### Identification and analysis of Gene Regulatory Networks involved in the drought stress response in *Arabidopsis thaliana*

Sunitha Subramaniam

A thesis submitted for the degree of Doctor of Philosophy

School of Biological Sciences University of Essex April 2016

### Abstract

There is a growing need to engineer an increased yield in food crops coupled with greater resistance to environmental stresses, such as drought, to meet the requirement of a growing population. As plant responses to drought (and other abiotic stress) are complex, many studies have attempted to understand the drought response in a holistic manner, for example, by analysing transcriptomics data obtained from plants subjected to drought. Preliminary work of obtaining time-series microarray data from a slow-drying experiment of *Arabidopsis* was used to construct Gene Regulatory Networks using Variational Bayesian State Space Modelling. This led to the identification of a number of transcription factors *RAP2.12, FD, BHLH038, ANL2,* and two unknown genes, *UKTF* and *POZ,* as possibly being important regulatory genes in the drought response. Loss- and gain-of-function mutants of these genes, as well as those of *AGL22* identified by Bechtold *et al.* (2016), were phenotyped under drought conditions. Only the flowering time *AGL22* showed a drought phenotype. Network connections in the gene network of *AGL22* were tested by qPCR. Drought responsive transcription factors, such as *DREB1A* and *WRKY20* were found to be induced by *AGL22*.

### Acknowledgements

I am grateful to have worked with some wonderful people during my Ph.D. I would like to thank my supervisor Uli Bechtold for her support and guidance throughout my Ph.D. and I am also grateful to Phil Mullineaux for his advice over the years.

I would also like to thank all the lovely people (past and current) of the Plant Group in Essex and various other people in and around the School of Biological Sciences for an enjoyable environment to work in, and I am happy to call them friends.

Finally, I would like to thank my family and friends for being there for me throughout my Ph.D.

| Abstract              | ii   |
|-----------------------|------|
| Acknowledgements      | iii  |
| Table of contents     | iv   |
| List of figures       | viii |
| List of tables        | xiii |
| List of abbreviations | xiv  |

| 1.       | Introduction                                                                | 1  |
|----------|-----------------------------------------------------------------------------|----|
| 1.1      | Increased demand for water                                                  | 2  |
| 1.2.     | Plant adaptation responses to water deficit                                 | 2  |
| 1.3.     | Perception of water-deficit signal                                          | 3  |
| 1.4.     | ABA plays a key role in drought stress response                             | 4  |
| 1.4.1.   | ABA mediates the expression of regulatory genes                             | 4  |
| 1.4.2.   | ABFs are important regulators of drought response                           | 5  |
| 1.5.     | Other regulatory sequences that modulate gene expression during the         |    |
|          | stress response                                                             | 5  |
| 1.5.1.   | Evidence of the importance of DREBs and other ERFs during drought           | 6  |
| 1.5.2.   | Members of the NF-Y family are involved in the drought response             | 7  |
| 1.5.3.   | WRKYs are also important genes involved during drought                      | 8  |
| 1.6.     | Signal transduction during the drought response                             | 8  |
| 1.6.1.   | Members of the MAPK pathway have been identified                            | 8  |
| 1.6.2.   | Other signal transduction-related molecules are differentially expressed in |    |
|          | drought                                                                     | 9  |
| 1.7.     | Stomatal closure in response to stress is mediated by ABA                   | 9  |
| 1.8.     | The role of osmolytes and protective proteins in drought response           | 10 |
| 1.8.1.   | Sugars and sugar alcohols                                                   | 10 |
| 1.8.2.   | Proline                                                                     | 11 |
| 1.8.3.   | LEA proteins                                                                | 11 |
| 1.8.4.   | Heat shock proteins                                                         | 12 |
| 1.8.5.   | Proteases                                                                   | 12 |
| 1.8.6.   | Detoxifying proteins                                                        | 12 |
| 1.9.     | Large-scale transcriptomics has been used to study drought transcriptomes   | 13 |
| 1.10.    | Use of statistical algorithms to reverse-engineer gene regulatory networks  | 16 |
| 1.11.    | Objectives of the project                                                   | 18 |
| 2.       | Materials and Methods                                                       | 20 |
| 2.1.     | Bioinformatics techniques                                                   | 21 |
| 2.1.1.   | Temporal Clustering of differentially expressed genes                       | 21 |
| 2.1.2.   | Enrichment of Biological Process terms                                      | 21 |
| 2.1.3.   | Modelling drought-responsive gene networks by Variational Bayesian          |    |
|          | State-Space Modelling                                                       | 21 |
| 2.2.     | Molecular Biology techniques                                                | 22 |
| 2.2.1.   | Plant material and growth conditions                                        | 22 |
| 2.2.2.   | Primer design                                                               | 22 |
| 2.2.3.   | Identification of knockout mutants from T-DNA insertional lines             | 22 |
| 2.2.3.1. | T-DNA insertional lines were obtained from NASC                             | 22 |
| 2.2.3.2. | Genomic DNA extraction                                                      | 22 |
| 2.2.3.3. | PCR to identify T-DNA insertional mutants                                   | 23 |
| 2.2.3.4. | Agarose Gel Electrophoresis and Visualisation of PCR products               | 23 |

iv

| 2.2.3.5.  | Gel extraction of PCR product from agarose gel                                | 24       |
|-----------|-------------------------------------------------------------------------------|----------|
| 2.2.3.6.  | TA Cloning® of PCR product for sequencing                                     | 24       |
| 2.2.3.7.  | Transformation of chemically competent <i>E. coli</i> cells                   | 24       |
| 2.2.3.8.  | Colony PCR to verify positive transformants                                   | 25       |
| 2.2.3.9.  | Extraction of plasmid DNA                                                     | 25       |
| 2.2.3.10. | Quantification of nucleic acids                                               | 25       |
| 2.2.3.11. | Sequencing to determine the position of the T-DNA insertion                   | 25       |
| 2.2.3.12. | RNA extraction from plant leaf tissue                                         | 26       |
| 2.2.3.13. | DNase treatment of RNA                                                        | 26       |
| 2.2.3.14. | cDNA preparation from RNA                                                     | 26       |
| 2.2.3.15. | Expression analysis using RT-PCR                                              | 27       |
| 2.2.3.16. | Expression analysis using gPCR                                                | 27       |
| 2.2.4.    | Production of lines overexpressing the gene of interest                       | 27       |
| 2241      | Amplification of the gene of interest for Gateway® Cloning                    | 28       |
| 2242      | TOPOR cloning of the amplified gene                                           | 28       |
| 2243      | Restriction Digestion of TOPO® clones                                         | 28       |
| 2244      | LR Cloning of the gene into a Destination vector                              | 29       |
| 2.2.4.4.  | Transformation of Agrobacterium tumefaciens                                   | 30       |
| 2246      | Transformation of Arabidonsis by Agrobacterium-mediated transformation        | 30       |
| 2.2.4.0.  | Plant Phenotyping techniques                                                  | 31       |
| 2.3.      | Drought stress conditions                                                     | 31       |
| 2.3.1.    | Calculation of resotte area                                                   | 31       |
| 2.3.2.    | Thermal imaging of drought stressed and watered plants                        | 22       |
| 2.3.3.    | Instantaneous massurements of assimilation rate and stomatel                  | 32       |
| 2.3.4.    |                                                                               | 22       |
| 225       | Conductance<br>Measurement of hydrogen perovide                               | ు∠<br>ఎఎ |
| 2.3.3.    | Neasurement of hydrogen peroxide                                              | ు∠<br>ఎఎ |
| 2.3.0.    | Determination of electrolyte leakage                                          | 33       |
| 2.3.7.    | Calculation of relative leaf water content                                    | 33       |
| 2.3.8.    | Measurement of Uniorophyli and Uarotenoid content                             | 33       |
| 2.3.9.    | Measurement of Anthocyanin content                                            | 34       |
| 2.3.10.   | Measurement of flowering time                                                 | 34       |
| 3.        | Modelling drought time-series transcriptome data to identify 'hub'            |          |
|           | genes in gene regulatory networks                                             | 35       |
| 3.1.      | Introduction                                                                  | 36       |
| 3.2.      | Selection and hierarchical clustering of list of genes and cluster annotation | 38       |
| 3.3.      | Gene networks were modelled and 'hub' genes identified from these             |          |
|           | models                                                                        | 45       |
| 3.4.      | Isolation of knockouts for hub genes                                          | 62       |
| 3.5.      | Generation of overexpressing lines for the hub genes                          | 72       |
| 3.6.      | Characterisation of the unknown protein UKTF                                  | 83       |
| 37        | Characterisation of the unknown protein POZ                                   | 94       |
| 3.8       | Discussion                                                                    | 102      |
| 3.8.1     | Six hub genes were identified using VBSSM                                     | 102      |
| 382       | Characterisation of the unknown proteins LIKTF and PO7                        | 104      |
| 39        | Conclusion                                                                    | 107      |
| 0.0.      |                                                                               | 103      |
| 4.        | Phenotyping mutant lines of hub genes under progressive drought               | 105      |
| 4.1.      | Introduction                                                                  | 106      |
| 4.2.      | Phenotyping and analysis of knockouts and overexpressors of AGL22             | 108      |
| 4.2.1.    | Measurement of water use under drought                                        | 108      |

- 4.2.1.
- Measurement of photosynthetic performance Measurement of the stress status of drought-stressed plants 4.2.2. 110 4.2.3. 113

| 4.2.4.<br>4.2.4.1.<br>4.2.4.2.<br>4.3.<br>4.3.1.<br>4.3.2.<br>4.3.3.<br>4.3.3.1.<br>4.3.3.1.<br>4.3.3.2.             | Measurement of growth and development<br>Flowering time<br>Biomass and harvest index<br>Phenotyping and analysis of knockouts and overexpressors of <i>FD</i><br>Measurement of water use under drought<br>Measurement of photosynthetic performance<br>Measurement of growth and development<br>Flowering time<br>Biomass and harvest index                                                                   | 114<br>116<br>119<br>119<br>121<br>123<br>123<br>124               |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 4.4.<br>4.4.1.<br>4.4.2.<br>4.4.3.<br>4.4.3.1.<br>4.4.3.2.<br>4.4.3.3.<br>4.4.3.4.<br>4.4.4.<br>4.4.4.1.<br>4.4.4.2. | Phenotyping and analysis of knockouts of <i>RAP2.12</i><br>Measurement of water use under drought<br>Measurement of photosynthetic performance<br>Measurement of the stress status of drought-stressed plants<br>Hydrogen peroxide<br>Electrolyte leakage<br>Chlorophyll and carotenoid content<br>Anthocyanin content<br>Measurement of growth and development<br>Flowering time<br>Biomass and harvest index | 128<br>128<br>130<br>131<br>131<br>132<br>132<br>133<br>134<br>134 |
| 4.5.<br>4.5.1.<br>4.5.2.<br>4.5.3.<br>4.5.3.1.<br>4.5.3.2.<br>4.5.3.3.<br>4.5.3.4.<br>4.5.4.<br>4.5.4.1.<br>4.5.4.2. | Phenotyping and analysis of knockouts of <i>BHLH038</i><br>Measurement of water use under drought<br>Measurement of photosynthetic performance<br>Measurement of the stress status of drought-stressed plants<br>Hydrogen peroxide<br>Electrolyte leakage<br>Chlorophyll and carotenoid content<br>Anthocyanin content<br>Measurement of growth and development<br>Flowering time<br>Biomass and harvest index | 138<br>138<br>140<br>142<br>142<br>142<br>143<br>144<br>145<br>145 |
| 4.6.<br>4.6.1.<br>4.6.2.<br>4.6.3.<br>4.6.3.1.<br>4.6.3.2.<br>4.6.3.3.<br>4.6.3.4.<br>4.6.4.<br>4.6.4.1.<br>4.6.4.2. | Phenotyping and analysis of knockouts of <i>ANL2</i><br>Measurement of water use under drought<br>Measurement of photosynthetic performance<br>Measurement of the stress status of drought-stressed plants<br>Hydrogen peroxide<br>Electrolyte leakage<br>Chlorophyll and carotenoid content<br>Anthocyanin content<br>Measurement of growth and development<br>Flowering time<br>Biomass and harvest index    | 149<br>149<br>151<br>153<br>153<br>153<br>154<br>155<br>156<br>156 |
| 4.7.<br>4.7.1.<br>4.7.2.<br>4.7.3.<br>4.7.3.1.<br>4.7.3.2.<br>4.7.3.3.<br>4.7.3.4.<br>4.7.4.                         | Phenotyping and analysis of overexpressors of <i>UKTF</i><br>Measurement of water use under drought<br>Measurement of photosynthetic performance<br>Measurement of the stress status of drought-stressed plants<br>Hydrogen peroxide<br>Electrolyte leakage<br>Chlorophyll and carotenoid content<br>Anthocyanin content<br>Measurement of growth and development                                              | 160<br>162<br>163<br>163<br>164<br>165<br>166                      |

| 4.7.4.1.<br>4.7.4.2. | Flowering time<br>Biomass and harvest index                                                   | 166<br>167 |
|----------------------|-----------------------------------------------------------------------------------------------|------------|
| 4.8.<br>4.8.1.       | Phenotyping and analysis of knockouts of <i>POZ</i><br>Measurement of water use under drought | 170<br>170 |
| 4.8.2.               | Measurement of photosynthetic performance                                                     | 172        |
| 4.8.3.               | Measurement of the stress status of drought-stressed plants                                   | 174        |
| 4.8.3.1.             | Hydrogen peroxide                                                                             | 174        |
| 4.8.3.2.             | Electrolyte leakage                                                                           | 174        |
| 4.8.3.3.             | Chlorophyll and carotenoid content                                                            | 175        |
| 4.8.3.4.             | Anthocyanin content                                                                           | 176        |
| 4.8.4.               | Measurement of growth and development                                                         | 177        |
| 4.8.4.1.             | Flowering time                                                                                | 177        |
| 4.8.4.2.             | Biomass and harvest index                                                                     | 178        |
| 4.9.                 | Discussion                                                                                    | 181        |
| 4.9.1.               | AGL22 could play a regulatory role during drought                                             | 181        |
| 4.9.2.               | FD is drought-responsive                                                                      | 183        |
| 4.9.3.               | Nature of drought stress                                                                      | 184        |
| 4.10.                | Conclusion                                                                                    | 184        |
| 5.                   | Testing network connections of gene regulatory networks                                       | 186        |
| 5.1.                 | Introduction                                                                                  | 187        |
| 5.2.                 | Analysis of gene regulatory network potentially controlled by AGL22                           | 189        |
| 5.3.                 | Analysis of gene regulatory network potentially controlled by RAP2.12                         | 193        |
| 5.4.                 | Analysis of gene regulatory network potentially controlled by BHLH038                         | 195        |
| 5.5.                 | Analysis of gene regulatory network potentially controlled by UKTF                            | 196        |
| 5.6.                 | Discussion                                                                                    | 199        |
| 5.6.1.               | Gene regulatory network for AGL22                                                             | 199        |
| 5.6.2.               | Gene regulatory network for RAP2.12 and BHLH038                                               | 202        |
| 5.6.3.               | Gene regulatory network for UKTF                                                              | 202        |
| 5.7.                 | Conclusion                                                                                    | 202        |
| 6.                   | Discussion                                                                                    | 204        |
| 6.1.                 | VBSSM was used to model GRNs involved in drought                                              | 205        |
| 6.2.                 | Flowering time genes appear to play a role during drought                                     | 207        |
| 6.2.1.               | AGL22 was the most drought-responsive hub gene                                                | 207        |
| 6.2.2.               | FD and UKTF may also be important regulatory genes                                            | 208        |
| 6.2.3.               | The relationship between drought response and flowering and productivity                      | 209        |
| 6.3.                 | The other hub genes did not show a drought phenotype                                          | 210        |
| 6.4.                 | Comment on the methods used in this work                                                      | 211        |
| 6.5.                 | Conclusion                                                                                    | 213        |
|                      |                                                                                               |            |

| References | 214 |
|------------|-----|
| Appendix A | 232 |
| Appendix B | 281 |
| Appendix C | 282 |

### List of figures

| Figure 1.1.<br>Figure 2.1. | The components of the drought response in plants.<br>Strategy (indicated by the block arrows) used to screen T-DNA | 13 |
|----------------------------|--------------------------------------------------------------------------------------------------------------------|----|
| -                          | insertions.                                                                                                        | 23 |
| Figure 2.2.                | Vector map of the destination vector pEarleyGate.                                                                  | 30 |
| Figure 3.1.                | An example of a gene cluster obtained from TCAP.                                                                   | 39 |
| Figure 3.2.                | The expression profile of AGL22 under drought-stressed and control                                                 |    |
|                            | conditions over the course of the drought period.                                                                  | 47 |
| Figure 3.3.                | Gene regulatory network modelled from cluster 1 using VBSSM which                                                  |    |
| -                          | identified POZ as a hub gene.                                                                                      | 48 |
| Figure 3.4.                | Gene regulatory network modelled from cluster 1 using VBSSM which                                                  |    |
|                            | identified FD as a hub gene.                                                                                       | 49 |
| Figure 3.5.                | Gene regulatory network modelled from cluster 2 using VBSSM which                                                  |    |
|                            | identified UKTF as a hub gene.                                                                                     | 50 |
| Figure 3.6.                | Gene regulatory network modelled from cluster 8 using VBSSM which                                                  |    |
|                            | identified RAP2.12 as a hub gene.                                                                                  | 51 |
| Figure 3.7.                | Gene regulatory network modelled from cluster 8 using VBSSM which                                                  |    |
|                            | identified BHLH038 as a hub gene.                                                                                  | 52 |
| Figure 3.8.                | Gene regulatory network modelled from cluster 16 using VBSSM which                                                 |    |
|                            | identified ANL2 as a hub gene.                                                                                     | 53 |
| Figure 3.9.                | Gene regulatory network generated using genes involved in flowering,                                               |    |
|                            | showing AGL22 and UKTF as hub genes.                                                                               | 54 |
| Figure 3.10.               | BAR analysis for AGL22 under different abiotic stresses.                                                           | 56 |
| Figure 3.11.               | BAR analysis for POZ under different abiotic stresses.                                                             | 57 |
| Figure 3.12.               | BAR analysis for FD under different abiotic stresses.                                                              | 58 |
| Figure 3.13.               | BAR analysis for UKTF under different abiotic stresses.                                                            | 59 |
| Figure 3.14.               | BAR analysis for RAP2.12 under different abiotic stresses.                                                         | 60 |
| Figure 3.15.               | BAR analysis for ANL2 under different abiotic stresses.                                                            | 61 |
| Figure 3.16.               | Identification and phenotype of T-DNA insertion lines for AGL22.                                                   | 65 |
| Figure 3.17.               | Identification of T-DNA insertion lines for POZ.                                                                   | 66 |
| Figure 3.18.               | Identification of a T-DNA insertion line for FD.                                                                   | 67 |
| Figure 3.19.               | Identification of T-DNA insertion lines for UKTF.                                                                  | 68 |
| Figure 3.20.               | Identification of T-DNA insertion lines for RAP2.12.                                                               | 69 |
| Figure 3.21.               | Identification of T-DNA insertion lines for BHLH038.                                                               | 70 |
| Figure 3.22.               | Identification of T-DNA knockout lines for ANL2.                                                                   | 71 |
| Figure 3.23.               | Vector map of the destination vector pEarleyGate.                                                                  | 72 |
| Figure 3.24.               | Generation of overexpressing lines of AGL22.                                                                       | 75 |
| Figure 3.25.               | Generation of overexpressing lines of POZ.                                                                         | 76 |
| Figure 3.26.               | Generation of overexpressing lines of FD.                                                                          | 78 |
| Figure 3.27.               | Generation of overexpressing lines of UKTF.                                                                        | 79 |
| Figure 3.28.               | Generation of overexpressing lines of RAP2.12.                                                                     | 80 |
| Figure 3.29.               | Generation of overexpressing lines of BHLH038.                                                                     | 81 |
| Figure 3.30.               | Generation of overexpressing lines of ANL2.                                                                        | 82 |
| Figure 3.31.               | Conserved domains in UKTF determined using the Conserved Domains                                                   |    |
|                            | Database.                                                                                                          | 83 |
| Figure 3.32.               | Phylogenetic tree with <i>A.thaliana</i> proteins that contain both the MIP1 and                                   |    |
|                            | DUF547 domains within their sequence.                                                                              | 84 |
| Figure 3.33.               | Alignment of the MAD domain of UKTF with the consensus MAD1                                                        |    |
|                            | sequence using Jalview (Version 2.8).                                                                              | 85 |
| Figure 3.34.               | Subcellular localisation of UKTF within the nucleus as determined by                                               |    |
|                            | SUBA3.                                                                                                             | 86 |
| Figure 3.35.               | The predicted protein structure for UKTF generated using Phyre2.                                                   | 87 |
| Figure 3.36.               | The prediction for the complete protein secondary structure and disorder                                           |    |

|                              | for UKTF generated using Phyre2.                                                                                                                                                                               | 89             |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Figure 3.37.                 | The prediction for the complete protein secondary structure for UKTF generated using RaptorX.                                                                                                                  | 89             |
| Figure 3.38.                 | The results of DISOPRED showing that the N-terminal region of UKTF is disordered.                                                                                                                              | 90             |
| Figure 3.39.                 | Prediction of the orientation of UKTF within the lipid bilayer as determined by MEMEMBED.                                                                                                                      | 92             |
| Figure 3.40.                 | The expression of UKTF within the top 10 most expressing tissues (from Genevestigator).                                                                                                                        | 93             |
| Figure 3.41.                 | The expression of UKTF during plant development (from Genevestigator).                                                                                                                                         | 93             |
| Figure 3.42.<br>Figure 3.43. | Conserved domains in POZ determined from NCBI's CDD.<br>Subcellular localisation of POZ within the cytoplasm as determined by                                                                                  | 94             |
| Figure 3.44.<br>Figure 3.45. | SUBA3.<br>Phylogenetic tree for BTB-containing proteins in <i>A. thaliana</i> .<br>The predicted protein structure for POZ generated using Phyre2.                                                             | 95<br>96<br>98 |
| Figure 3.46.                 | The complete protein structure prediction for POZ generated using Phyre2.                                                                                                                                      | 99             |
| Figure 3.47.<br>Figure 3.48. | Structural alignment of POZ with BPM1.<br>Structural alignment of POZ with a BTB-only-containing protein,<br>AT2G40440                                                                                         | 100<br>100     |
| Figure 3.49.                 | The expression of POZ within the top 10 most expressing tissues (from Genevestigator).                                                                                                                         | 101            |
| Figure 3.50.                 | The expression of POZ during plant development (from Genevestigator).                                                                                                                                          | 101            |
| Figure 4.1.                  | Drying rates for <i>agl</i> 22 knockouts, overexpressors and a segregating wild-<br>type compared to the wild-type, Col-0.                                                                                     | 109            |
| Figure 4.2.                  | Rosette areas for <i>agl22</i> knockouts and the overexpressor compared to the wild-type. Col-0.                                                                                                               | 110            |
| Figure 4.3.                  | Temperature of the <i>agl22</i> knockouts compared to the Col-0 wild-type,<br>measured at regular intervals throughout the duration of the drought                                                             | 112            |
| Figure 4.4.                  | Temperature of 35S::SVP compared to the Col-0 wild-type, measured at regular intervals throughout the duration of the drought                                                                                  | 110            |
| Figure 4.5.                  | Measurement of stomatal conductance ( $g_s$ ) and photosynthetic assimilation rate (A) in 35S::SVP and the Col-0 wild-type, at regular                                                                         | 112            |
| Figure 4.6.                  | intervals during the drought stress.<br>Measurement of $H_2O_2$ levels in two wild-types, two knockouts and two                                                                                                | 113            |
| Figure 4.7                   | overexpressors of AGL22 under drought and watered conditions.                                                                                                                                                  | 114            |
| Figure 4.8.                  | overexpressors of $AGL22$ under drought and watered conditions.<br>Measurement of the vegetative and reproductive biomass of two wild-<br>types, two knockouts and two overexpressors of $AGL22$ under drought | 115            |
|                              | and watered conditions.                                                                                                                                                                                        | 118            |
| Figure 4.9.                  | Harvest index estimated in two wild-types, two knockouts and two overexpressors of <i>AGL22</i> under drought and watered conditions.                                                                          | 118            |
| Figure 4.10.                 | Drying rates for <i>fd</i> loss-of-function mutants and the overexpressor compared to the wild-type. Col-0.                                                                                                    | 120            |
| Figure 4.11.                 | Rosette areas for <i>fd</i> loss-of-function mutants and the overexpressor compared to the wild-type. Col-0                                                                                                    | 120            |
| Figure 4.12.                 | Measurement of relative leaf water content (rLWC) in wild-type, the knockdown and the overexpressor of <i>FD</i> under drought and watered                                                                     | 101            |
| Figure 4.13.                 | Measurement of stomatal conductance $(g_s)$ and photosynthetic assimilation rate (A) in the <i>fd</i> knockout and Col-0 wild-type at regular                                                                  | 121            |
| Figure 4.14.                 | intervals during the drought stress.<br>Temperature of the <i>fd</i> knockout and Col-0 wild-type measured at regular                                                                                          | 122            |

| intervals throughout the duration of the drought.                                                        | 122 |
|----------------------------------------------------------------------------------------------------------|-----|
| Figure 4.15. Flowering time measured in the wild-type, the knockdown and the                             |     |
| overexpressor of FD under drought and watered conditions.                                                | 123 |
| Figure 4.16. Measurement of the vegetative and reproductive biomass of the wild-                         |     |
| type, the knockdown and the overexpressor of <i>FD</i> under drought and                                 |     |
| watered conditions.                                                                                      | 126 |
| Figure 4.17. Harvest index estimated in the wild-type, the knockdown and the                             |     |
| overexpressor of FD under drought and watered conditions.                                                | 126 |
| Figure 4.18. Measurement of the vegetative and reproductive biomass for the wild-                        |     |
| type and the fd knockout under drought and watered conditions.                                           | 127 |
| Figure 4.19. Harvest index estimated in the wild-type and the fd knockout under                          |     |
| drought and watered conditions.                                                                          | 127 |
| Figure 4.20. Drying rates for <i>rap2.12</i> knockouts compared to the wild-type, Col-0.                 | 128 |
| Figure 4.21. Rosette areas for <i>rap2.12</i> knockouts compared to the wild-type, Col-0.                | 129 |
| Figure 4.22. Measurement of relative water content (rLWC) in Col-0 wild-type and the                     |     |
| rap2.12 knockouts under drought and watered conditions.                                                  | 129 |
| Figure 4.23. Measurement of stomatal conductance $(g_s)$ and photosynthetic                              |     |
| assimilation rate (A) in the rap2.12 knockouts and Col-U wild-type at                                    | 400 |
| regular intervals during the drought stress.                                                             | 130 |
| Figure 4.24. Temperature of the <i>rap2.12</i> knockouts and Col-0 wild-type measured at                 | 101 |
| Figure 4.25 Measurement of H.O. Javela in the rand 4.12 knockaute and wild type Col                      | 131 |
| Figure 4.25. Intersolution $\Pi_2 O_2$ levels in the <i>Tap2</i> . <i>T2</i> knockouts and wid-type Cor- | 101 |
| Figure 4.26 Measurement of electrolyte leakage from the ran2.12 knockoute and                            | 131 |
| wild-type Col-0 under drought and watered conditions                                                     | 132 |
| Figure 4.27 Estimation of chlorophyll and carotenoid content of the ran2.12                              | 152 |
| knockouts and the Col-0 wild-type                                                                        | 133 |
| Figure 4.28 Estimation of anthocyanin content of the ran 2.12 knockouts and the Col-                     | 100 |
| 0 wild-type under both drought and watered conditions                                                    | 134 |
| Figure 4.29. Flowering time measured in the Col-0 wild-type and the rap2.12                              | 101 |
| knockouts under drought and watered conditions.                                                          | 135 |
| Figure 4.30. Measurement of the vegetative and reproductive biomass for the wild-                        |     |
| type and the rap2.12 knockouts under drought and watered conditions.                                     | 137 |
| Figure 4.31. Harvest index estimated in the wild-type and the rap2.12 knockouts                          |     |
| under drought and watered conditions.                                                                    | 137 |
| Figure 4.32. Drying rates for <i>bhlh038</i> knockouts compared to the wild-type, Col-0.                 | 138 |
| Figure 4.33. Rosette areas for <i>bhlh038</i> knockouts compared to the wild-type, Col-0.                | 139 |
| Figure 4.34. Measurement of relative water content (rLWC) in Col-0 wild-type and the                     |     |
| bhlh038 knockouts under drought and watered conditions.                                                  | 139 |
| Figure 4.35. Measurement of stomatal conductance (g <sub>s</sub> ) and photosynthetic                    |     |
| assimilation rate (A) in the <i>bhlh038</i> knockouts and Col-0 wild-type at                             |     |
| regular intervals during the drought stress.                                                             | 141 |
| Figure 4.36. Temperature of the <i>bhlh038</i> knockouts and Col-0 wild-type measured at                 |     |
| regular intervals throughout the duration of the drought.                                                | 141 |
| Figure 4.37. Measurement of $H_2O_2$ levels in the <i>bhlh038</i> knockouts and wild-type Col-           |     |
| 0 under drought and watered conditions.                                                                  | 142 |
| Figure 4.38. Measurement of electrolyte leakage from the <i>bhlh038</i> knockouts and                    |     |
| wild-type Col-0 under drought and watered conditions.                                                    | 143 |
| Figure 4.39. Estimation of chlorophyll content of the <i>bhlh038</i> knockouts and the Col-0             |     |
| wild-type.                                                                                               | 144 |
| Figure 4.40. Estimation of anthocyanin content of the <i>bhlh038</i> knockouts and the Col-              |     |
| U wild-type under both drought and watered conditions.                                                   | 145 |
| rigure 4.41. Flowening time measured in the Col-U wild-type and the <i>bhihu38</i>                       | 140 |
| Knockouts under drought and watered conditions.                                                          | 146 |
| rigure 4.42. inteasurement of the vegetative and reproductive biomass for the wild-                      |     |

|                         | type and the <i>bhlh038</i> knockouts under drought and watered conditions.       | 148   |
|-------------------------|-----------------------------------------------------------------------------------|-------|
| Figure 4.43.            | Harvest index estimated in the wild-type and the <i>bhlh038</i> knockouts         |       |
|                         | under drought and watered conditions.                                             | 148   |
| Figure 4.44.            | Drying rates for an/2 knockouts compared to the wild-type, Col-0.                 | 149   |
| Figure 4.45.            | Rosette areas for <i>anl2</i> knockouts compared to the wild-type, Col-0.         | 150   |
| Figure 4.46.            | Measurement of relative water content (rLWC) in Col-0 wild-type and the           |       |
|                         | an/2 knockouts under drought and watered conditions.                              | 150   |
| Figure 4.47.            | Measurement of stomatal conductance (g <sub>s</sub> ) and photosynthetic          |       |
|                         | assimilation rate (A) in the <i>anl2</i> knockouts and Col-0 wild-type at regular |       |
|                         | intervals during the drought stress.                                              | 152   |
| Figure 4.48.            | I emperature of the anl2 knockouts and Col-0 wild-type measured at                | 4 = 0 |
| <b>-</b> : 4.40         | regular intervals throughout the duration of the drought.                         | 152   |
| Figure 4.49.            | Measurement of $H_2O_2$ levels in the ani2 knockouts and wild-type Col-0          | 450   |
| <b>E</b> : 4 <b>E</b> 0 | under drought and watered conditions.                                             | 153   |
| Figure 4.50.            | Measurement of electrolyte leakage from the ani2 knockouts and wild-              | 4 - 4 |
|                         | type Col-U under drought and watered conditions.                                  | 154   |
| Figure 4.51.            | Estimation of chlorophyll content of the ani2 knockouts and the Col-U             | 4     |
| <b>E</b> igure 4 50     | Wild-type.                                                                        | 155   |
| Figure 4.52.            | Estimation of anthocyanin content of the ani2 knockouts and the Col-U             | 450   |
|                         | wild-type under both drought and watered conditions.                              | 156   |
| Figure 4.53.            | Flowening time measured in the Col-0 wild-type and the aniz knockouts             | 457   |
| Figure 4 54             | under drought and watered conditions.                                             | 157   |
| rigule 4.54.            | type and the ant/2 knockoute under drought and watered conditions                 | 150   |
| Figuro 4 55             | Larvest index estimated in the wild type and the ant/2 knockeuts under            | 150   |
| Figure 4.55.            | drought and watered conditions                                                    | 150   |
| Figure 4 56             | Drying rates for UKTE average compared to the wild type. Col 0                    | 100   |
| Figure 4.50.            | Bosette areas for LIKTE overexpressors compared to the wild-type. Col-            | 100   |
| i igule 4.57.           |                                                                                   | 161   |
| Figure 4 58             | Measurement of relative water content (rI WC) in Col-0 wild-type and the          | 101   |
| 1 igure 4.00.           | <i>LIKTE</i> overexpressors under drought and watered conditions                  | 161   |
| Figure 4 59             | Measurement of stomatal conductance (q.) and photosynthetic                       | 101   |
| i iguro ilico.          | assimilation rate (A) in the UKTF overexpressors and Col-0 wild-type at           |       |
|                         | regular intervals during the drought stress                                       | 162   |
| Figure 4.60.            | Temperature of the UKTF overexpressors and Col-0 wild-type measured               |       |
| i iguio nooi            | at regular intervals throughout the duration of the drought.                      | 163   |
| Figure 4.61.            | Measurement of $H_2O_2$ levels in the UKTF overexpressors and wild-type           |       |
|                         | Col-0 under drought and watered conditions.                                       | 164   |
| Figure 4.62.            | Measurement of electrolyte leakage from the UKTF overexpressors and               | -     |
| <b>J</b>                | wild-type Col-0 under drought and watered conditions.                             | 164   |
| Figure 4.63.            | Estimation of chlorophyll content of the UKTF overexpressors and the              |       |
| U                       | Col-0 wild-type.                                                                  | 165   |
| Figure 4.64.            | Estimation of anthocyanin content of the UKTF overexpressors and the              |       |
| U                       | Col-0 wild-type under both drought and watered conditions.                        | 166   |
| Figure 4.65.            | Flowering time measured in the Col-0 wild-type and the UKTF                       |       |
| •                       | overexpressors under drought and watered conditions.                              | 167   |
| Figure 4.66.            | Measurement of the vegetative and reproductive biomass for the wild-              |       |
| -                       | type and the UKTF overexpressors under drought and watered                        |       |
|                         | conditions.                                                                       | 169   |
| Figure 4.67.            | Harvest index estimated in the wild-type and the UKTF overexpressors              |       |
|                         | under drought and watered conditions.                                             | 169   |
| Figure 4.68.            | Drying rates for <i>poz</i> knockouts compared to the wild-type, Col-0.           | 170   |
| Figure 4.69.            | Rosette areas for <i>poz</i> knockouts compared to the wild-type, Col-0.          | 171   |
| Figure 4.70.            | Measurement of relative water content (rLWC) in Col-0 wild-type and the           |       |
|                         | poz knockouts under drought and watered conditions.                               | 171   |

| Figure 4.71. Measurement of stomatal conductance (g <sub>s</sub> ) and assimilation rate (A) in the <i>poz</i> knockouts and C   | photosynthetic<br>Col-0 wild-type at regular       |        |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------|
| intervals during the drought stress.                                                                                             | 17:                                                | 3      |
| Figure 4.72. Temperature of the <i>poz</i> knockouts and Col-0 wil regular intervals throughout the duration of the c            | ld-type measured at<br>drought. 173                | 3      |
| Figure 4.73. Measurement of H <sub>2</sub> O <sub>2</sub> levels in the <i>poz</i> knockou under drought and watered conditions. | ts and wild-type Col-0<br>174                      | 4      |
| Figure 4.74. Measurement of electrolyte leakage from the po<br>type Col-0 under drought and watered condition                    | z knockouts and wild-<br>ns. 175                   | 5      |
| Figure 4.75. Estimation of chlorophyll content of the <i>poz</i> knoc type.                                                      | ckouts and the Col-0 wild-                         | 6      |
| Figure 4.76. Estimation of anthocyanin content of the poz know wild-type under both drought and watered cond                     | ockouts and the Col-0<br>itions. 17                | 7      |
| Figure 4.77. Flowering time measured in the Col-0 wild-type under drought and watered conditions.                                | and the <i>poz</i> knockouts<br>178                | 8      |
| Figure 4.78. Measurement of the vegetative and reproductive type and the <i>poz</i> knockouts under drought and                  | e biomass for the wild-<br>watered conditions. 179 | 9      |
| Figure 4.79. Harvest index estimated in the wild-type and the<br>drought and watered conditions.                                 | e <i>poz</i> knockouts under<br>180                | 0      |
| Figure 5.1. Gene regulatory network potentially regulated by created by VBSSM.                                                   | y <i>AGL22</i> , which was<br>190                  | 0      |
| Figure 5.2. qPCR analysis of the genes identified in Figure<br>4 subjected to drought.                                           | 5.1 in <i>agl</i> 22-3 and <i>agl</i> 22-<br>192   | 2      |
| Figure 5.3. qPCR analysis of the genes identified in Figure<br>4 maintained under watered conditions.                            | 5.1 in <i>agl</i> 22-3 and <i>agl</i> 22-<br>192   | 2      |
| Figure 5.4. Gene regulatory network potentially regulated by created by VBSSM.                                                   | y <i>RAP2.12</i> , which was<br>193                | 3      |
| Figure 5.5. qPCR analysis of the genes identified in Figure rap2.12-3 subjected to drought.                                      | 5.4 in <i>rap2.12-1</i> and 194                    | 4      |
| Figure 5.6. qPCR analysis of the genes identified in Figure rap2.12-3 maintained under watered conditions                        | 5.4 in <i>rap2.12-1</i> and                        | 4      |
| Figure 5.7. Gene regulatory network potentially regulated b created by VBSSM.                                                    | by BHLH038, which was                              | 5      |
| Figure 5.8. qPCR analysis of the genes identified in Figure<br>bblb038-4 subjected to drought                                    | 5.7 in <i>bhlh038-1</i> and                        | 5      |
| Figure 5.9. qPCR analysis of the genes identified in Figure                                                                      | 5.7 in <i>bhlh038-1</i> and                        | 6      |
| Figure 5.10. Gene regulatory network potentially regulated b                                                                     | by UKTF, which was                                 | 7      |
| Figure 5.11. qPCR analysis of the genes identified in Figure                                                                     | 5.10 in UKTF-3 and                                 | י<br>ס |
| Figure 5.12. qPCR analysis of the genes identified in Figure<br>UKTF-4 maintained under drought conditions.                      | 5.10 in UKTF-3 and                                 | 8      |

### List of tables

| Table 2.1. Table showing the restriction enzymes used to confirm the cloning of the   |    |
|---------------------------------------------------------------------------------------|----|
| gene of interest into the pENTR™ vector.                                              | 29 |
| Table 3.1. The significantly over-represented terms for each of the clusters obtained |    |
| from TCAP.                                                                            | 40 |
| Table 3.2. T-DNA insertional lines for the hub genes used in subsequent analyses.     | 64 |
| Table 3.3. CombFunc results for Molecular Functions UKTF are involved in.             | 91 |
| Table 3.4. CombFunc results for Biological Processes UKTF are involved in.            | 91 |
| Table 3.5. CombFunc results for Molecular Functions POZ are involved in.              | 95 |
| Table 3.6. CombFunc results for Biological Processes POZ are involved in.             | 95 |

### List of abbreviations

°C – degree Celsius

- µg microgram
- µl microliter
- µmol micromoles
- A photosynthetic assimilation rate
- Abs absorbance
- att attachment sites
- BaR Basta® resistance gene
- bp base pair
- CaMV 35S Cauliflower Mosaic Virus 35S promoter
- cDNA complementary DNA
- cm centimetre
- Col-0 Columbia-0
- d<sup>-1</sup> per day
- DNA Deoxyribonucleic acid
- F.W. fresh weight
- g gram
- g relative centrifugal force
- GP2S Gaussian process two-sample test
- GRN Gene Regulatory Network
- gs stomatal conductance
- H2O2 Hydrogen peroxide
- KanR Kanamycin resistance gene
- LB Left border of T-DNA
- log logarithm
- ml millilitre
- mM millimolar
- mmol millimoles
- nmol nanomoles
- OCS Octopine Synthase
- P probability value
- RB Right border of T-DNA
- rLWC relative leaf water content
- RNA Ribonucleic acid
- RO reverse osmosis

rSWC - relative soil water content

s – second

TCAP – Temporal Clustering by Affinity Propagation

T-DNA – Transfer DNA

U – units

VBSSM - Variational Bayesian State Space Modelling

WT - wild-type

Chapter 1

# Introduction

### 1.1. Increased demand for water

With a projected population of 9.1 billion people by 2050 (UNDESA, 2009), there will be a need for an increase in food production by 70% to meet the growing demand (Bruinsma, 2009). But with an increasing population comes not only a higher demand for food, but also an increased demand for more water resources and more land space. At the same time predicted climate change will cause changes in rainfall patterns, thus varying the amount of available water (WWAP, 2015). The demand for energy will increase by 60% in 2050 (Steer, 2010), and hence the need for biofuels will result in more and more land being used in non-food crop production (Comprehensive Assessment of Water Management in Agriculture, 2007). While only 20% of agricultural land is irrigated, 50% of the world's food production comes from these irrigated lands. Thus, decreasing water and land availability, coupled with increasing atmospheric temperatures (and hence increasing water loss), will have a huge impact on food crop production in time to come. These predicted scenarios portray an increasingly urgent need to breed in or 'introduce' higher water-use efficiency in crops while also maintaining, or hopefully increasing, crop yields to feed the growing population (WWAP, 2015).

#### 1.2. Plant adaptation responses to water deficit

Plants are regularly subjected to environmental stresses during their lifetime, and hence have evolved a number of adaptation mechanisms to deal with stresses (Chaves *et al.*, 2003; Lawlor, 2013). Plant responses to drought can involve escape, avoidance or tolerance of water-deficit situations. During drought escape, plants complete their lifecycle before the onset of drought, while water is still available, and hence ensure reproduction is successful.

Drought avoidance involves the plants maintaining higher cellular water potential in the presence of decreasing levels of soil moisture. To do this, plants undergo adjustments to minimise the loss of water from the leaves, while trying to maximise the gain of water from the soil through the roots. Water deficit causes a loss of turgor due to a reduction of cellular water content. Loss of turgor in leaves (due to a decreased supply of water to the shoot region) directly causes a decrease in the growth rate of cells, which results in a decrease in leaf expansion and leaf area. Reduced stomatal conductance occurs in response to increasing water deficit, and thus there is a reduction in water-loss due to transpiration. As drought progresses, older leaves are shed to further conserve water by

minimising transpiration, while also ensuring that plant resources are diverted to younger leaves for growth. The partitioning of water resources away from the shoot and leaves is to enable an increase in water supply to roots to support their growth deeper into the moister areas of soil (Chaves *et al.*, 2003).

In drought tolerance, the cell adapts to the lower water potential by inducing the expression of genes needed for the adaptation process. Osmolytes and sugars are produced to help balance the change in water potential (Zhang *et al.*, 1999; Serraj and Sinclair, 2002); the Late Embryogenesis Abundant (LEA) proteins help in protecting cellular structure from crystallisation during drought (Hara *et al.*, 2001; Bravo *et al.*, 2003) and ROS detoxifying enzymes are produced to modulate the production of ROS (Moran *et al.*, 1994; Sharma and Dubey, 2005). Stomatal closure, and consequently photosynthesis, is also regulated by the hormone Abscisic Acid (ABA) and a number of regulatory genes that control stomatal function and photosynthetic capacity under stress (Schroeder *et al.*, 2001).

The changes observed during drought tolerance are a consequence of perception of an occurring water-deficit, transduction of the signal, expression of drought tolerance-related genes and production of proteins and osmolytes needed to overcome the effects of the reduction in cellular water content. Thus, a better understanding of the molecular events occurring during tolerance to water deficit might provide the basic knowledge needed to engineer plants for greater tolerance to prolonged periods of water deficit, while also maintaining productivity.

### 1.3. Perception of water-deficit signal

The process involved in sensing the osmotic stress component of drought at the cellular level is not well understood in plants. However, in yeast, the perception of the high osmolarity stress signal through the High Osmolarity Glycerol (HOG) pathway has been studied (Tamás *et al.*, 2000), and a similar pathway may also exist in plants. Under normal osmotic conditions, the histidine kinase SLN1, phosphorylates an intermediate protein YPD1, another histidine kinase, which 'relays' the phosphorylation to regulator protein SSK1 (Reiser *et al.*, 2003). The phosphorylated SSK1 remains inactive under normal osmolarity conditions. When external osmolarity increases, SLN1 is inhibited and SSK1 becomes dephosphorylated and activated. SSK1 acts through the mitogen-activated protein kinase (MAPK) pathway to activate the HOG pathway through HOG1,

which mediates adaptation of the yeast cell to changes in osmolarity. Another protein, SHO1, is also activated in response to high external osmolarity and also activates the HOG pathway (Reiser *et al.*, 2003). In *Arabidopsis*, a gene homologous to that coding for SLN1 has been identified (Urao *et al.*, 1999). However, the whole pathway involved in sensing the onset of water deficit has yet to be characterised and many components of the pathway are still unknown.

### 1.4. ABA plays a key role in drought stress response

The transduction of the signal may be mediated through the production of ABA or may be ABA-independent (Shinozaki and Yamaguchi-Shinozaki, 2007). The action of ABA leads to the expression of genes that aid plants in acclimatising to environmental stresses. Levels of ABA have been found to increase in plants as drought progresses (Jiang and Zhang, 2002; Wang *et al.*, 2004). This corresponds with an increase in the expression of genes that help in the acclimation of the plant to increasing water deficit – genes that control stomatal closure, to help minimise water loss, genes that stimulate the production of osmolytes and LEA proteins, and other stress responsive genes (Shinozaki and Yamaguchi-Shinozaki, 2007).

In response to water deficit, a key enzyme in the biosynthesis of ABA, *9-cis-epoxycarotenoid dioxygenase3* (*NCED3*), is upregulated (Harb *et al.*, 2010). It has already been shown that the overexpression of this gene confers a higher degree of tolerance to plants, while the *nced* mutant is more sensitive to water deficit (luchi *et al.*, 2001). This shows the importance of ABA to drought stress response, but what exactly happens at the cellular level to elicit this reaction is still not known, and is an important area of study.

### 1.4.1. ABA mediates the expression of regulatory genes

ABA induces the expression of a number of drought-responsive genes such as response to *response to dessication22* (*RD22*; Yamaguchi-Shinozaki *et al.*, 1992), *RD29A* and *RD29B* (Yamaguchi-Shinozaki *et al.*, 1992; Yamaguchi-Shinozaki and Shinozaki, 1993), *LEA* genes (Galau *et al.*, 1986; Skriver and Mundy, 1990) and dehydrins (Close *et al.*, 1989). The induction of these genes was mediated by the binding of transcription factors to *cis*-acting elements in the promoter region of these genes. The DNA-binding elements of ABA-responsive genes are the ABA-responsive elements (AREs; Mundy *et al.*, 1990), to which ARE-binding proteins (AREBs) or ARE-binding factors (ABFs) bind. Alternatively, ABA-responsive genes may also contain MYB or MYC recognition sites (Abe *et al.*, 1997) to which MYB or MYC proteins bind.

### 1.4.2. ABFs are important regulators of drought response

A number of bZIPs (basic leucine zippers) are involved in a plant's response to drought (Uno *et al.*, 2000), and one family of bZIPs are the ABFs (Choi *et al.*, 2000). *ABF1*, *ABF2/ABRE1*, *ABF3* and *ABF4/ABRE2* were found to be induced by abiotic stresses like drought, old and high salinity (Choi *et al.*, 2000), and all four of these ABFs were induced by drought (Yoshida *et al.*, 2015). Overexpression of *ABF3* and *ABF4* in Arabidopsis conferred drought tolerance in those plants (Kang *et al.*, 2002), while overexpression of a constitutively active form of *ABF2* also led to enhanced drought tolerance in the mutant plants compared to wild-type plants (Fujita *et al.*, 2005). On the other hand, the *abre1abre2abf3* triple knockout mutant exhibited increased drought sensitivity (Yoshida *et al.*, 2010), while the quadruple knockout *abre1abre2abf3abf1* displayed an even greater sensitivity to drought (Yoshida *et al.*, 2015).

## 1.5. Other regulatory sequences that modulate gene expression during the stress response

In addition to ABA-responsive genes, there are a number of genes that are droughtresponsive but ABA-independent, such as *RD19*, *RD21* and *RD28* (Yamaguchi-Shinozaki *et al.*, 1992). These genes are activated by the binding of transcription factors to dehydration-responsive elements (DREs; Yamaguchi-Shinozaki and Shinozaki, 1994), known as DRE-binding proteins (DREBs). Thus, the induction of drought-responsive genes is mediated either in an ABA-dependent or an ABA-independent pathway. Many studies have focussed on loss-of-function or gain-of-function mutants of transcription factors that bind to *cis*-acting elements in the promoter region of drought-responsive genes.

### 1.5.1. Evidence of the importance of DREBs and other ERFs during drought

DREBs are a class of ethylene response factors (ERFs) that bind the DRE element present in the promoters of mostly stress-responsive genes, activating transcription of these genes (Liu *et al.*, 1998). In Arabidopsis, *DREB2A* was found to be induced by dehydration, while *DREB1A* was induced only by low temperature. However, only overexpression of *DREB1A* conferred drought and cold tolerance to the plants, while overexpression of *DREB2A* in Arabidopsis did not (Liu *et al.*, 1998). This was found to be due to the presence of a negative regulatory domain in the protein. Removal of this domain rendered the protein constitutively active, and overexpression of this altered protein conferred drought tolerance to the plants (Sakuma *et al.*, 2006). *DREB1D* was also found to be induced by drought and overexpressors of this gene in Arabidopsis were also drought tolerant (Haake *et al.*, 2002).

Overexpressors of other ERFs, which are induced by drought, have also been shown to affect the drought phenotype of these plants compared to the wild-type. In Arabidopsis, *ERF053* was shown to be induced by drought (Cheng *et al.*, 2012). However, overexpression of this gene did not confer drought tolerance to the plants. This was due to the presence of a RING-finger E3 ligase called *RGLG2*, and its homologue, *RGLG1*, that target *ERF053* for protein degradation. Overexpression of *ERF053* in an *rglg1/rglg2* double knockout allowed for accumulation of *ERF053*, and subsequently, a drought-tolerant phenotype was observed. Moreover, overexpression of *ERF053* in the double knockout with wild-type levels of *ERF053* (Cheng *et al.*, 2012).

Similarly, the ERF gene *RAP2.4* was also found to be induced by drought and overexpression of this gene lead to enhanced drought tolerance in these plants compared to the wild-type (Lin *et al.*, 2008). Overexpression of tomato *JERF1* in rice (Zhang *et al.*, 2010) and tomato *JERF3* in tobacco (Wu *et al.*, 2008) led to greater drought tolerance in these mutants. On the other hand, overexpression of another ERF, *ERF7*, caused increased sensitivity to drought due to decreased sensitivity to abscisic acid, and thus insufficient stomatal closure (Song *et al.*, 2005). This shows that differential expression of DREBs and ERFs is crucial during drought and these genes play important regulatory roles during the drought response.

### 1.5.2. Members of the NF-Y family are involved in the drought response

The Nuclear Factor-Y (NF-Y) complex is formed from a heterotrimeric complex consisting of the NF-YA, NF-YB and NF-YC subunits (Forsburg and Guarente, 1989), and in plants there are a large number of genes coding for these subunits (Siefers *et al.*, 2009). Members of the NF-YA family, namely *NF-YA2*, *NF-YA3*, *NF-YA5*, *NF-YA7* and *NF-YA10*, have been shown to be differentially expressed by a range of abiotic stress, such as low nitrogen, drought, cold, heat, high glucose and abscisic acid (Levya-González *et al.*, 2012). Overexpression of *NF-YA5* (Li *et al.*, 2008), *NF-YA2*, *NF-YA3*, *NF-YA7* and *NF-YA10* (Levya-González *et al.*, 2012) in Arabidopsis showed increased drought tolerance in these plants while the knockout, *nf-ya5*, showed increased sensitivity to drought (Li *et al.*, 2008). Increased levels of NF-YAs resulted in repression of cell growth and elongation, leading to growth arrest, an acclimation response (Levya-González *et al.*, 2012).

Nelson et al. (2007) found that Arabidopsis NF-YB1 was also responsive to drought and plants overexpressing this gene were found to be more drought tolerant than wild-type plants after severe drought. It was also seen that these plants were able to maintain higher water potential and higher photosynthetic rate under drought compared to the wildtype. Maize plant overexpressing NF-YB2 (a homologue of Arabidopsis NF-YB1) were also drought tolerant in field conditions and had higher chlorophyll content, higher stomatal conductance and photosynthetic rate and lower average leaf temperature (Nelson et al., 2007). These plants were also found to be better yielding under drought conditions compared to wild-type plants, with the highest yielding lines producing 50% more yield than wild-type plants under drought conditions. Drought avoidance involves reduced stomatal conductance, and subsequently reduced carbon assimilation rate, to avoid water loss and maintain normal water potential during drought (Chaves et al., 2003). This has the effect of reduced yield due to lower carbon assimilation rate (Chaves and Pinheiro, 2011). However, overexpressors of NF-YB2 were able to maintain higher stomatal conductance and photosynthetic rate during drought than the wild-type plants, and thus have better yield than these plants when subjected to drought (Nelson et al., 2007).

Thus, a number of members of the NF-Y family of genes are differentially expressed during drought stress and, thus, important transcriptional regulators of drought response in plants.

### 1.5.3. WRKYs are also important genes involved during drought

A number of WRKYs are also differentially expressed during drought and other abiotic stresses (Seki *et al.*, 2002; Matsui *et al.*, 2008). A gain-of-function T-DNA insertional mutant of the gene *WRKY57* was found to be tolerant to drought stress (Jiang *et al.*, 2012), and a knockout of *WRKY63* was drought-sensitive drought due to reduced stomatal closure during drought. Also, the overexpression of the drought-inducible *GsWRKY20* from wild soybean in Arabidopsis led to enhanced drought tolerance. The gene *GsWRKY20* is homologous to Arabidopsis *WRKY63*. The drought-tolerant phenotype was due to increased sensitivity to ABA resulting in adequate stomatal closure and a decreased stomatal density in these mutants.

### 1.6. Signal transduction during the drought response

### 1.6.1. Members of the MAPK pathway have been identified

A number of genes have been identified in plants that are homologous to members of the MAP kinase signalling pathway characterised in other eukaryotes (Bartels and Sunkar, 2005). Some of these genes have also been found to be differentially expressed in response to dehydration or osmotic stress (which is a consequence of water deficit). MAPK and its associated molecules, MAPKK and MAPKKK, are well-known signalling molecules involved in the activation of cellular responses to environmental signals in eukaryotes. Homologues of these proteins have been identified in plants, mostly through homology studies. The *Arabidopsis* MAP kinase protein, MPK3, has been found to be induced in response to drought (Mizoguchi *et al.*, 1996); the proteins MPK4 and MPK6 were also found to be activated post-translationally in response to osmotic stress (Ichimura *et al.*, 2000). An *Arabidopsis* MAPKKK, *AtMEKK1*, has been found to be upregulated in response to water deficit (Mizoguchi *et al.*, 1996). Another kinase that is overexpressed during drought is OX11 (Oxidative Signal-Induced1), which is believed to act upstream of MPK3 and MPK6 (Rentel *et al.*, 2004).

# 1.6.2. Other signal transduction-related molecules are differentially expressed in drought

Another family of protein kinases has also been found to be upregulated in response to drought conditions. SNF1 (Sucrose-Nonfermenting1)-related protein kinases (SnRKs; also called Open Stomata1 [OST1]), have been implicated in carbon metabolism, as well as stress signalling and may involve ABA-dependent and ABA-independent pathways of activating downstream stress-related target genes (Coello *et al.*, 2011). The Receptor-like Protein Kinase1 (RPK1) also appears to play an important role in the early stages of ABA signalling, although its exact mechanism and substrates are not yet known (Osakabe *et al.*, 2005; 2010).

Protein phosphatases, along with protein kinases, are also involved in transducing external stimuli into a genetic response. There are two types of phosphatases known – protein (serine/threonine) phosphatases and protein tyrosine phosphatases (de Nadal *et al.*, 2002). One sub-group of protein phosphatases, PP2C, has been found to mediate an ABA-dependent signal transduction, through ROS and Ca<sup>2+</sup>, and is a negative regulator of ABA signalling (Murata *et al.*, 2001; Mustilli *et al.*, 2002). Mutants having a disrupted form of PP2C gene, *abi1* (*ABA-insenstive1*), have been found to be more drought-tolerant (Gosti *et al.*, 1999).

Despite the characterisation of many proteins involved in signalling the stress response, there are still gaps in our knowledge of the signalling process which have yet to be filled.

### 1.7. Stomatal closure in response to stress is mediated by ABA

ABA regulates the closing of stomata in response to water deficit and this process is mediated by a number of enzymes and signalling molecules that coordinate in a signalling cascade (Mishra *et al.*, 2006; Zhang *et al.*, 2009). The  $\alpha$  subunit of a heterotrimeric G-protein (GPA1) was found to be upregulated under mild drought conditions. Also, Phospholipase D $\alpha$ 1 (PLD $\alpha$ 1) was found to be overexpressed under the same conditions (Harb *et al.*, 2010). These findings corroborate a proposed mechanism of ABA-induced stomatal closure and inhibition of stomatal opening in response to drought (Mishra *et al.*, 2006). PLD $\alpha$ 1 catalyses the hydrolysis of membrane phospholipids to form phosphatidic acid (PA), which acts as a signalling molecule. PA binds PP2C, and

consequently inhibits the inhibiting effect of the phosphatase, allowing stomatal closure. PA has also been found to act upstream of GTP-bound GPA1, which signals the inhibition of stomatal opening (Mishra *et al.*, 2006). PA appears to also interact and activate NADPH oxidase, which subsequently produces ROS (Zhang *et al.*, 2009). ROS are known to induce Ca<sup>2+</sup> transients by activation of Ca<sup>2+</sup> channels, which has further implications in signal transduction (Mori and Schroeder, 2004).

All the components of the pathway involved in stomatal response have not yet been characterised and it is also believed that SnRK2 plays a role in the ABA-mediated stomatal response and gene regulation (Mustilli *et al.*, 2002; Coello *et al.*, 2011). The binding of ABA to PYR/PYL/RCAR proteins, which act as ABA receptors (Ma *et al.*, 2009; Park *et al.*, 2009), causes the interaction between the ABA receptors and PP2C. This interaction prevents the dephosphorylation and inactivation of SnRK2, and hence it is free to activate downstream target genes through ABFs (Coello *et al.*, 2011).

### 1.8. The role of osmolytes and protective proteins in drought response

It has been observed that the concentration of osmolytes increase in response to environmental stresses and it has also been found that these osmolytes are responsible for conferring tolerance in known stress-tolerant plant species (Zhang *et al.*, 1999; Serraj and Sinclair, 2002). Not only do these osmolytes have osmoprotectant properties, by regulating osmotic potential during drought, but they also appear to have other protective properties, such as ROS scavenging and detoxification, and stabilisation of cellular components. Proteins, such as LEA proteins, proteases, redoxins, aquaporins and heat shock proteins, which have a similar protective role, have also been found to be induced during water deficit (Bartels and Sunkar, 2005).

### 1.8.1. Sugars and sugar alcohols

A number of sugars, such as sucrose, raffinose family of oligosaccharides (RFOs), trehalose and fructan, show increased levels during the drought response (Taji *et al.*, 2002; Ogbaga *et al.*, 2016). They are believed to elicit a role in maintaining the osmotic potential of the cell during low water potential, by stabilising proteins and membranes through hydrogen bonding (Peters *et al.*, 2007), and RFOs have also been demonstrated to have ROS-scavenging properties in *Arabidopsis* (Nishizawa *et al.*, 2008). Elevated

levels of sucrose and RFOs have been found in the resurrection plant *Xerophyta viscosa* (Peters *et al.*, 2007). Levels of sucrose are also increased in another resurrection plant *Craterostigma plantagineum* (Bianchi *et al.*, 1991). *C. plantagineum* accumulates a high concentration of 2-octulose, which is converted to sucrose under conditions of dehydration. Trehalose also has protective properties against drought, as observed when the trehalose phosphate synthase (TPS) gene and other genes involved in the biosynthesis of trehalose were induced in plants (Garg *et al.*, 2002; Avonce *et al.*, 2004). Increases in levels of fructan, through overexpression of fructan biosynthetic genes, has also resulted in an increase in stress tolerance in tobacco and sugar beet plants (Pilon-Smits *et al.*, 1999).

Overexpression of the mannitol-1-phosphate dehydrogenase gene in wheat, required for the biosynthesis of mannitol, induces an increased tolerance to drought stress. Mannitol appears to act through the scavenging of harmful hydroxyl radicals (Abebe *et al.*, 2003) and also through the protection of ROS-scavenging and detoxifying enzymes from the action of hydroxyl radicals (Shen *et al.*, 1997), while D-ononitol is believed to act similarly (Sheveleva *et al.*, 1997).

### 1.8.2. Proline

Proline may have many roles in ameliorating the effects of stress and inducing drought tolerance in plants, and accumulates in response to drought (Girousse *et al.*, 1996; An *et al.*, 2013). It is believed to aid in osmotic adjustment, help in the stabilisation of the membranes (Rhodes *et al.*, 1986; Verbruggen and Hermans, 2008) and scavenge ROS (Cuin and Shabala, 2007). Overexpression of the proline biosynthetic gene, Pyrroline-5-carboxylate synthase, in tobacco and rice has been shown to increase in tolerance to osmotic stress (Kavi Kishor *et al.*, 1995; Zhu *et al.*, 1998).

#### 1.8.3. LEA proteins

Exogenously added ABA has been found to induce the expression of LEA proteins in plants and is associated with a higher degree of desiccation tolerance in these plants (Xu *et al.*, 1996; Porcel *et al.*, 2005). LEA proteins have been found to act as protective molecules. Group 1 LEA proteins may be involved in binding water during water deficit,

groups 2 and 4 may be responsible for stabilising membranes and proteins, and groups 3 and 5 may sequester ions that accumulate during drought (Bartels and Sunkar, 2005).

### 1.8.4. Heat shock proteins

Heat shock proteins (HSPs) are induced by drought and correspond with an increase in tolerance (Wang *et al.*, 2004; Aneja *et al.*, 2015). Overexpression of HSP17.6A in *Arabidopsis* results in a gain of tolerance in these plants during water deficit, possibly through protein stabilisation (Sun *et al.*, 2001).

#### 1.8.5. Proteases

Proteases have been found to be induced in response to drought stress(Simova-Stoilova *et al.*, 2006). This could be to ensure the turnover of damaged proteins to enable the synthesis of new proteins needed in the drought response. Cysteine proteases are induced – ERD1 (Nakashima *et al.*, 1997) and DegP2 (Hausühl *et al.*, 2001) are two chloroplast-related proteases that appear to be upregulated during drought.

### 1.8.6. Detoxifying proteins

Stress inducible-aldehyde dehydrogenase (Sunkar *et al.*, 2003) and aldehyde reductase (Oberschall *et al.*, 2000) have been identified in *Arabidopsis* that are responsive to drought. These act to remove toxic aldehydes, produced as a result of lipid peroxidation and mediated by free radicals, to form carboxylic acids and alcohols, respectively. Peroxiredoxins are other enzymes that are capable of detoxifying toxic peroxides to alcohols, thus preventing harmful ROS-mediated cellular damage (Seki *et al.*, 2002; Islam *et al.*, 2015). Thioredoxins have been studied in other organisms to be important detoxifying-enzymes, however, not much is known about them in plants (Rey *et al.*, 1998; Cha *et al.*, 2014).

Although some studies have been done about the effects of osmolytes and protective proteins during the drought response, and the genes that control them, there is still much more to be elucidated about the genes that initiate the osmotic responses and the pathways that lead to their osmotic effects.



Figure 1.1. The components of the drought response in plants (adapted from Singh and Laxmi, 2015) from perception of the drought through to ABA-dependent and ABA-independent induction of transcription factors that regulate the expression of stress responsive genes.

### **1.9.** Large-scale transcriptomics has been used to study drought transcriptomes

It is clear that a large number of regulatory and functional genes are differentially expressed during drought, and single gene studies do not allow for a holistic understanding of gene networks activated or repressed during drought. On the other hand, microarrays can be used to conduct genome-wide expression analyses (Eisen and Brown, 1999), and this can be used to analyse the drought transcriptome, as has been performed in a number of studies.

Among some of the earliest work on large-scale transcriptomics studies of droughtstressed plants was the work of Seki *et al.* (2001). In this study, drought stress was imposed on plant rosettes, by dehydration on Whatman 3MM paper, under growth conditions. RNA was extracted from these stressed rosettes and hybridised on a microarray spotted with the full-length cDNA for 1300 genes. A number of known drought stress-responsive genes were differentially expressed during drought, such as *RD29A*, COR15A (cold-regulated15A), KIN1 (cold-induced1), KIN2, ERD10 (early response to dehydration10), RD17, RD20, ERD7, ERD4, ERD14, ERD3, RD19A, RD22 and P5CS (pyrroline-5-carboxylate synthase), involved in proline biosynthesis (Yoshiba *et al.*, 1995). In addition to these 14 genes, another 30 genes, previously unknown to be drought-responsive, were also differentially expressed during drought. Thus, this study showed that the use of microarrays could be used to identify new genes involved during drought.

Seki et al. (2002) performed a time-series microarray analysis on rosettes subjected to dehydration, sampling at 1, 2, 5, 10 and 24 hours after the initiation of the stress. A fulllength cDNA microarray was used to measure the expression levels of approximately 7000 genes. In this study, it was seen that 277 genes were induced during drought, while 79 genes were down-regulated. 40 of the 277 genes that were induced were transcription factors (TFs), showing that TFs play an important role in the drought response. In addition to TFs, genes coding for the biosynthesis of osmoprotectants such as proline and sugars, for LEA genes, an aquaporin and other membrane proteins were also seen. Genes involved in the biosynthesis of hormones such as ABA, ethylene, jasmonic acid and auxin, were also up-regulated during drought and genes involved in cellular signalling and transduction, such as those coding for Ca<sup>2+</sup>-binding and calmodulin-binding proteins, protein kinases and phosphatases, were also induced. In total, genes belonging to 40 functional categories, and a large group of unknown genes, were induced during drought. This shows that the drought response is a complicated one involving many different groups of functional and regulatory genes. In addition to the induction of a large number of genes during drought, 79 genes were also down-regulated. The largest group of genes that were down-regulated were those involved in photosynthesis. 19 functional groups of genes were repressed during drought, and again a large number of down-regulated genes were unknown.

The type of drought experiment that was done in this study is unrepresentative of a normal drought that occurs in the field. It involved dehydration of plant rosettes for a few hours on the bench, while drought in the field lasts for days (Passioura, 2002). However, the use of a time-series analysis enabled the identification of genes that would not have been picked up from a single time-point study. Cold- and salinity-stressed plants were also analysed in a similar way and it was seen that more than half of the genes that were differentially expressed during drought were common to either cold or salinity or both. This shows that a large part of the stress response is common to different abiotic stresses, in addition to the many stress-specific genes that are induced or repressed (Seki *et al.*, 2002).

Another study by Kreps *et al.* (2002) was done in which plants were subjected to osmotic stress, using mannitol, when the photoperiod began, and leaf and root tissue were harvested at 3 hours and 27 hours after the stress. Cold and salinity genes were also analysed. A large number of genes common to all three stresses were differentially expressed in both the shoots and the roots 3 hours after the stresses were applied. This involved many transcription factors and signalling-related genes. 27 hours after the stresses, the number of genes differentially expressed in roots and shoots decreased drastically. Similar to Seki *et al.* (2002), this study also showed that it is important to study the effect of stress over a period of time rather than at a single point, as the transcriptome varies as the stress progresses.

In the drought analysis by Kilian *et al.* (2007), 24,000 genes were analysed in 18-day old plants. The plants were exposed to a stream of air for 15 minutes till 10% of the fresh weight was lost. Differentially expressed genes were also analysed in plants subjected to cold and UV-B light stress. The plants were returned to growth conditions after stressing them and the roots and shoots were harvested separately. Plant material was harvested 15, 30, 60 minutes, 3, 6, 12 and 24 hours after the stress. At the beginning of the analysis, many of the differentially expressed genes (such as transcription factors and signalling genes) were those that were shared between two or all of the stresses. Over time, the number of shared genes decreased, while stress-specific genes continued to constitute the majority of those that were differentially expressed in both roots and shoots. From this study and from Kreps *et al.* (2002), it is clear that there is an initial response that is common to abiotic stresses which then develops into a stress-specific response over time, and the analysis of the transcriptome at a single time-point after drought does not provide the full picture of the response.

The above studies used a variety of methods for imposing drought, such as quick dehydration of rosettes or seedlings, or using mannitol. These methods do not portray drought in the field accurately as they are not soil-based. Harb *et al.* (2010) performed a soil-based drought experiment to analyse the transcriptome under stress. They also compared a progressive drought experiment with a moderate drought experiment, where the relative soil water content is maintained at 30%. They believed that progressive drought is too severe and that moderate drought is more realistic to field conditions, and so performed a microarray analysis to compare the two types of drought stresses. Moderate drought was induced by withdrawing water till 2 g g<sup>-1</sup> dry soil (30% field capacity) was reached, and then supplementing it to maintain this water content for the remainder of the experiment, while plants subjected to progressive drought were allowed

15

to wilt. 7648 genes were differentially expressed in wilting plants that were subjected to a progressive drought stress (pDr). In contrast, 2039 genes were differentially expressed on day 1 of the moderate drought (mDr day01), and 728 genes on day 10 (mDr day10).

Despite the difference in the number of genes differentially expressed between the two types of drought, they found that some of the same GO terms associated with drought were differentially expressed in both pDr and mDr day 01 (Harb *et al.*, 2010). These terms were response to water deprivation, response to ABA stimulus, osmotic, cold, and oxidative stresses, and DNA packaging, ribosome biogenesis and protein folding. Also, most of the differentially expressed genes in mDr day 01 were common to pDr, and were expressed in the same direction i.e. induced or repressed. The biggest difference in the expression levels of genes between the two types of stress was seen in those genes coding for cell wall modification enzymes – these were up-regulated in mDr day 01, but down-regulated in pDr – and in photosynthetic genes, which were down-regulated in pDr but showed no difference in expression in mDr day 01. These indicate an acclimation response in the plants subjected to moderate stress, as opposed to those subjected to progressive drought. However, as drought can be unpredictable, moderate drought represents an unlikely situation in the field.

