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Abstract

We study the impact of switching costs on the long run outcome in 2×2 coordination

games played in the circular city model of local interactions. For low levels of switching

costs the predictions are in line with the previous literature and the risk dominant

convention is the unique long run equilibrium. For intermediate levels of switching

costs the set of long run equilibria still contains the risk dominant convention but may

also contain conventions that are not risk dominant. The set of long run equilibria may

further be non-monotonic in the level of switching costs, i.e. as switching costs increase

the prediction that the risk dominant convention is the unique long run equilibrium

and the prediction that both conventions are long run equilibria alternate. Finally, for

high levels of switching costs also non-monomorphic states will be included in the set

of long run equilibria.
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1 Introduction

It is often costly to switch to a different technology or adopt a new social norm. For

instance, switching from Windows to Apple requires not only getting familiarized with the

new system but also moving files from one computer to the other. Further examples of

switching costs include communicating one’s new telephone number when switching providers

in telecommunication or buying new tools when switching from inch screws to metric screws.

In these examples agents are better off when interacting with somebody who uses the

same operating system, telecommunication provider, or industry standard, these situations

typically give rise to coordination games. A wide range of models, starting with the seminal

works of Kandori, Mailath, and Rob (1993) and Young (1993), have analyzed settings where

a population of boundedly rational players decide on their actions in such coordination

games using simple heuristics.1 The message that emerges from these discussions is that,

when players use best response learning, risk dominant strategies - that perform well against

mixed strategy profiles - will emerge in the long run, even in the presence of payoff dominant

strategies. In the context of the above examples, this implies that populations do not

necessarily end up with technologies which maximize social welfare.

Norman (2009) has already analyzed the role of switching costs in a global interactions

setting where everybody interacts with everybody else. In the global setting switching costs

turned out to influence the speed at which the population approaches the long run equi-

librium (LRE). The long run prediction remain unaffected, though. Quite frequently in-

teractions are, however, local in nature, with interaction partners corresponding to family

members, friends, or work colleagues. For instance, in the above examples on switching

operating systems or telecommunication providers it is typically the case that this decision

will to a larger degree be influenced by one’s contacts or collaborators than by the overall

distribution of technologies in the society.

The present paper aims to understand the role of switching costs in long run technology

choice and the emergence of conventions under such local interactions. We capture local

interactions by considering a model akin to the one proposed by Ellison (1993) where the

agents are arranged around a circle and interact with their neighbors only. We focus on

a setting where one strategy is risk dominant and the other strategy may or may not be

1See Weidenholzer (2010) for a survey of the literature.
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payoff dominant. This allows us to analyze circumstances under which strategies that are

neither payoff- nor risk- dominant are selected. When determining which strategy to use the

players play a best response to the distribution of play in their neighborhood in the previous

period taking into account that switching strategies incurs a cost. In addition, choices are

perturbed by occasional uniform (across agents and time) mistakes.

Our study of switching costs under local interactions reveals that: i) In the presence of suf-

ficiently high switching costs risk dominant actions are no longer able to spread contagiously

and profiles where different actions coexist are absorbing. ii) While for low switching costs

the predictions are in line with the previous literature where risk dominant conventions are

LRE, for higher switching costs the set of long run equilibria may additionally also contain

conventions that are not risk dominant iii) The set of LRE may further be non-monotonic in

the level of switching costs, i.e. as switching costs increase the prediction that the risk domi-

nant convention is the unique long run equilibrium and the prediction that both conventions

are long run equilibria alternate.

Let us now discuss our findings in more detail. When switching costs are relatively low,

they do not affect agents’ behavior. Thus, the risk dominant strategy is still able to spread

contagiously, starting from a small cluster and eventually taking over the whole population.

Consequently, low levels of switching costs do not change the predictions of the model as

compared to the standard model without switching costs. However, for larger switching

costs risk dominant strategies may no longer spread contagiously and non-monomorphic

states, where different strategies coexist, become absorbing. The reason is that a player

at the boundary of a risk dominant cluster will not switch under sufficiently high switching

costs. Moreover, it is possible to move among all of these non-monomorphic absorbing states

via a chain of single mutations. Transitions from different states to each others are, thus,

characterized by step-by-step evolution as outlined in Ellison (2000).

The question which state will be LRE essentially boils down to how difficult the set of non-

monomorphic states is to access from the two monomorphic states. Interestingly, if agents

only interact with a few neighbors, there may exist a range of parameters where alongside

the risk dominant convention also non-risk dominant conventions are LRE. Thus, switching

costs may lead to the model’s prediction no longer being unique. The reason behind this

phenomenon is that -under the uniform noise approach- the number of mutations required

to move from a convention to the set of non-monomorphic absorbing states is measured in
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integers. Especially if agents only interact with a few neighbors, it may happen that the

number of mistakes required to access the set of non-monomorphic absorbing states from

the risk dominant convention equals the number of mistakes required to access this set from

the non-risk dominant convention.

Perhaps even more interestingly, also owing to the fact the mutations are measured in

integers, the prediction might be non-monotonic in the level of switching costs. That is,

the prediction that the risk dominant convention is selected and the prediction that both

conventions are selected alternate as switching costs increase. This curiosity is caused by i)

the stepwise nature of rounding up and ii) by the fact that the number of mistakes required

to leave the risk dominant convention and the number of mistakes required to leave the

non-risk dominant convention only differ by a constant.

