set the scale parameter e � 0.5σ, which is only one helping derive the results in our
paper, possibly because of the basic attributes of data series. We also select the lead length at 1,
and Lx � Ly � Lz for the common lag length from 1 to 8.
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stock returns are able to provide more feedback to trading volume than the other

way round.

The nonlinear Granger causality test results between trading volume and volatil-

ity are summarized in Table 2.7. Similar to Table 2.6, we observe a strong bi-

directional causality between trading volume and volatility. The smallest test statis-

tic for the null hypothesis that volume changes do not Granger cause volatility is

4.010 for Thailand, and for the null that volatility does not Granger cause volume

changes it is 4.043 for the US. Given that the test statistics are significant at the 1%

level for all markets, there is strong evidence that volume changes and volatility are

able to exert feedback to each other.

Robustness Checks

Due to the severity of the recent banking and financial crisis and its potential

impact on the empirical results discussed above, as a robustness check we re-examine

the linear and nonlinear relation between stock returns, trading volume, and volatil-

ity with a shorter sample from January 1994 to December 2006. Our shorter sample

period excludes the impact of the recent banking crisis although it still covers the

Asian financial crisis in 1997 and the dotcom bubble at the turn of the century. The

linear test results for the short sample are summarized in Tables 2.8 and 2.9, and

the nonlinear test results are reported in Tables 2.10 and 2.11.

In Table 2.8, we observe much stronger causality relation between stock returns

and trading volume for the shorter sample from the linear tests. The null that

volume has no feedback to stock returns is rejected for eight countries, compared

with none in Table 2.4 for the full sample. These include rejection at the 1% level
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for Denmark, Taiwan, and Thailand. There is also a stronger causality from stock

returns to volume. The null that stock returns do not Granger cause trading volume

is rejected for 18 markets, including 14 markets whereby the rejection is significant

at the 1% level. When we take the two hypothesis tests together, we observe a bi-

directional Granger causality between stock returns and volume for seven countries,

including highly significant relation for Taiwan and Thailand at the 1% level. In

addition, we see that feedback from stock returns to volume is stronger than the

other way round, similar to the observation in Table 2.6 for the nonlinear Granger

causality test for the whole sample period.

Table 2.9 shows a similar story to Table 2.8 for the relationship between volatil-

ity and trading volume. For the shorter sample, we uncover more markets that see

significant causality relation between trading volume and volatility at higher signif-

icance level when compared to the full sample. There is the bi-directional causality

for 10 countries, including highly significant relation (at the 1% level for both direc-

tions) for Hong Kong and Thailand. Also similar to the pattern in Table 2.8, the

relation is stronger in one direction than the other. Out of 24 markets we examine,

18 of them see significant feedback effect from volatility to trading volume, out of

which 14 are significant at the 1% level.

Empirical findings from Tables 2.8 and 2.9 reveal an interesting pattern that the

linear Granger causality relationship is much stronger over the shorter sample period

than that over the entire sample reported in Tables 2.4 and 2.5. As the shorter sample

period covers relatively tranquil market conditions before the onset of the US banking

crisis, the results again substantiate the failing of the linear Granger causality test

to capture the dynamic relationship between economic variables, something that
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Hiemstra and Jones (1994) has emphasized in their article.

Table 2.10 summarizes the nonlinear causality results between stock returns and

trading volume for the shorter sample. Similar to Table 2.6 for the full sample, there

is a clear bi-directional relation between the two variables. Unlike Table 2.6, however,

there is an apparent difference in the significance of rejecting the two null hypotheses.

For the null that stock returns do not Granger cause volume, the smallest TVAL

is highly significant at 4.781. However, for the null that volume changes do not

Granger cause stock returns, for four countries, it can only be rejected at the 5%

level. This suggests a stronger feedback from stock returns to volume than the other

way round, and this is consistent with the results from linear test reported in Table

2.8.

Table 2.11 reports the nonlinear causality results between volume and volatility

for the shorter sample. From this table we can see that all of the markets considered

in our paper still exhibit bi-directional causality. However, the causality from volatil-

ity to volume seems to be stronger than the causality from volume to volatility. For

example, the causality from volatility to volume is significant at the 1% level for all

the countries except for Greece, which is significant at the 5% level. However, with

regard to causality from volume to volatility, only 7 countries see highly significant

statistics with all other countries seeing statistics significant at lower levels: either

at the 5% or the 10% level. Hence, consistent with the findings in Table 2.9, these

results indicate that information tends to flow from volatility to volume, and that

volatility contains more information that helps improve forecasts of trading volume.

To summarize, comparing the results reported in Tables 2.4 and 2.5, these ad-

ditional robustness tests suggest that the linear causality test is not flexible enough
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to recover dynamic relationships when they experience potential structural breaks.

Hence it is always advisable to perform the nonlinear Ganger causality test, which

is more flexible and powerful, alongside linear tests. Our results also show that

although stock returns and trading volume, and volume and volatility provide feed-

back to each other and contain information that helps predict current and future

values for each other, the relationship can be stronger in one particular direction

under certain market conditions.

2.5 Conclusion

The causal relationships between stock returns and trading volume, and between

trading volume and volatility attract huge interest in the literature but very few

papers focus on both of the causal relationships between them in the same system. In

this article, we adopt a system of VAR models and follow Hiemstra and Jones (1994)

in exploring both linear and nonlinear Granger causal relations between the three

variables. By using the joint system of linear and nonlinear models, the approach is

able to avoid the problem of model misspecification, but also capture more complex

nonlinear causal relation between the variables.

We perform simultaneous estimations of the relation between stock returns and

trading volume, and of the relation between trading volume and volatility. Our find-

ings are summarized as follows. First, after removing the effect of time predictive

power, the linear Granger causality test shows no evidence that volume Granger

causes stock returns, and only a handful markets reject the null that stock returns

cannot Granger affect volume. For the relationship between trading volume and

volatility, under the hypothesis of volume does not Granger cause volatility, statis-
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tical significance is obtained for even fewer markets. And only two markets, namely

Denmark and Singapore, can reject the null that volatility does not Granger cause

volume changes. In contrast, the results for the nonlinear Granger test suggest that

the null hypothesis of pair-wise no Granger causality between stock returns and

volume changes and between volume changes and volatility can be rejected for all

markets at high level of statistical significance.

We also undertake robustness tests for both linear and nonlinear Granger causal-

ity for a shorter sample period from 1994 to 2006 when the markets were relatively

calm. We find that the linear Granger causality test produced more significant re-

sults at higher significance level for the shorter sample period, and we observe a

stronger feedback effect from stock returns to volume, and from volatility to vol-

ume. The nonlinear causality rest results remain the same qualitatively in that bi-

directional causality exists between stock returns and volume, and between volume

and volatility. Moreover, consistent with the linear results for the shorter sample,

the non-linear test also reveals a stronger feedback from stock returns to volume,

and from volatility to volume.
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Table

Table 2.1: The markets and the corresponding sample periods

Market Sample period
US 1 Feb 1973 to 11 Nov 2013
UK 1 Jan 1965 to 11 Nov 2013
Canada 1 Feb 1973 to 11 Nov 2013
Denmark 1 Jan 1973 to 11 Nov 2013
Germany 1 Jan 1973 to 11 Nov 2013
France 1 Jan 1973 to 11 Nov 2013
Hong Kong 1 Jan 1973 to 11 Nov 2013
Japan 1 Jan 1973 to 11 Nov 2013
New Zealand 1 Apr 1988 to 11 Nov 2013
Norway 1 Feb 1980 to 11 Nov 2013
Taiwan 9 Sept 1987 to 11 Nov 2013
Singapore 1 Jan 1973 to 11 Nov 2013
Argentina 1 Apr 1988 to 11 Nov 2013
Brazil 7 Apr 1994 to 11 Nov 2013
Chile 7 Mar 1989 to 11 Nov 2013
Colombia 1 Feb 1992 to 11 Nov 2013
Greece 1 Apr 1988 to 11 Nov 2013
India 1 Jan 1990 to 11 Nov 2013
Korea 9 Sept 1987 to 11 Nov 2013
Malaysia 1 Feb 1986 to 11 Nov 2013
Mexico 1 Apr 1988 to 11 Nov 2013
Philippine 9 Sept 1987 to 11 Nov 2013
Poland 3 Jan 1994 to 11 Nov 2013
Thailand 1 Feb 1987 to 11 Nov 2013
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Table 2.2: Descriptive statistics for detrended stock returns, trading volume, and volatility

In this table, r̃t, Ṽt, and σ̃t denote detrended stock returns, detrended trading volume changes, and variance estimated from the EGARCH model. Stdev is the
standard deviation. AC(1) refers to the first-order autocorrelation and AC(5) refers to the sum of the first five autocorrelations. ARCH (10) indicates the

chi-square of the Lagrange Multiplier (LM) test for autoregressive conditional heteroskedasticity effect with 10 lag length.
US UK Canada Denmark Germany France HK Japan NZ Norway Taiwan Singapore

Detrended stock returns r̃t
Observations 10654 12738 10649 10655 10655 10652 10653 10654 6740 8828 6822 10655
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Stdev 0.011 0.012 0.010 0.013 0.012 0.013 0.018 0.013 0.012 0.017 0.019 0.014
AC(1) 0.000 0.001 0.001 0.001 0.000 0.001 -0.002 0.000 0.000 0.001 -0.002 0.001
AC(5) -0.067 -0.012 0.001 -0.012 -0.020 -0.023 0.009 -0.007 0.009 -0.064 0.018 0.082
ARCH(10) 129.190 225.172 304.824 39.481 109.085 164.911 23.095 64.301 73.937 140.25 137.38 174.43

Detrended volume changes Ṽt
Observations 8682 3892 7377 3879 4940 4740 4682 3886 4063 5635 3687 5959
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Stdev 0.220 0.260 0.495 0.337 0.309 0.304 0.281 0.546 0.406 0.404 0.278 0.308
AC(1) -0.016 0.005 -0.004 -0.004 -0.001 0.001 -0.008 -0.007 0.002 0.003 -0.006 -0.009
AC(5) -0.205 -0.019 -0.093 0.004 -0.014 -0.012 -0.077 -0.072 -0.022 0.001 -0.009 -0.079

Variance σ̃2
t

Observations 10654 12738 10649 10655 10655 10652 10653 10654 6740 8828 6822 10655
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AC(1) 0.974 0.973 0.982 0.998 0.981 0.973 0.833 0.946 0.967 0.969 0.988 0.960
AC(5) 4.646 3.738 4.734 4.964 4.720 4.615 3.138 4.383 3.680 4.589 4.827 4.271

(Continued)
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Argentina Brazil Chile Colombia Greece India Korea Malaysia Mexico Philippine Poland Thailand

Detrended stock returns r̃t
Observations 6739 5045 6350 5696 5740 6220 6820 7261 6739 6823 5134 7001
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Stdev 0.034 0.020 0.012 0.020 0.019 0.017 0.030 0.016 0.018 0.016 0.020 0.019
AC(1) 0.002 0.004 -0.001 0.000 0.003 0.082 0.001 0.000 -0.001 -0.001 0.001 -0.002
AC(5) 0.033 -0.065 0.045 -0.008 -0.004 0.082 -0.002 0.000 0.050 -0.024 -0.020 0.018
ARCH(10) 16.053 114.861 133.866 10.523 52.722 42.119 139.365 31.175 123.206 43.699 79.433 117.043

Detrended volume changes Ṽt
Observations 3635 2904 3565 3482 4494 2732 4071 4986 3812 4087 3563 5043
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Stdev 0.409 0.271 0.550 0.901 0.395 0.404 0.319 0.296 0.465 0.605 0.361 0.389
AC(1) -0.012 -0.021 0.001 -0.008 -0.005 0.046 -0.002 -0.008 0.005 -0.010 0.005 -0.006
AC(5) -0.134 -0.216 -0.039 -0.154 -0.027 0.045 -0.029 -0.100 -0.006 -0.095 -0.015 -0.149

Variance σ̃2
t

Observations 6739 5045 6350 5696 6740 6220 6820 7261 6739 6823 5134 7001
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
AC(1) 0.943 0.966 0.974 0.950 0.983 0.982 0.998 0.986 0.973 0.964 0.973 0.949
AC(5) 4.220 4.566 4.610 4.290 4.724 4.686 4.960 4.655 4.655 4.419 4.624 4.239
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Table 2.3: The unit root test results

In this table, we report the ADF(1) unit root test results for detrended stock returns, trading volume changes, and variance. The p-values are in parentheses.