As mentioned in this section, a number of large-scale transcriptome studies have been performed. These analyses have identified many more targets for gene manipulation to produce drought tolerant plants. However, these studies have used artificial methods for inducing drought or have not measured the changing dynamic in the drought transcriptome, using a time-series analysis. A drought experiment that encompasses both of these factors could provide valuable information about the initiation and progress of the drought response under conditions that resemble drought in the field.

### 1.10. Use of statistical algorithms to reverse-engineer gene regulatory networks

The huge volumes of data arising from genomic technologies has led to the need to study organisms at the 'systems' level, instead of at the single molecule level (Gutierrez *et al.*, 2005). Systems Biology aims to understand organisms from a whole-organism perspective, by integrating gene, protein, metabolite and other biological data to reverse engineer a network describing the interactions of each (Cho *et al.*, 2007). Gene regulatory networks (GRNs) indicate the interaction between different genes and provide a wider view of gene networks that can potentially reveal novel connections. It also

provides a dynamic view of the interactions, indicating activation and repression (Yuan *et al.*, 2008).

Statistical algorithms can be used to reverse-engineer GRNs based on transcriptomics data and the most common types of mathematical models used are ordinary differential equations, Boolean networks and Bayesian networks (Bansal *et al.*, 2007; Cho *et al.*, 2007). Ordinary differential equations represent the change in the level of a transcript as a function of the change in the levels of all other transcripts and also due to the effect of an external perturbation. Boolean networks represent the expression levels of genes as either '0' or '1' i.e. unexpressed state or expressed state. Both of these methods can only be applied to steady-state data and cannot be used on dynamic (time-series) data. Bayesian networks can either be static or dynamic; dynamic Bayesian networks are used to handle time-series data by applying Bayesian statistics to reverse-engineer the causal relationship between two 'nodes' or genes. Examples of networks that have reverse-engineered using each of these algorithms are given below (Gardner and Faith, 2005; Bansal *et al.*, 2007; Cho *et al.*, 2007).

The three-loop feedback network in the circadian clock in Arabidopsis was mathematically modelled using differential equations (Locke *et al.*, 2005). It predicted the presence of a gene, *Y*, in the network and also the dynamic of its expression during the photoperiod. Using this theoretical information, *Y* was soon identified experimentally to be *GIGANTEA*, an important gene involved in circadian rhythms in plants (Locke *et al.*, 2005; 2006).

Espinosa-Soto *et al.* (2004) used Boolean networks to model the dynamics of cell type determination during flower development, using the ABC model and available experimental results. Novel predictions were identified and two of these were independently verified experimentally by Schmid *et al.* (2003) and Gómez-Mena *et al.* (2005). A Boolean network was also used by Li *et al.* (2006) to model ABA induction of stomatal closure, by integrating data from various experimental studies. They were able to model the effect of perturbing parts of the network on ABA-mediated stomatal closure, and identify potentially novel conditions that regulate this.

A Dynamic Bayesian method called Variational Bayesian State Space Modelling (VBSSM; Beal *et al.*, 2005) was used by Breeze *et al.* (2011) to model whole transcriptome data from a time-series senescence experiment. The model was able to correctly predict the positive effect that the gene *ANAC092* would have on the expression

of known target genes. It also identified *STZ* as a highly connected gene in the network that regulates the expression of several genes during senescence, providing a candidate gene for experimental analysis.

Windram *et al.* (2012) used a Nonlinear Dynamic System called Causal Structure Identification (CSI; Penfold *et al.*, 2012) to model time-series transcriptional data from Arabidopsis plants subjected to *Botrytis cinerea* infection. This study identified *TGA3* as an important gene potentially involved in the response to Botrytis infection, which was experimentally verified, as knockouts of the gene were more susceptible to infection that the wild-type plants. Hickman *et al.* (2013) modelled the time-series data from Breeze *et al.* (2011) and Windram *et al.* (2012) using CSI, and combining this with Yeast-1-Hybrid data, identified genes such as *MYB* genes that act upstream of the transcription factors, *ANAC019, ANAC055* and *ANAC072.* These connections were experimentally verified using microarray analyses of mutants of the *MYB* genes.

### 1.11. Objectives of the project

This thesis is based on the work of Bechtold *et al.* (2016) in which a progressive drought experiment was performed with wild-type Arabidopsis Col-0, and time-series transcriptomics analyses were conducted using microarrays. In that work, differentially expressed genes were clustered in groups using hierarchical clustering, and these groups of genes were modelled into networks using the Dynamic Bayesian model VBSSM, just as in Breeze *et al.* (2011), and a network was generated around the flowering time gene, *AGAMOUS-LIKE22* (*AGL22*) / *SHORT VEGETATIVE PHASE* (*SVP*).

Using the same list of differentially expressed obtained in Bechtold *et al.* (2016), the genes were clustered using a temporal clustering algorithm and clusters were selected to model gene networks during drought using VBSSM. 'Hub' genes in the networks were selected for further analysis by phenotyping loss- and gain-of-function mutants of these genes. Finally, some of the networks were selected to verify gene connections between hub genes and potential downstream genes.

The main objectives of this project were:

- Generation of GRNs using the time-series transcriptomics data from Bechtold *et al.* (2016) and identification of hub genes that represent potentially important genes involved during the drought response.
- 2. Phenotyping loss- and gain-of-function mutants of these hub genes under drought conditions to verify a potential role in drought stress signalling.
- 3. Evaluation of the GRNs generated using VBSSM by testing the potential regulation of network genes by the hub genes.

Chapter 2

## **Materials and Methods**

### 2.1. Bioinformatics techniques

### 2.1.1. Temporal Clustering of differentially expressed genes

A list of differentially expressed genes with a Gaussian process two-sample test (GP2S; Stegle *et al.*, 2010) score  $\geq$  5 (as described in Chapter 3) was used for further analysis. The genes were grouped into clusters using the temporal clustering algorithm Temporal Clustering by Affinity Propagation (TCAP; http://www.wsbc.warwick.ac.uk/stevenkiddle/tcap .html; Kiddle *et al.*, 2009) that was run in MATLAB® (MathWorks®, USA). TCAP clusters genes with similar expression profiles including early-, middle- and late-responding genes as well as those with inverse profiles.

### 2.1.2. Enrichment of Biological Process terms

The clusters were enriched for terms related to Biological Processes using the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 (<u>http://david.abcc.ncifcrf.gov/</u>; Huang *et al.*, 2009) to identify groups of related functional genes clustered by TCAP.

### 2.1.3. Modelling drought-responsive gene networks by Variational Bayesian State-Space Modelling

Gene clusters from TCAP were selected for further analysis, based on the results from DAVID. Individual clusters were used to model a number of gene regulatory networks (GRNs) using Variational Bayesian State-Space Modelling (VBSSM; Beal et al., 2005). A graphical user interface version VBSSM of (available from http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/) was run in MATLAB® using the following settings: Number of seeds = 15; Maximum dimension of hidden states = 20; Maximum number of iterations = 2000. The gene networks predicted by the models were viewed using Cytoscape 2.8.2.
# 2.2. Molecular Biology techniques

# 2.2.1. Plant material and growth conditions

Plants were grown in compost (Levington F2+S, The Scotts Company, Ipswich, UK) and maintained in a controlled environment – 8/16 hour light/dark cycle at 23 °C and 60% relative humidity, under a photosynthetic photon flux density of ~200  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>.

# 2.2.2. Primer design

All primers used in this thesis were designed using the website Primer Blast (<u>http://www.ncbi.nlm.nih.gov/tools/primer-blast/</u>; Ye *et al.*, 2012) which is available from the National Center for Biotechnology Information (NCBI; <u>http://www.ncbi.nlm.nih.gov/</u>). Information about all the primers used in this thesis is given in Appendix C.

# 2.2.3. Identification of knockout mutants from T-DNA insertional lines

# 2.2.3.1. T-DNA insertional lines were obtained from NASC

Multiple lines of putative T-DNA insertional mutants for each gene of interest were obtained from the Nottingham Arabidopsis Stock Centre (NASC, <u>http://arabidopsis.info/</u>). SALK (Alonso *et al.*, 2003), SAIL (Sessions *et al.*, 2002) and GABI-Kat (Rosso *et al.*, 2003) lines in a Col-0 background were used in this thesis, and a list of all T-DNA insertional mutants screened are given in Appendix B.

# 2.2.3.2. Genomic DNA extraction

Genomic DNA was extracted from plants using the protocol described by Edwards *et al.* (1991), with some modifications. A single leaf was taken from each plant and was ground using micropestles, along with 500  $\mu$ l of DNA extraction buffer (200 mM Tris-HCl, pH 7.5, 250 mM NaCl, 25 mm EDTA, 0.5% SDS). The samples were then centrifuged at 12,000 g for 10 minutes, and the resulting supernatant was mixed 1:1 with isopropanol. This was then centrifuged at 12,000 g for 10 minutes, the pellet was washed with 70% ethanol and the dried pellet was resuspended in 50  $\mu$ l of Reverse Osmosis (RO) water.

#### 2.2.3.3. PCR to identify T-DNA insertional mutants

A Polymerase Chain Reaction (PCR) was performed to verify the presence of the T-DNA insertion within the gene of interest. *Taq* DNA polymerase (recombinant) (#EP0402, ThermoFisher Scientific, Loughborough, UK) was used for the PCR to a final concentration of 2.5 U/µI; the accompanying 10X *Taq* Buffer (100 mM Tris-HCI [pH 8.8 at 25 °C], 500 mM KCI, 0.8% [v/v] Nonidet P40) was used at a final concentration of 1X and 2.5 mM of MgCl<sub>2</sub> was also added. A mix of deoxyribonucleotide triphosphates (dNTPs; #R0191, ThermoFisher Scientific) were added to a final concentration of 200 µM and 100-200 ng of genomic DNA was used per reaction. The forward and reverse primers (sequence information in Appendix C) were added to a final concentration of 500 nM each and the volume was made up to 25 µI with RO water. Figure 2.1 shows the primers used to verify the presence of the T-DNA insertion and the zygosity of the plants.



Figure 2.1. Strategy (indicated by the block arrows) used to screen T-DNA insertions

The conditions used for the PCR reactions were: an initial denaturation at 98 °C for 3 minutes; 35 cycles of denaturation at 98 °C for 30 seconds, primer annealing at 60 °C for 30 seconds and extension at 72 °C for 3 minutes; final extension at 72 °C for 10 minutes.

# 2.2.3.4. Agarose Gel Electrophoresis and Visualisation of PCR products

The PCR products were mixed with 6X DNA loading dye (10 mM Tris-HCI [pH 7.6], 0.03% Bromophenol Blue, 0.03% Xylene Cyanol FF, 60% Glycerol, 60 mM EDTA) in the ratio of 6:1, respectively. These were run on a 1% agarose gel in TBE buffer (10.8 g Tris, 5.5 g Boric acid, 4 ml of 500 mM EDTA [pH 8.0]) at 110V for 35 minutes, alongside the GeneRuler<sup>™</sup> DNA Ladder Mix (#SM0331; ThermoFisher Scientific). The agarose gel was

stained with SafeView (#NBS-SV1, NBS Biologicals Ltd., Huntingdon, UK) in a 1:10,000 dilution and the DNA was visualised using the GeneGenius Bioimaging system (SYNGENE, SYNOPTICS Ltd., Cambridge, UK), as per the supplier's instructions.

# 2.2.3.5. Gel extraction of PCR product from agarose gel

PCR products were purified by extracting them from the agarose gel using the GeneJET Gel Extraction Kit (#K0691, ThermoFisher Scientific), as per the supplier's instructions, with the exception that 20  $\mu$ l of RO water was used to elute the DNA from the column instead of Elution Buffer.

# 2.2.3.6. TA Cloning<sup>®</sup> of PCR product for sequencing

To identify the position of the T-DNA insertion within the gene of interest, the PCR product obtained with the insertion-specific primer was first cloned into the pCR®2.1 vector to allow for sequencing. TA Cloning® was performed using the TA Cloning® Kit (#K2020-20, ThermoFisher Scientific) according to the supplier's instructions, before being transformed into chemically competent One Shot® OmniMAX<sup>™</sup> 2-T1<sup>R</sup> *Escherichia coli* cells (#C8540-03, ThermoFisher Scientific).

# 2.2.3.7. Transformation of chemically competent E. coli cells

*E. coli* OmniMAX<sup>TM</sup> cells were transformed with the pCR®2.1 plasmid using the heatshock method. 2 µl of the plasmid was gently mixed with a 50 µl aliquot of *E. coli* competent cells and was incubated on ice for 30 minutes. Heat-shock was performed at 42 °C for 30 seconds, and immediately incubated on ice for 5 minutes. 250 µl of Luria-Bertani (LB) medium (#L2408, Melford Laboratories Ltd., Ipswich, UK) was then added to the cells and this was shaken at 37 °C for 1 hour. 40 µl of 100 mM IPTG (#I6758, Sigma-Aldrich®, Dorset, UK) and 40 µl of 40 mg/ml X-Gal (#B4252, Sigma-Aldrich®) were spread on to LB Agar plates containing 50 µg/ml of Kanamycin (#K0126, Melford Laboratories Ltd.), to screen positive transformants by blue-white screening. 200 µl of the transformed cells were then plated till the plates were dry, and these were incubated overnight at 37 °C.

# 2.2.3.8. Colony PCR to verify positive transformants

Colony PCR was performed on white colonies to verify positive transformants. The PCR reaction was set-up as described in section 2.2.3.3 and the M13 forward and reverse primers were used for the reaction. Instead of using genomic DNA as the template, white colonies were picked with clean tips, streaked onto a fresh LB Agar plate and dipped into the PCR mixture. The annealing temperature used for the M13 forward and reverse primers was 60 °C. The PCR products were run on a 1% agarose TBE gel, as mentioned in section 2.2.3.4.

# 2.2.3.9. Extraction of plasmid DNA

10 ml of LB medium containing 50 µg/ml of Kanamycin was inoculated with a positive colony from the freshly streaked plate, and incubated overnight at 37 °C. The grown culture was spun down at 3000 g for 20 minutes to pellet the cells and plasmid DNA was extracted using the QIAprep® Spin Miniprep Kit (#27104, Qiagen, Manchester, UK), as per the recommended protocol.

# 2.2.3.10. Quantification of nucleic acids

The plasmid was quantified and the purity ascertained by spectrophotometry, using the NanoDrop<sup>™</sup> ND-1000 Spectrophotometer (ThermoFisher Scientific) as per the manufacturer's instructions.

# 2.2.3.11. Sequencing to determine the position of the T-DNA insertion

The pCR®2.1 plasmid transformed with the PCR product obtained using the insertionspecific primer (as described in section 2.2.3.6) was sequenced between the M13 forward and reverse primers to identify the position of the T-DNA insertion in the gene of interest. 100 ng/µl of plasmid was sent to the sequencing company GATC Biotech (Konstanz, Germany) and the sequence was analysed using ContigExpress (Vector NTI Advance 10, ThermoFisher Scientific).

#### 2.2.3.12. RNA extraction from plant leaf tissue

Total RNA from identified T-DNA insertional mutants was extracted using TRI Reagent® solution (#AM9738, ThermoFisher Scientific), as per the supplier's instructions with some changes. 100 mg of leaf tissue was harvested, immediately frozen in liquid nitrogen and subsequently finely ground using a mortar and pestle. 1 ml of TRI Reagent® was added to the tissue and incubated for 5 minutes at room temperature (RT). 200 µl of Chloroform was added and the solution was mixed well and again incubated for 5 minutes at RT. The samples were centrifuged at 12,000 g for 20 minutes at 4 °C. The aqueous phase was transferred to a new tube and mixed 1:1 with Isopropanol, before centrifuging at 12,000 g for 20 minutes at 4 °C and air-dried to remove excess Ethanol. The RNA was resuspended in 26 µl of RO water and DNase-treated.

#### 2.2.3.13. DNase treatment of RNA

The extracted RNA was subjected to DNase treatment to ensure that the sample was DNA-free. Recombinant DNase I (rDNase I; #AM2235, ThermoFisher Scientific) was used to treat the RNA. To each sample, the 10X DNase I buffer was added to a final concentration of 1X along with 2 U of rDNase I, and the samples were incubated at 37 °C for 30 minutes. 2.4 mM of EDTA was then added and the rDNase I was heat inactivated at 75 °C for 5 minutes.

# 2.2.3.14. cDNA preparation from RNA

RNA was quantified, as mentioned in section 2.2.3.10, and 1000 ng of RNA was taken into a separate tube to convert to cDNA. 0.2  $\mu$ g of Random Hexamer Primer (#S0142, ThermoFisher Scientific) was added to the RNA and made up to 12  $\mu$ l. This was incubated at 65 °C for 10 minutes, after which it was immediately placed on ice. The RNA was reverse-transcribed using the RevertAid Reverse Transcriptase (#EP0442, ThermoFisher Scientific). The 5X buffer was added to a final concentration of 1X, dNTPs were added to give a final concentration of 1 mM and 200 U of the enzyme were added. The volume was made up to 20  $\mu$ l using RO water and the tubes were incubated under the following conditions: 25 °C for 10 minutes, 42 °C for 60 minutes and 70 °C for 10 minutes.

#### 2.2.3.15. Expression analysis using RT-PCR

The semi-quantitative Reverse Transcription-PCR (RT-PCR) was performed on the T-DNA insertional mutants to verify that the gene of interest was knocked out. The forward and reverse primers used were specific to the start and end of the protein-coding sequence, and thus the full-length sequence was analysed. The sequence information for each primer is given in Appendix C. The PCR was setup as mentioned in section 2.2.3.3, with the exception that 0.5  $\mu$ l of undiluted cDNA and 0.5  $\mu$ l of DreamTaq DNA Polymerase (#EP0702, ThermoFisher Scientific) were used. MgCl<sub>2</sub> was not added to the mix as it was already incorporated in the buffer. The PCR conditions used were the same as in section 2.2.3.3.

#### 2.2.3.16. Expression analysis using qPCR

Quantitative PCR (qPCR) was used on T-DNA insertional mutants that appeared to have increased levels of the gene of interest when analysed by RT-PCR. The SensiFAST<sup>™</sup> SYBR No-ROX Kit (#BIO-98002, Bioline Reagents Ltd., London, UK) was used to perform the qPCR. The 2X SensiFAST<sup>™</sup> SYBR No-ROX Mix was diluted to 1X and the forward and reverse primers were added to a final concentration of 400 nM each. 1 µl of 1:5 diluted cDNA was added to each reaction and made up to 20 µl with RO water. The sequences of the primers used for qPCR are given in Appendix C. The following PCR conditions were used for the reactions: Initial denaturation and DNA polymerase activation at 95 °C for 2 minutes; 50 cycles of denaturation at 95 °C for 5 seconds, annealing at 60 °C for 10 seconds and extension at 72 °C for 5 seconds. A melting curve was done from 65 °C to 90 °C in 0.5 °C increments for 5 seconds, to verify the amplification of just a single product. All replicates are biological replicates and stated in the legends.

#### 2.2.4. Production of lines overexpressing the gene of interest

To construct overexpression vectors for the genes of interest, the Gateway® Technology (Invitrogen<sup>™</sup> from ThermoFisher Scientific) was used. This provides a quick and efficient method of cloning a gene of interest into a number of vectors for functional characterisation of the gene (Hartley *et al.*, 2000). It involves cloning the gene into the

TOPO<sup>®</sup> vector and subsequently the use of site-specific recombination to clone the gene into a compatible vector of choice using LR Clonase<sup>™</sup> II.

#### 2.2.4.1. Amplification of the gene of interest for Gateway® Cloning

The full-length protein-coding sequence of the genes of interest was amplified from wildtype Col-0 cDNA by PCR. The Phusion® Hot Start II High-Fidelity DNA polymerase (#F-5495S, ThermoFisher Scientific) was used as per the supplier's instructions for a 20 µl reaction, and using the recommended PCR conditions. The forward primer contained the CACC sequence at the 5' end to ensure directional cloning into the TOPO® vector. The sequences of the forward and reverse primers used in the PCR are given in Appendix C. 100-200 ng of cDNA was added to each reaction and an annealing temperature of 60 °C was used. The PCR products were run on a 1% agarose TBE gel and purified by gel extraction as mentioned in section 2.2.3.4.

## 2.2.4.2. TOPO® cloning of the amplified gene

The PCR product was ligated into the pENTR<sup>™</sup>/D-TOPO® vector (#K2400-20, ThermoFisher Scientific) as per the supplier's instructions. The vector was transformed by heat-shock into *E. coli* OmniMAX<sup>™</sup> cells, plated on Kanamycin (50 µg/ml) LB Agar plates and incubated overnight at 37 °C. Positive transformants were identified by colony PCR with M13 forward and reverse primers. The positive colonies were inoculated in 10 ml cultures and grown overnight to extract the plasmid. A restriction digestion was performed to check the positive clones. The sequence and directionality of the genes in the TOPO® vector were confirmed by sequencing with the M13 forward and reverse primers.

#### 2.2.4.3. Restriction Digestion of TOPO® clones

The TOPO® clones were further verified by restriction digestion of the plasmid. The restriction enzymes to be used were determined from the sequence of the plasmid with the gene insert and using the application PlasmaDNA (University of Helsinki) available from <a href="http://research.med.helsinki.fi/plasmadna/">http://research.med.helsinki.fi/plasmadna/</a>. The enzymes and corresponding buffers used for each of the constructs were obtained from ThermoFisher Scientific and are given in Table 2.1. To 1000 ng of the plasmid, 1 µl containing 10 U of each enzyme was added,

and the 10X buffer was added to a final concentration of 1X. The volume of the reaction was made up to 20 µl with RO water and incubated at 37 °C for 1 hour. For the double digests, the correct buffer and the amount of enzyme to be added were determined using the DoubleDigest Calculator (<u>https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/thermo-scientific-restriction-modifying-enzymes/restriction-enzymes-thermo-scientific/double-digest-calculator-thermo-scientific.html, ThermoFisher Scientific). The products of the restriction digestion were run on a 1% agarose TBE gel.</u>

| Gene construct | Restriction enzymes used (with                    | Enzyme Buffer |
|----------------|---------------------------------------------------|---------------|
| Gene construct | Catalogue number)                                 | used          |
| AGL22          | <i>Mlul</i> (#ER0561)                             | Buffer R      |
| ANL2           | Mlul                                              | Buffer R      |
| BHLH038        | Mlul and HindIII (#ER0501)                        | Buffer R      |
| POZ            | Mlul and HindIII                                  | Buffer R      |
| RAP2.12        | <i>Notl</i> (#ER0591) and <i>Pstl</i> (#ER0611)   | Buffer O      |
| UKTF           | Notl and Pstl                                     | Buffer O      |
| FD             | <i>EcoRI</i> (#ER0271) and <i>Pvull</i> (#ER0631) | Buffer R      |

Table 2.1 Table showing the restriction enzymes used to confirm the cloning of the gene of interest into the pENTR<sup>TM</sup> vector.

# 2.2.4.4. LR Cloning of the gene into a Destination vector

The gene of interest was cloned into the destination vector pEarleyGate (Earley *et al.*, 2006) by LR Cloning, using the Gateway® LR Clonase<sup>TM</sup> II Enzyme Mix (#11791020, ThermoFisher Scientific) as per the supplier's instructions. The binary vector pEarleyGate contains the Cauliflower Mosaic Virus (CaMV) 35S promoter and the termination sequences from the *Octopine Synthase* (*OCS*) Gene, for overexpression of the gene of interest. The vector contains the *Basta Resistance* (*BaR*) gene for *in planta* selection, and the *Kanamycin Resistance* (*KanR*) gene for selection in bacteria. The constructs were transformed by heat-shock into *E. coli* OmniMAX<sup>TM</sup> cells, plated on LB Agar plates containing 50 µg/ml of Kanamycin and incubated overnight at 37 °C. Positive transformants were identified by colony PCR with the 35S promoter-specific forward primer (Appendix C) and the gene-specific reverse primer. A restriction digestion of the

plasmid extracted from the positive transformants was also done to further verify the results of the colony PCR, and the products of the digestion were analysed on a 1% TBE gel.



Figure 2.2. Vector map of the destination vector pEarleyGate. The pEarleyGate vector (Earley *et al.*, 2006) contains the CaMV 35S promoter and the OCS terminator, between which the gene of interest is inserted by recombination between the attR sites on pEarleyGate and the attL sites of the pENTR<sup>TM</sup> vector. This is contained between the right and left T-DNA border sequences, along with the *BaR* gene for *in planta* selection using Basta®. The vector also contains the *KanR* gene for selection in *E. coli* using Kanamycin.

# 2.2.4.5. Transformation of Agrobacterium tumefaciens

The pEarleyGate expression constructs were transformed into electro-competent *Agrobacterium tumefaciens*, strain GV3101/pMP90 (Koncz and Schell, 1986) by electroporation. 1  $\mu$ I of the plasmid was gently mixed with a 50  $\mu$ I aliquot of the cells and transferred to ice-cold 2 mm electroporation cuvettes (#732-1136, VWR International, Lutterworth, UK). Electroporation was carried out at 1800 volts using the EasyJecT Prima Electroporator (Equibio Ltd., Ashford, UK). 1 ml of ice-cold LB medium was added to the cells and the samples were shaken at 28 °C for 3 hours. 200  $\mu$ I of the cells were then plated on LB Agar plates containing 50  $\mu$ g/mI of Rifampicin (#13292-46-1, Melford Laboratories Ltd.), 25  $\mu$ g/mI of Gentamycin (#1405-41-0, Melford Laboratories Ltd.) and 50  $\mu$ g/mI of Kanamycin. The plates were incubated at 28 °C for 2 days and positive transformants were verified by colony PCR using the same primers used to screen *E. coli* colonies after LR cloning.

# 2.2.4.6. Transformation of Arabidopsis by Agrobacterium-mediated transformation

Positive colonies were grown overnight at 28 °C in 10 ml LB medium containing 50  $\mu$ g/ml of Rifampicin, 25  $\mu$ g/ml of Gentamycin and 50  $\mu$ g/ml of Kanamycin. These were used to inoculate 500 ml cultures and wild-type Col-0 Arabidopsis plants were transformed with the overexpression vectors using the floral-dip method described by Clough and Bent (1998). The seeds (T<sub>1</sub>) of the transformed plants were screened on soil by watering the seedlings regularly with 0.62 mM of glufosinate-ammonium (Kaspar; Bayer CropScience,

Cambridge, UK). Positive transformants were analysed by qPCR, as mentioned in section 2.2.3.16, to verify overexpression of the gene of interest. Homozygous lines were obtained by screening  $T_2$  or  $T_3$  seeds to confirm there is no segregation in the lines.

## 2.3. Plant Phenotyping techniques

## 2.3.1. Drought stress conditions

The drought experiment was performed as described by Bechtold *et al.* (2016). To perform the drought experiments, 7x7x8 cm pots (Desch Plantpak, Maldon, UK) were filled with equal weight of a 6:1 mixture of compost and Vermiculite (Verve; B&Q, Colchester, UK) and 2-3 seeds were sown per pot. Control pots were filled to the same weight, soaked in water for a few hours till saturation and weighed to estimate 100% relative soil water content (rSWC). The pots were allowed to dry out completely and the pots were weighed to estimate 0% rSWC. 6 weeks after sowing, half of the plants were maintained as normally watered control plants, while water was completely withdrawn from the remaining plants. The pots subjected to drought were weighed every day and the rSWC was measured using the formula:

# Pot weight – Empty pot weight – Dry soil weight x 100 Saturated pot weight – Dry soil weight

The drought was continued until the rSWC reached 20%. Plants were either sampled for the experiments described below, or to estimate biomass (rosette, stalks and siliques, and seed). Plants that were used to harvest leaf material were discarded immediately. If the plants were used to measure plant biomass, then the plants were re-watered and a normal watering regime was maintained until the first silique matured, at which point the plants were bagged and allowed to dry out. The dried rosette, reproductive structures (stalks and siliques) and seeds were separated and weighed to estimate vegetative, reproductive and total biomass.

# 2.3.2. Calculation of rosette area

Digital images of the plants were taken using a Panasonic DMC-GF6K camera and the images were analysed using the image processing software ImageJ

(<u>https://imagej.nih.gov/ij/</u>) to calculate the rosette area of the plants, as described by Bechtold *et al.* (2010).

# 2.3.3. Thermal imaging of drought-stressed and watered plants

Thermal images of both droughted and watered plants were taken at multiple points during the drought using the TH7100 Thermal Tracer (NEC Avio Infra-red Technologies Co. Ltd., Tokyo, Japan), as described by Bechtold *et al.* (2010). The images were analysed using the TH91-719 software (NEC San-ei Instruments, Ltd., Tokyo, Japan) to extract the average temperature of the rosettes.

# 2.3.4. Instantaneous measurements of assimilation rate and stomatal conductance

Instantaneous measurements of assimilation rate (A) and stomatal conductance ( $g_s$ ) were performed under growth conditions using a CIRAS-1 (PP Systems, Amesbury, USA) as described by Lawson and Weyers (1999). The measurements were taken at multiple points during the drought for both droughted and watered plants.

# 2.3.5. Measurement of hydrogen peroxide

100 mg of leaf material was harvested in liquid nitrogen and ground on ice with 500  $\mu$ l of 100 mM HCl. The samples were centrifuged at 12,000 g for 10 minutes at 4 °C. The supernatant was purified through an activated charcoal column to remove interfering contaminants in the sample. Hydrogen Peroxide (H<sub>2</sub>O<sub>2</sub>) in the samples was measured using Homovanillic acid (HVA; #306-08-1, Sigma-Aldrich®; Guilbault *et al.*, 1967). A master mix of 100  $\mu$ l of 50mM HVA and 50  $\mu$ l of 20 U/ml horseradish peroxidase (#P8375, Sigma-Aldrich®) was made and made up to 5 ml with 50mM HEPES. To 45  $\mu$ l of the master mix, 5  $\mu$ l of the extract was added and measured at an excitation of 315 nm and an emission of 425 nm using a FLUOstar Omega microplate reader (BMG LABTECH, Offenburg, Germany). The values obtained were compared against a standard curve of known concentrations of H<sub>2</sub>O<sub>2</sub> to determine the concentration of H<sub>2</sub>O<sub>2</sub> in the samples.

#### 2.3.6. Determination of electrolyte leakage

Electrolyte leakage was determined as described by Shi *et al.* (2012). 100 mg of fresh leaf material was used to measure electrolyte leakage in droughted and watered plants. The leaf material was cut into three pieces with a clean, sharp blade and washed three times with RO water to remove surface and cut-generated electrolytes. The cut leaf pieces were incubated in 10 ml of RO water for 24 hours in the dark. The initial conductivity of the solution ( $C_i$ ) was measured using the FG3 FiveGo<sup>TM</sup> Portable Conductivity Metre (Mettler Toledo<sup>TM</sup>, ThermoFisher Scientific), as per the manufacturer's instructions. The samples were boiled for 20 minutes in a boiling water bath, allowed to cool to RT and then the conductivity of the lysed tissue ( $C_{max}$ ) was measured. The electrolyte leakage of the plants was determined using the formula: ( $C_i / C_{max}$ ) x 100.

# 2.3.7. Calculation of relative leaf water content

Relative leaf water content was measured as described by Bechtold *et al.* (2016). Rosettes of plants subjected to drought and their corresponding controls were detached from the rest of the plant and the fresh weight was measured. They were then soaked in wet tissue paper for 1 week at 4 °C to saturate them with water. The weight of the saturated rosettes was taken and they were subsequently dried out completely and the dry weight taken. The relative leaf water content was calculated using the formula:

<u>Fresh Weight – Dry Weight</u> x 100 Saturated Weight – Dry Weight

#### 2.3.8. Measurement of Chlorophyll and Carotenoid content

50 mg of leaf material was frozen on dry ice and used to measure the level of Chlorophyll a, Chlorophyll b, Carotenoid content and Total Chlorophyll in droughted and watered plants using the equations of Hill *et al.* (1985). The samples were ground in 1 ml of 80% Acetone using a mortar and pestle kept on ice. The ground sample was centrifuged at 10,000 g for 5 minutes at 4 °C. 200  $\mu$ l of the supernatant was directly used to measure absorbance at 470 nm, 646 nm, 652 nm and 663 nm using a SPECTROstar Omega microplate reader (BMG LABTECH). Chlorophyll and Carotenoid content per fresh weight ( $\mu$ g/g) were measured using the following formulae:

Chlorophyll a =  $\frac{(12.15 \text{ x A}_{663}) - (2.55 \text{ x A}_{646})}{\text{Fresh Weight}}$ 

Chlorophyll b =  $(18.29 \times A_{646}) - (4.58 \times A_{663})$ Fresh Weight

Carotenoids =  $((1000 \times A_{470}) - (3.27 \times Chlorophyll a) - (104 \times Chlorophyll b)) / 229$ Fresh Weight

> Total Chlorophyll =  $(27.8 \times A_{652})$ Fresh Weight

## 2.3.9. Measurement of Anthocyanin content

Anthocyanin content was measured as described by Nakata *et al.* (2013). 50 mg of leaf material was frozen on dry ice and ground in 1ml (20 times the volume of fresh weight) extraction buffer using a mortar and pestle. The extraction buffer consisted of 45% Methanol and 5% Acetic Acid. This was then centrifuged at 12,000 g for 5 minutes at 4 °C. The supernatant was used directly to measure absorbance at 530 nm and 657 nm. The anthocyanin content (per g of fresh weight) in the samples was measured using the formula:

$$A_{530}/g \text{ F.W.} = (A_{530}) - (0.25 \text{ x } A_{657}) \text{ x } 20$$

#### 2.3.10. Measurement of flowering time

The flowering time of the droughted and watered plants was estimated by two methods: the number of leaves at emergence of the primary inflorescence (Bechtold *et al.*, 2010) and the number of days from sowing till the emergence of the primary inflorescence.

Chapter 3

# Modelling drought time-series transcriptome data to identify 'hub' genes in gene regulatory networks

#### 3.1. Introduction

A number of studies have been done that have measured whole transcriptome changes during drought (Seki *et al.*, 2002; Matsui *et al.*, 2008; Harb *et al.*, 2010, among others). However, these studies have only analysed a single time-point after the plant has experienced severe drought stress, and have not measured the changing dynamic as the drought progresses. The work described in this thesis is based on the work of Bechtold *et al.* (2016) in which a slow-drying time-series drought experiment was performed and whole transcriptome analysis was done using microarrays.

Differentially expressed genes from this analysis were used to model gene regulatory networks (GRNs) using Variational Bayesian State Space Modelling (VBSSM; Beal *et al.*, 2005). GRNs are generated that consist of 'hub' genes that are shown to have an interaction, either directly or indirectly, with other genes in the model, and thus the model is based around the 'hub' gene. The output of the modelling produces a directed diagram consisting of genes or 'nodes' connected to other nodes by 'edges' that indicate either activation or repression of the downstream gene. Nodes with a large number of connections originating from it are called 'hubs' and are the focus of further studies.

VBSSM has been used previously to generate GRNs for senescence (Breeze *et al.*, 2011). A model for the interactions of *ANAC092* was produced which correctly predicted known interactions, as well as generating novel interactions for further experimentation. Thus, VBSSM has good potential in identifying novel interactions between genes that would not normally be deduced based on transcriptome data only. One disadvantage of VBSSM is that only a limited number of genes (not more than 100) can be modelled at a time, and hence it is useful to cluster the list of differentially expressed genes into groups of smaller numbers of genes.

Clustering partitions a set of genes into groups based on the similarity of the genes. The similarity is usually determined based on simple vector distances, like Euclidean distance or Pearson's correlation coefficient (Thalamuthu *et al.*, 2006; Yona *et al.*, 2006). These algorithms find genes whose expression profiles look similar, i.e. they have highly correlated expressions, but are not suitable to picking out genes that regulate others. Genes that are regulated by other genes may have similar profiles to the regulating gene, but with a time lag, and these genes will not be clustered together using the above clustering algorithms (Kiddle *et al.*, 2010). Temporal Clustering by Affinity Propagation (TCAP) allows for the clustering of genes that have similar expression profiles even if the

profiles or delayed or inverted, and thus can account for genes that are regulated by other genes (Kiddle *et al.*, 2010).

This chapter describes the selection of genes for further analysis using TCAP and then the selection of clusters for modelling GRNs using VBSSM. Knockout lines and overexpressors for the hub genes were screened for subsequent phenotyping of these mutants under drought conditions, to elucidate the role, if any, of the identified hub genes in the drought response and to verify the GRN.

#### 3.2. Selection and hierarchical clustering of list of genes and cluster annotation

In the work of Bechtold *et al.* (2016), a time-series transcriptomics analysis was performed on drought-stressed Arabidopsis Col-4 plants. These plants were subjected to a progressive drought in which water was withdrawn until a relative soil water content of 20% was reached. This took 14 days, and each day drought-stressed and watered control plants were sampled during the middle of the photoperiod. RNA was extracted from these plant samples and used to measure the expression of >32,000 genes during drought and watered. All the genes were subjected to a Gaussian process two-sample test (GP2S; Stegle *et al.*, 2010) to identify differentially expressed genes between the two conditions, and each gene was scored accordingly and ranged from 50.49 to -22.12 (Bechtold *et al.*, 2016).

The work described in this thesis made use of the above list of genes. Genes with a GP2S score  $\geq$  5 were selected and the expression profiles of these genes were visually inspected to confirm differential expression under drought. Genes were considered differentially expressed when there was no overlap of the respective gene expression profiles between the drought-stressed and normally watered plants for at least two consecutive time-points. A total of 2190 unique genes were extracted from this list (this list of genes is given in Appendix A) and used for further analysis.

The list of 2190 genes was clustered using the clustering algorithm Temporal Clustering by Affinity Propagation (TCAP; Kiddle *et al.*, 2010). TCAP clusters genes based on similarity in expression profiles, including those with a time lag or an inverted expression profile, and hence is able to cluster genes that are not only co-regulated but potentially regulate each other. Using TCAP, all 2190 genes were clustered into 153 clusters, and each cluster consists of up- or down-regulated genes with similar gene expression profiles. The expression profiles of all the genes in Cluster 1, which was used subsequently to model gene networks in drought, are shown as an example in Figure 3.1. It shows how genes of similar expression profiles, though opposite in their expression pattern, are clustered together in Cluster 1. TCAP also aligns all the genes within the cluster, and from Figure 3.1B it can be seen that, overall, Cluster 1 is induced during drought.

38



Figure 3.1. An example of a gene cluster obtained from TCAP. The expression profiles of the genes in the cluster are shown; the expression profiles of the majority of the genes in the cluster are shown in continuous lines, while genes with an inverted expression profile are shown in dashed lines.

The 153 clusters obtained from the output of TCAP were analysed for over-represented terms related to Biological Processes using the Database for Annotation, Visualization and Integrated Discovery (DAVID v6.7; Huang *et al.*, 2009). Enriched terms were identified for only 88 of these clusters, however, only 26 clusters were considered to have significantly enriched terms, with a P-value < 0.01 and a False Discovery Rate (FDR)  $\leq$  3. Table 3.1 shows significantly enriched terms for all 26 clusters and the list of genes in each cluster is given in Appendix A.

| Cluster<br>Number | Direction of expression | Over-represented terms                                          |  |
|-------------------|-------------------------|-----------------------------------------------------------------|--|
| 1                 | Up                      | GO:0009056~catabolic process                                    |  |
| 2                 | Down                    | GO:0034728~nucleosome organization                              |  |
|                   |                         | GO:0006334~nucleosome assembly                                  |  |
|                   |                         | GO:0031497~chromatin assembly                                   |  |
|                   |                         | GO:0065004~protein-DNA complex assembly                         |  |
|                   |                         | GO:0006323~DNA packaging                                        |  |
|                   |                         | GO:0006333~chromatin assembly or disassembly                    |  |
|                   |                         | GO:0034622~cellular macromolecular complex assembly             |  |
|                   |                         | GO:0044085~cellular component biogenesis                        |  |
|                   |                         | GO:0006325~chromatin organization                               |  |
|                   |                         | GO:0034621~cellular macromolecular complex subunit organization |  |
|                   |                         | GO:0051276~chromosome organization                              |  |
|                   |                         | GO:0065003~macromolecular complex assembly                      |  |
|                   |                         | GO:0043933~macromolecular complex subunit organization          |  |
|                   |                         | GO:0015979~photosynthesis                                       |  |
|                   |                         | GO:0022607~cellular component assembly                          |  |
| 8                 | Up                      | GO:0044237~cellular metabolic process                           |  |
|                   |                         | GO:0009987~cellular process                                     |  |
| 11                | Up                      | GO:0031537~regulation of anthocyanin metabolic process          |  |
|                   |                         | GO:0043455~regulation of secondary metabolic process            |  |
|                   |                         | GO:0050896~response to stimulus                                 |  |
|                   |                         | GO:0042221~response to chemical stimulus                        |  |
|                   |                         | GO:0006950~response to stress                                   |  |
| 14                | Down                    | GO:0006412~translation                                          |  |
|                   |                         | GO:0034645~cellular macromolecule biosynthetic process          |  |
|                   |                         | GO:0009059~macromolecule biosynthetic process                   |  |
|                   |                         | GO:0010467~gene expression                                      |  |
|                   |                         | GO:0044267~cellular protein metabolic process                   |  |
|                   |                         | GO:0019538~protein metabolic process                            |  |
|                   |                         | GO:0044249~cellular biosynthetic process                        |  |
|                   |                         | GO:0009058~biosynthetic process                                 |  |
|                   |                         | GO:0044260~cellular macromolecule metabolic process             |  |
|                   |                         | GO:0043170~macromolecule metabolic process                      |  |

Table 3.1. The significantly over-represented terms for each of the clusters obtained from TCAP.

|    |      | GO:0042254~ribosome biogenesis                         |
|----|------|--------------------------------------------------------|
|    |      | GO:0022613~ribonucleoprotein complex biogenesis        |
|    |      | GO:0044237~cellular metabolic process                  |
|    |      | GO:0044238~primary metabolic process                   |
|    |      | GO:0044085~cellular component biogenesis               |
|    |      | GO:0008152~metabolic process                           |
|    |      | GO:0009987~cellular process                            |
| 16 | Down | GO:0009733~response to auxin stimulus                  |
|    |      | GO:0009725~response to hormone stimulus                |
| 18 | Down | GO:0006412~translation                                 |
|    |      | GO:0034645~cellular macromolecule biosynthetic process |
|    |      | GO:0009059~macromolecule biosynthetic process          |
|    |      | GO:0044249~cellular biosynthetic process               |
|    |      | GO:0009058~biosynthetic process                        |
| 19 | Up   | GO:0015995~chlorophyll biosynthetic process            |
|    |      | GO:0015994~chlorophyll metabolic process               |
|    |      | GO:0006779~porphyrin biosynthetic process              |
|    |      | GO:0033014~tetrapyrrole biosynthetic process           |
|    |      | GO:0006778~porphyrin metabolic process                 |
|    |      | GO:0033013~tetrapyrrole metabolic process              |
|    |      | GO:0046148~pigment biosynthetic process                |
|    |      | GO:0042440~pigment metabolic process                   |
| 20 | Up   | GO:0009737~response to abscisic acid stimulus          |
| 21 | Down | GO:0006325~chromatin organization                      |
|    |      | GO:0051276~chromosome organization                     |
|    |      | GO:0006334~nucleosome assembly                         |
|    |      | GO:0034728~nucleosome organization                     |
|    |      | GO:0031497~chromatin assembly                          |
|    |      | GO:0065004~protein-DNA complex assembly                |
|    |      | GO:0006323~DNA packaging                               |
|    |      | GO:0006333~chromatin assembly or disassembly           |
| 28 | Down | GO:0045087~innate immune response                      |
|    |      | GO:0006955~immune response                             |
|    |      | GO:0002376~immune system process                       |
| 40 | Down | GO:0044249~cellular biosynthetic process               |
|    |      | GO:0009058~biosynthetic process                        |

|                |                  | GO:0006412~translation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|----------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 42             | Up               | GO:0080028~nitrile biosynthetic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                |                  | GO:0050898~nitrile metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 48             | Down             | GO:0006412~translation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                |                  | GO:0044249~cellular biosynthetic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                |                  | GO:0034645~cellular macromolecule biosynthetic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                |                  | GO:0009059~macromolecule biosynthetic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                |                  | GO:0009058~biosynthetic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                |                  | GO:0010467~gene expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                |                  | GO:0044267~cellular protein metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                |                  | GO:0019538~protein metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                |                  | GO:0044237~cellular metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                |                  | GO:0044238~primary metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 49             | Down             | GO:0005975~carbohydrate metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                |                  | GO:0044262~cellular carbohydrate metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                |                  | GO:0044238~primary metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                |                  | GO:0006796~phosphate metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                |                  | GO:0006793~phosphorus metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 55             | Down             | GO:0006412~translation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translation<br>GO:0042398~cellular amino acid derivative biosynthetic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translation<br>GO:0042398~cellular amino acid derivative biosynthetic process<br>GO:0009813~flavonoid biosynthetic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translationGO:0042398~cellular amino acid derivative biosynthetic processGO:0009813~flavonoid biosynthetic processGO:0009812~flavonoid metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translationGO:0042398~cellular amino acid derivative biosynthetic processGO:0009813~flavonoid biosynthetic processGO:0009812~flavonoid metabolic processGO:0006575~cellular amino acid derivative metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translationGO:0042398~cellular amino acid derivative biosynthetic processGO:0009813~flavonoid biosynthetic processGO:0009812~flavonoid metabolic processGO:0006575~cellular amino acid derivative metabolic processGO:0009718~anthocyanin biosynthetic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translationGO:0042398~cellular amino acid derivative biosynthetic processGO:0009813~flavonoid biosynthetic processGO:0009812~flavonoid metabolic processGO:0006575~cellular amino acid derivative metabolic processGO:0009718~anthocyanin biosynthetic processGO:0046283~anthocyanin metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translationGO:0042398~cellular amino acid derivative biosynthetic processGO:0009813~flavonoid biosynthetic processGO:0009812~flavonoid metabolic processGO:0006575~cellular amino acid derivative metabolic processGO:0009718~anthocyanin biosynthetic processGO:0046283~anthocyanin metabolic processGO:0019748~secondary metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translationGO:0042398~cellular amino acid derivative biosynthetic processGO:0009813~flavonoid biosynthetic processGO:0009812~flavonoid metabolic processGO:0006575~cellular amino acid derivative metabolic processGO:0009718~anthocyanin biosynthetic processGO:0046283~anthocyanin metabolic processGO:0019748~secondary metabolic processGO:0009699~phenylpropanoid biosynthetic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 55             | Down<br>Up       | GO:0006412~translation<br>GO:0042398~cellular amino acid derivative biosynthetic process<br>GO:0009813~flavonoid biosynthetic process<br>GO:0009812~flavonoid metabolic process<br>GO:0006575~cellular amino acid derivative metabolic process<br>GO:0009718~anthocyanin biosynthetic process<br>GO:0046283~anthocyanin metabolic process<br>GO:0019748~secondary metabolic process<br>GO:0009699~phenylpropanoid biosynthetic process<br>GO:0009698~phenylpropanoid metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translation<br>GO:0042398~cellular amino acid derivative biosynthetic process<br>GO:0009813~flavonoid biosynthetic process<br>GO:0009812~flavonoid metabolic process<br>GO:0006575~cellular amino acid derivative metabolic process<br>GO:0009718~anthocyanin biosynthetic process<br>GO:0046283~anthocyanin metabolic process<br>GO:0019748~secondary metabolic process<br>GO:0009699~phenylpropanoid biosynthetic process<br>GO:0009698~phenylpropanoid metabolic process<br>GO:0006519~cellular amino acid and derivative metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translationGO:0042398~cellular amino acid derivative biosynthetic processGO:0009813~flavonoid biosynthetic processGO:0009812~flavonoid metabolic processGO:0006575~cellular amino acid derivative metabolic processGO:0009718~anthocyanin biosynthetic processGO:0046283~anthocyanin metabolic processGO:0019748~secondary metabolic processGO:0009699~phenylpropanoid biosynthetic processGO:0009698~phenylpropanoid metabolic processGO:0006519~cellular amino acid and derivative metabolic processGO:0009698~phenylpropanoid biosynthetic processGO:0009698~phenylpropanoid metabolic processGO:0006519~cellular amino acid and derivative metabolic processGO:0019438~aromatic compound biosynthetic process                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translation<br>GO:0042398~cellular amino acid derivative biosynthetic process<br>GO:0009813~flavonoid biosynthetic process<br>GO:0009812~flavonoid metabolic process<br>GO:0006575~cellular amino acid derivative metabolic process<br>GO:0009718~anthocyanin biosynthetic process<br>GO:0046283~anthocyanin metabolic process<br>GO:0019748~secondary metabolic process<br>GO:0009699~phenylpropanoid biosynthetic process<br>GO:0009698~phenylpropanoid metabolic process<br>GO:0009698~phenylpropanoid metabolic process<br>GO:0006519~cellular amino acid and derivative metabolic process<br>GO:0019438~aromatic compound biosynthetic process<br>GO:0006725~cellular aromatic compound metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translation<br>GO:0042398~cellular amino acid derivative biosynthetic process<br>GO:0009813~flavonoid biosynthetic process<br>GO:0009812~flavonoid metabolic process<br>GO:0006575~cellular amino acid derivative metabolic process<br>GO:0009718~anthocyanin biosynthetic process<br>GO:0046283~anthocyanin metabolic process<br>GO:0019748~secondary metabolic process<br>GO:0009699~phenylpropanoid biosynthetic process<br>GO:0009698~phenylpropanoid metabolic process<br>GO:0006519~cellular amino acid and derivative metabolic process<br>GO:0019438~aromatic compound biosynthetic process<br>GO:0006725~cellular aromatic compound metabolic process<br>GO:0006725~cellular aromatic compound metabolic process<br>GO:0046148~pigment biosynthetic process                                                                                                                                                                                                                                                                                                                                                           |  |
| 55<br>69       | Down<br>Up       | GO:0006412~translation<br>GO:0042398~cellular amino acid derivative biosynthetic process<br>GO:0009813~flavonoid biosynthetic process<br>GO:0009812~flavonoid metabolic process<br>GO:0006575~cellular amino acid derivative metabolic process<br>GO:0009718~anthocyanin biosynthetic process<br>GO:0046283~anthocyanin metabolic process<br>GO:0019748~secondary metabolic process<br>GO:0009699~phenylpropanoid biosynthetic process<br>GO:0009698~phenylpropanoid metabolic process<br>GO:0006519~cellular amino acid and derivative metabolic process<br>GO:0019438~aromatic compound biosynthetic process<br>GO:0006725~cellular aromatic compound metabolic process<br>GO:0046148~pigment biosynthetic process<br>GO:0042440~pigment metabolic process                                                                                                                                                                                                                                                                                                                                                                              |  |
| 55<br>69<br>87 | Down<br>Up<br>Up | GO:0006412~translationGO:0042398~cellular amino acid derivative biosynthetic processGO:0009813~flavonoid biosynthetic processGO:0009812~flavonoid metabolic processGO:0006575~cellular amino acid derivative metabolic processGO:0009718~anthocyanin biosynthetic processGO:0046283~anthocyanin metabolic processGO:0009699~phenylpropanoid biosynthetic processGO:0009698~phenylpropanoid metabolic processGO:0006519~cellular amino acid and derivative metabolic processGO:0009698~phenylpropanoid biosynthetic processGO:0006519~cellular amino acid and derivative metabolic processGO:0019438~aromatic compound biosynthetic processGO:0006725~cellular aromatic compound metabolic processGO:0046148~pigment biosynthetic processGO:0042440~pigment metabolic processGO:0009698~phenylpropanoid metabolic process                                                                                                                                                                                                                                                                                                                  |  |
| 55<br>69<br>87 | Down<br>Up<br>Up | GO:0006412~translationGO:0042398~cellular amino acid derivative biosynthetic processGO:0009813~flavonoid biosynthetic processGO:0009812~flavonoid metabolic processGO:0006575~cellular amino acid derivative metabolic processGO:0009718~anthocyanin biosynthetic processGO:0046283~anthocyanin metabolic processGO:0019748~secondary metabolic processGO:0009699~phenylpropanoid biosynthetic processGO:0009698~phenylpropanoid metabolic processGO:0006519~cellular amino acid and derivative metabolic processGO:0006519~cellular amino acid and derivative metabolic processGO:0019438~aromatic compound biosynthetic processGO:0046148~pigment biosynthetic processGO:0042440~pigment metabolic processGO:0006575~cellular amino acid derivative metabolic process |  |

|     |      | GO:0009812~flavonoid metabolic process                          |
|-----|------|-----------------------------------------------------------------|
|     |      | GO:0006725~cellular aromatic compound metabolic process         |
|     |      | GO:0019748~secondary metabolic process                          |
|     |      | GO:0009699~phenylpropanoid biosynthetic process                 |
|     |      | GO:0006519~cellular amino acid and derivative metabolic process |
|     |      | GO:0042398~cellular amino acid derivative biosynthetic process  |
|     |      | GO:0019438~aromatic compound biosynthetic process               |
| 94  | Down | GO:0006412~translation                                          |
| 103 | Up   | GO:0044272~sulfur compound biosynthetic process                 |
|     |      | GO:0006790~sulfur metabolic process                             |
|     |      | GO:0016144~S-glycoside biosynthetic process                     |
|     |      | GO:0019761~glucosinolate biosynthetic process                   |
|     |      | GO:0019758~glycosinolate biosynthetic process                   |
|     |      | GO:0019760~glucosinolate metabolic process                      |
|     |      | GO:0016143~S-glycoside metabolic process                        |
|     |      | GO:0019757~glycosinolate metabolic process                      |
|     |      | GO:0016138~glycoside biosynthetic process                       |
|     |      | GO:0016137~glycoside metabolic process                          |
|     |      | GO:0034637~cellular carbohydrate biosynthetic process           |
|     |      | GO:0016051~carbohydrate biosynthetic process                    |
|     |      | GO:0019748~secondary metabolic process                          |
|     |      | GO:0044262~cellular carbohydrate metabolic process              |
| 131 | Up   | GO:0050794~regulation of cellular process                       |
|     |      | GO:0050789~regulation of biological process                     |
| 142 | Down | GO:0009165~nucleotide biosynthetic process                      |
|     |      | GO:0034404~nucleobase, nucleoside and nucleotide biosynthetic   |
|     |      | process                                                         |
|     |      | GO:0034654~nucleobase, nucleoside, nucleotide and nucleic acid  |
|     |      | biosynthetic process                                            |
|     |      | GO:0009117~nucleotide metabolic process                         |
|     |      | GO:0006753~nucleoside phosphate metabolic process               |
|     |      | GO:0055086~nucleobase, nucleoside and nucleotide metabolic      |
|     |      | process                                                         |
|     |      | GO:0044271~nitrogen compound biosynthetic process               |
| 152 | Up   | GO:0042180~cellular ketone metabolic process                    |

The gene clusters that are upregulated during drought include those that are involved in various cellular metabolic processes (clusters 1, 8, 131, 152), regulation of anthocyanin metabolism and stress response (clusters 11, 69), chlorophyll biosynthetic genes (cluster 19), response to abscisic acid stimulus (cluster 20), nitrile biosynthetic processes (cluster 42), flavonoid biosynthetic processes (clusters 69, 87) and glucosinolate biosynthetic processes (cluster 103). On the other hand, genes that are downregulated during drought are those involved in nucleosome and chromatin organisation and assembly (clusters 2, 21), translation (clusters 14, 18, 40, 48, 55, 94), response to auxin (cluster 16), innate immune response (cluster 28), carbohydrate metabolic processes (cluster 49) and nucleotide biosynthetic processes (cluster 142).

In this work, four clusters of genes were selected to model gene regulatory networks using VBSSM. These are Clusters 1, 2, 8 and 16. The salient aspects of these gene clusters that explain the rationale for choosing these clusters are described below.

Cluster 1 contains genes that are enriched for catabolic processes. A closer look at the genes that make up this category reveals that they are involved in proteolysis and protein catabolic processes. These genes encode the following proteins: nuclear pore localisation protein (NPL4) involved in proteasome-mediated ubiquitin-dependent protein catabolic process (UniProt); F-box protein, FBW2, which forms a part of the SCF (ASKcullin-F-box) E3 ubiquitin ligase complex (Earley et al., 2010); a ubiquitin-conjugating enzyme 32 (UBC32); Autophagy-related protein 3 (ATG3), an E2 protein (Yamaguchi et al., 2012); Regulatory Particle AAA-ATPASE 2B (RPT2B), that forms a part of the proteasome complex (Lee et al., 2011). In addition to proteolysis-related genes, genes involved in other catabolic processes such as homogentisate 1, 2-dioxygenase (HGO), involved in tyrosine catabolism (Dixon and Edwards, 2006); Pheophytinase (PPH), involved in chlorophyll breakdown (Ren et al., 2010); Peroxin 10 (Pex10), involved in importing proteins to the peroxisome (Schumann et al., 2003) are also in this cluster. Thus, it appears that genes involved in different catabolic processes are present in cluster 1, and most of the genes in this cluster are up-regulated during drought, indicating there is increased catabolic activity in cells experiencing water deficit.

Cluster 8 was enriched for cellular metabolic processes and the genes in cluster 8 are involved in a range of different cellular metabolic processes. The gene products in this cluster include a number of transcription factors, a calmodulin-binding protein, a CBL-interacting protein kinase, Asparagine Synthetase, (ASN2) and Trehalose-6-Phosphate Phosphatase H (TPPH). Thus, it appears that there are a number of functionally different

genes in this cluster that are possibly co-expressed and co-regulated, and so the genes in this cluster were also chosen to model gene regulatory networks involved in the drought response.

In addition to these two gene clusters, clusters 2 and 16 were also chosen for the modelling. The genes in cluster 2 are involved in chromatin and nucleosome organisation and assembly and DNA packaging. These genes are down-regulated during drought, indicating that there is increased gene expression activity in drought-stressed plants. Cluster 16 consists of genes that are involved in response to auxin stimulus, in particular Small Auxin Up-regulated RNA (SAUR) genes. This group of genes is induced by auxin and promotes cell expansion (Spartz *et al.*, 2012). Thus, during drought, cell expansion is inhibited through the down-regulation of these genes. Modelling these clusters could help identify drought-mediated regulatory genes involved in gene expression and plant growth.

# 3.3. Gene networks were modelled and 'hub' genes identified from these models

Gene regulatory networks (GRNs) were modelled using Variational Bayesian State Space Modelling (VBSSM; Beal *et al.*, 2005). VBSSM is a dynamic Bayesian algorithm that uses time-series transcriptomics data to generate models of gene regulation. These models could help identify potentially important drought-responsive regulatory genes. One restriction of VBSSM is the number of genes that can be input (less than 100 genes), and so clustering all 2190 genes using TCAP not only helped to group together genes of similar expression profiles, but also created smaller genes lists that are suitable to input into VBSSM. The algorithm was run in MATLAB® with the settings: Number of seeds = 15; Maximum dimension of hidden states = 20; Maximum number of iterations = 2000. The networks with a confidence of 95% were used and viewed using Cytoscape 2.8.2.

Six GRNs were generated from the four clusters and the list of genes in each network is given in Appendix A. Two GRNs were generated using the genes in Cluster 1 which led to the identification of two hub genes, one from each network: an unknown hub gene whose protein contains the BTB/POZ domain (henceforth known as *POZ*), and *Flowering Locus D* (*FD*), a bZIP (Basic Leucine Zipper) protein involved in the positive regulation of flowering (Abe *et al.*, 2005). *POZ* was connected to all the genes in Cluster 1, while *FD* was connected to 55 out of a total of 56 genes. Both models generated from Cluster 1 are shown in Figures 3.3A and 3.4A. The modelling of genes from Cluster 2 generated a

gene network model that identified another unknown gene, designated as *UKTF* (Figure 3.5A), which was connected to 28 of the 57 genes in Cluster 2. From the genes in Cluster 8, two GRNs were generated and from these models two hub genes were identified: *Related to AP2.12* (*RAP2.12*; Figure 3.6A), a member of the ERF (Ethylene Response Factor) subfamily of the ERF/AP2 transcription factor family which has been found to be stress-responsive (Licausi *et al.*, 2011; Papdi *et al.*, 2015); *Basic Helix-Loop-Helix038* (*BHLH038*; Figure 3.7A), a protein that regulates iron homeostasis (Wang *et al.*, 2007). *RAP2.12* was connected to 23 of the 40 genes in the cluster, while *BHLH038* was connected to 36 genes. In the final GRN from genes in Cluster 16, *Anthocyaninless2* (*ANL2*; Figure 3.8A), a protein involved in the accumulation of anthocyanin and in root development (Kubo *et al.*, 1999), was identified as a hub gene in the gene network and was connected to all 24 genes in the cluster. In addition to these six genes, the flowering time gene *Agamous-like22* (*AGL22*; Hartmann *et al.*, 2000) was identified as a hub gene by Bechtold *et al.* (2016), and together with the above six, was also included in the analysis described in this thesis.

The expression profiles of all seven genes, as determined using the time-series transcriptomics analysis (Bechtold *et al.*, 2016), are shown in Figures 3.2-3.8. Genes were classified as early- or late-responding depending on whether differential expression occurred between days 1 to 7 or between days 8 to 13, respectively, as similarly described in Bechtold *et al.* (2016). Among the early-responsive genes were *AGL22* (Figure 3.2) and *UKTF* (Figure 3.5B), which were induced at days 7 and 6, respectively. The other genes were late-responding genes: *POZ* was induced on day 8 (Figure 3.3B), *BHLH038* was down-regulated on day 9 (Figure 3.7B), *FD* (Figure 3.4B) and *RAP2.12* (Figure 3.6B) were differentially expressed on day 10, and *ANL2* was induced on day 12 (Figure 3.8B).



Figure 3.2. The expression profile of *AGL22* under drought-stressed (blue) and control (green) conditions over the course of the drought period as determined in Bechtold *et al.* (2016).





(A) Gene regulatory network modelled from cluster 1 using VBSSM which identified *POZ* as a hub gene. The network with a confidence level of 95% is shown here. All 56 genes in the cluster were connected to *POZ*, including *FD*. (B) The expression profile of *POZ* under drought-stressed (blue) and control (green) conditions over the course of the drought period as determined in Bechtold *et al.* (2016).







Figure 3.5. Identification of the hub gene UKTF.

(A) Gene regulatory network modelled from cluster 2 using VBSSM which identified UKTF as a hub gene. The network with a confidence level of 95% is shown here. 28 of the 57 genes in the cluster were connected to UKTF. (B) The expression profile of UKTF under drought-stressed (blue) and control (green) conditions over the course of the drought period as determined in Bechtold *et al.* (2016).



Figure 3.6. Identification of the hub gene RAP2.12.

(A) Gene regulatory network modelled from cluster 8 using VBSSM which identified *RAP2.12* as a hub gene. The network with a confidence level of 95% is shown here. 23 of the 40 genes in the cluster were connected to *RAP2.12*, including *BHLH038*. (B) The expression profile of *RAP2.12* under drought-stressed (blue) and control (green) conditions over the course of the drought period as determined in Bechtold *et al.* (2016).



Figure 3.7. Identification of the hub gene BHLH038.

(A) Gene regulatory network modelled from cluster 8 using VBSSM which identified *BHLH038* as a hub gene. The network with a confidence level of 95% is shown here. 36 of the 40 genes in the cluster were connected to *BHLH038*, including *RAP2.12*. (B) The expression profile of *BHLH038* under drought-stressed (blue) and control (green) conditions over the course of the drought period as determined in Bechtold *et al.* (2016).



Figure 3.8. Identification of the hub gene ANL2.

(A) Gene regulatory network modelled from cluster 16 using VBSSM which identified *ANL2* as a hub gene. The network with a confidence level of 95% is shown here. All the genes in the cluster were connected to *ANL2*. (B) The expression profile of *ANL2* under drought-stressed (blue) and control (green) conditions over the course of the drought period as determined in Bechtold *et al.* (2016).

*AGL22* and *FD* are negative (Hartmann *et al.*, 2000) and positive (Abe *et al.*, 2005) regulators of flowering time, respectively, and also affect flower development. As described in section 3.6 of this chapter, UKTF was identified as a possible MADS-Box interacting protein (MIP1). A *MIP1* gene in *Antirrhinum majus* was shown to be involved in carpel development (Causier *et al.*, 2003) and so UKTF may also be involved in carpel development. As three of the hub genes identified are potentially involved in flower development, *AGL22*, *FD* and *UKTF* were modelled with other flower development / flowering-related genes present in the list of 2190 genes (section 3.2). There were 85 genes in total and this list is given in Appendix A. Figure 3.9 shows the gene network modelled from this list. It can be seen that *AGL22* and *UKTF* are hubs in this network, while *FD* is only present as a downstream target node.



Figure 3.9. Gene regulatory network generated using genes involved in flowering, showing *AGL22* and *UKTF* as hub genes. The network with a confidence level of 95% is shown here.

An analysis of the above seven genes was performed using The Bio-Analytic Resource (BAR) for Plant Biology (<u>http://bar.utoronto.ca/</u>; Winter *et al.*, 2007) to identify if these genes are abiotic stress-responsive. The abiotic stresses analysed were cold, osmotic, salt, drought and heat stresses, and the data is derived from the results obtained by Killian *et al.* (2007). In their experiment using 18 day-old seedlings grown on liquid media, cold stress was applied by maintaining the temperature of the medium at 4 °C using ice and a cold chamber, while osmotic and salt stresses were applied using 300 mM mannitol and 150 mM NaCl, respectively. Drought stress was applied by exposing the plants to a stream of air for 15 minutes till 10% fresh weight was lost, and heat stress was applied by exposing the seedlings to 38 °C for 3 hours. Shoots and roots were sampled separately at 0, 0.5, 1, 3, 6, 12 and 24 hours for all stresses, except heat which also included 0.25 and 4 hours samples.

The results for six of the seven genes are shown in Figures 3.10-3.15, as no data was available for *BHLH038*. It can be seen that all the genes were differentially expressed in either shoots or roots or both under all stress conditions; however, only *AGL22*, *FD* and *ANL2* were drought-responsive, while *AGL22*, *POZ*, *FD*, *RAP2.12* were osmotic stress-responsive. The nature of the drought stress used could explain the discrepancy between this analysis and the results of the microarray analysis by Bechtold *et al.* (2016). Thus, it would appear that VBSSM is able to identify known abiotic stress-responsive genes which could be potentially important in regulating gene networks during drought. The subsequent sections describe the isolation of knockouts and overexpressors of these seven genes, as well as *in silico* characterisation of the unknown hub genes *UKTF* and *POZ*.



Figure 3.10. BAR analysis for *AGL22* in shoots and roots under different abiotic stresses. The gene was induced in shoots by cold, osmotic and drought stresses, and in roots by cold and heat stresses. *AGL22* was also down-regulated in shoots by osmotic and salt stresses, and in roots by salt stress.



Figure 3.11. BAR analysis for *POZ* in shoots and roots under different abiotic stresses. The gene was induced in shoots by osmotic and salt stresses. *POZ* was also down-regulated in both shoots and roots by heat stress.


Figure 3.12. BAR analysis for *FD* in shoots and roots under different abiotic stresses. The gene was induced in shoots by cold, osmotic, salt, drought and heat stresses, and in roots by cold stress. *FD* was also down-regulated in shoots by cold, osmotic, salt and drought stresses, and in roots by osmotic stress.



Figure 3.13. BAR analysis for *UKTF* in shoots and roots under different abiotic stresses. The gene was down-regulated in shoots by cold and heat stresses, and in roots by cold, osmotic and salt stresses.



Figure 3.14. BAR analysis for *RAP2.12* in shoots and roots under different abiotic stresses. The gene was induced in shoots by cold and osmotic stresses.



Figure 3.15. BAR analysis for *ANL2* in shoots and roots under different abiotic stresses. The gene was induced in shoots by drought stress and in roots by cold stress. *ANL2* was also down-regulated in shoots by cold and heat stresses, and in roots by osmotic, salt and heat stresses.

## 3.4. Isolation of knockouts for hub genes

A number of T-DNA insertion lines (SALK, SAIL and GABI-Kat lines) for each of the hub genes were selected and ordered from the Nottingham Arabidopsis Stock Centre (NASC; <u>http://arabidopsis.org.uk/</u>). A list of all the lines ordered and screened is in Appendix B. These lines were screened by PCR to verify the presence of the T-DNA insertion, and the expression levels of the respective genes of interest were analysed using RT-PCR.

DNA was extracted from a single leaf and used in PCR to screen for T-DNA insertions in the obtained lines. As mentioned in Chapter 2, the PCR was done using gene-specific and insertion-specific primers in the combinations of: the gene-specific forward primer with the gene-specific reverse primer (F+R), the gene-specific forward primer with the insertion-specific primer (F+I) and the gene-specific reverse primer with the insertion-specific primer (R+I) as shown in Figure 2.1. At least 10 plants from each of the lines were analysed to identify at least one homozygote for the T-DNA insertion in the gene of interest. PCR products obtained in the F+I and R+I reactions were sequenced through the DNA sequencing company GATC Biotech AG (Cologne, Germany), to map the position of the insertions within the genes. Gene knockout mutants were then identified from positive, homozygous T-DNA insertion lines, by RT-PCR with primers amplifying the full-length protein-coding sequence. The sequences of all the primers used for screening and RT-PCR are available in Appendix C.

Figures 3.16 to 3.22 show the results obtained from screening knockout mutant plants. Only the lines that were subsequently used for further experiments and analyses are listed in Table 3.2 and described below. All the T-DNA insertional lines obtained from NASC and screened in this project are given in Appendix B. The figures show gel pictures confirming homozygous plants obtained from screening the T-DNA insertion lines and the position of the insertion(s) mapped within the gene by sequencing. The results of the RT-PCR showing the lack of full-length protein-coding sequence in these lines are also shown.

As shown in Figures 3.16A and C, two T-DNA insertional lines were identified for *AGL22* that were homozygous for the presence of the insertion. *agl22-3* was found to contain two insertions within the gene, the positions and orientations of which are shown in Figure 3.16B. *agl22-4* was found to contain a single T-DNA insertion in *AGL22*, as shown in Figures 3.16C and D. Figure 3.16E shows the absence of the full-length coding sequence of *AGL22* in both *agl22-3* and *agl22-4* compared to the Col-0, confirming that these two

lines are knockouts of *AGL22*. Compared to Col-0, knockouts of *AGL22* display an early flowering phenotype as shown in Figure 3.16F.