Finally, for very high levels of switching costs no player will switch in the absence of noise

even if all neighbors choose the other strategy. Thus, all states are absorbing and can be

connected via a chain of single mutations. Consequently, all absorbing states turn out to be

LRE.

For large interaction neighborhoods the integer problem ceases to have impact and the

risk dominant convention remains as unique LRE. In particular, this holds true if every

agent interacts with every other agent and a sufficiently large population, thus, reconciling

our results with those of Norman (2009).

We believe that two important insights arise from our analysis. The first implication

stems from taking the model’s predictions at face value. As our model predicts that under

switching costs actions that are not risk dominant may arise as LRE, it may well contribute

to our understanding of the emergence and survival of such actions. Note that the welfare

implications of switching costs depend on whether the risk dominant action is also payoff

dominant or not. If the risk dominant action is not payoff dominant, then the presence

of switching costs implies that payoff dominant conventions will be observed with positive

probability in the long run. Switching cost might, thus, be welfare improving. If, however,

an action is both risk- and payoff- dominant the presence of switching costs may lead to

(risk- and payoff-) dominated strategies surviving in the long run. Switching costs and local

interactions may, thus, also explain why inefficient technology standards or norms survive in

the long run.

The second insight is based on a more pessimistic reading of our results and concerns the

3



robustness of the local interaction model. As the local interaction model can no longer give a

clear cut prediction, one may argue that it looses traction in the presence of switching costs.

This is expressed by the non-uniqueness of the long run prediction but even more aggravated

by the non-monotonicity of the prediction. While the risk dominant convention ceases to be

unique LRE for high enough switching costs it might be again unique LRE for even higher

switching costs. This is bad news since the circular city model of local interactions has

some otherwise nice features as compared to the global model: i) It was observed by Ellison

(1993) that in contrast to the global interaction model of Kandori, Mailath, and Rob (1993)

it features a high speed of convergence. ii) Lee, Szeidl, and Valentinyi (2003) have shown

that it is immune against the Bergin and Lipman (1996) critique. iii) (Weidenholzer 2012)

has shown that it is robust to the addition and deletion of dominated strategies, a test which

Kim and Wong (2010) have shown the global model fails.

The paper closest related to our work is Norman (2009) who studies switching costs

in the context of a global interactions model. As already observed by Kandori, Mailath,

and Rob (1993) a major drawback of the global interactions model lies in its low speed of

convergence. Under global interactions the number of mistakes required to move from one

convention to another turns out to depend on the population size. Thus, in large populations

it is questionable whether the long run limit will be observed within any reasonable time

horizon.2 Norman (2009) shows how switching costs might speed up convergence. As in the

present paper, the presence of switching costs implies that non-monomorphic states where

agents use different actions become absorbing. This enables a transition from one convention

to another by first accessing the class of non-monomorphic states and then moving through

this class via a chain of single mutations to the other convention. Under switching costs the

step from one convention to the set of non-monomorphic states is typically smaller than the

direct step from that convention to the other. Consequently, switching costs may speed up

the convergence to the long run prediction.

Norman’s (2009) analysis focuses on the case of large populations, thus, ruling out the

integer effects that drive our main results on the composition of the set of LRE. Our study

reveals that under local interactions (but also under global interactions in small populations)

the presence of switching costs may have implications that go beyond the speed of conver-

2Ellison (1993) pointed out that in the context of local context of local interactions where some strategies
might spread contagiously the speed of convergence is independent of the population size and, thus, the LRE
might be a reasonable predictor even in large populations.
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gence. In this light, the predictions in populations characterized by local interactions (or in

small populations with global interactions) may be fundamentally different to those in large

populations with global interactions.

While the present paper adds to the ongoing discussion on learning in coordination games

it also contributes to a wider discussion on how far received results in the literature on

learning in games are robust to (minor) modifications. For instance, under imitation learning

changing the interaction or information structures may result in different predictions in

coordination games (see Robson and Vega-Redondo 1997 and Alós-Ferrer and Weidenholzer

(2006, 2008)) or prisoner dilemma games (see Eshel, Samuelson, and Shaked 1998, Mengel

2009). Similarly, in Cournot games a number of contributions have analyzed conditions

under which firms converge to the Walrasian state under imitation learning, as predicted by

Vega-Redondo (1997). Alós-Ferrer (2004) shows that when agents have memory over the

last two periods the Walrasian state is no longer uniquely stochastically stable.3 Apesteguia,

Huck, Oechssler, and Weidenholzer (2010) find that, if there are differences in cost functions,

all monomorphic states are absorbing. However, the Walrasian state remains unique LRE if

no firm is the uniquely cheapest one, as shown by Tanaka (1999).

The rest of this paper is organized in the following way. Section 2 presents the model

and discusses the main techniques used. Section 3 spells out our main results and Section 4

concludes.

2 The model

We consider a population of N agents who are located on a circle, as in Ellison (1993).

A given agent i has agents i − 1 and i + 1 (mod N) as immediate neighbors. Each agent

interacts with her k closest neighbors to the left and to the right of her. We assume k ≤ N−1
2

to ensure that no agent interacts with herself. Thus, agent i’s interactions are confined to

the set of players N(i) = {i− k, i− k+ 1 . . . , i− 1, i+ 1, . . . , i+ k− 1, i+ k}. The agents in

the set N(i) are called neighbors of i.