US UK Canada Denmark Germany France HK Japan NZ Norway Taiwan Singapore

r̃t -17.181 -18.394 -17.146 -43.488 -23.617 -103.092 -24.419 -103.199 -26.551 -15.120 -19.434 -22.027
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Ṽt -8.032 -33.762 -9.776 -13.886 -69.832 -10.189 -11.153 -10.238 -11.385 -72.584 -6.796 -26.055
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

σ̃2
t -9.149 -9.462 -8.766 -5.472 -9.010 -9.665 -22.184 -12.370 -9.219 -7.782 -6.558 -12.849

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Argentina Brazil Chile Colombia Greece India Korea Malaysia Mexico Philippine Poland Thailand

r̃t -14.979 -10.774 -15.999 -16.983 -20.974 -17.451 -26.529 -11.915 -15.049 -17.451 -18.378 -20.738
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Ṽt -11.159 -13.586 -39.569 -20.858 -11.524 -30.654 -9.825 -70.002 -60.578 -8.405 -58.479 -12.373
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

σ̃2
t -7.219 -6.610 -8.617 -10.291 -6.839 -6.297 -4.832 -4.655 -7.611 -8.598 -6.547 -10.677

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 2.4: Linear Granger causality test for stock returns and trading volume

In this table, Lx and Ly denote the number of lags of the detrended series of stock returns and
trading volume changes. Both lag lengths are chosen via the Bayesian Information Criterion
(BIC). The p-value indicates the marginal significance level of the F test statistic. For Panel
A, the null hypothesis is that volume changes do not Granger cause stock return; for Panel B,
the null is that stock returns do not Granger cause volume changes. And ���, ��, and � denote
statistical significance at the 1%, 5%, and 10% level, respectively.

H0: Volume changes do not H0: Stock returns do not
Granger cause stock returns Granger cause volume changes
Lx Ly F stat p-value Lx Ly F stat p-value

US 1 1 0.083 0.821 1 8 0.621 0.433
UK 6 2 8.082 0.114 1 6 5.598� 0.056
Canada 1 1 3.905 0.298 1 11 1.937 0.191
Denmark 6 1 2.857 0.424 37 38 12.229��� 0.000
Germany 1 1 0.548 0.594 1 5 8.245�� 0.035
France 1 1 2.688 0.349 2 17 12.012��� 0.000
HK 1 1 0.729 0.550 1 1 18.181 0.147
Japan 1 1 0.463 0.620 1 37 6.236�� 0.017
NZ 1 1 0.655 0.567 1 1 1.455 0.441
Norway 7 1 5.508 0.317 1 1 9.833 0.197
Taiwan 2 1 10.722 0.211 1 1 73.999� 0.074
Singapore 1 1 1.814 0.407 1 2 14.767� 0.062

Argentina 2 1 2.279 0.327 1 1 15.052 0.161
Brazil 9 2 5.196 0.172 2 8 8.804��� 0.009
Chile 3 1 1.305 0.554 1 1 0.013 0.927
Colombia 1 1 0.424 0.633 1 6 1.134 0.328
Greece 1 2 6.781 0.121 1 1 11.734 0.181
India 1 1 1.724 0.414 1 1 5.313 0.261
Korea 1 1 8.379 0.212 1 1 27.871 0.119
Malaysia 1 1 0.067 0.839 1 2 9.568� 0.091
Mexico 23 1 2.606 0.458 1 1 1.138 0.479
Philippine 1 1 2.927 0.337 1 11 21.370��� 0.000
Poland 1 1 2.490 0.360 1 1 0.953 0.508
Thailand 1 1 8.294 0.213 1 7 68.413��� 0.000
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Table 2.5: Linear Granger causality test for trading volume and volatility

In this table, Lx and Ly denote the number of lags of the detrended series of trading volume and
volatility. Both lag lengths are chosen via the Bayesian Information Criterion (BIC). The p-value
indicates the marginal significance level of the F test statistic. For Panel A, the null hypothesis is
that volume changes do not Granger cause volatility; for Panel B, the null is that volatility does
not Granger cause volume changes. And ���, ��, and � denote statistical significance at the 1%,
5%, and 10% level, respectively.

H0: Volume changes do not H0: Volatility does not Granger
Granger cause volatility cause volume changes

Lx Ly F stat p-value Lx Ly F stat p-value
US 6 5 39.558��� 0.000 8 1 7.267 0.279
UK 5 1 61.485� 0.097 6 1 5.597 0.312
Canada 20 1 12.562 0.219 11 1 4.138 0.367
Denmark 5 1 5.593 0.310 37 38 11.571��� 0.000
Germany 1 1 160.987�� 0.049 1 1 8.365 0.212
France 2 1 66.491� 0.086 17 1 7.484 0.281
HK 11 1 36.486 0.128 1 1 11.436 0.183
Japan 6 1 12.084 0.217 37 1 1.074 0.659
NZ 11 1 11.870 0.223 1 1 2.014 0.391
Norway 25 1 27.540 0.169 1 1 7.886 0.217
Taiwan 5 1 28.914 0.140 1 1 5.599 0.254
Singapore 7 1 62.567� 0.097 1 2 19.981�� 0.046

Argentina 7 1 74.601� 0.089 1 1 5.574 0.255
Brazil 28 2 21.471�� 0.045 8 2 7.087 0.129
Chile 7 1 5.812 0.309 1 1 0.897 0.517
Colombia 3 1 0.735 0.749 6 1 2.833 0.426
Greece 2 2 116.877� 0.065 1 1 13.273 0.170
India 5 1 0.153 0.949 1 1 1.441 0.442
Korea 25 1 2.958 0.434 1 1 0.319 0.672
Malaysia 20 1 40.674 0.123 1 1 9.945 0.195
Mexico 25 1 6.850 0.294 1 1 1.343 0.453
Philippine 8 1 28.742 0.143 11 1 8.660 0.208
Poland 1 1 15.202 0.159 1 1 5.316 0.261
Thailand 5 1 123.835� 0.068 7 1 20.334 0.169
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Table 2.6: Nonlinear Granger causality test for stock returns and trading volume

In this table, Lx and Ly denote the number of lags on the residuals series, CS and TVAL denote
the difference between the two conditional probabilities in equation 2.7 and the standardized test
statistic in equation 2.9, respectively. For Panel A, the null hypothesis is that volume changes do
not Granger cause stock returns; for Panel B, the null is that stock returns do not do not Granger
cause volume changes. And ��� denotes statistical significance at the 1% level.

H0: Volume changes do not H0: Stock returns do not
Granger cause stock returns Granger cause volume changes
Lx � Ly CS TVAL Lx � Ly CS TVAL

US 1 0.0090 6.942��� 8 0.0224 7.989���

UK 1 0.0069 5.980��� 1 0.0091 8.156���

Canada 8 0.0190 8.825��� 8 0.0165 7.146���

Denmark 1 0.0064 5.084��� 1 0.0017 3.380���

France 1 0.0038 4.187��� 8 0.0192 9.019���

Germany 1 0.0110 6.009��� 8 0.0229 8.632���

HK 1 0.0061 6.334��� 8 0.0282 8.147���

Japan 1 0.0111 5.147��� 1 0.0055 6.025���

NZ 8 0.0222 5.463��� 8 0.0262 8.705���

Norway 1 0.0063 4.263��� 8 0.0231 9.078���

Taiwan 1 0.0041 4.049��� 8 0.0234 8.267���

Singapore 1 0.0102 5.294��� 8 0.0265 8.118���

Argentina 1 0.0082 5.135��� 1 0.0052 5.629���

Brazil 1 0.0052 4.935��� 8 0.0254 8.964���

Chile 1 0.0114 5.549��� 1 0.0082 7.115���

Colombia 8 0.0245 6.028��� 1 0.0152 8.777���

Greece 1 0.0053 4.767��� 1 0.0117 7.096���

India 1 0.0115 5.027��� 1 0.0039 3.901���

Korea 8 0.0256 8.140��� 8 0.0292 7.897���

Malaysia 1 0.0085 4.610��� 8 0.0241 8.463���

Mexico 1 0.0184 6.616��� 8 0.0284 9.104���

Philippine 1 0.0055 4.217��� 8 0.0213 8.453���

Poland 1 0.0053 4.355��� 1 0.0106 6.097���

Thailand 1 0.0081 6.994��� 1 0.0078 5.964���
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Table 2.7: Nonlinear Granger causality test for trading volume and volatility

In this table, Lx and Ly denote the number of lags on the residuals series, CS and TVAL denote
the difference between the two conditional probabilities in equation 2.7 and the standardized test
statistic in equation 2.9, respectively. For Panel A, the null hypothesis is that volume changes do
not Granger cause volatility; for Panel B, the null is that volatility does not Granger cause volume
changes. And ��� denotes statistical significance at the 1% level.

H0: Volume changes do not H0: Volatility does not Granger
Granger cause volatility cause volume changes

Lx � Ly CS TV AL Lx � Ly CS TV AL
US 1 0.0116 6.802��� 8 0.0040 4.043���

UK 1 0.0076 6.369��� 8 0.0085 7.424���

Canada 1 0.0570 5.455��� 1 0.0079 6.860���

Denmark 1 0.0054 5.145��� 1 0.0055 5.033���

France 1 0.0156 6.098��� 8 0.0068 5.460���

Germany 1 0.0160 6.761��� 8 0.0156 7.405���

HK 8 0.0153 6.424��� 8 0.0168 6.527���

Japan 1 0.0139 6.671��� 1 0.0146 6.502���

NZ 8 0.0165 7.005��� 1 0.0109 6.492���

Norway 8 0.0153 5.850��� 1 0.0057 5.347���

Taiwan 8 0.0107 7.354��� 8 0.0046 4.543���

Singapore 1 0.0100 5.902��� 1 0.0064 5.334���

Argentina 1 0.0198 8.902��� 1 0.0099 5.552���

Brazil 1 0.0141 6.663��� 1 0.0110 6.705���

Chile 8 0.0210 8.742��� 1 0.0087 6.536���

Colombia 1 0.0082 6.383��� 1 0.0108 6.472���

Greece 8 0.0180 7.003��� 1 0.0059 5.435���

India 1 0.0096 6.533��� 1 0.0098 5.723���

Korea 1 0.0077 6.444��� 8 0.0112 6.486���

Malaysia 1 0.0087 7.396��� 1 0.0090 5.401���

Mexico 1 0.0044 4.646��� 8 0.0123 5.506���

Philippine 8 0.0132 8.223��� 1 0.0042 4.459���

Poland 1 0.0092 5.701��� 1 0.0125 5.555���

Thailand 8 0.0034 4.010��� 8 0.0036 4.392���
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Table 2.8: Linear Granger causality test for stock returns and trading volume: Ro-
bustness test

In this robustness test, we use data for the relatively tranquil period from 3 January 1994 to 31
December 2006 to perform the linear Granger causality test between stock returns and trading
volume. In the table, Lx and Ly denote the number of lags of the detrended series of stock returns
and trading volume changes. Both lag lengths are chosen via the Bayesian Information Criterion
(BIC). The p-value indicates the marginal significance level of the F test statistic. For Panel A,
the null hypothesis is that volume changes do not Granger cause stock return; for Panel B, the
null is that stock returns do not Granger cause volume changes. And ���, ��, � denote statistical
significance at the 1%, 5%, and 10% level, respectively.