Two T-DNA insertional lines were identified for *POZ*, as shown in Figure 3.17, and both lines were found to have two insertions within the gene (Figures 3.17A and C). When the positions of the insertions were ascertained by sequencing, the insertions were found to be in exactly the same positions in both lines (Figures 3.17B and D). Despite the apparent mix-up of these two lines at NASC, they were treated as two independent lines for the remainder of this thesis, as no other T-DNA insertional lines were available for *POZ*. Both lines were confirmed as knockouts of the gene, as shown in Figure 3.17E. Under normal conditions, visually there appeared to be no difference in the phenotype of the knockouts compared to the wild-type (Figure 3.17F).

Only one T-DNA insertional mutant was identified for *FD* (*fd-5*; Figure 3.18A and B), and this was determined to be a knockdown mutant of the gene (Figure 3.18C), even though it has been published as a knockout mutant (Wigge *et al.*, 2005). There appeared to be no visual difference in phenotype between Col-0 and *fd-5* (Figure 3.18D). A knockout of *FD*, *fd-4*, was obtained from Dr. Lucio Conti, University of Milan (Wigge *et al.*, 2005; Riboni *et al.*, 2013) and this was found to have a larger rosette than Col-0 (Figure 3.18E).

Two T-DNA insertional lines of *UKTF* were identified, as shown in Figure 3.19. UKTF-3 was found to contain two T-DNA insertions within the gene (Figures 3.19A and B), while UKTF-4 had one (Figures 3.19C and D). When RT-PCR was done for these lines, it was seen that *UKTF* was overexpressed, rather than knocked out (Figure 3.19E), due to the presence of the insertions within the promoter region of the gene in both lines (Figures 3.19B and D). The up-regulation of *UKTF* in these lines was confirmed by qPCR (Figure 3.19F), showing approximately 9-fold and 12-fold overexpression of the gene in UKTF-3 and UKTF-4 compared to Col-0. However, there was no visual difference in the phenotype of these overexpressing plants, compared to the wild-type (Figure 3.19G).

For each of the genes *RAP2.12*, *BHLH038* and *ANL2*, two T-DNA insertional mutants were identified as shown in Figures 3.20, 3.21 and 3.22. *rap2.12-1* was found to contain two T-DNA insertions within the gene (Figures 3.20A and B), while *rap2.12-3* had only one insertion within the gene (Figures 3.20C and D). Both lines were confirmed as knockouts of *RAP2.12* (Figure 3.20E), but visually did not show any phenotypic differences with Col-0 (Figure 3.20F). Both *bhlh038-2* and *bhlh038-4* were found to contain two copies of the insertion within the gene (Figures 3.21A, B, C and D) and were

confirmed as knockouts (Figure 3.21E). Once again, there was no visual difference in the phenotype of these mutants compared with the wild-type (Figure 3.21F).

Two T-DNA insertion lines for *ANL2*, each carrying a single copy of the insertion within the gene, were identified as shown in Figure 3.22. Both *anl2-2* and *anl2-4* were verified to be knockouts of *ANL2* (Figure 3.22E). As seen in Figure 3.21, the two knockouts of *ANL2* appeared to produce slightly curled leaves, but otherwise appeared to be similar to the wild-type, particularly in terms of rosette area (data shown in Chapter 4).

| Gene name | Gene locus ID | T-DNA insertional lines                                            |  |  |  |  |  |  |
|-----------|---------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| AGL22     | AT2G22540     | <i>agl</i> 22-3 (SALK_141674)<br><i>agl22-4</i> (SAIL_583_C08)     |  |  |  |  |  |  |
| POZ       | AT1G55760     | poz-2 (SALK_127778c)<br>poz-3 (SALK_075267c)                       |  |  |  |  |  |  |
| FD        | AT4G35900     | fd-5 (SALK_150991)                                                 |  |  |  |  |  |  |
| UKTF      | AT1G16750     | UKTF-3 (SALK_144830c)<br>UKTF-4 (SAIL_327_D01)                     |  |  |  |  |  |  |
| RAP2.12   | AT1G53910     | rap2.12-1 (GK-503A11)<br>rap2.12-3 (GK-137C12)                     |  |  |  |  |  |  |
| BHLH038   | AT3G56970     | <i>bhlh038-2</i> (SALK_108159c)<br><i>bhlh038-4</i> (SAIL_447_H01) |  |  |  |  |  |  |
| ANL2      | AT4G00730     | anl2-2 (SALK_000196c)<br>anl2-4 (SAIL_418_C10)                     |  |  |  |  |  |  |

Table 3.2. T-DNA insertional lines for the hub genes used in subsequent analyses.



Figure. 3.16. Identification and phenotype of T-DNA insertion lines for AGL22.

(A) PCR showing *agl22-3* is homozygous for the presence of T-DNA insertions in *AGL22*. (B) Schematic diagram showing the position of the T-DNA insertions and the primer-binding sites in the gene for *agl22-3*. The open rectangles represent the untranslated regions (UTRs), the black rectangles represent the exons and the introns are represented by lines. The black arrows indicate the orientation of the insertions in the gene and the bar indicates 100 bases of the gene. The red arrows indicate the binding sites of the screening primers and the lengths indicate the distance between the primer and the insertion site. (C) PCR showing *agl22-4* is homozygous for the presence of a T-DNA insertion in *AGL22*. (D) Schematic diagram showing the position of the T-DNA insertion and the primer-binding sites in the gene for *agl22-3* and *agl22-4* compared to the control gene, Actin. (F) Image showing the early-flowering phenotype of *agl22-3* (right) compared to a wild-type Col-0 (left).





Figure. 3.17. Identification of T-DNA insertion lines for POZ.

(A) PCR showing *poz-2* is homozygous for the presence of T-DNA insertions in *POZ*. (B) Schematic diagram showing the position of the T-DNA insertions and the primer-binding sites in the gene for *poz-2*. The open rectangles represent the untranslated regions (UTRs), the black rectangles represent the exons and the introns are represented by lines. The black arrows indicate the orientation of the insertions in the gene and the bar indicates 100 bases of the gene. The red arrows indicate the binding sites of the screening primers and the lengths indicate the distance between the primer and the insertion site. (C) PCR showing *poz-3* is homozygous for the presence of T-DNA insertions in *POZ*. (D) Schematic diagram showing the position of the T-DNA insertions and the primer-binding sites in the gene for *poz-3*. (E) Results of the RT-PCR for both lines showing the absence of a full-length transcript for *poz-2* and *poz-3* compared to the control gene, Actin. (F) Images of *poz-2* and *poz-3* compared to the wild-type Col-0.







Ε

Col-0

fd-4



Figure. 3.18. Identification of a T-DNA insertion line for FD.

(A) PCR showing *fd-5* is homozygous for the presence of a T-DNA insertion in *FD*. (B) Schematic diagram showing the position of the T-DNA insertion and the primer-binding sites in the gene for fd-5. The open rectangles represent the untranslated regions (UTRs), the black rectangles represent the exons and the introns are represented by lines. The black arrows indicate the orientation of the insertions in the gene and the bar indicates 100 bases of the gene. The red arrows indicate the binding sites of the screening primers and the lengths indicate the distance between the primer and the insertion site. (C) Results of the RT-PCR for fd-5 showing the reduced levels of the full-length transcript compared to the control gene, Actin. Images of *fd-5* (D) and *fd-4* (E) compared to the wild-type Col-0. The knockout *fd-4* has a larger rosette than Col-0, while no visual difference is seen between *fd-5* and Col-0.



#### Figure. 3.19. Identification of T-DNA insertion lines for UKTF.

(A) PCR showing UKTF-3 is homozygous for the presence of T-DNA insertions in *UKTF*. (B) Schematic diagram showing the position of the T-DNA insertions and the primer-binding sites in the gene for UKTF-3. The open rectangles represent the untranslated regions (UTRs), the black rectangles represent the exons and the introns are represented by lines. The black arrows indicate the orientation of the insertions in the gene and the bar indicates 100 bases of the gene. The red arrows indicate the binding sites of the screening primers and the lengths indicate the distance between the primer and the insertion site. (C) PCR showing UKTF-4 is homozygous for the presence of a T-DNA insertion in *UKTF*. (D) Schematic diagram showing the position of the T-DNA insertion and the primer-binding sites in the gene for UKTF-4. (E) Results of the RT-PCR for both lines showing the absence of a full-length transcript for UKTF-3 and UKTF-4 compared to the control gene, Actin. (F) qPCR results confirming the overexpression of *UKTF* in UKTF-3 and UKTF-4. (G) Images of UKTF-3 and UKTF-4 compared to the wild-type Col-0.





rap2.12-3



Figure. 3.20. Identification of T-DNA insertion lines for RAP2.12.

Col-0

(A) PCR showing *rap2.12-1* is homozygous for the presence of T-DNA insertions in *RAP2.12*. (B) Schematic diagram showing the position of the T-DNA insertions and the primer-binding sites in the gene for *rap2.12-1*. The open rectangles represent the untranslated regions (UTRs), the black rectangles represent the exons and the introns are represented by lines. The black arrows indicate the orientation of the insertions in the gene and the bar indicates 100 bases of the gene. The red arrows indicate the binding sites of the screening primers and the lengths indicate the distance between the primer and the insertion site. (C) PCR showing *rap2.12-3* is homozygous for the presence of a T-DNA insertion in *RAP2.12*. (D) Schematic diagram showing the position of the T-DNA insertion and the primer-binding sites in the gene for *rap2.12-3*. (E) Results of the RT-PCR for both lines showing the absence of a full-length transcript for *rap2.12-1* and *rap2.12-3* compared to the wild-type Col-0.





bhlh038-4



### Figure. 3.21. Identification of T-DNA insertion lines for BHLH038.

Col-0

(A) PCR showing *bhlh038-2* is homozygous for the presence of T-DNA insertions in *BHLH038*. (B) Schematic diagram showing the position of the T-DNA insertions and the primer-binding sites in the gene for *bhlh038-2*. The open rectangles represent the untranslated regions (UTRs), the black rectangles represent the exons and the introns are represented by lines. The black arrows indicate the orientation of the insertions in the gene and the bar indicates 100 bases of the gene. The red arrows indicate the binding sites of the screening primers and the lengths indicate the distance between the primer and the insertion site. (C) PCR showing bhlh038-4 is homozygous for the presence of T-DNA insertions in *BHLH038*. (D) Schematic diagram showing the position of the T-DNA insertions and the primer-binding sites in the gene for *bhlh038-4*. (E) Results of the RT-PCR for both lines showing the absence of a full-length transcript for *bhlh038-2* and *bhlh038-4* compared to the wild-type Col-0.







anl2-4



Figure. 3.22. Identification of T-DNA knockout lines for ANL2.

Col-0

(A) PCR showing *anl2-2* is homozygous for the presence of a T-DNA insertion in *ANL2*. (B) Schematic diagram showing the position of the T-DNA insertion and the primer-binding sites in the gene for *anl2-2*. The open rectangles represent the untranslated regions (UTRs), the black rectangles represent the exons and the introns are represented by lines. The black arrows indicate the orientation of the insertions in the gene and the bar indicates 100 bases of the gene. The red arrows indicate the binding sites of the screening primers and the lengths indicate the distance between the primer and the insertion site. (C) PCR showing *anl2-4* is homozygous for the presence of a T-DNA insertion in *ANL2*. (D) Schematic diagram showing the position of the T-DNA insertion and the primer-binding sites in the gene for *anl2-4*. (E) Results of the RT-PCR for both lines showing the absence of a full-length transcript for *anl2-2* and *anl2-4* compared to the control gene, Actin. (F) Images of *anl2-2* and *anl2-4* compared to the wild-type Col-0.

## 3.5. Generation of overexpressing lines for the hub genes

Col-0 plants overexpressing each of the seven genes were generated using the Gateway®-compatible destination vector, pEarleyGate (Figure 3.23; Earley *et al.*, 2006). The full-length protein-coding sequence (from the translation start codon to the stop codon) of the gene of interest was amplified from Col-0 cDNA using the Phusion® Hot Start II High-Fidelity DNA polymerase (Finnzymes). The primers used to amplify the gene of interest are given in Appendix C. The forward primer contained the CACC sequence at the 5' end for directional cloning into the pENTR<sup>™</sup>/D-TOPO® vector (ThermoFisher Scientific), as per the supplier's instructions. The entry vector was then used for LR cloning of the gene of interest into the pEarleyGate vector using the LR Clonase<sup>™</sup> II Enzyme Mix (ThermoFisher Scientific), as per the supplier's instruction as described in Chapter 2.



Figure. 3.23. Vector map of the destination vector pEarleyGate.

The expression vectors were transformed into Arabidopsis Col-0 plants by the floral dip method (Clough and Bent, 1998). T<sub>1</sub> seeds obtained from these plants were screened on soil by watering with Basta® (Bayer CropScience Ltd.) until the negative, untransformed plants appeared yellow and died out. A single leaf (approximately 100 mg of fresh weight) was taken from the positive transformants and RNA was extracted to confirm overexpression of the gene of interest using qPCR (the primer sequences used for qPCR are given in Appendix C). Figures 3.24-3.30 show the general strategy used to clone the hub genes into the pEarleyGate vector, as well as confirmation of the cloning process at each stage. The expression levels for the independent, overexpressing lines obtained for each of the genes are also shown.

Only one homozygous line each was obtained for AGL22 and FD in the T<sub>2</sub> generation, namely AGL220x-2 and FDox-7, and these were used for subsequent experiments

described in Chapter 4. All other available lines for these two genes and the other genes were segregating in the  $T_2$  and  $T_3$  generations and so were not used for phenotyping due to lack of time. Two lines of positive transformants for *RAP2.12* were identified, but it was not possible to determine the level of overexpression of the gene in these lines within the available time frame.

In addition to the overexpressors of *AGL22* generated here, another overexpressing line, henceforth known as AGL220x-10, was obtained from Dr. Lucio Conti of the University of Milan (Masiero *et al.*, 2004; Riboni *et al.*, 2013). Both AGL220x-10 and AGL220x-2 plants produced the phenotype of sepaloid petals as shown in Figure 3.24F and as described in Masiero *et al.* (2004).



| Length of          | Digestion o<br>plass           | of pENTR™<br>mid                   | Expected length of<br>fragments after                   |  |  |  |  |  |
|--------------------|--------------------------------|------------------------------------|---------------------------------------------------------|--|--|--|--|--|
| coding<br>sequence | Restriction<br>enzymes<br>used | Expected<br>length of<br>fragments | digestion of<br>pEarleyGate<br>plasmid with <i>Notl</i> |  |  |  |  |  |
| 723 bp             | Mlul                           | 1507 bp                            | 5158 bp                                                 |  |  |  |  |  |
|                    |                                | 932 bp                             | 2772 bp                                                 |  |  |  |  |  |
|                    |                                | 846 bp                             | 1532 bp                                                 |  |  |  |  |  |
|                    |                                |                                    | 1290 bp                                                 |  |  |  |  |  |



AGL220x-1 AGL220x-2 AGL220x-3 AGL220x-4 AGL220x-5

74

AGL22ox-10



Ε



Figure 3.24. Generation of overexpressing lines of AGL22.

(A) Cloning strategy used to clone *AGL22* into the pEarleyGate vector using the Gateway® technology. The gel images show confirmation of the expected PCR and restriction digestion products at each stage of the cloning process, as given in the table. (B) The vector maps for the entry and destination vectors showing the restriction sites. (C) qPCR results measuring total transcript levels of *AGL22* in the independent plant lines relative to wild-type levels. The values are mean + standard error (n=3). (D) qPCR results measuring total transcript levels of *AGL22* in AGL22ox-10 relative to wild-type levels. The values are mean + standard error (n=3). (E) Images of AGL22ox-10 and AGL22ox-2 compared to the wild-type Col-0. Both overexpressors produced a larger rosette than the Col-0. (F) Flowers of overexpressors of *AGL22* produce sepaloid petals (indicated by arrows) compared to wild-type flowers.



| Length of          | Digestion o<br>plası           | of pENTR™<br>mid                   | Expected length of<br>fragments after                   |
|--------------------|--------------------------------|------------------------------------|---------------------------------------------------------|
| coding<br>sequence | Restriction<br>enzymes<br>used | Expected<br>length of<br>fragments | digestion of<br>pEarleyGate<br>plasmid with <i>Notl</i> |
| 990 bp             | Mlul and                       | 1533 bp                            | 5158 bp                                                 |
|                    | пшиш                           | 1105 bp                            | 3039 bp                                                 |
|                    |                                | 932 bp                             | 1532 bp                                                 |
|                    |                                |                                    | 1290 bp                                                 |



Figure 3.25. Generation of overexpressing lines of POZ.

(A) Cloning strategy used to clone POZ into the pEarleyGate vector using the Gateway® technology. The gel images show confirmation of the expected PCR and restriction digestion products at each stage of the cloning process, as given in the table. (B) The vector maps for the entry and destination vectors showing the restriction sites. (C) qPCR results measuring total transcript levels of POZ in the independent plant lines relative to wild-type levels. The values are mean + standard error (n=3).



| Length of          | Digestion o<br>plası             | of pENTR™<br>mid                   | Expected length of<br>fragments after                   |
|--------------------|----------------------------------|------------------------------------|---------------------------------------------------------|
| coding<br>sequence | Restriction<br>enzymes<br>used   | Expected<br>length of<br>fragments | digestion of<br>pEarleyGate<br>plasmid with <i>Notl</i> |
| 858 bp             | <i>EcoRI</i> and<br><i>Pvull</i> | 1942 bp<br>976 bp<br>520 bp        | 5158 bp<br>2907 bp<br>1532 bp                           |
|                    |                                  |                                    | 1290 bp                                                 |

В



С





Figure 3.26. Generation of overexpressing lines of FD.

(A) Cloning strategy used to clone FD into the pEarleyGate vector using the Gateway® technology. The gel images show confirmation of the expected PCR and restriction digestion products at each stage of the cloning process, as given in the table. (B) The vector maps for the entry and destination vectors showing the restriction sites. (C) qPCR results measuring total transcript levels of FD in the independent plant lines relative to wild-type levels. The values are mean + standard error (n=3). (D) Image of FDox-7 compared to the wild-type Col-0.



UKTF plasmid

| Length of          | Digestion o<br>plası           | f pENTR™<br>nid                    | Expected length of<br>fragments after                   |
|--------------------|--------------------------------|------------------------------------|---------------------------------------------------------|
| coding<br>sequence | Restriction<br>enzymes<br>used | Expected<br>length of<br>fragments | digestion of<br>pEarleyGate<br>plasmid with <i>Notl</i> |
| 1590 bp            | Notl and Pstl                  | 3554 bp                            | 5158 bp                                                 |
|                    |                                | 616 bp                             | 3639 bp                                                 |
|                    |                                |                                    | 1532 bp                                                 |
|                    |                                |                                    | 1290 bp                                                 |



Figure 3.27. Generation of overexpressing lines of UKTF.

(A) Cloning strategy used to clone *UKTF* into the pEarleyGate vector using the Gateway® technology. The gel images show confirmation of the expected PCR and restriction digestion products at each stage of the cloning process, as given in the table. (B) The vector maps for the entry and destination vectors showing the restriction sites. (C) qPCR results measuring total transcript levels of UKTF in the independent plant lines relative to wild-type levels. The values are mean + standard error (n=3).



| Length of          | Digestion o<br>plasi           | f pENTR™<br>nid                    | Expected length of<br>fragments after<br>digestion of<br>pEarleyGate<br>plasmid with <i>Noti</i> |  |  |  |  |  |
|--------------------|--------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| coding<br>sequence | Restriction<br>enzymes<br>used | Expected<br>length of<br>fragments |                                                                                                  |  |  |  |  |  |
| 1077 bp            | Notl and Pstl                  | 3140 bp                            | 5158 bp                                                                                          |  |  |  |  |  |
|                    |                                | 517 bp                             | 3126 bp                                                                                          |  |  |  |  |  |
|                    |                                |                                    | 1532 bp                                                                                          |  |  |  |  |  |
|                    |                                |                                    | 1290 bp                                                                                          |  |  |  |  |  |



Figure 3.28. Generation of overexpressing lines of RAP2.12.

(A) Cloning strategy used to clone *RAP2.12* into the pEarleyGate vector using the Gateway® technology. The gel images show confirmation of the expected PCR and restriction digestion products at each stage of the cloning process, as given in the table. (B) The vector maps for the entry and destination vectors showing the restriction sites.



| Length of          | Digestion o<br>plasi           | of pENTR™<br>mid                   | Expected length of<br>fragments after                   |  |  |  |  |  |
|--------------------|--------------------------------|------------------------------------|---------------------------------------------------------|--|--|--|--|--|
| coding<br>sequence | Restriction<br>enzymes<br>used | Expected<br>length of<br>fragments | digestion of<br>pEarleyGate<br>plasmid with <i>Notl</i> |  |  |  |  |  |
| 762 bp             | Mlul and                       | 1735 bp                            | 5158 bp                                                 |  |  |  |  |  |
|                    | HindIII                        | 932 bp                             | 2811 bp                                                 |  |  |  |  |  |
|                    |                                | 675 bp                             | 1532 bp                                                 |  |  |  |  |  |
|                    |                                |                                    | 1290 bp                                                 |  |  |  |  |  |



BHLH038ox-1 BHLH038ox-2 BHLH038ox-3 BHLH038ox-4 BHLH038ox-5

Figure 3.29. Generation of overexpressing lines of BHLH038.

(A) Cloning strategy used to clone *BHLH038* into the pEarleyGate vector using the Gateway® technology. The gel images show confirmation of the expected PCR and restriction digestion products at each stage of the cloning process, as given in the table. (B) The vector maps for the entry and destination vectors showing the restriction sites. (C) qPCR results measuring total transcript levels of *BHLH038* in the independent plant lines relative to wild-type levels. The values are mean + standard error (n=3).



| Length of          | Digestion o<br>plasi           | of pENTR™<br>mid                   | Expected length of<br>fragments after                   |  |  |  |  |
|--------------------|--------------------------------|------------------------------------|---------------------------------------------------------|--|--|--|--|
| coding<br>sequence | Restriction<br>enzymes<br>used | Expected<br>length of<br>fragments | digestion of<br>pEarleyGate<br>plasmid with <i>Notl</i> |  |  |  |  |
| 2409 bp            | Mlul                           | 3006 bp                            | 5158 bp                                                 |  |  |  |  |
|                    |                                | 1051 bp                            | 4458 bp                                                 |  |  |  |  |
|                    |                                | 932 bp                             | 1532 bp                                                 |  |  |  |  |
|                    |                                |                                    | 1290 bp                                                 |  |  |  |  |



Figure 3.30. Generation of overexpressing lines of ANL2.

(A) Cloning strategy used to clone *ANL2* into the pEarleyGate vector using the Gateway® technology. The gel images show confirmation of the expected PCR and restriction digestion products at each stage of the cloning process, as given in the table. (B) The vector maps for the entry and destination vectors showing the restriction sites. (C) qPCR results measuring total transcript levels of *ANL2* in the independent plant lines relative to wild-type levels. The values are mean + standard error (n=3).

# 3.6. Characterisation of the unknown protein UKTF

UKTF is annotated in The Arabidopsis Information Resource (TAIR) to be a protein of unknown function having the domain of unknown function, DUF547 (InterPro: IPR006869). To further characterise UKTF, the protein sequence was obtained from TAIR and a protein Basic Local Alignment Search Tool (BLASTP; Altschul *et al.*, 1990) search was done using this sequence. BLASTP was accessed through the link: <u>http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins</u>.

As part of the result, a graphic is displayed from NCBI's Conserved Domains Database (CDD; Marchler-Bauer *et al.*, 2015) that indicates conserved domains in the query protein (Figure 3.31). UKTF has two domains, MIP1 (MADS-box interacting protein1) which contains a leucine zipper region, and DUF547. It also has the multi-domain region, Mitotic Arrest Deficient (MAD) domain, which is characteristic of the mitotic checkpoint protein, MAD1. The list of proteins generated from the BLASTP search are annotated to contain the DUF547 and MIP1 domains and all of them are plant proteins of unknown function or hypothetical proteins.

| 1 | 1 | _     | _     | 75<br> |      |     |     |     |   | 150 |  |  | 22 | 5 |  |  | 3 | 00 |     |    |    | 1 | 375  |    |    |    |     |    | 450 | _ |  |  | 529 |
|---|---|-------|-------|--------|------|-----|-----|-----|---|-----|--|--|----|---|--|--|---|----|-----|----|----|---|------|----|----|----|-----|----|-----|---|--|--|-----|
|   |   |       | Lz:   | ipper  | -HIP | 1   |     |     |   |     |  |  |    |   |  |  |   |    |     |    |    | 1 | UF54 | 7  |    |    |     |    | 2   |   |  |  |     |
|   |   | Lzipp | ⊳er-t | IP1    | supe | fan | ily |     |   |     |  |  |    |   |  |  |   |    | DUI | F5 | 47 | 5 | sup  | er | fa | mj | ily | I. |     |   |  |  |     |
|   |   |       |       |        |      |     | 1   | ٩АГ | ) |     |  |  |    |   |  |  |   |    |     |    |    |   |      |    |    |    |     |    |     |   |  |  |     |

Figure 3.31. Conserved domains in UKTF determined using the Conserved Domains Database. The domains are the MADS-box interacting protein1 leucine zipper region (Lzipper-MIP1), the Domain of Unknown Function (DUF547) and the multi-domain region Mitotic Arrest Deficient (MAD). The numbers on the scale indicate amino acids.

In *A. thaliana*, there are 13 proteins including UKTF that contain both the DUF547 and MIP1 domains, and all of these proteins are uncharacterised according to TAIR. Using these protein sequences, a phylogenetic tree was created by the Maximum-Likelihood method with 1000 bootstrap replicates using MEGA 6.06 (Tamura *et al.*, 2013; Figure 3.32). It shows that all 13 proteins are closely related to UKTF (AT1G16750) and it is likely that they are a protein family, with possible functional redundancy.

MIP1 from *Antirrhinum majus* was also included in the phylogenetic tree and it can be seen that it is most similar to AT5G66600 and AT2G23700 from *A. thaliana*. Causier *et al.* (2003) identified a MIP1 protein in *Antirrhinum* with a sequence similarity of 44% and 42% to AT5G66600 and AT2G23700, respectively. They also found that this protein interacts *in vitro* with flower development C-class and E-class proteins, and thus potentially acts as a ternary complex factor with these two classes of proteins to control carpel development. MIP1 was also found to bind non-MADS-Box transcription factors and it is believed that MIP1 may act in a complex between MADS-Box proteins and transcription factors to promote transcription of target genes. UKTF has 31% similarity with the *Antirrhinum* MIP1 and so could similarly be involved in carpel development and transcriptional regulation in Arabidopsis.



Figure 3.32. Phylogenetic tree of *A. thaliana* proteins that contain both the MIP1 and DUF547 domains within their sequence, and also the MIP1 protein from *Antirrhinum majus*. The numbers indicate node statistics. The tree was created using the Maximum-Likelihood method with 1000

None of the above 13 proteins have the MAD domain indicated in Figure 3.31 and it appears to be exclusive to UKTF in this protein family. Figure 3.33 shows the alignment of the MAD domain of UKTF with a consensus sequence of MAD1 proteins obtained http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=pfam05557. from: The consensus sequence was obtained from CDD and uses sequences from Xenopus laevis, melanogaster. Mus musculus, Arabidopsis thaliana Drosophila and Schizosaccharomyces pombe. The MAD domain of UKTF aligns with residues 191 to 355 of the consensus sequence, which is the N-terminal region of the 722-residue consensus sequence. The N-terminal region of the human MAD1 is involved in the homodimerisation of the protein, but otherwise has no functional role (Kim et al., 2012). This region also overlaps with the leucine zipper MIP1 domain. Leucine zippers are domains that also form dimers and complexes with other proteins (Hakoshima, 2005). Thus it appears that the N-terminal region of UKTF may be involved in forming homo- and heterodimers, and is most likely involved in protein complex formation, though why a MAD domain is present only in UKTF is unclear.



Figure 3.33. Alignment of the MAD domain of UKTF with the consensus MAD1 sequence using Jalview (Version 2.8).

To verify the subcellular localisation of UKTF in the cell, the server SUBA3 (<u>http://suba3.plantenergy.uwa.edu.au/</u>; Tanz *et al.*, 2013) was used. The consensus result given by SUBA3 indicated that UKTF localises to the nucleus as shown in Figure 3.34, and thus could be involved in transcriptional regulation.



Figure 3.34. Subcellular localisation of UKTF within the nucleus as determined by SUBA3.

To try to identify the secondary structure of UKTF, the protein sequence of UKTF was submitted to Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cqi?id=index), which models the structure of proteins using homology-based modelling (Kelley and Sternberg, 2009). The output PDB file obtained was opened in Swiss-PdbViewer (version 4.1.0) and is shown in Figure 3.35. Only 15% of the protein was modelled, and is based on the NMR structure of the tc10 and cdc42 interacting domain2 of cip4 from humans (the template sequence). The query sequence (UKTF) had a percentage identity of 25% with the template sequence, and a confidence of 95.8%. The confidence gives the probability that the modelled region of the query and template sequences are homologous. The protein structure model presented in Figure 3.35 corresponds to residues 42 to 118 of UKTF, and this region corresponds with the leucine zipper MIP1 domain in the protein. A prediction by Phyre2 for the complete sequence and disorder prediction is shown in Figure 3.36 along with the confidence values. The whole protein disorder prediction shows that 42% of the protein is disordered.

Protein sequences submitted to Phyre2 are automatically submitted to 3DLigandSite, which predicts ligand-binding sites (Wass *et al.*, 2010). The PDB file obtained from the output was opened in Swiss-PdbViewer. Figure 3.34 shows the ligands that bind the leucine zipper domain of UKTF: 9 molecules of Heme, 15 atoms of Iron and 40 atoms of Zinc.



Figure 3.35. The predicted protein structure for UKTF generated using Phyre2. The alpha helices are in red and the coils are in yellow. The haem ligand is portrayed in white, with Zn ions in grey and Fe ions in purple.

| Sequence<br>Secondary<br>structure                                 | MSGDSLLTSKQG            | GGSLSIYSQPKNVTKEF                       | <sup>30</sup> NGR DSPKNSKFHHYRFE        | LEHDVKRLKNQLQK                          |
|--------------------------------------------------------------------|-------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| confidence<br>Disorder<br>Disorder<br>confidence                   | ,,,,,,,,,,,,,,,         |                                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                         |
| Sequence<br>Secondary<br>structure                                 | ETAMRALLLKAS            | DQSHKIELSHASSLPRS                       | 90<br>VQELLTNIAAMEATVSK                 | LEQEIMSLHFLLIQ                          |
| confidence<br>Disorder<br>Disorder<br>confidence                   | ??                      |                                         |                                         | 7                                       |
| Sequence<br>Secondary<br>structure<br>SS                           | E R N E R K L A E Y N L | 140                                     | 150                                     | VAKSLQSFDNANEL                          |
| confidence<br>Disorder<br>Disorder<br>confidence                   | ,,,,,,,,,,,,,,,,,,      |                                         | * * * * * * * * * * * * * * * * * * * * | ,,,,,,,,,,,,,,,,,,                      |
| Sequence<br>Secondary<br>structure<br>SS                           | SKEMIRCMRNIF            | VSLGETSAGSKSSQETA                       | 210                                     | 230                                     |
| confidence<br>Disorder<br>Disorder<br>confidence                   | ?                       | , , , , , , , , , , , , , , , , , , , , | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , , , , , , , , , , , , , , , , , , , , |
| Sequence<br>Secondary<br>structure<br>SS                           | R I D I Q K N S D V L A | TESDVFDLYTVQGKLSW                       | Z70                                     | E E K R L G Y A S D E L WR              |
| confidence<br>Disorder<br>Disorder<br>confidence                   | ,,,,,,,,,,,,            | ??? ?                                   |                                         |                                         |
| Sequence<br>Secondary<br>structure<br>SS<br>confidence<br>Disorder | F R N L V E R L A R V N | PAELSHNEKLAFWINIY                       | 330                                     | L K L F S L MQKAAYTV                    |
| Sequence<br>Secondary<br>structure                                 | GGHSYNAATIEY            | MTLKMSPPLHRPQIALL                       | 390                                     | STPEPLVSFALSCG                          |
| confidence<br>Disorder<br>Disorder<br>confidence                   |                         |                                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                         |
| Sequence<br>Secondary<br>structure<br>SS<br>confidence             | MHSSPAVRIYSA            | ENVGEELEEAQKDYIQA                       | 450                                     | C F A K K S V D D C K V A L             |
| Disorder<br>confidence<br>Sequence<br>Secondary                    |                         | FVEQCIHRRQWWGFLGS                       | 510                                     | FLP                                     |



Figure 3.36. The prediction for the complete protein secondary structure and disorder for UKTF generated using Phyre2. The confidence values for the secondary structure and disorder predictions are also shown.

Only a partial structure prediction was obtained for UKTF and as it is not homologous to any known protein, the *ab-intio* protein structure prediction server, RaptorX (Källberg *et al.*, 2014; available from the link: <u>http://raptorx.uchicago.edu/StructurePrediction/predict/</u>) was used. RaptorX has the ability to model proteins that are not homologous to known structures. The protein structure predicted by RaptorX is shown in Figure 3.37. This prediction also indicates that a large portion of the protein is disordered.



Figure 3.37. The prediction for the complete protein secondary structure for UKTF generated using RaptorX. It predicts that a large part of the protein is disordered. The alpha helices are in red, the beta sheets are in green and the coils are in yellow.

The submitted DISOPRED protein sequence was then to which identifies (http://bioinf.cs.ucl.ac.uk/psipred/) disordered regions in proteins. DISOPRED predicted that the N-terminal half of the protein was highly disordered (Figure 3.38). This is significant as disordered proteins are associated with cellular signalling and transcription regulation, and disordered regions are involved in protein binding (Pazos et al., 2013). Thus, this indicates that UKTF could be similarly involved.



Figure 3.38. The results of DISOPRED showing that the N-terminal region of UKTF is disordered. The disordered region is more likely to be involved in protein binding.

In order to identify a possible function of UKTF, the protein sequence was submitted to CombFunc (http://www.sbg.bio.ic.ac.uk/~mwass/combfunc/; Wass *et al.*, 2012) to find GO terms associated with the Molecular Function and Biological Processes of the protein. CombFunc collates information about the query sequence from other analyses, such as BLAST, Interpro, Pfam, along with gene expression and protein-protein interaction data, and makes predictions of the function of the query protein by combining the information using the machine learning algorithm, Support Vector Machines (SVMs). The GO terms predicted by CombFunc for UKTF is shown for Molecular Function terms in Table 3.3 and for Biological Processes in Table 3.4. The results in Table 3.3 predict that UKTF is possibly involved in binding phosphatidylinositol, metal ions and Rho GTPases. Phosphatidylinositol binding implies that UKTF is involved in cellular signalling, and could possibly be involved in stress signalling (Munnik and Vermeer, 2010), while the results of Table 3.4 indicate that UKTF may be a transcription factor.

| Table 3.3. CombFund | results for Molecular | Functions UKTF | are involved in. |
|---------------------|-----------------------|----------------|------------------|
|---------------------|-----------------------|----------------|------------------|

| GO Term    | Description                   | SVM Probability |
|------------|-------------------------------|-----------------|
| GO:0035091 | Phosphatidylinositol binding  | 0.625           |
| GO:0046872 | Metal ion binding             | 0.503           |
| GO:0017048 | Rho GTPase binding            | 0.392           |
| GO:0005100 | Rho GTPase activator activity | 0.346           |
| GO:0016301 | Kinase activity               | 0.334           |

Table 3.4. CombFunc results for Biological Processes UKTF are involved in.

| GO Term    | Description                                | SVM Probability |
|------------|--------------------------------------------|-----------------|
| GO:0006355 | Regulation of transcription, DNA-templated | 0.323           |

As UKTF has a possible cellular signalling role, the protein sequence was analysed with MEMSAT3 (http://bioinf.cs.ucl.ac.uk/psipred/?memsatsvm=1; Jones, 2007) to identify transmembrane residues. Residues 324 to 339 of UKTF were identified as pore-lining residues by the server. To predict the orientation of the protein in the membrane, the protein sequence was analysed with MEMEMBED (Nugent and Jones, 2013) and the output of MEMEMBED is given in Figure 3.39. Only a part of the protein is shown and includes the region containing the pore-lining residues, as determined by MEMSAT3. These residues lie just after the N-terminal region of the protein containing the MIP1 domain. Since UKTF is localised to the nucleus, this result indicates that the protein may be anchored to the nuclear membrane. This feature was also seen in MIP1 from *Antirrhinum majus* and in its closest homologue in *A. thaliana*, AT5G66600 (data not shown), and thus it appears that it is a feature of this protein family.



Figure 3.39. Prediction of the orientation of UKTF within the lipid bilayer as determined by MEMEMBED. The alpha helices are in red, the coils are in yellow and the lipid bilayer is shown in white. The protein shown here represents only the part of the protein that contains the pore-lining residues.

To further investigate the function of UKTF, gene expression data was obtained for *UKTF* in different tissues and under different developmental stages, using Genevestigator (Hruz *et al.*, 2008). Figure 3.40 shows the relative gene expression data for *UKTF* in the top 10 most expressing tissues, which predominantly include guard cell and reproductive tissues. This result ties in well with the notion that UKTF is involved in carpel development. Figure 3.41 shows the relative gene expression of *UKTF* throughout the development of the plant, which appears to remain constant until it decreases at senescence.



Figure 3.40. The expression of *UKTF* within the top 10 most expressing tissues (from Genevestigator). The numbers indicate  $log_2$  values.



Figure 3.41. The expression of *UKTF* during plant development (from Genevestigator). The numbers indicate log<sub>2</sub> values.
# 3.7. Characterisation of the unknown protein POZ

POZ is annotated in TAIR as a protein containing a Bric-a-Brac, Tramtrack, Broadcomplex / Pox virus and Zinc finger (BTB/POZ) domain. Proteins containing these domains are involved in protein binding (Bardwell and Treisman, 1994; Zollman *et al.*, 1994). The protein sequence from POZ was submitted to BLASTP to identify potential homologues. The CDD graphic (Figure 3.42) obtained from the BLASTP search shows that the protein contains the BTB/POZ domain (IPR013069) and also the SPOP-C-like (C-terminal of the speckle-type POZ protein) which is a BACK-like (BTB And C-terminal Kelch) domain (IPR011705). The protein also has a hypothetical multidomain, PHA02713. Proteins containing the BTB and BACK domains are involved in forming a complex with Cullin3 to form E3 ligases for protein ubiquitination (Stogios and Privé, 2004; Gingerich *et al.*, 2005). Accordingly, CDD predicts four Cullin-binding sites near residue 280 within the BACK-like domain of POZ. The results obtained from the BLAST search also bring up a list of other BTB/POZ containing proteins.

Results obtained from CombFunc indicate that POZ possibly binds an RNA polymerase II transcription factor and also binds with E3 ubiquitin ligase enzymes, and may possibly have kinase activity (Table 3.5). Table 3.6 shows that in addition to protein ubiquitination, POZ may also be involved in response to salt stress and developmental processes. Using SUBA3, the subcellular localisation of POZ was predicted to be predominantly in the cytoplasm (probability value of 0.799) with a lower probability prediction (of 0.199) of the protein being in the mitochondria (Figure 3.43). Althogether, these results indicate that POZ is likely to be involved in protein ubiquitination by acting as a scaffold protein between E3 ligases and target proteins (Gingerich *et al.*, 2005).



Figure 3.42. Conserved domains in POZ determined from NCBI's CDD. The domains are BTB and SPOP\_C\_like, and the multi-domain PHA02713. Putative Cullin binding sites are indicated by the triangle. The numbers on the scale indicate amino acids.

Table 3.5. CombFunc results for Molecular Functions POZ are involved in.

| GO Term    | Description                                       | SVM Probability |
|------------|---------------------------------------------------|-----------------|
| GO:0001085 | RNA polymerase II transcription factor<br>binding | 0.341           |
| GO:0031625 | Ubiquitin protein ligase binding                  | 0.339           |
| GO:0016301 | Kinase activity                                   | 0.264           |

Table 3.6. CombFunc results for Biological Processes POZ are involved in.

| GO Term    | Description                      | SVM Probability |
|------------|----------------------------------|-----------------|
| GO:0016567 | Protein ubiquitination           | 0.380           |
| GO:0071472 | Cellular response to salt stress | 0.318           |
| GO:0032502 | Developmental process            | 0.310           |
| GO:0032501 | Multicellular organismal process | 0.310           |



Figure 3.43. Subcellular localisation of POZ within the cytoplasm as determined by SUBA3. The heat map indicates that the protein is more likely to be present in the cytoplasm, with a reduced probability of being localised within the mitochondria.

There are 85 BTB-containing proteins in *A. thaliana* and these were used to create a phylogenetic tree, (Figure 3.44). The POZ protein (AT1G55760.1) clusters on the same branch as AT1G21780.1, which has been shown experimentally to form Cullin3-based E3 ligases (Gingerich *et al.*, 2005). It is also seen from Figure 3.43 that POZ is closely related to the 6 BTB-MATH (Meprin And Traf Homology) domain-containing proteins (BPMs; open circles) in Arabidopsis, despite not having a MATH domain. The BTB-MATH proteins have been shown to bind AP2/ERF-containing proteins and target them for degradation (Weber and Hellman, 2009; Chen *et al.*, 2013).



Figure 3.44. Phylogenetic tree for BTB-containing proteins in *A. thaliana*. POZ and AT1G21780.1 are labelled with black closed circles, while the 6 BTB-MATH domain-containing genes are labelled with open circles.

In order to identify if POZ has a MATH domain, the protein sequence of POZ was submitted to Phyre2 to model its 3D structure (Figure 3.45) – MATH domains have an 8-strand beta barrel (Sunnerhagen *et al.*, 2002). Using Phyre2, POZ was modelled on a human speckle-type POZ protein with 81% coverage and 22% protein identity, and a confidence of 100% between the protein sequences. The N-terminal region of the protein is predicted to have a beta barrel, while the C-terminal region is dominated by alpha helices. According to the output of 3DLigandSite, the protein also binds five Zn ions. The complete prediction of the structure of POZ is shown in Figure 3.46, along with putative Cullin binding sites and residues predicted to be involved in dimerisation of POZ. The beta barrel predicted at the N-terminal region of POZ, shown in Figures 3.45 and 3.46, is similar to that of MATH domains.

To check the similarity of POZ with BPMs, a structural alignment was done using SALIGN (Braberg *et al.*, 2012) with the predicted 3D structure of POZ and one of the BPMs, BPM1 (AT5G19000), as shown in Figure 3.47. The output files obtained from the alignment was viewed using Chimera (Petterson *et al.*, 2004). This was compared against the alignment of POZ with a BTB-only-containing protein, AT2G40440 (Figure 3.48). It can be seen in Figure 3.47 that the beta barrel region of POZ (in brown) aligns with the MATH domain of BPM1 (in blue), while in Figure 3.48 there is no structure in AT2G40440 (in green) that aligns with the beta barrel region of POZ. This indicates that POZ may have a MATH domain in its structure, and thus could be involved in targeting AP2/ERF proteins for degradation.



Figure 3.45. The predicted protein structure for POZ generated using Phyre2. The alpha helices are in red, the beta sheets are in green and the coils are in yellow. The Zn ions are shown in grey.



Figure 3.46. The complete protein structure prediction for POZ generated using Phyre2. The confidence values are shown along with putative binding sites for Cullin and putative sites for dimerization of the protein.



Figure 3.47. Structural alignment of POZ with BPM1. POZ is shown in brown and BPM1 is shown in blue. The MATH domain of BPM1 aligns with the beta barrel structure of POZ.



Figure 3.48. Structural alignment of POZ with a BTB-only-containing protein, AT2G40440. POZ is shown in brown and AT2G40440 is shown in green.

To identify tissues and developmental stages in which *POZ* is expressed, the gene expression levels of *POZ* in the top 10 highly expressed tissues, was obtained using Genevestigator (Figure 3.49). It can be seen that *POZ* appears to be expressed in both aerial and below-ground parts to a high level. During the development of the plant, the expression of *POZ* appears to remain relatively constant, but appears to increase towards senescence when the siliques have matured, before a reduction in expression levels at senescence (Figure 3.50).



Figure 3.49. The expression of POZ within the top 10 most expressing tissues (from Genevestigator). The numbers indicate  $log_2$  values.



Figure 3.50. The expression of *POZ* during plant development (from Genevestigator). The numbers indicate log<sub>2</sub> values.

# 3.8. Discussion

## 3.8.1. Six hub genes were identified using VBSSM

This work is based on a time-series transcriptome analysis of slow-drying Arabidopsis Col-4 plants (Bechtold *et al.*, 2016). A list of differentially expressed genes was obtained from the transcriptome analysis. These were clustered using TCAP to create smaller lists of genes to input into VBSSM to make it computationally less intensive. These smaller gene lists were used to construct GRNs using VBSSM from which network hub genes were identified as potentially important in the drought response.

In addition to *Agamous-like22* (*AGL22*) which was identified by Bechtold *et al.* (2016), 6 more genes were identified from modelling GRNs: an unknown gene whose protein contains the BTB/POZ domain, and is designated as *POZ*; *Flowering Locus D* (*FD*), a bZIP (Basic Leucine Zipper) protein involved in the positive regulation of flowering (Abe *et al.*, 2005); another unknown gene designated as *UKTF*; *Related to AP2.12* (*RAP2.12*), a member of the ERF (Ethylene Response Factor) subfamily of the ERF/AP2 transcription factor family, and has been found to be stress-responsive (Licausi *et al.*, 2011; Papdi *et al.*, 2015); *Basic helix-loop-helix038* (*BHLH038*), a protein that regulates iron homeostasis (Wang *et al.*, 2007) and *Anthocyaninless2* (*ANL2*), a protein involved in the accumulation of anthocyanin and in root development (Kubo *et al.*, 1999).

*RAP2.12* is the only gene of the seven hub genes that has previously been implicated in any stress response (Licausi *et al.*, 2011; Papdi *et al.*, 2015). In the work of Licausi *et al.* (2011), plants overexpressing *RAP2.12* were found to recover better from submergenceinduced hypoxia due to the activation by *RAP2.12* of hypoxia-responsive genes. Papdi *et al.* (2015) showed that an inducible overexpressor of *RAP2.12* was found to be tolerant to oxidative and osmotic stresses. The other six hub genes have not been implicated during drought, but a Genevestigator analysis showed they are all responsive to one or more of cold, osmotic, salt, drought and heat stresses.

# 3.8.2. Characterisation of the unknown proteins, UKTF and POZ

The two unknown proteins UKTF and POZ were analysed using bioinformatics. The UKTF protein contains the MIP1 domain and thus possibly binds to and regulates MADS-box proteins. A MIP1 in *Antirrhinum majus* was found to bind C- and E-class genes

involved in carpel development. Thus it is possible that UKTF is similarly involved and regulates the development of carpels during water-deficit situations.

POZ contains the BTB/POZ and BACK-like domains which are characteristic of proteins involved in forming Cullin3-based E3 ligases (Gingerich *et al.*, 2005). The most similar protein to POZ in *A. thaliana* is AT1g21780, which has been shown to bind Cullin3 by Yeast-2-hybrid (Gingerich *et al.*, 2005). The E3 ligase brings together the target protein and the E2-Ubiquitin intermediate to enable the transfer of ubiquitin to the target protein, which leads to protein degradation by the 26S proteasome (Gingerich *et al.*, 2005). Thus, it is likely that POZ is involved in the same process.

Of the 85 BTB-containing proteins in Arabidopsis, only about 10 of these are annotated to have only a single domain. POZ is one of the few proteins that have only a single domain in their sequence. Most BTB-containing proteins in Arabidopsis possess another domain in their sequence, such as a MATH, an NPH3, a TAZ or an Ankyrin domain (Gingerich *et al.*, 2007). From the phylogenetic analysis in Figure 3.44, it can be seen that POZ is closely related to the BTB-MATH (BPM) proteins. A structural alignment of POZ with one of the BPMs, BPM1, shows a good overlap between the two, while the BTB-only protein, AT2G40440, aligns to only part of POZ. Thus, it is possible that POZ also contains the MATH domain in addition to the BTB domain. This is significant because BPM proteins have been shown to bind AP2/ERF proteins, and possibly target them for degradation (Weber and Hellman, 2009; Chen *et al.*, 2013). Hence, POZ may be involved in targeting similar proteins or other transcription factors to regulate the protein levels of these genes during drought and also promote protein turnover.

This chapter also describes the isolation of T-DNA knockout/knockdown lines for the above seven genes except for *UKTF*. No knockout for *UKTF* could be identified instead two T-DNA insertional lines were identified that were overexpressing the gene. Overexpressing lines for each of the genes were also made in the Col-0 background. Both loss-of-function and gain-of-function mutants were phenotyped to identify a role of these genes during drought, and this is described in chapter 4.

# 3.9. Conclusion

• Based on the work of Bechtold *et al.* (2016), a list of differentially expressed genes was analysed to identify gene regulatory networks involved in drought using VBSSM.

- Six genes were identified as 'hub' genes: *FD*, *RAP2.12*, *BHLH038* and *ANL2*, and the unknown genes *POZ* and *UKTF*. These genes were analysed in this thesis along with *AGL22* which was identified by Bechtold *et al.* (2016).
- Knockouts T-DNA lines of these genes were screened and identified and overexpressors were generated by Gateway® cloning.
- UKTF was identified *in silico* as a putative MADS-box interacting protein that may be involved in carpel development.
- POZ may possibly be involved in forming Cullin3-based E3 ligases.

Chapter 4

# Phenotyping mutant lines of hub genes under progressive drought

## 4.1. Introduction

In the previous chapter, gene regulatory networks were modelled using time-series transcriptomics data obtained from a progressive drought experiment in Arabidopsis (Bechtold *et al.*, 2016). The gene networks generated identified six 'hub' genes that could potentially have an important role in plants' drought stress response and regulate drought-specific gene networks: *POZ*, *FD*, *UKTF*, *RAP2.12*, *BHLH038* and *ANL2*. Loss-of-function and gain-of-function mutant lines of these genes, as well as for *AGL22* which was identified by Bechtold *et al.* (2016), were obtained to study the role of these genes during drought.

This chapter describes the phenotyping of these lines under drought conditions and elucidates a possible role for these genes under water stress. Where possible, phenotyping was done to assess water use, photosynthetic performance, stress status under drought and plant growth and development in well-watered and drought-stressed plants. Drying rate and relative leaf water content were used to measure water use, while gas exchange and thermography were carried out to follow the progression of drought stress as well as give indications about photosynthetic performance. Electrolyte leakage and hydrogen peroxide levels were measured along with chlorophyll and anthocyanin content, as an indication of the stress status of the plants, while general growth parameters were taken as an indication of the impact of drought stress on plant performance.

AGL22 is a repressor of flowering that interacts with *Flowering Locus C (FLC)* and subsequently binds at the promoters of *Flowering Locus T (FT)* and *SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1)* to repress floral transition (Lee *et al.*, 2007; Li *et al.*, 2008). *AGL22* integrates signals from the autonomous, gibberellic acid and thermosensory pathways to control flowering, by regulating the expressions of the above two genes. Though *AGL22* has not been reported to be involved in any abiotic or biotic stress response, it has been shown to detect changes in ambient temperature as part of its thermosensory regulation of flowering (Lee *et al.*, 2007). In that study, flowering time was found to be delayed in wild-type plants grown at 16 °C compared to at 23 °C, as expression levels of *AGL22* increased and *FT* greatly decreased, at 16 °C. Thus, there appears to be a temperature component to the regulation of the expression of *AGL22*.

*FD* is another gene that is involved in flowering time that was detected by the VBSSM algorithm. It is a protein present in the shoot apex that interacts with *FT* to promote

flowering (Abe *et al.*, 2005; Wigge *et al.*, 2005). Overexpression of *FD* in Arabidopsis leads to early flowering and knockouts of the gene have a delayed flowering phenotype, but like *AGL22*, it has not been shown to have a role in any stress response.

*RAP2.12* has been found to be involved in the response of plants to hypoxia (Licausi *et al.*, 2011). Wild-type plants and plants overexpressing *RAP2.12* were subjected to flooding and submergence, resulting in a hypoxic situation. The plants overexpressing *RAP2.12* were found to recover better after normal oxygen levels returned, due to the activation of hypoxia-responsive genes by *RAP2.12*. It was also found that in rice, another AP2/ERF protein called *SUBMERGENCE1A* (*SUB1A*) has been found to mediate tolerance to drought and submergence in accession lines introgressed with the gene or overexpressing the gene (Fukao *et al.*, 2011). It was shown that *SUB1A* did this by controlling the expression of stress-responsive genes and by regulating the hormones abscisic acid, ethylene and gibberellic acid.

*BHLH038* is involved in maintaining iron homeostasis and uptake, and along with *BHLH039* interacts with *FIT (Fe deficiency Induced Transcription factor)* to induce the expression of *FRO2* (a ferric chelate reductase) and *IRT1* (Ferrous iron transporter; Yuan *et al.*, 2008). Overexpressors of *BHLH038* and *BHLH039* are tolerant to iron deficiency and have higher accumulation of iron in shoots, due to constitutive expression of *FRO2* and *IRT1* (Yuan *et al.*, 2008).

*ANL2* is involved in the accumulation of anthocyanin in the sub-epidermal layer of the leaf and the cellular organisation of the roots in Arabidopsis (Kubo *et al.*, 1999). Anthocyanins are produced when plants are subjected to stress (Chalker-Scott, 1999). They appear capable of absorbing light incident on chloroplasts, and thus reducing chlorophyll bleaching and superoxide production, and they are also capable of scavenging superoxide radicals (Neill and Gould, 2003). Thus, accumulation of anthocyanins would be beneficial during periods of stress, to reduce the effect of oxidative stress.

Other than *RAP2.12*, none of the other genes identified using VBSSM have been documented as having a stress-responsive role in plants. Using knockouts and overexpressors of these genes, it will be possible to study them in the context of drought, and test the potential role of these genes in the plant response to drought. This chapter describes the effect of a progressive (slow-drying) drought on mutants of these genes, their response to the effects of oxidative stress due to the drought and the yield capability of these mutants under normally watered and drought conditions.

# 4.2. Phenotyping and analysis of knockouts and overexpressors of AGL22

## 4.2.1. Measurement of water use under drought

To ascertain whether *AGL22* is involved in drought stress response, two knockouts of *AGL22* (*agl22-3* and *agl22-4*) and two overexpressors (AGL220x-10 and AGL220x-2) were subjected to a progressive drought. AGL220x-10 was a highly overexpressing line (approximately 45-fold) and AGL220x-2 was a mild overexpressor (approximately 15-fold). These were compared against the wild-type, Col-0. A segregating wild-type from the *agl22-4* line, named here as AGL22 WT, was also subjected to a progressive drought to compare it against Col-0. The drought was started 3 weeks after sowing due to the early flowering phenotypes of the knockouts. The drought was continued until the relative soil water content (rSWC) reached 20%, at which point the plants began to wilt. Figure 4.1 shows the drying rates calculated for each of the above-mentioned wild-type and mutant plants.

The two knockouts, *agl22-3* and *agl22-4*, showed a significantly higher drying rate than the wild-type plants of Col-0 (Figure 4.1A). As expected, the segregating wild-type, AGL22 WT, showed no difference in drying rate compared to Col-0 (Figure 4.1B). With regard to the overexpressors, AGL22ox-10 showed no difference in drying rate compared to the Col-0 plants (Figure 4.1C), while AGL22ox-2 had a significantly higher drying rate than the Col-0 (Figure 4.1D). The difference between these two lines could be due to the difference in the expression levels of *AGL22* (Figure 3.24).

To understand the reason for the difference in drying rates between the different lines, the rosette area of the plants were measured. Images of the plants were processed using the image processing software, ImageJ, to measure rosette area. Figure 4.2 shows the rosette areas measured for each of the different lines. The rosette areas were measured at a point during the drought period when a difference in rosette size was observed, so as to correlate the drying rate phenotype with the rosette area.

The rosette areas of the two knockout lines were measured on day 10 of the drought and found to be significantly larger than the rosette area of Col-0 (Figure 4.2A), and this corresponds to the observed higher drying rates (Figure 4.1A). The rosette area of the segregating wild-type, AGL22 WT, also measured on day 10, was found to be similar to the rosette area of Col-0 plants (Figure 4.2B). The rosette area of the overexpressor, AGL22ox-10, measured on day 14, showed a no difference compared to Col-0 (Figure

4.2C). On the other hand, on day 14 a significantly larger rosette area was measured in the overexpressor, AGL220x-2, compared to Col-0 (Figure 4.2D) and this corresponds to the higher drying rate in AGL220x-2 as observed in Figure 4.1D.



Figure 4.1. Drying rates for *AGL22* knockouts, overexpressors and a segregating wild-type compared to the wild-type, Col-0. Drying rates for (A) the knockouts, *agl22-3* and *agl22-4*, (B) a segregating wild-type, AGL22 WT, (C) the overexpressor, AGL22ox-10 and (D) the overexpressor, AGL22ox-2. The values are mean + standard error (n=10) and \* indicates significant difference relative to Col-0 (P < 0.05, Student's t-test). The experiment was performed twice.



Figure 4.2. Rosette areas for *AGL22* knockouts and the overexpressor compared to the wild-type, Col-0. Rosette areas for (A) the knockouts, *agl22-3* and *agl22-4*, (B) a segregating wild-type, AGL22 WT, (C) the overexpressor, AGL22ox-10 and (D) the overexpressor, AGL22ox-2. The rosette area in figures A and B were estimated on day 10 of the drought, the rosette area in C was measured on day 0 and the rosette area in D was measured on day 14. The values are mean + standard error (n=6) and \* indicates significant difference relative to Col-0 (P < 0.05, Student's t-test). The experiment was performed twice.

#### 4.2.2. Measurement of photosynthetic performance

Due to the small size of the leaves for the majority of the drought period, the average temperature of the Col-0 and *agl22* knockout lines were measured as an approximate gauge of stomatal conductance. The average temperatures of the Col-0 and *AGL22* knockouts were measured over the course of the drought, using the infrared thermal camera TH7100 Thermal Tracer (NEC Avio Infra-red Technologies Co. Ltd), and these were compared against watered control plants of the same age (Figure 4.3). Figure 4.3A shows the average temperatures of Col-0, *agl22-3* and *agl22-4* at regular intervals over

the course of the drought period, with the corresponding rSWC shown in Figure 4.3C. No significant difference in the average temperatures of the droughted plants was seen between the three lines until day 23, when the average temperature of *agl22-4* was significantly higher than that of Col-0 (Figure 4.3A and D). The average temperature of *agl22-3* was also higher than that of Col-0, but this was not significant. Figure 4.3D compares the average temperature of the three lines on day 23 for both droughted and watered plants. It shows that there was a significantly higher average temperature for all the lines under drought conditions as opposed to the watered plants.

The average temperature of AGL22ox-10 plants was measured at different rSWC, namely 75%, 50%, 30%, 25% and 20% (Figure 4.4). It was only possible to measure the average temperature of AGL22ox-10 plants as the second overexpressing line was not available. An increase in temperature was observed over the course of the drought, and this was higher than the average temperature of the watered plants. However, there was no observed difference in temperature between the overexpressor and the wild-type over the course of the drought (Figure 4.4A).

The stomatal conductance ( $g_s$ ) and carbon assimilation rate (*A*) of AGL22ox-10 plants were also measured in both droughted and watered plants using a CIRAS-1 (PP Systems; Figure 4.5). A decrease in  $g_s$  was observed over the course of the drought (Figure 4.5A), while  $g_s$  remained the same in the watered plants over the same period (Figure 4.5B). However, there was no significant difference in  $g_s$  between AGL22ox-10 and Col-0 under both conditions. No difference in *A* was observed in the droughted plants or between the two lines over the course of the drought (Figure 4.5C and D).



Figure 4.3. Temperature of the *agl22* knockouts compared to the Col-0 wild-type, measured at regular intervals throughout the duration of the drought. (A) The temperature of the plants subjected to drought (n=10). (B) The temperature of the corresponding watered control plants (n=10). (C) The relative soil water content (rSWC) of the plants subjected to drought whose temperature was measured (n=10). (D) The temperature of the droughted and watered plants on day 23 (n=10). All the values are mean + standard error. \* indicates significant difference relative to Col-0 of the same treatment (P < 0.05, Student's t-test); # indicates significant difference relative to watered control plants (P < 0.05, Student's t-test). The experiment was performed once.



Figure 4.4. Temperature of AGL220x-10 compared to the Col-0 wild-type, measured at regular intervals throughout the duration of the drought. (A) The temperature of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The temperature of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.



Figure 4.5. Measurement of stomatal conductance ( $g_s$ ) and photosynthetic assimilation rate (A) in AGL220x-10 and the Col-0 wild-type, at regular intervals during the drought stress. (A) The stomatal conductance of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The stomatal conductance of the corresponding watered control plants (n=6). (C) The assimilation rate of the plants subjected to drought at different relative soil water content (rSWC; n=6). (D) The assimilation rate of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.

## 4.2.3. Measurement of the stress status of drought-stressed plants

As a measure of the effect of the stress on the plants, the levels of the reactive oxygen species (ROS), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), produced in Arabidopsis leaves were measured using the fluorescent dye homovanillic acid (Guilbault *et al.*, 1967). Figure 4.5 shows the H<sub>2</sub>O<sub>2</sub> levels measured in Col-0, the segregating wild-type, AGL22 WT, the two knockouts and the two overexpressors, under drought and watered conditions. As shown in the figure, higher levels of H<sub>2</sub>O<sub>2</sub> was found in the plants subjected to drought than in the control plants across the wild-type and overexpressor lines. However, the knockouts did not show any difference in the levels of H<sub>2</sub>O<sub>2</sub> between the drought and watered plants. Also, the level of H<sub>2</sub>O<sub>2</sub> produced in the knockouts under drought conditions was less than the amounts produced in the wild-type lines and overexpressors. It can also be

seen that the overexpressors produced more  $H_2O_2$  than the wild-type plants, and the greatest difference in the amounts of  $H_2O_2$  produced between the droughted and watered plants was observed in the overexpressors.



Figure 4.6. Measurement of  $H_2O_2$  levels in two wild-types, two knockouts and two overexpressors of *AGL22* under droughted and watered conditions. All the values are mean + standard error (n=5). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.

# 4.2.4. Measurement of growth and development

# 4.2.4.1. Flowering time

The flowering time of the various lines under droughted and watered conditions was also studied as there is a known correlation between drought and flowering time (Juenger *et al.*, 2005), and also because *AGL22* is involved in the regulation of flowering. Flowering time was measured in terms of number of leaves at floral transition and the number of days to floral transition from sowing. As shown in Figure 4.7A, there appeared to be no difference in flowering time between the droughted and watered plants in both wild-type and overexpressor lines. On the other hand, a difference was observed in both knockouts in which the droughted plants flowered earlier than the watered plants, and this was particularly significant for *agl22-4*. Also, the number of leaves at flowering for the *agl22* 

knockouts was also found to be significantly fewer than, and almost half the number of, those of the respective treatments of the Col-0, AGL22 WT, AGL22ox-10 and AGL22ox-2 lines. There was no significant difference in the number of leaves at flowering between the droughted and watered plants of AGL22ox-2. However, AGL22ox-2 was significantly different to all other lines: AGL22ox-2 had more leaves at flowering than the two knockouts, but fewer than the two wild-type lines and the second overexpressing line, AGL22ox-10.

No differences were observed in the number of days to flowering between the droughted and watered plants in all the lines (Figure 4.7B). However, flowering occurred significantly earlier in the knockouts subjected to both treatments than in the two wild-types and overexpressors of the respective treatments. The AGL220x-2 plants subjected to drought flowered significantly later than the droughted knockouts, and significantly earlier than the Col-0. There was no difference in the flowering time between the droughted AGL22 WT and AGL220x-2; a difference was seen between the two overexpressors but this was not significant. The watered AGL220x-2 plants flowered significantly later than the two knockouts and significantly earlier than Col-0 and AGL220x-10.



Figure 4.7. Flowering time measured in two wild-types, two knockouts and two overexpressors of *AGL22* under droughted and watered conditions. Flowering time was estimated in terms of (A) the number of leaves at flowering and (B) days to flowering after sowing. All the values are mean + standard error (n=10). Means with different letters indicate significant difference (P < 0.05, Welch ANOVA, post-hoc Games-Howell test). The experiment was performed once.

#### 4.2.4.2. Biomass and harvest index

The yield of the plants subjected to drought were compared against watered plants to ascertain if there was any penalty to yield due to the stress and whether the knockouts and overexpressors of the flowering time gene, *AGL22*, showed any difference in yield. The dried rosette weight, the weight of dried stalks and siliques, seed yield and total biomass were measured as parameters to determine the yield of the plants. Figure 4.8 shows the average yield measured for the lines Col-0, AGL22 WT, *agl22-3*, *agl22-4*, AGL22ox-10 and AGL22ox-2, under droughted and watered conditions.

As seen in Figure 4.8A, no difference in dried rosette weight was seen between the droughted and watered Col-0 and plants. However, the dried rosette mass obtained from droughted AGL22 WT plants was less than the watered plants, though this was not significant. Also, no difference in rosette mass was seen between droughted AGL22 WT and Col-0. The dried weight of the watered AGL22 WT plants, on the other hand, was higher than that of the corresponding Col-0. The dried weight of the two knockouts was found to be significantly less than the two wild-type and overexpressor lines, in both treatments, but there was no difference in dried rosette mass between the droughted and watered plants of both lines. A difference between the two treatments was also seen in the overexpressor AGL220x-10, but this was not significant and not difference was not significant. Also, no difference was seen between the droughted and watered AGL220x-2, even though this difference was not significant. Also, no difference was seen between the droughted and watered AGL220x-2.

The reproductive structures (stalks and siliques) were also weighed and compared between droughted and watered plants of the various lines (Figure 4.8B) Surprisingly, significantly more mass of reproductive structures was produced in the Col-0 plants subjected to drought, than the watered plants. Similarly, more biomass was produced in AGL22 WT plants subjected to drought than the control plants, though this was not significant. Droughted *agl22-3* and *agl22-4* plants produced fewer stalks and siliques than the respective watered plants, though this difference was also not significant. The droughted plant of the two knockouts produced significantly fewer stalks and siliques than the droughted plants for the two wild-types and AGL220x-2, while the watered *agl22-3* also produced significantly fewer stalks and siliques than watered AGL220x-2 plants.

Figure 4.8C shows the seed yield obtained for the droughted and watered plants for the two wild-types, the two knockouts and the two overexpressors. A general trend of higher

seed yield in the droughted plants than in the watered plants can be seen. The two knockouts, *agl22-3* and *agl22-4*, had produced significantly less seed (almost one-fifth less) than the two wild-types. The droughted and watered AGL220x-2 also produced less seed than the two wild-types. Less seed was also produced by AGL220x-2 than by the other overexpressor, AGL220x-10, but more than the two knockouts.

Total biomass produced by the different lines was measured under drought and watered conditions (Figure 4.8D). It appears that the droughted Col-0 plants produce significantly more biomass than the watered plants. There appears to be no difference in the biomass produced by droughted and watered AGL22 WT, AGL220x-10 and AGL220x-2 plants. In the case of the knockouts, the droughted plants of both lines produced less total biomass than the control plants, though this difference was not significant in both. It can also be seen that the knockouts produced less biomass than the two wild-types and two overexpressors. The droughted knockouts produced significantly less biomass than the droughted wild-types and overexpressors. *agl22-3* watered plants produced less biomass than the corresponding AGL22 WT and AGL220x-2, and *agl22-4* watered plants produced less total biomass than AGL220x-2.

The harvest indexes (amount of seed yield produced relative to the total above-ground biomass produced) of the various lines under drought and watered conditions are shown in Figure 4.9. The harvest indexes for the two wild-types were found to be very similar to each other and also showed no difference between the droughted and watered plants of the two lines. The two knockouts had lower harvest index than the wild-types and the overexpressing lines, and droughted *agl22-3* appeared to have a better harvest index than the watered plants, while there was no difference in the *agl22-4* plants. A clear difference was seen between the two overexpressors, wherein AGL220x-10 produced a higher harvest index than AGL220x-2 under drought and watered plants.



Figure 4.8. Measurement of the vegetative and reproductive biomass of two wild-types, two knockouts and two overexpressors of *AGL22* under droughted and watered conditions. (A) Dry rosette weight, (B) the stalks and siliques, (C) seed yield and (D) total above-ground biomass were measured. All the values are mean + standard error (n=7). Means with different letters indicate significant difference (P < 0.05, Welch ANOVA, post-hoc Games-Howell test). The experiment was performed once.



Figure 4.9. Harvest index estimated in two wild-types, two knockouts and two overexpressors of AGL22 under droughted and watered conditions. All the values are mean - standard error (n=7).

# 4.3. Phenotyping and analysis of knockouts and overexpressor of FD

# 4.3.1. Measurement of water use under drought

The flowering time gene *FD* was identified as a hub gene while modelling time-series transcriptomics data obtained from a drought experiment. Using the knockout line, *fd-4*, the knockdown, *fd-5*, and an overexpressor of *FD*, FDox-7, a possible role of this gene during drought was studied. Six-week old plants for each of the three lines and Col-0 plants were subjected to a progressive drought experiment for two weeks until 20% rSWC was reached. *fd-4* was obtained quite late during the project and so it was not possible to do a comprehensive analysis with this line, as was done with *fd-5* and FDox-7, and thus this data is missing from many of the experiments below.

Figure 4.10 shows the drying rate calculated for the mutants and the wild-type subjected to drought. There was no difference in the drying rate between Col-0 and the knockdown, *fd-5*, or between Col-0 and the overexpressor, FDox-7. However, the knockout, *fd-4*, had a significantly higher drying rate compared to the wild-type. An analysis of the rosette area of the various lines was done on day 0 of the drought (Figure 4.11). This showed that there was no difference in rosette area between Col-0 and either *fd-5* or FDox-7. *fd-4* appeared to produce a larger rosette area compared to the wild-type, though this was not significant.

Relative leaf water content (rLWC) was measured in Col-0, *fd-5* and FDox-7 plants subjected to drought and watered conditions. Figure 4.12 shows the rLWC calculated for the above. The rLWC of the droughted plants was significantly lower than the rLWC of the respective watered plants. The rLWC of the droughted wild-type was also significantly lower than that of *fd-5* subjected to drought, and there was no difference in rLWC between the two *FD* lines.



Figure 4.10. Drying rates for *fd* loss-of-function mutants and the overexpressor compared to the wild-type, Col-0. The values are mean + standard error (n=10) and \* indicates significant difference relative to Col-0 (P < 0.05, Student's t-test). The experiment was performed twice.



Figure 4.11. Rosette areas for *fd* loss-of-function mutants and the overexpressor compared to the wild-type, Col-0. The values are mean + standard error (n=6). No significant difference was observed (P > 0.05, Student's t-test). The experiment was performed once.