We assume |N | to be odd. This allows us to nest global interactions in our framework by

setting k = N−1
2

.4

3Alós-Ferrer and Shi (2012) consider asymmetric memory which turns out to affect equilibrium selection
in coordination games but reinforces the stability of the Walrasian state in Cournot games.

4The results obtained for local interaction also hold for even populations.
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Each agent i plays a 2 × 2 coordination game with strategy set S = {A,B} against all

agents in her neighborhood N(i). We denote by u(si, sj) the payoff agent i with strategy

si receives when playing against agent j with strategy sj. We follow Eshel, Samuelson, and

Shaked (1998) and consider the following (normalized) coordination game.

A B

A α, α β, 0

B 0, β 1, 1

We assume α > 0 and β < 1, so that (A,A) and (B,B) are both strict Nash equilibria.

Further, we assume α + β > 1, so that the equilibrium (A,A) is risk dominant in the sense

of Harsanyi and Selten (1988), i.e. A is the unique best response to a mixed strategy profile

which puts equal probability on A and B. We denote by

q∗ =
1− β

1 + α− β

the critical mass put on A in a mixed strategy equilibrium. Risk dominance of the Nash

equilibrium (A,A) translates into q∗ < 1
2
. Note that if α > 1, (A,A) is payoff dominant

and if α < 1, (B,B) is payoff dominant. However, no such assumption on α is made at this

stage.

The number of A-players in the population is denoted by m = #{i ∈ I|si = A} and the

number of A-players among agent i’s neighbors is denoted by mi = #{j ∈ N(i)|sj = A}.

Accordingly, the number of B-players in the population is given by N −m and the number

of B-players in i’s interaction set is given by 2k −mi.

We denote by si(t) the strategy adopted by player i, by s(t) = (s1(t), . . . , sN(t)) the profile

of strategies adopted by all players, and by

s−i(t) = (si−k(t), . . . , si−1(t), si+1(t), . . . , si+k(t))

the strategies adopted by all of player i’s neighbors in period t. Further, the monomorphic

states (s, s, . . . , s) where all agents adopt the same strategy s are denoted by −→s .

The payoff for player i is given by the average payoff received when interacting with all
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neighbors.

Ui
(
si(t), s−i(t)

)
=

1

2k

∑
j∈N(i)

u
(
si(t), sj(t)

)
.

We consider a myopic best response process with switching costs. In each period t =

1, 2, . . . each agent receives the opportunity to revise her strategy with exogenous probability

η ∈ (0, 1).5 Changing strategies is assumed to be costly. Whenever an agent changes her

strategy she is subject to a switching cost. We follow Norman (2009) and consider switching

costs c which are independent of the current action choice and enter the payoff function in

an additive way.6 The following function formalizes this idea

c (si(t), si(t+ 1)) =

 c if si(t) 6= si(t+ 1)

0 if si(t) = si(t+ 1)
.

When a revision opportunity arises an agent switches to a myopic best response, i.e. she

plays a best response to the distribution of play in her neighborhood in the previous period,

taking into account the switching costs. More formally, at time t + 1, when given revision

opportunity, player i chooses

si(t+ 1) ∈ arg maxsi(t+1)∈S

[
U
(
si(t+ 1), s−i(t)

)
− c
(
si(t), si(t+ 1)

)]
.

If a player has multiple best replies, it is assumed that she randomly chooses one of them

with exogenously given probability. If she does not receive an opportunity to revise her

strategy, she chooses si(t + 1) = si(t). Further, with fixed probability ε > 0, independent

across agents and across time, the agent ignores her prescription and chooses a strategy at

random, i.e. she makes a mistake or mutates.

We denote the state space by Ω and a state of the process by ω. The process with mistakes

is called perturbed process. Under the perturbed process any two states can be reached from

each other. Thus, the only absorbing set is the entire state space, implying that the process

is ergodic. The unique invariant distribution of this process is denoted by µ(ε). We are

interested in the limit invariant distribution (as the rate of experimentation tends to zero),

5Thus, we are considering a model of positive inertia where agents may not adjust their strategy every
period.

6Alternative formulations of switching costs encompass situations where the level of switching costs
depends on the current strategy used or on the current level of payoffs.
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µ∗ = limε→0 µ(ε). Such a distribution exists (see Foster and Young (1990), Young (1993), or

Ellison (2000)) and is an invariant distribution of the process without mistakes (the so called

unperturbed process). It gives a stable prediction for the original process, in the sense that

for ε small enough the play approximates that described by µ∗ in the long run. The states

in the support of µ∗, are called Long Run Equilibria (LRE) or stochastically stable states.

The set of LRE is denoted by S = {ω ∈ Ω | µ∗(ω) > 0} . We use a characterization of the

set of LRE due to Freidlin and Wentzell (1988).7 Consider two absorbing sets of states X

and Y and let C(X, Y ) > 0 (referred to as a transition cost) denote the minimal number of

mutations for a transition from the X to Y . An X-tree is a directed tree such that the set

of nodes is the set of all absorbing sets, and the tree is directed into the root X. For a given

tree one can calculate the cost as the sum of the costs of transition for each edge. According

to Freidlin and Wentzell (1988), a set X is a LRE if and only if it is the root of a minimum

cost tree.

3 The role of switching costs

In a first step we will study how switching costs influence the agent’s decision to switch

strategies. Consider an A-player. She will switch strategies with probability one if her

payoff from playing B minus the switching cost strictly exceeds her payoff from remaining

an A- player, i.e.
1

2k

(
miα + (2k −mi)β

)
<

1

2k

(
2k −mi

)
− c.