H0: Volume changes do not H0: Stock returns do not
Granger cause stock returns Granger cause volume changes
Lx Ly F stat p-value Lx Ly F stat p-value

US 1 1 0.716 0.398 1 1 14.472��� 0.000
UK 1 1 1.410 0.235 1 1 6.150�� 0.013
Canada 1 1 0.267 0.606 1 1 0.435 0.509
Denmark 1 1 12.199��� 0.000 1 1 3.479� 0.062
Germany 1 1 3.832�� 0.050 1 1 7.082��� 0.008
France 1 1 0.396 0.529 1 1 6.922��� 0.009
HK 1 1 4.432�� 0.035 1 1 25.000��� 0.000
Japan 1 1 0.782 0.377 1 1 12.912��� 0.000
NZ 1 1 1.202 0.273 1 1 2.841� 0.092
Norway 1 1 0.662 0.416 1 1 0.611 0.435
Taiwan 1 1 7.952��� 0.005 1 1 51.826��� 0.000
Singapore 1 1 1.712 0.191 1 1 10.111��� 0.002

Argentina 1 1 0.393 0.531 1 1 20.194��� 0.000
Brazil 1 1 5.393�� 0.020 1 1 1.753 0.186
Chile 1 1 0.336 0.562 1 1 0.126 0.722
Colombia 1 1 1.029 0.310 1 1 1.039 0.308
Greece 1 1 2.285 0.131 1 1 6.823��� 0.009
India 1 1 0.632 0.427 1 1 2.208 0.138
Korea 1 1 1.733 0.188 1 1 15.887��� 0.000
Malaysia 1 1 3.094� 0.079 1 1 8.263��� 0.004
Mexico 1 1 0.640 0.424 1 1 5.605�� 0.018
Philippine 1 1 0.021 0.885 1 1 15.063��� 0.000
Poland 1 1 3.558� 0.059 1 1 19.225��� 0.000
Thailand 1 1 18.485��� 0.000 1 1 40.968��� 0.000
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Table 2.9: Linear Granger causality test for trading volume and volatility: Robust-
ness test

In this robustness test, we use data for the relatively tranquil period from 3 January 1994 to 31
December 2006 to perform the linear Granger causality test between volatility and trading volume.
In the table, Lx and Ly denote the number of lags of the detrended series of trading volume and
volatility. Both lag lengths are chosen via the Bayesian Information Criterion (BIC). The p-value
indicates the marginal significance level of the F test statistic. For Panel A, the null hypothesis is
that volume changes do not Granger cause volatility; for Panel B, the null is that volatility does
not Granger cause volume changes. And ���, ��, � denote statistical significance at the 1%, 5%,
and 10% level, respectively.

H0: Volume changes do not H0: Volatility does not
Granger cause volatility Granger cause volume changes

Lx Ly F stat p-value Lx Ly F stat p-value
US 1 1 2.482 0.115 1 1 34.002��� 0.000
UK 1 1 0.821 0.365 1 1 1.664 0.197
Canada 1 1 0.297 0.586 1 1 6.319�� 0.012
Denmark 1 1 2.068 0.151 1 1 0.713 0.399
Germany 1 1 4.424�� 0.036 1 1 46.035��� 0.000
France 1 1 1.065 0.302 1 1 27.202��� 0.000
HK 1 1 11.7267��� 0.000 1 1 47.437��� 0.000
Japan 1 1 7.019��� 0.008 1 1 1.561 0.212
NZ 1 1 0.323 0.569 1 1 6.520�� 0.011
Norway 1 1 0.780 0.377 1 1 12.592��� 0.000
Taiwan 1 1 3.109� 0.078 1 1 4.587�� 0.032
Singapore 1 1 6.365�� 0.012 1 1 17.932��� 0.000

Argentina 1 1 2.258 0.133 1 1 53.355��� 0.000
Brazil 1 1 1.599 0.206 1 1 27.421��� 0.000
Chile 1 1 7.450��� 0.006 1 1 4.124�� 0.042
Colombia 1 1 0.628 0.428 1 1 0.711 0.399
Greece 1 1 4.465�� 0.035 1 1 79.401��� 0.000
India 1 1 0.455 0.500 1 1 7.095��� 0.008
Korea 1 1 0.683 0.409 1 1 0.799 0.372
Malaysia 1 1 6.118�� 0.013 1 1 17.889��� 0.000
Mexico 1 1 0.476 0.490 1 1 1.404 0.236
Philippine 1 1 4.595�� 0.032 1 1 17.274��� 0.000
Poland 1 1 3.132� 0.077 1 1 12.723��� 0.000
Thailand 1 1 18.830��� 0.000 1 1 112.409��� 0.000
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Table 2.10: Nonlinear Granger causality test for stock returns and trading volume:
Robustness test

In this robustness test, we use data for the relatively tranquil period from 3 January 1994 to 31
December 2006 to perform the nonlinear Granger causality test between stock returns and trading
volume. In the table, Lx and Ly denote the number of lags on the residuals series, CS and TVAL
denote the difference between the two conditional probabilities in equation 2.7 and the standardized
test statistic in equation 2.9, respectively. For Panel A, the null hypothesis is that volume changes
do not Granger cause stock returns; for Panel B, the null is that stock returns do not Granger cause
volume changes. And ��� and �� denote statistical significance at the 1% and 5% level, respectively.

H0: Volume changes do not H0: Stock returns do not
Granger cause stock returns Granger cause volume changes
Lx � Ly CS TVAL Lx � Ly CS TVAL

US 1 0.047 6.686��� 1 0.073 17.758���

UK 1 0.267 9.887��� 1 0.117 18.346���

Canada 1 0.037 10.013��� 1 0.140 16.333���

Denmark 1 0.054 8.567��� 8 0.147 13.360���

France 1 0.025 5.632��� 1 0.067 14.533���

Germany 1 0.043 9.775��� 1 0.139 11.612���

HK 1 0.032 2.559��� 1 0.138 6.885���

Japan 1 0.011 4.992��� 1 0.773 17.524���

NZ 1 0.037 8.685��� 8 0.116 21.511���

Norway 1 0.059 9.600��� 8 0.144 27.957���

Taiwan 1 0.050 10.038��� 1 0.076 18.820���

Singapore 1 0.019 2.747��� 1 0.127 16.684���

Argentina 2 0.019 2.471��� 8 0.067 4.781���

Brazil 1 0.010 2.120�� 8 0.033 9.621���

Chile 1 0.005 1.788�� 8 0.069 7.537���

Colombia 1 0.020 2.630��� 1 0.053 8.841���

Greece 8 0.006 3.309��� 8 0.067 9.995���

India 8 0.017 4.160��� 8 0.086 7.773���

Korea 8 0.027 2.698��� 8 0.088 11.324���

Malaysia 8 0.037 2.853��� 8 0.048 13.654���

Mexico 1 0.004 1.749�� 8 0.049 13.563���

Philippine 1 0.056 2.986��� 8 0.021 11.027���

Poland 2 0.018 2.530��� 8 0.087 7.773���

Thailand 1 0.003 1.722�� 8 0.074 13.336���
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Table 2.11: Nonlinear Granger causality test for trading volume and volatility: Ro-
bustness test

In this robustness test, we use data for the relatively tranquil period from 3 January 1994 to 31
December 2006 to perform the nonlinear Granger causality test between volatility and trading
volume. In the table, Lx and Ly denote the number of lags on the residuals series, CS and
TVAL denote the difference between the two conditional probabilities in equation 2.7 and the
standardized test statistic in equation 2.9, respectively. For Panel A, the null hypothesis is that
volume changes do not Granger cause volatility; for Panel B, the null is that volatility does not
Granger cause volume changes. And ���, ��, � denote statistical significance at the 1%, 5% and
10% level, respectively.

H0: Volume changes do not H0: Volatility does not
Granger cause volatility Granger cause volume changes

Lx � Ly CS TVAL Lx � Ly CS TVAL
US 3 0.003 2.327�� 1 0.043 3.557���

UK 2 0.035 1.985�� 1 0.034 4.011���

Canada 8 0.014 1.918�� 1 0.024 3.424���

Denmark 1 0.082 3.302��� 1 0.109 3.518���

France 1 0.043 2.005�� 1 0.133 3.766���

Germany 1 0.015 3.239��� 1 0.015 3.238���

HK 1 0.043 1.734�� 8 0.245 7.633���

Japan 1 0.014 2.620��� 1 0.154 4.218���

NZ 1 0.008 1.998�� 1 0.112 5.443���

Norway 1 0.024 2.565��� 1 0.132 6.759���

Taiwan 7 0.015 2.290�� 1 0.123 8.460���

Singapore 1 0.019 2.657��� 8 0.243 4.005���

Argentina 5 0.023 2.269�� 1 0.094 3.238���

Brazil 3 0.116 3.335��� 1 0.175 8.013���

Chile 1 0.026 2.283�� 1 0.004 4.082���

Colombia 1 0.011 1.882�� 1 0.008 6.109���

Greece 6 0.182 4.518 8 0.072 2.518��

India 8 0.087 1.752�� 1 0.004 3.014���

Korea 1 0.061 2.014�� 1 0.040 3.392���

Malaysia 1 0.039 1.556� 1 0.094 4.175���

Mexico 1 0.040 1.700�� 2 0.136 7.044���

Philippine 8 0.025 2.064�� 1 0.070 5.904���

Poland 1 0.008 1.386� 6 0.014 3.495���

Thailand 2 0.001 1.812�� 1 0.216 9.339���
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Table 2.12: Summary for significant relationship between return and volume and between volatility and volume

This table summarizes the number of markets which show significant Granger causality relationship between stock returns and trading volume, and trading
volume and volatility for the full and shorter sample.

Causality Significance Linear (Full sample) Linear (Shorter sample) Nonlinear (Full sample) Nonlinear (Shorter sample)
Return to volume 1 % 5 14 24 24

5 % 2 2 0 0
10% 4 2 0 0

Total 11 18 24 24

Volume to return 1% 0 5 24 20
5% 0 1 0 4

10% 0 2 0 0
Total 0 8 24 24

Volume to volatility 1% 1 4 24 7
5% 2 6 0 15

10% 6 1 0 2
Total 9 11 24 24

Volatility to volume 1% 1 14 24 23
5% 1 4 0 1

10% 0 0 0 0
Total 2 18 24 24
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Chapter 3

What is the driving force of stock
prices? Fundamental factors and
interest rate

3.1 Introduction

The extant literature has seen extensive research on the behavior of stock price and

its driving factors. The topic on driving factors of stock prices was first raised in the

early 1930s by Williams (1938), and then followed by Keynes (1936). Since then,

huge amount of work has been done in this regard, yet there is still no consensus on

which factor has the main contribution towards the growth of stock prices. From

the vast literature, we summarize contributing factors as follows: 1) dividend and

earnings (Lamont (1998), Shiller (1990) , and Hodrick (1992)), 2) investor behaviors

( Bizjak, Brickley, and Coles (1992)) and 3) interest rate (Kang, Pekkala, Polk, and

Ribeiro (2011), Hjalmarsson (2010) and Cremers (2002)). These factors are known

as the direct factors, and taken together to estimate in the joint system.

First of all, a strand of literature has focused on the relationship between stock

price and dividend. Some of the studies found positive correlation between stock

returns and dividend (e.g. Gourieroux and Jasiak (2001); Park (2010); Campbell

and Ammer (1993); Kothari and Shanken (1992); Uddin and Chowdhury (2005)).
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While other researching papers have documented negative relationship, with a note

that negative relationship exists for short term only, see for example Uddin and

Chowdhury (2005) and Fama and French (1988). At the same time, the relation-

ship between stock return and earnings attracts no less attention. The positive

relationship between stock prices and future earnings is commonly documented in

many researching papers. For example, Wang (2003), Campbell and Shiller (1987),

Datta and Dhillon (1993), Nichols and Wahlen (2004), Felthman and Ohlson (1995),

Ohlson (1995), just to name a few. However, it is also noted in Jaffe, Keim, and

Westerfield (1989) that the relationship between earnings and stock prices varies

over the different time periods. With regard to the relationship between stock prices

and interest rates, we cannot find many research articles except only a few. Re-

searchers often use different types of interest rates to examine the relationship. The

commonly used interest rates include term spread, risk free rate, short term and

long term interest rate. Therefore it is not surprising to see a mixture of findings

about the relationship between interest rate and stock prices. For instance, positive

relationship is found in Seelig (1974), and negative relationship is found in Shiller

and Beltratti (1992).

In this paper, we try to address the following questions. First, how do the

fundamental factors including interest rate, dividend and earnings affect stock prices?

Second, do these factors affect stock prices in a systematic way across different stock

markets? Third, in each individual market, which factor plays the major role in

determining stock prices? And finally, how much information does interest rate

carry to fundamental prices, and whether or not does information help to increase

the predictive power of fundamental prices. In order to answer these questions,
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we employ the dynamic present value model and a 4-variable VAR system in our

paper. Dynamic present value model allows the expected return to be time-varying,

which is a more realistic assumption. Based on the approach initiated by Campbell

and Shiller (1988), we use a 4-variable system in which we separate the risk free

rate from the rate of return. This allows us to explicitly examine the effect of risk

free rate on stock prices. We include 22 international markets which are divided into

developed and developing groups in our study, the sample markets are able to support

global evidence for our researching questions. And for each market, we sample from

the most beginning when data starts to become available in the Datastream. The

longest data sample is 48 years for the UK and the shortest data sample is 13 years

and 6 months for Brazil. We divide the markets into two groups: developed and

developing markets, so that the difference between these two categories of markets

can be compared and clearly observed.