Figure 4.12. Measurement of relative leaf water content (rLWC) in wild-type, the knockdown and the overexpressor of *FD* under droughted and watered conditions. All the values are mean + standard error (n=3). Means with different letters indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Tukey HSD test). The experiment was performed once.

# 4.3.2. Measurement of photosynthetic performance

Stomatal conductance and photosynthetic carbon assimilation of Col-0 and *fd-4* were measured under well-watered and drought stress conditions (Figure 4.13). A decrease in  $g_s$  was observed over the course of the drought in both lines (Figure 4.13A), which was not observed in the corresponding control plants (Figure 4.13B). However, there was no difference in  $g_s$  between the two lines at each point measured. No change was seen in *A* between the start and the end of the drought experiment, and no difference in *A* was seen between the two lines at any point during the drought (Figure 4.13C).

The average temperature of droughted Col-0 plants compared to *fd-4* plants was also analysed at different rSWC (Figure 4.14). An increase in the average rosette temperature was observed in both Col-0 and *fd-4* plants over the course of the drought, however, no difference was observed between the two lines throughtout the drought.



Figure 4.13. Measurement of stomatal conductance ( $g_s$ ) and photosynthetic assimilation rate (A) in the *fd* knockout and Col-0 wild-type at regular intervals during the drought stress. (A) The stomatal conductance of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The stomatal conductance of the corresponding watered control plants (n=6). (C) The assimilation rate of the plants subjected to drought at different relative soil water content (rSWC; n=6). (D) The assimilation rate of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.



Figure 4.14. Temperature of the *fd* knockout and Col-0 wild-type measured at regular intervals throughout the duration of the drought. (A) The temperature of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The temperature of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.

#### 4.3.3. Measurement of growth and development

### 4.3.3.1. Flowering time

The flowering time of the *FD* lines was also measured under drought and watered conditions because *FD* is a positive regulator of flowering. Figure 4.15A shows the number of leaves at flowering for Col-0, *fd-5* and FDox-7 subjected to drought or left watered. No difference in flowering time was seen between the droughted and watered plants for *fd-5*, whereas the droughted Col-0 plants appeared to flower earlier than the watered Col-0 plants, though not significantly. On the other hand, the droughted FDox-7 plants appeared to flower later than the watered overexpressors. Between the droughted plants, the overexpressor produced fewer leaves at flowering than *fd-5*, which itself produced fewer leaves at flowering than the Col-0. A similar trend was also seen in the watered plants, and overall the difference in flowering time between the watered lines was greater than that of the droughted plants.

Figure 4.15B shows the flowering time of the three lines under droughted and watered conditions measured in terms of the number of days to flowering from sowing. The droughted plants of all three lines were found to flower earlier than the respective watered plants, though it was not significant for Col-0 and *fd-5*. There appeared to be no difference in flowering time between *fd-5* plants and wild-type plants of the same treatment, while the *FD* overexpressing plants flowered significantly earlier than both the Col-0 and *fd-5* plants of the corresponding treatment.





#### 4.3.3.2. Biomass and harvest index

The yield of the three *FD* lines compared to the wild-type under drought and watered conditions was also analysed (Figures 4.16 and 4.18). Rosette weight, the weight of the reproductive structures and seed yield were measured. Figure 4.16 shows the yield of *fd-5* and FDox-7 compared to Col-0. The rosette mass measured for the droughted plants was found to be less than that of the watered plants in all three lines (Figure 4.16A). Though there was no difference in rosette weight between the three lines under watered conditions, both *fd-5* and FDox-7 plants produced less rosette mass than the Col-0 plants under droughted conditions. However, these differences were not significant.

Fewer stalks and siliques were also produced in the plants subjected to drought, compared to the watered plants, though this difference was not significant (Figure 4.16B). No difference was observed in the mass of reproductive structures produced in Col-0 and *fd-5* plants under both drought and watered conditions. However, the overexpressor, FDox-7, produced significantly fewer stalks and siliques compared to Col-0 and *fd-5* under both treatments.

In terms of seed yield, less seed was produced in droughted Col-0 compared to their respective watered controls (Figure 4.16C). No difference in seed yield was observed in both *fd-5* and FDox-7 between droughted and watered plants. Droughted *fd-5* plants produced more seed than the Col-0 plants and significantly more seed than FDox-7 plants. However, under watered conditions, Col-0 plants produced more seed than *fd-5* and FDox-7 plants.

Looking at the total above-ground biomass produced, less biomass was produced in the droughted plants than in watered plants, and this difference was significant for FDox-7. No difference was seen in the amount of biomass produced in the Col-0 and *fd-5* lines under both conditions. FDox-7 plants produced less biomass than Col-0 and *fd-5* plants under both conditions, and this difference was particularly significant under watered conditions for both lines and between droughted Col-0 and FDox-7 plants.

Figure 4.18 shows the yield measured for Col-0 and the knockout, *fd-4*. Unexpectedly, drought-stressed Col-0 plants produced a significantly higher rosette mass than the watered plants, while no difference in rosette weight was seen between differently treated *fd-4* plants (Figure 4.18A). Also, *fd-4* plants appeared to produce more rosette mass than that of Col-0 plants, and this difference was significant between the watered plants.

Figure 4.18B shows that droughted Col-0 plants produced more stalks and siliques than the watered plants, while droughted *fd-4* plants produced fewer reproductive structures than the watered plants. Overall, *fd-4* plants produced less biomass than the wild-type plants under both drought and watered conditions, and this difference was significant in the droughted plants.

Significantly more seed was produced in the Col-0 plants subjected to drought than in the watered Col-0 plants (Figure 4.18C). No difference was seen in the seed yield between the differently treated *fd-4* plants. As with the case of the reproductive structures, less seed was produced in *fd-4* plants than in Col-0 plants, and this difference was significant between the droughted plants.

In Figure 4.18D, it can be seen that the total biomass produced by Col-0 plants subjected to drought was higher than the amount produced by the watered plants, and was also higher than droughted fd-4 plants. No difference was seen between the droughted and watered fd-4 plants or between the watered plants of both Col-0 and fd-4.

An analysis of the harvest index of the wild-type and *FD* mutant lines under drought and watered conditions is shown in Figures 4.17 and 4.19. In Figure 4.17, the harvest index of droughted Col-0 plants was less than that of the watered plants, while the opposite was true for *fd-5* plants, in which the droughted plants had a higher harvest index than the watered plants. However, no difference in harvest index was seen between the droughted and watered FDox-7, or between the three lines, under both conditions. It also appeared that under droughted conditions *fd-5* plants had a better harvest index, while under control conditions the wild-type had a better harvest index.

In Figure 4.19, it can be seen that the harvest index of Col-0 under droughted conditions was better than under watered conditions, and the same was seen in *fd-4* plants. On the whole, *fd-4* plants had a lower harvest index than Col-0 plants regardless of the conditions.



Figure 4.16. Measurement of the vegetative and reproductive biomass of the wild-type, the knockdown and the overexpressor of *FD* under droughted and watered conditions. (A) Dry rosette weight, (B) the stalks and siliques, (C) seed yield and (D) total above-ground biomass were measured. All the values are mean + standard error (n=7). No significant difference was observed in (A) (P > 0.05, One-way ANOVA). Means with different letters in (B), (C) and (D) indicate significant difference – for stalks and siliques (P < 0.05, Welch ANOVA, post-hoc Games-Howell test); for seed yield (P < 0.05, One-way ANOVA, post-hoc Tukey HSD test); for total above-ground biomass (P < 0.05, Welch ANOVA, post-hoc Games-Howell test). The experiment was performed once.



Figure 4.17. Harvest index estimated in the wild-type, the knockdown and the overexpressor of *FD* under drought and watered conditions. All the values are mean - standard error (n=7).



Figure 4.18. Measurement of the vegetative and reproductive biomass for the wild-type and the *fd* knockout under droughted and watered conditions. (A) Dry rosette weight, (B) the stalks and siliques, (C) seed yield and (D) total above-ground biomass were measured. All the values are mean + standard error (n=7). Means with different letters in (A), (B) and (C) indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Tukey HSD test). No significant difference was observed in (D) (P > 0.05, One-way ANOVA). The experiment was performed once.



Figure 4.19. Harvest index estimated in the wild-type and the *fd* knockout under drought and watered conditions. All the values are mean - standard error (n=7).

# 4.4. Phenotyping and analysis of knockouts of RAP2.12

## 4.4.1. Measurement of water use under drought

The potential role of *RAP2.12* in the plant response to drought was studied using two knockouts of the gene, *rap2.12-1* and *rap2.12-3*. Figure 4.20 shows the drying rates for the wild-type and the two knockouts calculated from a progressive drought of 6 week-old plants until 20% rSWC was reached. No difference in drying rate was observed between the two knockouts and the wild-type line. An analysis of the rosette area of the three lines was made on day 0 of the drought, which also showed no difference between the knockout lines and the wild-type (Figure 4.21).

The rLWC content of plants of the wild-type, *rap2.12-1* and *rap2.12-3* lines subjected to drought and watered conditions were also measured (Figure 4.22). The rLWC of the plants subjected to drought was lower than that of the control plants in all three lines, and this difference was significant in Col-0. There was no difference in rLWC between the three lines maintained under droughted and watered conditions.



Figure 4.20. Drying rates for *rap2.12* knockouts compared to the wild-type, Col-0. The values are mean + standard error (n=10). No significant difference was observed (P > 0.05, Student's t-test). The experiment was performed twice.



Figure 4.21. Rosette areas for *rap2.12* knockouts compared to the wild-type, Col-0. The values are mean + standard error (n=6). No significant difference was observed (P > 0.05, Student's t-test). The experiment was performed twice.



Figure 4.22. Measurement of relative water content (rLWC) in Col-0 wild-type and the *rap2.12* knockouts under drought and watered conditions. All the values are mean + standard error (n=3). Means with different letters indicate significant difference (P < 0.05, Welch ANOVA, post-hoc Games-Howell test). The experiment was performed once.
#### 4.4.2. Measurement of photosynthetic performance

 $g_s$  and A of the *rap2.12* knockouts were measured under drought and watered conditions and compared to Col-0 (Figure 4.23). A decrease in  $g_s$  was observed in all three lines over the course of the drought (Figure 4.23A), measured at five different rSWC until 20% rSWC. A decrease in *A* was also seen in all three lines as the drought progressed (Figure 4.23C). However, there appeared to be no difference in  $g_s$  or *A* between the mutant lines and the wild-type.

An increase in the average temperature of the rosette was observed in all three lines over the duration of the drought stress, despite an anomaly in the data for both the droughted and the corresponding watered plants, when measured at rSWC of 30% (Figure 4.24A). However, here also no difference was seen in the average temperature between the lines at any point of the drought.



Figure 4.23. Measurement of stomatal conductance ( $g_s$ ) and photosynthetic assimilation rate (A) in the *rap2.12* knockouts and Col-0 wild-type at regular intervals during the drought stress. (A) The stomatal conductance of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The stomatal conductance of the corresponding watered control plants (n=6). (C) The assimilation rate of the plants subjected to drought at different relative soil water content (rSWC; n=6). (D) The assimilation rate of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.



Figure 4.24. Temperature of the *rap2.12* knockouts and Col-0 wild-type measured at regular intervals throughout the duration of the drought. (A) The temperature of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The temperature of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.

### 4.4.3. Measurement of the stress status of drought-stressed plants

# 4.4.3.1. Hydrogen peroxide

The levels of  $H_2O_2$  were measured in the wild-type and the two knockouts, *rap2.12-1* and *rap2.12-3* (Figure 4.25). It appeared that more  $H_2O_2$  was produced in the plants subjected to drought than in the watered plants, and that more  $H_2O_2$  was produced in the Col-0 than in the two knockouts under both treatments, however, these results were not significant.



Figure 4.25. Measurement of  $H_2O_2$  levels in the *rap2.12* knockouts and wild-type Col-0 under drought and watered conditions. All the values are mean + standard error (n=5). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.

#### 4.4.3.2. Electrolyte leakage

Electrolyte leakage was measured in the wild-type and the two *rap2.12* knockouts to study cellular membrane stability in plants subjected to drought, and in the corresponding watered control plants (Figure 4.26). Surprisingly, the watered plants appeared to have a higher percentage of electrolyte leakage than the droughted plants in all three lines, and this was significant in *rap2.12-3*. However, there appeared to be no difference in electrolyte leakage between the Col-0, *rap2.12-1* and *rap2.12-3* lines under droughted and watered conditions.



Figure 4.26. Measurement of electrolyte leakage from the *rap2.12* knockouts and wild-type Col-0 under drought and watered conditions. All the values are mean + standard error (n=5). Means with different letters indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Tukey HSD test). The experiment was performed once.

### 4.4.3.3. Chlorophyll and carotenoid content

Drought stress in plants leads to chlorophyll breakdown and subsequently, reduced photosynthetic capacity in the stressed plants (Munné-Bosch and Alegre, 2000; Mafakheri *et al.*, 2010). Hence chlorophyll (a, b and total) and also carotenoid content were measured in plants subjected to drought and watered conditions, in the wild-type and the two knockout lines. Surprisingly, higher levels of chlorophyll and carotenoid content were measured in the droughted plants compared to the watered plants across all three lines (Figure 4.27). There are appeared to be no difference in chlorophyll and carotenoid levels between Col-0 and the knockout lines under drought and watered conditions.



Figure 4.27. Estimation of chlorophyll and carotenoid content of the *rap2.12* knockouts and the Col-0 wild-type. (A) Chlorophyll a (B) Chlorophyll b, (C) Carotenoids and (D) Total Chlorophyll content per fresh weight (F.W.) were measured under both drought and watered conditions. All the values are mean + standard error (n=3). No significant difference was observed (P > 0.05, Oneway ANOVA). The experiment was performed once.

#### 4.4.3.4. Anthocyanin content

Anthocyanin levels were measured in the droughted Col-0, *rap2.12-1* and *rap2.12-3* and also in the corresponding watered control plants (Figure 4.28); anthocyanins have an antioxidant role in the cell, during times of stress and levels of anthocyanins are known to increase in response to stress (Neill and Gould, 2003). Higher anthocyanin content was measured in the Col-0 plants subjected to drought, than in the droughted *rap2.12-1* and *rap2.12-3* plants. The amount of anthocyanins detected in the watered plants of all three lines was almost negligible.



Figure 4.28. Estimation of anthocyanin content of the *rap2.12* knockouts and the Col-0 wild-type under both drought and watered conditions. All the values are mean + standard error (n=3). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.

### 4.4.4. Measurement of growth and development

### 4.4.4.1. Flowering time

The flowering time of the wild-type and the two *rap2.12* lines were measured under drought and watered conditions (Figure 4.29). The droughted plants flowered earlier than the watered plants in the case of Col-0 and *rap2.12-1* plants which produced fewer leaves at flowering than the corresponding watered plants, though this difference was not significant (Figure 4.29A). However, *rap2.12-3* plants subjected to drought appeared to flower later than the watered plants. A difference was also seen between the watered *rap2.12-3* and the watered wild-type, though this was also not significant.

In terms of number of days to flowering, the droughted plants flowered earlier in all three lines (Figure 4.29B). The two knockouts flowered earlier than the Col-0 under both drought and watered conditions, and this difference was significant for droughted and watered *rap2.12-3* and also droughted *rap2.12-1*.



Figure 4.29. Flowering time measured in the Col-0 wild-type and the *rap2.12* knockouts under drought and watered conditions. Flowering time was estimated in terms of (A) the number of leaves at flowering and (B) days to flowering after sowing. All the values are mean + standard error (n=15). Means with different letters indicate significant difference – in Figure A (P < 0.05, One-way ANOVA, post-hoc Tukey HSD test); in Figure B (P < 0.05, Welch ANOVA, post-hoc Games-Howell test). The experiment was performed once.

# 4.4.4.2. Biomass and harvest index

The above-ground biomass of the *rap2.12* knockouts under drought and watered conditions was measured and compared with that of Col-0 plants under the same conditions (Figure 4.30). A small difference in dried rosette weight was observed between the Col-0 plants subjected to drought and those that remained watered (Figure 4.30A). On the other hand, almost no difference in rosette mass was seen between droughted and watered *rap2.12-1* plants, while droughted *rap2.12-3* plants appeared to produce more rosette mass than the watered plants. Overall, it can be seen the two knockouts produced less rosette mass than the wild-type under both conditions, though these differences were not significant.

Droughted Col-0 produced fewer reproductive structures than the watered Col-0 (Figure 4.30B). *rap2.12-1* also produced fewer stalks and siliques under droughted conditions than under watered conditions, while there appeared to be no difference due to the two treatments in the *rap2.12-3* line.

Less seed was produced in droughted Col-0 plants than in the watered plants (Figure 4.30C). Significantly more seed was produced in *rap2.12-1* subjected to drought than in droughted Col-0. However, there was no difference in seed yield between droughted and

watered *rap2.12-1* plants. The seed yield of droughted *rap2.12-3* plants was significantly less than that produced by watered *rap2.12-3* plants. Droughted *rap2.12-3* plants produced similar levels of seed as droughted Col-0, and less than that produced by the droughted *rap2.12-1* plants, while watered *rap2.12-3* plants produced more seed than watered Col-0 and *rap2.12-1* plants.

The total biomass obtained from Col-0 plants subjected to drought was less than that obtained from watered Col-0 (Figure 4.30D). The biomass produced by *rap2.12-1* was similar to that of Col-0 under both treatments, while there was very little difference in total biomass between droughted and watered *rap2.12-3* plants.

There appeared to be no difference in seed harvest index of Col-0 plants subjected to drought was less than that of the watered wild-type plants (Figure 4.31). However, the harvest index was found to be higher in the droughted plants that in the watered plants of *rap2.12-1* plants, while for the *rap2.12-3* line this was found to be the opposite. Under droughted conditions, the harvest indexes of Col-0 and *rap2.12-3* plants were comparable but less than that of *rap2.12-1*, while under watered conditions, the harvest indexes of Col-0 and *rap2.12-3*.



Figure 4.30. Measurement of the vegetative and reproductive biomass for the wild-type and the *rap2.12* knockouts under drought and watered conditions. (A) Dry rosette weight, (B) the stalks and siliques, (C) seed yield and (D) total above-ground biomass were measured. All the values are mean + standard error (n=7). No significant difference was observed in Figures A, B and D (P > 0.05, One-way ANOVA). In Figure C, means with different letters indicate significant difference (P < 0.05, Welch ANOVA, post-hoc Games-Howell test). The experiment was performed once.



Figure 4.31. Harvest index estimated in the wild-type and the *rap2.12* knockouts under drought and watered conditions. All the values are mean - standard error (n=7).

### 4.5. Phenotyping and analysis of knockouts of BHLH038

#### 4.5.1. Measurement of water use under drought

The drying rates of the two knockouts of *BHLH038* were calculated after a progressive drought till 20% rSWC was reached, and these were compared with the drying rate of the wild-type, Col-0 (Figure 4.32). No difference in drying rate was seen between the wild-type and *bhlh038-2* or *bhlh038-4*. An analysis of the rosette area of the three lines showed that there was no difference in their rosette areas when the drought commenced (Figure 4.33).

The rLWC of Col-0, *bhlh038-2* and *bhlh038-4* subjected to drought and control treatments were measured (Figure 4.34). The droughted plants of all three lines showed a significantly lower rLWC than their respective controls, but between them, the rLWC of *bhlh038-2* was lower than that of the Col-0, and the rLWC of *bhlh038-4* was higher than the wild-type. The rLWC of watered Col-0 was higher than that of watered *bhlh038-4*, and there was a significant difference in rLWC between the two knockouts maintained under watered conditions.



Figure 4.32. Drying rates for *bhlh038* knockouts compared to the wild-type, Col-0. The values are mean + standard error (n=10). No significant difference was observed (P > 0.05, Student's t-test). The experiment was performed twice.



Figure 4.33. Rosette areas for *bhlh038* knockouts compared to the wild-type, Col-0. The values are mean + standard error (n=6). No significant difference was observed (P > 0.05, Student's t-test). The experiment was performed twice.



Figure 4.34. Measurement of relative water content (rLWC) in Col-0 wild-type and the *bhlh038* knockouts under drought and watered conditions. All the values are mean + standard error (n=3). Means with different letters indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Tukey test). The experiment was performed once.

### 4.5.2. Measurement of photosynthetic performance

 $g_s$  and *A* were measured in Col-0, *bhlh038-2* and *bhlh038-4* plants at several points during a progressive drought, and in the corresponding watered control plants (Figure 4.35).  $g_s$  of Col-0 plants subjected to drought decreased only towards the end of the drought (Figure 4.35A).  $g_s$  of *bhlh038-2* decreased throughout the course of the drought and was consistently lower than that of Col-0 plants. On the other hand,  $g_s$  of *bhlh038-4* appeared to increase till 30% rSWC and then remain constant.  $g_s$  of droughted plants was less than that of the control watered plants (Figure 4.35B). Over the course of the experiment,  $g_s$  of the watered plants continued to increase, and the wild-type had higher  $g_s$  than the two knockouts. Overall, it would seem that there was no real difference in  $g_s$  between the wild-type and the mutants. There was also no difference in the photosynthetic assimilation rate (*A*) over the course of the drought, or between the three lines (Figure 4.35C).

The average temperatures of the wild-type and the knockouts that were subjected to drought and those maintained under control conditions were also measured (Figure 4.36). There appeared to be no change in the average temperature of the droughted plants over the course of the drought (Figure 4.36A), however the average temperature of the watered plants for all three lines measured at the same time was almost 1 °C lower than that of the droughted plants (Figure 4.36B).



Figure 4.35. Measurement of stomatal conductance ( $g_s$ ) and photosynthetic assimilation rate (A) in the *bhlh038* knockouts and Col-0 wild-type at regular intervals during the drought stress. (A) The stomatal conductance of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The stomatal conductance of the corresponding watered control plants (n=6). (C) The assimilation rate of the plants subjected to drought at different relative soil water content (rSWC; n=6). (D) The assimilation rate of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.



Figure 4.36. Temperature of the *bhlh038* knockouts and Col-0 wild-type measured at regular intervals throughout the duration of the drought. (A) The temperature of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The temperature of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.

#### 4.5.3. Measurement of the stress status of drought-stressed plants

#### 4.5.3.1. Hydrogen peroxide

Levels of the ROS  $H_2O_2$  were measured in the wild-type and the two knockouts of *BHLH038* under drought and watered conditions (Figure 4.37). More  $H_2O_2$  was produced in Col-0 plants subjected to drought than in the watered Col-0, though this was not significant. On the other hand, the two knockouts produced similar levels of  $H_2O_2$  under both droughted and watered conditions. Both *bhlh038-2* and *bhlh038-4* produced less  $H_2O_2$  under droughted conditions than the drought-stressed wild-type plants, although this difference was not significant, while there was no difference in  $H_2O_2$  in the watered plants of all three lines.



Figure 4.37. Measurement of  $H_2O_2$  levels in the *bhlh038* knockouts and wild-type Col-0 under drought and watered conditions. All the values are mean + standard error (n=5). Means with different letters indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Tukey test). The experiment was performed once.

#### 4.5.3.2. Electrolyte leakage

Electrolyte leakage was measured in the three lines under both drought and watered conditions, and these were compared with each other as shown in Figure 4.38. There appeared to be no difference in electrolyte leakage in Col-0 between the drought and watered plants. Lower electrolyte leakage was measured in droughted *bhlh038-2* plants, while droughted *bhlh038-4* plants had a higher percentage of electrolyte leakage than the

wild-type. The watered *bhlh038* knockouts showed a higher electrolyte leakage than the respective droughted plants, and also the watered wild-type.



Figure 4.38. Measurement of electrolyte leakage from the *bhlh038* knockouts and wild-type Col-0 under drought and watered conditions. All the values are mean + standard error (n=5). Means with different letters indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Tukey test). The experiment was performed once.

# 4.5.3.3. Chlorophyll and carotenoid content

On examining the chlorophyll and carotenoid content in Col-0, *bhlh038-2* and *bhlh038-4* plants subjected to drought or watered conditions, it was seen that the droughted Col-0 plants had significantly more chlorophyll content (a, b, and total) than their watered counterparts and also higher levels of carotenoids than the watered plants (Figure 4.39). There was no difference in the levels of chlorophyll and carotenoids in the two knockout lines subjected to droughted and watered conditions. The two knockouts subjected to drought also showed significantly less chlorophyll b and total chlorophyll content than droughted Col-0 plants. There was also a difference in chlorophyll a and carotenoid content between the droughted Col-0 plants and the knockouts, though this was not significant. There was no difference in chlorophyll and carotenoid between the wild-type and the mutants under watered conditions.



Figure 4.39. Estimation of chlorophyll content of the *bhlh038* knockouts and the Col-0 wild-type. (A) Chlorophyll a (B) Chlorophyll b, (C) Carotenoids and (D) Total Chlorophyll content were measured under both drought and watered conditions. All the values are mean + standard error (n=3). Means with different letters indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Tukey test). The experiment was performed once.

### 4.5.3.4. Anthocyanin content

The levels of anthocyanin were also measured in the Col-0 and the two *bhlh038* knockouts under drought and watered conditions (Figure 4.40). The droughted plants produced more anthocyanins than the watered plants in the three lines, though this difference was not significant. However, there was no difference in anthocyanin content between the three lines under both droughted and watered conditions.



Figure 4.40. Estimation of anthocyanin content of the *bhlh038* knockouts and the Col-0 wild-type under both drought and watered conditions. All the values are mean + standard error (n=3). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.

# 4.5.4. Measurement of growth and development

### 4.5.4.1. Flowering time

The flowering times of Col-0, *bhlh038-2* and *bhlh038-4* were determined under drought and watered conditions in terms of number of leaves at flowering and the number of days to flowering (Figure 4.41). In Figure 4.43A, it can be seen that Col-0 plants subjected to drought flowered earlier than the watered Col-0 plants, though this was not significant. However, there was no difference in flowering time between drought-stressed and wellwatered *bhlh038-2* plants, while droughted *bhlh038-4* plants flowered much earlier than the watered plants. Also under both treatments, the two *bhlh038* knockouts appeared to flower earlier than the Col-0.

The opposite was seen when the number of days to flowering were analysed (Figure 4.41B). It appeared that the flowering time (in terms of number of days) of the droughted Col-0 plants was later than that of the watered plants, as was the case for droughted *bhlh038-4* plants. On the other hand, *bhlh038-2* plants subjected to drought appeared to flower earlier than the watered plants. However, the two *bhlh038* knockouts appeared to flower earlier than the Col-0 plants of the same treatment, and this was significant between Col-0 and *bhlh038-2* plants.



Figure 4.41. Flowering time measured in the Col-0 wild-type and the *bhlh038* knockouts under drought and watered conditions. Flowering time was estimated in terms of (A) the number of leaves at flowering and (B) days to flowering after sowing. All the values are mean + standard error (n=10). Means with different letters indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Gabriel test). The experiment was performed once.

# 4.5.4.2. Biomass and harvest index

The vegetative and reproductive biomass were measured in drought-stressed and wellwatered Col-0, *bhlh038-2* and *bhlh038-4* plants (Figure 4.42). Figure 4.42A shows that there was no difference in rosette mass between the plants subjected to drought and those that were maintained under watered conditions for all three lines. There was also no difference in rosette mass between the wild-type and the knockout lines.

Figure 4.42B shows the dried mass of reproductive structures produced by the three lines under droughted and watered conditions. No difference was observed in drought-stressed and well-watered Col-0 plants, while droughted *bhlh038-2* plants produced significantly more reproductive biomass than the watered plants. Droughted *bhlh038-4* plants also produced more stalks and siliques than watered *bhlh038-4* plants, though this was not significant. There was no difference in the amount of biomass produced by each of the three lines under droughted conditions, or between Col-0 and *bhlh038-4* watered plants, however, the watered *bhlh038-2* line produced significantly less biomass than the wild-type.

The seed yield of droughted and watered Col-0, *bhlh038-2* and *bhlh038-4* was also measured (Figure 4.42C). There was no difference in seed yield between droughted and watered plants for Col-0 and *bhlh038-2*, while there appeared to be a difference in seed

yield between the droughted and watered *bhlh038-4* plants, which was not significant. There did not appear to be any difference in the yield of *bhlh038-2* plants compared to Col-0 plants, under both treatments. However, *bhlh038-4* plants appeared to produce less seed than both Col-0 and *bhlh038-2* plants under drought and watered conditions, though this was not significant.

Overall, there was no difference in the total amount of biomass produced by Col-0 or *bhlh038-4* plants between the droughted and watered conditions, while watered *bhlh038-2* plants produced significantly less biomass than the droughted plants and also significantly less biomass than watered Col-0 plants.

An analysis of the harvest index between the wild-type and the knockouts of *BHLH038* under watered and droughted conditions (Figure 4.43) showed no difference between the droughted and watered Col-0 and *bhlh038-2* plants, and also no difference between the two lines. The harvest index of *bhlh038-4* plants was less than that of the Col-0 and *bhlh038-2* plants under both conditions of drought and watered, and the harvest index of droughted *bhlh038-4* plants was more than that of the watered plants.



Figure 4.42. Measurement of the vegetative and reproductive biomass for the wild-type and the *bhlh038* knockouts under drought and watered conditions. (A) Dry rosette weight, (B) the stalks and siliques, (C) seed yield and (D) total above-ground biomass were measured. All the values are mean + standard error (n=7). No significant difference was observed in Figures A and C (P > 0.05, One-way ANOVA). In Figures B and D, means with different letters indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Tukey test). The experiment was performed once.



Figure 4.43. Harvest index estimated in the wild-type and the *bhlh038* knockouts under drought and watered conditions. All the values are mean - standard error (n=7).

### 4.6. Phenotyping and analysis of knockouts of ANL2

# 4.6.1. Measurement of water use under drought

The wild-type Col-0 and the two knockouts of *ANL2*, *anl2-2* and *anl2-4*, were subjected to a progressive drought until 20% rSWC was reached (Figure 4.44). There was no significant difference in the drying rates. An analysis of the rosette area of the three lines (Figure 4.45) showed no difference in rosette area between the wild-type and the two knockouts.

The relative leaf water content (rLWC) was measured in Col-0, *anl2-2* and *anl2-4* plants, subjected to drought and watered conditions (Figure 4.46). The droughted plants had a lower rLWC compared to the watered plants, which was significant for Col-0 and *anl2-4*, but there appeared to be no difference in rLWC between the three lines under watered or droughted conditions.



Figure 4.44. Drying rates for *anl*2 knockouts compared to the wild-type, Col-0. The values are mean + standard error (n=10). No significant difference was observed (P > 0.05, Student's t-test). The experiment was performed twice.



Figure 4.45. Rosette areas for *anl*2 knockouts compared to the wild-type, Col-0. The values are mean + standard error (n=6). No significant difference was observed (P > 0.05, Student's t-test). The experiment was performed twice.



Figure 4.46. Measurement of relative water content (rLWC) in Col-0 wild-type and the *anl2* knockouts under drought and watered conditions. All the values are mean + standard error (n=3). Means with different letters indicate significant difference (P < 0.05, Welch ANOVA, post-hoc Games-Howell test). The experiment was performed once.

### 4.6.2. Measurement of photosynthetic performance

The stomatal conductance ( $g_s$ ) and photosynthetic assimilation rate (*A*) of Col-0, *anl2-2* and *anl2-4* were measured under drought and watered conditions (Figure 4.47).  $g_s$  was found to decrease in droughted plants from a rSWC of 30% until the end of the drought experiment (Figure 4.47A). A large increase in  $g_s$  was also seen from the beginning of the drought to 30% rSWC – however this anomaly was also seen in the data from the watered plants (Figure 4.47B). A comparison of  $g_s$  between the droughted plants of all three lines and the watered plants, showed that there was a reduction in  $g_s$  towards the end of the drought, compared with no change in  $g_s$  in the watered plants. However, there appeared to be no difference in  $g_s$  between the three lines.

An increase in *A* was seen over the course of the drought (Figure 4.47C), which was also seen in the watered plants (Figure 4.47D; not taking into consideration the anomalous data measured in the middle of the experiment). Relative to the wild-type, *A* in the knockouts appeared to increase towards the end of the drought, while it did not appear to change under watered conditions.

The average temperature of Col-0, *anl2-2* and *anl2-4* was measured in plants subjected to drought or maintained under watered conditions (Figure 4.48). An increase in the average temperature of the rosette was seen in all three lines only at the end of the drought and this was > 1 °C than the watered control. However, no difference in temperature was seen between the wild-type and the two knockouts under drought or watered conditions.



Figure 4.47. Measurement of stomatal conductance ( $g_s$ ) and photosynthetic assimilation rate (A) in the *anl2* knockouts and Col-0 wild-type at regular intervals during the drought stress. (A) The stomatal conductance of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The stomatal conductance of the corresponding watered control plants (n=6). (C) The assimilation rate of the plants subjected to drought at different relative soil water content (rSWC; n=6). (D) The assimilation rate of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.



Figure 4.48. Temperature of the *anl*2 knockouts and Col-0 wild-type measured at regular intervals throughout the duration of the drought. (A) The temperature of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The temperature of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.

#### 4.6.3. Measurement of the stress status of drought-stressed plants

# 4.6.3.1. Hydrogen peroxide

Hydrogen peroxide ( $H_2O_2$ ) levels were measured in the Col-0, *anl2-2* and *anl2-4* lines under drought and watered conditions (Figure 4.49). Similar levels of  $H_2O_2$  were detected in drought-stressed and well-watered plants for all three lines, indicating that the plants were not stressed.



Figure 4.49. Measurement of  $H_2O_2$  levels in the *anl2* knockouts and wild-type Col-0 under drought and watered conditions. All the values are mean + standard error (n=5). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.

#### 4.6.3.2. Electrolyte leakage

Electrolyte leakage was also measured in all three lines under drought and watered conditions (Figure 4.50). No difference in electrolyte leakage was seen between the two treatments in Col-0 and *anl2-2* plants, while higher electrolyte leakage was seen in the watered *anl2-4* plants compared to the droughted plants, though this was not significant.



Figure 4.50. Measurement of electrolyte leakage from the *anl*<sup>2</sup> knockouts and wild-type Col-0 under drought and watered conditions. All the values are mean + standard error (n=5). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.

# 4.6.3.3. Chlorophyll and carotenoid content

The chlorophyll and carotenoid content of Col-0, *anl2-2* and *anl2-4* were measured in plants subjected to drought and watered conditions (Figure 4.51). No difference in chlorophyll and carotenoid content was seen between droughted and watered Col-0 plants, while a difference was seen in the two knockouts, though this was not significant. Under watered conditions, there appeared to be less chlorophyll (a, b and total) and carotenoids in the knockouts compared to the wild-type, while under droughted conditions, there appeared to be more chlorophyll and carotenoid content in the knockouts compared to the wild-type, while under droughted conditions, there appeared to be more chlorophyll and carotenoid content in the knockouts compared to the wild-type; however, this difference was not significant.



Figure 4.51. Estimation of chlorophyll content of the *anl2* knockouts and the Col-0 wild-type. (A) Chlorophyll a (B) Chlorophyll b, (C) Carotenoids and (D) Total Chlorophyll content were measured under both drought and watered conditions. All the values are mean + standard error (n=3). \* indicates significant difference relative to the watered control. No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.

### 4.6.3.4. Anthocyanin content

Anthocyanin levels were measured in the wild-type and the two knockouts under drought and watered conditions (Figure 4.52). Despite the name, *ANL2* only affects accumulation of anthocyanin in the epidermal cells, but does not affect the biosynthesis of anthocyanins, so it is possible to measure anthocyanin content in these mutants.

Surprisingly higher, though not significant, levels of anthocyanins were measured in the watered plants of Col-0 relative to droughted plants. There was no difference in the levels of anthocyanins between the differently treated *anl2-2* plants, while higher levels of anthocyanins were measured in droughted *anl2-4* plants than in the watered plants, though this was not significant.



Figure 4.52. Estimation of anthocyanin content of the *anl2* knockouts and the Col-0 wild-type under both drought and watered conditions. All the values are mean + standard error (n=3). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.

### 4.6.4. Measurement of growth and development

# 4.6.4.1. Flowering time

The flowering time of the three lines under drought and watered conditions was measured as number of leaves at flowering and number of days from sowing to floral transition (Figure 4.53). No difference was seen in flowering time between Col-0 plants subjected to drought and those that were maintained under watered conditions (Figure 4.53A). The droughted plants of *anl2-2* and *anl2-4* flowered earlier than their respective controls, though this was not significant. Under droughted conditions, there appeared to be no difference in flowering time between the knockouts and the wild-type. Under watered conditions, there was no difference in flowering time between Col-0 and *anl2-2*, while *anl2-4* plants flowered later than these lines, though not significantly.

Col-0 plants subjected to drought took longer to flower, in terms of number of days from sowing, than the watered plants, though this was not significant (Figure 4.53B). There appeared to be no difference in flowering time between the droughted and watered plants of *anl2-2* and *anl2-4*. On the other hand, *anl2-4* plants flowered significantly later than both Col-0 and *anl2-2* under droughted and watered conditions.



Figure 4.53. Flowering time measured in the Col-0 wild-type and the *anl2* knockouts under drought and watered conditions. Flowering time was estimated in terms of (A) the number of leaves at flowering and (B) days to flowering after sowing. All the values are mean + standard error (n=10). No significant difference was observed in Figure A (P > 0.05, One-way ANOVA). In Figure B, means with different letters indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Tukey test). The experiment was performed once.

# 4.6.4.2. Biomass and harvest index

An analysis was made of the yield of the wild-type and the two *anl2* knockouts under drought and watered conditions (Figure 4.54). No difference in vegetative biomass was observed between the droughted and watered plants of Col-0, *anl2-2* and *anl2-4*, or between Col-0 and *anl2-2* under droughted and watered conditions (Figure 4.54A). On the other hand, *anl2-4* produced less dried rosette mass than Col-0 and *anl2-2* under both conditions, though this was not significant. In terms of the dried mass of stalks and siliques, it was seen that there was no difference between treatments or lines for the mass of reproductive structures produced (Figure 4.54B).

There was no difference in the amount of seed produced by Col-0 and *anl*2-2 plants subjected to drought or watered conditions, while there was no difference in seed yield between the droughted Col-0 and *anl*2-2 plants (Figure 4.54C). Under drought stress, *anl*2-4 plants appeared to produce more seed than droughted Col-0 and *anl*2-2 plants, but this difference was not significant. On the other hand, there was no difference in the seed yield between three lines under watered conditions. Thus, large variations in seed yield were seen between the two knockouts of *ANL*2.

An analysis of the total above-ground biomass produced by the three lines under drought and watered conditions showed there was no difference between the two treatments within a line or between the lines themselves (Figure 4.54D).

There was no difference in the harvest index of Col-0 plants subjected to drought and those that were maintained under watered conditions (Figure 4.55). Under drought conditions, both *anl2* knockouts appeared to have a better seed harvest index than the corresponding watered plants, and similar and better harvest indexes for *anl2-2* and *anl2-4* plants, respectively, compared to the wild-type. Watered *anl2-2* plants had a lower harvest index than watered Col-0 plants, which in turn had a lower harvest index than watered *anl2-4* plants. Also, under both droughted and watered conditions, *anl2-4* plants. had a better seed yield relative to above-ground biomass compared to *anl2-2* plants.



Figure 4.54. Measurement of the vegetative and reproductive biomass for the wild-type and the *anl2* knockouts under drought and watered conditions. (A) Dry rosette weight, (B) the stalks and siliques, (C) seed yield and (D) total above-ground biomass were measured. All the values are mean + standard error (n=7). No significant difference was observed in Figures A, B and D (P > 0.05, One-way ANOVA). In Figure C, means with different letters indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Tukey test). The experiment was performed once.



Figure 4.55. Harvest index estimated in the wild-type and the *anl*2 knockouts under drought and watered conditions. All the values are mean - standard error (n=7).

### 4.7. Phenotyping and analysis of overexpressors of UKTF

#### 4.7.1. Measurement of water use under drought

The screening of T-DNA insertional mutants of *UKTF* led to the identification of two overexpressors of the gene, named UKTF-3 and UKTF-4; however, no reduced expression mutants could be identified. Six-week old Col-0 plants and both *UKTF* overexpressors were subjected to a progressive drought down to 20%, and the drying rates of both mutants were calculated and compared to the wild-type, Col-0 (Figure 4.56). No difference in drying rate or rosette area (Figure 4.57) was observed between the Col-0 and the two *UKTF* overexpressing lines.

The rLWC of Col-0, UKTF-3 and UKTF-4 plants subjected to drought and watered conditions was also measured (Figure 4.58). The rLWC of the watered plants of all three lines was significantly higher than that of the droughted plants. No difference was seen between the three lines under watered conditions, but there appeared to be a significant difference between the two mutant lines under drought conditions and no difference between the knockouts and the wild-type.



Figure 4.56. Drying rates for *UKTF* overexpressors compared to the wild-type, Col-0. The values are mean + standard error (n=10). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed twice.



Figure 4.57. Rosette areas for *UKTF* overexpressors compared to the wild-type, Col-0. The values are mean + standard error (n=6). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed twice.



Figure 4.58. Measurement of relative water content (rLWC) in Col-0 wild-type and the *UKTF* overexpressors under drought and watered conditions. All the values are mean + standard error (n=3). Means with different letters indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Tukey test). The experiment was performed once.

#### 4.7.2. Measurement of photosynthetic performance

 $g_s$  and *A* of Col-0 and the two overexpressing lines of *UKTF* were measured under drought and watered conditions (Figure 4.59). The  $g_s$  of droughted Col-0, UKTF-3 and UKTF-4 plants decreased over the course of the drought, and at 20% rSWC was almost 50% of the  $g_s$  at the start of the drought period (Figure 4.59A). However, there no was difference in  $g_s$  between the wild-type and the mutant lines. *A* also decreased throughout the course of the drought, but there appeared to be no difference in *A* between the three lines (Figure 4.59C).

An increase in the average temperature of the plants subjected to drought was seen in the wild-type and the *UKTF* overexpressors (Figure 4.50). However, no difference in average temperature was seen between the three lines over the course of the drought or in the watered plants.



Figure 4.59. Measurement of stomatal conductance ( $g_s$ ) and photosynthetic assimilation rate (A) in the *UKTF* overexpressors and Col-0 wild-type at regular intervals during the drought stress. (A) The stomatal conductance of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The stomatal conductance of the corresponding watered control plants (n=6). (C) The assimilation rate of the plants subjected to drought at different relative soil water content (rSWC; n=6). (D) The assimilation rate of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.



Figure 4.60. Temperature of the *UKTF* overexpressors and Col-0 wild-type measured at regular intervals throughout the duration of the drought. (A) The temperature of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The temperature of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.

### 4.7.3. Measurement of the stress status of drought-stressed plants

# 4.7.3.1. Hydrogen peroxide

The levels of  $H_2O_2$  were measured in Col-0, UKTF-3 and UKTF-4 plants under drought and watered conditions (Figure 4.61). Surprisingly, there was no difference in the levels of  $H_2O_2$  between watered and droughted Col-0 plants. Thus, it appears that in this experiment the Col-0 plants did not experience drought stress, unlike the  $H_2O_2$ measurements performed previously with the other mutants. On the other hand, higher levels of  $H_2O_2$  were measured in both mutant lines subjected to drought, compared to watered plants, though this was not significant.



Figure 4.61. Measurement of  $H_2O_2$  levels in the *UKTF* overexpressors and wild-type Col-0 under drought and watered conditions. All the values are mean + standard error (n=5). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.

#### 4.7.3.2. Electrolyte leakage

Electrolyte leakage was measured in the wild-type and overexpressors of *UKTF* subjected to drought or maintained under watered conditions to test cellular membrane stability (Figure 4.62). Electrolyte leakage was lower in the droughted plants than in the watered plants in all three lines, though this was not significant. There was no difference in levels of leakage between the three lines under droughted and watered conditions.



Figure 4.62. Measurement of electrolyte leakage from the *UKTF* overexpressors and wild-type Col-0 under drought and watered conditions. All the values are mean + standard error (n=5). Means with different letters indicate significant difference (P < 0.05, Welch ANOVA, post-hoc Games-Howell test). The experiment was performed once.

#### 4.7.3.3. Chlorophyll and carotenoid content

The levels of chlorophyll (a, b and total) and carotenoids were measured in Col-0, UKTF-3 and UKTF-4 plants subjected to drought and watered conditions (Figure 4.63). The levels of chlorophyll and carotenoids were found to be higher in the droughted Col-0 and UKTF-3 plants compared to the watered plants, while no difference was seen in UKTF-4 plants. However, these differences were not significant. No difference in the levels of chlorophyll or carotenoids was seen between the three lines under watered conditions, while under drought less chlorophyll and carotenoids were measured in the overexpressors, though this was not significant.



Figure 4.63. Estimation of chlorophyll content of the *UKTF* overexpressors and the Col-0 wild-type. (A) Chlorophyll a (B) Chlorophyll b, (C) Carotenoids and (D) Total Chlorophyll content were measured under both drought and watered conditions. All the values are mean + standard error (n=3). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.
#### 4.7.3.4. Anthocyanin content

Anthocyanin levels were also measured in the three lines, in plants that were droughted or watered (Figure 4.64). Higher levels of anthocyanins were observed in the droughted plants in all three lines; however, this difference was very small in the Col-0 and UKTF-4 lines. Higher anthocyanin levels were measured in droughted UKTF-3 plants compared to UKTF-3 watered plants, and also compared to droughted Col-0 and UKTF-4 plants, though these differences were not significant.



Figure 4.64. Estimation of anthocyanin content of the *UKTF* overexpressors and the Col-0 wild-type under both drought and watered conditions. All the values are mean + standard error (n=3). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.

# 4.7.4. Measurement of growth and development

# 4.7.4.1. Flowering time

The flowering time of Col-0, UKTF-3 and UKTF-4 plants were measured under drought and watered conditions by measuring the number of leaves at flowering (Figure 4.65A) and the number of days to flowering from sowing (Figure 4.65B). Figure 4.65A shows that droughted plants of all three lines appeared to flower earlier than the watered plants, though this difference was not significant. Under droughted conditions, UKTF-3 plants flowered later than the wild-type plants, while UKTF-4 plants flowered earlier than wildtype plants and earlier than UKTF-3 plants. Under watered conditions, no difference in flowering time was seen between Col-0 and UKTF-4 plants, while UKTF-3 plants flowered later than both of these.

In terms of number of days to flowering, no difference in flowering time was seen between Col-0 plants under both conditions of drought and watered (Figure 4.65B), while the droughted mutants flowered earlier than the respective watered plants, which was significant for UKTF-3. Under droughted conditions, no difference in flowering time was seen between Col-0 and UKTF-3 plants, while UKTF-4 plants flowered significantly earlier than the wild-type. On the other hand, under watered conditions UKTF-3 plants flowered later than the wild-type, and significantly later than watered UKTF-4 plants.



Figure 4.65. Flowering time measured in the Col-0 wild-type and the *UKTF* overexpressors under drought and watered conditions. Flowering time was estimated in terms of (A) the number of leaves at flowering and (B) days to flowering after sowing. All the values are mean + standard error (n=10). Means with different letters indicate significant difference – in Figure A (P < 0.05, One-way ANOVA, post-hoc Gabriel test); in Figure B (P < 0.05, Welch ANOVA, post-hoc Games-Howell test). The experiment was performed once.

# 4.7.4.2. Biomass and harvest index

The vegetative and reproductive biomass produced by the overexpressors of *UKTF* under droughted and watered conditions were measured and compared against the wild-type, Col-0 (Figure 4.66). The rosette biomass of the three lines is shown in Figure 4.66A. No difference was seen in the rosette mass produced by droughted and watered Col-0 and UKTF-3 plants, while droughted UKTF-4 plants produced less rosette biomass than the watered plants, though this was not significant. Droughted UKTF-4 plants also

produced less rosette mass than the Col-0 and UKTF-3 lines, but this was also not significant.

The reproductive structures (stalks and siliques) were also measured in Col-0, UKTF-3 and UKTF-4 subjected to drought and watered conditions (Figure 4.66B). Fewer reproductive structures were produced in droughted Col-0 plants than in the watered plants, though this was not significant. However, there was no difference in amount of reproductive structures produced by the overexpressing lines under both droughted and watered conditions.

The seed yield of the three lines subjected to drought and watered conditions was analysed (Figure 4.66C). Droughted Col-0 plants produced less seed than the watered plants, though not significantly, while there was no difference in seed yield between the droughted and watered UKTF-3 plants. However, more seed was produced in UKTF-4 plants subjected to drought than the watered plants, though this was also not significant. Under droughted conditions the Col-0 plants appeared to produce less seed than the two mutants, while under watered conditions UKTF-4 produced less seed than Col-0 and UKTF-3 plants.

There was a difference in the total biomass produced by Col-0 plants subjected to drought compared to that produced by watered plants (Figure 4.66D), though this was not significant, while there was no difference in total biomass between droughted and watered UKTF-3 and UKTF-4 plants. There was no difference in total biomass between the three lines under droughted conditions, while under watered conditions UKTF-4 plants produced significantly less total biomass than the wild-type.

There was no difference in seed harvest index between droughted and watered Col-0 and UKTF-3 plants (Figure 4.67), while watered UKTF-4 had a lower harvest index than the droughted plants.



Figure 4.66. Measurement of the vegetative and reproductive biomass for the wild-type and the *UKTF* overexpressors under drought and watered conditions. (A) Dry rosette weight, (B) the stalks and siliques, (C) seed yield and (D) total above-ground biomass were measured. All the values are mean + standard error (n=7). No significant difference was observed in Figures A, B and C (P > 0.05, One-way ANOVA). In Figure D, means with different letters indicate significant difference (P < 0.05, Welch ANOVA, post-hoc Games-Howell test). The experiment was performed once.



Figure 4.67. Harvest index estimated in the wild-type and the UKTF overexpressors under drought and watered conditions. All the values are mean - standard error (n=7).

#### 4.8. Phenotyping and analysis of knockouts of POZ

#### 4.8.1. Measurement of water use under drought

Two knockouts of *POZ* were used to analyse a potential role of the gene in the drought response. The wild-type, Col-0, and the two knockouts, *poz-2* and *poz-3*, were subjected to a progressive drought until 20% rSWC was reached, and their drying rates were subsequently calculated (Figure 4.68). No difference in the drying rates was found between the three lines; also, no difference in the rosette areas was found between the wild-type and the mutant lines (Figure 4.69).

The rLWC of the wild-type and the two knockouts of *POZ* were measured in plants subjected to drought and watered conditions (Figure 4.70). A significantly lower rLWC was seen in the droughted plants of Col-0, while the difference in rLWC between the droughted and watered knockouts was not significant. No difference was seen between the three lines under droughted conditions, while under watered conditions the rLWC of the wild-type was significantly higher than that of *poz-2*.



Figure 4.68. Drying rates for *poz* knockouts compared to the wild-type, Col-0. The values are mean + standard error (n=10). No significant difference was observed (P > 0.05, Student's t-test). The experiment was performed twice.



Figure 4.69. Rosette areas for *poz* knockouts compared to the wild-type, Col-0. The values are mean + standard error (n=6). No significant difference was observed (P > 0.05, Student's t-test). The experiment was performed twice.



Figure 4.70. Measurement of relative water content (rLWC) in Col-0 wild-type and the *poz* knockouts under drought and watered conditions. All the values are mean + standard error (n=3). Means with different letters indicate significant difference (P < 0.05, Welch ANOVA, post-hoc Games-Howell test). The experiment was performed once.

# 4.8.2. Measurement of photosynthetic performance

The stomatal conductance ( $g_s$ ) and carbon assimilation rate (A) of the wild-type and the two knockouts of *POZ* were measured under drought and watered conditions (Figure 4.71).  $g_s$  of all three lines decreased as the drought progressed, but there appeared to be no difference in  $g_s$  between the three lines under drought or watered conditions (Figures 4.71A and B). A did not appear to decrease in all three lines over the course of the drought (Figure 4.71C).

The average temperatures of the Col-0, *poz-2* and *poz-3* lines subjected to drought were measured and compared to the plants maintained under watered conditions (Figure 4.72). An increase in temperature of about 1 °C was observed in the all three lines between the start and the end of the drought (Figure 4.72A), which was not seen in the watered plants (Figure 4.72B). However, no difference in the average temperature was observed between the three lines under both drought and watered conditions.



Figure 4.71. Measurement of stomatal conductance ( $g_s$ ) and photosynthetic assimilation rate (A) in the *poz* knockouts and Col-0 wild-type at regular intervals during the drought stress. (A) The stomatal conductance of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The stomatal conductance of the corresponding watered control plants (n=6). (C) The assimilation rate of the plants subjected to drought at different relative soil water content (rSWC; n=6). (D) The assimilation rate of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.



Figure 4.72. Temperature of the *poz* knockouts and Col-0 wild-type measured at regular intervals throughout the duration of the drought. (A) The temperature of the plants subjected to drought at different relative soil water content (rSWC; n=6). (B) The temperature of the corresponding watered control plants (n=6). All the values are mean + standard error. The experiment was performed once.

#### 4.8.3. Measurement of the stress status of drought-stressed plants

# 4.8.3.1. Hydrogen peroxide

Levels of  $H_2O_2$  were measured in the wild-type and the knockouts of *POZ* subjected to drought and watered conditions (Figure 4.73). No difference in the levels of  $H_2O_2$  was seen between all three lines or between droughted and watered conditions.



Figure 4.73. Measurement of  $H_2O_2$  levels in the *poz* knockouts and wild-type Col-0 under drought and watered conditions. All the values are mean + standard error (n=5). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.

#### 4.8.3.2. Electrolyte leakage

Electrolyte leakage was measured in Col-0, *poz-2* and *poz-3* under droughted and watered conditions (Figure 4.74). No difference in electrolyte leakage was observed in the wild-type plants between the two treatments, while in the two knockouts higher electrolyte leakage was seen in the watered plants than in the droughted plants, though this difference was not significant.



Figure 4.74. Measurement of electrolyte leakage from the *poz* knockouts and wild-type Col-0 under drought and watered conditions. All the values are mean + standard error (n=5). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.

# 4.8.3.3. Chlorophyll and carotenoid content

Chlorophyll (a, b and total) and carotenoid content were measured in the three lines under drought and watered conditions (Figure 4.75). Higher levels of chlorophyll and carotenoid content were measured in the droughted plants than in the watered plants for all three lines; this difference was significant in Col-0 for carotenoid content and total chlorophyll levels and in *poz-3* for all four measurements. Under droughted conditions, *poz-2* appeared to contain lower levels of chlorophyll and carotenoid than the wild-type and *poz-3*, though this was not significant.



Figure 4.75. Estimation of chlorophyll content of the *poz* knockouts and the Col-0 wild-type. (A) Chlorophyll a (B) Chlorophyll b, (C) Carotenoids and (D) Total Chlorophyll content were measured under both drought and watered conditions. All the values are mean + standard error (n=3). Means with different letters indicate significant difference (P < 0.05, Welch ANOVA, posthoc Games-Howell test). The experiment was performed once.

# 4.8.3.4. Anthocyanin content

Anthocyanin content was increased in the droughted plants in the wild-type and the two knockouts of *POZ*, though this was significant only for *poz-3* (Figure 4.76). Both mutants had higher anthocyanin content during drought compared to the wild-type, though this was not significant.



Figure 4.76. Estimation of anthocyanin content of the *poz* knockouts and the Col-0 wild-type under both drought and watered conditions. All the values are mean + standard error (n=3). Means with different letters indicate significant difference (P < 0.05, Welch ANOVA, post-hoc Games-Howell test). The experiment was performed once.

# 4.8.4. Measurement of growth and development

#### 4.8.4.1. Flowering time

The flowering times of Col-0 and the knockouts of *POZ* were measured in terms of the number of leaves at flowering (Figure 4.77A). No difference in flowering time was seen between the droughted and watered Col-0 plants. Droughted *poz-2* plants appeared to flower later than the watered plants, while droughted *poz-3* plants flowered earlier than the respective watered plants, though both were not significant. Under both conditions of drought and watered, the wild-type flowered later than the two knockouts, though this difference was also not significant.

The flowering times of the wild-type and the knockouts of *POZ* were also measured in terms of the number of days to flowering from sowing (Figure 4.77B). In this case, droughted Col-0 plants appeared to flower later than watered Col-0 plants, though this was not significant. No difference in flowering time was seen in the knockout lines between the drought and watered plants. Under droughted conditions, it appeared that *poz-2* flowered later than the wild-type, while *poz-3* plants flowered earlier than Col-0. However, these differences were not significant. Under watered conditions, *poz-2* flowered significantly later than the wild-type, while no difference in flowering time was seen between the wild-type and *poz-3* plants.



Figure 4.77. Flowering time measured in the Col-0 wild-type and the *poz* knockouts under drought and watered conditions. Flowering time was estimated in terms of (A) the number of leaves at flowering and (B) days to flowering after sowing. All the values are mean + standard error (n=10). No significant difference was observed in Figure A (P > 0.05, One-way ANOVA). In Figure B, means with different letters indicate significant difference (P < 0.05, One-way ANOVA, post-hoc Gabriel test). The experiment was performed once.

# 4.8.4.2. Biomass and harvest index

The vegetative and reproductive yield of the two knockouts of *POZ* were measured and compared to that of Col-0 plants (Figure 4.78). There was no difference in rosette biomass between the droughted and watered plants of the wild-type and the two mutant lines (Figure 4.78A). Overall, under both conditions of drought and watered, Col-0 appeared to produce more rosette mass than *poz-2* and *poz-3*, though this was not significant.

The mass of stalks and siliques (reproductive structures) were measured in the three lines in droughted and watered plants (Figure 4.78B). There appeared to be very little difference in the amount of stalks and siliques produced in droughted and watered plants of all three lines.

There appeared to be no difference in seed yield between the droughted and watered plants of Col-0 and *poz-2*, whereas droughted *poz-3* plants produced more seed than the watered plants, though this was not significant (Figure 4.78C). Under watered conditions, there appeared to be no difference in yield between the three lines. However, under droughted conditions *poz-2* produced less seed than *poz-3* plants, though this was not significant.

The total biomass produced by Col-0, *poz-2* and *poz-3* plants under drought and watered conditions shows that there was no difference in biomass between the lines or between drought-stressed and well-watered plants (Figure 4.78D).

The harvest index of the Col-0, *poz-2* and *poz-3* plants subjected to drought or under well-watered conditions was also calculated (Figure 4.79). There was no difference in harvest index between droughted and watered wild-type and *poz-2* plants. However, the seed harvest index of droughted *poz-3* was more than that of the watered plants.



Figure 4.78. Measurement of the vegetative and reproductive biomass for the wild-type and the *poz* knockouts under drought and watered conditions. (A) Dry rosette weight, (B) the stalks and siliques, (C) seed yield and (D) total above-ground biomass were measured. All the values are mean + standard error (n=7). No significant difference was observed (P > 0.05, One-way ANOVA). The experiment was performed once.



Figure 4.79. Harvest index estimated in the wild-type and the *poz* knockouts under drought and watered conditions. All the values are mean - standard error (n=7).

#### 4.9. Discussion

In this chapter, mutant lines of *AGL22*, *FD*, *RAP2.12*, *BHLH038*, *ANL2*, *UKTF* and *POZ* were phenotyped under drought conditions. *AGL22* was identified as a hub gene in Bechtold *et al.* (2016), while the other genes were identified in chapter 3 (Section 3.3, including Figures 3.3 to 3.8). Only mutants for *AGL22* and *FD* showed a drought phenotype, while the other five genes did not.

However, *RAP2.12* is functionally redundant with *RAP2.2* (Nakano *et al.*, 2006) which may explain why the single knockout does not have a drought phenotype. *BHLH038* has high sequence similarity and possible functional redundancy with *BHLH039* (Wang *et al.*, 2007), while as shown in chapter 3, *UKTF* and *POZ* (Gingerich *et al.*, 2005) both belong to gene families. Thus, it is possible that modelling drought-responsive gene networks using VBSSM has predicted these gene families that are important in drought, and this would require multi-gene knockouts to verify this. Also, in the case of *UKTF* in particular, T-DNA insertional knockouts are not available and so it will not be entirely possible to say that *UKTF* is not involved in drought stress response.

# 4.9.1. AGL22 could play a regulatory role during drought

When knockouts of *AGL22* were subjected to a progressive drought experiment, these mutants showed a faster drying rate than wild-type plants, and one of the reasons for this was seen to be due to a larger rosette area compared to the wild-types. It was also seen that these knockouts had a higher average temperature than Col-0, indicating a lower stomatal conductance, particularly towards the end of the drought. Since this was not observed throughout the course of the drought, it can be assumed that the lowered stomatal conductance was not a phenotypic effect of knocking out *AGL22*, but rather due to the decreasing water content in the tissue. The drying rates of the two overexpressing lines also appear to correlate with their measured rosette areas, and were higher than the Col-0 in AGL22ox-2, but there was no difference between AGL22ox-10 and Col-0. The observed differences between the two overexpressors of *AGL22* could be due to the difference in the levels of expression of *AGL22* in these two lines (Figure 3.24).

The reactive oxygen species, hydrogen peroxide  $(H_2O_2)$ , is produced in plants in response to abiotic and biotic stresses (Apostol *et al.*, 1989; Moran *et al.*, 1994; Prasad *et al.*, 1994; Sgherri and Navari-Izzo, 1995; Tsugane *et al.*, 1999; Apel and Hirt, 2004).

Levels of H<sub>2</sub>O<sub>2</sub> were measured in Col-0, the segregating wild-type, AGL22 WT, the two knockouts and the two AGL22 overexpressing lines. In the wild-type lines, a clear difference can be seen in the amount of H<sub>2</sub>O<sub>2</sub> measured between the two treatments; however, there appears to be no such difference in the levels of H<sub>2</sub>O<sub>2</sub> measured in the knockouts. The levels of H<sub>2</sub>O<sub>2</sub> in the knockouts under watered conditions are similar to those of the wild-type lines, but the amount measured under droughted conditions is much less in the knockouts than in the wild-type plants. This could be due to decreased production of H<sub>2</sub>O<sub>2</sub>, but possibly due to increased scavenging of ROS. Increased protection from oxidative stress could be a consequence of the early flowering phenotype of these mutants - the plants had begun flowering before the completion of the drought period and so would want to ensure production and survival of the next generation. The overexpressors of AGL22, on the other hand, had less H<sub>2</sub>O<sub>2</sub> under watered conditions than the wild-types and knockouts, but produced more H<sub>2</sub>O<sub>2</sub> under drought conditions than any of the other lines. There was a much larger difference in the levels of  $H_2O_2$ measured in the overexpressors between the two treatments. This indicates that AGL22 might play a role in the ability of plants to scavenge H<sub>2</sub>O<sub>2</sub> produced under periods of drought. However, the expression levels of AGL22 increase early in the drought period. This could mean that AGL22 could play a role in  $H_2O_2$ -mediated stress signalling during drought. It would be interesting to study the expression levels of signalling genes, other ROS and calcium levels in the knockouts and overexpressors under drought to verify this.

The flowering time of the knockouts was significantly earlier than that of the wild-type plants. The number of leaves at flowering was less in the droughted plants than in the watered plants, but there was no difference in the number of days to flowering due to the two treatments. This indicates that the droughted knockouts flowered at an earlier developmental stage than the watered plants, but also took longer to grow and develop than the watered plants. Thus, it appears that in *AGL22* knockouts drought stress has a negative impact on the vegetative development of the plants, but does not hinder the timing of the reproductive development in these mutants. The mildly overexpressing AGL220x-2 appeared to flower earlier than the wild-type lines, while the higher overexpressor, AGL220x-10, flowered later.

There appears to be some discrepancy between the two overexpressing lines for which differences in expression levels of *AGL22* cannot account. In addition to the larger rosette area, AGL22ox-2 plants flowered significantly earlier than both AGL22ox-10 and Col-0. Since *AGL22* is a negative regulator of flowering (Hartmann *et al.*, 2000), increased levels of the gene should delay flowering relative to the wild-type, but the opposite is seen

with AGL220x-2. It could be that though transcript levels are increased, there is reduction below wild-type levels of the amount of protein produced, due to post-transcriptional or translational changes. However, this does not explain why these plants produced sepaloid petals similar to the second overexpressor, AGL220x-10. Thus, it is important to check the level of AGL22 protein in AGL220x-2, and also to phenotype the other generated *AGL22* overexpressing lines shown in Figure 3.24. This will help to verify if mildly overexpressing lines of *AGL22* do produce a similar phenotype to knockouts, or if this is an artifact of the transformation process.

The vegetative and reproductive yield of the wild-type, knockout and overexpressing lines were determined under watered and droughted conditions. The yield of the knockouts was far less than any of the other lines, and in particular the seed yield was quite poor even under normal watered conditions, even though the biomass of stalks and siliques was comparable to the wild-type levels. On the other hand, the vegetative and reproductive yield of the overexpressors was similar to that of the wild-type, except the seed yield of AGL220x-2. The low seed yield of the knockouts, *agl22-3* and *agl22-4*, could be explained by the fact that the plants had started flowering almost a week before the end of the drought experiment, which was conducted under short days. The suppressive effect of short day photoperiod on flowering might explain the poor yield of these lines, rather than the effect of the mutation. Unstressed knockouts of *AGL222* that were moved to long days soon after bolting were observed to produce almost twice the amount of seed of Col-0 plants (data not shown).

Thus, it would appear that *AGL22* has a possible role in the plant's response to drought, particularly with respect to regulating  $H_2O_2$  levels, and could possibly produce a similar response to other abiotic stresses.

# 4.9.2. FD is drought-responsive

Similar to *AGL22*, the knockout of *FD* had a higher drying rate due to a larger rosette area, despite both genes having opposite functions in the regulation of flowering time (Hartmann *et al.*, 2000; Abe *et al.*, 2005). Thus, it would appear that *FD* has a similar effect on vegetative development as *AGL22*, but a difference in reproductive development. However, it is very difficult to make any conclusion on the role of *FD* in drought as only one knockout and overexpressor each were available. It is important to

have at least two, ideally three, mutant lines to study the effect of a gene, and thus the function of *FD* during drought remains to be seen.

#### 4.9.3. Nature of drought stress

In this work, drought stress was initiated by withdrawing water until 20% rSWC was reached, which typically took two weeks. However, it was evident from the analysis in this chapter that the drought stress imposed was not severe – droughted plants showed no difference to the watered plants, or in some cases performed better than the watered plants. In particular, there appeared to be no reduction in photosynthetic assimilation rate as the drought progressed, and the droughted plants produced better yield than the watered plants. Similarly, results from electrolyte leakage and chlorophyll and carotenoid content indicate that the droughted plants were not stressed, and in fact were better off than the watered plants. On the other hand, results from the H<sub>2</sub>O<sub>2</sub> and anthocyanin experiments indicate that the plants were experiencing drought stress. Thus, it appears that the drought stress imposed in this thesis is not sudden and severe, and hence it might be that the plants are able to adapt to the drought.

One reason for this could be the size of the pots used for the drought. This prolonged the drought for a total period two weeks for most mutants, while for the *AGL22* experiments took up to four weeks, and thus could have induced drought acclimation in the plants. This appeared to be the case based on the electrolyte leakage data in which the droughted plants had lower electrolyte leakage than the watered plants, and this was similar to that observed by Bouchabke *et al.* (2008). In their work, watered plants had higher electrolyte leakage than the droughted plants, and this was attributed to increased membrane hardening and thus drought adaptation. Thus it could be that to simulate drought stress in laboratory conditions, the size of the pot used relative to the size of the plant / root structure may have to be taken into consideration, to accurately portray field-like drought stress.

# 4.10. Conclusion

• Mutant lines of *AGL22*, *FD*, *RAP2.12*, *BHLH038*, *ANL2*, *UKTF* and *POZ* were phenotyped under drought conditions. Water use, photosynthetic performance, stress status, and growth and yield parameters were measured.

- Mutants of AGL22 and FD had a drought phenotype compared to the wild-type.
- AGL22 appears to regulate the levels of  $H_2O_2$  in the plant during drought stress.
- *RAP2.12*, *BHLH038*, *ANL2*, *UKTF* and *POZ* showed no drought phenotype, but there may be functional redundancy for *RAP2.12*, *BHLH038*, *UKTF* and *POZ*.
- The drought stress applied was not severe and so the plants are likely to have experienced drought adaption, as indicated by the electrolyte leakage data.

Chapter 5

# Testing network connections of gene regulatory networks

# 5.1. Introduction

In chapter 3, differentially expressed drought-responsive genes were used to model gene regulatory networks (GRNs) using VBSSM (Beal *et al.*, 2005). A number of GRNs were modelled which led to the identification of hub genes in these networks: *POZ*, *FD*, *UKTF*, *RAP2.12*, *BHLH038* and *ANL2*. Loss-of-function and gain-of-function mutants of the hub genes of these networks were screened and identified. *AGL22* was identified as a hub gene by Bechtold *et al.* (2016) and mutants of this gene were also identified. In chapter 4, these mutants were phenotyped under drought to ascertain if these genes are involved in drought stress response. Mutants of the flowering time gene *AGL22* showed a drought phenotype compared to wild-type plants. The knockout of *FD* also showed a higher drying rate than Col-0, however only one line was available for this. Mutants of the other genes did not show a different drought response compared to the wild-type.

This chapter describes the testing and analysis of some of the networks modelled in chapter 3. Only the network connections for *AGL22*, *RAP2.12*, *BHLH038* and *UKTF* were tested. Mutants of selected hub genes were subjected to a progressive drought stress and network connections from the gene regulatory networks in chapter 3 were analysed by qPCR. This was done to verify the connections predicted by the networks and to evaluate the accuracy of the modelling.

As shown in chapter 4, knockouts of AGL22 showed a quicker drying rate phenotype compared to the wild-type when subjected to progressive drought. The drying rates of the overexpressors were ambiguous. Both knockouts and overexpressors produced different levels of  $H_2O_2$  under drought, compared to the wild-type lines. AGL22 has been shown to respond to changes in environmental conditions and has been implicated in thermal regulation of flowering (Lee *et al.*, 2007). Riboni *et al.* (2013) showed that AGL22 is responsive to drought, and also that during drought under short days, inhibition of flowering was due to the action of AGL22 and another floral repressor, *Flowering Locus C* (*FLC*).

Though there appeared to be no difference in drought phenotype due to knocking out either *RAP2.12* or *BHLH038*, some of the genes connected to these hub genes were also tested. The single knockout of *RAP2.12* did not show a difference to the wild-type in its drought response, however the double knockout of *rap2.12 rap2.3* was drought shown to be drought sensitive (Papdi *et al.*, 2015), indicating that *RAP2.12* may be functionally redundant with *RAP2.3*.