Rearranging terms yields

mi < 2kq∗ − 2kc

1 + α− β
:= mA(c, k)

An A-player will remain an A-player with certainty whenever mi > mA(c, k) and will choose

A and B with positive probability if mi = mA(c, k). As mA(c, k) is the minimum number of

A-playing neighbors such that keeping A is a unique best response, it cannot be negative.

Likewise, consider a B-player. She will switch strategies with probability one if the payoff

7See Fudenberg and Levine (1998) or Samuelson (1997) for textbook treatments. Ellison (2000) provides
an enhanced (and sometimes easier to apply) algorithm for identifying the set of LRE. We chose to work
with the original formulation as it allows for a characterization in case of multiple LRE.
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from playing A minus the switching cost exceeds her current payoff, which yields

mi > 2kq∗ +
2kc

1 + α− β
:= mB(c, k).

A B-player will remain a B-player if mi < mB(c, k), and will randomize between the two

strategies if mi = mB(c, k). Note that mB(c, k) is defined as the number of A-players such

that a player with less than mB(c, k) A-neighbors chooses to stay at B with certainty and,

thus, cannot exceed 2k.

Note that mA(0, k) = mB(0, k) = 2kq∗, i.e. in the absence of switching costs the thresholds

are the same as in Ellison’s (1993) model. For c > 0, we have mA(c, k) < mA(0, k) =

mB(0, k) < mB(c, k). Hence, in the presence of switching costs, it takes more players of the

other type to induce a switch than in the absence of switching costs. Further, a B-player

will require more A-opponents to switch strategies than an A-player requires to stay at her

strategy. Likewise, an A-player will switch to B at a lower number of A-opponents than

it takes a B-player to remain at her strategy. Thus, switching costs create regions where

players with the same distribution of play in their neighborhood but with a different current

strategy may behave differently. This may lead to the emergence of non-monomorphic

absorbing states where clusters of players with different strategies coexist. In such states all

players want to remain at their current strategies, i.e. mi > mA(c, k) for all A-players and

mj < mB(c, k) for all B-players.

In the following, G denotes the set non-monomorphic absorbing states, i.e.

G = {s ∈ S|s 6=
−→
A,
−→
B ,mi > mA(c, k) ∀ i with si = A, and mj < mB(c, k) ∀ j with sj = B}.

and an element of this set is denoted byAB . Further, G` denotes the set of non-monomorphic

absorbing states with ` A-players (and N − ` B-players), i.e.

G` = {s ∈ G|m = `}.

3.1 Two-neighbor interaction

In order to build intuition and to highlight the main mechanisms at work, our analysis starts

with an informal discussion of the special case where each agent only interacts with her two
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most immediate neighbors, i.e. k = 1. A comprehensive analysis of the case k ≥ 1 is provided

in Section 3.2.

In a first step, let us consider under which circumstances non-monomorphic states are

absorbing. To this end, consider states where clusters of A-players and B-players, each of at

least size two, alternate, e.g.

. . . BBAABBBAAAA . . .

Players in the middle of such a cluster only interact with players of their own kind and, hence,

will never switch. Thus, let us focus on the boundary between two such strings. Note that

whenever mA(c, 1) < 1 holds the boundary A-player will keep her strategy. This translates

into 2c > 1− α− β, which is implied by risk dominance of A. Thus, the boundary A-player

will remain. Now consider the B-player. Note that if mB(c, 1) ≤ 1 holds, the boundary

B-player will switch to A with positive probability. This translates into c ≤ α+β−1
2

. Thus,

provided switching costs are low, the A-cluster will grow contagiously, even in the absence

of mistakes. If this condition is violated, c > α+β−1
2

, the boundary B-player will stay a

B-player with certainty. This, in turn, implies that for sufficiently high switching costs

non-monomorphic states are absorbing.

Surprisingly, switching costs may not only alter the set of absorbing states but may also

change the set of LRE. To see this, first note that one can move among the set of non-

monomorphic states via a chain of single mutations. More precisely, it is possible to move

from a state in G` to either a state in Ga or in Gb, with a < ` < b at the cost of one

mutation. While, it is clear that one mutation to A (or B) increases (decreases) the number

of A-players by one, this initial mutation might also trigger additional changes.

Further, note that in the presence of non-monomorphic states the transition from one

monomorphic state to the other can occur via a series of intermediate steps. Which state

will be LRE depends on how difficult it is to move from the two monomorphic states,
−→
A

and
−→
B into the set of non-monomorphic states.8 First, consider states where there is only

one A-player.

. . . BBABB . . .

8As the non-monomorphic states can be connected to each other and to the monomorphic states via a
chain of single mutations which tree will be of minimum cost will be determined by how difficult it is to
escape the monomorphic states. The next section elaborates on this in more detail.
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As theA-player has noA-neighbors she will switch toB with positive probability ifmA(c, 1) ≥

0 which translates into c ≤ 1− β. In this case lonesome A-players will disappear. However,

states with two adjacent A-players are absorbing. Conversely, if c > 1−β holds, the A-player

will keep her strategy and states with lonesome A-players are absorbing. Likewise, consider

the case when there is a lonesome B-player.

. . . AABAA . . .