This paper contributes to the existing literature in the following aspects. First,

we jointly consider the effects of earnings, dividend, risk free rate and risk premium

in a 4-variable VAR model, which allows us to observe the endogenous effect of

each variable and avoids potential inaccuracy problems commonly encountered in

partial system, such as Chuang, Liu, and Susmel (2012). In addition, combination

of dynamic present value model and the VAR model makes the whole framework

forward-looking and dynamic in nature. Second, the decomposition of rate of return

into risk free rate and risk premium allows the explicit investigation of the effect

of risk free rate on stock prices. And finally, our data set covers a wide range of

international markets over a long period, which allows an extensive investigation of

the effect of earnings, dividend and risk free rate.
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The rest of the paper is organized as follows: section 2 describes the data and pre-

liminary statistical results. Sections 3 explains the methodology. Section 4 provides

and discusses the empirical results. And Section 5 concludes.
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3.2 Data and preliminary results

We examine 22 international stock markets, including developed and developing

markets, over a longest possible sample periods available in Datastream. The sample

markets and sample periods are summarized in Table 3.1. We use the Datastream

global equity index level 1 as the market index for each individual market. The

Datastream global equity market index is calculated by Datastream and it covers

all different sectors in a country. The main advantage of using Datastream global

equity index is that it forms a comprehensive and comparable standard for equity

research. It also provides good depth of data for each index, including total returns,

price-earnings ratios, dividend yield, market value and etc. We use monthly data

in this paper. The monthly earnings are calculated by the formula Market value
PE ratio

, and

dividend is calculated by the formula dividend yield�market vlaue.

The 3-month Treasury Bill (TB) rate, if available, is used as the risk free rate.

When the 3-month Treasury bill rate is not available, 3-month money market rate,

or overnight financial rate, or 3-month certificate rate is used as the risk free rate1.

These interest rates are obtained from the Datastream, International Monetary

Foundation (database) and the OECD statistic extracts, respectively.

We provide the preliminary statistics for the returns, risk free rates, dividends and

earnings of the developed and developing markets in Tables 3.2 and 3.3, respectively.

Looking at the return statistics, we cannot see any obvious difference between the

developing and developed markets in terms of the level of returns. In the developed

1We use 3-month TB rate as the proxy for risk free rate for the US, Canada, the UK, Germany,
Hong Kong, New Zealand, Singapore, Malaysia and Greece; 3-month money market rate for Taiwan,
Thailand, India and Korea; 3-month interbank rate for Denmark, Norway. In addition, in the light
of Datastream report, I use the same period overnight financing rate for Brazil and certificates rate
for Colombia, Indonesia and Mexico.
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markets, the highest mean of return is in Hong Kong (0.011) and the lowest is

in Taiwan (0.004). In the developing markets, the highest mean return (0.013) is

found both in Chile and Mexico and the lowest mean return (0.002) is found both

in Indonesia and Argentina. However, the return in developing markets seems to be

more volatile than those in developed markets, evidenced by much higher coefficients

of variation. The autocorrelation statistics for the return in developed markets are

between -0.043 (New Zealand) and 0.118 (the UK). And in the developing markets,

the autocorrelation statistics are between 0.038 (Korea) and 0.168 (Chile). The

normality test statistics suggest that none of the markets has normal return, and

normality is strongly rejected.

Regarding the risk free interest rate, the developed markets seem to have slightly

higher risk free rates than those of developing markets. We also note that New

Zealand has the most remarkable risk free rate of return, which may lead to a big

difference in investors’ activities compared with other countries. The coefficient of

variation of the risk free interest rate in New Zealand is 44.07, which is comparable

with other developed countries. In fact, we note that in developed markets, the

coefficient of variation (CV) for risk free interest rates does not vary much across

countries: it ranges from 35.21 to 75.12, which indicates a moderate and consistent

level of variation across developed countries. However, in developing countries, we

see extremely high coefficient of variation. For example, in Indonesia and Brazil,

the coefficients exceed 400 and in Greece and Mexico, the coefficients even exceed

700. In other developing countries, the coefficients are in the range of 30.92 and

98.32. So we can say that the variation of risk free interest rate is not consistent

across developing countries. Finally, high degree of autocorrelation in risk free rates
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is commonly observed in all of the markets considered in our paper.

The preliminary statistics for the dividend and earnings tell us the follows. First,

dividend and earnings are relatively higher in developed markets and the US ranks

the first. Second, the coefficients of variation are generally higher for dividend than

for earnings, suggesting that dividend tends to be more volatile than earnings. This

is true in both developing and developed markets, with two exceptions in Korea and

Argentina. We also see high level of autocorrelation in both dividend and earnings

in all the considered markets.
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3.3 Methodology

The main methodology employed is from Geltner and Mei (1995) and Chen and

Fraser (2010). Let’s start with the dynamic present value model:

Pt � Et

8̧

i�1

1±i
j�1p1 � ρt�jq

Ct�i (3.1)

where Pt is stock price at the end of period t, Ct�i is cash flow2 received by share-

holders at the end of time period t � i, and ρt�j is a discount rate for time period

t� j. The discount rate is allowed to be time-varying, which relaxes the assumption

of the traditional present value model and considers the fact that investors’ required

rate of return may be time-varying. The above equation could also be written as

follows:

Pt � 1

1 � ρ
EtpPt�1 � Ct�1q (3.2)

Defining one-period log gross return R � lnp1� ρq, the equation (3.2) can be trans-

formed into the following:

Rt�1 � lnpPt�1 � Ct�1q � lnpPtq (3.3)

The above nonlinear relationship can be linearized using the first-order Taylor’s

expansion (Campbell and Shiller, 1988; Chen and Fraser, 2010) 3:

Rt�1 � k � µppt�1 � ct�1q � ppt � ctq � ∆ct�1 (3.4)

where p � lnpP q, c � lnpCq, µ � 1

1�exppc�pq
and k � �lnµ� p1 � µq � c� p.

2Following Chen and Fraser (2010), cash flow is defined as cash dividend and earnings.
3Although the linearized relationship is an approximation, the approximation error is in practice

minor (Campbell and Shiller, 1988).
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Abbreviating ppt � ctq as pct, we have:

pct � k � µpct�1 � ∆ct�1 �Rt�1 (3.5)

Equation 3.5 implies that logged P/C ratio is stationary, namely pct � Ip0q. Re-

peatedly substituting for pct�1, pct�2, � � � on the right hand side of equation 3.5 and

imposing the terminal condition, limjÑ8 µ
jpt�j � 0, so that rational bubbles are not

allowed, we get the following:

pct � k

1 � µ
�

8̧

j�0

µj∆ct�j�1 �
8̧

j�0

µjRt�j�1 (3.6)

If ct � Ip1q then it indicates that ∆ct is stationary, namely ∆ct � Ip0q.Taking

conditional expectations of both sides of equation 3.6, we have:

pct � k

1 � µ
�

8̧

j�0

µjEc
t∆ct�j�1 �

8̧

j�0

µjEc
tRt�j�1 (3.7)

Equation 3.7 indicates that the log P/C ratio is equal to the expected discounted

value of future cash flow growth in excess of one-period expected return, plus a

constant. We further decompose the rate of return Rt�j�1 into two components:

risk free rate rt�j�1 and risk premium st�j�1, and we get the following equation:

pct � k

1 � µ
�

8̧

j�0

µjEc
t∆ct�j�1 �

8̧

j�0

µjEc
t rt�j�1 �

8̧

j�0

µjEc
t st�j�1 (3.8)

where all lower case letters in equation 3.8 indicate the logarithm of variables. When

dividend/earnings is plugged in the model as cash flow, we call the above models

as the dividend/earnings discount models. However, there are some difficulties in

direct implementing this model due to the fact that the expectation of interest rate

and risk premium in equation 3.8 are not directly observable. Therefore, the VAR

approach used in Campbell and Shiller (1988) is employed in this paper to allow
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the cash flow growth and interest rate to be forecasted within a framework of a

4-variable VAR:

�
�����������

pct

∆ct

rt

st

�
�����������
�

�
�����������

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

�
�����������

�
�����������

pct�1

∆ct�1

rt�1

st�1

�
�����������
�

�
�����������

u1t

u2t

u3t

u4t

�
�����������

(3.9)

The variables in the vectors are demeaned. The above VAR system can be

compactly written as:

zt � Azt�1 � εt (3.10)

where zt � ppct,∆ct, rt, stq1, εt is a vector of error term, and A is p4 � 4q matrix of

coefficients:

A �

�
�����������

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

�
�����������

(3.11)

The value of zt in j periods ahead can therefore be forecasted as follows (Campbell

and Shiller, 1987; Sargent, 1979):

Etpzt�1q � Ajzt (3.12)

Equation 3.8 can therefore be translated into constraints on the VAR. Specifically,

we first need to define some unit vectors to pick up relevant variables by following

Campbell and Shiller (1988): e1 � r1, 0, 0, 0s1, e2 � r0, 1, 0, 0s1, e3 � r0, 0, 1, 0s1, e4 �

r0, 0, 0, 1s1, such that e
1

1zt � pct, e
1

2zt � ∆ct, e
1

3zt � rt and e
1

4zt � st. We can then

replace the expectations in equation 3.8 with forecasted values based on the VAR
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estimation to get estimated fundamental p/c ratios: pc�.

pc�t � k

1 � µ
�

8̧

j�0

µjpe12 � e
1

3 � e
1

4qAj�1zt (3.13)

� k

1 � µ
� pe12 � e

1

3 � e
1

4qpA� µA2 � µ2A3 � � � � qzt

� k

1 � µ
� pe12 � e

1

3 � e
1

4qApI � µAq�1zt (3.14)

Note that the variables in the VAR are transformed into deviation from their means,

the constants in equation 3.14 is therefore eliminated. We also use equation 3.14 to

implement the tests of differences between actual stock prices and their fundamental

prices warranted by cash flow.

p�t � pc�t � ct (3.15)

In equation 3.15, Chen and Fraser (2010) generate a series for the logged stock prices

from the logged fundamental price/cash flow ratio. Hence the logged fundamental

stock price index, p�t is warranted by cash flow in equation 3.15 and is the optimal

forecast of the log-linearized present value of cash flows.

Hence the restriction pc � pc�, i.e., the null hypothesis that the observed p/c

ratio (hence actual stock price) equals the fundamental p/c ratio (or the forecasted

p/c ratio based on the VAR framework), can be rewritten as:

e
1

1zt � pe12 � e
1

3 � e
1

4qApI � µAq�1zt (3.16)

where the LHS picks out the observed p/c ratio and the RHS constructs the funda-

mental p/c ratios. The above is equivalently written as:

e
1

1 � pe12 � e
1

3 � e
1

4qApI � µAq�1 � 0 (3.17)
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This includes a set of 4p (number of variables � lag length) nonlinear restrictions in

terms of the individual coefficient. We test these restrictions by the nonlinear Wald

test.

In order to shed some light on the reason why in some countries either dividend

or earnings does not have explanatory power on stock prices, we examine the effect

of risk free interest rate by excluding the interest rate from the fundamental price

formation process. We want to examine if risk free interest rate carries some noise

which might obscure or disturb the predicting power of either dividend or earnings.

This also helps to distinguish that if risk free interest rate increase or decrease the

predictive power of dividend/earnings fundamental prices. An indirect method is

adopted to investigate the effect of interest rate. Specifically, we first set the null

vector e3 to be e3 � r0, 0, 0, 0s1, so that a fundamental p/c ratio without the effect

of interest rate can be constructed. Then, we re-estimate the VAR system regarding

three variables and the nonlinear Wald test is used to examine the deviation of the

observed p/c ratio from the fundamental p/c ratio without the effect of interest rate.