*BHLH038* is involved in maintaining iron homeostasis and uptake, along with *BHLH039*, with which it is very similar in sequence. Thus, there may be functional redundancy between these two genes which may account for the lack of phenotype in the *bhlh038* knockout. Maintaining iron homeostasis is important because excess iron is toxic to plants, resulting in increased levels of ROS through the Fenton reaction and causing oxidative stress (Kampfenkel *et al.*, 1995; Gellego *et al.*, 1996). As drought stress also induces oxidative stress (Moran *et al.*, 1994; Munné-Bosch and Peñuelas, 2004; Sharma and Dubey, 2005), the plant's ability to maintain iron homeostasis is important to control oxidative stress during drought.

Some of the network connections for the gene network identifying the unknown gene *UKTF* were also tested. No knockouts were available for this gene – only T-DNA insertion-induced overexpressors. Though these mutants also did not show a drought phenotype, some connections in the gene network were investigated as this gene may be involved in regulating flower development in Arabidopsis and could be an important regulatory gene, since flowering is affected during drought.

# 5.2. Analysis of gene regulatory network potentially controlled by *AGL22*

As mentioned in Chapter 3, gene regulatory networks (GRN) were modelled using the algorithm VBSSM (Beal *et al.*, 2005) and transcriptomics data obtained from a progressive drought of Col-0 plants. Bechtold *et al.* (2016) describes one such GRN that was modelled and led to the identification of *AGL22* as a 'hub' gene of that GRN, and a potentially important gene in the drought response of plants. Figure 5.1 shows some of the connections that were modelled, as shown in Chapter 3. The green nodes in Figure 5.1 show some of the genes that were modelled by Bechtold *et al.* and which were tested in this chapter. The yellow nodes in Figure 5.1 are some of the connections that were predicted by modelling flowering-related genes with *AGL22*.

The model predicts that under drought conditions, *AGL22* induces the expression of *AUXIN RESPONSE FACTOR 2* (*ARF2*), *VERNALIZATION 1* (*VRN1*), *WRKY20*, *DICER-LIKE 4* (*DCL4*), *RS-CONTAINING ZINC FINGER PROTEIN 21* (*RSZ21*), *PLEIOTROPIC REGULATORY LOCUS 1* (*PRL1*), a nuclease-phosphatase, and *FLOWERING BHLH 3* (*FBH3*). It also predicts that *AGL22* negatively regulates the expression of *DREB1A*, *ERF023*, *ERF034* and a peroxidase, under drought conditions.



Figure 5.1. Gene regulatory network potentially regulated by *AGL22*, which was created by VBSSM. The nodes in green are some of the connections in the network from Bechtold *et al.* (2016). The yellow nodes are connections from modelling *AGL22* with flowering-related genes. The red connections indicate that the connections modelled are inductive, and the blue connections indicate inhibition.

The transcriptional regulation of the above genes by AGL22 was verified by qPCR using the knockouts, agl22-3 and agl22-4, and the wild-type, Col-0, which were subjected to drought conditions. Figure 5.2 shows the results of the qPCR analysis in the two knockouts of AGL22. The data is expressed as  $log_2$  (fold expression of gene in mutant line relative to that in the wild-type).

The genes *WRKY20*, *VRN1*, *ARF2* and *DCL4* which were modelled to be induced by *AGL22* under drought conditions (Figure 5.1), were found to be down-regulated in both knockout lines of *AGL22* under drought conditions, thus verifying these predicted connections. The other genes that were predicted to be induced by *AGL22* during drought were *RSZ21*, *PRL1*, the nuclease-phosphatase and *FBH3*. *RSZ21* appeared to be mildly down-regulated in *agl22-4*, but there was no change in the level of its

expression in *agl22-3*. There appeared to be no change in the expression levels of *PRL1* and the nuclease-phosphatase in both knockout lines of *AGL22* under drought conditions, while *FBH3* showed the opposite expression pattern to that predicted by the network. It was found to be induced in *agl22-3* and *agl22-4* under drought, indicating that *AGL22* negatively regulates *FBH3* under drought conditions.

Of the genes that were predicted to be negatively regulated by *AGL22* under drought conditions, only *ERF023* and *ERF034* were found to agree with this prediction, and were up-regulated in the two knockouts under drought conditions. *DREB1A* and the peroxidase were found to be down-regulated in both *agl22-3* and *agl22-4*. This implies that under drought conditions, these genes appear to be induced by *AGL22*.

These genes were also tested in agl22-3 and agl22-4 plants that were maintained under watered conditions (Figure 5.3) to verify if the observed changes in expression levels of the above genes were due to the effect of the drought or solely due to the mutation in the AGL22 gene. The levels of ERF023 in normally watered knockouts of AGL22 were found to be similar to those in the droughted mutant lines. Similar levels of expression of DREB1A, VRN1 and RSZ21 were also seen in normally watered agl22-3 and agl22-4, as in the droughted plants. These indicate that the reduced expression of AGL22 contributed to the differential expression of these genes, rather than the stress treatment. Similar to the droughted plants, no difference in the expression of PRL1 and the nucleasephosphatase were seen in the watered knockouts of AGL22. Also, no differential expression was seen in the genes WRKY20, ARF2, FBH3 and the peroxidase in the watered plants, while all of these were down-regulated under drought conditions. DCL4 was found to be only mildly down-regulated in the watered knockout lines of AGL22, compared to the droughted mutants. On the other hand, under watered conditions, ERF034 was found to be further induced than under drought conditions, indicating that AGL22 down-regulates ERF034 under normal conditions, and that this control was mildly relaxed under drought conditions.



Figure 5.2. qPCR analysis of the genes identified in Figure 5.1 in *agl*22-3 and *agl*22-4 subjected to drought. Values are mean  $\pm$  standard error (no. of biological replicates, n=5).



Figure 5.3. qPCR analysis of the genes identified in Figure 5.1 in *agl*22-3 and *agl*22-4 maintained under watered conditions. Values are mean ± standard error (no. of biological replicates, n=5).

#### 5.3. Analysis of gene regulatory network potentially controlled by RAP2.12

Another GRN was modelled using VBSSM in which RAP2.12 was the hub gene. Due to lack of time, only a few of the genes were tested in the following models. Some of the genes that were predicted to be up-regulated by RAP2.12 are shown in Figure 5.4. These genes are *PHYTOCHROME INTERACTING FACTOR 3-LIKE 2 (PIL2)*, *BASIC PENTACYSTEINE 7 (BPC7)*, a bZIP-encoding gene *BZO2H1* and *DP-E2F-LIKE 2 (DEL2)*.



Figure 5.4. Gene regulatory network potentially regulated by *RAP2.12*, which was created by VBSSM. The red connections indicate that the connections modelled are inductive.

The wild-type, Col-0, and knockouts of *RAP2.12*, *rap2.12-1* and *rap2.12-3*, were subjected to drought conditions and leaf tissue was taken from each line to analyse the expression levels of the above genes using qPCR. The result of the expression analysis is shown in Figure 5.5. There appeared to be no difference in the expression levels of all the genes analysed between the mutant and the wild-type lines, under drought conditions. Under watered conditions, there also appeared to be no difference in the expression levels of *BZO2H1* and *PIL2* (Figure 5.6). *BPC7* appeared to be mildly down-regulated in both mutant lines, under watered conditions, while *DEL2* was down-regulated in only *rap2.12-1*.



Figure 5.5. qPCR analysis of the genes identified in Figure 5.4 in rap2.12-1 and rap2.12-3 subjected to drought. Values are mean  $\pm$  standard error (no. of biological replicates, n=5).



Figure 5.6. qPCR analysis of the genes identified in Figure 5.4 in *rap2.12-1* and *rap2.12-3* maintained under watered conditions. Values are mean  $\pm$  standard error (no. of biological replicates, n=5).

#### 5.4. Analysis of gene regulatory network potentially controlled by BHLH038

*BHLH038* was modelled as a hub gene in a GRN in which it is predicted to inhibit the expression levels of *PIL2*, *BZO2H1*, *BPC7* and *DEL2* (Figure 5.7). However, as seen in Figures 5.8 and 5.9, no difference in the expression of the above genes was seen in the knockouts of *BHLH038* under both drought and watered conditions.



Figure 5.7. Gene regulatory network potentially regulated by *BHLH038*, which was created by VBSSM. The blue connections indicate that the connections modelled are inhibitory.



Figure 5.8. qPCR analysis of the genes identified in Figure 5.7 in *bhlh038-1* and *bhlh038-4* subjected to drought. Values are mean  $\pm$  standard error (no. of biological replicates, n=5).



Figure 5.9. qPCR analysis of the genes identified in Figure 5.7 in *bhlh038-1* and *bhlh038-4* maintained under watered conditions. Values are mean  $\pm$  standard error (no. of biological replicates, n=5).

# 5.5. Analysis of gene regulatory network potentially controlled by UKTF

As described in Chapter 3, *UKTF* was identified as a potential hub gene in a predicted GRN involved in a plant's drought response. Figure 5.10 shows some of the connections that were modelled using VBSSM, namely *NUCLEAR FACTOR Y, SUBUNIT A10 (NF-YA10)* and *HOMOLOG OF XERODERMA PIGMENTOSUM COMPLEMENTATION GROUP B 1 (XPB1)* (green nodes). Having identified *UKTF* as having a MIP1 domain, *UKTF* was also modelled with flowering- and flowering time-related genes to identify potential *UKTF*-regulated genes that are involved in flowering. *GA INSENSITIVE DWARF1C (GID1C), WITH NO LYSINE (K) KINASE 5 (WNK5)* and *SUGAR INSENSITIVE 8 (SIS8)* are some of the genes identified in this network and are also shown in Figure 5.10 (purple nodes).



Figure 5.10. Gene regulatory network potentially regulated by *UKTF*, which was created by VBSSM. The nodes in green are some of the connections in the network from Chapter 3. The purple nodes are connections from modelling *UKTF* with flowering-related genes. The red connections indicate that the connections modelled are inductive, and the blue connection indicates inhibition.

As seen in Figures 5.11 and 5.12, there appeared to be no difference in the expression of *NF-YA10* during drought, but it was up-regulated in UKTF-3 under watered conditions. There appeared to be no difference in the expression of *NF-YA10* in UKTF-4 under both drought and watered conditions. Very little difference in the expression of *XPB1*, *GID1C* and *WNK5* was seen between the mutants and the wild-type plants under both drought and watered conditions. SIS8 was down-regulated in both UKTF-3 and UKTF-4 under drought conditions, as per the model. Under watered conditions, SIS8 was induced in UKTF-3, while there appeared to be no difference in its expression in UKTF-4.



Figure 5.11. qPCR analysis of the genes identified in Figure 5.10 in UKTF-3 and UKTF-4 subjected to drought. Values are mean  $\pm$  standard error (no. of biological replicates, n=5).



Figure 5.12. qPCR analysis of the genes identified in Figure 5.10 in UKTF-3 and UKTF-4 maintained under drought conditions. Values are mean  $\pm$  standard error (no. of biological replicates, n=5).

#### 5.6. Discussion

Gene regulatory networks for *AGL22*, *RAP2.12*, *BHLH038* and *UKTF* were tested in this chapter. This was done to ascertain the accuracy of the VBSSM modelling and also to test the regulation of the expression of genes that are not known to be regulated by the above four, and thus establish new targets of these genes and understand the role they may play during drought.

# 5.6.1. Gene regulatory network for AGL22

In section 5.2, it was confirmed that *AGL22* induces the expression of *WRKY20*, *VRN1*, *ARF2* and *DCL4*, as predicted by the model; however, only *WRKY20*, *ARF2* and *DCL4* were induced during drought, while *VRN1* appeared to be induced as a result of the reduced expression of *AGL22*. On the other hand, *ERF023* and *ERF034* were predicted by VBSSM to be down-regulated by *AGL22* during drought. These genes were found to be induced in knockouts of *AGL22*, implying that they are down-regulated by *AGL22*, but this was not specific to droughted conditions. There appeared to be no difference in the expression levels of *ERF023* under both drought and watered conditions, while *ERF034* appeared to be further down-regulated during drought. This implies that *ERF023* is regulated by *AGL22* regardless of the conditions, while under drought another gene(s) mediates the regulation of the expression of *ERF034*.

*FBH3* and *PROXD* were predicted to be positively and negatively regulated by *AGL22* during drought, respectively, while in reality the opposite was observed – *FBH3* was found to be negatively regulated by *AGL22* under drought stress, while *PROXD* was positively regulated. *DREB1A* was also found to be induced by *AGL22*, even though the model predicted the opposite; however this gene was up-regulated under both droughted and watered conditions, and thus its expression is regulated by *AGL22* regardless of the conditions. It has been shown in literature that that *DREB1A* is only cold-responsive and not drought-inducible (Liu *et al.*, 1998), so it is surprising that this gene has come up in the drought transcriptomics data of Bechtold *et al.* (2016). However, the difference could be down to the different methods used to induce drought. Liu *et al.* allowed rosettes to dehydrate on the bench as a method of drought and lasted only hours, while Bechtold *et al.* used a soil-based slow drying progressive drought over a two-week period, which is likely to be a more realistic situation of drought stress in the field.

*WRKY20* has been shown to be induced by jasmonic acid treatment (Schluttenhofer *et al.*, 2014) and a homologue of it in soybean, *GmWRKY1*, was found to be induced by pathogen infection (Kang *et al.*, 2009). These indicate that *WRKY20* is likely to be induced during biotic stresses. *WRKY20* was also shown to bind to the promoter of *Pathogenesis-Related4* (*PR4*) and induce its expression in Arabidopsis (Proietti *et al.*, 2011). PR4 contains a lectin domain (Potter *et al.*, 1993) and has been shown to be induced during pathogen infection (Mukherjee *et al.*, 2010). *PR4* was also found to be induced by drought, and constitutive overexpression of this gene conferred Arabidopsis plants with drought tolerance due to increased cell membrane stability (Cabello and Chan, 2012). Increased cell membrane stability is a measure of plant tolerance to abiotic stresses like drought, freezing and salinity, as it indicates increased osmotic adjustment and protection of the cell membrane, leading to decreased permeability of ions through the membrane (Ebercon and Blum, 1981). Thus, during drought, upregulation of *WRKY20* by *AGL22* could result in induction of *PR4*, and potentially better cell membrane stability and increased drought tolerance.

*WRKY20* was also shown to positively regulate the expression of *ApL3*, which codes for one of the large subunits of AGPase (Nagata *et al.*, 2012). *ApL3* is the predominantlyexpressed large subunit in inflorescences and roots, and is also expressed in leaves (Crevillén *et al.*, 2005). *WRKY20* was also found to be induced by mannitol and a subsequent increase in *ApL3* was observed (Nagata *et al.*, 2012). Prasch *et al.* (2015) observed increased levels of *ApL3* and other starch synthesis genes, and consequently starch accumulation, in guard cells during drought. A knockout mutant of *β-amylase1* (*BAM1*) confers these plants unable to breakdown starch in stomata, and these mutants are more drought-tolerant than Col-0 plants due to reduced stomatal opening (Prasch *et al.*, 2015). Thus, through *WRKY20*, *AGL22* may contribute to the drought stress response by increased starch accumulation in guard cells, and subsequently minimal stomatal opening.

*ARF2* (*Auxin Response Factor2*) is involved in auxin signalling and plays a role in repressing cell division (Schruff *et al.*, 2006). It also affects cell elongation and is involved in various developmental processes – it induces early flowering, floral organ abscission and early senescence (Okushima *et al.*, 2005). *ARF2* also negatively regulates ABA control of seed germination and primary root growth (Wang *et al.*, 2011). Knockouts of *ARF2* in Arabidopsis experience poor yield due to the formation of long gynoecia, resulting in failure in self-fertilisation as pollen from the stamen cannot reach the stigma (Okushima *et al.*, 2005; Schruff *et al.*, 2006). This phenotype is predominant in the early-

developed flowers and becomes less pronounced in the later flowers, enabling self-fertilisation (Okushima *et al.*, 2005). Thus, *ARF2* not only induces early flowering, but also enables successful self-fertilisation in those early flowers.

In the work of Meng *et al.* (2015), *arf2* mutants were shown to have increased levels of abscisic acid and were also found to be more drought-tolerant, due to increased stomatal closure and reduced water loss. *ARF2* was also found to negatively regulate the transcription factor *AINTEGUMENTA* (*ANT*), a positive regulator of the drought-responsive gene *COR15A*, which would further contribute to the drought-tolerant phenotype of *arf2* mutants (Meng *et al.*, 2015). The fact that *AGL22* induces *ARF2* during drought indicates that the plant places a priority of successful reproduction over drought avoidance.

*DCL4* (*Dicer-like4*) is involved in the production of transactivating-siRNA (ta-siRNA) from three families of ta-siRNA-encoding genes, *TAS1*, *TAS2* and *TAS3* (Xie *et al.*, 2005). The *TAS3* family consists of two members that target the degradation of *ARF2*, *ARF3* and *ARF4* (Williams *et al.*, 2005). Other genes involved in the generation of these tasiRNA-ARFs are *RNA-dependent RNA polymerase6* (*RDR6*), *Suppressor of Gene Silencing3* (*SGS3*) and *Argonaute7* (*AGO7*). Compared to Col-0, knockouts of these genes were shown to produce less seed after the plants were recovered from a period of drought (Matsui *et al.*, 2014). It was also shown that this phenotype was due to the lack of degradation of *ARF3*, which caused the formation of shortened stamens and subsequently reproductive failure.

Thus, during drought, *AGL22* appears to induce *DCL4* which promotes the degradation of *ARF3*, ensuring that reproduction in the early-formed flowers is successful. However, *ARF2* is also degraded by the tasiRNA-ARF pathway, and the lack of *ARF2* appears to negatively influence reproduction. It may be that *AGL22* also induces the expression of *ARF2* to ensure that when self-fertilisation occurs, either during drought or after recovery, there is sufficient production of seed allowing survival of the next generation. The fact that the plants sampled for the expression analysis in this chapter were 8 weeks old and very close to flowering (they were under an 8/16-hour light/dark period), might explain the reason for the induction of genes and processes related to the reproductive phase and successful reproduction. *AGL22* was found to be up-regulated in the microarray analysis of drought stressed plants (Bechtold *et al.*, 2016). Thus, it would appear that it may be involved in not only repressing flowering during the drought period, but also preparing the plant for a relatively successful reproductive phase, when conditions become favourable.
## 5.6.2. Gene regulatory network for RAP2.12 and BHLH038

The GRNs for *RAP2.12* and *BHLH038* were also tested but none of the connections appeared to hold true to the modelling. This may be because only a small number of genes in the model were tested. It is important to test a larger number of genes to ascertain the accuracy of the model, because as seen in the GRN for *AGL22*, only 5 of the 12 genes that were tested were found to be regulated by *AGL22* under droughted conditions (section 5.2). So, four genes may not be adequate to test the GRN.

### 5.6.3. Gene regulatory network for UKTF

Genes for the GRN of *UKTF* were analysed and only *SIS8* appeared to be downregulated by *UKTF* during drought. *SIS8* has been identified as a possible mitogenactivated kinase kinase kinase which regulates resistance to high sugar levels in seedlings. Knockouts of *SIS8* are less sensitive to the inhibitory effects of high levels of sugar in seedlings (Huang *et al.*, 2014). This may imply that these plants are osmotolerant as they can accumulate more sugars (Gibson *et al.*, 2001), and indicating that *UKTF* may be involved in sugar signalling during drought.

*SIS8* is also a negative regulator of salt stress and is down-regulated by the stress, while knockouts of *SIS8* are tolerant to salinity stress (Gao and Xiang, 2008), although the mechanism for this is unknown. As shown in Figure 5.11, *UKTF* down-regulates the expression of *SIS8* during drought stress, which in turn may act in a similar way as documented during salinity stress, and confer the plant with drought tolerance.

# 5.7. Conclusion

- GRNs for AGL22, RAP2.12, BHLH038 and UKTF were tested
- Five of the twelve genes in the GRN for *AGL22* were differentially expressed by this gene under drought conditions including *WRKY20*, *ARF2*, *DCL4*, *FBH3* and a peroxidase.
- AGL22 may confer drought through WRKY20 by increased cell membrane stability.
- AGL22 may also ensure successful reproduction after drought by acting through ARF2 and DCL4.

- The GRNs for *RAP2.12* and *BHLH038* were not found to hold true, but more genes in these networks need to be tested.
- *UKTF* was found to down-regulate *SIS8* and hence might be involved in sugar signalling during drought.

Chapter 6

# **General Discussion**

#### 6.1. VBSSM was used to model GRNs involved in drought

Drought has a devastating effect on plants and severely affects growth and development. Many studies have focussed on the effect of drought on plant transcriptomes, particularly in Arabidopsis (Kreps *et al.*, 2002; Seki *et al.*, 2002; Killian *et al.*, 2007; Harb *et al.*, 2010). Though these studies were useful in identifying transcription factors (TFs) and other genes as important to the drought response, they were subjected to unnatural waterdeficit situations such as dehydration of rosettes and addition of mannitol (Kreps *et al.*, 2002; Seki *et al.*, 2002; Killian *et al.*, 2007). Also, single time-point studies have been carried out which do not show changes in the transcriptome as the drought progresses and the early response events involved (Seki *et al.*, 2001).

The work presented in this thesis is based on the work described in Bechtold *et al.* (2016). In that work, a soil-based progressive drought was applied to Col-0 plants until the relative soil water content (rSWC) reached 20% and a time-series transcriptomics analysis was performed. In Chapter 3 of this thesis, a list of 2330 differentially expressed genes were identified which were used to model gene networks using a dynamic Bayesian algorithm called Variational Bayesian State-Space Modelling (VBSSM; Beal *et al.*, 2005). In addition to analysing these genes, the gene *AGL22* which was identified in Bechtold *et al.* (2016) was also analysed in this work.

VBSSM was used to model Gene Regulatory Networks (GRNs) involved in the drought response. A number of such networks were predicted and particular notice was taken of the highly connected or 'hub' genes in the network, as these could act as potentially important genes during drought that directly or indirectly control the expression of the members of the networks. Six such 'hub' genes were identified and along with AGL22, these were: FD (Flowering locus D), a bZIP protein involved in the positive regulation of flowering (AT4G35900; Abe et al., 2005); RAP2.12 (Related to Apetala2), a member of the ERF subfamily of the ERF/AP2 transcription factor family, and has been found to be involved in response to hypoxia (AT1G53910; Licausi et al., 2011); BHLH038, a basic helix-loop-helix protein that regulates iron homeostasis (AT3G56970; Wang et al., 2007); ANL2 (Anthocyaninless 2), a protein involved in the accumulation of anthocyanin and in root development (AT4G00730; Kubo et al., 1999); a protein of unknown function, designated UKTF (AT1G16750; The Arabidopsis Information Resource); a protein of unknown function containing the BTB/POZ (Bric-a-Brac, Tramtrack, Broad-complex / Pox virus and Zinc finger) domain, designated in this work as POZ (AT1G55760; Gingerich et al., 2005).

UKTF and POZ were characterised *in silico* to identify possible functions of the protein products (Chapter 3). POZ was identified as having a BTB-POZ domain and is phylogenetically very similar to AT1G21780 which has been shown to bind to Cullin3a and 3b (Gingerich *et al.*, 2005). Together, BTB and Cullin proteins form part of the E3 ligase complex that ubiquitinates proteins and targets them for protein degradation. Thus, it is quite likely that POZ is also involved in targeting proteins for degradation.

UKTF was identified as a possible MADS-Box interacting protein1 (MIP1) containing the MIP1 domain, which is a basic leucine zipper region. In Antirrhinum, a MIP1 protein was found to interact with the C class proteins, PLENA and FARINELLI, and the E class proteins, DEFH72 and DEFH200, forming a ternary complex (Causier *et al.*, 2003). It was hypothesised that MIP1 enables interaction between the two groups of proteins to ensure proper development of carpels in flowers. The equivalent C and E class genes in Arabidopsis are *AGAMOUS* and the *SEPALLATA* genes, respectively (Gutierrez-Cortines and Davies, 2000). Thus, UKTF and other MIP1 proteins in Arabidopsis may be similarly involved in ensuring carpel development.

With the exception of *RAP2.12* (Licausi *et al.*, 2011; Papdi *et al.*, 2015), none of the other genes have been shown to have a role in drought or any other stress response. Thus VBSSM has the potential to identify genes and gene networks that are not known to be stress-responsive. However, the theoretical identification of these potentially important genes must be verified experimentally by analysing the role of these proteins in plants during drought.

To this end, as shown in Chapter 3, T-DNA insertional lines were screened to identify loss-of-function mutants of the above seven genes. Two knockouts were obtained for *AGL22*, *RAP2.12*, *BHLH038*, *ANL2* and *POZ*. Only one knockout was obtained for *FD* (Wigge *et al.*, 2005; Riboni *et al.*, 2013) which was kindly provided by Dr. Lucio Conti from the University of Milan, while a knockdown was screened from T-DNA insertional lines obtained for *MKTF* were found to be overexpressing the gene, and no loss-of-function mutants could be identified.

In addition to the loss-of-function mutants, plants overexpressing the genes of interest were also created by transforming wild-type (WT) Col-0 plants with pEarleyGate (Earley *et al.*, 2005) overexpression constructs, and screening the seeds to obtain gain-of-function mutants for each of the genes. Only one non-segregating, overexpressing line

each for *AGL22* and *FD* were used for further analysis. The knockouts and overexpressors identified in Chapter 3 were phenotyped under drought conditions, as described in Chapter 4.

#### 6.2. Flowering time genes appear to play a role during drought

#### 6.2.1. AGL22 was the most drought-responsive hub gene

Early flowering knockouts of *AGL22* showed a quicker drying rate due to a larger rosette area compared to Col-0 plants. The highly overexpressing AGL22ox-10 (Masiero *et al.*, 2004; Riboni *et al.*, 2013; obtained from Dr. Lucio Conti of the University of Milan) showed no difference in drying rate with the wild-type. On the other hand, the mild overexpressor AGL22ox-2 had a larger rosette area and quicker drying rate compared to WT plants, and thus was more like the knockouts in this respect. However, AGL22ox-2 plants also produced the characteristic sepaloid petals similar to the AGL22ox-10 line (Masiero *et al.*, 2004). Thus the phenotype observed may in fact be due to the mild overexpression of *AGL22* and not gene silencing, although multiple lines expressing different levels of *AGL22* will be required to verify if that is so.

It was also seen that during drought, the overexpressors produced higher levels of  $H_2O_2$  in the droughted plants compared to the watered plants. On the other hand, very little difference in  $H_2O_2$  levels was observed between the droughted and control knockout plants. Since the expression levels of *AGL22* increase during drought, it is possible that *AGL22* positively regulates  $H_2O_2$  levels during drought leading to increased  $H_2O_2$ -mediated signalling events. The measurement of signalling genes in *AGL22* overexpressors and knockouts subjected to drought will help to verify if it is involved in signalling during drought.

In Chapter 5, the gene networks for *AGL22* and some of their connections were tested using qPCR. Many of the connections predicted for *AGL22* were found to be true and indicated that *AGL22* might regulate a number of stress-responsive genes, such as *DREB1A* and *WRKY20*. It was also seen that *AGL22* may play a role in preparing the plants for effective reproduction when the drought has passed, by the regulation of *DCL4* and *ARF2*. *AGL22* comes up early in the time-series analysis (day 7) and this indicates that it may play a key role in regulating the plant's response to drought; the fact that it regulates important stress-responsive genes such as *DREB1A* and *WRKY20* reinforces

207

this, and it will be interesting to test if other key drought-stress regulatory genes are also regulated by *AGL22*.

### 6.2.2. FD and UKTF may also be important regulatory genes

The knockout of *FD* showed a quicker drying rate during drought compared to the wildtype, and this mutant was also found to have a larger rosette area. On the other hand, the overexpressor and the knockdown mutants showed no difference in drying rate compared to the wild-type. Since only one knockout line for *FD* could be obtained, it is important to isolate and test other knockouts of *FD* to verify this phenotype and its possible role in drought. It is also necessary to test other stress parameters such as ROS levels and electrolyte leakage, and to determine the water status of mutants of *FD* by measuring rLWC, to ascertain if the gene does indeed play a role in drought stress response. *FD* is a late-responsive gene in the time-series and is induced at a low rSWC. This may indicate that *FD* may have more of a functional role during drought, rather than a regulatory one, although this must be explored further.

Two gain-of-function T-DNA lines of *UKTF* were obtained and phenotyped under droughted conditions, however, there appeared to be no difference between the two lines and the wild-type. Even though the overexpressing lines of *UKTF* did not show a drought phenotype, it is important to isolate a knockout for *UKTF* to properly assess if this gene plays a role in drought. Also, as it a member of a protein family, there may be functional redundancy with other proteins of the family, and multiple knockouts may be required to study the role of *UKTF*.

Some of the connections in the gene regulatory network for *UKTF* were tested as this gene product could potentially be involved in reproduction and carpel development. Only *SIS8* was found to be regulated by it, indicating that *UKTF* may integrate sugar signalling in the drought response. Also, knockouts of *SIS8* are resistant to negative effects of sugar and able to accumulate more sugars without growth inhibition (Huang *et al.*, 2014). This may indicate that *UKTF* mediates osmo-protection during drought. *SIS8* is also a negative regulator of salt stress and knockouts of this gene were salt-tolerant (Gao and Xiang, 2008). It may be similarly involved in drought as it is down-regulated by *UKTF*. The fact that *UKTF* is induced early during drought (day 6), it would indicate that down-regulation of *SIS8* is important for the plant to successfully withstand the drought stress.

208

From the analysis in this study, it appears that flowering time and flower development are important themes during drought. However, the age of plants sampled has to be taken in to consideration, as 5-week old plants maintained under short days were used for the transcriptomics analysis. It would be interesting to test the gene network in drought-stressed plants of a younger developmental stage. It would be interesting to study other flowering time mutants under drought, especially as there is a known correlation between flowering time and drought (McKay *et al.*, 2003).

#### 6.2.3. The relationship between drought response and flowering and productivity

A number of studies have identified a relationship between drought stress response and flowering time. McKay *et al.* (2003) found a positive correlation between flowering time and water-use efficiency (ratio of carbon assimilation to transpirational water loss), indicating that plants that flower later have better water-use efficiency. They suggested that this indicates a trade-off between drought adaptation and drought escape – plants that escape drought are less likely to be water-use efficient, while plants that flower later are able to recover eventually from the effects of the stress and produce better yield. Corroborating this, Schmalenbach *et al.* (2014) observed that under mild drought stress plants that flowered later produced better seed yield because the longer vegetative phase allowed the plants to recover from the stress. Plants that flowered early produced less seed as flowering occurred during the drought. They also stated that the best strategy for plants to reproduce during drought depended on the type of drought experienced – drought avoidance is better under mild drought stress, while drought escape is the better strategy under severe drought conditions.

Riboni *et al.* (2013; 2016) identified that drought escape is promoted by abscisic acid and the flowering time genes *Flowering Locus T (FT), Twin Sister of FT (TSF), Constans (CO)* and *Suppressor of Overexpression of Constans 1 (SOC1)*. These genes are positive regulators of floral transition, and this further shows that flowering time and drought response, particularly drought escape, are co-regulated.

In addition, it was also seen that flower development were affected by drought stress which led to reduced seed yield (Su *et al.*, 2013). The development of stamen, in particular, was affected and the length of the filaments in flowers of drought-stressed plants was shortened compared to that of the well-watered plants. This led to poor pollination and, consequently, sterility. However, as the drought continued and the plants

acclimatised to the drought, flowers that developed later were able to mature and produce seed, though the yield was greatly reduced compared to the well-watered plants.

Thus flowering time and development are closely linked with response to drought stress, and this is highlighted by the fact that *AGL22*, *FD* and *UKTF* in the time-series and VBSSM modelling. Thus VBSSM has the potential to identify other genes involved in flowering that have not been analysed.

### 6.3. The other hub genes did not show a drought phenotype

Knockouts of *RAP2.12*, *BHLH038*, *ANL2* and *POZ* were phenotyped under droughted conditions but showed no difference was observed between the mutants and the WT plants. Gene regulatory networks for *RAP2.12* and *BHLH038* were also tested by qPCR. Only a few of the connections were tested in each network, but it appeared that none of these connections held true. The lack of negative results for *RAP2.12*, *BHLH038* and *POZ* may be attributed to possible functional redundancy for these genes.

POZ belongs to a family of BTB/POZ proteins in Arabidopsis, consisting of 80 members (Gingerich *et al.*, 2005). The lack of phenotype between the knockouts and the WT may due to functional redundancy between POZ and another member of the family, possibly AT1G21780. As these proteins may be involved in targeting proteins for degradation, a double knockout of both of these genes could lead to a build-up of proteins that act antagonistically to vital signalling pathways during drought stress, which could have a detrimental effect on the plant (Lyzenga and Stone, 2012).

*BHLH038* has 80% sequence identity with *BHLH039*, another gene involved in iron homeostasis, and both are likely to be functionally redundant (Yuan *et al.*, 2008). A double mutant will be required to verify if *BHLH038* is drought-responsive. Maintaining iron homeostasis in the cell is important as excess iron can lead to increased ROS production through the Fenton reaction (Kampfenkel *et al.*, 1995; Gellego *et al.*, 1996), leading to ROS imbalance and consequently oxidative stress (Moran *et al.*, 1994; Munné-Bosch and Peñuelas, 2004; Sharma and Dubey, 2005).

Papdi *et al.* (2015) showed that inducible expression of either *RAP2.12* or *RAP2.3* conferred plants with tolerance to osmotic stress, while only the double knockout mutant of these genes was sensitive to osmotic stress. It is therefore likely that *RAP2.12* is

functionally redundant with *RAP2.3*, and possibly *RAP2.2*, (Gibbs *et al.*, 2014) and may explain why the single knockout did not show a drought phenotype.

*RAP2.12* is known to be involved in the hypoxic response, particularly during flooding (Licausi *et al.*, 2011). During drought, water deficit restricts diffusion of oxygen to nodules and nodule activity is oxygen-limited (Serraj and Sinclair, 1996). Thus, hypoxia may be sensed in the roots during drought and *RAP2.12* (and homologous genes) may be involved in conveying and sensing this signal in the shoots.

### 6.4. Comment on the methods used in this work

VBSSM only considers gene expression as a linear event but actually it is non-linear (Bansal *et al.*, 2007). Non-parametric methods like Causal Structure Identification (CSI) model gene expression as a non-linear event and might provide an improved method over VBSSM (Penfold *et al.*, 2012). Even though VBSSM is one of the best performers for modelling gene networks, non-parametric methods outperform dynamic Bayesian models and can handle larger datasets (Penfold and Wild, 2011). However, these methods are computationally more intensive and thus VBSSM provides a balance between accuracy and speed.

Of the four networks tested, only the network for *AGL22* appeared to hold true for a number of the connections. However, only a much smaller number of genes were tested in the other three networks and it could be that this number was too small to make a meaningful statement about the accuracy levels of the predicted models. Also, the accuracy of the prediction may be improved by first verifying connections between hub genes and their child nodes in multiple gene network models i.e., *in silico*, before testing them *in planta*.

In this study, when drought was applied to test mutants of the hub genes relative to the wild-type, it could be seen from the measurements that the plants were not subjected to a severe drought, and in some cases appeared to be better off than the watered plants. This could be because the plants underwent a slow, progressive drought and may have been able to acclimatise to the drought. This was confirmed when the electrolyte leakage data was analysed, indicating that the droughted plants – WT and mutants – had reduced leakage of ions compared to the well-watered plants. Thus, the nature of the drought experienced by the plants in this work is a gradual drought and not the sudden, severe

drought that many studies in literature perform, such as cutting off the rosette and allowing to dehydrate on the bench (Seki *et al.*, 2002).

It is important to make the distinction between mild drought stress and severe drought stress, as it has been shown that plants respond differently to different drought stress intensities (Skirycz *et al.*, 2011). They showed that mutants that were shown to be drought resistant compared to WT plants under severe drought did not show better performance under mild drought. The response of a plant to drought depends on the severity and duration of the drought and the developmental stage of the plants at the time of the drought (Claeys and Inzé, 2013). Any plant experiencing unfavourable conditions that affects its growth and productivity is considered stressed, and hence it is also important to study the effect of mild, but prolonged, drought stress on plants. Claeys and Inzé (2013) suggested that it may be necessary to engineer crop plants that are tolerant to the conditions that they will be expected to grow in, i.e., mild or severe drought conditions, as a 'one size fits all' approach will not work.

The work described in Chapter 4 to test the drought response of mutants of hub genes compared to WT plants and included the evaluation of water status, photosynthetic performance, cell stress status and yield and productivity. This was to obtain a more all-rounded idea of the effect of the mutation on the performance of the plant under drought. Many studies do not assess the performance due to the drought and they particularly give no idea of effect of the drought on productivity (Verslues *et al.* 2006; Lawlor 2013).

To improve on this work, a better way of comparing a mutant of a gene of interest with a WT plant would be to use the analysis proposed by Lawlor (2013) and Claeys *et al.* (2014), to measure the plant's performance over the duration of the stress and to compare between plants with the same rLWC rather than rSWC, as plants of different genotype can take up soil water at different rates. By comparing plants of different genotype at the same rLWC, it enables a better comparison of the effect of the gene of interest on the drought response. Also, performing physiological measurements over the course of the drought would prove much more informative than single-time point measurements, as it would reveal the point during the drought when the gene of interest has an effect on the plant's stress response Claeys *et al.* (2014). Using these methods and changes to phenotyping mutant lines would help accurately assess potential target genes and be more informative in understanding their role in drought stress response.

# 6.5. Conclusion

- VBSSM was applied to time-series transcriptomics data and used to identify potentially important genes and gene networks involved in drought stress response.
- Two of the seven genes (*AGL22* and *FD*) analysed showed a drought phenotype, while four of the remaining genes (*RAP2.12*, *BHLH038*, *UKTF* and *POZ*) may be functionally redundant and may explain why single knockouts did show a drought phenotype.
- The analysis in this work implies that flowering time and development are important developmental processes linked with drought, which ties in with work done in other studies.
- However, *AGL22* has not been implicated in drought stress response before, but has been shown to induce the expression of stress-responsive genes in this work.
- Thus, VBSSM may have potentially identified genes and gene families that are not known to be drought-responsive.

# References

Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosakawa, D., and Shinozaki, K. 1997. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9: 1859–1868.

Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., & Araki, T., (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science, 309, 1052–1056.

Abebe T, Guenzi AC, Martin B, Chushman JC: Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 2003, 131:1748-1755.

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657

An Y, Zhang M, Liu G, Han R, Liang Z (2013) Proline Accumulation in Leaves of Periploca sepium via Both Biosynthesis Up-Regulation and Transport during Recovery from Severe Drought. PLoS ONE 8(7): e69942

Aneja, B., Yadav, N.R., Kumar, N. and Yadav, R.C., 2015. Hsp transcript induction is correlated with physiological changes under drought stress in Indian mustard. Physiology and Molecular Biology of Plants, 21(3), pp.305-316.

Apel, K., & Hirt, H., (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol., 55, 373–399.

Apostol I, Heinstein PF, Low PS. 1989. Rapid stimulation of an oxidative burst during elicidation of cultured plant cells. Role in defense and signal transduction. Plant Physiol. 90:106–16

Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G: The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 2004, 136:3649-3659

Bansal, M., Belcastro, V., Ambesi-Impiombato, A. & di Bernardo, D. 2007 How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78.

Bardwell V.J., Treisman R. (1994) The POZ domain: A conserved protein–protein interaction motif. Genes & Dev. 8:1664–1677.

Bartels, D. & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Crit. Rev. Plant Sci., 24, 23–58.

Beal, M.J., Falciani, F., Ghahramani, Z., Rangel, C. & Wild, D.L. (2005). A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 21, 349–356.

Bechtold U., CA Penfold, DJ Jenkins, R Legaie, JD Moore, T Lawson et al. (2016). Timeseries transcriptomics reveals that AGAMOUS-LIKE22 links primary metabolism to developmental processes in drought-stressed Arabidopsis, The Plant Cell. February 3, 2016 TPC2015-00910-LSB Bechtold, U., Lawson, T., Mejia-Carranza, J., Meyer, R.C., Brown, I.R., Altmann, T., Ton, J. & Mullineaux, P.M. (2010). Constitutive salicylic acid defences do not compromise seed yield, drought tolerance and water productivity in the Arabidopsis accession C24. Plant Cell Environ., 33, 1959–1973.

Bianchi, G., Gamba, A., Murelli, C., Salamini, F. & Bartels, D. (1991). Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J., 1, 355–359.

Blum A, Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21: 43-47.

Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H., & Leyser, O., (2004). MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol., 14, 1232–1238.

Bouchabke O, Chang F, Simon M, Voisin R, Pelletier G, Durand-Tardif M (2008) Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses. PLoS One 3: e1705

Braberg H., Webb B. M., Tjioe E., Pieper U., Sali A., Madhusudhan M. S. (2012) SALIGN: a web server for alignment of multiple protein sequences and structures. Bioinformatics 28, 2072–2073

Bravo, L.A., Gallardo, J., Navarrete, A., Olave, N., Martinez, J., Alberdi, M., Close, T.J. and Corcuera, L.J. (2003) Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol. Plant. 118, 262–269.

Breeze, E., Harrison, E., McHattie, S., Hughes, L., Hickman, R., Hill, C., Kiddle, S., Kim, Y., Penfold, C.A., Jenkins, D., Zhang, C., Morris, K., Jenner, C., Jackson, S., Thomas, B., Tabrett, A., Legaie, R., Moore, J.D., Wild, D.L., Ott, S., Rand, D., Beynon, J., Denby, K., Mead, A., & Buchanan-Wollaston, V., (2011). High-Resolution Temporal Profiling of Transcripts during Arabidopsis Leaf Senescence Reveals a Distinct Chronology of Processes and Regulation. Plant Cell, 23, 873–894.

Bruinsma, J. 2009. The resource outlook to 2050: By how much do land, water use and crop yields need to increase by 2050? 33 pp. Expert Meeting on How to Feed the World in 2050. Rome, FAO and ESDD.

Cabello, J.V. and Chan, R.L. (2012) The homologous homeodomain-leucine zipper transcription factors HaHB1 and AtHB13 confer tolerance to drought and salinity stresses via the induction of proteins that stabilize membranes. Plant Biotechnol. J. 10, 815–825.

Causier, B., Cook, H., & Davies, B., (2003). An Antirrhinum ternary complex factor specifically interacts with C-function and SEPALLATA-like MADS-box factors. Plant Mol. Bio., 52, 1051-1062.

Cha, J.-Y., Kim, J. Y., Jung, I. J., Kim, M. R., Melencion, A., Alam, S. S., et al. (2014). NADPH-dependent thioredoxin reductase A (NTRA) confers elevated tolerance to oxidative stress and drought. Plant Physiol. Biochem. 80, 184–191.

Chalker-Scott, L., (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and photobiology, 70, 1–9.

Chaves, M.M., Maroco, J.P. & Pereira, J.S. (2003). Understanding plant responses to drought - from genes to the whole plant. Funct. Plant Biol., 30, 239–264.

Chen, L., Lee, J.H., Weber, H., Tohge, T., Witt, S., Roje, S., Fernie, A.R., and Hellmann, H. (2013). Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants. Plant Cell 25:2253–2264.

Cheng M-C, Hsieh E-J, Chen J-H, Chen H-Y, Lin T-P. 2012. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiology 158: 363–375.

Cho, K.H., Choo, S.M., Jung, S.H., Kim, J.R., Choi, H.S. & Kim, J. (2007). Reverse engineering of gene regulatory networks. IET Syst. Biol., 1, 149–163.

Choi, H. I., Hong, J. H., Ha, J. O., Kang, J. Y., and Kim, S. Y. 2000. ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275: 1723–1730.

Claeys, H. and Inzé, D., 2013. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant physiology, 162(4), pp.1768-1779.

Claeys, H., Van Landeghem, S., Dubois, M., Maleux, K. and Inzé, D., 2014. What is stress? Dose-response effects in commonly used in vitro stress assays. Plant physiology, 165(2), pp.519-527.

Close, T.J., Kortt, A.A., and Chandler, P.M. (1989). A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant MOI. Biol. 13, 95-108.

Clough, S.J., & Bent, A.F., (1998). Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana. Plant J., 16, 735–743.

Coello, P., Hey, S.J. & Halford, N.G. (2011). The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J. Exp. Bot., 62, 883–893.

Comprehensive Assessment of Water Management in Agriculture. 2007. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. London: Earthscan, and Colombo: International Water Management Institute.

Crevillén P, Ventriglia T, Pinto F, Orea A, Mérida Á, Romero JM (2005) Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADP-glucose pyrophosphorylase-encoding genes. J Biol Chem 280: 8143–8149

Cuin, T.A. and Shabala, S. (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ. 30, 875–885

de Nadal, E., Alepuz, P. A., and Posas, F. 2002. Dealing with osmostress through MAP kinase activation. EMBO Reports 3: 735–740.

Dixon DP, Edwards R . Enzymes of tyrosine catabolism in Arabidopsis thaliana. Plant Science 2006;171:360-366.

Earley K, Smith M, Weber R, Gregory B, Poethig R (2010) An endogenous F-box protein regulates ARGONAUTE1 in Arabidopsis thaliana. Silence 1:15.

Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., & Pikaard, C.S., (2006). Gateway-compatible vectors for plant functional genomics and proteomics. Plant J., 45, 616–629.

Edwards, K., Johnstone, C., & Thompson, C., (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res., 19, 1349.

Egea Gutierrez-Cortines M, Davies B. Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci 2000;5:471–6.

Eisen, M.B. and Brown, P.O. (1999) DNA arrays for analysis of gene expression. Meth. Enzymol. 303, 179-205.

Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16: 2923–2939.

Faith J, Gardner T (2005) Reverse-engineering transcription control networks. Phys Life Rev 2: 65–88

Forsburg SL, Guarente L (1989) Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 3: 1166–1178.

Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, et al. (2010). AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J.; 61:672-685.

Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, et al. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABA-signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–88

Fukao, T., Yeung, E., & Bailey-Serres, J., (2011). The Submergence Tolerance Regulator SUB1A Mediates Crosstalk between Submergence and Drought Tolerance in Rice. The Plant Cell, 23, 412–427.

Galau, G. A, Hughes, D. W., and Dure, III L. 1986. Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol. Biol. 7: 155–170.

Gallego SM, Benavides MP, Tomaro ML.1996. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Science121,151–159

Gao, L. and Xiang, C.B. (2008) The genetic locus At1g73660 encodes a putative MAPKKK and negatively regulates salt tolerance in Arabidopsis. Plant Mol. Biol. 67, 125–134.

Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu R: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 2002, 99:15898-15903.

Gibbs DJ, Isa NM, Movahedi M, Lozano-Juste J, Mendiondo GM, Berckhan S, Marín-de la Rosa N, Conde JV, Correia CS, Pearce SP et al. 2014. Nitric oxide sensing in plants mediated by proteolytic control of group VII ERF transcription factors. Molecular Cell 53: 369–379.

Gibson, S.I., Laby, R.J., and Kim, D. (2001). The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem. Biophys. Res. Commun. 280, 196–203.

Gingerich, D.J., Gagne, J.M., Salter, D.W., Hellmann, H., Estelle, M., Ma, L., & Vierstra, R.D., (2005). Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J. Biol. Chem., 280, 18810–18845.

Girousse C, Bournoville R, Bonnemain JL (1996) Water deficit-Induced changes in concentrations in proline and some other amino acids in the phloem sap of alfalfa. Plant Physiol 111: 109–113.

Gómez-Mena, C., de Folter, S., Costa, M.M.R., Angenent, G.C., and Sablowski, R. (2005). Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132, 429–438.

Gosti, F., Beaudoin, N., Serizet, C., Webb, A.A.R., Vartanian, N. & Giraudat, J. (1999). ABI1 Protein Phosphatase 2C Is a Negative Regulator of Abscisic Acid Signalling. Plant Cell, 11, 1897–1909.

Guilbault GG, Brignac PJ, Zimmer M (1967) Homovanillic acid as a fluorometric substrate for oxidative enzymes: analytical applications of the peroxidase, glucose oxidase, and xanthine oxidase systems. Anal Chem 40:190–196.

Gutierrez, R.A. (2005). Systems Biology for the Virtual Plant. Plant Physiol., 138, 550–554.

Haake, V., Cook, D. Riechmann, J. L., Pineda, O., Thomashow, M. F., and Zhang, J. Z. 2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130: 639–648.

Hakoshima, T. Leucine Zippers John Wiley & Sons, Ltd (2014).

Hara, M., Terashima, S. and Kuboi, T. (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J. Plant Physiol. 158, 1333–1339.

Harb, A., Krishnan, A., Ambavaram, M.M.R. & Pereira, A. (2010). Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol., 154, 1254–1271.

Hartley, J.L., Temple, G.F. and Brasch, M.A. (2000) DNA cloning using in vitro sitespecific recombination. Genome Res. 10, 1788–1795.

Hartmann, U., Höhmann, S., Nettesheim, K., Wisman, E., Saedler, H., & Huijser, P., (2000). Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J., 21, 351–360.

Haüshul, K., Andersson, B., and Adamska, I. 2001. A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J. 20: 713–722.

He J., Gwadz M., Hurwitz D.I. CDD: NCBI's Conserved Domains Database. Nucleic Acids Res. 2015;43:D222-D226.

Hickman, R., C. Hill, C. Penfold, E. Breeze, L. Bowden, J. Moore, P. Zhang, A. Jackson, E. Cooke, F. Bewicke-Copley, A. Mead, J. Beynon, D. Wild, K. Denby, S. Ott, and V. Buchanan-Wollaston (2013): "A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves," Plant J., 75, 26–39.

Hill CM, Pearson SA, Smith AJ, Rogers LJ (1985) Inhibition of chlorophyll synthesis in Hordeum vulgare by 3-amino 2,3-dihydrobenzoic acid (gabaculin). Biosci Rep 5:775–781.

Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., Widmayer, P., Gruissem, W. and Zimmermann, P. (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics, 420747.

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc. 2009;4(1):44-57.

Huang Y, Li CY, Qi Y, Park S, Gibson SI. SIS8, a putative mitogen-activated protein kinase kinase kinase, regulates sugar-resistant seedling development in Arabidopsis. Plant J. 2014; 77: 577–588.

Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T., and Shinozaki, K. 2000. Various abiotic stresses rapidly activate Arabidopsis MAP kinases AtMAPK4 and AtMPK6. Plant J. 24: 655–665.

Islam T, Manna M, Reddy MK (2015) Glutathione Peroxidase of Pennisetum glaucum (PgGPx) Is a Functional Cd2+ Dependent Peroxiredoxin that Enhances Tolerance against Salinity and Drought Stress. PLoS ONE 10(11): e0143344.

Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K. & Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J., 27, 325–333.

Jiang M, Zhang J. Water stress-induced abscissic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize-leaves. Journal of Experimental Botany 2002;53:2401-2410.

Jiang Y, Liang G, Yu D (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388

Jones DT. 2007. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23: 538–544.

Juenger, T.E., Mckay, J.K., Hausmann, N., Keurentjes, J.J.B., Sen, S., Stowe, K.A., Dawson, T.E., Simms, E.L., & Richards, J.H., (2005). Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana: 13C, stomatal conductance and transpiration efficiency. Plant Cell Environ., 28, 697–708.

Kallberg, M.; Margaryan, G.; Wang, S.; Ma, J.; Xu, J., RaptorX server: a resource for template-based protein structure modeling. Methods Mol Biol, 2014, 1137, 17-27.

Kampfenkel, K., Van Montagu, M., and Inzé, D. (1995). Effects of iron excess on Nicotiana plumbaginifolia plants. Plant Physiol. 107, 725–735.

Kang SG, Park E, Do KS (2009) Identification of a pathogen-Induced glycine max transcription factor GmWRKY1. Plant Pathol J 25: 381–388.

Kang, J., Choi, H., Im, M., and Kim, S.Y. 2002. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14: 343–357.

Kavi Kishor, P. B., Hong, Z., Miao, G.-H., Hu, C.-A. A., andVerma, D. P. S. 1995. Overexpression of -pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387–1394.

Kelley, L.A. & Sternberg, M.J. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

Kiddle, S. J., Windram, O. P. F., McHattie, S., Mead, A., Beynon, J., Buchanan-Wollaston, V., Denby, K. J. & Mukherjee, S. 2009 Temporal clustering by affinity propagation reveals transcriptional modules in Arabidopsis thaliana. Bioinformatics 26, 355–362.

Kilian J, Whitehead D, Horak J,Wanke D, Weinl S, Batistic O, et al. 2007. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal 50: 347–363.

Kim S., Sun H., Tomchick D.R., Yu H., Luo X. (2012) Structure of human Mad1 Cterminal domain reveals its involvement in kinetochore targeting Proc. Natl. Acad. Sci. USA, 109, pp. 6549–6554

Koncz, C., & Schell, J., (1986). The promoter of TL-DNA gene 5 controls the tissuespecific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet., 204, 383–396.

Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper J. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology 130, 2129–2141.

Kubo, H., Peeters, A.J.M., Aarts, M.G.M., Pereira, A., & Koornneef, M., (1999). ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. Plant Cell, 11, 1217–1226.

Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64: 83–108

Lawson T, Weyers JDB.1999. Spatial and temporal variation in gas exchange over the lower surface of Phaseolus vulgaris primary leaves. Journal of Experimental Botany 50, 1381–1391.

Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., & Ahn, J.H., (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes & Development, 21, 397–402.

Leyva-González MA, Ibarra-Laclette E, Cruz-Ramı rez A, Herrera-Estrella L (2012) Functional and Transcriptome Analysis Reveals an Acclimatization Strategy for Abiotic Stress Tolerance Mediated by Arabidopsis NF-YA Family Members. PLoS ONE 7(10): e48138. Li WX, Oono Y, Zhu J, He XJ, Wu JM, et al. (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance. Plant Cell 20: 2238–2251.

Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., Helliwell, C.A., Ito, T., Meyerowitz, E., & Yu, H., (2008). A Repressor Complex Governs the Integration of Flowering Signals in Arabidopsis. Dev. Cell, 15, 110–120.

Li, S., Assmann, S.M., & Albert, R., (2006). Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biology, 4, 1732–1748.

Licausi, F., Kosmacz, M., Weits, D.A., Giuntoli, B., Giorgi, F.M., Voesenek, L.A.C.J., Perata, P., & van Dongen, J.T., (2011). Oxygen sensing in plants is mediated by an Nend rule pathway for protein destabilization. Nature, 479, 419–423.

Lin R.-C., Park H.-J., Wang H.-Y., Role of Arabidopsis RAP2.4 in regulating light and ethylene-mediated developmental processes and drought stress tolerance, Mol. Plant 1 (2008) 42–57.

Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391–1406.

Locke JCW, Millar AJ, Turner MS (2005a) Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. J Theor Biol 234: 383–393

Locke JCW, Southern MM, Kozma-Bognar L, Hibberd V, Brown PE, Turner MS, Millar AJ (2005b) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 1: 13

Locke, J. C. W., Kozma-Bognár, L., Gould, P. D., Fehér, B., Kevei, E., Nagy, F., Turner, M. S., Hall, A. & Millar, A. J. 2006 Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol. Syst. Biol. 2, 59.

Lyzenga WJ, Stone SL (2012) Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot 63: 599–616

Lyzenga, W.J. and Stone, S.L., 2012. Regulation of ethylene biosynthesis through protein degradation. Plant signaling & behavior, 7(11), pp.1438-1442.

Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A. & Grill, E. (2009). Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science, 324, 1064–1068.

Mafakheri, A., A. Siosemardeh, B. Bahramnejad, P.C. Struik, and Y. Sohrabi. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci. 4:580-585.

Marchler-Bauer A., Derbyshire M.K., Gonzales N.R., Lu S., Chitsaz F., Geer L.Y., Geer R.C.,

Masiero, S., Li, M.A., Will, I., Hartmann, U., Saedler, H., Huijser, P., Schwarz-Sommer, Z., and Sommer, H. 2004. INCOMPOSITA: A MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development 131: 5981–5990.

Matsui A, Mizunashi K, Tanaka M, Kaminuma E, Nguyen AH, Nakajima M, Kim J-M, Nguyen DV, Toyoda T, Seki M (2014) tasiRNA-ARF pathway moderates floral architecture in Arabidopsis plants subjected to drought stress. BioMed Res Int 2014: 303451

Matsui, A., Ishida, J., Morosawa, T., Mochizuki, Y., Kaminuma, E., Endo, T.A., Okamoto, M., Nambara, E., Nakajima, M., Kawashima, M., Satou, M., Kim, J.-M., Kobayashi, N., Toyoda, T., Shinozaki, K., & Seki, M., (2008). Arabidopsis Transcriptome Analysis under Drought, Cold, High-Salinity and ABA Treatment Conditions using a Tiling Array. Plant Cell Physiol., 49, 1135–1149.

McKay, J. K., J. H. Richards, and T. Mitchell-Olds. 2003. Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Mol. Ecol. 12:1137–1151.

Meng, L.-S., Wang, Z.-B., Yao, S.-Q. and Liu, A. (2015). The ARF2–ANT–COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis. J Cell Sci. 128: 3922-3932

Mishra, G., Zhang, W., Deng, F., Zhao, J. & Wang, X. (2006). A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science, 312, 264–266.

Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K., and Shinozaki, K. 1996. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93: 765–769.

Morán JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194: 346-352

Mori, I.C. & Schroeder, J.I. (2004). Reactive oxygen species activation of plant Ca2+ channels. A signalling mechanism in polar growth, hormone transduction, stress signalling, and hypothetically mechano-transduction. Plant Physiol., 135, 702–708.

Mukherjee AK, Carp MJ, Zuchman R, Ziv T, Horwitz BA, Gepstein S. Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J Proteomics 2010;73:709–20.

Mundy, J., Yamaguchi-Shinozaki, K., and Chua, N. H. 1990. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc. Natl. Acad. Sci. USA 87: 1406–1410.

Munné-Bosch S. & Alegre L. (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210, 925–931.

Munné-Bosch, S. and Peñuelas, J. (2004) Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions. Plant Science 166, 1105–1110

Munnik T, Vermeer JE. 2010. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant, Cell and Environment 33, 655–669.

Murata, Y., Pei, Z.M., Mori, I.C. & Schroeder, J. (2001). Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD (P) H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell, 13, 2513–2523.

Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F. & Giraudat, J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14, 3089–3099.

Nagata T, Hara H, Saitou K, Kobashi A, Kojima K, Yuasa T, Ueno O (2012) Activation of ADP-Glucose Pyrophosphorylase Gene Promoters by a WRKY Transcription Factor, AtWRKY20, in Arabidopsis thaliana L. and Sweet Potato (Ipomoea batatas Lam.). Plant Prod Sci 15:10–18

Nakashima, K., Kiyosue, T., Yamaguchi-Shinozaki, K., and Shinozaki, K. 1997. A nuclear gene, erd1, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J. 12: 851–861.

Nakata, M., Mitsuda, N., Herde, M., Koo, A. J., Moreno, J. E., Suzuki, K., Howe, G. A. and Ohme-Takagi, M. (2013). A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25(5): 1641-1656.

Neill Samuel O. & Gould Kevin S. (2003) Anthocyanins in leaves: light attenuators or antioxidants? Functional Plant Biology 30, 865–873.

Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, et al. (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on waterlimited acres. Proc Natl Acad Sci USA 104: 16450–16455.

Nishizawa, A., Yabuta, Y. & Shigeoka, S. (2008). Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol., 147, 1251–1263.

Nugent T., Jones D.T. (2013) Membrane protein orientation and refinement using a knowledge-based statistical potential. BMC Bioinf., 14, 276.

Oberschall, A., Deak, M., T<sup>o</sup>r<sup>o</sup>k, K., Saa, L., Vass, I., Kovacs, I., Feher, A., Dudits, D., and Horvath, G. V. 2000. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J. 24: 437–446.

Ogbaga CC, Stepien P, Dyson BC, Rattray NJW, Ellis DI, Goodacre R, et al. (2016) Biochemical Analyses of Sorghum Varieties Reveal Differential Responses to Drought. PLoS ONE 11(5): e0154423.

Okushima Y, Mitina I, Quach HL, Theologis A (2005) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43: 29–46

Osakabe, Y., Maruyama, K., Seki, M., Satou, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2005). Leucine-Rich Repeat Receptor-Like Kinase1 Is a Key Membrane-Bound Regulator of Abscisic Acid Early Signalling in Arabidopsis. Plant Cell, 17, 1105–1119.

Osakabe, Y., Mizuno, S., Tanaka, H., Maruyama, K., Osakabe, K., Todaka, D., Fujita, Y., Kobayashi, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2010). Overproduction of the Membrane-bound Receptor-like Protein Kinase 1, RPK1, Enhances Abiotic Stress Tolerance in Arabidopsis. J. Biol. Chem., 285, 9190–9201.

Papdi C, Perez-Salamo I, Joseph MP, Giuntoli B, Bogre L, Koncz C, et al. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant J. 2015;82: 772–784.

Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Desveaux, D., Rodriguez, P.L., McCourt, P., Zhu, J.-K., Schroeder, J., Volkman, B.F. & Cutler, S.R. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324, 1068–1071.

Passioura, J. B. (2002). Environmental biology and crop improvement. Funct. Plant Biol. 29, 537–546.

Pazos, F., Pietrosemoli, N., Garcia-Martin, J.A. and Solano, R. (2013) Protein intrinsic disorder in plants. Front. Plant Sci. 4, 363.

Penfold, C. A., V. Buchanan-Wollaston, K. Denby, and D. L. Wild (2012): "Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks," Bioinformatics, 28, i233–241.

Penfold, C.A. and Wild, D.L., 2011. How to infer gene networks from expression profiles, revisited. Interface focus, 1(6), pp.857-870.

Peters, S., Mundree, S.G., Thomson, J.A., Farrant, J.M. & Keller, F. (2007). Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J. Exp. Bot., 58, 1947–1956.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612.

Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM: Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 1995, 107:125-130

Pilon-Smits EAH, Terry N, Sears T, van Dun K: Enhanced droughtresistance in fructanproducing sugar beet. Plant Physiol Biochem 1999, 37:313-317.

Pinheiro C, Chaves MM: Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot. 2011, 62 (3): 869-882.

Porcel R, Azcón R, Ruiz-Lozano JM. Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Journal of Experimental Botany 2005;56:1933-1942.

Potter, S., Uknes, S., Lawton, K., Winter, A.M., Chandler, D., Dimaio, J., Novitzky, R., Ward, E., and Ryals, J. (1993). Regulation of a hevein-like protein in Arabidopsis. Mol. Plant-Microbe Interact. 6, 680-681.

Prasad TK, Anderson MD, Martin BA, Stewart CR. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell. 6:65–74

Prasch CM, Ott KV, Bauer H, Ache P, Herich R, Sonnewald U (2015) ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells. J Exp Bot 66: 6059–6067

Proietti S, Bertini L, Van der Ent S, Leon-Reyes A, Pieterse CMJ, et al. (2011) Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis. J Exp Bot 62: 1975–1990

Raghavendra, A.S., Gonugunta, V.K., Christmann, A. & Grill, E. (2010). ABA perception and signalling. Trends Plant Sci., 15, 395–401.

Reiser, V., Raitt, D. C., and Saito, H. 2003. Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J. Cell. Biol. 161: 1035–1040.

Ren, G.D., Zhou, Q., Wu, S.X., Zhang, Y.F., Zhang, L.G., Huang, J.R., Sun, Z.F., and Kuai, B.K. (2010). Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. J. Integr. Plant Biol. 52: 496–504.

Rentel, M. C., Lecourieux, D., Ouaked, F., Usher, S. L., Petersen, L., Okamoto, H., Knight, H., Peck, S. C., Grierson, C. S., Hirt, H., and Knight, M. R. 2004. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427: 858–861.

Rey, P., Pruvot, G., Becuwe, N., Eymery, F., Rumeau, D., and Peltier, G. A. 1998. A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants. Plant J. 25: 97–107.

Rhodes D, Handa S, Bressan RA. Metabolic changes associated with adaptation of plantcells to water-stress. Plant Physiology 1986;82:890-903

Riboni, M., Galbiati, M., Tonelli, C. & Conti, L., (2013). GIGANTEA Enables Drought Escape Response via Abscisic Acid-Dependent Activation of the Florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1. Plant Physiol., 162, 1706-1719.

Riboni, M., Test, A.R., Galbiati, M., Tonelli, C. and Conti, L., (2016). ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. Journal of Experimental Botany, p.erw384.

Rosso, M.G., Li, Y., Strizhov, N., Reiss, B., Dekker, K., and Weisshaar, B. (2003). An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol. Biol. 53, 247–259.

Royal Society (2009). Reaping the benefits: Science and the sustainable intensification of global agriculture. Royal Society: London, U.K.

Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2006. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell 18, 1292–309.

Schluttenhofer C, Pattanail S, Patra B, Yuan L. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling. BMC Genomics. 2014;15:502

Schmalenbach, I., Zhang, L., Reymond, M., Jiménez-Gómez, J.M. (2014). The relationship between flowering time and growth responses to drought in the Arabidopsis Landsberg erecta x Antwerp-1 population. Front. Plant Sci. 5: 609.

Schmid, M., Uhlenhaut, N. H., Godard, F., Demar, M., Bressan, R., Weigel, D. and Lohmann, J. U. (2003). Dissection of floral induction pathways using global expression analysis. Development 130,6001 -6012.

Schroeder, J.I., Kwak, J.M. and Allen, G.J. (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature, 410, 327–330.

Schruff, M.C., Spielman, M., Tiwari, S., Adams, S., Fenby, N., and Scott, R.J. (2006). The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133, 251–261.

Schumann U, Wanner G, Veenhuis M, Schmid M, Gietl C (2003) AthPEX10, a nuclear gene essential for peroxisome and storage organelle formation during Arabidopsis embryogenesis. Proc Natl Acad Sci USA 100: 9626–9631

Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, et al. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31:279–92

Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., & Shinozaki, K., (2001). Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 13, 61–72.

Seo, E., Lee, H., Jeon, J., Park, H., Kim, J., Noh, Y.-S., & Lee, I., (2009). Crosstalk between Cold Response and Flowering in Arabidopsis Is Mediated through the Flowering-Time Gene SOC1 and Its Upstream Negative Regulator FLC. Plant Cell, 21, 3185–3197.

Serraj, R. and Sinclair, T. R. 2002. Osmolyte accumulation: Can it really help increase in crop yield under drought conditions? Plant Cell Environ. 25: 333–341

Serraj, R. and Sinclair, T.R., 1996. Processes contributing to N2-fixation intensitivity to drought in the soybean cultivar Jackson. Crop Science, 36(4), pp.961-968.

Sessions, A., Burke, E., Presting, G., Aux, G., McElver, J., Patton, D., Dietrich, B., Ho, P., Bacwaden, J., Ko, C., Clarke, J.D., Cotton, D., Bullis, D., Snell, J., Miguel, T., Hutchison, D., Kimmerly, B., Mitzel, T., Katagiri, F., Glazebrook, J., Law, M. and Goff, S.A. 2002. A high-throughput Arabidopsis reverse genetics system. Plant Cell 14: 2985–2994.

Sgherri C. & Navari-Izzo F. (1995) Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defense mechanisms. Physiologia Plantarum 93, 25–30.

Sharma P, Dubey RS. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Grow Reg 2005; 46:209-221.

Shen, B., Jensen, R.G. & Bohnert, H.J. (1997). Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol., 115, 527–532.

Sheveleva E, Chmara W, Bohnert HJ, Jensen RG: Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum. Plant Physiol 1997, 115:1211-1219.

Shi H, Wang Y, Chen Z, Ye T, Chan Z. 2012a. Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance. PLoS One 7, e53422.

Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58: 221–227.

Siefers N, Dang KK, Kumimoto RW, Bynum WE, Tayrose G, et al. (2009) Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol 149: 625–641.

Simova-Stoilova L., Vassileva V., Petrova T., Tsenov N., Demirevska K., Feller U. (2006): Proteolytic activity in wheat leaves after drought stress and recovery. Gen. Appl. Plant Physiol., Special Issue: 91–100.

Singh D., Laxmi A. (2015). Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front. Plant Sci. 6:895.

Skirycz, A., Vandenbroucke, K., Clauw, P., Maleux, K., De Meyer, B., Dhondt, S., Pucci, A., Gonzalez, N., Hoeberichts, F., Tognetti, V.B. and Galbiati, M., 2011. Survival and growth of Arabidopsis plants given limited water are not equal. Nature biotechnology, 29(3), pp.212-214.

Skriver, K., and Mundy, J. (1990). Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2, 503-512.

Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, et al. 2005. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–96

Spartz A.K., Lee S.H., Wenger J.P., Gonzalez N., Itoh H., Inzé D., Peer W.A., Murphy A.S., Overvoorde P.J., Gray W.M. (2012). The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J. 70: 978–990.

Steer, A. 2010. From the Pump Room to the Board Room: Water's Central Role in Climate Change Adaptation. Washington DC, The World Bank.

Stegle, O., Denby, K. J., Cooke, E. J., Wild, D. L., Ghahramani, Z. & Borgwardt, K. M. 2010 A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series. J. Comput. Biol. 17, 355–367.

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers and David J. Lipman (1990) Journal of Molecular Biology 215:403-410

Stogios, P.J. and Privé, G.G. (2004) The BACK domain in BTB-kelch proteins. Trends Biochem. Sci. 29, 634–637

Su, Z., Ma, X., Guo, H., Sukiran, N.L., Guo, B., Assmann, S.M. and Ma, H., 2013. Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. The Plant Cell, 25(10), pp.3785-3807.

Sun, W., Bernard, C., van de Cotte, Van Montagu, M., and Verbruggen, N. 2001. At-HSP17. 6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J. 27: 407–415.

Sunkar, R., Bartels, D., and Kirch, H.-H. 2003. Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J. 35: 452–464.

Sunnerhagen M, Pursglove S, Fladvad M (2002) The new MATH: homology suggests shared binding surfaces in meprin tetramers and TRAF trimers. FEBS Lett 530: 1–3

Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. 2002. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29: 417–426.

Tamás, M. J., M. Rep, J. M. Thevelein, and S. Hohmann. 2000. Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett. 472:159-165.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S., 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol, 30(12), pp.2725-2729.

Tanz S.K., Castleden I., Hooper C.M., Vacher M., Small I., Millar H.A. (2013). SUBA3: A database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res. 41: D1185–D1191.

Thalamuthu A, Mukhopadhyay I, Zheng X, Tseng GC: Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics 2006, 22(19):2405–2412.

Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H. 1999. A recessive Arabidopsis mutant that grows enhanced active oxygen detoxification. Plant Cell. 11:1195–206

United Nations, Department of Economic and Social Affairs, Population Division (2009). World Population Prospects: The 2008 Revision, Highlights, Working Paper No. ESA/P/WP.210

Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97: 11632– 11637.

Urao, T., Yamaguchi-Shinozaki, K., Urao, S., and Shinozaki, K. 1993. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5: 1529–1539.

Valliyodan, B. & Nguyen, H.T. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol., 9, 189–195.

Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids 2008; 35: 753-759

Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J. and Zhu, J.K., 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, 45(4), pp.523-539.

Vierstra R.D. (2011). The RPT2 subunit of the 26S proteasome directs complex assembly, histone dynamics, and gametophyte and sporophyte development in Arabidopsis. Plant Cell 23: 4298–4317.

Wang L., Hua D., He J., Duan Y., Chen Z., Hong X., Gong Z. (2011). Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet. 7: e1002172

Wang Z, Huang B, Bonos SA, Meyer WA. Abscisic acid accumulation in relation to drought tolerance in Kentucky bluegrass. HortScience 2004;39:1133-1137.

Wang, H.-Y., Klatte, M., Jakoby, M., Bäumlein, H., Weisshaar, B., & Bauer, P., (2007). Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta, 226, 897–908.

Wang, W., Vinocur, B., Shoseyov, O., and Altman, A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244–252.

Wass MN, Barton G, Sternberg MJ (2012) CombFunc: predicting protein function using heterogeneous data sources. Nucleic Acids Res 40: W466–470.

Wass, M.N., Kelley, L.A. & Sternberg, M.J. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res. 38, W469–W473 (2010).

Weber, H., and Hellmann, H. (2009). Arabidopsis thaliana BTB/POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family. FEBS J. 276:6624–6635.

Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., & Weigel, D., (2005). Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 309, 1056–1059.

Williams L, Carles CC, Osmont KS, Fletcher JC. 2005. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA 102:9703–9708.

Windram, O., Madhou, P., McHattie, S., Hill, C., Hickman, R., Cooke, E., Jenkins, D.J., Penfold, C.A., Baxter, L., & Breeze, E., (2012). Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell, 24, 3530–3557.

Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. and Provart, N. (2007) An 'electronic fluorescent pictograph' browser for exploring and analyzing large-scale biological data sets. PLoS ONE, 2, e718.

Wu, L., Zhang, Z., Zhang, H., Wang, X.-C., and Huang, R. (2008). Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol. 148: 1953–1963.

WWAP (United Nations World Water Assessment Programme). 2015. The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris, UNESCO.

Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, et al. (2005) Expression of Arabidopsis MIRNA genes. Plant Physiol 138: 2145–2154.

Xu DP, Duan X, Wang B, Hong B, Ho TD, Wu R.1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology 110,249–257.

Yamaguchi M., Matoba K., Sawada R., Fujioka Y., Nakatogawa H., Yamamoto H., Kobashigawa Y., Hoshida H., Akada R., Ohsumi Y., Noda N.N., Inagaki F. (2012). Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol. 19: 1250–1256.

Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6: 251–264.

Yamaguchi-Shinozaki, K., and Shinozaki, K. (1993) Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol. 101, 1119-1120.

Yamaguchi-Shinozaki, K., Koizumi, M., Urao S., and Shinozaki, K. (1992). Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: Sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 33, 217-224.

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 13:134.

Yona G, Dirks W, Rahman S, Lin DM: Effective similarity measures for expression profiles. Bioinformatics 2006, 22(13):1616–1622.

Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., Wada, K., Harada, Y. and Shinozaki, K. (1995) Plant J. 7:751-760.

Yoshida T., Fujita Y., Sayama H., Kidokoro S., Maruyama K., Mizoi J., Yamaguchi-Shinozaki K. (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant Journal 61, 672–685.

Yuan, J.S., Galbraith, D.W., Dai, S.Y., Griffin, P. & Stewart, C.N. (2008). Plant systems biology comes of age. Trends Plant Sci., 13, 165–171.

Yuan, Y., Wu, H., Wang, N., Li, J., Zhao, W., Du, J., Wang, D., & Ling, H.Q., (2008). FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res., 18, 385–397.

Zhang, J., Nguyen, H.T. and Blum, A. (1999) Genetic analysis of osmotic adjustment in crop plants. J. Exp. Bot. 50, 292–302.

Zhang, Y., Zhu, H., Zhang, Q., Li, M., Yan, M., Wang, R., Wang, L., Welti, R., Zhang, W. & Wang, X. (2009). Phospholipase Da1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell, 21, 2357–2377.

Zhang, Z.J., Li, F., Li, D., Zhang, H., and Huang, R. (2010). Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232, 765–774.

Zhu, B. C., Su, J., Chan, M. C., Verma, D. P. S., Fan, Y. L., and Wu, R. 1998. Overexpression of a -pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-stress and salt-stress in transgenic rice. Plant Sci. 139: 41–48.

Zollman, S., Godt, D., Prive, G. G., Couderc, J.-L. & Laski, F. A. (1994) The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila Proc. NatL. Acad. Sci. USA 91, 10717-10721.

# Appendix A

The list of 2190 differentially expressed genes selected for further analysis. The locus identifier and gene name for each gene is given in the table below, along with the cluster to which each gene grouped into by TCAP. The 'Networks' column indicates which of the six hub genes was modelled as regulating its expression: *FD*, P (*POZ*), U (*UKTF*), B (*BHLH038*), R (*RAP2.12*) and AN (*ANL2*).

| Cluster<br>No. | Locus<br>Identifier | Gene Name                                                                | Networks |
|----------------|---------------------|--------------------------------------------------------------------------|----------|
| 1              | AT1G22370           | UDP-glucosyl transferase 85A5                                            | FD, P    |
| 1              | AT1G30220           | inositol transporter 2                                                   | FD, P    |
| 1              | AT1G52180           | Aquaporin-like superfamily protein                                       | FD, P    |
| 1              | AT1G54340           | isocitrate dehydrogenase                                                 | FD, P    |
| 1              | AT1G55680           | Transducin/WD40 repeat-like superfamily protein                          | FD, P    |
| 1              | AT1G55760           | BTB/POZ domain-containing protein                                        | FD, P    |
| 1              | AT1G60600           | UbiA prenyltransferase family protein                                    | FD, P    |
| 1              | AT1G61670           | Lung seven transmembrane receptor family protein                         | FD, P    |
| 1              | AT1G70360           | F-box family protein                                                     | FD, P    |
| 1              | AT1G71720           | Nucleic acid-binding proteins superfamily                                | FD       |
| 1              | AT1G71980           | Protease-associated (PA) RING/U-box zinc finger family protein           | FD, P    |
| 1              | AT1G73110           | P-loop containing nucleoside triphosphate hydrolases superfamily protein | FD, P    |
| 1              | AT2G20140           | AAA-type ATPase family protein                                           | FD, P    |
| 1              | AT2G25940           | alpha-vacuolar processing enzyme                                         | FD, P    |
| 1              | AT2G26350           | peroxin 10                                                               | FD, P    |
| 1              | AT2G35060           | K uptake permease 11                                                     | FD, P    |
| 1              | AT2G47970           | Nuclear pore localization protein NPL4                                   | FD, P    |
| 1              | AT3G01100           | hypothetical protein 1                                                   | FD, P    |
| 1              | AT3G03300           | dicer-like 2                                                             | FD, P    |
| 1              | AT3G06170           | Serine-domain containing serine and sphingolipid biosynthesis protei     | n FD, P  |
| 1              | AT3G07930           | DNA glycosylase superfamily protein                                      | FD, P    |
| 1              | AT3G09280           | transmembrane protein                                                    | FD, P    |
| 1              | AT3G12350           | F-box family protein                                                     | FD, P    |
| 1              | AT3G12380           | actin-related protein 5                                                  | FD, P    |
| 1              | AT3G15730           | phospholipase D alpha 1                                                  | FD, P    |
| 1              | AT3G17000           | ubiquitin-conjugating enzyme 32                                          | FD, P    |
| 1              | AT3G18050           | GPI-anchored protein                                                     | FD, P    |
| 1              | AT3G20250           | pumilio 5                                                                | FD, P    |
| 1              | AT3G24740           | cellulose synthase, putative (DUF1644)                                   | FD, P    |
| 1              | AT3G27060           | Ferritin/ribonucleotide reductase-like family protein                    | FD, P    |
| 1              | AT3G47680           | DNA binding protein                                                      | FD, P    |
| 1              | AT4G00120           | basic helix-loop-helix (bHLH) DNA-binding superfamily protein            | FD, P    |
| 1              | AT4G08540           | DNA-directed RNA polymerase II protein                                   | FD, P    |
| 1              | AT4G08980           | F-BOX WITH WD-40 2                                                       | FD, P    |
| 1              | AT4G10050           | esterase/lipase/thioesterase family protein                              | FD, P    |
| 1              | AT4G15540           | EamA-like transporter family                                             | FD, P    |
| 1              | AT4G18120           | MEI2-like 3 (ML3)                                                        | FD, P    |

| 1 | AT4G22740 | glycine-rich protein                                                   | FD, P |
|---|-----------|------------------------------------------------------------------------|-------|
| 1 | AT4G22930 | pyrimidin 4                                                            | FD, P |
| 1 | AT4G30960 | SOS3-interacting protein 3                                             | FD, P |
| 1 | AT4G31860 | Protein phosphatase 2C family protein                                  | FD, P |
| 1 | AT4G32940 | gamma vacuolar processing enzyme                                       | FD, P |
| 1 | AT4G37800 | xyloglucan endotransglucosylase/hydrolase 7                            | FD, P |
| 1 | AT5G03495 | RNA-binding (RRM/RBD/RNP motifs) family protein                        | FD, P |
| 1 | AT5G13800 | pheophytinase                                                          | FD, P |
| 1 | AT5G18130 | transmembrane protein                                                  | FD, P |
| 1 | AT5G22510 | alkaline/neutral invertase                                             | FD, P |
| 1 | AT5G39570 | transmembrane protein                                                  | FD, P |
| 1 | AT5G39860 | basic helix-loop-helix (bHLH) DNA-binding family protein               | FD, P |
| 1 | AT5G41370 | DNA repair helicase XPB1-like protein                                  | FD, P |
| 1 | AT5G42240 | serine carboxypeptidase-like 42                                        | FD, P |
| 1 | AT5G54080 | homogentisate 1,2-dioxygenase                                          | FD, P |
| 1 | AT5G61500 | autophagy 3 (APG3)                                                     | FD, P |
| 1 | AT5G61510 | GroES-like zinc-binding alcohol dehydrogenase family protein           | FD, P |
| 1 | AT5G63370 | Protein kinase superfamily protein                                     | FD, P |
| 2 | AT1G07370 | proliferating cellular nuclear antigen 1                               |       |
| 2 | AT1G09200 | Histone superfamily protein                                            |       |
| 2 | AT1G09750 | Eukaryotic aspartyl protease family protein                            | U     |
| 2 | AT1G10940 | Protein kinase superfamily protein                                     |       |
| 2 | AT1G13960 | WRKY DNA-binding protein 4                                             | U     |
| 2 | AT1G22690 | Gibberellin-regulated family protein                                   |       |
| 2 | AT1G29070 | Ribosomal protein L34                                                  | U     |
| 2 | AT1G29660 | GDSL-like Lipase/Acylhydrolase superfamily protein                     | U     |
| 2 | AT1G51200 | A20/AN1-like zinc finger family protein                                |       |
| 2 | AT1G55490 | chaperonin 60 beta                                                     |       |
| 2 | AT1G64510 | Translation elongation factor EF1B/ribosomal protein S6 family protein | U     |
| 2 | AT1G68890 | 2-oxoglutarate decarboxylase/hydro-lyase/magnesium ion-binding protein |       |
| 2 | AT1G78960 | lupeol synthase 2                                                      |       |
| 2 | AT1G80050 | adenine phosphoribosyl transferase 2                                   | U     |
| 2 | AT2G07718 | Cytochrome b/b6 protein                                                |       |
| 2 | AT2G21790 | ribonucleotide reductase 1                                             |       |
| 2 | AT2G28950 | expansin A6                                                            | U     |
| 2 | AT2G31730 | basic helix-loop-helix (bHLH) DNA-binding superfamily protein          |       |
| 2 | AT3G19490 | sodium:hydrogen antiporter 1                                           |       |
| 2 | AT3G20670 | histone H2A 13                                                         |       |
| 2 | AT3G26280 | cytochrome P450, family 71, subfamily B, polypeptide 4                 |       |
| 2 | AT3G27160 | Ribosomal protein S21 family protein                                   | U     |
| 2 | AT3G27820 | monodehydroascorbate reductase 4                                       |       |
| 2 | AT3G29160 | SNF1 kinase homolog 11                                                 |       |
| 2 | AT3G50840 | Phototropic-responsive NPH3 family protein                             |       |
| 2 | AT3G54560 | histone H2A 11                                                         |       |
| 2 | AT3G55330 | PsbP-like protein 1                                                    | U     |
| 2 | AT3G60590 | cytochrome P450 family protein                                         |       |

| 2 | AT4G01310 | Ribosomal L5P family protein                                               | U |
|---|-----------|----------------------------------------------------------------------------|---|
| 2 | AT4G08290 | nodulin MtN21 /EamA-like transporter family protein                        |   |
| 2 | AT4G09650 | F-type H -transporting ATPase subunit delta                                |   |
| 2 | AT4G11100 | gelsolin protein                                                           | U |
| 2 | AT4G16980 | arabinogalactan-protein family                                             | U |
| 2 | AT4G18480 | P-loop containing nucleoside triphosphate hydrolases superfamily protein   | U |
| 2 | AT4G29190 | Zinc finger C-x8-C-x5-C-x3-H type family protein                           | U |
| 2 | AT4G34260 | 1,2-alpha-L-fucosidase                                                     | U |
| 2 | AT5G03520 | RAB GTPase homolog 8C                                                      |   |
| 2 | AT5G10390 | Histone superfamily protein                                                | U |
| 2 | AT5G14740 | carbonic anhydrase 2                                                       | U |
| 2 | AT5G15230 | GAST1 protein homolog 4                                                    |   |
| 2 | AT5G22340 | NF-kappa-B inhibitor-like protein                                          | U |
| 2 | AT5G22880 | histone B2                                                                 |   |
| 2 | AT5G23420 | high-mobility group box 6                                                  |   |
| 2 | AT5G38430 | Ribulose bisphosphate carboxylase (small chain) family protein             | U |
| 2 | AT5G40440 | mitogen-activated protein kinase kinase 3                                  |   |
| 2 | AT5G43780 | Pseudouridine synthase/archaeosine transglycosylase-like family            |   |
| 2 | AT5G45680 | FK506-binding protein 13                                                   | U |
| 2 | AT5G45930 | magnesium chelatase i2                                                     | U |
| 2 | AT5G48220 | Aldolase-type TIM barrel family protein                                    | U |
| 2 | AT5G59870 | histone H2A 6                                                              | U |
| 2 | AT5G63310 | nucleoside diphosphate kinase 2                                            | U |
| 2 | AT5G63850 | amino acid permease 4                                                      |   |
| 2 | AT5G66120 | 3-dehydroquinate synthase                                                  |   |
| 2 | AT5G66530 | Galactose mutarotase-like superfamily protein                              | U |
| 3 | AT1G21400 | Thiamin diphosphate-binding fold (THDP-binding) superfamily protein        |   |
| 3 | AT1G29395 | COLD REGULATED 314 INNER MEMBRANE 1                                        |   |
| 3 | AT1G30500 | nuclear factor Y, subunit A7                                               |   |
| 3 | AT1G67300 | Major facilitator superfamily protein                                      |   |
| 3 | AT1G71340 | PLC-like phosphodiesterases superfamily protein                            |   |
| 3 | AT1G72190 | D-isomer specific 2-hydroxyacid dehydrogenase family protein               |   |
| 3 | AT1G78070 | Transducin/WD40 repeat-like superfamily protein                            |   |
| 3 | AT1G79270 | evolutionarily conserved C-terminal region 8                               |   |
| 3 | AT2G04240 | RING/U-box superfamily protein                                             |   |
| 3 | AT2G12400 | plasma membrane fusion protein                                             |   |
| 3 | AT2G21970 | stress enhanced protein 2                                                  |   |
| 3 | AT2G47890 | B-box type zinc finger protein with CCT domain-containing protein          |   |
| 3 | AT3G02910 | AIG2-like (avirulence induced gene) family protein                         |   |
| 3 | AT3G09580 | FAD/NAD(P)-binding oxidoreductase family protein                           |   |
| 3 | AT3G13672 | TRAF-like superfamily protein                                              |   |
| 3 | AT3G15350 | Core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase family protein |   |
| 3 | AT3G24520 | heat shock transcription factor C1                                         |   |
| 3 | AT3G25870 | hypothetical protein                                                       |   |
| 3 | AT3G28007 | Nodulin MtN3 family protein                                                |   |

| 3 | AT3G46450 | SEC14 cytosolic factor family protein / phosphoglyceride transfer                       |
|---|-----------|-----------------------------------------------------------------------------------------|
| 3 | AT3G51670 | SEC14 cytosolic factor family protein / phosphoglyceride transfer family protein        |
| 3 | AT3G57540 | Remorin family protein                                                                  |
| 3 | AT4G01120 | G-box binding factor 2                                                                  |
| 3 | AT4G18620 | PYR1-like 13                                                                            |
| 3 | AT4G21926 | hypothetical protein                                                                    |
| 3 | AT4G23890 | NAD(P)H-quinone oxidoreductase subunit S                                                |
| 3 | AT4G36840 | Galactose oxidase/kelch repeat superfamily protein                                      |
| 3 | AT4G38730 | magnesium transporter, putative (DUF803)                                                |
| 3 | AT5G03210 | E3 ubiquitin-protein ligase                                                             |
| 3 | AT5G04940 | SU(VAR)3-9 homolog 1                                                                    |
| 3 | AT5G07920 | diacylglycerol kinase1                                                                  |
| 3 | AT5G10540 | Zincin-like metalloproteases family protein                                             |
| 3 | AT5G12840 | nuclear factor Y, subunit A1                                                            |
| 3 | AT5G13710 | sterol methyltransferase 1                                                              |
| 3 | AT5G15190 | hypothetical protein                                                                    |
| 3 | AT5G15500 | Ankyrin repeat family protein                                                           |
| 3 | AT5G17460 | glutamyl-tRNA (GIn) amidotransferase subunit C                                          |
| 3 | AT5G22290 | NAC domain containing protein 89                                                        |
| 3 | AT5G34780 | Thiamin diphosphate-binding fold (THDP-binding) superfamily protein                     |
| 3 | AT5G36670 | RING/FYVE/PHD zinc finger superfamily protein                                           |
| 3 | AT5G40800 | hypothetical protein                                                                    |
| 4 | AT1G04220 | 3-ketoacyl-CoA synthase 2                                                               |
| 4 | AT1G09795 | ATP phosphoribosyl transferase 2                                                        |
| 4 | AT1G11210 | cotton fiber protein, putative (DUF761)                                                 |
| 4 | AT1G17280 | ubiquitin-conjugating enzyme 34                                                         |
| 4 | AT1G18710 | myb domain protein 47                                                                   |
| 4 | AT1G19550 | Glutathione S-transferase family protein                                                |
| 4 | AT1G21760 | F-box protein 7                                                                         |
| 4 | AT1G22640 | myb domain protein 3                                                                    |
| 4 | AT1G27420 | Galactose oxidase/kelch repeat superfamily protein                                      |
| 4 | AT1G28570 | SGNH hydrolase-type esterase superfamily protein                                        |
| 4 | AT1G36070 | Transducin/WD40 repeat-like superfamily protein                                         |
| 4 | AT1G53780 | 26S proteasome regulatory complex ATPase                                                |
| 4 | AT1G71240 | chromosome-partitioning protein, putative (DUF639)                                      |
| 4 | AT1G75388 |                                                                                         |
| 4 | AT1G76580 | Squamosa promoter-binding protein-like (SBP domain) transcription factor family protein |
| 4 | AT1G76590 | PLATZ transcription factor family protein                                               |
| 4 | AT1G76720 | eukaryotic translation initiation factor 2 (eIF-2) family protein                       |
| 4 | AT2G16485 | GW repeat- and PHD finger-containing protein NERD                                       |
| 4 | AT2G20400 | myb-like HTH transcriptional regulator family protein                                   |
| 4 | AT2G22910 | N-acetyl-I-glutamate synthase 1                                                         |
| 4 | AT2G31280 | transcription factor bHLH155-like protein                                               |
| 4 | AT2G32340 | TraB family protein                                                                     |
| 4 | AT2G38050 | 3-oxo-5-alpha-steroid 4-dehydrogenase family protein                                    |

| 4      | AT2G41210 | phosphatidylinositol- 4-phosphate 5-kinase 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4      | AT2G47670 | Plant invertase/pectin methylesterase inhibitor superfamily protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4      | AT2G47780 | Rubber elongation factor protein (REF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4      | AT3G22270 | Topoisomerase II-associated protein PAT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4      | AT3G22380 | time for coffee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4      | AT3G26580 | Tetratricopeptide repeat (TPR)-like superfamily protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4      | AT3G48710 | DEK domain-containing chromatin associated protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4      | AT3G49940 | LOB domain-containing protein 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4      | AT3G56650 | thylakoid lumenal protein (Mog1/PsbP/DUF1795-like photosystem II<br>reaction center PsbP family protein)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4      | AT4G00380 | XH/XS domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4      | AT4G18530 | (DUF707)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4      | AT4G21910 | MATE efflux family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4      | A14G22753 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4      | A14G22770 | A I hook motif DNA-binding family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4      | A14G25020 | D111/G-patch domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4      | A14G25080 | magnesium-protoporphyrin IX methyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4      | A14G36900 | related to AP2 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4      | AT4G36930 | basic helix-loop-helix (bHLH) DNA-binding superfamily protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4      | AT4G38530 | phospholipase C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4      | AT4G38860 | SAUR-like auxin-responsive protein family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4      | AT5G06300 | Putative lysine decarboxylase family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4      | AT5G14960 | DP-E2F-like 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4      | AT5G16610 | nypotnetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4      | AT5G19350 | RNA-binding (RRM/RBD/RNP motifs) family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4      | A15G25220 | nomeobox protein knotted-1-like 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4      | AT5G27940 | DTE2 DINC finger protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4      | AT5G58020 | RTP2 RING-linger protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4      | AT5G59010 | Rinase with tetratricopeptide repeat domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5      | AT1G03410 | 2-oxoglutarate (20G) and Fe(II)-dependent oxygenase superfamily protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5      | AT1G09580 | emp24/gp25L/p24 family/GOLD family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5      | AT1G17940 | Endosomal targeting BRO1-like domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5      | AT1G29050 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5      | AT1G29540 | LOw protein: protein BOBBER-like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5      | AT1G36160 | acetyl-CoA carboxylase 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5      | AT1G50950 | protein disultide-isomerase 5-like protein (DUF1692)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5      | AT1G54160 | Nuclear factor Y, subunit A5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5      | AT1G77290 | Giutatnione S-transferase family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5      | AT2G19830 | SNF7 family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5<br>F | AT2G21590 | Giucose- i-phosphate adenyiyitransierase ramily protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5<br>5 | AT2C24050 | NAD(P) binding Personang fold superfemily protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5<br>E | AT2C42590 | Chiting to a strain from the superial s |
| ວ<br>ຬ | AT204308U |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ວ<br>ຬ | AT2C02070 | Adonino nucleotido olpho hudrologoo liko superformite protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ວ<br>ເ | AT3GU327U | Adenine nucleotide alpha nydrolases-like superfamily protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5      | A13G12775 | ubiquitin-conjugating enzyme family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 5 | AT3G23910              | reverse transcriptase-like protein                                                                                                     |
|---|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 5 | AT3G53980              | Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein                                              |
| 5 | AT3G57680              | Peptidase S41 family protein                                                                                                           |
| 5 | AT4G09820              | basic helix-loop-helix (bHLH) DNA-binding superfamily protein                                                                          |
| 5 | AT4G12080              | AT-hook motif nuclear-localized protein 1                                                                                              |
| 5 | AT4G14520              | DNA-directed RNA polymerase II-like protein                                                                                            |
| 5 | AT4G33550              | Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein                                              |
| 5 | AT4G34860              | Plant neutral invertase family protein                                                                                                 |
| 5 | AT5G05870              | ODP-glucosyl transferase 76C1                                                                                                          |
| 5 | AT5G08590              | SNF1-related protein kinase 2.1                                                                                                        |
| 5 | A15G23530              |                                                                                                                                        |
| 5 | A15G23750              | Remorin family protein                                                                                                                 |
| 5 | AT5G53710              | hypothetical protein                                                                                                                   |
| 5 | A15G56520              | hypothetical protein                                                                                                                   |
| 5 | A15G59700              | Protein kinase superfamily protein                                                                                                     |
| 5 | AT5G60910              | AGAMOUS-like 8                                                                                                                         |
| 5 | AT5G66460              | Glycosyl hydrolase superfamily protein                                                                                                 |
| 5 | AT5G67090              | Subtilisin-like serine endopeptidase family protein                                                                                    |
| 6 | AT1G03550              | Secretory carrier membrane protein (SCAMP) family protein                                                                              |
| 6 | AT1G04390              | BTB/POZ domain-containing protein                                                                                                      |
| 6 | AT1G17680              | tetratricopeptide repeat (TPR)-containing protein                                                                                      |
| 6 | AT1G24822              | hypothetical protein                                                                                                                   |
| 6 | AT1G67310              | Calmodulin-binding transcription activator protein with CG-1 and<br>Ankyrin domain                                                     |
| 0 | AT1G67580              |                                                                                                                                        |
| 6 | AT1G69540              | AGAMOUS-IIKe 94                                                                                                                        |
| 6 | AT1G78270              | UDP-glucosyl transferase 85A4                                                                                                          |
| 6 | AT1G78820<br>AT1G80070 | D-mannose binding lectin protein with Apple-like carbohydrate-binding domain-containing protein<br>Pre-mRNA-processing-splicing factor |
| 6 | AT2G02570              | nucleic acid binding/RNA binding protein                                                                                               |
| 6 | AT2G13100              | Major facilitator superfamily protein                                                                                                  |
| 6 | AT2G23980              | cyclic nucleotide-gated channel 6                                                                                                      |
| 6 | AT2G31960              | glucan synthase-like 3                                                                                                                 |
| 6 | AT2G32320              | tRNAHis guanylyltransferase                                                                                                            |
| 6 | AT2G34660              | multidrug resistance-associated protein 2                                                                                              |
| 6 | AT2G37340              | arginine/serine-rich zinc knuckle-containing protein 33                                                                                |
| 6 | AT3G05510              | Phospholipid/glycerol acyltransferase family protein                                                                                   |
| 6 | AT3G08850              | Regulatory-associated protein of TOR 1                                                                                                 |
| 6 | AT3G12090              | tetraspanin6                                                                                                                           |
| 6 | AT3G27540              | beta-1.4-N-acetylglucosaminyltransferase family protein                                                                                |
| 6 | AT3G27670              | ARM repeat superfamily protein                                                                                                         |
| 6 | AT3G43520              | Transmembrane proteins 14C                                                                                                             |
| 6 | AT3G50430              | aolain                                                                                                                                 |
| 6 | AT4G15510              | Photosystem II reaction center PsbP family protein                                                                                     |
| 6 | AT4G15900              | pleiotropic regulatory locus 1                                                                                                         |
| 6 | AT4G24470              | GATA-type zinc finger protein with TIFY domain-containing protein                                                                      |
| - |                        |                                                                                                                                        |
| 6      | AT4G26690              | PLC-like phosphodiesterase family protein                                                                                                         |
|--------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 6      | AT4G31650              | Transcriptional factor B3 family protein                                                                                                          |
| 6      | AT4G39550              | Galactose oxidase/kelch repeat superfamily protein                                                                                                |
| 6      | AT5G05580              | fatty acid desaturase 8                                                                                                                           |
| 6<br>6 | AT5G10370<br>AT5G12130 | helicase domain-containing protein / IBR domain-containing protein /<br>zinc finger protein-like protein<br>integral membrane TerC family protein |
| 6      | AT5G38670              | Galactose oxidase/kelch repeat superfamily protein                                                                                                |
| 6      | AT5G42370              | Calcineurin-like metallo-phosphoesterase superfamily protein                                                                                      |
| 6      | AT5G47590              | Heat shock protein HSP20/alpha crystallin family                                                                                                  |
| 6      | AT5G47840              | adenosine monophosphate kinase                                                                                                                    |
| 6      | AT5G52730              | Copper transport protein family                                                                                                                   |
| 6      | AT5G53350              | CLP protease regulatory subunit X                                                                                                                 |
| 7      | AT1G01620              | plasma membrane intrinsic protein 1C                                                                                                              |
| 7      | AT1G04690              | potassium channel beta subunit 1                                                                                                                  |
| 7      | AT1G07320              | ribosomal protein 1 4                                                                                                                             |
| 7      | AT1G12900              | glyceraldehyde 3-phosphate dehydrogenase A subunit 2                                                                                              |
| 7      | AT1G14290              | sphingoid base hydroxylase 2                                                                                                                      |
| 7      | AT1G19450              | Maior facilitator superfamily protein                                                                                                             |
| 7      | AT1G21500              | hypothetical protein                                                                                                                              |
| 7      | AT1G28100              | hypothetical protein                                                                                                                              |
| 7      | AT1G52240              | rop quanine nucleotide exchange factor-like protein                                                                                               |
| 7      | AT2G04420              | Polynucleotidyl transferase, ribonuclease H-like superfamily protein                                                                              |
| 7      | AT2G05710              | aconitase 3                                                                                                                                       |
| 7      | AT2G16720              | myb domain protein 7                                                                                                                              |
| 7      | AT2G25810              | tonoplast intrinsic protein 4:1                                                                                                                   |
| 7      | AT2G34620              | Mitochondrial transcription termination factor family protein                                                                                     |
| 7      | AT2G41220              | glutamate synthase 2                                                                                                                              |
| 7      | AT3G03830              | SAUR-like auxin-responsive protein family                                                                                                         |
| 7      | AT3G03850              | SAUR-like auxin-responsive protein family                                                                                                         |
| 7      | AT3G06750              | hydroxyproline-rich glycoprotein family protein                                                                                                   |
| 7      | AT3G08920              | Rhodanese/Cell cycle control phosphatase superfamily protein                                                                                      |
| 7      | AT3G28690              | Protein kinase superfamily protein                                                                                                                |
| 7      | AT3G48410              | alpha/beta-Hydrolases superfamily protein                                                                                                         |
| 7      | AT3G54750              | downstream neighbor of Son                                                                                                                        |
| 7      | AT3G60290              | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein                                                                           |
| 7      | AT3G61630              | cytokinin response factor 6                                                                                                                       |
| 7      | AT4G14090              | UDP-Glycosyltransferase superfamily protein                                                                                                       |
| 7      | AT4G23820              | Pectin lyase-like superfamily protein                                                                                                             |
| 7      | AT4G24780              | Pectin lyase-like superfamily protein                                                                                                             |
| 7      | AT4G25050              | acyl carrier protein 4                                                                                                                            |
| 7      | AT4G33666              | hypothetical protein                                                                                                                              |
| 7      | AT5G04760              | Duplicated homeodomain-like superfamily protein                                                                                                   |
| 7      | AT5G08020              | RPA70-kDa subunit B                                                                                                                               |
| 7      | AT5G21930              | P-type ATPase of Arabidopsis 2                                                                                                                    |
| 7      | AT5G27290              | stress regulated protein                                                                                                                          |

| 7 | AT5G44530 | Subtilase family protein                                                    |      |
|---|-----------|-----------------------------------------------------------------------------|------|
| 7 | AT5G47860 | Gut esterase (DUF1350)                                                      |      |
| 7 | AT5G62810 | peroxin 14                                                                  |      |
| 8 | AT1G03020 | Thioredoxin superfamily protein                                             | В    |
| 8 | AT1G03495 | HXXXD-type acyl-transferase family protein                                  |      |
| 8 | AT1G09140 | SERINE-ARGININE PROTEIN 30                                                  | В    |
| 8 | AT1G09780 | Phosphoglycerate mutase, 2,3-bisphosphoglycerate-independent                | B, R |
| 8 | AT1G10070 | branched-chain amino acid transaminase 2                                    |      |
| 8 | AT1G13609 | Defensin-like (DEFL) family protein                                         | В    |
| 8 | AT1G18190 | golgin Putative 2                                                           | В    |
| 8 | AT1G34060 | Pyridoxal phosphate (PLP)-dependent transferases superfamily protein        | B, R |
| 8 | AT1G47395 | hypothetical protein                                                        | В    |
| 8 | AT1G47400 | hypothetical protein                                                        | В    |
| 8 | AT1G53280 | Class I glutamine amidotransferase-like superfamily protein                 | В    |
| 8 | AT1G53910 | related to AP2 12                                                           | B, R |
| 8 | AT1G63240 | hypothetical protein                                                        | B, R |
| 8 | AT1G79030 | Chaperone DnaJ-domain superfamily protein                                   | B, R |
| 8 | AT1G80570 | RNI-like superfamily protein                                                | B, R |
| 8 | AT2G03590 | ureide permease 1                                                           | B, R |
| 8 | AT2G38070 | LOW protein: UPF0503-like protein, putative (DUF740)                        | B, R |
| 8 | AT2G40390 | neuronal PAS domain protein                                                 | B, R |
| 8 | AT2G47790 | Transducin/WD40 repeat-like superfamily protein                             | В    |
| 8 | AT3G05120 | alpha/beta-Hydrolases superfamily protein                                   | В    |
| 8 | AT3G18990 | AP2/B3-like transcriptional factor family protein                           | B, R |
| 8 | AT3G21460 | Glutaredoxin family protein                                                 | В    |
| 8 | AT3G52180 | dual specificity protein phosphatase (DsPTP1) family protein                |      |
| 8 | AT3G56970 | basic helix-loop-helix (bHLH) DNA-binding superfamily protein               | B, R |
| 8 | AT3G62090 | phytochrome interacting factor 3-like 2                                     | B, R |
| 8 | AT3G63110 | isopentenyltransferase 3                                                    | В    |
| 8 | AT4G16150 | calmodulin-binding transcription activator 5                                | B, R |
| 8 | AT4G23860 | PHD finger protein-like protein                                             | В    |
| 8 | AT4G25970 | phosphatidylserine decarboxylase 3                                          | B, R |
| 8 | AT4G27120 | DDRGK domain protein                                                        | B, R |
| 8 | AT4G36540 | BR enhanced expression 2                                                    | B, R |
| 8 | AT4G39770 | Haloacid dehalogenase-like hydrolase (HAD) superfamily protein              |      |
| 8 | AT5G08100 | N-terminal nucleophile aminohydrolases (Ntn hydrolases) superfamily protein | B, R |
| 8 | AT5G25110 | CBL-interacting protein kinase 25                                           | B, R |
| 8 | AT5G37370 | PRP38 family protein                                                        | B, R |
| 8 | AT5G57565 | Protein kinase superfamily protein                                          | B, R |
| 8 | AT5G65010 | asparagine synthetase 2                                                     | В    |
| 9 | AT1G07890 | ascorbate peroxidase 1                                                      |      |
| 9 | AT1G14490 | Putative AT-hook DNA-binding family protein                                 |      |
| 9 | AT1G20490 | AMP-dependent synthetase and ligase family protein                          |      |
| 9 | AT1G29390 | cold regulated 314 thylakoid membrane 2                                     |      |
| 9 | AT1G29810 | Transcriptional coactivator/pterin dehydratase                              |      |

| 9  | AT1G62290 | Saposin-like aspartyl protease family protein                    |
|----|-----------|------------------------------------------------------------------|
| 9  | AT1G62540 | flavin-monooxygenase glucosinolate S-oxygenase 2                 |
| 9  | AT1G64740 | alpha-1 tubulin                                                  |
| 9  | AT1G67510 | Leucine-rich repeat protein kinase family protein                |
| 9  | AT1G68220 | aerobic coproporphyrinogen-III oxidase (DUF1218)                 |
| 9  | AT1G74810 | HCO3- transporter family                                         |
| 9  | AT2G01150 | RING-H2 finger protein 2B                                        |
| 9  | AT2G05185 | hypothetical protein                                             |
| 9  | AT2G16660 | Major facilitator superfamily protein                            |
| 9  | AT2G21820 | seed maturation protein                                          |
| 9  | AT2G22190 | Haloacid dehalogenase-like hydrolase (HAD) superfamily protein   |
| 9  | AT2G22540 | K-box region and MADS-box transcription factor family protein    |
| 9  | AT2G29950 | ELF4-like 1                                                      |
| 9  | AT2G37300 | transmembrane protein                                            |
| 9  | AT2G38660 | Amino acid dehydrogenase family protein                          |
| 9  | AT2G45720 | ARM repeat superfamily protein                                   |
| 9  | AT3G24760 | Galactose oxidase/kelch repeat superfamily protein               |
| 9  | AT4G01060 | CAPRICE-like MYB3                                                |
| 9  | AT4G04750 | Major facilitator superfamily protein                            |
| 9  | AT4G04760 | Major facilitator superfamily protein                            |
| 9  | AT4G16750 | Integrase-type DNA-binding superfamily protein                   |
| 9  | AT4G34588 |                                                                  |
| 9  | AT4G37980 | cinnamyl alcohol dehydrogenase 7                                 |
| 9  | AT4G40010 | SNF1-related protein kinase 2.7                                  |
| 9  | AT5G02560 | histone H2A 12                                                   |
| 9  | AT5G17030 | UDP-glucosyl transferase 78D3                                    |
| 9  | AT5G25390 | Integrase-type DNA-binding superfamily protein                   |
| 9  | AT5G49120 | DUF581 family protein, putative (DUF581)                         |
| 9  | AT5G50110 | S-adenosyl-L-methionine-dependent methyltransferases superfamily |
| 9  | AT5G59000 | protein<br>RING/FYVE/PHD zinc finger superfamily protein         |
| 10 | AT1G01290 | cofactor of nitrate reductase and xanthine dehydrogenase 3       |
| 10 | AT1G07530 | SCARECROW-like 14                                                |
| 10 | AT1G13195 | RING/U-box superfamily protein                                   |
| 10 | AT1G27460 | no pollen germination related 1                                  |
| 10 | AT1G47240 | NRAMP metal ion transporter 2                                    |
| 10 | AT1G64360 | hypothetical protein                                             |
| 10 | AT1G66100 | Plant thionin                                                    |
| 10 | AT1G69530 | expansin A1                                                      |
| 10 | AT1G79230 | mercaptopyruvate sulfurtransferase 1                             |
| 10 | AT2G34060 | Peroxidase superfamily protein                                   |
| 10 | AT2G35540 | DNAJ heat shock N-terminal domain-containing protein             |
| 10 | AT2G35550 | basic pentacysteine 7                                            |
| 10 | AT2G40610 | expansin A8                                                      |
| 10 | AT2G43745 | jacalin lectin-like protein                                      |
| 10 | AT2G46080 | BPS1-like protein                                                |
| 10 | AT3G03520 | non-specific phospholipase C3                                    |

| 10 | AT3G12730 | Homeodomain-like superfamily protein                                |
|----|-----------|---------------------------------------------------------------------|
| 10 | AT3G16360 | HPT phosphotransmitter 4                                            |
| 10 | AT3G19990 | E3 ubiquitin-protein ligase                                         |
| 10 | AT3G26730 | RING/U-box superfamily protein                                      |
| 10 | AT3G58270 | phospholipase-like protein (PEARLI 4) with TRAF-like domain protein |
| 10 | AT4G05530 | indole-3-butyric acid response 1                                    |
| 10 | AT4G12300 | cytochrome P450, family 706, subfamily A, polypeptide 4             |
| 10 | AT4G15093 | catalytic LigB subunit of aromatic ring-opening dioxygenase family  |
| 10 | AT4G26555 | FKBP-like peptidyl-prolyl cis-trans isomerase family protein        |
| 10 | AT4G27180 | kinesin 2                                                           |
| 10 | AT4G36190 | Serine carboxypeptidase S28 family protein                          |
| 10 | AT5G41320 | stress response NST1-like protein                                   |
| 10 | AT5G67160 | HXXXD-type acyl-transferase family protein                          |
| 11 | AT1G09530 | phytochrome interacting factor 3                                    |
| 11 | AT1G17840 | white-brown complex-like protein                                    |
| 11 | AT1G48635 | peroxin 3                                                           |
| 11 | AT1G56650 | production of anthocyanin pigment 1                                 |
| 11 | AT1G62710 | beta vacuolar processing enzyme                                     |
| 11 | AT1G66380 | myb domain protein 114                                              |
| 11 | AT1G66390 | myb domain protein 90                                               |
| 11 | AT1G69295 | plasmodesmata callose-binding protein 4                             |
| 11 | AT1G69800 | Cystathionine beta-synthase (CBS) protein                           |
| 11 | AT1G69820 | gamma-glutamyl transpeptidase 3                                     |
| 11 | AT1G73040 | Mannose-binding lectin superfamily protein                          |
| 11 | AT1G76240 | DUF241 domain protein (DUF241)                                      |
| 11 | AT2G25625 | histone deacetylase-like protein                                    |
| 11 | AT2G34730 | myosin heavy chain-like protein                                     |
| 11 | AT2G38670 | phosphorylethanolamine cytidylyltransferase 1                       |
| 11 | AT3G01090 | SNF1 kinase homolog 10                                              |
| 11 | AT3G09250 | Nuclear transport factor 2 (NTF2) family protein                    |
| 11 | AT3G12580 | heat shock protein 70                                               |
| 11 | AT3G18610 | nucleolin like 2                                                    |
| 11 | AT3G27220 | Galactose oxidase/kelch repeat superfamily protein                  |
| 11 | AT3G54320 | Integrase-type DNA-binding superfamily protein                      |
| 11 | AT3G61990 | S-adenosyl-L-methionine-dependent methyltransferases superfamily    |
| 11 | AT4G03110 | protein<br>RNA-binding protein-defense related 1                    |
| 11 | AT4G19390 | Uncharacterized protein family (UPF0114)                            |
| 11 | AT4G33040 | Thioredoxin superfamily protein                                     |
| 11 | AT4G39210 | Glucose-1-phosphate adenylyltransferase family protein              |
| 11 | AT4G39640 | gamma-glutamyl transpeptidase 1                                     |
| 11 | AT5G04530 | 3-ketoacyl-CoA synthase 19                                          |
| 11 | AT5G05980 | DHFS-FPGS homolog B                                                 |
| 11 | AT5G06950 | bZIP transcription factor family protein                            |
| 11 | AT5G16030 | mental retardation GTPase activating protein                        |
| 11 | AT5G41870 | Pectin lyase-like superfamily protein                               |
| 11 | AT5G45490 | P-loop containing nucleoside triphosphate hydrolases superfamily    |
|    |           |                                                                     |

|    |           | protein                                                                       |
|----|-----------|-------------------------------------------------------------------------------|
| 11 | AT5G56160 | Sec14p-like phosphatidylinositol transfer family protein                      |
| 11 | AT5G65730 | xyloglucan endotransglucosylase/hydrolase 6                                   |
| 12 | AT1G01250 | Integrase-type DNA-binding superfamily protein                                |
| 12 | AT1G09932 | Phosphoglycerate mutase family protein                                        |
| 12 | AT1G13920 | Remorin family protein                                                        |
| 12 | AT1G17290 | alanine aminotransferas                                                       |
| 12 | AT1G18870 | isochorismate synthase 2                                                      |
| 12 | AT1G19190 | alpha/beta-Hydrolases superfamily protein                                     |
| 12 | AT1G32520 | TLDc domain protein                                                           |
| 12 | AT1G43620 | UDP-Glycosyltransferase superfamily protein                                   |
| 12 | AT1G45249 | abscisic acid responsive elements-binding factor 2                            |
| 12 | AT1G53070 | Legume lectin family protein                                                  |
| 12 | AT1G63420 | O-glucosyltransferase-like protein (DUF821)                                   |
| 12 | AT1G68870 | SOB five-like 2                                                               |
| 12 | AT1G72920 | Toll-Interleukin-Resistance (TIR) domain family protein                       |
| 12 | AT2G17890 | calcium-dependent protein kinase 16                                           |
| 12 | AT2G19860 | hexokinase 2                                                                  |
| 12 | AT2G26530 | AR781, pheromone receptor-like protein (DUF1645)                              |
| 12 | AT2G35760 | Uncharacterized protein family (UPF0497)                                      |
| 12 | AT2G40520 | Nucleotidyltransferase family protein                                         |
| 12 | AT2G41000 | Chaperone DnaJ-domain superfamily protein                                     |
| 12 | AT2G44770 | ELMO/CED-12 family protein                                                    |
| 12 | AT3G03690 | Core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase family            |
| 12 | AT3G10400 | protein<br>RNA recognition motif and CCHC-type zinc finger domains containing |
| 12 | AT3G17930 | transmembrane protein                                                         |
| 12 | AT3G19340 | aminopeptidase (DUF3754)                                                      |
| 12 | AT3G47590 | alpha/beta-Hydrolases superfamily protein                                     |
| 12 | AT3G48700 | carboxyesterase 13                                                            |
| 12 | AT3G52920 | transcriptional activator (DUF662)                                            |
| 12 | AT3G54000 | TIP41-like protein                                                            |
| 12 | AT4G02520 | glutathione S-transferase PHI 2                                               |
| 12 | AT4G10360 | TRAM, LAG1 and CLN8 (TLC) lipid-sensing domain containing<br>protein          |
| 12 | AT4G18270 | translocase 11                                                                |
| 12 | AT4G23630 | VIRB2-interacting protein 1                                                   |
| 12 | AT4G25480 | dehydration response element B1A                                              |
| 12 | AT4G25600 | Oxoglutarate/iron-dependent oxygenase                                         |
| 12 | AT4G30470 | NAD(P)-binding Rossmann-fold superfamily protein                              |
| 12 | AT4G39700 | Heavy metal transport/detoxification superfamily protein                      |
| 12 | AT5G17010 | Major facilitator superfamily protein                                         |
| 12 | AT5G17210 | transmembrane protein, putative (DUF1218)                                     |
| 12 | AT5G44670 | glycosyltransferase family protein (DUF23)                                    |
| 12 | AT5G47550 | Cystatin/monellin superfamily protein                                         |
| 13 | AT1G22790 | Low affinity potassium transport system protein                               |
| 13 | AT1G23130 | Polyketide cyclase/dehydrase and lipid transport superfamily protein          |

| 13 | AT1G34340 | alpha/beta-Hydrolases superfamily protein                                |
|----|-----------|--------------------------------------------------------------------------|
| 13 | AT1G56230 | enolase (DUF1399)                                                        |
| 13 | AT1G67860 | transmembrane protein                                                    |
| 13 | AT2G17390 | ankyrin repeat-containing 2B                                             |
| 13 | AT2G21940 | shikimate kinase 1                                                       |
| 13 | AT2G28840 | hypothetical protein                                                     |
| 13 | AT2G39570 | ACT domain-containing protein                                            |
| 13 | AT3G11170 | fatty acid desaturase 7                                                  |
| 13 | AT3G20120 | cytochrome P450, family 705, subfamily A, polypeptide 21                 |
| 13 | AT3G21360 | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein  |
| 13 | AT3G26300 | cytochrome P450, family 71, subfamily B, polypeptide 34                  |
| 13 | AT3G54290 | hemerythrin HHE cation-binding domain protein                            |
| 13 | AT3G56720 | pre-mRNA-splicing factor                                                 |
| 13 | AT3G62730 | desiccation-like protein                                                 |
| 13 | AT4G00270 | DNA-binding storekeeper protein-related transcriptional regulator        |
| 13 | AT4G33610 | glycine-rich protein                                                     |
| 13 | AT5G10960 | Polynucleotidyl transferase, ribonuclease H-like superfamily protein     |
| 13 | AT5G11150 | vesicle-associated membrane protein 713                                  |
| 13 | AT5G16550 | voltage-dependent L-type calcium channel subunit                         |
| 13 | AT5G19430 | RING/U-box superfamily protein                                           |
| 13 | AT5G42780 | homeobox protein 27                                                      |
| 13 | AT5G47720 | Thiolase family protein                                                  |
| 13 | AT5G49990 | Xanthine/uracil permease family protein                                  |
| 13 | AT5G60800 | Heavy metal transport/detoxification superfamily protein                 |
| 13 | AT5G62760 | P-loop containing nucleoside triphosphate hydrolases superfamily protein |
| 13 | AT5G65760 | Serine carboxypeptidase S28 family protein                               |
| 14 | AT1G27400 | Ribosomal protein L22p/L17e family protein                               |
| 14 | AT1G70600 | Ribosomal protein L18e/L15 superfamily protein                           |
| 14 | AT2G27530 | Ribosomal protein L1p/L10e family                                        |
| 14 | AT2G33370 | Ribosomal protein L14p/L23e family protein                               |
| 14 | AT2G36620 | ribosomal protein L24                                                    |
| 14 | AT2G37270 | ribosomal protein 5B                                                     |
| 14 | AT2G39080 | NAD(P)-binding Rossmann-fold superfamily protein                         |
| 14 | AT2G39460 | ribosomal protein L23AA                                                  |
| 14 | AT2G44120 | Ribosomal protein L30/L7 family protein                                  |
| 14 | AT3G02080 | Ribosomal protein S19e family protein                                    |
| 14 | AT3G02560 | Ribosomal protein S7e family protein                                     |
| 14 | AT3G02720 | Class I glutamine amidotransferase-like superfamily protein              |
| 14 | AT3G05560 | Ribosomal L22e protein family                                            |
| 14 | AT3G07110 | Ribosomal protein L13 family protein                                     |
| 14 | AT3G08740 | elongation factor P (EF-P) family protein                                |
| 14 | AT3G09500 | Ribosomal L29 family protein                                             |
| 14 | AT3G11940 | ribosomal protein 5A                                                     |
| 14 | AT3G16780 | Ribosomal protein L19e family protein                                    |
| 14 | AT3G18130 | receptor for activated C kinase 1C                                       |

| 14 | AT3G28900 | Ribosomal protein L34e superfamily protein                                                                                                 |     |
|----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 14 | AT3G51190 | Ribosomal protein L2 family                                                                                                                |     |
| 14 | AT3G62530 | ARM repeat superfamily protein                                                                                                             |     |
| 14 | AT4G10480 | Nascent polypeptide-associated complex (NAC), alpha subunit family protein                                                                 | 1   |
| 14 | AT4G13720 | Inosine triphosphate pyrophosphatase family protein                                                                                        |     |
| 14 | AT4G15000 | Ribosomal L27e protein family                                                                                                              |     |
| 14 | AT4G31700 | ribosomal protein S6                                                                                                                       |     |
| 14 | AT5G02450 | Ribosomal protein L36e family protein                                                                                                      |     |
| 14 | AT5G07090 | Ribosomal protein S4 (RPS4A) family protein                                                                                                |     |
| 14 | AT5G16130 | Ribosomal protein S7e family protein                                                                                                       |     |
| 14 | AT5G20290 | Ribosomal protein S8e family protein                                                                                                       |     |
| 14 | AT5G23900 | Ribosomal protein L13e family protein                                                                                                      |     |
| 14 | AT5G39740 | ribosomal protein L5 B                                                                                                                     |     |
| 14 | AT5G52650 | RNA binding Plectin/S10 domain-containing protein                                                                                          |     |
| 14 | AT5G53770 | Nucleotidyltransferase family protein                                                                                                      |     |
| 14 | AT5G59850 | Ribosomal protein S8 family protein                                                                                                        |     |
| 14 | AT5G60670 | Ribosomal protein L11 family protein                                                                                                       |     |
| 14 | AT5G61170 | Ribosomal protein S19e family protein                                                                                                      |     |
| 15 | AT1G15825 | hydroxyproline-rich glycoprotein family protein                                                                                            |     |
| 15 | AT1G24490 | OxaA/YidC-like membrane insertion protein                                                                                                  |     |
| 15 | AT1G31790 | Tetratricopeptide repeat (TPR)-like superfamily protein                                                                                    |     |
| 15 | AT1G58290 | Glutamyl-tRNA reductase family protein                                                                                                     |     |
| 15 | AT1G60550 | enoyl-CoA hydratase/isomerase D                                                                                                            |     |
| 15 | AT1G67090 | ribulose bisphosphate carboxylase small chain 1A                                                                                           |     |
| 15 | AT1G75690 | DnaJ/Hsp40 cysteine-rich domain superfamily protein                                                                                        |     |
| 15 | AT2G34510 | choice-of-anchor C domain protein, putative (Protein of unknown function, DUF642)                                                          |     |
| 15 | AT2G35650 |                                                                                                                                            |     |
| 15 | AT2G42470 | I RAF-like family protein                                                                                                                  |     |
| 15 | AT3G02870 |                                                                                                                                            |     |
| 15 | AT3G05380 | ALWAYS EARLY 2                                                                                                                             |     |
| 15 | AT3G50790 | esterase/lipase/thioesterase family protein                                                                                                |     |
| 15 | AT3G53190 | Pectin lyase-like superfamily protein                                                                                                      |     |
| 15 | A14G00400 | glycerol-3-phosphate acyltransferase 8                                                                                                     |     |
| 15 | A14G34220 | Leucine-rich repeat protein kinase family protein                                                                                          |     |
| 15 | AT5G11420 | transmembrane protein, putative (Protein of unknown function,<br>DUF642)<br>Ribulase hisphosphate carboxylase (small chain) family protein |     |
| 15 | AT5G38860 | RES1-interacting Myc-like protein 3                                                                                                        |     |
| 15 | AT5G41761 | hypothetical protein                                                                                                                       |     |
| 15 | AT5G41701 | trichome hirofringence like protein (DUE828)                                                                                               |     |
| 15 | AT5G67330 | natural resistance associated macrophage protein (                                                                                         |     |
| 16 | AT1C00300 | GDSL-like Linase/Acylhydrolase superfamily protein                                                                                         | ΔΝ  |
| 16 | AT1003030 | AMP-dependent synthetase and ligase family protein                                                                                         | AIN |
| 10 | AT1G73900 | SALIB-like auvin-responsive protoin family                                                                                                 | ΛNI |
| 16 | AT2G21200 |                                                                                                                                            |     |
| 10 | AT2032000 | WEV family transprintion factor family protein                                                                                             |     |
| 10 | A12G3/260 |                                                                                                                                            | AN  |

| 16 | AT3G03820 | SAUR-like auxin-responsive protein family                                                    | AN |
|----|-----------|----------------------------------------------------------------------------------------------|----|
| 16 | AT3G13403 | Defensin-like (DEFL) family protein                                                          | AN |
| 16 | AT3G56680 | Single-stranded nucleic acid binding R3H protein                                             | AN |
| 16 | AT3G62930 | Thioredoxin superfamily protein                                                              | AN |
| 16 | AT4G04330 | Chaperonin-like RbcX protein                                                                 | AN |
| 16 | AT4G22570 | adenine phosphoribosyl transferase 3                                                         | AN |
| 16 | AT4G26980 | RNI-like superfamily protein                                                                 | AN |
| 16 | AT4G38840 | SAUR-like auxin-responsive protein family                                                    | AN |
| 16 | AT4G38850 | SAUR-like auxin-responsive protein family                                                    | AN |
| 16 | AT5G12040 | Nitrilase/cyanide hydratase and apolipoprotein N-acyltransferase family protein              | AN |
| 16 | AT5G18050 | SAUR-like auxin-responsive protein family                                                    | AN |
| 16 | AT5G19190 | hypothetical protein                                                                         | AN |
| 16 | AT5G19470 | nudix hydrolase homolog 24                                                                   | AN |
| 16 | AT5G35120 | MADS-box family protein                                                                      | AN |
| 16 | AT5G44316 | Stabilizer of iron transporter SufD superfamily protein                                      | AN |
| 16 | AT5G53420 | CCT motif family protein                                                                     | AN |
| 16 | AT5G61412 | hypothetical protein                                                                         | AN |
| 16 | AT5G62650 | Tic22-like family protein                                                                    | AN |
| 17 | AT1G08230 | Transmembrane amino acid transporter family protein                                          |    |
| 17 | AT1G31830 | Amino acid permease family protein                                                           |    |
| 17 | AT1G36150 | Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin<br>superfamily protein |    |
| 17 | AT1G53730 | STRUBBELIG-receptor family 6                                                                 |    |
| 17 | AT1G53785 |                                                                                              |    |
| 17 | AT1G59610 | dynamin-like 3                                                                               |    |
| 17 | AT1G80840 | WRKY DNA-binding protein 40                                                                  |    |
| 17 | AT2G21620 | Adenine nucleotide alpha hydrolases-like superfamily protein                                 |    |
| 17 | AT2G29140 | pumilio 3                                                                                    |    |
| 17 | AT2G45790 | phosphomannomutase                                                                           |    |
| 17 | AT3G07730 | hypothetical protein                                                                         |    |
| 17 | AT3G19290 | ABRE binding factor 4                                                                        |    |
| 17 | AT3G21800 | UDP-glucosyl transferase 71B8                                                                |    |
| 17 | AT3G47540 | Chitinase family protein                                                                     |    |
| 17 | AT3G54140 | peptide transporter 1                                                                        |    |
| 17 | AT3G59210 | F-box/RNI-like superfamily protein                                                           |    |
| 17 | AT4G15660 | Thioredoxin superfamily protein                                                              |    |
| 17 | AT4G17780 | F-box and associated interaction domains-containing protein                                  |    |
| 17 | AT4G23670 | Polyketide cyclase/dehydrase and lipid transport superfamily protein                         |    |
| 17 | AT4G27080 | PDI-like 5-4                                                                                 |    |
| 17 | AT4G29890 | choline monooxygenase, putative (CMO-like)                                                   |    |
| 17 | AT4G37200 | Thioredoxin superfamily protein                                                              |    |
| 17 | AT4G38350 | Patched family protein                                                                       |    |
| 17 | AT5G05780 | RP non-ATPase subunit 8A                                                                     |    |
| 17 | AT5G20840 | Phosphoinositide phosphatase family protein                                                  |    |
| 17 | AT5G22520 | hypothetical protein                                                                         |    |
| 17 | AT5G45810 | CBL-interacting protein kinase 19                                                            |    |
|    |           |                                                                                              |    |

| 17       | AT5G62000 | auxin response factor 2                                                                                                                  |
|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| 18       | AT1G23750 | Nucleic acid-binding, OB-fold-like protein                                                                                               |
| 18       | AT1G32990 | plastid ribosomal protein I11                                                                                                            |
| 18       | AT1G35680 | Ribosomal protein L21                                                                                                                    |
| 18       | AT1G51550 | Kelch repeat-containing F-box family protein                                                                                             |
| 18       | AT1G55280 | Lipase/lipooxygenase, PLAT/LH2 family protein                                                                                            |
| 18       | AT1G62780 | dimethylallyl, adenosine tRNA methylthiotransferase                                                                                      |
| 18       | AT1G68238 | transmembrane protein                                                                                                                    |
| 18       | AT1G74230 | glycine-rich RNA-binding protein 5                                                                                                       |
| 18       | AT1G74970 | ribosomal protein S9                                                                                                                     |
| 18       | AT1G79850 | ribosomal protein S17                                                                                                                    |
| 18       | AT2G22430 | homeobox protein 6                                                                                                                       |
| 18       | AT2G24490 | replicon protein A2                                                                                                                      |
| 18       | AT2G29630 | thiaminC                                                                                                                                 |
| 18       | AT2G33450 | Ribosomal L28 family                                                                                                                     |
| 18       | AT2G38140 | plastid-specific ribosomal protein 4                                                                                                     |
| 18       | AT2G43620 | Chitinase family protein                                                                                                                 |
| 18       | AT3G02820 | zinc knuckle (CCHC-type) family protein                                                                                                  |
| 18       | AT3G03640 | beta glucosidase 25                                                                                                                      |
| 18       | AT3G05545 | RING/U-box superfamily protein                                                                                                           |
| 18       | AT3G15190 | chloroplast 30S ribosomal protein S20                                                                                                    |
| 18       | AT3G53900 | uracil phosphoribosyltransferase                                                                                                         |
| 18       | AT3G54210 | Ribosomal protein L17 family protein                                                                                                     |
| 18       | AT4G13010 | Oxidoreductase, zinc-binding dehydrogenase family protein                                                                                |
| 18       | AT4G22800 |                                                                                                                                          |
| 18       | AT4G23710 | vacuolar ATP synthase subunit G2                                                                                                         |
| 18       | AT4G24930 | thylakoid lumenal 17.9 kDa protein, chloroplast                                                                                          |
| 18       | AT5G01790 | hypothetical protein                                                                                                                     |
| 18       | AT5G15350 | early nodulin-like protein 17                                                                                                            |
| 18       | AT5G21920 | YGGT family protein                                                                                                                      |
| 18       | AT5G25630 | Tetratricopeptide repeat (TPR)-like superfamily protein                                                                                  |
| 18       | AT5G27390 | tagatose-6-phosphate ketose/aldose isomerase, putative<br>(Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP<br>family protein) |
| 18       | AT5G48490 | Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein                                                |
| 18       | AT5G58250 | YCF54                                                                                                                                    |
| 18       | AT5G65360 | Histone superfamily protein                                                                                                              |
| 18       | AT5G67260 | CYCLIN D3;2                                                                                                                              |
| 19       | AT1G07500 | hypothetical protein                                                                                                                     |
| 19       | AT1G07720 | 3-ketoacyl-CoA synthase 3                                                                                                                |
| 19       | AT1G12000 | Phosphofructokinase family protein                                                                                                       |
| 19       | AT1G28140 | integral membrane family protein                                                                                                         |
| 19       | AT1G44960 | SNARE associated Golgi protein family                                                                                                    |
| 19<br>19 | AT1G45150 | alpha-1,6-mannosyl-glycoprotein 2-beta-N-<br>acetylglucosaminyltransferase<br>Pre-mRNA splicing Pro18-interacting factor                 |
| 19       | AT1G74410 | RING/U-box superfamily protein                                                                                                           |
| . •      |           |                                                                                                                                          |

| 19 | AT1G78600 | light-regulated zinc finger protein 1                             |
|----|-----------|-------------------------------------------------------------------|
| 19 | AT2G40490 | Uroporphyrinogen decarboxylase                                    |
| 19 | AT2G47940 | DEGP protease 2                                                   |
| 19 | AT3G01480 | cyclophilin 38                                                    |
| 19 | AT3G05165 | Major facilitator superfamily protein                             |
| 19 | AT3G10720 | Plant invertase/pectin methylesterase inhibitor superfamily       |
| 19 | AT3G28290 | transmembrane protein, putative (DUF677)                          |
| 19 | AT3G48720 | HXXXD-type acyl-transferase family protein                        |
| 19 | AT3G52800 | A20/AN1-like zinc finger family protein                           |
| 19 | AT4G14020 | Rapid alkalinization factor (RALF) family protein                 |
| 19 | AT4G25580 | CAP160 protein                                                    |
| 19 | AT5G02790 | Glutathione S-transferase family protein                          |
| 19 | AT5G05860 | UDP-glucosyl transferase 76C2                                     |
| 19 | AT5G08280 | hydroxymethylbilane synthase                                      |
| 19 | AT5G10930 | CBL-interacting protein kinase 5                                  |
| 19 | AT5G54840 | Ras-related small GTP-binding family protein                      |
| 19 | AT5G60580 | RING/U-box superfamily protein                                    |
| 20 | AT1G07510 | FTSH protease 10                                                  |
| 20 | AT1G17870 | ethylene-dependent gravitropism-deficient and yellow-green-like 3 |
| 20 | AT1G20450 | Dehydrin family protein                                           |
| 20 | AT1G28960 | nudix hydrolase homolog 15                                        |
| 20 | AT1G51620 | Protein kinase superfamily protein                                |
| 20 | AT1G57590 | Pectinacetylesterase family protein                               |
| 20 | AT1G64970 | gamma-tocopherol methyltransferase                                |
| 20 | AT1G69260 | ABI five binding protein                                          |
| 20 | AT1G71140 | MATE efflux family protein                                        |
| 20 | AT1G73390 | Endosomal targeting BRO1-like domain-containing protein           |
| 20 | AT2G41190 | Transmembrane amino acid transporter family protein               |
| 20 | AT3G22370 | alternative oxidase 1A                                            |
| 20 | AT3G27250 | hypothetical protein                                              |
| 20 | AT3G29575 | ABI five binding protein 3                                        |
| 20 | AT3G61890 | homeobox 12                                                       |
| 20 | AT4G29070 | Phospholipase A2 family protein                                   |
| 20 | AT4G29740 | cytokinin oxidase 4                                               |
| 20 | AT4G34000 | abscisic acid responsive elements-binding factor 3                |
| 20 | AT4G37320 | cytochrome P450, family 81, subfamily D, polypeptide 5            |
| 20 | AT4G37470 | alpha/beta-Hydrolases superfamily protein                         |
| 20 | AT5G01260 | Carbohydrate-binding-like fold                                    |
| 20 | AT5G10410 | ENTH/ANTH/VHS superfamily protein                                 |
| 20 | AT5G47640 | nuclear factor Y, subunit B2                                      |
| 20 | AT5G49280 | hydroxyproline-rich glycoprotein family protein                   |
| 20 | AT5G64230 | 1,8-cineole synthase                                              |
| 21 | AT1G08390 | recQ-mediated instability-like protein                            |
| 21 | AT1G15010 | mediator of RNA polymerase II transcription subunit               |
| 21 | AT1G26770 | expansin A10                                                      |
| 21 | AT1G30520 | acyl-activating enzyme 14                                         |

| 21 | AT1G47380 | Protein phosphatase 2C family protein                                            |
|----|-----------|----------------------------------------------------------------------------------|
| 21 | AT1G52880 | NAC (No Apical Meristem) domain transcriptional regulator<br>superfamily protein |
| 21 | AT1G55330 | arabinogalactan protein 21                                                       |
| 21 | AT1G74070 | Cyclophilin-like peptidyl-prolyl cis-trans isomerase family protein              |
| 21 | AT1G76160 | SKU5 similar 5                                                                   |
| 21 | AT2G19780 | Leucine-rich repeat (LRR) family protein                                         |
| 21 | AT2G28740 | histone H4                                                                       |
| 21 | AT2G35190 | Putative plant snare 11                                                          |
| 21 | AT3G26380 | Melibiase family protein                                                         |
| 21 | AT3G46320 | Histone superfamily protein                                                      |
| 21 | AT3G52870 | IQ calmodulin-binding motif family protein                                       |
| 21 | AT3G54270 | sucrose-6F-phosphate phosphohydrolase family protein                             |
| 21 | AT4G12380 | hypothetical protein                                                             |
| 21 | AT4G15180 | SET domain protein 2                                                             |
| 21 | AT5G04160 | Nucleotide-sugar transporter family protein                                      |
| 21 | AT5G06530 | ABC-2 type transporter family protein                                            |
| 21 | AT5G11790 | N-MYC downregulated-like 2                                                       |
| 21 | AT5G25460 | transmembrane protein, putative (Protein of unknown function, DUF642)            |
| 21 | AT5G59970 | Histone superfamily protein                                                      |
| 21 | AT5G64480 | hypothetical protein                                                             |
| 22 | AT1G09030 | nuclear factor Y, subunit B4                                                     |
| 22 | AT1G13390 | translocase subunit seca                                                         |
| 22 | AT1G16310 | Cation efflux family protein                                                     |
| 22 | AT1G43700 | VIRE2-interacting protein 1                                                      |
| 22 | AI1G48480 | receptor-like kinase 1                                                           |
| 22 | AI1G72610 | germin-like protein 1                                                            |
| 22 | A12G07696 | Ribosomal protein S7p/S5e family protein                                         |
| 22 | AT2G33270 | atypical CYS HIS rich thioredoxin 3                                              |
| 22 | AT2G36340 | DNA-binding storekeeper protein-related transcriptional regulator                |
| 22 | AT2G40500 | Protein kinase superfamily protein                                               |
| 22 | AT2G47750 | putative indole-3-acetic acid-amido synthetase GH3.9                             |
| 22 | AT3G01550 | phosphoenolpyruvate (pep)/phosphate translocator 2                               |
| 22 | AT3G06890 | transmembrane protein                                                            |
| 22 | AT3G11630 | Thioredoxin superfamily protein                                                  |
| 22 | AT3G14930 | Uroporphyrinogen decarboxylase                                                   |
| 22 | AT3G21055 | photosystem II subunit T                                                         |
| 22 | AT3G24570 | Peroxisomal membrane 22 kDa (Mpv17/PMP22) family protein                         |
| 22 | AT3G26690 | nudix hydrolase homolog 13                                                       |
| 22 | AT3G28180 | Cellulose-synthase-like C4                                                       |
| 22 | AT3G28580 | P-loop containing nucleoside triphosphate hydrolases superfamily protein         |
| 22 | A13G51880 | nign mobility group B1                                                           |
| 22 | A13G60440 | Phosphoglycerate mutase family protein                                           |
| 22 | AT3G62030 |                                                                                  |
| 22 | A14G26810 | SVVIB/MDM2 domain superfamily protein                                            |
| 22 | AT5G01015 | transmembrane protein                                                            |

| 22 | AT5G01820 | serine/threonine protein kinase 1                                       |
|----|-----------|-------------------------------------------------------------------------|
| 22 | AT5G06290 | 2-cysteine peroxiredoxin B                                              |
| 22 | AT5G27350 | Major facilitator superfamily protein                                   |
| 22 | AT5G47770 | farnesyl diphosphate synthase 1                                         |
| 22 | AT5G57700 | BNR/Asp-box repeat family protein                                       |
| 22 | AT5G59540 | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein |
| 23 | AT1G16010 | magnesium transporter 2                                                 |
| 23 | AT1G22400 | UDP-Glycosyltransferase superfamily protein                             |
| 23 | AT1G35550 | elongation factor Tu C-terminal domain-containing protein               |
| 23 | AT1G44750 | purine permease 11                                                      |
| 23 | AT1G58270 | TRAF-like family protein                                                |
| 23 | AT1G62420 | DUF506 family protein (DUF506)                                          |
| 23 | AT1G66260 | RNA-binding (RRM/RBD/RNP motifs) family protein                         |
| 23 | AT1G67340 | HCP-like superfamily protein with MYND-type zinc finger                 |
| 23 | AT1G76670 | Nucleotide-sugar transporter family protein                             |
| 23 | AT2G16580 | SAUR-like auxin-responsive protein family                               |
| 23 | AT2G17650 | AMP-dependent synthetase and ligase family protein                      |
| 23 | AT2G23780 | RING/U-box superfamily protein                                          |
| 23 | AT2G46470 | inner membrane protein OXA1-like protein                                |
| 23 | AT3G20650 | mRNA capping enzyme family protein                                      |
| 23 | AT3G26085 | CAAX amino terminal protease family protein                             |
| 23 | AT3G55310 | NAD(P)-binding Rossmann-fold superfamily protein                        |
| 23 | AT3G56630 | cytochrome P450, family 94, subfamily D, polypeptide 2                  |
| 23 | AT3G59350 | Protein kinase superfamily protein                                      |
| 23 | AT4G30460 | glycine-rich protein                                                    |
| 23 | AT4G36890 | Nucleotide-diphospho-sugar transferases superfamily protein             |
| 23 | AT5G16760 | Inositol 1,3,4-trisphosphate 5/6-kinase family protein                  |
| 23 | AT5G44585 | hypothetical protein                                                    |
| 23 | AT5G60870 | Regulator of chromosome condensation (RCC1) family protein              |
| 23 | AT5G63830 | HIT-type Zinc finger family protein                                     |
| 23 | AT5G66420 | TIM-barrel signal transduction protein                                  |
| 23 | AT5G67360 | Subtilase family protein                                                |
| 24 | AT1G09415 | NIM1-interacting 3                                                      |
| 24 | AT1G10650 | SBP (S-ribonuclease binding protein) family protein                     |
| 24 | AT1G20650 | Protein kinase superfamily protein                                      |
| 24 | AT1G61930 | senescence regulator (Protein of unknown function, DUF584)              |
| 24 | AT1G73700 | MATE efflux family protein                                              |
| 24 | AT2G22900 | Galactosyl transferase GMA12/MNN10 family protein                       |
| 24 | AT2G46330 | arabinogalactan protein 16                                              |
| 24 | AT3G16530 | Legume lectin family protein                                            |
| 24 | AT3G55760 | hypothetical protein                                                    |
| 24 | AT4G17770 | trehalose phosphatase/svnthase 5                                        |
| 24 | AT4G18700 | CBL-interacting protein kinase 12                                       |
| 24 | AT4G23210 | cvsteine-rich RI K (RECEPTOR-like protein kinase) 13                    |
| 24 | AT4G33490 | Fukarvotic aspartyl protease family protein                             |
| 24 | AT4G36010 | Pathorenesis-related thaumatin superfamily protein                      |
|    |           | r an egeneric related in a main superiaring protein                     |