The B-player has two A-neighbors and will switch strategies with positive probability pro-

vided that mB(c, 1) ≤ 2, which can be rewritten as c ≤ α. However, whenever c > α a

lonesome B-player will remain. Note, by risk dominance of A, α > 1− β. This implies that

whenever lonesome B-players will keep their strategy, lonesome A-player will do the same.

Summarizing, if c ≤ α+β−1
2

, only the monomorphic states are absorbing and A can spread

out contagiously. Thus,
−→
A is unique LRE. If α+β−1

2
< c ≤ α and c ≤ 1−β, non-monomorphic

states are absorbing and it is possible to move among the non-monomorphic states and from

these states to the monomorphic ones via a single mutation chain. It is further possible to

move from the two monomorphic states to the set of non-monomorphic states at the cost

of two mutations. Thus, one can exhibit A- and B- trees which are of cost smaller than

any AB-tree. Hence,
−→
A and

−→
B are LRE. If, however, c > 1 − β, moving from

−→
A to the

set of non-monomorphic states takes two mutations, whereas escaping
−→
B is possible at the

cost of one mutation. Thus, in this case one can exhibit A-trees which are of minimum cost,

implying that
−→
A is unique LRE. If c > α, all absorbing states are accessible from each other

via a chain of single mutations, implying that all of them are LRE.

Thus, the presence of switching costs may imply that the prediction for the long run is

altered. The essential mechanism that underlies this result is that switching costs may stop

the contagious spread of the risk dominant strategy. Without contagion the question of

which equilibrium will emerge in the long run boils down to how difficult it is to access the

set of non-monomorphic states from the two conventions. Risk dominance only implies that

it can never be easier to move out of the risk dominant convention than it is to move out of

the non-risk dominant convention. This, in turn, implies that the risk dominant convention

is always contained in the set of LRE. However, it might not be the unique prediction. In

particular, there may exists a parameter range where both conventions can be left with two
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mutations and, thus, are both LRE.

Whether it is actually possible that a non-risk dominant convention is LRE does not only

depend on the level of switching costs but also on the parameters of the underlying game.

To see this point note that both monomorphic states are LRE if c > α+β−1
2

and c ≤ 1−β. It,

thus, has to be the case that α+β−1
2

< 1−β. This translates into α+ 3β < 3. This condition

is fulfilled if the advantage of strategy A over B is not too large, but per se is not related

to payoff dominance or risk dominance.9 Importantly, it may hold if α > 1. Thus, even if

action A is risk- and payoff- dominant, it might not be unique LRE. We illustrate the set

of LRE depending on the level of switching cost in this case in Figure 1. It is interesting to

note that the prediction is “non-monotonic” in the level of switching costs. With increasing

switching costs the prediction switches from
−→
A to

−→
A ∪
−→
B back to

−→
A and finally to

−→
A ∪
−→
B ∪G

in games with α + 3β < 3.

-

−→
A

−→
A
⋃−→
B

−→
A

−→
A
⋃−→
B
⋃
G

0 α+β−1
2

1− β α c

Figure 1: LRE under two player interaction with switching costs and α + 3β < 3.

3.2 2k-neighbor interaction and global interactions

We will now generalize the insights of the two player interaction model to 2k-neighbor

interaction. We show that we can expect similar phenomena as in the simple two-neighbor

model for small interaction neighborhoods. However, as the the size of the interaction

neighborhood, k, increases switching costs do no longer influence the prediction, with the

exception of very high levels of switching costs, where in the absence of noise no player would

switch regardless of the distribution of strategies in her neighborhood. The following lemma

provides a characterization of the set of absorbing states.

Lemma 1. For positive switching costs, c > 0,

i) there are no non-singleton absorbing sets.

ii) the only absorbing states are
−→
A ,
−→
B , and G.

9If strategy A is sufficiently advantageous compared to B, α+ 3β > 3, it will be uniquely selected up to
the point where c > α (where all absorbing states are LRE.)
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Proof. To prove the first part consider an absorbing set W . Consider a state s̃ ∈ W where the

number of A-players is maximal. Let m̃ be the number of A-players at this state. It follows

that at this state there does not exist a B-player who, when given revision opportunity,

switches to A with positive probability. Thus, mi < mB(c, k) for all i with si = B. If it

is the case that mj > mA(c, k) for all j with sj = A, then s̃ is the only state in W . If

mj ≤ mA(c, k) for some players j with sj = A, we proceed in the following manner. With

positive probability, one of these agents receives revision opportunity and switches to B. We

reach a new state s′. At this new state there are strictly fewer A-players. Provided that

c > 0 for the new B-player we have mj ≤ mA(c, k) < mB(c, k), implying that she will not

switch back. For all old B-players it is still true that mi < mB(c, k), implying that none of

them will switch. If there is no A-player with mj ≥ mA(c, k) left, the state s′ is absorbing

(contradicting that s̃ ∈ W ). If there are still such A-players left, we iterate the procedure

until we reach an absorbing state, eventually contradicting the assumption s̃ ∈ W .

The second part follows from the definition of
−→
A ,
−→
B , and G.

With the help of this lemma we are able to provide the following result.10

Proposition 2. In the 2k-neighbor interaction model,

a) if c ≤ α+β−1
2

and N > k(k + 1), then S = {
−→
A},

b) if α+β−1
2

< c ≤ α and

i) if bmA(c, k)c = b2k −mB(c, k)c, then S = {
−→
A,
−→
B }

ii) if bmA(c, k)c < b2k −mB(c, k)c, then S = {
−→
A}, and

c) if c > α, then S = {
−→
A,
−→
B } ∪G.