We then compare the Wald test results with their counterparts when interest rate is

included to see the effect of interest rate.
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3.4 Empirical results

As Bansal, Dittmar, and Kiku (2009) and Vuolteenaho (2002) assert that for

the VAR model to be stable, the variables in the model need to be stationary. We

first test the stationarity for all the variables and the unit root test results are

presented in Table 3.4. Stationarity of log price/earnings ratio, log price/dividend

ratio, interest rate and risk premium are rejected for most of the markets, and

dividend and earnings growth rates appear to be stationary in all markets. As

the variables are nonstationary, they are not allowed to directly put into the VAR

model. The method widely used to cope with this problem is adopting the VECM

(Vector Error Correction Model). The VECM firstly requires the variables with their

first difference, and can correct errors due to using the nonstationary variables. The

results in Table 3.5 indicate that first difference of these variables are stationary. The

VECM secondly requires that all used variables are cointegrated, therefore Johansen

test4 needs to be conducted between exogenous variable of logged price/dividend

ratio (logged price/earnings ratio) and endogenous variables of logged cash flow

growth, logged risk free rate and logged excess return to test of cointegration. As a

result, cointegration is found among these variables, shows that the variables have

a long-run stable relationship. Meanwhile, the result allows us to put the variables

into the VECM 5.

3.4.1 Results of the VAR procedure

Table 3.6 and Table 3.7 report the VAR estimation results for developed and

developing markets, respectively. All estimations reported in Table 3.6 and Table

4The critical values used in tests are taken from Osterwald-Lenum (1992), and the results are
shown in Eviews intuitively, therefore are not reported.

5The VECM does not accept nonstationary variables unless they are cointegrated.
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3.7 are corrected by using the VECM due to nonstationary variables of interest rate

and excess return. The optimal lag length l imposed on the VAR model is chosen by

the BIC criterion. It is 1 for both dividend and earnings models in all of the markets

except for Norway where it is 2 for the earnings model and 1 for the divided model.

This means that the earnings model requires more lags than the dividend model

in Norway. We also report in the tables the Q statistics, which are the Ljung-Box

test statistics for significance of up to the second autocorrelation coefficient. From

the table we can see that none of the Q statistics is significant, even at the 10%

conventional level. This indicates that the model residuals are serially uncorrelated

and therefore the VAR specifications for all the markets are adequate.

Among the four variables, the log price/cash flow ratio has the highest R-squared.

As expected, the highest R-squared of the VAR shows that a lagged log p/c ratio

naturally contains more explanatory power for its current value than any other

variables do.
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3.4.2 Results for Non-linear Wald Tests

Non-linear Wald tests are employed to test whether the fundamental p/c ratios

are equal to the observed market p/c ratios. This hypothesis is implied by the con-

straints in equation 3.17. If the fundamental p/c ratios are equal to the observed

p/c ratio, then the constraints should hold. Otherwise, the constraints will be bro-

ken. We apply the nonlinear Wald test for both the dividend model and earnings

model. The dividend model is equation 3.8 when dividend is used as cash flow, while

the earnings model is the same equation 3.8, but with earnings plugged in as cash

flows. The effect of risk free interest rate is examined separately. The test results

are presented in table 3.8, for the developed and developing countries, respectively.

Mixed results are obtained for the nonlinear Wald test. We will first look at the

picture for the more developed countries and then the developing markets. Among

11 developed markets, we observe 3 countries (Canada, The UK and Hong Kong) in

which earnings tends to have more explanatory power than dividend does at the 5%

conventional significance level. For example, the earnings model in Canada cannot

be rejected as the Wald test statistic is only 4.824 with the p-value being 0.185, while

the dividend model is safely rejected as the Wald test statistic is 35.506 and the p-

value is zero. This suggests that earnings contains more information than dividend

does for p/c ratios, and hence for stock prices in these countries. However, we see a

completely different story in 4 other countries including France, Denmark, Taiwan

and Singapore, where dividend seems to have more explanatory power than earnings

does. Only in 3 countries including the US, Germany, and New Zealand, we observe

that neither dividend model nor earnings model can be rejected. In other words,

both dividend and earnings carry important information for p/c ratios and hence
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stock prices in these countries. And in an interesting country, i.e. Norway, both the

dividend model and the earnings model are rejected, meaning that neither dividend

nor earnings carry useful information for stock prices. The same results can also be

concluded in Figure 3.1 and 3.2. The departure between the actual stock prices and

fundamental stock prices constructed by dividends and earnings is able to show the

predictive power of fundamental factors. As smaller gap is observed, the stronger

predictability of fundamental factors can be found, and vice versa.
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3.4.3 Adjusted Results for VAR System and Non-linear Wald
Tests

In Tables 3.9-3.11, we examine the effect of interest rate by excluding interest

rate in the process of constructing the fundamental prices, and carry out the Wald

test for the constraint where interest rate is excluded. For the new constraint, we

re-estimate the whole VAR system, and adjusted results are then shown in Table

3.9-3.11. First of all, table 3.9 and 3.10 report the adjusted VAR statistics for all

developing and developed markets. The p/c ratio with the highest R-square and the

strongly significant Q-statistics are included. The results reported in Tables 3.6 and

3.7, Tables 3.9 and 3.10 also lay the prerequisite for the non-linear Wald test for the

new restriction that excludes the effect of interest rate.

Table 3.11 reports nonlinear Wald test results after adjustment of VAR sys-

tem (with 3-variable). In Norway, Chile, Colombia and Argentina, cutting out the

effect of interest rate does bring the interesting stories about the deviation from

fundamental p/c ratios to observed p/c ratios. For Norway, the fundamental stock

price built by both dividends and earnings seems to have explanatory power for

actual stock prices, which cannot be rejected by neither models at the conventional

1% significance level. It means that fundamental stock prices regarding dividends

and earnings do seem to contain useful information for predicting the actual stock

prices. For another, after excluding the information of interest rate, the fundamen-

tal prices constructed by earnings seem to increase the predictability for the actual

stock price in Colombia. P-value for fundamental prices regarding earnings increases

to 0.305 which shows the strongly predictive power for actual prices in the market

of Colombia. Colombian fundamental stock price regarding dividends cannot pre-
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dict actual stock prices, due to zero p-value for dividend model. We also examine

the predictability of adjusted fundamental stock prices for Chile and Argentina, the

obscuring effect of interest rate is observed. As we exclude the information of in-

terest rate from fundamental stock prices, the predictive power of both dividends

and earnings models dose not turn better obviously. For other markets, all results

change by more or less amount, showing the interest rate plays the different roles in

sample countries.

When examining the possibly debatable factor of risk free interest rate, some

various results are obtained, especially in Norway, Chile, Colombia and Argentina.

As interest rate is prevented from entering into formation process of the fundamen-

tal stock prices, the explanatory power of both dividends and earnings on stock

price appears in Norway, meaning that the fundamental stock price without the

information of interest rate could be much closer to the actual one. In Colombia,

the earnings model starts having more explanatory power with the restriction that

excludes the effect of interest rate. However, in countries of Chile and Argentina,

excluding interest rate cannot help provide a better estimate of fundamental prices.

Therefore, our future research will endeavor to take a further step in this direction

to look for other potential factors that may affect the explanatory power of dividend

and earnings on stock prices.

To summarize, we observed dividend’s explanatory power in 7 out of the 11 exam-

ined developed countries and in 3 out of the 11 examined developing markets. This

result suggests that dividend does have explanatory power on stock prices, although

not in all countries. This is consistent with the findings in existing literature such

as Park (2010), Campbell and Ammer (1993), Kothari and Shanken (1992), Uddin
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and Chowdhury (2005) Campbell and Shiller (1988), and so on. It also suggests that

dividend seems to have stronger explanatory power in developed countries than in

developing countries.

Second, in 6 out of the 11 developed countries and in 6 out of the 11 developing

countries, we observed the explanatory power of earnings. But again, the result is

not consistent across countries in that some countries do not see the explanatory

power of earnings.

Admittedly, the risk free interest rate in fundamental stock prices has an impor-

tant influence on predicting stock prices in most of countries rather than Norway,

Chile, Colombia and Argentina. As the debatable factor of interest rate is prevented

from entering into the fundamental prices, the predictive ability of fundamentals’

is increasingly accurate, such as Norway (both dividends and earnings model) and

Colombia (earnings model). However, excluding interest rate cannot increase the

explanatory power of fundamentals’ for Chile and Argentina. Through comparing

the new constraint with the original constraint, the effect of interest rate therefore

is observed in all sample markets.
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3.5 Conclusion

This paper explored the impact of fundamental factors on stock prices in twenty-

two international markets with the VAR model and nonlinear Wald tests. By em-

ploying the dynamic present model developed by Geltner and Mei (1995) and Chen

and Fraser (2010), we avoid the drawbacks of the basic present value model and

allow the discount rate to be time-varying. We consider three fundamental factors,

namely, dividend, earnings, and interest rate. And we use the dynamic present value

model to calculate how far the actual prices deviate from fundamental prices in the

sample markets when different fundamental factors are taken into consideration.

When dividend is used in the dynamic present value model, we call the model as

divided model; and when earnings are used, we call it earnings model.

With the dividend model, we observed dividend’s explanatory power in 7 out

of the 11 examined developed countries and in 3 out of the 11 examined develop-

ing markets. This result suggests that dividend does have explanatory power on

stock prices, although not in all countries. For the earnings model, 6 out of the 11

developed countries and 6 out of the 11 developing countries see the explanatory

power of earnings in predicting stock prices. But again, the result is not consis-

tent across countries in that some countries do not see the explanatory power of

earnings. The obtained results also suggest that the dividend discount model has a

stronger power than earnings in some markets such as the US, France, New Zealand,

Taiwan and Singapore, while in some other markets, such as Canada, the UK and

Germany, earnings seems to be more likely dominating than dividend with regard

to the predicting power on stock prices.

There is an interesting phenomenon that we observed in Norway, Chile, Colombia
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and Argentina, where neither the dividend discount model nor the earnings discount

model can be used to explain the time path of stock price. We therefore further

examine the new constraint that uses the null vector to exclude the effect of interest

rate, which can remove the noise and obscure placed by interest rate in fundamen-

tal stock prices so that, the predicting role of time-varying risk free interest rate

could be summarized by the differences between nonlinear Wald test’s results of

fundamental models and adjusted fundamental models. The results shows that in

Norway and Colombia, after eliminating interest rate from the initial constraint, the

adjusted models produce prices that are closer to observed market prices. However,

this result does not help explaining the phenomenon in Chile and Argentina where

neither dividend nor earnings carries useful information towards future stock prices.

Therefore our future research will endeavor to take a further step in this direction to

look for other potential factors that may affect the explanatory power of dividend

and earnings on stock prices.
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Table 3.1: The markets and their sample periods.

Developed markets
US February 1973 - January 2013
Canada February 1973 - January 2013
UK January 1965 - January 2013
Germany January 1973 - January 2013
France January 1973 - January 2013
Hong Kong January 1973 - January 2013
Denmark February 1973 - January 2013
New Zealand February 1988 - January 2013
Norway February 1980 - January 2013
Taiwan May 1988 - January 2013
Singapore January 1973 - January 2013
Developing markets
Thailand February 1987 - January 2013
Malaysia February 1986 - January 2013
India January 1990 - January 2013
Korea October 1987 - January 2013
Chile July 1989 - January 2013
Brazil June 1999 - January 2013
Colombia March 1993 - January 2013
Greece January 1990 - January 2013
Indonesia February 1991- January 2013
Mexico July 1990 - January 2013
Argentina July 1997 - January 2013
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Table 3.2: Summary statistics for monthly return, risk-free rates, dividend and earnings for developed markets

US Canada UK Germany France Hong Kong Denmark New Zealand Norway Taiwan Singapore

Return
Mean 0.009 0.009 0.010 0.009 0.010 0.011 0.010 0.009 0.010 0.004 0.008
SD 0.053 0.059 0.053 0.058 0.065 0.101 0.056 0.063 0.079 0.109 0.084
Autocorrelation 0.051 0.037 0.118 0.034 0.063 0.090 0.087 -0.043 0.050 0.099 0.102
CV 588.8 655.6 530.0 644.4 650.0 918.0 560.0 700.0 790.0 2725 1050
ND 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
Risk-Free Rate %
Mean 2.875 3.044 4.102 2.851 2.731 2.840 5.028 8.040 6.693 5.028 1.698
SD 2.162 1.589 2.198 1.304 1.589 2.573 3.335 3.543 3.993 3.239 1.214
Autocorrelation 0.985 0.985 0.985 0.988 0.990 0.955 0.970 0.972 0.964 0.948 0.916
CV 75.21 52.25 53.61 45.77 58.18 35.21 66.33 44.07 59.66 64.42 71.49
ND 0.000 0.000 0.002 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000
Dividend(U.S.$�106))
Mean 6.919 0.679 2.135 0.773 1.188 0.655 0.057 0.067 0.133 0.418 0.174
SD 5.386 0.845 2.172 0.836 1.140 0.801 0.064 0.084 0.183 0.427 0.254
Autocorrelation 0.990 0.989 0.995 0.991 0.994 0.990 0.983 0.979 0.984 0.989 0.988
CV 77.833 124.499 101.743 108.087 118.644 122.357 113.48 124.49 138.40 102.15 145.97
ND 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Earnings(U.S.$�106)
Mean 3.018 0.268 0.851 0.364 0.443 0.284 0.237 0.093 0.478 0.861 0.700
SD 1.598 0.204 0.464 0.206 0.286 0.246 0.204 0.043 0.386 0.691 0.597
Autocorrelation 0.991 0.990 0.994 0.991 0.994 0.988 0.987 0.966 0.984 0.988 0.984
CV 52.94 76.16 54.57 56.80 64.71 86.66 86.07 46.24 80.75 80.26 85.28
ND 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.000 0.000 0.000