| 24 | AT5G06510 | nuclear factor Y, subunit A10                                         |
|----|-----------|-----------------------------------------------------------------------|
| 24 | AT5G39410 | Saccharopine dehydrogenase                                            |
| 24 | AT5G64550 | loricrin-like protein                                                 |
| 25 | AT1G06475 | transmembrane protein                                                 |
| 25 | AT1G22160 | senescence-associated family protein (DUF581)                         |
| 25 | AT1G33590 | Leucine-rich repeat (LRR) family protein                              |
| 25 | AT1G33600 | Leucine-rich repeat (LRR) family protein                              |
| 25 | AT1G35580 | cytosolic invertase 1                                                 |
| 25 | AT1G65590 | beta-hexosaminidase 3                                                 |
| 25 | AT1G72030 | Acyl-CoA N-acyltransferases (NAT) superfamily protein                 |
| 25 | AT1G74910 | ADP-glucose pyrophosphorylase family protein                          |
| 25 | AT2G14860 | Peroxisomal membrane 22 kDa (Mpv17/PMP22) family protein              |
| 25 | AT2G25900 | Zinc finger C-x8-C-x5-C-x3-H type family protein                      |
| 25 | AT2G36310 | uridine-ribohydrolase 1                                               |
| 25 | AT3G06080 | trichome birefringence-like protein (DUF828)                          |
| 25 | AT3G10330 | Cyclin-like family protein                                            |
| 25 | AT3G12150 | alpha/beta hydrolase family protein                                   |
| 25 | AT3G15650 | alpha/beta-Hydrolases superfamily protein                             |
| 25 | AT3G23630 | isopentenyltransferase 7                                              |
| 25 | AT3G25730 | ethylene response DNA binding factor 3                                |
| 25 | AT3G27570 | Sucrase/ferredoxin-like family protein                                |
| 25 | AT3G54680 | proteophosphoglycan-like protein                                      |
| 25 | AT3G55120 | Chalcone-flavanone isomerase family protein                           |
| 25 | AT4G05010 | F-box family protein                                                  |
| 25 | AT4G33905 | Peroxisomal membrane 22 kDa (Mpv17/PMP22) family protein              |
| 25 | AT4G37295 | hypothetical protein                                                  |
| 25 | AT5G47060 | hypothetical protein (DUF581)                                         |
| 25 | AT5G49730 | ferric reduction oxidase 6                                            |
| 25 | AT5G65300 | hypothetical protein                                                  |
| 26 | AT1G08030 | tyrosylprotein sulfotransferase                                       |
| 26 | AT1G20340 | Cupredoxin superfamily protein                                        |
| 26 | AT1G23780 | F-box family protein                                                  |
| 26 | AT1G33270 | Acyl transferase/acyl hydrolase/lysophospholipase superfamily protein |
| 26 | AT1G50570 | Calcium-dependent lipid-binding (CaLB domain) family protein          |
| 26 | AT1G56610 | Protein with RNI-like/FBD-like domain                                 |
| 26 | AT1G71960 | ATP-binding casette family G25                                        |
| 26 | AT1G74730 | transmembrane protein, putative (DUF1118)                             |
| 26 | AT1G75800 | Pathogenesis-related thaumatin superfamily protein                    |
| 26 | AT1G80230 | Rubredoxin-like superfamily protein                                   |
| 26 | AT2G02250 | phloem protein 2-B2                                                   |
| 26 | AT2G03350 | DUF538 family protein (Protein of unknown function, DUF538)           |
| 26 | AT2G34380 | Putative adipose-regulatory protein (Seipin)                          |
| 26 | AT2G37650 | GRAS family transcription factor                                      |
| 26 | AT3G02630 | Plant stearoyl-acyl-carrier-protein desaturase family protein         |
| 26 | AT3G12345 | FKBP-type peptidyl-prolyl cis-trans isomerase                         |
| 26 | AT3G30180 | brassinosteroid-6-oxidase 2                                           |

| 26 | AT3G42630 | Pentatricopeptide repeat (PPR) superfamily protein                                               |
|----|-----------|--------------------------------------------------------------------------------------------------|
| 26 | AT3G51630 | with no lysine (K) kinase 5                                                                      |
| 26 | AT4G24120 | YELLOW STRIPE like 1                                                                             |
| 26 | AT5G48330 | Regulator of chromosome condensation (RCC1) family protein                                       |
| 26 | AT5G50850 | Transketolase family protein                                                                     |
| 26 | AT5G51840 | junctophilin-like protein                                                                        |
| 26 | AT5G52100 | Dihydrodipicolinate reductase, bacterial/plant                                                   |
| 27 | AT1G12820 | auxin signaling F-box 3                                                                          |
| 27 | AT1G64180 | intracellular protein transport protein USO1-like protein                                        |
| 27 | AT1G78130 | Major facilitator superfamily protein                                                            |
| 27 | AT2G14910 | MAR-binding filament-like protein                                                                |
| 27 | AT2G19670 | protein arginine methyltransferase 1A                                                            |
| 27 | AT2G41110 | calmodulin 2                                                                                     |
| 27 | AT3G01400 | ARM repeat superfamily protein                                                                   |
| 27 | AT3G23640 | heteroglycan glucosidase 1                                                                       |
| 27 | AT3G56910 | plastid-specific 50S ribosomal protein 5                                                         |
| 27 | AT4G01840 | Ca2 activated outward rectifying K channel 5                                                     |
| 27 | AT4G11330 | MAP kinase 5                                                                                     |
| 27 | AT4G13395 | ROTUNDIFOLIA like 12                                                                             |
| 27 | AT4G22340 | cytidinediphosphate diacylglycerol synthase 2                                                    |
| 27 | AT4G38640 | Plasma-membrane choline transporter family protein                                               |
| 27 | AT4G39180 | Sec14p-like phosphatidylinositol transfer family protein                                         |
| 27 | AT5G21020 | transmembrane protein                                                                            |
| 27 | AT5G22640 | MORN (Membrane Occupation and Recognition Nexus) repeat-                                         |
| 27 | AT5G54095 | containing protein<br>proteoglycan-like protein                                                  |
| 27 | AT5G63510 | gamma carbonic anhydrase like 1                                                                  |
| 27 | AT5G64280 | dicarboxylate transporter 2.2                                                                    |
| 28 | AT1G08040 | trimethylguanosine synthase (DUF707)                                                             |
| 28 | AT1G13930 | oleosin-B3-like protein                                                                          |
| 28 | AT1G55450 | S-adenosyl-L-methionine-dependent methyltransferases superfamily protein                         |
| 28 | AT1G56520 | Disease resistance protein (TIR-NBS-LRR class) family                                            |
| 28 | AT1G66090 | Disease resistance protein (TIR-NBS class)                                                       |
| 28 | AT1G72930 | toll/interleukin-1 receptor-like protein                                                         |
| 28 | AT1G74710 | ADC synthase superfamily protein                                                                 |
| 28 | AT2G19500 | cytokinin oxidase 2                                                                              |
| 28 | AT2G23000 | serine carboxypeptidase-like 10                                                                  |
| 28 | AT2G36220 | hypothetical protein                                                                             |
| 28 | AT2G41100 | Calcium-binding EF hand family protein                                                           |
| 28 | AT3G04210 | Disease resistance protein (TIR-NBS class)                                                       |
| 28 | AT3G14840 | Leucine-rich repeat transmembrane protein kinase                                                 |
| 28 | AT3G15790 | methyl-CPG-binding domain 11                                                                     |
| 28 | AT3G45600 | tetraspanin3                                                                                     |
| 28 | AT3G48640 | transmembrane protein                                                                            |
| 28 | AT3G61420 | BSD domain (BTF2-like transcription factors, Synapse-associated proteins and DOS2-like proteins) |
| 28 | AT3G62370 | heme binding protein                                                                             |

| 28 | AT4G24010 | cellulose synthase like G1                                                                |
|----|-----------|-------------------------------------------------------------------------------------------|
| 28 | AT4G24130 | DUF538 family protein (Protein of unknown function, DUF538)                               |
| 28 | AT4G33360 | NAD(P)-binding Rossmann-fold superfamily protein                                          |
| 28 | AT4G33700 | CBS domain protein (DUF21)                                                                |
| 28 | AT4G37970 | cinnamyl alcohol dehydrogenase 6                                                          |
| 28 | AT5G03120 | transmembrane protein                                                                     |
| 28 | AT5G03350 | Legume lectin family protein                                                              |
| 28 | AT5G43850 | RmIC-like cupins superfamily protein                                                      |
| 28 | AT5G50580 | SUMO-activating enzyme 1B                                                                 |
| 29 | AT1G67360 | Rubber elongation factor protein (REF)                                                    |
| 29 | AT1G74670 | Gibberellin-regulated family protein                                                      |
| 29 | AT1G80120 | LURP-one-like protein (DUF567)                                                            |
| 29 | AT2G20560 | DNAJ heat shock family protein                                                            |
| 29 | AT2G20670 | sugar phosphate exchanger, putative (DUF506)                                              |
| 29 | AT2G30420 | Homeodomain-like superfamily protein                                                      |
| 29 | AT2G45180 | Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein |
| 29 | AT2G46420 | helicase with zinc finger protein                                                         |
| 29 | AT2G48020 | Major facilitator superfamily protein                                                     |
| 29 | AT3G15356 | Legume lectin family protein                                                              |
| 29 | AT3G62950 | Thioredoxin superfamily protein                                                           |
| 29 | AT4G13572 | hypothetical protein                                                                      |
| 29 | AT4G17810 | C2H2 and C2HC zinc fingers superfamily protein                                            |
| 29 | AT4G19410 | Pectinacetylesterase family protein                                                       |
| 29 | AT4G32840 | phosphofructokinase 6                                                                     |
| 29 | AT5G14640 | shaggy-like kinase 13                                                                     |
| 29 | AT5G18600 | Thioredoxin superfamily protein                                                           |
| 29 | AT5G25190 | Integrase-type DNA-binding superfamily protein                                            |
| 29 | AT5G44020 | HAD superfamily, subfamily IIIB acid phosphatase                                          |
| 29 | AT5G58690 | phosphatidylinositol-speciwc phospholipase C5                                             |
| 29 | AT5G59080 | hypothetical protein                                                                      |
| 30 | AT1G05350 | NAD(P)-binding Rossmann-fold superfamily protein                                          |
| 30 | AT1G06460 | alpha-crystallin domain 32.1                                                              |
| 30 | AT1G29310 | SecY protein transport family protein                                                     |
| 30 | AT1G31200 | phloem protein 2-A9                                                                       |
| 30 | AT1G35720 | annexin 1                                                                                 |
| 30 | AT1G49720 | abscisic acid responsive element-binding factor 1                                         |
| 30 | AT1G53625 | hypothetical protein                                                                      |
| 30 | AT1G62810 | Copper amine oxidase family protein                                                       |
| 30 | AT1G63010 | Major Facilitator Superfamily with SPX (SYG1/Pho81/XPR1) domain-<br>containing protein    |
| 30 | AI1G69740 | Aldolase superfamily protein                                                              |
| 30 | AT1G73250 | GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase 1                                     |
| 30 | AT1G76180 | Dehydrin family protein                                                                   |
| 30 | AT1G79630 | Protein phosphatase 2C family protein                                                     |
| 30 | AT2G01670 | nudix hydrolase homolog 17                                                                |
| 30 | AT2G16990 | Major facilitator superfamily protein                                                     |

| 30 | AT2G19690 | phospholipase A2-beta                                            |
|----|-----------|------------------------------------------------------------------|
| 30 | AT2G32380 | Transmembrane protein 97, Putative                               |
| 30 | AT2G46800 | zinc transporter                                                 |
| 30 | AT3G20300 | extracellular ligand-gated ion channel protein (DUF3537)         |
| 30 | AT3G62800 | double-stranded-RNA-binding protein 4                            |
| 30 | AT4G27020 | inositol-1,4,5-trisphosphate 5-phosphatase                       |
| 30 | AT5G40950 | ribosomal protein large subunit 27                               |
| 30 | AT5G47560 | tonoplast dicarboxylate transporter                              |
| 30 | AT5G52550 | stress response NST1-like protein                                |
| 30 | AT5G63180 | Pectin lyase-like superfamily protein                            |
| 31 | AT1G16590 | DNA-binding HORMA family protein                                 |
| 31 | AT1G26110 | decapping 5                                                      |
| 31 | AT1G28440 | HAESA-like 1                                                     |
| 31 | AT1G54080 | oligouridylate-binding protein 1A                                |
| 31 | AT2G28070 | ABC-2 type transporter family protein                            |
| 31 | AT2G29200 | pumilio 1                                                        |
| 31 | AT2G39950 | flocculation protein                                             |
| 31 | AT3G08800 | ARM repeat superfamily protein                                   |
| 31 | AT3G08840 | D-alanine-D-alanine ligase family                                |
| 31 | AT3G11960 | Cleavage and polyadenylation specificity factor (CPSF) A subunit |
| 31 | AT3G13340 | protein<br>Transducin/WD40 repeat-like superfamily protein       |
| 31 | AT3G22210 | transmembrane protein                                            |
| 31 | AT4G18830 | ovate family protein 5                                           |
| 31 | AT4G24450 | phosphoglucan, water dikinase                                    |
| 31 | AT4G32620 | Enhancer of polycomb-like transcription factor protein           |
| 31 | AT4G32850 | nuclear poly(a) polymerase                                       |
| 31 | AT4G38600 | HECT ubiquitin protein ligase family protein KAK                 |
| 31 | AT5G03280 | NRAMP metal ion transporter family protein                       |
| 31 | AT5G03780 | TRF-like 10                                                      |
| 31 | AT5G04670 | Enhancer of polycomb-like transcription factor protein           |
| 31 | AT5G08720 | polyketide cyclase/dehydrase/lipid transporter                   |
| 31 | AT5G16270 | sister chromatid cohesion 1 protein 4                            |
| 31 | AT5G19500 | Tryptophan/tyrosine permease                                     |
| 31 | AT5G22620 | phosphoglycerate/bisphosphoglycerate mutase family protein       |
| 31 | AT5G42220 | Ubiquitin-like superfamily protein                               |
| 31 | AT5G60640 | PDI-like 1-4                                                     |
| 32 | AT1G09430 | ATP-citrate lyase A-3                                            |
| 32 | AT1G10820 | hypothetical protein (DUF3755)                                   |
| 32 | AT1G33610 | Leucine-rich repeat (LRR) family protein                         |
| 32 | AT1G45191 | Glycosyl hydrolase superfamily protein                           |
| 32 | AT1G70530 | cysteine-rich RLK (RECEPTOR-like protein kinase) 3               |
| 32 | AT1G80510 | Transmembrane amino acid transporter family protein              |
| 32 | AT2G16770 | Basic-leucine zipper (bZIP) transcription factor family protein  |
| 32 | AT2G25950 | PITH domain protein (DUF1000)                                    |
| 32 | AT2G35930 | plant U-box 23                                                   |
| 32 | AT3G01210 | RNA-binding (RRM/RBD/RNP motifs) family protein                  |

| 32 | AT3G03900 | adenosine-5'-phosphosulfate (APS) kinase 3                               |
|----|-----------|--------------------------------------------------------------------------|
| 32 | AT3G27750 | PPR containing protein                                                   |
| 32 | AT3G32090 | WRKY family transcription factor                                         |
| 32 | AT3G60910 | S-adenosyl-L-methionine-dependent methyltransferases superfamily         |
| 32 | AT4G15450 | protein<br>Senescence/dehydration-associated protein-like protein        |
| 32 | AT4G27657 | hypothetical protein                                                     |
| 32 | AT4G27920 | PYR1-like 10                                                             |
| 32 | AT5G01075 | Glycosyl hydrolase family 35 protein                                     |
| 32 | AT5G07790 | hypothetical protein                                                     |
| 32 | AT5G13190 | GSH-induced LITAF domain protein                                         |
| 32 | AT5G37550 | hypothetical protein                                                     |
| 32 | AT5G45110 | NPR1-like protein 3                                                      |
| 32 | AT5G52420 | transmembrane protein                                                    |
| 33 | AT1G16515 | transmembrane protein                                                    |
| 33 | AT1G64930 | cytochrome P450, family 87, subfamily A, polypeptide 7                   |
| 33 | AT1G78480 | Prenyltransferase family protein                                         |
| 33 | AT2G34720 | nuclear factor Y, subunit A4                                             |
| 33 | AT3G48240 | Octicosapeptide/Phox/Bem1p family protein                                |
| 33 | AT4G03070 | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily          |
| 33 | AT4G32295 | protein<br>histone acetyltransferase                                     |
| 33 | AT4G33950 | Protein kinase superfamily protein                                       |
| 33 | AT5G02930 | F-box/RNI-like superfamily protein                                       |
| 33 | AT5G03230 | senescence regulator (Protein of unknown function, DUF584)               |
| 33 | AT5G04440 | RAP release 2, galactose-binding-like domain protein, putative (DUF1997) |
| 33 | AT5G17450 | Heavy metal transport/detoxification superfamily protein                 |
| 33 | AT5G50240 | protein-l-isoaspartate methyltransferase 2                               |
| 34 | AT1G03130 | photosystem I subunit D-2                                                |
| 34 | AT1G04530 | Tetratricopeptide repeat (TPR)-like superfamily protein                  |
| 34 | AT1G15820 | light harvesting complex photosystem II subunit 6                        |
| 34 | AT1G24793 | UDP-3-O-acyl N-acetylglycosamine deacetylase family protein              |
| 34 | AT1G67370 | DNA-binding HORMA family protein                                         |
| 34 | AT2G02955 | maternal effect embryo arrest 12                                         |
| 34 | AT2G03670 | cell division cycle 48B                                                  |
| 34 | AT2G34430 | light-harvesting chlorophyll-protein complex II subunit B1               |
| 34 | AT2G37400 | Tetratricopeptide repeat (TPR)-like superfamily protein                  |
| 34 | AT2G38185 | RING/U-box superfamily protein                                           |
| 34 | AT3G25430 | Polynucleotidyl transferase, ribonuclease H-like superfamily protein     |
| 34 | AT3G30730 | hypothetical protein                                                     |
| 34 | AT3G48850 | phosphate transporter 3;2                                                |
| 34 | AT4G00690 | UB-like protease 1B                                                      |
| 34 | AT4G08580 | microfibrillar-associated protein-like protein                           |
| 34 | AT4G12750 | Homeodomain-like transcriptional regulator                               |
| 34 | AT4G30935 | WRKY DNA-binding protein 32                                              |
| 34 | AT4G38440 | RPAP1-like, carboxy-terminal protein                                     |
| 34 | AT5G04000 | hypothetical protein                                                     |
|    |           |                                                                          |

| 34 | AT5G07950 | hypothetical protein                                                        |
|----|-----------|-----------------------------------------------------------------------------|
| 34 | AT5G11840 | YCF36, putative (DUF1230)                                                   |
| 34 | AT5G14770 | PPR repeat protein                                                          |
| 34 | AT5G58980 | Neutral/alkaline non-lysosomal ceramidase                                   |
| 35 | AT1G32400 | tobamovirus multiplication 2A                                               |
| 35 | AT2G34180 | CBL-interacting protein kinase 13                                           |
| 35 | AT2G45630 | D-isomer specific 2-hydroxyacid dehydrogenase family protein                |
| 35 | AT2G47140 | NAD(P)-binding Rossmann-fold superfamily protein                            |
| 35 | AT3G10910 | RING/U-box superfamily protein                                              |
| 35 | AT3G11420 | beta-1,3-N-acetylglucosaminyltransferase lunatic protein, putative (DUF604) |
| 35 | AT3G11690 | hypothetical protein                                                        |
| 35 | AT3G22730 | F-box and associated interaction domains-containing protein                 |
| 35 | AT3G26670 | magnesium transporter, putative (DUF803)                                    |
| 35 | AT3G48690 | alpha/beta-Hydrolases superfamily protein                                   |
| 35 | AT4G25670 | stress response NST1-like protein                                           |
| 35 | AT4G28350 | Concanavalin A-like lectin protein kinase family protein                    |
| 35 | AT4G38060 | hypothetical protein                                                        |
| 35 | AT5G01520 | RING/U-box superfamily protein                                              |
| 35 | AT5G10840 | Endomembrane protein 70 protein family                                      |
| 35 | AT5G40790 | hypothetical protein                                                        |
| 35 | AT5G43260 | chaperone protein dnaJ-like protein                                         |
| 35 | AT5G57040 | Lactoylglutathione lyase / glyoxalase I family protein                      |
| 35 | AT5G62100 | BCL-2-associated athanogene 2                                               |
| 35 | AT5G65830 | receptor like protein 57                                                    |
| 36 | AT1G06210 | ENTH/VHS/GAT family protein                                                 |
| 36 | AT1G24265 | bZIP transcription factor, putative (DUF1664)                               |
| 36 | AT1G27030 | hypothetical protein                                                        |
| 36 | AT1G64690 | branchless trichome                                                         |
| 36 | AT1G68550 | Integrase-type DNA-binding superfamily protein                              |
| 36 | AT1G80300 | nucleotide transporter 1                                                    |
| 36 | AT3G49220 | Plant invertase/pectin methylesterase inhibitor superfamily                 |
| 36 | AT3G59300 | Pentatricopeptide repeat (PPR) superfamily protein                          |
| 36 | AT4G18250 | receptor Serine/Threonine kinase-like protein                               |
| 36 | AT4G27560 | UDP-Glycosyltransferase superfamily protein                                 |
| 36 | AT4G27570 | UDP-Glycosyltransferase superfamily protein                                 |
| 36 | AT5G01880 | RING/U-box superfamily protein                                              |
| 36 | AT5G19230 | Glycoprotein membrane precursor GPI-anchored                                |
| 36 | AT5G48540 | receptor-like protein kinase-related family protein                         |
| 36 | AT5G62630 | hipl2 protein precursor                                                     |
| 36 | AT5G63020 | Disease resistance protein (CC-NBS-LRR class) family                        |
| 36 | AT5G65280 | GCR2-like 1                                                                 |
| 37 | AT1G08630 | threonine aldolase 1                                                        |
| 37 | AT1G12790 | DNA ligase-like protein                                                     |
| 37 | AT1G27080 | nitrate transporter 1.6                                                     |
| 37 | AT1G28600 | GDSL-like Lipase/Acylhydrolase superfamily protein                          |
| 37 | AT1G66400 | calmodulin like 23                                                          |
|    |           |                                                                             |

| 37 | AT2G17430 | Seven transmembrane MLO family protein                            |
|----|-----------|-------------------------------------------------------------------|
| 37 | AT2G46940 | fold protein                                                      |
| 37 | AT3G01060 | lysine-tRNA ligase                                                |
| 37 | AT3G29090 | pectin methylesterase 31                                          |
| 37 | AT3G57190 | peptide chain release factor                                      |
| 37 | AT4G23000 | Calcineurin-like metallo-phosphoesterase superfamily protein      |
| 37 | AT4G30830 | myosin-like protein (Protein of unknown function, DUF593)         |
| 37 | AT4G37140 | alpha/beta-Hydrolases superfamily protein                         |
| 37 | AT5G03240 | polyubiquitin 3                                                   |
| 37 | AT5G12860 | dicarboxylate transporter 1                                       |
| 37 | AT5G49448 |                                                                   |
| 37 | AT5G57790 | hypothetical protein                                              |
| 37 | AT5G58760 | damaged DNA binding 2                                             |
| 38 | AT1G08060 | ATP-dependent helicase family protein                             |
| 38 | AT1G08650 | phosphoenolpyruvate carboxylase kinase 1                          |
| 38 | AT1G18620 | LONGIFOLIA protein                                                |
| 38 | AT1G22910 | RNA-binding (RRM/RBD/RNP motifs) family protein                   |
| 38 | AT1G33340 | ENTH/ANTH/VHS superfamily protein                                 |
| 38 | AT1G70260 | nodulin MtN21 /EamA-like transporter family protein               |
| 38 | AT1G70560 | tryptophan aminotransferase of Arabidopsis 1                      |
| 38 | AT2G05440 | GLYCINE RICH PROTEIN 9                                            |
| 38 | AT3G14940 | phosphoenolpyruvate carboxylase 3                                 |
| 38 | AT3G18520 | histone deacetylase 15                                            |
| 38 | AT3G18773 | RING/U-box superfamily protein                                    |
| 38 | AT3G61700 | helicase with zinc finger protein                                 |
| 38 | AT3G63450 | RNA-binding (RRM/RBD/RNP motifs) family protein                   |
| 38 | AT4G00730 | Homeobox-leucine zipper family protein / lipid-binding START      |
| 38 | AT/G323/0 | domain-containing protein                                         |
| 38 | AT4G37540 | LOB domain-containing protein 39                                  |
| 38 | AT5G51770 | Protein kinase superfamily protein                                |
| 30 | AT1G27520 | Glycosyl hydrolase family 47 protein                              |
| 30 | AT1G59750 | auxin response factor 1                                           |
| 39 | AT2G26200 | S-adenosyl-I -methionine-dependent methyltransferases superfamily |
| 00 | 112020200 | protein                                                           |
| 39 | AT2G37470 | Histone superfamily protein                                       |
| 39 | AT2G44920 | Tetratricopeptide repeat (TPR)-like superfamily protein           |
| 39 | AT3G18190 | TCP-1/cpn60 chaperonin family protein                             |
| 39 | AT3G20680 | plant/protein (DUF1995)                                           |
| 39 | AT3G50670 | U1 small nuclear ribonucleoprotein-70K                            |
| 39 | AT3G59870 | hypothetical protein                                              |
| 39 | AT4G02720 | Ras-induced vulval development antagonist protein                 |
| 39 | AT4G16143 | importin alpha isoform 2                                          |
| 39 | AT4G32208 | heat shock protein 70 (Hsp 70) family protein                     |
| 39 | AT4G38340 | Plant regulator RWP-RK family protein                             |
| 39 | AT5G10250 | Phototropic-responsive NPH3 family protein                        |
| 39 | AT5G12170 | CRT (chloroquine-resistance transporter)-like transporter 3       |
|    |           |                                                                   |

| 39 | AT5G27320 | alpha/beta-Hydrolases superfamily protein                                           |
|----|-----------|-------------------------------------------------------------------------------------|
| 39 | AT5G63840 | Glycosyl hydrolases family 31 protein                                               |
| 40 | AT1G73230 | Nascent polypeptide-associated complex NAC                                          |
| 40 | AT1G74060 | Ribosomal protein L6 family protein                                                 |
| 40 | AT2G07698 | ATPase, F1 complex, alpha subunit protein                                           |
| 40 | AT2G19730 | Ribosomal L28e protein family                                                       |
| 40 | AT2G20780 | Major facilitator superfamily protein                                               |
| 40 | AT2G36170 | 60S ribosomal protein L40-1                                                         |
| 40 | AT3G47370 | Ribosomal protein S10p/S20e family protein                                          |
| 40 | AT3G56340 | Ribosomal protein S26e family protein                                               |
| 40 | AT3G61830 | auxin response factor 18                                                            |
| 40 | AT4G02580 | NADH-ubiquinone oxidoreductase 24 kDa subunit                                       |
| 40 | AT4G04770 | ATP binding cassette protein 1                                                      |
| 40 | AT5G02610 | Ribosomal L29 family protein                                                        |
| 40 | AT5G20320 | dicer-like 4                                                                        |
| 40 | AT5G63400 | adenylate kinase 1                                                                  |
| 40 | AT5G64130 | cAMP-regulated phosphoprotein 19-related protein                                    |
| 41 | AT1G07130 | Nucleic acid-binding, OB-fold-like protein                                          |
| 41 | AT1G18750 | AGAMOUS-like 65                                                                     |
| 41 | AT1G21000 | PLATZ transcription factor family protein                                           |
| 41 | AT2G03340 | WRKY DNA-binding protein 3                                                          |
| 41 | AT2G17710 | Big1                                                                                |
| 41 | AT2G21160 | Translocon-associated protein (TRAP), alpha subunit                                 |
| 41 | AT2G26980 | CBL-interacting protein kinase 3                                                    |
| 41 | AT2G27420 | Cysteine proteinases superfamily protein                                            |
| 41 | AT2G28470 | beta-galactosidase 8                                                                |
| 41 | AT2G37180 | Aquaporin-like superfamily protein                                                  |
| 41 | AT2G40711 | hypothetical protein                                                                |
| 41 | AT2G46460 | Polynucleotidyl transferase, ribonuclease H-like superfamily protein                |
| 41 | AT3G08030 | DNA-directed RNA polymerase subunit beta (Protein of unknown function, DUF642)      |
| 41 | AT3G14600 | Ribosomal protein L18ae/LX family protein                                           |
| 41 | AT3G21390 | Mitochondrial substrate carrier family protein                                      |
| 41 | AT3G46540 | ENTH/VHS family protein                                                             |
| 41 | AT4G34610 | BEL1-like homeodomain 6                                                             |
| 41 | AT5G06850 | C2 calcium/lipid-binding plant phosphoribosyltransferase family protein             |
| 41 | AT5G59480 | Haloacid dehalogenase-like hydrolase (HAD) superfamily protein                      |
| 41 | AT5G66160 | receptor homology region transmembrane domain ring H2 motif protein 1               |
| 42 | AT1G07440 | NAD(P)-binding Rossmann-fold superfamily protein                                    |
| 42 | AT1G23860 | RS-containing zinc finger protein 21                                                |
| 42 | AT1G53460 | craniofacial development protein                                                    |
| 42 | AT1G67440 | Minichromosome maintenance (MCM2/3/5) family protein                                |
| 42 | AT2G15580 | RING/U-box superfamily protein                                                      |
| 42 | AT2G22640 | BRICK1                                                                              |
| 42 | AT3G09980 | ankyrın repeat 30A-like protein (DUF662)                                            |
| 42 | AT3G10210 | SEC14 cytosolic factor family protein / phosphoglyceride transfer<br>family protein |

| 42 | AT3G16390 | nitrile specifier protein 3                                                               |
|----|-----------|-------------------------------------------------------------------------------------------|
| 42 | AT3G16400 | nitrile specifier protein 1                                                               |
| 42 | AT4G01690 | Flavin containing amine oxidoreductase family                                             |
| 43 | AT1G07770 | ribosomal protein S15A                                                                    |
| 43 | AT1G17500 | ATPase E1-E2 type family protein / haloacid dehalogenase-like<br>hydrolase family protein |
| 43 | A12G40130 | hydrolases superfamily protein                                                            |
| 43 | AT2G43560 | FKBP-like peptidyl-prolyl cis-trans isomerase family protein                              |
| 43 | AT3G10405 | vacuolar acid trehalase                                                                   |
| 43 | AT3G16940 | calmodulin-binding transcription activator                                                |
| 43 | AT3G17350 | wall-associated receptor kinase carboxy-terminal protein                                  |
| 43 | AT3G17780 | B-cell receptor-associated-like protein                                                   |
| 43 | AT4G30620 | Putative BCR, YbaB family COG0718                                                         |
| 43 | AT4G31290 | ChaC-like family protein                                                                  |
| 43 | AT4G34680 | GATA transcription factor 3                                                               |
| 43 | AT5G03100 | F-box/RNI-like superfamily protein                                                        |
| 43 | AT5G13430 | Ubiquinol-cytochrome C reductase iron-sulfur subunit                                      |
| 43 | AT5G20060 | alpha/beta-Hydrolases superfamily protein                                                 |
| 43 | AT5G28060 | Ribosomal protein S24e family protein                                                     |
| 43 | AT5G60600 | 4-hydroxy-3-methylbut-2-enyl diphosphate synthase                                         |
| 43 | AT5G66770 | GRAS family transcription factor                                                          |
| 44 | AT1G04350 | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein                   |
| 44 | AT1G23480 | cellulose synthase-like A3                                                                |
| 44 | AT1G27210 | ARM repeat superfamily protein                                                            |
| 44 | AT1G49130 | B-box type zinc finger protein with CCT domain-containing protein                         |
| 44 | AT1G49730 | Protein kinase superfamily protein                                                        |
| 44 | AT1G52080 | actin binding protein family                                                              |
| 44 | AT1G53840 | pectin methylesterase 1                                                                   |
| 44 | AT1G63260 | tetraspanin10                                                                             |
| 44 | AT1G64370 | filaggrin-like protein                                                                    |
| 44 | AT1G72620 | alpha/beta-Hydrolases superfamily protein                                                 |
| 44 | AT2G04350 | AMP-dependent synthetase and ligase family protein                                        |
| 44 | AT3G06470 | GNS1/SUR4 membrane protein family                                                         |
| 44 | AT3G28270 | transmembrane protein, putative (DUF677)                                                  |
| 44 | AT4G01460 | basic helix-loop-helix (bHLH) DNA-binding superfamily protein                             |
| 44 | AT4G30410 | sequence-specific DNA binding transcription factor                                        |
| 44 | AT4G30630 | hypothetical protein                                                                      |
| 44 | AT5G07870 | HXXXD-type acyl-transferase family protein                                                |
| 44 | AT5G44340 | tubulin beta chain 4                                                                      |
| 45 | AT1G07430 | highly ABA-induced PP2C protein 2                                                         |
| 45 | AT1G17210 | IAP-like protein 1                                                                        |
| 45 | AT1G27200 | glycosyltransferase family protein (DUF23)                                                |
| 45 | AT1G29430 | SAUR-like auxin-responsive protein family                                                 |
| 45 | AT1G70300 | K uptake permease 6                                                                       |
| 45 | AT1G76490 | hydroxy methylglutaryl CoA reductase 1                                                    |
| 45 | AT2G33280 | Major facilitator superfamily protein                                                     |

| 45 | AT3G24130 | Pectin lyase-like superfamily protein                                |
|----|-----------|----------------------------------------------------------------------|
| 45 | AT4G16620 | nodulin MtN21 /EamA-like transporter family protein                  |
| 45 | AT4G32920 | glycine-rich protein                                                 |
| 45 | AT4G34980 | subtilisin-like serine protease 2                                    |
| 45 | AT4G35300 | tonoplast monosaccharide transporter2                                |
| 45 | AT5G14280 | DNA-binding storekeeper-like protein                                 |
| 45 | AT5G19900 | PRLI-interacting factor                                              |
| 45 | AT5G27270 | Tetratricopeptide repeat (TPR)-like superfamily protein              |
| 46 | AT1G19400 | Erythronate-4-phosphate dehydrogenase family protein                 |
| 46 | AT1G51450 | TRAUCO                                                               |
| 46 | AT1G57630 | Toll-Interleukin-Resistance (TIR) domain family protein              |
| 46 | AT1G79970 | hypothetical protein                                                 |
| 46 | AT2G23320 | WRKY DNA-binding protein 15                                          |
| 46 | AT2G41870 | Remorin family protein                                               |
| 46 | AT3G01290 | SPFH/Band 7/PHB domain-containing membrane-associated protein family |
| 46 | AT4G00340 | receptor-like protein kinase 4                                       |
| 46 | AT4G00630 | K efflux antiporter 2                                                |
| 46 | AT4G13150 | transmembrane protein                                                |
| 46 | AT4G21630 | Subtilase family protein                                             |
| 46 | AT5G08300 | Succinyl-CoA ligase, alpha subunit                                   |
| 46 | AT5G14690 | transmembrane protein                                                |
| 46 | AT5G46230 | hypothetical protein (Protein of unknown function, DUF538)           |
| 46 | AT5G63860 | Regulator of chromosome condensation (RCC1) family protein           |
| 47 | AT1G32540 | lsd one like 1                                                       |
| 47 | AT1G64660 | methionine gamma-lyase                                               |
| 47 | AT1G75250 | RAD-like 6                                                           |
| 47 | AT2G18300 | basic helix-loop-helix (bHLH) DNA-binding superfamily protein        |
| 47 | AT2G30490 | cinnamate-4-hydroxylase                                              |
| 47 | AT3G21700 | Ras-related small GTP-binding family protein                         |
| 47 | AT3G22840 | Chlorophyll A-B binding family protein                               |
| 47 | AT3G51240 | flavanone 3-hydroxylase                                              |
| 47 | AT4G09750 | NAD(P)-binding Rossmann-fold superfamily protein                     |
| 47 | AT4G23990 | cellulose synthase like G3                                           |
| 47 | AT5G01600 | ferretin 1                                                           |
| 48 | AT1G22780 | Ribosomal protein S13/S18 family                                     |
| 48 | AT1G22830 | Tetratricopeptide repeat (TPR)-like superfamily protein              |
| 48 | AT2G40010 | Ribosomal protein L10 family protein                                 |
| 48 | AT2G42740 | ribosomal protein large subunit 16A                                  |
| 48 | AT2G44040 | Dihydrodipicolinate reductase, bacterial/plant                       |
| 48 | AT3G04840 | Ribosomal protein S3Ae                                               |
| 48 | AT3G11510 | Ribosomal protein S11 family protein                                 |
| 48 | AT3G47800 | Galactose mutarotase-like superfamily protein                        |
| 48 | AT4G18100 | Ribosomal protein L32e                                               |
| 48 | AT4G19100 | PAM68-like protein (DUF3464)                                         |
| 48 | AT4G34290 | SWIB/MDM2 domain superfamily protein                                 |
| 48 | AT4G39040 | RNA-binding CRS1 / YhbY (CRM) domain protein                         |
|    |           |                                                                      |

| 48 | AT4G39200 | Ribosomal protein S25 family protein                                    |
|----|-----------|-------------------------------------------------------------------------|
| 48 | AT5G62300 | Ribosomal protein S10p/S20e family protein                              |
| 49 | AT1G18740 | ROH1, putative (DUF793)                                                 |
| 49 | AT1G23390 | Kelch repeat-containing F-box family protein                            |
| 49 | AT1G32900 | UDP-Glycosyltransferase superfamily protein                             |
| 49 | AT1G52310 | protein kinase family protein / C-type lectin domain-containing protein |
| 49 | AT1G66080 | hikeshi-like protein                                                    |
| 49 | AT3G06070 | hypothetical protein                                                    |
| 49 | AT3G13750 | beta galactosidase 1                                                    |
| 49 | AT3G14720 | MAP kinase 19                                                           |
| 49 | AT3G17130 | Plant invertase/pectin methylesterase inhibitor superfamily protein     |
| 49 | AT3G24150 | hypothetical protein                                                    |
| 49 | AT4G18130 | phytochrome E                                                           |
| 49 | AT4G33140 | Haloacid dehalogenase-like hydrolase (HAD) superfamily protein          |
| 49 | AT4G35030 | Protein kinase superfamily protein                                      |
| 49 | AT4G39800 | myo-inositol-1-phosphate synthase 1                                     |
| 49 | AT5G37050 | sorting nexin                                                           |
| 49 | AT5G59430 | telomeric repeat binding protein 1                                      |
| 50 | AT1G10700 | phosphoribosyl pyrophosphate (PRPP) synthase 3                          |
| 50 | AT1G14530 | tobamovirus multiplication-like protein (DUF1084)                       |
| 50 | AT1G79110 | zinc ion binding protein                                                |
| 50 | AT2G19810 | CCCH-type zinc finger family protein                                    |
| 50 | AT3G02300 | Regulator of chromosome condensation (RCC1) family protein              |
| 50 | AT3G21000 | Gag-Pol-related retrotransposon family protein                          |
| 50 | AT3G28050 | nodulin MtN21 /EamA-like transporter family protein                     |
| 50 | AT4G00250 | DNA-binding storekeeper protein-related transcriptional regulator       |
| 50 | AT4G01595 | Protein kinase superfamily protein                                      |
| 50 | AT4G34265 | hypothetical protein                                                    |
| 50 | AT5G23240 | DNAJ heat shock N-terminal domain-containing protein                    |
| 50 | AT5G28300 | Duplicated homeodomain-like superfamily protein                         |
| 50 | AT5G58960 | glucose-6-phosphate isomerase, putative (DUF641)                        |
| 50 | AT5G62090 | SEUSS-like 2                                                            |
| 51 | AT1G28610 | GDSL-like Lipase/Acylhydrolase superfamily protein                      |
| 51 | AT1G65930 | cytosolic NADP -dependent isocitrate dehydrogenase                      |
| 51 | AT2G44500 | O-fucosyltransferase family protein                                     |
| 51 | AT3G09550 | Ankyrin repeat family protein                                           |
| 51 | AT3G17998 |                                                                         |
| 51 | AT3G21080 | ABC transporter-like protein                                            |
| 51 | AT3G25710 | basic helix-loop-helix 32                                               |
| 51 | AT3G62690 | AtL5                                                                    |
| 51 | AT4G09500 | UDP-Glycosyltransferase superfamily protein                             |
| 51 | AT4G14440 | 3-hydroxyacyl-CoA dehydratase 1                                         |
| 51 | AT4G29950 | Ypt/Rab-GAP domain of gyp1p superfamily protein                         |
| 51 | AT4G30280 | xyloglucan endotransglucosylase/hydrolase 18                            |
| 51 | AT4G36240 | GATA transcription factor 7                                             |
| 51 | AT5G20820 | SAUR-like auxin-responsive protein family                               |

| 51 | AT5G48050 | Copia-like polyprotein/retrotransposon                                   |
|----|-----------|--------------------------------------------------------------------------|
| 52 | AT1G01430 | TRICHOME BIREFRINGENCE-LIKE 25                                           |
| 52 | AT1G15410 | aspartate-glutamate racemase family                                      |
| 52 | AT1G54010 | GDSL-like Lipase/Acylhydrolase superfamily protein                       |
| 52 | AT1G64080 | membrane-associated kinase regulator                                     |
| 52 | AT1G72430 | SAUR-like auxin-responsive protein family                                |
| 52 | AT1G73270 | serine carboxypeptidase-like 6                                           |
| 52 | AT2G32100 | ovate family protein 16                                                  |
| 52 | AT4G01026 | PYR1-like 7                                                              |
| 52 | AT4G08570 | Heavy metal transport/detoxification superfamily protein                 |
| 52 | AT5G02480 | HSP20-like chaperones superfamily protein                                |
| 52 | AT5G56170 | LORELEI-LIKE-GPI-ANCHORED PROTEIN 1                                      |
| 52 | AT5G63960 | DNA polymerase delta subunit 1                                           |
| 52 | AT5G67420 | LOB domain-containing protein 37                                         |
| 53 | AT1G03040 | basic helix-loop-helix (bHLH) DNA-binding superfamily protein            |
| 53 | AT1G07610 | metallothionein 1C                                                       |
| 53 | AT1G28230 | purine permease 1                                                        |
| 53 | AT1G29600 | Zinc finger C-x8-C-x5-C-x3-H type family protein                         |
| 53 | AT1G80130 | Tetratricopeptide repeat (TPR)-like superfamily protein                  |
| 53 | AT1G80530 | Major facilitator superfamily protein                                    |
| 53 | AT2G32070 | Polynucleotidyl transferase, ribonuclease H-like superfamily protein     |
| 53 | AT3G15060 | RAB GTPase homolog A1G                                                   |
| 53 | AT3G20270 | lipid-binding serum glycoprotein family protein                          |
| 53 | AT3G52710 | hypothetical protein                                                     |
| 53 | AT3G57120 | Protein kinase superfamily protein                                       |
| 53 | AT4G26640 | WRKY family transcription factor family protein                          |
| 53 | AT5G16570 | glutamine synthetase 1;4                                                 |
| 53 | AT5G35490 | mto 1 responding up 1                                                    |
| 53 | AT5G66820 | transmembrane protein                                                    |
| 54 | AT1G22540 | Major facilitator superfamily protein                                    |
| 54 | AT1G23200 | Plant invertase/pectin methylesterase inhibitor superfamily              |
| 54 | AT1G28120 | ubiquitin thioesterase otubain-like protein                              |
| 54 | AT1G76570 | Chlorophyll A-B binding family protein                                   |
| 54 | AT3G05930 | germin-like protein 8                                                    |
| 54 | AT3G09630 | Ribosomal protein L4/L1 family                                           |
| 54 | AT3G10410 | SERINE CARBOXYPEPTIDASE-LIKE 49                                          |
| 54 | AT3G23000 | CBL-interacting protein kinase 7                                         |
| 54 | AT3G49010 | breast basic conserved 1                                                 |
| 54 | AT3G52610 | GATA zinc finger protein                                                 |
| 54 | AT4G13590 | Uncharacterized protein family (UPF0016)                                 |
| 54 | AT4G16490 | ARM repeat superfamily protein                                           |
| 54 | AT5G25610 | BURP domain-containing protein                                           |
| 54 | AT5G53140 | Protein phosphatase 2C family protein                                    |
| 54 | AT5G53540 | P-loop containing nucleoside triphosphate hydrolases superfamily protein |
| 55 | AI1G15930 | Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein                   |
| 55 | AT1G28350 | Nucleotidylyl transferase superfamily protein                            |

| 55 | AT1G41880 | Ribosomal protein L35Ae family protein                                 |
|----|-----------|------------------------------------------------------------------------|
| 55 | AT1G53250 | histone-lysine N-methyltransferase, H3 lysine-79 specific-like protein |
| 55 | AT1G77930 | Chaperone DnaJ-domain superfamily protein                              |
| 55 | AT2G01850 | endoxyloglucan transferase A3                                          |
| 55 | AT2G02450 | NAC domain containing protein 35                                       |
| 55 | AT2G39030 | Acyl-CoA N-acyltransferases (NAT) superfamily protein                  |
| 55 | AT3G12930 | Lojap-related protein                                                  |
| 55 | AT3G24830 | Ribosomal protein L13 family protein                                   |
| 55 | AT3G25520 | ribosomal protein L5                                                   |
| 55 | AT4G17390 | Ribosomal protein L23/L15e family protein                              |
| 55 | AT5G01750 | LURP-one-like protein (DUF567)                                         |
| 55 | AT5G03200 | RING/U-box superfamily protein                                         |
| 56 | AT1G05575 | transmembrane protein                                                  |
| 56 | AT1G49660 | carboxyesterase 5                                                      |
| 56 | AT2G05920 | Subtilase family protein                                               |
| 56 | AT2G21300 | ATP binding microtubule motor family protein                           |
| 56 | AT2G26560 | phospholipase A 2A                                                     |
| 56 | AT2G31865 | poly(ADP-ribose) glycohydrolase 2                                      |
| 56 | AT2G41250 | Haloacid dehalogenase-like hydrolase (HAD) superfamily protein         |
| 56 | AT3G09540 | Pectin lyase-like superfamily protein                                  |
| 56 | AT3G59080 | Eukaryotic aspartyl protease family protein                            |
| 56 | AT4G18205 | Nucleotide-sugar transporter family protein                            |
| 56 | AT4G19660 | NPR1-like protein 4                                                    |
| 56 | AT4G26950 | senescence regulator (Protein of unknown function, DUF584)             |
| 56 | AT5G25250 | SPFH/Band 7/PHB domain-containing membrane-associated protein          |
| 56 | AT5G62770 | tamily<br>membrane-associated kinase regulator, putative (DUF1645)     |
| 57 | AT1G19380 | sugar, putative (DUF1195)                                              |
| 57 | AT1G20970 | calponin-like domain protein                                           |
| 57 | AT1G22360 | UDP-glucosyl transferase 85A2                                          |
| 57 | AT1G78830 | Curculin-like (mannose-binding) lectin family protein                  |
| 57 | AT2G22990 | sinapoylglucose 1                                                      |
| 57 | AT2G44670 | senescence-associated family protein (DUF581)                          |
| 57 | AT3G03990 | alpha/beta-Hydrolases superfamily protein                              |
| 57 | AT3G04720 | pathogenesis-related 4                                                 |
| 57 | AT3G18160 | peroxin 3-1                                                            |
| 57 | AT5G03650 | starch branching enzyme 2.2                                            |
| 57 | AT5G06860 | polygalacturonase inhibiting protein 1                                 |
| 57 | AT5G06870 | polygalacturonase inhibiting protein 2                                 |
| 57 | AT5G39080 | HXXXD-type acyl-transferase family protein                             |
| 57 | AT5G54880 | DTW domain-containing protein                                          |
| 57 | AT5G57550 | xyloglucan endotransglucosylase/hydrolase 25                           |
| 57 | AT5G65660 | hydroxyproline-rich glycoprotein family protein                        |
| 58 | AT1G56570 | Tetratricopeptide repeat (TPR)-like superfamily protein                |
| 58 | AT2G36250 | Tubulin/FtsZ family protein                                            |
| 58 | AT3G07660 | flocculation protein (DUF1296)                                         |
| 58 | AT3G26520 | tonoplast intrinsic protein 2                                          |

| 58 | AT4G27610 | intracellular protein transporter                                |
|----|-----------|------------------------------------------------------------------|
| 58 | AT4G37390 | Auxin-responsive GH3 family protein                              |
| 58 | AT5G03435 | Ca2 dependent plant phosphoribosyltransferase family protein     |
| 58 | AT5G06680 | spindle pole body component 98                                   |
| 58 | AT5G19740 | Peptidase M28 family protein                                     |
| 58 | AT5G22020 | Calcium-dependent phosphotriesterase superfamily protein         |
| 58 | AT5G27860 | hypothetical protein                                             |
| 58 | AT5G53660 | growth-regulating factor 7                                       |
| 58 | AT5G64120 | Peroxidase superfamily protein                                   |
| 59 | AT1G23020 | ferric reduction oxidase 3                                       |
| 59 | AT1G55740 | seed imbibition 1                                                |
| 59 | AT1G66760 | MATE efflux family protein                                       |
| 59 | AT1G71870 | MATE efflux family protein                                       |
| 59 | AT1G75220 | Major facilitator superfamily protein                            |
| 59 | AT2G01660 | plasmodesmata-located protein 6                                  |
| 59 | AT3G08770 | lipid transfer protein 6                                         |
| 59 | AT3G17070 | Peroxidase family protein                                        |
| 59 | AT3G26790 | AP2/B3-like transcriptional factor family protein                |
| 59 | AT3G59420 | crinkly4                                                         |
| 59 | AT4G01390 | TRAF-like family protein                                         |
| 59 | AT4G12470 | azelaic acid induced 1                                           |
| 59 | AT4G15620 | Uncharacterized protein family (UPF0497)                         |
| 59 | AT4G17030 | expansin-like B1                                                 |
| 59 | AT4G24480 | Protein kinase superfamily protein                               |
| 60 | AT1G06980 | 6,7-dimethyl-8-ribityllumazine synthase                          |
| 60 | AT1G19650 | Sec14p-like phosphatidylinositol transfer family protein         |
| 60 | AT1G51690 | protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform |
| 60 | AT2G01860 | Tetratricopeptide repeat (TPR)-like superfamily protein          |
| 60 | AT2G16380 | Sec14p-like phosphatidylinositol transfer family protein         |
| 60 | AT2G17280 | Phosphoglycerate mutase family protein                           |
| 60 | AT2G22930 | UDP-Glycosyltransferase superfamily protein                      |
| 60 | AT2G30300 | Major facilitator superfamily protein                            |
| 60 | AT3G17550 | Haloacid dehalogenase-like hydrolase (HAD) superfamily protein   |
| 60 | AT3G56260 | hypothetical protein                                             |
| 60 | AT4G33440 | Pectin lyase-like superfamily protein                            |
| 60 | AT4G36500 | hypothetical protein                                             |
| 60 | AT5G11460 | hypothetical protein (DUF581)                                    |
| 60 | AT5G19120 | Eukaryotic aspartyl protease family protein                      |
| 60 | AT5G25265 | Hyp O-arabinosyltransferase-like protein                         |
| 61 | AT1G12320 | ankyrin repeat/KH domain protein (DUF1442)                       |
| 61 | AT1G51140 | basic helix-loop-helix (bHLH) DNA-binding superfamily protein    |
| 61 | AT2G03140 | alpha/beta-Hydrolases superfamily protein                        |
| 61 | AT2G12190 | Cytochrome P450 superfamily protein                              |
| 61 | AT3G20620 | F-box family protein-like protein                                |
| 61 | AT4G18810 | NAD(P)-binding Rossmann-fold superfamily protein                 |
| 61 | AT5G17050 | UDP-glucosyl transferase 78D2                                    |

| 61 | AT5G20280 | sucrose phosphate synthase 1F                                                                 |
|----|-----------|-----------------------------------------------------------------------------------------------|
| 61 | AT5G43380 | type one serine/threonine protein phosphatase 6                                               |
| 61 | AT5G53970 | Tyrosine transaminase family protein                                                          |
| 61 | AT5G59050 | G patch domain protein                                                                        |
| 62 | AT1G03380 | yeast autophagy 18 G-like protein                                                             |
| 62 | AT1G07380 | Neutral/alkaline non-lysosomal ceramidase                                                     |
| 62 | AT1G30530 | UDP-glucosyl transferase 78D1                                                                 |
| 62 | AT1G47330 | methyltransferase, putative (DUF21)                                                           |
| 62 | AT2G01820 | Leucine-rich repeat protein kinase family protein                                             |
| 62 | AT2G15695 | peptide methionine sulfoxide reductase (Protein of unknown function DUF829, transmembrane 53) |
| 62 | AT2G32290 | beta-amylase 6                                                                                |
| 62 | AT2G35940 | BEL1-like homeodomain 1                                                                       |
| 62 | AT2G38800 | Plant calmodulin-binding protein-like protein                                                 |
| 62 | AT2G39850 | Subtilisin-like serine endopeptidase family protein                                           |
| 62 | AT2G40840 | disproportionating enzyme 2                                                                   |
| 62 | AT3G22440 | FRIGIDA-like protein                                                                          |
| 62 | AT4G13800 | magnesium transporter NIPA (DUF803)                                                           |
| 62 | AT4G33740 | myb-like protein X                                                                            |
| 62 | AT5G03430 | phosphoadenosine phosphosulfate (PAPS) reductase family protein                               |
| 62 | AT5G43600 | ureidoglycolate amidohydrolase                                                                |
| 63 | AT1G01580 | ferric reduction oxidase 2                                                                    |
| 63 | AT1G24580 | RING/U-box superfamily protein                                                                |
| 63 | AT1G47271 | Cystathionine beta-synthase (CBS) family protein                                              |
| 63 | AT1G68520 | B-box type zinc finger protein with CCT domain-containing protein                             |
| 63 | AT2G13360 | alanine:glyoxylate aminotransferase                                                           |
| 63 | AT3G24750 | hypothetical protein                                                                          |
| 63 | AT3G46820 | type one serine/threonine protein phosphatase 5                                               |
| 63 | AT3G50270 | HXXXD-type acyl-transferase family protein                                                    |
| 63 | AT4G17530 | RAB GTPase homolog 1C                                                                         |
| 63 | AT5G05440 | Polyketide cyclase/dehydrase and lipid transport superfamily protein                          |
| 63 | AT5G24880 | chromo domain cec-like protein                                                                |
| 63 | AT5G63480 | mediator of RNA polymerase II transcription subunit                                           |
| 64 | AT1G01420 | UDP-glucosyl transferase 72B3                                                                 |
| 64 | AT1G66750 | CDK-activating kinase 4                                                                       |
| 64 | AT1G70090 | glucosyl transferase family 8                                                                 |
| 64 | AT2G17470 | aluminum activated malate transporter family protein                                          |
| 64 | AT3G06300 | P4H isoform 2                                                                                 |
| 64 | AT3G26800 | transmembrane protein                                                                         |
| 64 | AT4G12110 | sterol-4alpha-methyl oxidase 1-1                                                              |
| 64 | AT4G19450 | Major facilitator superfamily protein                                                         |
| 64 | AT5G41700 | ubiquitin conjugating enzyme 8                                                                |
| 64 | AT5G58140 | phototropin 2                                                                                 |
| 65 | AT1G07420 | sterol 4-alpha-methyl-oxidase 2-1                                                             |
| 65 | AT1G13360 | hypothetical protein                                                                          |
| 65 | AT1G62050 | Ankyrin repeat family protein                                                                 |
| 65 | AT1G73170 | P-loop containing nucleoside triphosphate hydrolases superfamily                              |

|    |           | protein                                                           |
|----|-----------|-------------------------------------------------------------------|
| 65 | AT1G75810 | transmembrane protein                                             |
| 65 | AT2G36390 | starch branching enzyme 2.1                                       |
| 65 | AT3G14595 | Ribosomal protein L18ae family                                    |
| 65 | AT4G12000 | SNARE associated Golgi protein family                             |
| 65 | AT4G12990 | transmembrane protein                                             |
| 65 | AT5G06060 | NAD(P)-binding Rossmann-fold superfamily protein                  |
| 65 | AT5G38344 | Toll-Interleukin-Resistance (TIR) domain family protein           |
| 65 | AT5G39340 | histidine-containing phosphotransmitter 3                         |
| 65 | AT5G50100 | Putative thiol-disulfide oxidoreductase DCC                       |
| 65 | AT5G54855 | Pollen Ole e 1 allergen and extensin family protein               |
| 66 | AT1G05170 | Galactosyltransferase family protein                              |
| 66 | AT1G05870 | hypothetical protein (DUF1685)                                    |
| 66 | AT1G19490 | Basic-leucine zipper (bZIP) transcription factor family protein   |
| 66 | AT1G32870 | NAC domain protein 13                                             |
| 66 | AT1G60190 | ARM repeat superfamily protein                                    |
| 66 | AT1G75490 | Integrase-type DNA-binding superfamily protein                    |
| 66 | AT2G17450 | RING-H2 finger A3A                                                |
| 66 | AT2G27050 | ETHYLENE-INSENSITIVE3-like 1                                      |
| 66 | AT3G17611 | RHOMBOID-like protein 14                                          |
| 66 | AT3G22420 | with no lysine (K) kinase 2                                       |
| 66 | AT4G38470 | ACT-like protein tyrosine kinase family protein                   |
| 66 | AT5G18830 | squamosa promoter binding protein-like 7                          |
| 66 | AT5G28770 | bZIP transcription factor family protein                          |
| 66 | AT5G53160 | regulatory components of ABA receptor 3                           |
| 67 | AT1G06149 |                                                                   |
| 67 | AT1G19020 | CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase |
| 67 | AT1G26500 | Pentatricopeptide repeat (PPR) superfamily protein                |
| 67 | AT2G18670 | RING/U-box superfamily protein                                    |
| 67 | AT2G18690 | transmembrane protein                                             |
| 67 | AT2G20142 | Toll-Interleukin-Resistance (TIR) domain family protein           |
| 67 | AT2G23810 | tetraspanin8                                                      |
| 67 | AT3G13437 | transmembrane protein                                             |
| 67 | AT3G46080 | C2H2-type zinc finger family protein                              |
| 67 | AT3G51480 | glutamate receptor 3.6                                            |
| 67 | AT4G01770 | rhamnogalacturonan xylosyltransferase 1                           |
| 67 | AT4G11890 | Protein kinase superfamily protein                                |
| 67 | AT4G14365 | hypothetical protein                                              |
| 68 | AT1G04440 | casein kinase like 13                                             |
| 68 | AT1G18570 | myb domain protein 51                                             |
| 68 | AT1G26650 | Son of sevenless protein                                          |
| 68 | AT1G61740 | Sulfite exporter TauE/SafE family protein                         |
| 68 | AT1G68610 | PLANT CADMIUM RESISTANCE 11                                       |
| 68 | AT1G74520 | HVA22 homologue A                                                 |
| 68 | AT1G80460 | Actin-like ATPase superfamily protein                             |
| 68 | AT2G03730 | ACT domain repeat 5                                               |

| 68 | AT2G17300 | hypothetical protein                                                                               |
|----|-----------|----------------------------------------------------------------------------------------------------|
| 68 | AT3G04670 | WRKY DNA-binding protein 39                                                                        |
| 68 | AT3G12950 | Trypsin family protein                                                                             |
| 68 | AT3G13275 | transmembrane protein                                                                              |
| 68 | AT3G63530 | RING/U-box superfamily protein                                                                     |
| 68 | AT4G30120 | heavy metal atpase 3                                                                               |
| 68 | AT5G17660 | tRNA (guanine-N-7) methyltransferase                                                               |
| 68 | AT5G20950 | Glycosyl hydrolase family protein                                                                  |
| 68 | AT5G55950 | Nucleotide/sugar transporter family protein                                                        |
| 69 | AT2G23470 | root UVB sensitive protein (Protein of unknown function, DUF647)                                   |
| 69 | AT3G29590 | HXXXD-type acyl-transferase family protein                                                         |
| 69 | AT4G04510 | cysteine-rich RLK (RECEPTOR-like protein kinase) 38                                                |
| 69 | AT4G22870 | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein                            |
| 69 | AT4G22880 | leucoanthocyanidin dioxygenase                                                                     |
| 69 | AT5G07990 | Cytochrome P450 superfamily protein                                                                |
| 69 | AT5G17220 | glutathione S-transferase phi 12                                                                   |
| 69 | AT5G18930 | Adenosylmethionine decarboxylase family protein                                                    |
| 69 | AT5G42800 | dihydroflavonol 4-reductase                                                                        |
| 69 | AT5G54060 | UDP-glucose:flavonoid 3-o-glucosyltransferase                                                      |
| 70 | AT1G25230 | Calcineurin-like metallo-phosphoesterase superfamily protein                                       |
| 70 | AT1G73290 | serine carboxypeptidase-like 5                                                                     |
| 70 | AT3G02170 | longifolia2                                                                                        |
| 70 | AT3G21560 | UDP-Glycosyltransferase superfamily protein                                                        |
| 70 | AT3G48280 | cytochrome P450, family 71, subfamily A, polypeptide 25                                            |
| 70 | AT4G03210 | xyloglucan endotransglucosylase/hydrolase 9                                                        |
| 70 | AT4G15480 | UDP-Glycosyltransferase superfamily protein                                                        |
| 70 | AT4G27710 | cytochrome P450, family 709, subfamily B, polypeptide 3                                            |
| 70 | AT5G40890 | chloride channel A                                                                                 |
| 70 | AT5G43830 | aluminum induced protein with YGL and LRDR motifs                                                  |
| 70 | AT5G49740 | ferric reduction oxidase 7                                                                         |
| 71 | AT1G13210 | autoinhibited Ca2 /ATPase II                                                                       |
| 71 | AT1G18660 | zinc finger (C3HC4-type RING finger) family protein                                                |
| 71 | AT1G66540 | Cytochrome P450 superfamily protein                                                                |
| 71 | AT1G73630 | EF hand calcium-binding protein family                                                             |
| 71 | AT1G76800 | Vacuolar iron transporter (VIT) family protein                                                     |
| 71 | AT3G09650 | Tetratricopeptide repeat (TPR)-like superfamily protein                                            |
| 71 | AT3G56290 | potassium transporter                                                                              |
| 71 | AT4G09350 | Chaperone DnaJ-domain superfamily protein                                                          |
| 71 | AT4G32770 | tocopherol cyclase, chloroplast / vitamin E deficient 1 (VTE1) / sucrose export defective 1 (SXD1) |
| 71 | AT4G35320 | hypothetical protein                                                                               |
| 71 | AT4G36660 | polyol transporter, putative (DUF1195)                                                             |
| 71 | AT5G20070 | nudix hydrolase homolog 19                                                                         |
| 71 | AT5G42146 | transmembrane protein                                                                              |
| 71 | AT5G59350 | transmembrane protein                                                                              |
| 71 | AT5G65600 | Concanavalin A-like lectin protein kinase family protein                                           |

| 72       | AT1G16730 | hypothetical protein                                                                                       |
|----------|-----------|------------------------------------------------------------------------------------------------------------|
| 72       | AT1G17100 | SOUL heme-binding family protein                                                                           |
| 72       | AT1G20470 | SAUR-like auxin-responsive protein family                                                                  |
| 72       | AT2G33250 | transmembrane protein                                                                                      |
| 72       | AT2G42975 | myosin-G heavy chain-like protein                                                                          |
| 72       | AT3G63120 | cyclin p1;1                                                                                                |
| 72       | AT4G17050 | ureidoglycine aminohydrolase                                                                               |
| 72       | AT4G37925 | subunit NDH-M of NAD(P)H:plastoquinone dehydrogenase complex                                               |
| 72       | AT5G23920 | transmembrane protein                                                                                      |
| 73       | AT1G01360 | regulatory component of ABA receptor 1                                                                     |
| 73       | AT1G07080 | Thioredoxin superfamily protein                                                                            |
| 73       | AT1G12610 | Integrase-type DNA-binding superfamily protein                                                             |
| 73       | AT3G05360 | receptor like protein 30                                                                                   |
| 73       | AT3G50340 | hypothetical protein                                                                                       |
| 73       | AT3G55400 | methionyl-tRNA synthetase / methionine-tRNA ligase / MetRS<br>(cpMetRS)                                    |
| 73       | AT4G02640 | bZIP transcription factor family protein                                                                   |
| 73       | AT4G14200 | Pentatricopeptide repeat (PPR) superfamily protein                                                         |
| 73       | AT4G16500 | Cystatin/monellin superfamily protein                                                                      |
| 73       | AT4G27990 | YGGT family protein                                                                                        |
| 73       | AT5G62920 | response regulator 6                                                                                       |
| 74       | AT1G08980 | amidase 1                                                                                                  |
| 74       | AT1G15890 | Disease resistance protein (CC-NBS-LRR class) family                                                       |
| 74       | AT1G70290 | trehalose-6-phosphatase synthase S8                                                                        |
| 74       | AT2G17550 | RB1-inducible coiled-coil protein                                                                          |
| 74       | AT2G25200 | hypothetical protein (DUF868)                                                                              |
| 74       | AT2G40475 | hypothetical protein                                                                                       |
| 74       | AT3G21890 | B-box type zinc finger family protein                                                                      |
| 74       | AT3G30460 | RING/U-box superfamily protein                                                                             |
| 74       | AT3G46870 | Pentatricopeptide repeat (PPR) superfamily protein                                                         |
| 74       | AT4G34550 | F-box protein                                                                                              |
| 74       | AT4G36670 | Major facilitator superfamily protein                                                                      |
| 74       | AT5G09230 | sirtuin 2                                                                                                  |
| 74       | AT5G21170 | 5'-AMP-activated protein kinase beta-2 subunit protein                                                     |
| 75       | AT1G16750 | GPI-anchored adhesin-like protein, putative (Protein of unknown function, DUF547)                          |
| 75       | AT2G14247 | Expressed protein                                                                                          |
| 75       | AT2G20725 | CAAX amino terminal protease family protein                                                                |
| 75<br>75 | AT3G05030 | P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein<br>sodium hydrogen exchanger 2 |
| 75       | AT3G27010 | TEOSINTE BRANCHED 1, cvcloidea, PCF (TCP)-domain family                                                    |
| 75       | AT4G19200 | protein 20<br>proline-rich family protein                                                                  |
| 75       | AT4G24510 | HXXXD-type acyl-transferase family protein                                                                 |
| 75       | AT5G47070 | Protein kinase superfamily protein                                                                         |
| 75       | AT5G55530 | Calcium-dependent lipid-binding (CaLB domain) family protein                                               |
| 75       | AT5G58930 | hypothetical protein (DUF740)                                                                              |
| 75       | AT5G67290 | FAD-dependent oxidoreductase family protein                                                                |
|          |           |                                                                                                            |

| 75 | AT5G67370 | DUF1230 family protein (DUF1230)                                     |
|----|-----------|----------------------------------------------------------------------|
| 76 | AT1G13110 | cytochrome P450, family 71 subfamily B, polypeptide 7                |
| 76 | AT1G51700 | DOF zinc finger protein 1                                            |
| 76 | AT2G46735 | death domain associated protein                                      |
| 76 | AT3G08570 | Phototropic-responsive NPH3 family protein                           |
| 76 | AT3G16280 | Integrase-type DNA-binding superfamily protein                       |
| 76 | AT3G54390 | sequence-specific DNA binding transcription factor                   |
| 76 | AT4G00050 | basic helix-loop-helix (bHLH) DNA-binding superfamily protein        |
| 76 | AT5G10730 | NAD(P)-binding Rossmann-fold superfamily protein                     |
| 76 | AT5G43330 | Lactate/malate dehydrogenase family protein                          |
| 76 | AT5G43400 | plant/protein                                                        |
| 76 | AT5G47610 | RING/U-box superfamily protein                                       |
| 76 | AT5G63160 | BTB and TAZ domain protein 1                                         |
| 76 | AT5G64410 | oligopeptide transporter 4                                           |
| 77 | AT1G12480 | C4-dicarboxylate transporter/malic acid transport protein            |
| 77 | AT1G61770 | Chaperone DnaJ-domain superfamily protein                            |
| 77 | AT1G68470 | Exostosin family protein                                             |
| 77 | AT2G26860 | FBD, F-box and Leucine Rich Repeat domains containing protein        |
| 77 | AT2G35640 | Homeodomain-like superfamily protein                                 |
| 77 | AT3G06270 | Protein phosphatase 2C family protein                                |
| 77 | AT3G26618 | eukaryotic release factor 1-3                                        |
| 77 | AT4G28740 | LOW PSII ACCUMULATION-like protein                                   |
| 77 | AT4G36050 | endonuclease/exonuclease/phosphatase family protein                  |
| 77 | AT5G14550 | Core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase family   |
| 77 | AT5G45275 | Major facilitator superfamily protein                                |
| 78 | AT1G16320 | plant/protein (DUF2358)                                              |
| 78 | AT1G19580 | gamma carbonic anhydrase 1                                           |
| 78 | AT1G72070 | Chaperone DnaJ-domain superfamily protein                            |
| 78 | AT1G79160 | filamentous hemagglutinin transporter                                |
| 78 | AT1G80490 | TOPLESS-related 1                                                    |
| 78 | AT3G20130 | cytochrome P450, family 705, subfamily A, polypeptide 22             |
| 78 | AT4G11410 | NAD(P)-binding Rossmann-fold superfamily protein                     |
| 78 | AT4G36830 | GNS1/SUR4 membrane protein family                                    |
| 78 | AT5G43880 | methyl-coenzyme M reductase II subunit gamma, putative (DUF3741)     |
| 78 | AT5G55250 | IAA carboxylmethyltransferase 1                                      |
| 78 | AT5G55960 | transmembrane protein C9orf5 protein                                 |
| 79 | AT1G68190 | B-box zinc finger family protein                                     |
| 79 | AT2G02980 | Pentatricopeptide repeat (PPR) superfamily protein                   |
| 79 | AT2G18210 | hypothetical protein                                                 |
| 79 | AT3G19170 | presequence protease 1                                               |
| 79 | AT3G23080 | Polyketide cyclase/dehydrase and lipid transport superfamily protein |
| 79 | AT4G00300 | receptor-like kinase                                                 |
| 79 | AT4G00710 | BR-signaling kinase 3                                                |
| 79 | AT5G02160 | transmembrane protein                                                |
| 79 | AT5G03550 | MATH domain/coiled-coil protein                                      |
| 79 | AT5G24490 | 30S ribosomal protein                                                |