Proof. For part a) note if c ≤ α+β−1
2

, one has mB(c, k) ≤ k, implying that a B-player switches

to A with positive probability whenever half (or more) of her 2k-neighbors choose A. Thus,

A may spread contagiously and we are back in the model outlined by Ellison (1993), where

S = {
−→
A} if N > k(k + 1).11

10In the following we denote by bxc the largest integer not greater than x and by dxe the smallest integer
not less than x.

11Note that we have a model with positive inertia whereas Ellisons model features strategy adjustment in
each round. See Weidenholzer (2010) for a discussion of the model with inertia.
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We now consider the case where c > α+β−1
2

. Here we have mB(c, k) > k. Thus, B-players

will no longer switch if they have half of their neighbors playing A. This implies A can

no longer spread out contagiously. Further, non-monomorphic states are now absorbing,

meaning that the set G is non-empty.

We next show that it is possible to move from an absorbing state AB ∈ G` to either a

state in Ga or in Gb, with a < ` < b at the cost of one mutation. We will show that there

exists an A- (and a B-player) such that if she mutates to B (to A), she will not switch back

and no other player will switch to A (to B). By the definition of G` we have mi > mA(c, k)

for all i with si = A and mj < mB(c, k) for all j with sj = B. Consider now an A-player

i whose adjacent neighbor j is playing B. As they are direct neighbors they have only one

player who is not a joint neighbor. Call i’s disjoint neighbor ĩ and j’s disjoint neighbor j̃.

Further j also faces i who is an A-player. It follows that j faces either the same number of

A-neighbors as i (if sĩ = A and sj̃ = B), has one more A-neighbors than i (if sĩ = sj̃), or

two more A-neighbors (if sĩ = B and sj̃ = A). Thus, mj ∈ {mi,mi + 1,mi + 2}. Assume

that j mutates to A. Since mj ≥ mi > mA(c, k) she will not switch back. Further, as there

are now more A-players, none of the old A-players will switch, showing that we will reach

a state Gb with b > `. An analogous argument can be used to show that it is also possible

with one mutation to move to a state Ga with a < `.

Now consider
−→
B . We want to find the minimum number of mutations required for a

transition from
−→
B to a state in the set G. Let C(

−→
B ,AB) denote this number. Recall that

mA(c, k) is defined such that if a player has strictly more than mA(c, k) A-neighbors, she will

strictly prefer to stay at A. If mA(c, k) < 0, we have that an A-player remains even if she

does not have an A neighbor. Thus, if mA(c, k) < 0, one mutation is enough to move from
−→
B to a state in G1. Now consider mA(c, k) ≥ 0. First, consider the case where mA(c, k) /∈ Z

(where Z denotes the integers). In this case, if dmA(c, k)e + 1 adjacent players mutate to

A each of them will have dmA(c, k)e > mA(c, k) players choosing B. Thus, none of them

will switch and we have reached an absorbing state in the set GdmA(c,k)e+1. Note that if less

than dmA(c, k)e + 1 players switch to A, all of them will switch back when given revision

opportunity. It follows that C(
−→
B ,AB) = max{dmA(c, k)e, 0} + 1 for mA(c, k) /∈ Z. Now

consider mA(c, k) ∈ Z. In this case for all A players to stay with probability one each of

them needs strictly more than mA(c, k) A-neighbors. Thus, if mA(c, k) + 2 players switch

to A, each of them will have mA(c, k) + 1 neighbors playing A and will not switch back
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with positive probability. Thus, C(
−→
B ,AB) = max{mA(c, k) + 1, 0} + 1 for mA(c, k) ∈ Z.

Summing up, we have

C(
−→
B ,AB) =

 max{dmA(c, k)e, 0}+ 1, if mA(c, k) /∈ Z

max{mA(c, k) + 1, 0}+ 1, if mA(c, k) ∈ Z
.

This can be written as C(
−→
B ,AB) = max{bmA(c, k)c+ 1, 0}+ 1.

Conversely, consider the convention
−→
A . We aim to understand how many mutations to B

we need so that the new B-players will keep their strategy with certainty. If mB(c, k) > 2k,

this would be the case even if all neighbors choose A. Thus, one mutation is enough to move

from
−→
A to a state in GN−1 whenever mB(c, k) > 2k. Assume mB(c, k) ≤ 2k. Now a B-player

will keep her strategy whenever mi < mB(c, k). Initially the B-players had 2k A-neighbors.

Thus, each of them needs strictly more than 2k−mB(c, k) of their neighbors to play B to keep

their strategy with probability 1. Again, let us distinguish the cases 2k −mB(c, k) ∈ Z and

2k−mB(c, k) /∈ Z. In the latter case with d2k−mB(c, k)e+ 1 mutations one can move from
−→
A to a state in the set GN−d2k−mB(c,k)e−1. Thus, C(

−→
A,AB) = max{d2k −mB(c, k)e, 0}+ 1.

If 2k−mB(c, k) ∈ Z, we need 2k−mB(c, k) + 2 mutations to ensure that each B player has

more than 2k −mB(c, k) neighbors playing B. As above, the cases 2k −mB(c, k) ∈ Z and

2k −mB(c, k) /∈ Z can be unified by using C(
−→
A,AB) = max{b2k −mB(c, k)c+ 1, 0}+ 1.