Note: CV (coefficient of variation) is mean standard deviation multiplied by 100. ND is p-value of Jarque-Bera test for normality distribution.
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Table 3.3: Summary statistics for monthly return, risk-free rates, dividend and earnings for developing markets

Thailand Malaysia India Korea Chile Brazil Colombia Greece Indonesia Mexico Argentina

Return
Mean 0.009 0.008 0.008 0.006 0.013 0.009 0.011 0.004 0.002 0.013 0.002
SD 0.109 0.091 0.105 0.109 0.071 0.103 0.084 0.098 0.087 0.092 0.092
Autocorrelation 0.053 0.042 0.109 0.038 0.168 0.089 0.121 0.070 0.097 0.105 0.092
CV 1211 1137 1312 1816 546 1144 763.6 2450 4350 707.7 4600
ND 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.079
Risk-Free Rate %
Mean 4.175 3.605 7.234 6.418 2.922 1.486 2.200 1.087 1.435 1.134 2.922
SD 4.105 1.559 2.237 4.278 2.137 6.983 1.251 7.880 6.508 8.292 2.137
Autocorrelation 0.984 0.983 0.965 0.973 0.967 0.887 0.993 0.991 0.964 0.957 0.986
CV 98.32 43.25 30.92 59.13 73.14 469.91 56.86 724.93 453.52 731.21 73.13
ND 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Dividend(U.S.$�106))
Mean 0.150 0.236 0.255 0.297 0.169 0.098 0.090 0.099 0.114 0.173 0.079
SD 0.148 0.192 0.270 0.242 0.151 0.092 0.128 0.080 0.136 0.136 0.055
Autocorrelation 0.984 0.985 0.984 0.987 0.984 0.986 0.985 0.990 0.985 0.977 0.974
CV 98.714 81.214 106.099 81.599 89.643 93.88 140.22 85.08 119.30 78.613 69.62
ND 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.062
Earnings(U.S.$�106)
Mean 0.039 0.054 0.111 0.144 0.031 0.074 0.015 0.288 0.021 0.022 0.031
SD 0.032 0.037 0.117 0.130 0.025 0.046 0.007 0.192 0.025 0.017 0.033
Autocorrelation 0.981 0.981 0.988 0.988 0.985 0.983 0.947 0.989 0.976 0.988 0.983
CV 83.38 70.15 105.62 89.79 80.52 62.16 46.67 66.67 119.04 77.27 106.45
ND 0.000 0.000 0.000 0.000 0.000 0.000 0.057 0.000 0.000 0.000 0.000

Note: CV (coefficient of variation) is mean standard deviation multiplied by 100. ND is p-value of Jarque-Bera test for normality distribution.
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Table 3.4: Standard unit root test for variables in the VAR model for sample markets

US Canada UK Germany France Hong Kong Denmark New Zealand Norway Taiwan Singapore

pdt -1.034 -1.782 -2.903 -1.957 -2.930 -4.044 -3.443 -2.043 -3.446 -3.623 -3.443
(0.742) (0.389) (0.045) (0.305) (0.050) (0.001) (0.007) (0.268) (0.007) (0.006) (0.007)

pet -1.653 -2.961 -3.010 -3.439 -4.244 -4.636 -3.744 -3.221 -3.165 -2.838 -4.189
(0.454) (0.039) (0.034) (0.010) (0.000) (0.000) (0.003) (0.002) (0.002) (0.054) (0.000)

∆d -20.176 -22.211 -26.881 -19.534 -19.491 -20.991 -19.548 -17.276 -18.416 -15.577 -19.984
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆e -20.211 -22.556 -22.508 -19.817 -19.219 -19.224 -20.976 -18.867 -20.659 -15.365 -20.684
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

rt -1.432 -1.577 -1.264 -2.263 -1.942 -2.286 -1.452 -1.732 -1.881 -3.128 -3.281
(0.152) (0.125) (0.206) (0.023) (0.052) (0.023) (0.556) (0.413) (0.340) (0.025) (0.016)

st -1.400 -1.544 -1.304 -2.015 -0.856 -2.309 -1.155 -1.137 -1.182 -1.882 -0.781
(0.162) (0.123) (0.192) (0.280) (0.392) (0.022) (0.249) (0.256) (0.237) (0.061) (0.435)

Thailand Malaysia India Korea Chile Brazil Colombia Greece Indonesia Mexico Argentina

pdt -2.563 -2.917 -2.650 -4.335 -2.813 -1.775 -3.637 -2.964 -3.231 -3.582 -1.781
(0.101) (0.044) (0.084) (0.000) (0.057) (0.392) (0.005) (0.042) (0.019) (0.006) (0.428)

pet -4.071 -3.267 -2.917 -3.804 -4.604 -3.409 -2.714 -2.6868 -2.052 -3.859 -4.438
(0.001) (0.017) (0.044) (0.003) (0.001) (0.012) (0.098) (0.048) (0.264) (0.003) (0.000)

∆d -16.227 -16.356 -16.793 -13.544 -18.857 -14.027 -14.585 -14.883 -17.718 -16.408 -14.707
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆e -14.634 -18.425 -15.442 -15.606 -19.367 -12.663 -17.459 -15.924 -14.610 -15.263 -15.472
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

rt -1.728 -1.578 -2.233 -1.910 -2.412 -3.407 -0.868 -0.443 -2.760 -2.830 -10.722
(0.085) (0.115) (0.195) (0.057) (0.139) (0.011) (0.642) (0.898) (0.065) (0.055) (0.000)

st -1.335 -1.803 -2.312 -2.065 -1.775 -1.152 -0.922 -1.591 -2.464 -0.808 -2.159
(0.183) (0.072) (0.168) (0.259) (0.077) (0.251) (0.357) (0.113) (0.126) (0.419) (0.178)

Note: pdt and pet indicate logged price/cash flow ratios. ∆d and ∆e indicate cash flow growth rate. rt is interest rate and st is excess return. The unit root test is

carried out to test the stationarity of variables. The Phillips-Perron statistic with chosen bandwidth of Newey-West is reported. The numbers below Phillips-Perron

statistics in parentheses are Prob*(p-value).
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Table 3.5: Standard unit root test for variables with 1st difference for all sample markets

US Canada UK Germany France Hong Kong Denmark New Zealand Norway Taiwan Singapore

∆pdt -20.303 -20.865 -22.133 -19.849 -19.990 -20.097 -19.635 -17.813 -18.146 -15.467 -19.931
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆pet -19.725 -20.496 -20.168 -20.456 -19.849 -19.735 -20.214 -19.848 -18.368 -14.911 -18.797
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆rt -18.904 -15.774 -19.027 -16.325 -19.932 -21.172 -23.283 -15.254 -28.038 -23.129 -22.570
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆st -19.218 -15.910 -19.048 -14.587 -19.780 -20.720 -15.109 -16.987 -17.651 -24.062 -16.203
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Thailand Malaysia India Korea Chile Brazil Colombia Greece Indonesia Mexico Argentina

∆pdt -16.280 -16.228 -16.460 -15.241 -15.617 -14.453 -13.785 -13.999 -17.731 -16.627 -13.182
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆pet -17.933 -16.761 -14 .917 -15.892 -14.957 -12.979 -17.233 -14.633 -15.640 -16.911 -17.226
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆rt -17.050 -12.423 -16.627 -15.434 -11.448 -15.838 -13.923 -15.570 -19.218 -13.011 -23.182
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆st -16.815 -15.254 -17.170 -16.335 -11.842 -13.395 -10.113 -15.785 -17.049 -14.124 -13.071
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: ∆pdt and ∆pet indicate logged price/cash flow ratios with first difference. ∆d and ∆e indicate cash flow growth rate with first difference. ∆rt is interest rate with

first difference and ∆st is excess return with first difference. The unit root test is carried out to test the stationarity of variables. The Phillips-Perron statistic with chosen

bandwidth of Newey-West is reported. The numbers below Phillips-Perron statistics in parentheses are Prob*(p-value).
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Table 3.6: VAR statistics for developed markets

Fundamental l zt R̄2 Q Fundamental l zt R̄2 Q
and markets and markets
Dividend: US 1 pct 0.991 0.009(0.924) Earnings: HK 1 pct 0.881 0.198(0.656)

∆ct 0.041 0.002(0.963) ∆ct 0.123 0.017(0.897)
rt 0.097 0.013(0.910) rt 0.006 0.009(0.926)
st 0.096 0.011(0.919) st 0.091 0.002(0.958)

Earnings: US 1 pct 0.982 0.107(0.743) Dividend: Denmark 1 pct 0.982 0.007(0.934)
∆ct 0.052 0.031(0.860) ∆ct 0.059 0.015(0.903)
rt 0.097 0.039(0.843) rt 0.094 0.027(0.871)
st 0.096 0.031(0.856) st 0.043 0.000(0.998)

Dividend: Canada 1 pct 0.979 0.020(0.888) Earnings: Denmark 1 pct 0.834 0.022(0.881)
∆ct 0.007 0.022(0.883) ∆ct 0.074 0.007(0.932)
rt 0.094 0.718(0.397) rt 0.134 0.080(0.778)
st 0.093 0.742(0.389) st 0.080 0.005(0.942)

Earnings: Canada 1 pct 0.958 0.320(0.858) Dividend: New Zealand 1 pct 0.971 0.058(0.810)
∆ct 0.055 0.242(0.876) ∆ct 0.048 0.142(0.706)
rt 0.043 0.644(0.422) rt 0.046 0.000(0.986)
st 0.044 0.673(0.412) st 0.050 0.001(0.978)

Dividend: UK 1 pct 0.956 0.136(0.713) Earnings: New Zealand 1 pct 0.877 0.255(0.614)
∆ct 0.087 0.002(0.965) ∆ct 0.066 0.040(0.842)
rt 0.079 0.040(0.841) rt 0.038 0.000(0.994)
st 0.078 0.036(0.850) st 0.096 0.039(0.843)

Earnings: UK 1 pct 0.966 0.044(0.835) Dividend: Norway 1 pct 0.977 0.021(0.885)
∆ct 0.077 0.147(0.701) ∆ct 0.085 0.008(0.929)
rt 0.031 0.003(0.960) rt 0.076 0.021(0.886)
st 0.040 0.002(0.967) st 0.098 0.000(0.999)

Dividend: Germany 1 pct 0.970 0.001(0.972) Earnings: Norway 2 pct 0.896 0.974(0.651)
∆ct 0.049 0.084(0.772) ∆ct 0.098 0.090(0.956)
rt 0.235 1.480(0.224) rt 0.070 0.055(0.973)
st 0.100 1.311(0.252) st 0.092 0.671(0.715)

Earnings: Germany 1 pct 0.914 0.003(0.959) Dividend: Taiwan 1 pct 0.877 0.319(0.572)
∆ct 0.035 0.053(0.818) ∆ct 0.109 0.179(0.672)
rt 0.216 1.533(0.216) rt 0.340 0.001(0.974)
st 0.671 1.335(0.248) st 0.155 0.037(0.848)

Dividend: France 1 pct 0.958 0.034(0.854) Earnings: Taiwan 1 pct 0.934 0.640(0.424)
∆ct 0.057 0.001(0.971) ∆ct 0.087 0.016(0.900)
rt 0.094 0.018(0.893) rt 0.092 0.001(0.971)
st 0.407 0.031(0.861) st 0.093 0.037(0.848)

Earnings: France 1 pct 0.944 0.066(0.797) Dividend: Singapore 1 pct 0.972 0.035(0.852)
∆ct 0.071 0.001(0.972) ∆ct 0.079 0.041(0.841)
rt 0.150 0.028 (0.866) rt 0.104 0.004(0.951)
st 0.073 0.036(0.849) st 0.082 0.018(0.983)

Dividend: HK 1 pct 0.866 0.378(0.539) Earnings: Singapore 1 pct 0.945 0.377(0.539)
∆ct 0.049 0.041(0.840) ∆ct 0.137 0.552(0.458)
rt 0.026 0.002(0.966) rt 0.084 0.014(0.905)
st 0.017 0.000(0.996) st 0.065 0.000(0.988)

Note: Due to nonstationary variables of interest rate and excess return, all estimation results are corrected by

the VECM, and then reported. l is the lag length for the VAR model, zt is the vector including four variables:

pct the log price/cash flow ratio, ∆ct the cash flow growth rate, rt the interest rate and st the risk premium. R̄2

is the coefficient of determination modulated for lag length. The Q-statistics is the Ljung-Box test statistics for

significance of up to the second autocorrelation coefficient. The number in the parentheses behind Q-statistics is

probability value (marginal significance level).

138



Table 3.7: VAR statistics for developing markets

Fundamental l zt R̄2 Q Fundamental l zt R̄2 Q
and markets and markets
Dividend: Thailand 1 pct 0.938 0.000(0.985) Earnings: Brazil 1 pct 0.819 0.073(0.787)

∆ct 0.064 0.007(0.963) ∆ct 0.083 0.003(0.955)
rt 0.063 0.210(0.647) rt 0.030 4.821(0.028)
st 0.061 0.184(0.668) st 0.479 0.004(0.952)

Earnings: Thailand 1 pct 0.854 0.083(0.774) Dividend: Colombia 1 pct 0.870 0.130(0.718)
∆ct 0.247 0.019(0.892) ∆ct 0.093 0.004(0.948)
rt 0.184 0.062(0.804) rt 0.034 0.205(0.650)
st 0.044 0.045(0.832) st 0.258 0.184(0.668)

Dividend: Malaysia 1 pct 0.943 0.001(0.978) Earnings: Colombia 1 pct 0.935 0.013(0.910)
∆ct 0.045 0.024(0.877) ∆ct 0.074 0.007(0.933)
rt 0.102 0.703(0.402) rt 0.079 0.000(0.985)
st 0.128 0.206(0.650) st 0.094 0.001(0.975)

Earnings: Malaysia 1 pct 0.907 0.019(0.890) Dividend: Greece 1 pct 0.933 0.024(0.878)
∆ct 0.108 0.057(0.811) ∆ct 0.104 0.014(0.907)
rt 0.010 0.773(0.379) rt 0.032 0.139(0.709)
st 0.033 0.264(0.607) st 0.069 0.005(0.944)

Dividend: India 1 pct 0.922 0.000(0.982) Earnings: Greece 1 pct 0.912 0.076(0.783)
∆ct 0.135 0.135(0.713) ∆ct 0.103 0.000(0.977)
rt 0.036 0.180(0.671) rt 0.012 0.051(0.821)
st 0.064 0.187(0.666) st 0.077 0.006(0.941)

Earnings: India 1 pct 0.900 0.011(0.918) Dividend: Indonesia 1 pct 0.943 0.037(0.847)
∆ct 0.067 0.006(0.937) ∆ct 0.157 0.027(0.868)
rt 0.009 0.160(0.690) rt 0.115 0.007(0.935)
st 0.088 0.152(0.696) st 0.198 0.007(0.935)

Dividend: Korea 1 pct 0.850 0.018(0.893) Earnings: Indonesia 1 pct 0.869 0.042(0.839)
∆ct 0.181 0.003(0.960) ∆ct 0.079 0.005(0.943)
rt 0.055 0.038(0.847) rt 0.317 0.127(0.722)
st 0.075 0.033(0.855) st 0.396 0.126(0.722)

Earnings: Korea 1 pct 0.841 0.031(0.860) Dividend: Mexico 1 pct 0.854 0.006(0.937)
∆ct 0.116 0.091(0.763) ∆ct 0.065 0.007(0.935)
rt 0.063 0.052(0.819) rt 0.054 0.000(0.988)
st 0.068 0.043(0.837) st 0.051 0.004(0.948)

Dividend: Chile 1 pct 0.844 0.002(0.965) Earnings: Mexico 1 pct 0.726 0.244(0.621)
∆ct 0.040 0.007(0.935) ∆ct 0.204 0.070(0.791)
rt 0.158 0.319(0.572) rt 0.043 0.000(0.981)
st 0.137 0.511(0.475) st 0.013 0.011(0.916)

Earnings: Chile 1 pct 0.771 0.034(0.854) Dividend: Argentina 1 pct 0.963 0.000(0.998)
∆ct 0.111 0.101(0.750) ∆ct 0.042 0.000(0.980)
rt 0.064 0.199(0.655) rt 0.282 0.407(0.523)
st 0.095 0.231(0.631) st 0.254 0.510(0.475)

Dividend: Brazil 1 pct 0.965 0.025(0.873) Earnings: Argentina 1 pct 0.774 0.000(0.997)
∆ct 0.193 0.064(0.801) ∆ct 0.072 0.008(0.930)
rt 0.082 0.076(0.782) rt 0.210 0.367(0.545)
st 0.063 0.010(0.920) st 0.228 0.440(0.507)

Note: Due to nonstationary variables of interest rate and excess return, all estimation results are corrected by

the VECM, and then reported. l is the lag length for the VAR model, zt is the vector including four variables:

pct the log price/cash flow ratio, ∆ct the cash flow growth rate, rt the interest rate and st the risk premium. R̄2

is the coefficient of determination modulated for lag length. The Q-statistics is the Ljung-Box test statistics for

significance of up to the second autocorrelation coefficient. The number in the parenthesis behind Q-statistics is

probability (marginal significance level).
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Table 3.8: Nonlinear Wald Tests for VAR system.

Fundamental Restrictions Nonlinear Fundamental Restrictions Nonlinear
and Markets Wald Test and Markets Wald Test

The developed markets

Dividend: US. 4 4.697(0.195) Dividend: Denmark 4 5.416(0.144)
Earnings: US. 4 6.615 (0.085) Earnings: Denmark 4 45.235(0.000)

Dividend: Canada 4 35.506(0.000) Dividend: New Zealand 4 5.245(0.156)
Earnings: Canada 4 4.824(0.185) Earnings: New Zealand 4 6.487(0.090)

Dividend: UK 4 75.789(0.000) Dividend: Norway 4 22.929 (0.000)
Earnings: UK 4 6.519(0.089) Earnings: Norway 8 37.012(0.000)

Dividend: Germany 4 5.648(0.130) Dividend: Taiwan 4 5.541 (0.136)
Earnings: Germany 4 3.902(0.272) Earnings: Taiwan 4 20.089 (0.000)

Dividend: France 4 6.104(0.107) Dividend: Singapore 4 6.765(0.080)
Earnings: France 4 41.855(0.000) Earnings: Singapore 4 11.327(0.010)

Dividend: Hong Kong 4 42.946(0.000)
Earnings: Hong Kong 4 3.522(0.318)

The developing markets

Dividend: Thailand 4 6.705(0.082) Dividend: Colombia 4 47.182(0.000)
Earnings: Thailand 4 14.806(0.001) Earnings: Colombia 4 60.801(0.000)

Dividend: Malaysia 4 29.654(0.000) Dividend: Greece 4 7.649(0.054)
Earnings: Malaysia 4 6.983(0.072) Earnings: Greece 4 26.340(0.000)

Dividend: India 4 25.617(0.000) Dividend: Indonesia 4 4.408(0.221)
Earnings: India 4 6.681(0.076) Earnings: Indonesia 4 5.796(0.122)

Dividend: Korea 4 13.869(0.003) Dividend: Mexico 4 33.614(0.000)
Earnings: Korea 4 4.651 (0.199) Earnings: Mexico 4 3.063(0.382)

Dividend: Chile 4 118.532 (0.000) Dividend: Argentina 4 81.087(0.000)
Earnings: Chile 4 150.244 (0.000) Earnings: Argentina 4 75.624(0.000)

Dividend: Brazil 4 50.573(0.000)
Earnings: Brazil 4 5.347(0.148)

Note: The number of restrictions of Wald test imposed on the VAR are given by the number of variables times

the lag length. The null hypothesis for this test is that the real and fundamental log cash flow ratio are equal to

each other. The number in the parenthesis on the right-hand side of Wald statistics are the probability (marginal

significance level).
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Table 3.9: Adjusted VAR statistics for developed markets

Fundamental l zt R̄2 Q Fundamental l zt R̄2 Q
and markets and markets
Dividend: US 1 pct 0.991 0.005(0.924) Earnings: HK 1 pct 0.878 0.317(0.574)

∆ct 0.038 0.000(0.978) ∆ct 0.112 0.019(0.891)
st 0.096 0.019(0.891) st 0.093 0.015(0.903)

Earnings: US 1 pct 0.982 0.107(0.743) Dividend: Denmark 1 pct 0.982 0.001(0.971)
∆ct 0.050 0.047(0.828) ∆ct 0.034 0.003(0.955)
st 0.097 0.082(0.775) st 0.099 0.000(0.985)

Dividend: Canada 1 pct 0.979 0.122(0.726) Earnings: Denmark 1 pct 0.834 0.012(0.915)
∆ct 0.006 0.004(0.952) ∆ct 0.072 0.002(0.965)
st 0.098 0.577(0.447) st 0.099 0.003(0.960)

Earnings: Canada 1 pct 0.957 0.145(0.703) Dividend: New Zealand 1 pct 0.970 0.000(0.984)
∆ct 0.048 0.076(0.783) ∆ct 0.023 0.032(0.858)
st 0.098 0.392(0.531) st 0.099 0.108(0.917)

Dividend: UK 1 pct 0.956 0.142(0.707) Earnings: New Zealand 1 pct 0.874 0.174(0.676)
∆ct 0.083 0.007(0.932) ∆ct 0.058 0.037(0.848)
st 0.098 0.021(0.884) st 0.099 0.015(0.903)

Earnings: UK 2 pct 0.966 0.060(0.807) Dividend: Norway 1 pct 0.977 0.022(0.883)
∆ct 0.075 0.169(0.681) ∆ct 0.051 0.008(0.929)
st 0.098 0.001(0.972) st 0.099 0.000(0.999)

Dividend: Germany 2 pct 0.970 0.000(0.991) Earnings: Norway 1 pct 0.894 0.035(0.851)
∆ct 0.041 0.002(0.963) ∆ct 0.085 0.053(0.819)
st 0.099 0.925(0.336) st 0.099 0.000(0.990)

Earnings: Germany 2 pct 0.914 0.002(0.967) Dividend: Taiwan 1 pct 0.877 0.222(0.638)
∆ct 0.050 0.001(0.982) ∆ct 0.107 0.134(0.715)
st 0.099 1.000(0.317) st 0.095 0.059(0.808)

Dividend: France 1 pct 0.959 0.057(0.812) Earnings: Taiwan 1 pct 0.932 0.476(0.490)
∆ct 0.053 0.010(0.920) ∆ct 0.075 0.016(0.968)
st 0.099 0.002(0.967) st 0.095 0.042(0.838)

Earnings: France 1 pct 0.944 0.021(0.884) Dividend: Singapore 1 pct 0.972 0.052(0.820)
∆ct 0.066 0.001(0.979) ∆ct 0.063 0.041(0.840)
st 0.098 0.000(0.993) st 0.099 0.045(0.832)

Dividend: HK 1 pct 0.862 0.442(0.506) Earnings: Singapore 1 pct 0.943 0.403(0.525)
∆ct 0.021 0.021(0.884) ∆ct 0.126 0.564(0.453)
st 0.093 0.009(0.924) st 0.098 0.002(0.961)

Note: l is the lag length for the VAR model, zt is vector including three variables that pct is the log price/cash flow

ratio (PD ratio), ct is the cash flow growth rate and st is the variable of risk premium on stock market. R̄2 is the

coefficient of determination modulated for lag length. The Q-statistics called Ljung-Box test statistics is the test

for residuals on VAR model with up to second lag length. The number in the parenthesis behind Q-statistics is

probability (marginal significance level).
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Table 3.10: Adjusted VAR statistics for developing markets