Finally, let us determine the set of LRE. Let L denote the number of non-monomorphic

absorbing states. Thus, together with the states
−→
A and

−→
B there are L+ 2 absorbing states.

We can connect all L AB states to each other and to
−→
A and

−→
B via a chain of single mutations.

Further, we can move from
−→
B into the class of AB states at the cost of C(

−→
B ,AB). Thus, we

can exhibit minimum A-trees of cost L + C(
−→
B ,AB). Likewise, the minimum B-trees have

cost L+C(
−→
A,AB). Further, for each state AB ∈ G we can exhibit a minimum cost tree of

cost L− 1 + C(
−→
A,AB) + C(

−→
B ,AB).

First note that if c > α, we have mA(c, k) < 0 and mB(c, k) > 2k. It follows C(
−→
A,AB) =

C(
−→
B ,AB) = 1. Thus, the minimum cost

−→
A -, the

−→
B -, and all minimum cost AB-trees have

cost L+ 1. Thus, S = {
−→
A,
−→
B } ∪G.

Now, consider α+β−1
2

< c ≤ α. Observe that b2k−mB(c, k)c = b2k(1−2q∗)+mA(c, k)c ≥

bmA(c, k)c. Thus, C(
−→
A,AB) ≥ C(

−→
B ,AB). So, we either have C(

−→
A,AB) > C(

−→
B ,AB) in

which case S =
−→
A or C(

−→
A,AB) = C(

−→
B ,AB) in which case S =

−→
A ∪
−→
B .
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Thus, the presence of switching costs may imply that under local interactions the risk

dominant convention is no longer unique LRE. Let us provide some technical intuition for

this result. First, if c ≤ α+β−1
2

, the risk dominant strategy may still spread contagiously and,

thus, remains unique LRE. For α+β−1
2

< c ≤ α there exist absorbing AB states. Whether

the risk dominant or the payoff dominant convention is LRE boils down to the question

from which of the two conventions it is more difficult to move to the set of AB-states. This

is measured by the numbers C(
−→
A,AB) and C(

−→
B ,AB) which are in turn rounded down

values of the functions 2k − mB(c, k) + 2 and mA(c, k) + 2. Risk dominance implies that

C(
−→
B ,AB) ≤ C(

−→
A,AB). Thus, the risk dominant convention is always contained in the set

of LRE. The functions 2k −mB(c, k) + 2 and mA(c, k) + 2 only differ by a constant and are

linearly decreasing in the switching costs. It may very well be the case that the rounded

down values are the same, C(
−→
A,AB) = C(

−→
B ,AB). In this case both conventions turn out

to be LRE. Finally, for c > α we have that agents will not switch strategies, no matter what

the distribution of strategies among their neighbors is and all absorbing states turn out to

be LRE.

In Figure 2 we plot the transition costs from either convention to the set of non-monomorphic

states as a function of the switching costs. Whenever C(
−→
A,AB) lies above C(

−→
B ,AB) the

convention
−→
A is unique LRE. When C(

−→
A,AB) and C(

−→
B ,AB) coincide both conventions,

−→
A and

−→
B , are LRE. When the two functions are equal to one, both conventions,

−→
A and

−→
B ,

and the set of non-monomorphic states G are LRE. Note that as in the two player interac-

tion case the prediction is non-monotonic in the level of switching costs. In particular, the

prediction that the risk dominant convention is unique LRE and the prediction that both of

them are LRE alternate k-times.

The following corollary explores the circumstances under which switching costs may in-

fluence the set of LRE. In case switching cost may change the prediction, it shows that the

prediction will be non-monotonic as switching costs vary.

Corollary 3. If α+β−1
2

< c ≤ α and

a) if 2k(1− 2q∗) ≥ 1, then S =
−→
A

b) if 2k(1 − 2q∗) < 1, then there exist thresholds c̄k+1 < ck < c̄k < ck−1 < c̄k−1 < . . . <

c1 < c̄1 (with c̄k+1 = α+β−1
2

and c̄1 = α) such that if c ∈ (c̄`+1, c`] for ` = 1, 2, . . . , k,

then S =
−→
A ∪
−→
B and S =

−→
A otherwise.
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Figure 2: LRE in the game [α, β] = [1.1, 0.1] with interaction radius k = 3. The solid line

plots the transition costs C( ~A,AB) and the dashed line plots the transition costs C( ~B,AB).

Whenever C( ~A,AB) lies above C( ~B,AB) the convention ~A is unique LRE. When C( ~A,AB)

and C( ~B,AB) coincide both conventions, ~A and ~B, are LRE. When the two functions are

equal to 1, both conventions, ~A and ~B, and the set of non-monomorphic states G are LRE.

Proof. Consider case bii) in the previous Proposition. First, note that 2k − mB(c, k) =

mA(c, k) + 2k(1 − 2q∗). Thus, the functions mA(c, k) and 2k −mB(c, k) only differ by the

constant 2k(1− 2q∗). Risk dominance implies 2k(1− 2q∗) > 0. Further, note that mA(c, k)

(and thus also 2k −mB(c, k)) is linearly decreasing in c.

Consider part a). Note if 2k(1− 2q∗) ≥ 1, then b2k −mB(c, k)c > bmA(c, k)c.

Now consider part b). Let c` be the value of switching costs c that solves mA(c, k)+1 = `.