Fundamental l zt R̄2 Q Fundamental l zt R̄2 Q
and markets and markets
Dividend: Thailand 1 pct 0.936 0.053(0.818) Earnings: Brazil 1 pct 0.817 0.087(0.769)

∆ct 0.053 0.019(0.889) ∆ct 0.083 0.003(0.959)
st 0.097 0.105(0.746) st 0.098 0.002(0.965)

Earnings: Thailand 1 pct 0.839 0.301(0.583) Dividend: Colombia 2 pct 0.979 0.118(0.731)
∆ct 0.179 0.025(0.874) ∆ct 0.055 0.014(0.907)
st 0.097 0.218(0.641) st 0.098 0.217(0.641)

Dividend: Malaysia 2 pct 0.942 0.177(0.674) Earnings: Colombia 2 pct 0.937 0.022(0.883)
∆ct 0.034 0.004(0.951) ∆ct 0.070 0.005(0.944)
st 0.097 0.923(0.337) st 0.099 0.000(0.985)

Earnings: Malaysia 2 pct 0.904 0.060(0.807) Dividend: Greece 1 pct 0.932 0.005(0.983)
∆ct 0.068 0.048(0.826) ∆ct 0.091 0.127(0.910)
st 0.097 1.020(0.313) st 0.097 0.001(0.980)

Dividend: India 1 pct 0.919 0.000(0.997) Earnings: Greece 1 pct 0.909 0.050(0.823)
∆ct 0.025 0.018(0.892) ∆ct 0.086 0.000(0.994)
st 0.094 0.001(0.976) st 0.097 0.003(0.958)

Earnings: India 1 pct 0.899 0.011(0.918) Dividend: Indonesia 1 pct 0.943 0.026(0.873)
∆ct 0.043 0.002(0.961) ∆ct 0.154 0.008(0.927)
st 0.094 0.006(0.936) st 0.094 0.007(0.933)

Dividend: Korea 1 pct 0.849 0.004(0.950) Earnings: Indonesia 1 pct 0.867 0.000(0.997)
∆ct 0.173 0.000(0.994) ∆ct 0.070 0.022(0.883)
st 0.096 0.005(0.942) st 0.094 0.129(0.719)

Earnings: Korea 1 pct 0.841 0.032(0.858) Dividend: Mexico 1 pct 0.853 0.005(0.944)
∆ct 0.094 0.157(0.900) ∆ct 0.064 0.007(0.934)
st 0.096 0.001(0.980) st 0.099 0.004(0.951)

Dividend: Chile 1 pct 0.843 0.000(0.979) Earnings: Mexico 1 pct 0.726 0.222(0.637)
∆ct 0.036 0.000(0.993) ∆ct 0.185 0.032(0.857)
st 0.094 0.366(0.545) st 0.099 0.011(0.918)

Earnings: Chile 1 pct 0.766 0.000(0.998) Dividend: Argentina 1 pct 0.963 0.002(0.968)
∆ct 0.074 0.001(0.977) ∆ct 0.033 0.008(0.977)
st 0.095 0.133(0.715) st 0.094 0.761(0.448)

Dividend: Brazil 1 pct 0.960 0.004(0.949) Earnings: Argentina 1 pct 0.776 0.001(0.997)
∆ct 0.045 0.053(0.817) ∆ct 0.102 0.010(0.901)
st 0.098 0.012(0.914) st 0.091 0.185(0.791)

Note: l is the lag length for the VAR model, zt is vector including three variables that pct is the log price/cash flow

ratio (PD ratio), ct is the cash flow growth rate and st is the variable of risk premium on stock market. R̄2 is the

coefficient of determination modulated for lag length. The Q-statistics called Ljung-Box test statistics is the test

for residuals on VAR model with up to second lag length. The number in the parenthesis behind Q-statistics is

probability (marginal significance level).
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Table 3.11: Nonlinear Wald Tests for adjusted VAR system without interest rate

Fundamental Restrictions Nonlinear Fundamental Restrictions Nonlinear
and Markets Wald Test and Markets Wald Test

The developed markets

Dividend: US. 3 37.047(0.000) Dividend: Denmark 3 2.935(0.399)
Earnings: US. 3 54.434(0.000) Earnings: Denmark 3 2.919(0.404)

Dividend: Canada 3 29.957(0.000) Dividend: New Zealand 3 3.120 (0.373)
Earnings: Canada 3 25.864(0.000) Earnings: New Zealand 3 4.800(0.187)

Dividend: UK 3 22.841(0.000) Dividend: Norway 3 6.163 (0.104)
Earnings: UK 6 12.468(0.052) Earnings: Norway 3 9.118(0.028)

Dividend: Germany 6 6.232(0.397) Dividend: Taiwan 3 3.847 (0.278)
Earnings: Germany 6 17.435(0.008) Earnings: Taiwan 3 10.333(0.016)

Dividend: France 3 9.361(0.025) Dividend: Singapore 3 2.987(0.394)
Earnings: France 3 5.283(0.152) Earnings: Singapore 3 4.280(0.233)

Dividend: Hong Kong 3 2.927(0.403)
Earnings: Hong Kong 3 9.665(0.022)

The developing markets

Dividend: Thailand 3 51.719(0.000) Dividend: Colombia 6 24.739(0.000)
Earnings: Thailand 3 8.390(0.039) Earnings: Colombia 6 7.175(0.305)

Dividend: Malaysia 6 32.390(0.000) Dividend: Greece 3 8.761(0.033)
Earnings: Malaysia 6 6.588 (0.361) Earnings: Greece 3 6.147(0.105)

Dividend: India 3 63.491(0.000) Dividend: Indonesia 3 3.307(0.347)
Earnings: India 3 8.117(0.044) Earnings: Indonesia 3 3.020(0.389)

Dividend: Korea 3 9.689 (0.021) Dividend: Mexico 3 5.231(0.156)
Earnings: Korea 3 6.608(0.085) Earnings: Mexico 3 9.190(0.027)

Dividend: Chile 3 18.311(0.000) Dividend: Argentina 3 70.879 (0.000)
Earnings: Chile 3 19.201(0.000) Earnings: Argentina 3 65.907(0.000)

Dividend: Brazil 3 22.669(0.000)
Earnings: Brazil 3 3.101(0.376)

Note: The restrictions of Wald test are imposed on the VAR, which are given by the number of variables times the

lag length. The null hypothesis for this test is that the real and fundamental log cash flow ratio are same. The

number in the parenthesis on the right-hand side of Wald statistics are the probability ( marginal significance level).
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Figure 3.1: Actual and fundamental stock prices for developed markets.
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Figure 3.1: Continued
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Figure 3.2: Actual and fundamental stock prices for developing markets.
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Figure 3.2: Continued
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Concluding Remarks

The theories of contagion normally describe the phenomenon that as financial mar-

kets decline, the panic caused by asset price drops spreads across assets and across

markets. Therefore, contagion is defined as asset’s price comovements and coex-

ceedances. In the first chapter, we employ three different methodologies to examine

contagion with the data set of European markets. Our prior research target is to

answer whether we can identify the contagion during the European sovereign debt

crisis initiated from the Greece. First, we follow Engle and Sheppard (2001) and

Dajcman (2012) to model dynamic conditional correlation and compute the moving

window average for flight-to-quality and contagion indicators. We use both indica-

tors to avoid a potential one-sided account of the problem caused by the sole use

of the flight-to-quality indicator or contagion indicator. Second, copula-GARCH

approach is used to examine nonlinear contagion effects. Three copulas are chosen

from the large copula family, in the light of their different focuses on dependence

distributions. There are two points that we want to note regarding the estimation

process. First, following Huang, Lee, Liang, and Lin (2009), we adopt the GJR

model, which helps to add asymmetric information into copula-GARCH framework,

and to take the theoretical assumptions much closer to the real situation. Second

based on Adel and Salma (2012), we divide the sample period into two sub-sample:

pre-crisis and post-crisis, and compare the different dependence between the two pe-
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riods in terms of the estimated copula coefficients. Finally, we find evidence for the

driving factors of contagion defined as coexceedances. With the multinomial logistic

regression model by Bae, Karolyi, and Stulz (2003), we examine the explanatory

power of three variables: conditional volatility, exchange rate and interest rate. The

results suggest that three variables have some explanatory power for contagion, but

not the interest rate. We further compute the marginal effect of the three predictive

variables following the approach of Greene (2012), and the results suggest that the

volatility ranks the first, exchange the second and interest rate the last in terms of

their predictive power.

The first chapter contributes new findings to the existing literature in the follow-

ing aspects. The first one of finding is the much more volatile FTQ and CI indicators

found in European markets, and obvious decline in dynamic conditional correlation

between stock markets and sovereign bond markets due to the onset of global finan-

cial crisis. The European sovereign debt crisis tends to give rise to positive dynamic

conditional correlation for European markets, which indicates contagion based on

the definitions set at the beginning. In addition, we find that contagion generally

appears at least four months before the time when the Greek sovereign debt crisis

was announced by the IMF. This suggests that investors may be able to reduce

their portfolio risk through predicting possible contagion across different markets.

Therefore, we further apply the multinomial logistic regression model to identify the

predictive variables for contagion. We document the strong predictive power of con-

ditional volatility, moderate power of exchange rate and weak power of interest rate.

Finally, increasing copula coefficients denote the contagion found for the European

sovereign debt markets, from the end of the tranquil period to the duration of crisis.
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We additionally show that the dependence structure measured by Student-t copula

is heightened most in the duration of crisis as GJR-normal model enters into the

copula estimations, it means that Student-t copula is able to reflect the changes of

dependence structure better after adding asymmetry information into structure.

In the second chapter, we examine the relationships between stock returns and

trading volume, and those between trading volume and conditional volatility. Specif-

ically, this chapter investigates linear and nonlinear Granger causalities between

stock returns, trading volume and volatility with detrend process. We model the

conditional volatility with Nelson’s EGARCH model that includes the counterparts,

which allows both positive and negative shocks rather than simple GARCH model

with positive restrictions. This actually gives much more realistic assumption. With

the linear Granger causality model, only a few countries see linear causal relations

between the volume and return and between volatility and return, and the relations

are mainly uni-directional. However, with the tests of nonlinear Granger causality

model, we observe significant bi-directional causal relations in all of the 24 studied

countries, proving that nonlinear Granger causality model is better in exploring the

nonlinear relations between variables, as Hiemstra and Jones (1994) assert.

The tests for the tranquil period produce some interesting stories. When the

data sample is restricted to the tranquil period, linear test results are much more

significant compared with the results obtained when the data sample includes the

volatile period after the 2008 Financial crisis; the response from stock returns to

trading volume is clearly more significant than the other way round, so is the feed-

back from conditional volatility to trading volume. This finding is confirmed by a

nonlinear test when the data sample contains only the relatively tranquil period. All
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in all, our research shows that trading volume is very sensitive to changes of stock

returns and conditional volatility.

In the third chapter, we estimate the predictive power of the fundamental factors

of valuing returns, which has been one of the most debated research topics in stock

markets. The three driving factors that we consider in this chapter are: dividend,

earnings and interest rate. In the VAR structure, we decompose the rate of returns

into risk premium and interest rate, and evaluate the interest rate endogenously in a

4-variable VAR structure with nonlinear Wald tests, based on the theories of Shiller

(1981), Kanas (2005), Campbell and Shiller (1988) and Jiang and Lee (2005).

Our results confirm the predictive power of dividend discount model and earn-

ings discount model to stock prices. We observe dividend has the predictive power

in 10 stock markets, and earnings has the explanatory power in 12 stock markets.

However, we cannot find any predictive power for dividend or for earnings in some

countries such as Norway, Chile, Colombia and Argentina. The dividend and earn-

ings discount models are therefore estimated again without the endogenous variable

of interest rate. This change improves the goodness of fit for Norway and Colombia,

but does not improve the predictive power of dividend or earnings. Taken together,

the third chapter finally estimates the relationships between basic driving factors,

and finally contributes to the existing literature in the analysis of interest rate in

structure, and in better observing the relationships between stock returns and fun-

damental factors, by plotting both fundamental and actual prices. This research

still has a limitation and leaves an unanswered questions. For example, we cannot

exactly observe the effect of interest rate and other driving factors on stock prices

with only the dynamic present value model, therefore we are not able to accurately
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answer the question of whether other factors can predict the changes of stock prices,

just like dividend and earnings. This problem may be solved in the future with

another appropriate approaches.
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