Note that bmA(c, k)+1c = ` for c`+1 < c ≤ c`. Likewise, define c̄` to be the value of switching

costs c for which 2k −mB(c, k) + 1 = `. We have b2k −mB(c, k) + 1c = ` for c̄`+1 < c ≤ c̄`.

As 2k − mB(c, k) = mA(c, k) + 2k(1 − 2q∗) > mA(c, k) and mA(c, k) is decreasing in

c it follows that c` < c̄`. Further, note that for 2k(1 − q∗) < 1 one has mA(c, k) + 1 <

mA(c, k) + 2k(1− 2q∗) + 1 < mA(c, k) + 2. Thus, c` < c̄` < c`−1. The last two observations

imply c̄k+1 < ck < c̄k < ck−1 < c̄k−1 < . . . < c1 < c̄1. Now note that bmA(c, k) + 1c =

b2k −mB(c, k) + 1c = ` if c ∈ (c`+1, c`] and c ∈ (c̄`+1, c̄`]. This is the case for c ∈ (c̄`+1, c`].

On the contrary, if c ∈ (c`, c̄`−1], then bmA(c, k) + 1c = `− 1 < ` = b2k−mB(c, k) + 1c.

The main idea behind this corollary is that the functions 2k−mB(c, k)+2 and mA(c, k)+2

only differ by the constant 2k(1− 2q∗). If this constant is greater than or equal to one, we

17



will have C(
−→
B ,AB) = bmA(c, k) + 2c < C(

−→
A,AB) = b2k −mB(c, k) + 2c, regardless the

level of switching costs. If, however, this constant is smaller than one, there exist levels of

switching costs for which b2k −mB(c, k)c = bmA(c, k)c. Further, note that if there exists a

range of switching costs for which, e.g. b2k −mB(c, k)c = bmA(c, k)c = 1, then due to the

stepwise nature of the floor function, there also exists a range of switching costs for which

b2k − mB(c, k) + 2c = bmA(c, k) + 2c = r for every r ∈ Z. Thus, the prediction that the

convention
−→
A is unique LRE and the prediction that both conventions,

−→
A and

−→
B , are LRE

alternate k times as c increases (and C(
−→
B ,AB) and C(

−→
A,AB) decrease from k + 1 to 1).

Finally, it is interesting to note that since c1 = 1 − β and c̄1 = α, for c ∈ (1 − β, α] one

has S =
−→
A . Further, if c > α, one has S = {

−→
A,
−→
B } ∪ G. Hence, just before the model’s

prediction includes all absorbing states it uniquely selects the risk dominant convention.

A straightforward implication of the first part of the corollary is that if agents interact

with sufficiently many other agents (k large) or if the risk dominant action has a relatively

large basin of attraction (q small), switching costs do not influence the prediction. The

second part of the corollary implies that if agents interact only with a few other agents (k

small) and/or the risk dominant action’s basin of attraction is relatively small (q close to

1
2
), then the prediction may not be unique and moreover is non-monotonic in the level of

switching costs.

Finally, note that it is possible to reconcile our findings with the results of Norman

(2009) by simply setting k = N−1
2

, thus, obtaining a model of global interactions. For small

populations switching costs may very well have an impact on the set of LRE. However, in

large populations, as considered by Norman (2009), the prediction is robust to switching

costs. In this case, switching costs speed up convergence but do not alter the long run

behavior of the population.

4 Conclusion

We have established that under local interactions the set of LRE may be altered by the

presence of switching costs. In particular, the risk dominant convention may no longer be

unique LRE. If, however, agents interact with sufficiently many other agents our critique

does not apply and risk dominant conventions are still uniquely selected.

One question that immediately comes to mind is whether our findings hold in a more
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general context. In the context of this paper switching costs played the following role: i)

Under switching costs non-monomorphic states may become absorbing. ii) Switching costs

may change the transition costs, measured in the number of required mistakes, with which

these non-monomorphic states can be accessed from the monomorphic ones. Rounding up,

when calculating switching costs, may lead to the effects outlined in this paper. If the number

of required mistakes is relatively small, the effect of rounding up will be most pronounced.

However, for a large number of required mistakes these effects will be most likely negligible.

We, thus, conjecture that switching costs will play a similar role in models where only a

relatively small number of mutations is needed to move from one convention to another.

There are two natural dimensions along which our results might be generalized. First, we

expect switching costs to impact the long run prediction in the circular city model of local

interactions if we move beyond the class of 2 × 2-coordination games (as in e.g Ellison

2000, Alós-Ferrer and Weidenholzer 2007). Secondly, switching costs will also influence the

prediction in models where the way in which agents interact with each other implies that only

few mistakes are necessary to move among conventions. Examples include the torus model

outlined in Ellison (2000), multiple location models (as in Anwar 2002, Ely 2002, Blume and

Temzelides 2003, Shi 2014, Alós-Ferrer and Kirchsteiger 2010), network formation models

under asynchronous adjustments of links and actions (see Jackson and Watts 2002) or under

constrained interactions (as in Staudigl and Weidenholzer 2014).

Admittedly, the integer problem that is driving our results is an artefact of the uniform

noise approach. While other learning models such as the logit dynamics as advocated by

e.g. Blume (1993, 1995) do not face this problem, their predictions sometimes may depend

on other specifics such as the timing of revision opportunities or tie breaking assumptions

(see Alós-Ferrer and Netzer 2014 for a discussion).12
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