| 80       | AT1G13180  | Actin-like ATPase superfamily protein                                         |
|----------|------------|-------------------------------------------------------------------------------|
| 80       | AT1G14890  | Plant invertase/pectin methylesterase inhibitor superfamily protein           |
| 80       | AT1G18210  | Calcium-binding EF-hand family protein                                        |
| 80       | AT1G58520  | GDSL-like lipase/acylhydrolase superfamily protein                            |
| 80       | AT2G04850  | Auxin-responsive family protein                                               |
| 80       | AT2G25735  | hypothetical protein                                                          |
| 80       | AT3G17800  | alanine-tRNA ligase, putative (DUF760)                                        |
| 80       | AT3G61220  | NAD(P)-binding Rossmann-fold superfamily protein                              |
| 80       | AT4G27940  | manganese tracking factor for mitochondrial SOD2                              |
| 80       | AT4G31875  | hypothetical protein                                                          |
| 80       | AT5G47800  | Phototropic-responsive NPH3 family protein                                    |
| 81       | AT1G06800  | alpha/beta-Hydrolases superfamily protein                                     |
| 81       | AT1G07135  | glycine-rich protein                                                          |
| 81       | AT1G12300  | Tetratricopeptide repeat (TPR)-like superfamily protein                       |
| 81       | AT1G28760  | guanosine-3',5'-bis (diphosphate) 3'-pyrophosphohydrolase, putative (DUF2215) |
| 81       | AT1G56660  | MAEBL domain protein                                                          |
| 81       | AT1G77110  | Auxin efflux carrier family protein                                           |
| 81       | AT3G15095  | Serine/Threonine-kinase pakA-like protein                                     |
| 81       | AT4G08691  | hypothetical protein                                                          |
| 81       | AT5G26600  | Pyridoxal phosphate (PLP)-dependent transferases superfamily<br>protein       |
| 91       | AT5G54490  | period-binding protein 1                                                      |
| 01<br>02 | AT10054550 | MATE offlux family protoin                                                    |
| 02<br>82 | AT1G13170  | EMN-linked oxidoreductases superfamily protein                                |
| 82       | AT1G80980  | stress response NST1-like protein                                             |
| 82       | AT1G00300  | Ribosomal protein S4 (RPS1A) family protein                                   |
| 82       | AT2G17500  | nhytosulfokine 2 precursor                                                    |
| 82       | AT2G22000  | transcription factor LIPBEAT protein                                          |
| 82       | AT2G47270  | Ribosomal protein 170 e/l 30 e/S12 e/Gadd45 family protein                    |
| 82       | AT2G47010  | Plant invertase/pactin methylesterase inhibitor superfamily protein           |
| 82       | AT3C52340  | sucrose-6E-phosphate phosphohydrolase 2                                       |
| 82       | AT3G32340  | NOD26-like intrinsic protein 5:1                                              |
| 82       | AT4G30680  | Initiation factor eIE-4 gamma MA3                                             |
| 82       | AT4G50000  | RHOMBOID-like protein 3                                                       |
| 82       | AT5G10360  | Rihosomal protein Sée                                                         |
| 82       | AT5G11740  | arabinogalactan protein 15                                                    |
| 82       | AT5G58420  | Ribosomal protein S4 (RPS1A) family protain                                   |
| 83       | AT1G16090  | wall associated kinase-like 7                                                 |
| 83       | AT7G05632  | hypothetical protain                                                          |
| 83       | AT2G000052 | Transducin/WD40 repeat-like superfamily protein                               |
| 83       | AT2C07380  | alvcosv/transferase family protein (DLIE23)                                   |
| 83       | AT3G07300  | Amino acid permease family protein                                            |
| 83       | AT/G10/00  | E-hov/RNI-like/EBD-like domains-containing protein                            |
| 83       | AT4G10400  | CDA1/CD39 pucleoside phosphatase family protein                               |
| 00       | AT4019100  |                                                                               |
| 03       | A14020170  | giyuusyillahsielase lahiliy piuleni (DUFZS)                                   |

| 83 | AT4G24040 | trehalase 1                                                                                      |
|----|-----------|--------------------------------------------------------------------------------------------------|
| 83 | AT4G36530 | alpha/beta-Hydrolases superfamily protein                                                        |
| 83 | AT5G08170 | porphyromonas-type peptidyl-arginine deiminase family protein                                    |
| 83 | AT5G20250 | Raffinose synthase family protein                                                                |
| 84 | AT1G01740 | kinase with tetratricopeptide repeat domain-containing protein                                   |
| 84 | AT1G04360 | RING/U-box superfamily protein                                                                   |
| 84 | AT1G71480 | Nuclear transport factor 2 (NTF2) family protein                                                 |
| 84 | AT1G78680 | gamma-glutamyl hydrolase 2                                                                       |
| 84 | AT3G10740 | alpha-L-arabinofuranosidase 1                                                                    |
| 84 | AT3G58070 | C2H2 and C2HC zinc fingers superfamily protein                                                   |
| 84 | AT3G61160 | Protein kinase superfamily protein                                                               |
| 84 | AT4G25300 | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein                          |
| 84 | AT5G02230 | Haloacid dehalogenase-like hydrolase (HAD) superfamily protein                                   |
| 84 | AT5G22530 | hypothetical protein                                                                             |
| 85 | AT1G20560 | acyl activating enzyme 1                                                                         |
| 85 | AT1G53380 | hypothetical protein (DUF641)                                                                    |
| 85 | AT1G78020 | senescence-associated family protein, putative (DUF581)                                          |
| 85 | AT2G22240 | myo-inositol-1-phosphate synthase 2                                                              |
| 85 | AT2G30390 | ferrochelatase 2                                                                                 |
| 85 | AT4G01070 | UDP-Glycosyltransferase superfamily protein                                                      |
| 85 | AT4G28700 | ammonium transporter 1;4                                                                         |
| 85 | AT5G20990 | molybdopterin biosynthesis CNX1 protein / molybdenum cofactor<br>biosynthesis enzyme CNX1 (CNX1) |
| 00 | AT5G23170 |                                                                                                  |
| 00 | AT1056600 | aclosting wathoos 2                                                                              |
| 00 | AT1G50000 | PNA binding (PPM/PPD/PND motife) family protein                                                  |
| 00 | AT1G72000 | RNA-binding (RRW/RBD/RNP motils) family protein                                                  |
| 00 | AT3G55400 | humetheticel protein                                                                             |
| 00 | AT4G16000 | nypotitelical protein                                                                            |
| 00 | AT5G03190 | rest con 1 (DCD1)                                                                                |
| 80 | AT5G17520 | Protein kinese superferrikur retein                                                              |
| 87 | AT1G09440 |                                                                                                  |
| 87 | AT1G65060 | 4-coumarate:CoA ligase 3                                                                         |
| 87 | AI1G65560 | Zinc-binding dehydrogenase family protein                                                        |
| 87 | AT3G06500 | Plant neutral invertase family protein                                                           |
| 87 | AT3G12240 | serine carboxypeptidase-like 15                                                                  |
| 87 | AT4G33180 | alpha/beta-Hydrolases superfamily protein                                                        |
| 87 | AT5G05270 | Chalcone-flavanone isomerase family protein                                                      |
| 87 | AT5G08640 | flavonol synthase 1                                                                              |
| 87 | AT5G13930 | Chalcone and stilbene synthase family protein                                                    |
| 88 | AT1G24807 | Glutamine amidotransferase type 1 family protein                                                 |
| 88 | AT2G38240 | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein                          |
| 88 | A13G23250 | myp domain protein 15                                                                            |
| 88 | AT3G28930 | AIG2-like (avirulence induced gene) family protein                                               |
| 88 | AT3G57020 | Calcium-dependent phosphotriesterase superfamily protein                                         |
| 88 | AT5G03406 | Class II aaRS and biotin synthetases superfamily protein                                         |

| 88 | AT5G05840 | replication factor C subunit, putative (DUF620)                                |
|----|-----------|--------------------------------------------------------------------------------|
| 88 | AT5G62130 | Per1-like family protein                                                       |
| 89 | AT1G59500 | Auxin-responsive GH3 family protein                                            |
| 89 | AT2G18600 | Ubiquitin-conjugating enzyme family protein                                    |
| 89 | AT2G22080 | transmembrane protein                                                          |
| 89 | AT3G22160 | VQ motif-containing protein                                                    |
| 89 | AT4G13820 | Leucine-rich repeat (LRR) family protein                                       |
| 89 | AT4G16442 | Uncharacterized protein family (UPF0497)                                       |
| 89 | AT4G20780 | calmodulin like 42                                                             |
| 89 | AT4G21180 | DnaJ / Sec63 Brl domains-containing protein                                    |
| 89 | AT4G31800 | WRKY DNA-binding protein 18                                                    |
| 89 | AT4G38740 | rotamase CYP 1                                                                 |
| 89 | AT5G08430 | SWIB/MDM2 and Plus-3 and GYF domain-containing protein                         |
| 90 | AT1G17190 | glutathione S-transferase tau 26                                               |
| 90 | AT1G51340 | MATE efflux family protein                                                     |
| 90 | AT2G17695 | outer envelope protein                                                         |
| 90 | AT2G18230 | pyrophosphorylase 2                                                            |
| 90 | AT2G21960 | transmembrane protein                                                          |
| 90 | AT2G35470 | ribosome maturation factor                                                     |
| 90 | AT3G10940 | dual specificity protein phosphatase (DsPTP1) family protein                   |
| 90 | AT3G24030 | hydroxyethylthiazole kinase family protein                                     |
| 90 | AT4G25830 | Uncharacterized protein family (UPF0497)                                       |
| 90 | AT5G05090 | Homeodomain-like superfamily protein                                           |
| 91 | AT1G28280 | VQ motif-containing protein                                                    |
| 91 | AT1G77760 | nitrate reductase 1                                                            |
| 91 | AT3G59000 | F-box/RNI-like superfamily protein                                             |
| 91 | AT4G09670 | Oxidoreductase family protein                                                  |
| 91 | AT4G09900 | methyl esterase 12                                                             |
| 91 | AT4G13100 | RING/U-box superfamily protein                                                 |
| 91 | AT4G29120 | 6-phosphogluconate dehydrogenase family protein                                |
| 91 | AT5G24380 | YELLOW STRIPE like 2                                                           |
| 91 | AT5G43950 | vacuolar protein sorting-associated protein (DUF946)                           |
| 92 | AT1G25400 | transmembrane protein                                                          |
| 92 | AT3G02250 | O-fucosyltransferase family protein                                            |
| 92 | AT3G50260 | cooperatively regulated by ethylene and jasmonate 1                            |
| 92 | AT3G61750 | Cytochrome b561/ferric reductase transmembrane with DOMON                      |
| 92 | AT4G17900 | related domain-containing protein<br>PLATZ transcription factor family protein |
| 92 | AT4G19880 | Glutathione S-transferase family protein                                       |
| 92 | AT5G02150 | Fes1C                                                                          |
| 92 | AT5G15740 | O-fucosyltransferase family protein                                            |
| 92 | AT5G22740 | cellulose synthase-like A02                                                    |
| 93 | AT1G35420 | alpha/beta-Hydrolases superfamily protein                                      |
| 93 | AT1G70580 | alanine-2-oxoglutarate aminotransferase 2                                      |
| 93 | AT2G05380 | glycine-rich protein 3 short isoform                                           |
| 93 | AT2G05400 | Ubiquitin-specific protease family C19-related protein                         |
| 93 | AT2G05530 | Glycine-rich protein family                                                    |
|    |           |                                                                                |

| 93 | AT4G13430 | isopropyl malate isomerase large subunit 1                               |
|----|-----------|--------------------------------------------------------------------------|
| 93 | AT4G27440 | protochlorophyllide oxidoreductase B                                     |
| 93 | AT5G10180 | slufate transporter 2;1                                                  |
| 93 | AT5G23010 | methylthioalkylmalate synthase 1                                         |
| 93 | AT5G65480 | hypothetical protein                                                     |
| 94 | AT1G08360 | Ribosomal protein L1p/L10e family                                        |
| 94 | AT1G11410 | S-locus lectin protein kinase family protein                             |
| 94 | AT1G72370 | 40s ribosomal protein SA                                                 |
| 94 | AT2G34480 | Ribosomal protein L18ae/LX family protein                                |
| 94 | AT2G41040 | S-adenosyl-L-methionine-dependent methyltransferases superfamily protein |
| 94 | AT3G53130 | Cytochrome P450 superfamily protein                                      |
| 94 | AT3G60130 | beta glucosidase 16                                                      |
| 94 | AT3G62870 | Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein                   |
| 94 | AT5G37790 | Protein kinase superfamily protein                                       |
| 94 | AT5G46710 | PLATZ transcription factor family protein                                |
| 95 | AT1G62560 | flavin-monooxygenase glucosinolate S-oxygenase 3                         |
| 95 | AT1G64140 | WRKY transcription factor                                                |
| 95 | AT3G02020 | aspartate kinase 3                                                       |
| 95 | AT3G22060 | Receptor-like protein kinase-related family protein                      |
| 95 | AT5G49660 | Leucine-rich repeat transmembrane protein kinase family protein          |
| 95 | AT5G54390 | HAL2-like protein                                                        |
| 96 | AT1G21460 | Nodulin MtN3 family protein                                              |
| 96 | AT1G33790 | jacalin lectin family protein                                            |
| 96 | AT1G52200 | PLAC8 family protein                                                     |
| 96 | AT1G70000 | myb-like transcription factor family protein                             |
| 96 | AT3G03860 | APR-like 5                                                               |
| 96 | AT5G52900 | membrane-associated kinase regulator                                     |
| 96 | AT5G57100 | Nucleotide/sugar transporter family protein                              |
| 96 | AT5G57660 | CONSTANS-like 5                                                          |
| 97 | AT1G02660 | alpha/beta-Hydrolases superfamily protein                                |
| 97 | AT2G23950 | Leucine-rich repeat protein kinase family protein                        |
| 97 | AT2G27450 | nitrilase-like protein 1                                                 |
| 97 | AT2G28120 | Major facilitator superfamily protein                                    |
| 97 | AT3G32980 | Peroxidase superfamily protein                                           |
| 97 | AT3G58750 | citrate synthase 2                                                       |
| 97 | AT4G15610 | Uncharacterized protein family (UPF0497)                                 |
| 97 | AT5G16120 | alpha/beta-Hydrolases superfamily protein                                |
| 98 | AT2G44940 | Integrase-type DNA-binding superfamily protein                           |
| 98 | AT3G17770 | Dihydroxyacetone kinase                                                  |
| 98 | AT3G18980 | EIN2 targeting protein1                                                  |
| 98 | AT3G19370 | filament-like protein (DUF869)                                           |
| 98 | AT4G23020 | hypothetical protein                                                     |
| 98 | AT5G03760 | Nucleotide-diphospho-sugar transferases superfamily protein              |
| 98 | AT5G20220 | zinc knuckle (CCHC-type) family protein                                  |
| 98 | AT5G41460 | transferring glycosyl group transferase (DUF604)                         |
| 99 | AT1G27770 | autoinhibited Ca2 -ATPase 1                                              |

| 99  | AT2G37130 | Peroxidase superfamily protein                                                            |
|-----|-----------|-------------------------------------------------------------------------------------------|
| 99  | AT3G61210 | S-adenosyl-L-methionine-dependent methyltransferases superfamily                          |
| 99  | AT4G23750 | cytokinin response factor 2                                                               |
| 99  | AT5G11810 | rhomboid family protein                                                                   |
| 99  | AT5G17170 | rubredoxin family protein                                                                 |
| 99  | AT5G49330 | myb domain protein 111                                                                    |
| 100 | AT1G23740 | Oxidoreductase, zinc-binding dehydrogenase family protein                                 |
| 100 | AT1G33230 | TMPIT-like protein                                                                        |
| 100 | AT1G61100 | disease resistance protein (TIR class)                                                    |
| 100 | AT2G44160 | methylenetetrahydrofolate reductase 2                                                     |
| 100 | AT3G04940 | cysteine synthase D1                                                                      |
| 100 | AT3G53920 | RNApolymerase sigma-subunit C                                                             |
| 100 | AT4G11450 | bromo-adjacent domain protein, putative (DUF3527)                                         |
| 100 | AT5G13460 | IQ-domain 11                                                                              |
| 101 | AT1G21440 | Phosphoenolpyruvate carboxylase family protein                                            |
| 101 | AT1G65860 | flavin-monooxygenase glucosinolate S-oxygenase 1                                          |
| 101 | AT2G45220 | Plant invertase/pectin methylesterase inhibitor superfamily                               |
| 101 | AT3G10815 | RING/U-box superfamily protein                                                            |
| 101 | AT3G28130 | nodulin MtN21 /EamA-like transporter family protein                                       |
| 101 | AT3G53720 | cation/H exchanger 20                                                                     |
| 101 | AT3G53800 | Fes1B                                                                                     |
| 101 | AT4G12490 | Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein |
| 101 | AT4G22290 | Ubiquitin-specific protease family C19-related protein                                    |
| 101 | AT4G30210 | P450 reductase 2                                                                          |
| 101 | AT5G15450 | casein lytic proteinase B3                                                                |
| 102 | AT2G21560 | nucleolar-like protein                                                                    |
| 102 | AT2G24270 | aldehyde dehydrogenase 11A3                                                               |
| 102 | AT2G24540 | Galactose oxidase/kelch repeat superfamily protein                                        |
| 102 | AT2G34460 | NAD(P)-binding Rossmann-fold superfamily protein                                          |
| 102 | AT3G03980 | NAD(P)-binding Rossmann-fold superfamily protein                                          |
| 102 | AT3G04030 | Homeodomain-like superfamily protein                                                      |
| 102 | AT3G12600 | nudix hydrolase homolog 16                                                                |
| 102 | AT3G63420 | Ggamma-subunit 1                                                                          |
| 102 | AT4G32600 | C3H4 type zinc finger protein                                                             |
| 102 | AT4G38960 | B-box type zinc finger family protein                                                     |
| 102 | AT5G24120 | sigma factor E                                                                            |
| 103 | AT1G15960 | NRAMP metal ion transporter 6                                                             |
| 103 | AT1G16400 | cytochrome P450, family 79, subfamily F, polypeptide 2                                    |
| 103 | AT1G16410 | cytochrome p450 79f1                                                                      |
| 103 | AT1G18590 | sulfotransferase 17                                                                       |
| 103 | AT3G13110 | serine acetyltransferase 2;2                                                              |
| 103 | AT3G56000 | cellulose synthase like A14                                                               |
| 103 | AT4G12030 | bile acid transporter 5                                                                   |
| 103 | AT4G14040 | selenium-binding protein 2                                                                |
| 103 | AT4G39940 | APS-kinase 2                                                                              |
| 103 | AT5G62520 | similar to RCD one 5                                                                     |  |
|-----|-----------|------------------------------------------------------------------------------------------|--|
| 104 | AT1G09940 | Glutamyl-tRNA reductase family protein                                                   |  |
| 104 | AT1G16060 | ARIA-interacting double AP2 domain protein                                               |  |
| 104 | AT1G62800 | aspartate aminotransferase 4                                                             |  |
| 104 | AT3G03190 | glutathione S-transferase F11                                                            |  |
| 104 | AT3G54600 | Class I glutamine amidotransferase-like superfamily protein                              |  |
| 104 | AT3G58990 | isopropylmalate isomerase 1                                                              |  |
| 104 | AT5G33320 | Glucose-6-phosphate/phosphate translocator-like protein                                  |  |
| 104 | AT5G44380 | FAD-binding Berberine family protein                                                     |  |
| 104 | AT5G44720 | Molybdenum cofactor sulfurase family protein                                             |  |
| 105 | AT1G51940 | protein kinase family protein / peptidoglycan-binding LysM domain-<br>containing protein |  |
| 105 | AT1G64780 | ammonium transporter 1;2                                                                 |  |
| 105 | AT1G80190 | partner of SLD five 1                                                                    |  |
| 105 | AT2G15890 | maternal effect embryo arrest 14                                                         |  |
| 105 | AT2G40460 | Major facilitator superfamily protein                                                    |  |
| 105 | AT3G04140 | Ankyrin repeat family protein                                                            |  |
| 105 | AT3G27350 | transcriptional regulator ATRX-like protein                                              |  |
| 105 | AT4G18390 | TEOSINTE BRANCHED 1, cycloidea and PCF transcription factor 2                            |  |
| 106 | AT1G12440 | A20/AN1-like zinc finger family protein                                                  |  |
| 106 | AT1G13700 | 6-phosphogluconolactonase 1                                                              |  |
| 106 | AT2G18290 | anaphase promoting complex 10                                                            |  |
| 106 | AT3G15450 | aluminum induced protein with YGL and LRDR motifs                                        |  |
| 106 | AT3G15630 | plant/protein                                                                            |  |
| 106 | AT3G48590 | nuclear factor Y, subunit C1                                                             |  |
| 106 | AT4G29130 | hexokinase 1                                                                             |  |
| 106 | AT5G11070 | hypothetical protein                                                                     |  |
| 106 | AT5G22920 | CHY-type/CTCHY-type/RING-type Zinc finger protein                                        |  |
| 107 | AT1G27100 | Actin cross-linking protein                                                              |  |
| 107 | AT2G45170 | AUTOPHAGY 8E                                                                             |  |
| 107 | AT3G03250 | UDP-GLUCOSE PYROPHOSPHORYLASE 1                                                          |  |
| 107 | AT4G17880 | Basic helix-loop-helix (bHLH) DNA-binding family protein                                 |  |
| 107 | AT4G27450 | aluminum induced protein with YGL and LRDR motifs                                        |  |
| 107 | AT5G10695 | methionyl-tRNA synthetase                                                                |  |
| 108 | AT2G14620 | xyloglucan endotransglucosylase/hydrolase 10                                             |  |
| 108 | AT2G33310 | auxin-induced protein 13                                                                 |  |
| 108 | AT3G19620 | Glycosyl hydrolase family protein                                                        |  |
| 108 | AT3G53970 | proteasome inhibitor-like protein                                                        |  |
| 108 | AT4G31310 | AIG2-like (avirulence induced gene) family protein                                       |  |
| 108 | AT5G16360 | NC domain-containing protein-like protein                                                |  |
| 108 | AT5G20500 | Glutaredoxin family protein                                                              |  |
| 108 | AT5G27760 | Hypoxia-responsive family protein                                                        |  |
| 108 | AT5G57510 | cotton fiber protein                                                                     |  |
| 109 | AT1G78100 | F-box family protein                                                                     |  |
| 109 | AT2G37580 | RING/U-box superfamily protein                                                           |  |
| 109 | AT2G40316 | autophagy-like protein                                                                   |  |
| 109 | AT4G02630 | Protein kinase superfamily protein                                                       |  |

| 109 | AT4G21970 | senescence regulator (Protein of unknown function, DUF584)                                      |
|-----|-----------|-------------------------------------------------------------------------------------------------|
| 109 | AT5G05830 | RING/FYVE/PHD zinc finger superfamily protein                                                   |
| 109 | AT5G25930 | kinase family with leucine-rich repeat domain-containing protein                                |
| 109 | AT5G50800 | Nodulin MtN3 family protein                                                                     |
| 110 | AT1G04985 | triacylglycerol lipase-like protein                                                             |
| 110 | AT1G48280 | hydroxyproline-rich glycoprotein family protein                                                 |
| 110 | AT1G66580 | senescence associated gene 24                                                                   |
| 110 | AT2G36970 | UDP-Glycosyltransferase superfamily protein                                                     |
| 110 | AT3G10760 | Homeodomain-like superfamily protein                                                            |
| 110 | AT3G51660 | Tautomerase/MIF superfamily protein                                                             |
| 110 | AT4G01895 | systemic acquired resistance (SAR) regulator protein NIMIN-1-like protein                       |
| 110 | AT4G20090 | Pentatricopeptide repeat (PPR) superfamily protein                                              |
| 110 | AT5G23760 | Copper transport protein family                                                                 |
| 111 | AT1G29120 | Hydrolase-like protein family                                                                   |
| 111 | AT1G60710 | NAD(P)-linked oxidoreductase superfamily protein                                                |
| 111 | AT1G73660 | protein tyrosine kinase family protein                                                          |
| 111 | AT3G04590 | AT hook motif DNA-binding family protein                                                        |
| 111 | AT3G09270 | glutathione S-transferase TAU 8                                                                 |
| 111 | AT3G14067 | Subtilase family protein                                                                        |
| 111 | AT3G46900 | copper transporter 2                                                                            |
| 111 | AT3G51895 | sulfate transporter 3;1                                                                         |
| 111 | AT5G58870 | FTSH protease 9                                                                                 |
| 112 | AT1G05620 | uridine-ribohydrolase 2                                                                         |
| 112 | AT1G64900 | cytochrome P450, family 89, subfamily A, polypeptide 2                                          |
| 112 | AT2G15020 | hypothetical protein                                                                            |
| 112 | AT5G03555 | permease, cytosine/purines, uracil, thiamine, allantoin family protein                          |
| 112 | AT5G24150 | FAD/NAD(P)-binding oxidoreductase family protein                                                |
| 112 | AT5G41900 | alpha/beta-Hydrolases superfamily protein                                                       |
| 112 | AT5G58770 | Undecaprenyl pyrophosphate synthetase family protein                                            |
| 113 | AT1G09560 | germin-like protein 5                                                                           |
| 113 | AT1G17860 | Kunitz family trypsin and protease inhibitor protein                                            |
| 113 | AT1G32940 | Subtilase family protein                                                                        |
| 113 | AT1G74790 | catalytics                                                                                      |
| 113 | AT4G08300 | nodulin MtN21 /EamA-like transporter family protein                                             |
| 113 | AT4G34131 | UDP-glucosyl transferase 73B3                                                                   |
| 113 | AT4G39670 | Glycolipid transfer protein (GLTP) family protein                                               |
| 114 | AT1G72040 | P-loop containing nucleoside triphosphate hydrolases superfamily protein                        |
| 114 | AT3G06200 | P-loop containing nucleoside triphosphate hydrolases superfamily protein                        |
| 114 | AT3G44190 | FAD/NAD(P)-binding oxidoreductase family protein                                                |
| 114 | AT3G48250 | Pentatricopeptide repeat (PPR) superfamily protein                                              |
| 114 | AT4G32520 | serine hydroxymethyltransferase 3                                                               |
| 114 | AT4G34910 | P-loop containing nucleoside triphosphate hydrolases superfamily protein                        |
| 115 | AI1G04100 | Indoleacetic acid-induced protein 10                                                            |
| 115 | AT1G78850 | D-mannose binding lectin protein with Apple-like carbohydrate-binding domain-containing protein |

| 115 | AT2G40900 | nodulin MtN21 /EamA-like transporter family protein              |
|-----|-----------|------------------------------------------------------------------|
| 115 | AT4G33420 | Peroxidase superfamily protein                                   |
| 115 | AT4G34540 | NmrA-like negative transcriptional regulator family protein      |
| 115 | AT4G35900 | Basic-leucine zipper (bZIP) transcription factor family protein  |
| 115 | AT5G02970 | alpha/beta-Hydrolases superfamily protein                        |
| 116 | AT1G11090 | alpha/beta-Hydrolases superfamily protein                        |
| 116 | AT2G27500 | Glycosyl hydrolase superfamily protein                           |
| 116 | AT2G29680 | cell division control 6                                          |
| 116 | AT3G12750 | zinc transporter 1 precursor                                     |
| 116 | AT3G15090 | GroES-like zinc-binding alcohol dehydrogenase family protein     |
| 116 | AT3G56170 | Ca-2 dependent nuclease                                          |
| 116 | AT4G15760 | monooxygenase 1                                                  |
| 116 | AT5G02590 | Tetratricopeptide repeat (TPR)-like superfamily protein          |
| 116 | AT5G16530 | Auxin efflux carrier family protein                              |
| 117 | AT1G10020 | formin-like protein (DUF1005)                                    |
| 117 | AT1G10970 | zinc transporter                                                 |
| 117 | AT1G11700 | senescence regulator (Protein of unknown function, DUF584)       |
| 117 | AT3G47340 | glutamine-dependent asparagine synthase 1                        |
| 117 | AT3G58720 | RING/U-box superfamily protein                                   |
| 117 | AT4G05030 | Copper transport protein family                                  |
| 117 | AT5G40630 | Ubiquitin-like superfamily protein                               |
| 118 | AT1G09310 | plant/protein (Protein of unknown function, DUF538)              |
| 118 | AT1G75280 | NmrA-like negative transcriptional regulator family protein      |
| 118 | AT2G15440 | polysaccharide biosynthesis protein (DUF579)                     |
| 118 | AT3G18850 | lysophosphatidyl acyltransferase 5                               |
| 118 | AT4G00360 | cytochrome P450, family 86, subfamily A, polypeptide 2           |
| 119 | AT1G22770 | gigantea protein (GI)                                            |
| 119 | AT1G77260 | S-adenosyl-L-methionine-dependent methyltransferases superfamily |
| 119 | AT3G01470 | protein<br>homeobox 1                                            |
| 119 | AT3G24190 | Protein kinase superfamily protein                               |
| 119 | AT5G41400 | RING/U-box superfamily protein                                   |
| 119 | AT5G57220 | cytochrome P450, family 81, subfamily F, polypeptide 2           |
| 120 | AT1G03220 | Eukaryotic aspartyl protease family protein                      |
| 120 | AT1G56140 | Leucine-rich repeat transmembrane protein kinase                 |
| 120 | AT1G78580 | trehalose-6-phosphate synthase                                   |
| 120 | AT2G17660 | RPM1-interacting protein 4 (RIN4) family protein                 |
| 120 | AT4G32480 | sugar phosphate exchanger, putative (DUF506)                     |
| 120 | AT4G33640 | costars family protein                                           |
| 120 | AT5G54500 | flavodoxin-like quinone reductase 1                              |
| 121 | AT1G25550 | myb-like transcription factor family protein                     |
| 121 | AT1G26380 | FAD-binding Berberine family protein                             |
| 121 | AT1G36622 | transmembrane protein                                            |
| 121 | AT2G20570 | GBF's pro-rich region-interacting factor 1                       |
| 121 | AT3G43600 | aldehyde oxidase 2                                               |
| 121 | AT4G02500 | UDP-xylosyltransferase 2                                         |
| 121 | AT5G01090 | Concanavalin A-like lectin family protein                        |

| 122       AT1G49500       transcription initiation factor TFIID subunit 1b-like protein         122       AT1G67980       caffeoyl-CoA 3-O-methyltransferase         122       AT2G31070       TCP domain protein 10         122       AT3G07350       sulfate/thiosulfate import ATP-binding protein, putative (DUF506)         122       AT4G02840       Small nuclear ribonucleoprotein family protein         122       AT4G02840       Small nuclear ribonucleoprotein family protein         123       AT4G02840       stransmembrane protein         123       AT4G38210       expansin A20         123       AT4G039300       Protein kinase superfamily protein         123       AT4G03930       isoamylase 1         123       AT4G0450       nodulin MtN21 / EamA-like transporter family protein         123       AT4G0450       nodulin MtN21 / EamA-like transporter family protein         123       AT4G25335       P-loop containing nucleoside triphosphate hydrolases superfamily protein         124       AT1G262700       sed maturation-like protein         125       AT3G45060       high affinity nitrate transporter 2.6         124       AT3G420203       bilue-cooper-binding protein         125       AT2G204200       guarnosa promoter binding protein         126       <                                                                     | 121 | AT5G67140 | F-box/RNI-like superfamily protein                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|---------------------------------------------------------------------------------------------------------------|
| 122       AT1G67980       caffeoyl-CoA 3-O-methyltransferase         123       AT2C22980       serine carboxypepidase-like 13         124       AT2G31070       TCP domain protein 10         122       AT3G07360       sulfate/thiosulfate import ATP-binding protein, putative (DUF506)         124       AT4G02840       Small nuclear ribonucleoprotein family protein         122       AT4G38210       expansin A20         123       AT2G39300       transmembrane protein         123       AT3G61250       myb domain protein 17         123       AT3G61250       myb domain protein 17         123       AT4G25835       P-loop containing nucleoside triphosphate hydrolases superfamily protein         123       AT4G25835       Senescenc/dehydration-associated protein-like protein         124       AT4G25835       Senescenci/dehydration-associated protein-like protein         125       AT4G25700       Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein         124       AT2G42200       squamosa promoter binding protein-like 9         124       AT2G42200       guamosa promoter binding protein         125       AT4G25760       bifunctional inhibitor/lipid-transfer protein (LTP) family protein         126       AT2G04650       ADP-glucose pyrophosphorylase                                       | 122 | AT1G49500 | transcription initiation factor TFIID subunit 1b-like protein                                                 |
| 122       AT2G22980       serine carboxypeptidase-like 13         122       AT2G3107       TCP domain protein 10         122       AT4G02840       Small nuclear ribonucleoprotein family protein         122       AT4G02840       Small nuclear ribonucleoprotein family protein         122       AT4G038210       expansin A20         123       AT1G22890       transmembrane protein         123       AT2G39930       Dioamylase 1         123       AT3G61250       myb domain protein 17         123       AT4G03893       Sioamylase 1         123       AT4G25835       P-loop containing nucleoside triphosphate hydrolases superfamily protein         123       AT4G53895       Senescence/dehydration-associated protein-like protein         124       AT1G52700       Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein         124       AT3G45060       high affinity nitrate transporter 2.6         124       AT3G20230       blue-copper-binding protein-like 9         125       AT2G04660       ADP-glucose prophosphorylase family protein         126       AT2G04660       ADP-glucose prophosphorylase family protein         127       AT4G22470       protease inhibitor/seed storage/lipid transfer protein (LTP) family protein         125                                                                | 122 | AT1G67980 | caffeoyl-CoA 3-O-methyltransferase                                                                            |
| 122       AT2G31070       TCP domain protein 10         122       AT3G07350       sulfate/thiosulfate import ATP-binding protein, putative (DUF506)         122       AT4G02840       Small nuclear ribonucleoprotein family protein         122       AT4G02840       Small nuclear ribonucleoprotein family protein         123       AT4G02840       expansin A20         123       AT1G22890       transmembrane protein         123       AT3G61250       myb domain protein 17         123       AT4G02840       protein ing nucleoside triphosphate hydrolases superfamily protein         123       AT4G01450       nodulin MtN21 / EamA-like transporter family protein         124       AT4G25835       P-loop containing nucleoside triphosphate hydrolases superfamily protein         123       AT4G3595       Senescence/dehydration-associated protein-like protein         124       AT4G5280       squamosa promoter binding protein-like sotrage 2S albumin superfamily protein         124       AT3G42700       protease inhibitor/seed storage/lipid transfer protein (LTP) family protein         124       AT3G20230       blue-copper-binding protein         125       AT2G04650       ADP-gluccese prophosphorylase family protein         126       AT4G25470       protease inhibitor/seed storage 2         127       AT                             | 122 | AT2G22980 | serine carboxypeptidase-like 13                                                                               |
| 122AT3G07350sulfate/thiosulfate import ATP-binding protein, putative (DUF506)122AT4G02840Small nuclear ribonucleoprotein family protein123AT4G15820ABC subfamily C protein124AT4G58210expansin A20125AT2G39300isoamylase 1126AT4G01450nodulin MtN21 /EamA-like transporter family protein127AT4G01450nodulin MtN21 /EamA-like transporter family protein128AT4G25835P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein129AT4G25805Senescence/dehydration-associated protein-like protein124AT1G2790Bifunctional inhibito/flipid-transfer protein/seed storage 2S albumin<br>superfamily protein124AT2G42200sequamosa promoter binding protein-like 9124AT2G42200protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein125AT2G04500ADP-glucose pyrophosphorylase family protein126AT2G04650ADP-glucose pyrophosphorylase family protein127AT4G2510chloroplast beta-amylase128AT4G3860alainine:glyoxylate aminotransferase 2129AT4G2580glucan endotransglycosylase 6129AT2G3960alainine:glyoxylate aminotransferase 2129AT2G3900superfamily protein125AT2G3900calcum-binding Er-hand family protein126AT4G3810yloglucan endotransglycosylase 6127AT4G3810glycine decarboxylate aminotransferase 2128AT4G33010glyci                                                                                                                  | 122 | AT2G31070 | TCP domain protein 10                                                                                         |
| 122AT4G02840Small nuclear ribonucleoprotein family protein123AT4G15820ABC subfamily C protein124AT4G38210expansin A20123AT1G22890transmembrane protein123AT2G39300Protein kinase superfamily protein123AT2G39930isoamylase 1123AT3G61250myb domain protein 17123AT4G01450nodulin MN21 / EamA-like transporter family protein123AT4G25833P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein123AT4G25835Senescence/dehydration-associated protein-like protein124AT1G62790Bifunctional inhibitor/ligid-transfer protein/seed storage 2S albumin<br>superfamily protein124AT2G42200squamosa promoter binding protein-like 9124AT2G47510fumarase 1124AT4G22470protease inhibitor/ligid-transfer protein (LTP) family<br>protein125AT2G04650ADP-glucose pyrophosphorylase family protein126AT2G0230blue-copter-binding protein127AT4G25810xyloglucan endortansglycosylase 6128AT4G25810xyloglucan endortansglycosylase 6129AT4G25810xyloglucan endortansglycosylase 6129AT4G33960alanine:glycoxylase family protein125AT4G25810xyloglucan endortansglycosylase 6126AT4G328010trehalose phosphatase/synthase 11127AT4G33010glycine decarboxylase P-protein 1128AT4G33010glycine decarboxylase P-protein 1<                                                                                                                                                      | 122 | AT3G07350 | sulfate/thiosulfate import ATP-binding protein, putative (DUF506)                                             |
| 122AT4G15820ABC subfamily C protein122AT4G38210expansin A20123AT1G22890transmembrane protein123AT2G39300Protein kinase superfamily protein123AT3G61250myb domain protein 17123AT4G01450nodulin MtN21 /EamA-like transporter family protein123AT4G55835P-loop containing nucleoside triphosphate hydrolases superfamily protein123AT4G35985Senescence/dehydration-associated protein-like protein124AT1G62790Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein124AT2G42200squamosa promoter binding protein-like 9124AT2G42200squamosa promoter binding protein-like 9124AT2G42200squamosa promoter binding protein-like 9124AT2G42200squamosa promoter binding protein-like 9124AT2G42200squamosa promoter binding protein125AT4G2247510fumarase 1124AT3G65006high affinity nitrate transporter 2.6125AT4G22020blue-copper-binding protein126AT2G20204QD-glucose pyrophosphorylase family protein127AT2G20204GP-shored adhesin-like protein, putative (DUF3741)128AT4G3860alanine:glyoxylate aminotransferase 2129AT4G37500trehalose phosphatase/synthase 11126AT4G37500trehalose phosphatase/synthase 11127AT2G43800Jelve-oycloprosphatase/synthase 8128AT4G33010glycine decarboxylase                                                                                                                                                    | 122 | AT4G02840 | Small nuclear ribonucleoprotein family protein                                                                |
| 122AT4G38210expansin A20123AT1G22890transmembrane protein123AT2G39360Protein kinase superfamily protein123AT2G3930isoamylase 1123AT2G3930isoamylase 1123AT4G01450nodulin MIN21 /EamA-like transporter family protein123AT4G25835P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein123AT4G35985Senescence/dehydration-associated protein-like protein123AT4G35985Senescence/dehydration-associated protein-like protein124AT3G4500Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin<br>superfamily protein124AT2G42200squarnosa promoter binding protein-like 9124AT3G45060high affinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein125AT2G04650ADP-glucose pyrophosphorylase family protein126AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G04602-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily<br>protein125AT2G3208blow corper shofting rates126AT4G3280Eukaryotic aspartyl protein127AT2G3208blow corp of protein128AT4G3280UDP-glucosyltransferase 2126AT4G3280Eukaryotic aspartyl protein127AT4G3280Eukaryotic aspartyl protein128AT4G3520Peroxidase superfamily protein129AT4G                                                                                                                                              | 122 | AT4G15820 | ABC subfamily C protein                                                                                       |
| 123AT1G22890transmembrane protein123AT2G39360Protein kinase superfamily protein123AT2G39301isoamylase 1123AT3G61250myb domain protein 17123AT4G01450nodulin MtN21 /EamA-like transporter family protein123AT4G25835P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein123AT4G25835Senescence/dehydration-associated protein-like protein124AT4G24205Senescence/dehydration-associated protein-like protein124AT1G62790Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin<br>superfamily protein124AT2G42200squamosa promoter binding protein-like 9124AT2G47510fumarase 1124AT3G45060high affinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G04660ADP-glucose pyrophosphorylase family protein126AT2G21320B-box zinc finger family protein127AT4G25810xyloglucan endotransglycosylase 6128AT4G37520Peroxidase superfamily protein126AT2G43800UDP-glucosyltransferase 74F2126AT4G37520Peroxidase superfamily protein127AT4G3500catalase 2128AT4G37520Peroxidase superful protein127AT4G3500catalase 2128AT4G3500catalase 21                                                                                                                                                                        | 122 | AT4G38210 | expansin A20                                                                                                  |
| 123AT2G39360Protein kinase superfamily protein123AT2G39930isoamylase 1123AT3G61250myb domain protein 17123AT4G01450nodulin MtN21 /EamA-like transporter family protein123AT4G25835P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein123AT4G35985Senescence/dehydration-associated protein-like protein124AT5G14970seed maturation-like protein124AT2G42200Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin<br>superfamily protein124AT2G47510fumarase 1124AT3G45060high affinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein125AT2G04650ADP-glucose pryophosphorylase family protein125AT2G046002-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily<br>protein125AT2G20240GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G20240GPI-anchored adhesin-like protein125AT4G25810xyloglucan endotransglycosylase 6126AT4G37520Peroxidase superfamily protein127AT4G37520Peroxidase superfamily protein128AT4G37520Peroxidase superfamily protein129AT2G150903-ketoacyl-CoA synthase 8120AT2G150903-ketoacyl-CoA synthase 8121AT4G35090catalase 2122AT4G35090catalase 2123AT4G35090cat                                                                                                                                                       | 123 | AT1G22890 | transmembrane protein                                                                                         |
| 123AT2G39930isoamylase 1123AT3G61250myb domain protein 17123AT4G01450nodulin MtN21 /EamA-like transporter family protein123AT4G25835P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein123AT4G35985Senescence/dehydration-associated protein-like protein123AT4G25835Senescence/dehydration-associated protein-like protein124AT1G2790Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin<br>superfamily protein124AT2G42200squamosa promoter binding protein-like 9124AT2G42200squamosa promoter binding protein-like 9124AT2G42200squamosa promoter binding protein-like 9124AT3G45060high affinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G069602-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily<br>protein125AT2G20240GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G20240GPI-anchored adhesin-like protein125AT4G25810xyloglucan endotransglycosylase 6126AT4G25810xyloglucan endotransglycosylase 11127AT4G17090chloroplast beta-amylase128AT4G37520Peroxidase superfamily protein126AT2G18700trehalose phosphatase/synthase 11127AT4G35090sketoacyl-CoA synthase 8 <tr< td=""><td>123</td><td>AT2G39360</td><td>Protein kinase superfamily protein</td></tr<> | 123 | AT2G39360 | Protein kinase superfamily protein                                                                            |
| 123AT3G61250myb domain protein 17123AT4G01450nodulin MtN21 /EamA-like transporter family protein123AT4G25835P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein123AT4G35985Senescence/dehydration-associated protein-like protein123AT4G2790Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin<br>superfamily protein124AT1G62790Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin<br>superfamily protein124AT2G42200squamosa promoter binding protein-like 9124AT3G45060high affinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein125AT4G20230blue-copper-binding protein126AT2G04650ADP-glucose ptrophosphorylase family protein125AT2G04650ADP-glucose ptrophosphorylase family protein125AT2G20240GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G20240GPI-anchored adhesin-like protein, putative (DUF3741)125AT4G25810xyloglucan endotransglycosylase 6126AT4G37520Bebox zinc finger family protein127AT4G34820UDP-glucosyltransferase 74F2128AT4G3900atalase 2129AT4G33010glycine decarboxylase P-protein 1126AT2G18700trehalose phosphatase/synthase 8127AT4G33000glycine decarboxylase P-protein 1128AT4G3900atalase 2127                                                                                                 | 123 | AT2G39930 | isoamylase 1                                                                                                  |
| 123AT4G01450nodulin MtN21 /EamA-like transporter family protein123AT4G25835P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein123AT4G35985Senescence/dehydration-associated protein-like protein124AT1G62790Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin<br>superfamily protein124AT2G42200squamosa promoter binding protein-like 9124AT3G45060high affinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein125AT2G46500ADP-glucose pyrophosphorylase family protein126AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G20240GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G20240chloroplast beta-amylase125AT4G1709chloroplast beta-amylase126AT2G18700trehalose phosphatase/synthase 11127AT4G3806alanine:glyoxylate aminotransferase 2128AT4G3700trehalose phosphatase/synthase 11129AT2G15093-ketoacyl-CoA synthase 8127AT4G35090catalase 2128AT4G35090catalase 2129AT4G35090catalase 2129AT3G144001-amino-cyclopropane-1-carboxylate synthase 2126AT4G35090catalase 2127AT5G04600Heavy metal transport/detoxification superfamily protein <t< td=""><td>123</td><td>AT3G61250</td><td>myb domain protein 17</td></t<>                                                      | 123 | AT3G61250 | myb domain protein 17                                                                                         |
| 123AT4G25835P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein123AT4G35985Senescence/dehydration-associated protein-like protein124AT5G14970seed maturation-like protein124AT1G62790Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin<br>superfamily protein124AT2G42200squamosa promoter binding protein-like 9124AT2G47510fumarase 1124AT3G45060high affinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G20240GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G20240GPI-anchored adhesin-like protein, putative (DUF3741)125AT4G25810xyloglucan endotransglycosylase 6125AT4G25810xyloglucan endotransglycosylase 6126AT4G39660alanine:glyoxylate aminitransferase 2126AT4G37500trehalose phosphatase/synthase 11126AT2G43820UDP-glucosyltransferase 74F2127AT4G33010glycine decarboxylase P-protein 1127AT4G33010glycine decarboxylase P-protein 1127AT4G33010glycine decarboxylase P-protein 1127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT4G3400Lalcium-binding EF-hand fami                                                                                                                  | 123 | AT4G01450 | nodulin MtN21 /EamA-like transporter family protein                                                           |
| 123AT4G35885Senescence/dehydration-associated protein-like protein123AT5G14970seed maturation-like protein124AT1G62790Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin124AT2G42200squamosa promoter binding protein-like 9124AT2G47510fumarase 1124AT3G45060high affinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G069602-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily<br>protein125AT2G2200B-box zinc finger family protein125AT2G2120B-box zinc finger family protein125AT4G25810xyloglucan endotransglycosylase 6125AT4G3260alanine:glyoxylate aminotransferase 2126AT4G3750Eukaryotic aspartyl protease family protein126AT2G18700trehalose phosphatase/synthase 11126AT2G15093-ketoacyl-CoA synthase 8127AT4G33010glycine decarboxylase P-protein 1127AT4G3509catalase 2127AT5G0260Heavy metal transport/detoxification superfamily protein127AT4G3509catalase 2128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2129AT4G3509catalase 2127AT5G14230miter brotein128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2 <t< td=""><td>123</td><td>AT4G25835</td><td>P-loop containing nucleoside triphosphate hydrolases superfamily protein</td></t<>                                  | 123 | AT4G25835 | P-loop containing nucleoside triphosphate hydrolases superfamily protein                                      |
| 123AT5614970seed maturation-like protein124AT1G62790Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin124AT2G42200squamosa promoter binding protein-like 9124AT3G45060high affinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein124AT5G20230blue-copper-binding protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G1700GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G21320B-box zinc finger family protein125AT4G7090chloroplast beta-amylase126AT4G3230Eukaryotic aspartyl protease family protein127AT2G18700trehalose phosphatase/synthase 11126AT2G43820UDP-glucosyltransferase 74F2127AT4G33010glycine decarboxylase P-protein 1127AT4G3400calcium-binding EF-hand family protein127AT4G3400calcium-binding EF-hand family protein127AT4G3010glycine decarboxylase P-protein 1127AT4G3020catalase 2127AT5G0260Heavy metal transport/detoxification superfamily protein127A                                                                                                                                           | 123 | AT4G35985 | Senescence/dehydration-associated protein-like protein                                                        |
| 124AT1G62790Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin<br>superfamily protein124AT2G42200squamosa promoter binding protein-like 9124AT2G47510fumarase 1124AT3G45060high affinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein124AT5G20230blue-copper-binding protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G0240GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G22100B-box zinc finger family protein125AT4G25810xyloglucan endotransglycosylase 6126AT4G39660alanine:glyoxylate aminotransferase 2126AT1G03230Eukaryotic aspartyl protease family protein126AT2G18700trehalose phosphatase/synthase 11126AT2G18700trehalose phosphatase/synthase 11126AT2G1320B-box zinc finger F-hand family protein127AT4G3310glycine decarboxylase P-protein 1127AT4G3960alanine:glyoxylate aminotransferase 2128AT4G37500catalase 2129AT4G37500catalase 2126AT4G37500catalase 14127AT4G37500catalase 2127AT4G3010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/                                                                                                                                                                                         | 123 | AT5G14970 | seed maturation-like protein                                                                                  |
| 124A12G42200squamosa promoter binding protein-like 9124AT2G47510fumarase 1124AT3G45060high affinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein124AT5G20230blue-copper-binding protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G02400GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G20240GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G20240GPI-anchored adhesin-like protein125AT4G17090chloroplast beta-amylase125AT4G25810xyloglucan endotransglycosylase 6125AT4G39660alanine:glyoxylate aminotransferase 2126AT1G03230Eukaryotic aspartyl protease family protein127AT2G18700trehalose phosphatase/synthase 11126AT2G43820UDP-glucosyltransferase 74F2127AT4G37520Peroxidase superfamily protein127AT4G3440Calcium-binding EF-hand family protein127AT4G3010glycine decarboxylase P-protein 1127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G14230ankyrin128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2129AT1G5790purine permease 18128AT2G3529hypothetical protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein128AT3G18                                                                                                                                                                               | 124 | AT1G62790 | Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein                     |
| 124A12G47510fumarase 1124AT3G45060high affinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein124AT5G20230blue-copper-binding protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G02400CPI-anchored adhesin-like protein, putative (DUF3741)125AT2G21320B-box zinc finger family protein125AT4G17090chloroplast beta-amylase125AT4G25810xyloglucan endotransglycosylase 6125AT4G39660alanine:glyoxylate aminotransferase 2126AT1G03230Eukaryotic aspartyl protease family protein126AT2G48820UDP-glucosyltransferase 74F2126AT4G37520Peroxidase superfamily protein127AT4G3440Calcium-binding EF-hand family protein127AT4G3010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein127AT6G14230ankyrin128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2128AT1637590purine permease 18129AT3G18390CRS1 / YhbY (CRM) domain-containing protein                                                                                                                                                                                                                                                                                                                                                                   | 124 | AT2G42200 | squamosa promoter binding protein-like 9                                                                      |
| 124AT3G45060nign atrinity nitrate transporter 2.6124AT4G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein124AT5G20230blue-copper-binding protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G069602-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily<br>protein125AT2G20240GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G21320B-box zinc finger family protein125AT4G17090chloroplast beta-amylase125AT4G25810xyloglucan endotransglycosylase 6125AT4G39660alanine:glyoxylate aminotransferase 2126AT1G03230Eukaryotic aspartyl protease family protein126AT2G43820UDP-glucosyltransferase 74F2126AT4G37520Peroxidase superfamily protein127AT2G150903-ketoacyl-CoA synthase 8127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G14230ankyrin128AT16014801-amino-cyclopropane-1-carboxylate synthase 2128AT1637990purine permease 18129AT3G18390CRS1 / YhbY (CRM) domain-containing protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein                                                                                                                                                                                                                                                       | 124 | AT2G47510 | tumarase 1                                                                                                    |
| 124A14G22470protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein124AT5G20230blue-copper-binding protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G069602-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily<br>protein125AT2G20240GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G21320B-box zinc finger family protein125AT4G17090chloroplast beta-amylase126AT4G25810xyloglucan endotransglycosylase 6127AT4G39660alanine:glyoxylate aminotransferase 2126AT4G37200trehalose phosphatase/synthase 11126AT2G18700trehalose phosphatase/synthase 11126AT2G150903-ketoacyl-CoA synthase 8127AT4G13440Calcium-binding EF-hand family protein127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G02600Heavy metal transport/detoxification superfamily protein127AT614230ankyrin128AT16014801-amino-cyclopropane-1-carboxylate synthase 2128AT1657990purine permease 18129AT3G18390CRS1 / YhbY (CRM) domain-containing protein129AT3G18390CRS1 / YhbY (CRM) domain-containing protein                                                                                                                                                                                                                                  | 124 | AT3G45060 | nigh affinity nitrate transporter 2.6                                                                         |
| 124Artsoczosbite dopper binding protein125AT2G04650ADP-glucose pyrophosphorylase family protein125AT2G069602-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily<br>protein125AT2G20240GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G21320B-box zinc finger family protein125AT4G17090chloroplast beta-amylase125AT4G25810xyloglucan endotransglycosylase 6125AT4G39660alanine:glyoxylate aminotransferase 2126AT1G03230Eukaryotic aspartyl protease family protein126AT2G18700trehalose phosphatase/synthase 11126AT2G150903-ketoacyl-CoA synthase 8127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G02600Heavy metal transport/detoxification superfamily protein127AT4G35090catalase 2128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2128AT1G57990purine permease 18128AT2G35290hypothetical protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein129AT3G18390CRS1 / YhbY (CRM) domain-containing protein                                                                                                                                                                                                                                                            | 124 | A14G22470 | protease inhibitor/seed storage/lipid transfer protein (LTP) family<br>protein<br>blue-copper-binding protein |
| 125AT2C00400ADF glacose pytophosphoryase family protein125AT2C0069602-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily<br>protein125AT2G20240GPI-anchored adhesin-like protein, putative (DUF3741)125AT2G21320B-box zinc finger family protein125AT4G17090chloroplast beta-amylase125AT4G25810xyloglucan endotransglycosylase 6125AT4G39660alanine:glyoxylate aminotransferase 2126AT1G03230Eukaryotic aspartyl protease family protein126AT2G18700trehalose phosphatase/synthase 11126AT2G43820UDP-glucosyltransferase 74F2126AT4G37520Peroxidase superfamily protein127AT4G13440Calcium-binding EF-hand family protein127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G14230ankyrin128AT16014801-amino-cyclopropane-1-carboxylate synthase 2128AT2G35290purine permease 18128AT2G35290hypothetical protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein                                                                                                                                                                                                                                                                                                                                               | 125 | AT2G04650 | ADP-glucose pyrophosphorylase family protein                                                                  |
| 125AT26000002 oxglatrate (200) and refit) appendent oxygentate superfaining<br>protein125AT2620240GPI-anchored adhesin-like protein, putative (DUF3741)125AT2621320B-box zinc finger family protein125AT4G17090chloroplast beta-amylase125AT4G25810xyloglucan endotransglycosylase 6125AT4G39660alanine:glyoxylate aminotransferase 2126AT4G30230Eukaryotic aspartyl protease family protein126AT2G18700trehalose phosphatase/synthase 11126AT2G43820UDP-glucosyltransferase 74F2126AT4G37520Peroxidase superfamily protein127AT2G150903-ketoacyl-CoA synthase 8127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G14230ankyrin128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2128AT2G35290purine permease 18128AT2G35290hypothetical protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein129AT3G18390CRS1 / YhbY (CRM) domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                    | 125 | AT2G06960 | 2-oxoglutarate (20G) and Ee(II)-dependent oxygenase superfamily                                               |
| 125AT2G21320B-box zinc finger family protein125AT4G17090chloroplast beta-amylase125AT4G25810xyloglucan endotransglycosylase 6125AT4G39660alanine:glyoxylate aminotransferase 2126AT1G03230Eukaryotic aspartyl protease family protein126AT2G18700trehalose phosphatase/synthase 11126AT2G43820UDP-glucosyltransferase 74F2126AT4G37520Peroxidase superfamily protein127AT2G150903-ketoacyl-CoA synthase 8127AT4G13440Calcium-binding EF-hand family protein127AT4G3010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2128AT1G57900purine permease 18128AT2G35290hypothetical protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125 | AT2G20240 | protein<br>GPI-anchored adhesin-like protein, putative (DUF3741)                                              |
| 125AT4G17090chloroplast beta-amylase125AT4G25810xyloglucan endotransglycosylase 6125AT4G39660alanine:glyoxylate aminotransferase 2126AT1G03230Eukaryotic aspartyl protease family protein126AT2G18700trehalose phosphatase/synthase 11126AT2G43820UDP-glucosyltransferase 74F2126AT4G37520Peroxidase superfamily protein127AT2G150903-ketoacyl-CoA synthase 8127AT4G13440Calcium-binding EF-hand family protein127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2128AT2G35290purine permease 18128AT3G18390CRS1 / YhbY (CRM) domain-containing protein129AT3G18390CRS1 / YhbY (CRM) domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125 | AT2G21320 | B-box zinc finger family protein                                                                              |
| 125AT4G25810xyloglucan endotransglycosylase 6125AT4G39660alanine:glyoxylate aminotransferase 2126AT1G03230Eukaryotic aspartyl protease family protein126AT2G18700trehalose phosphatase/synthase 11126AT2G43820UDP-glucosyltransferase 74F2126AT4G37520Peroxidase superfamily protein127AT2G150903-ketoacyl-CoA synthase 8127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G14230ankyrin128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2128AT2G35290hypothetical protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125 | AT4G17090 | chloroplast beta-amvlase                                                                                      |
| 125AT4G39660alanine:glyoxylate aminotransferase 2126AT1G03230Eukaryotic aspartyl protease family protein126AT2G18700trehalose phosphatase/synthase 11126AT2G43820UDP-glucosyltransferase 74F2126AT4G37520Peroxidase superfamily protein127AT2G150903-ketoacyl-CoA synthase 8127AT4G13440Calcium-binding EF-hand family protein127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G14230ankyrin128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2128AT2G35290purine permease 18128AT2G35290hypothetical protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein128AT3G18390CRS1 / YhbY (cRM) domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125 | AT4G25810 | xyloglucan endotransglycosylase 6                                                                             |
| 126AT1G03230Eukaryotic aspartyl protease family protein126AT2G18700trehalose phosphatase/synthase 11126AT2G43820UDP-glucosyltransferase 74F2126AT4G37520Peroxidase superfamily protein127AT2G150903-ketoacyl-CoA synthase 8127AT4G13440Calcium-binding EF-hand family protein127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G14230ankyrin128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2128AT1G57990purine permease 18128AT2G35290hypothetical protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein129AT3C3220zing finger (AN4 like) family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125 | AT4G39660 | alanine:glyoxylate aminotransferase 2                                                                         |
| 126AT2G18700trehalose phosphatase/synthase 11126AT2G43820UDP-glucosyltransferase 74F2126AT4G37520Peroxidase superfamily protein127AT2G150903-ketoacyl-CoA synthase 8127AT4G13440Calcium-binding EF-hand family protein127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G14230ankyrin128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2128AT2G35290purine permease 18128AT2G35290hypothetical protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein129AT3C28210zing fingger (AN4 like) family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 126 | AT1G03230 | Eukaryotic aspartyl protease family protein                                                                   |
| 126AT2G43820UDP-glucosyltransferase 74F2126AT4G37520Peroxidase superfamily protein127AT2G150903-ketoacyl-CoA synthase 8127AT4G13440Calcium-binding EF-hand family protein127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G14230ankyrin128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2128AT2G35290purine permease 18128AT2G35290hypothetical protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 126 | AT2G18700 | trehalose phosphatase/synthase 11                                                                             |
| 126AT4G37520Peroxidase superfamily protein127AT2G150903-ketoacyl-CoA synthase 8127AT4G13440Calcium-binding EF-hand family protein127AT4G33010glycine decarboxylase P-protein 1127AT4G35090catalase 2127AT5G02600Heavy metal transport/detoxification superfamily protein127AT5G14230ankyrin128AT1G014801-amino-cyclopropane-1-carboxylate synthase 2128AT1G57990purine permease 18128AT2G35290hypothetical protein128AT3G18390CRS1 / YhbY (CRM) domain-containing protein129AT3C38210ring finger (AN4 like) formily eretsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 126 | AT2G43820 | UDP-glucosyltransferase 74F2                                                                                  |
| <ul> <li>AT2G15090 3-ketoacyl-CoA synthase 8</li> <li>AT4G13440 Calcium-binding EF-hand family protein</li> <li>AT4G33010 glycine decarboxylase P-protein 1</li> <li>AT4G35090 catalase 2</li> <li>AT5G02600 Heavy metal transport/detoxification superfamily protein</li> <li>AT5G14230 ankyrin</li> <li>AT1G01480 1-amino-cyclopropane-1-carboxylate synthase 2</li> <li>AT1G57990 purine permease 18</li> <li>AT2G35290 hypothetical protein</li> <li>AT3G18390 CRS1 / YhbY (CRM) domain-containing protein</li> <li>AT2C38210 zing finger (AN4 like) family parts in</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126 | AT4G37520 | Peroxidase superfamily protein                                                                                |
| <ul> <li>AT4G13440 Calcium-binding EF-hand family protein</li> <li>AT4G33010 glycine decarboxylase P-protein 1</li> <li>AT4G35090 catalase 2</li> <li>AT5G02600 Heavy metal transport/detoxification superfamily protein</li> <li>AT5G14230 ankyrin</li> <li>AT1G01480 1-amino-cyclopropane-1-carboxylate synthase 2</li> <li>AT1G57990 purine permease 18</li> <li>AT2G35290 hypothetical protein</li> <li>AT3G18390 CRS1 / YhbY (CRM) domain-containing protein</li> <li>AT2C38210 zing finger (AN4 like) family parts in</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 127 | AT2G15090 | 3-ketoacyl-CoA synthase 8                                                                                     |
| <ul> <li>127 AT4G33010 glycine decarboxylase P-protein 1</li> <li>127 AT4G35090 catalase 2</li> <li>127 AT5G02600 Heavy metal transport/detoxification superfamily protein</li> <li>127 AT5G14230 ankyrin</li> <li>128 AT1G01480 1-amino-cyclopropane-1-carboxylate synthase 2</li> <li>128 AT1G57990 purine permease 18</li> <li>128 AT2G35290 hypothetical protein</li> <li>128 AT3G18390 CRS1 / YhbY (CRM) domain-containing protein</li> <li>129 AT3C38210 zing finger (AN4 like) family parts in</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 127 | AT4G13440 | Calcium-binding EF-hand family protein                                                                        |
| <ul> <li>AT4G35090 catalase 2</li> <li>AT5G02600 Heavy metal transport/detoxification superfamily protein</li> <li>AT5G14230 ankyrin</li> <li>AT1G01480 1-amino-cyclopropane-1-carboxylate synthase 2</li> <li>AT1G57990 purine permease 18</li> <li>AT2G35290 hypothetical protein</li> <li>AT3G18390 CRS1 / YhbY (CRM) domain-containing protein</li> <li>AT2C38210 zing finger (AN4 like) family protein</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 127 | AT4G33010 | glycine decarboxylase P-protein 1                                                                             |
| <ul> <li>127 AT5G02600 Heavy metal transport/detoxification superfamily protein</li> <li>127 AT5G14230 ankyrin</li> <li>128 AT1G01480 1-amino-cyclopropane-1-carboxylate synthase 2</li> <li>128 AT1G57990 purine permease 18</li> <li>128 AT2G35290 hypothetical protein</li> <li>128 AT3G18390 CRS1 / YhbY (CRM) domain-containing protein</li> <li>129 AT3C38210 ring finger (AN4 like) family protein</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 127 | AT4G35090 | catalase 2                                                                                                    |
| <ul> <li>127 AT5G14230 ankyrin</li> <li>128 AT1G01480 1-amino-cyclopropane-1-carboxylate synthase 2</li> <li>128 AT1G57990 purine permease 18</li> <li>128 AT2G35290 hypothetical protein</li> <li>128 AT3G18390 CRS1 / YhbY (CRM) domain-containing protein</li> <li>129 AT3C38210 ring finger (AN4 like) family protein</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 127 | AT5G02600 | Heavy metal transport/detoxification superfamily protein                                                      |
| <ul> <li>AT1G01480 1-amino-cyclopropane-1-carboxylate synthase 2</li> <li>AT1G57990 purine permease 18</li> <li>AT2G35290 hypothetical protein</li> <li>AT3G18390 CRS1 / YhbY (CRM) domain-containing protein</li> <li>AT3C38210 ring finger (ANI4 like) family protein</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 127 | AT5G14230 | ankyrin                                                                                                       |
| <ul> <li>AT1G57990 purine permease 18</li> <li>AT2G35290 hypothetical protein</li> <li>AT3G18390 CRS1 / YhbY (CRM) domain-containing protein</li> <li>AT3C38210 ring finger (ANI4 like) family protein</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128 | AT1G01480 | 1-amino-cyclopropane-1-carboxylate synthase 2                                                                 |
| <ul> <li>AT2G35290 hypothetical protein</li> <li>AT3G18390 CRS1 / YhbY (CRM) domain-containing protein</li> <li>AT3C38210 ring finger (ANI4 like) family protein</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 128 | AT1G57990 | purine permease 18                                                                                            |
| 128 AT3G18390 CRS1 / YhbY (CRM) domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128 | AT2G35290 | hypothetical protein                                                                                          |
| 129 AT2C22210 zino finger (ANI Ilico) family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128 | AT3G18390 | CRS1 / YhbY (CRM) domain-containing protein                                                                   |
| 120 A 13G20210 ZINC HINGER (AN I-like) family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 128 | AT3G28210 | zinc finger (AN1-like) family protein                                                                         |

| 129       AT1G06135       transmembrane protein         129       AT1G16060       alpha/beta hydrolase family protein         129       AT3G16600       myb domain protein 43         129       AT3G64170       dentin sialophosphoprotein-like protein         130       AT1G05400       P-loop containing nucleoside triphosphate hydrolases superfamily protein         130       AT1G19610       defensin-like protein         130       AT1G32170       xyloglucan endotransglucosylase/hydrolase 30         1310       AT2G44520       CBS domain protein (DUF21)         130       AT3G45970       expansin-like A1         131       AT3G0550       Phytochrome kinase substrate 1         131       AT5G4570       RAB GTPase homolog A1C         131       AT5G4570       RAB GTPase homolog A1C         132       AT1G73600       S-adenosyl-L-methionine-dependent methyltransferases superfamily protein         132       AT1G726202       Okothrome P450, family 82, subfamily G, polypeptide 1         132       AT3G25180       tytochrome P450, family 82, subfamily G, polypeptide 1         133       AT1G22400       DEAD/DEAH box RNA helicase family protein         134       AT3G45120       EAD/DEAH box RNA helicase family protein         135       AT3G2120       E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 128 | AT4G01360 | BPS1-like protein                                                                                       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|---------------------------------------------------------------------------------------------------------|--|
| 129       ATG 15060       alpha/beta hydrolase family protein         129       AT5G 16600       myb domain protein 43         129       AT5G 16600       myb domain protein 43         129       AT5G 16600       P-loop containing nucleoside triphosphate hydrolases superfamily protein         130       AT1G 19610       defensin-like protein         130       AT1G 22170       xyloglucan endotransglucosylase/hydrolase 30         130       AT2G 4520       CBS domain protein (DUF21)         130       AT3G 45970       expansin-like A1         131       AT3G 29290       NAD(P)-binding Rossmann-fold superfamily protein         131       AT3G 45970       expansin-like A1         131       AT4G 05330       ARF-GAP domain 13         131       AT3G 45970       expansin A7         132       AT1G 12560       expansin A7         132       AT1G 73600       S-adenosyl-L-methionine-dependent methyltransferases superfamily protein         132       AT3G 25180       cytochrome P450, family 82, subfamily G, polypeptide 1         132       AT4G 29660       Alkaline-phosphatase-like family protein         133       AT1G 22900       Disease resistance-responsive (dirigent-like protein) family protein         133       AT1620408       E-box zinc finger fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 129 | AT1G06135 | transmembrane protein                                                                                   |  |
| 129       AT4G14630       germin-like protein 9         129       AT5G16600       myb domain protein 43         129       AT5G64170       dentin sialophosphoprotein-like protein         130       AT1005460       P-loop containing nucleoside triphosphate hydrolases superfamily protein         130       AT1612170       xyloglucan endotransglucosylase/hydrolase 30         130       AT2G14520       CBS domain protein (DUF21)         130       AT2G02950       phytochrome kinase substrate 1         131       AT4605330       ARF-GAP domain 13         131       AT4605330       ARF-GAP domain 13         131       AT6365190       TCP family transcription factor         132       AT1672600       S-adenosyl-L-methionine-dependent methyltransferases superfamily protein         132       AT3G25180       cytochrome P450, family 82, subfamily G, polypeptide 1         132       AT3G25180       cytochrome P450, family 82, subfamily G, polypeptide 1         132       AT3G25180       cytochrome P450, family 82, subfamily G, polypeptide 1         133       AT1622000       DEAD/DEAH box RNA helicase family protein         134       AT3G25180       cytochrome family protein         135       AT1622000       Disease resistance-responsive (dirigent-like protein) family protein      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 129 | AT1G15060 | alpha/beta hydrolase family protein                                                                     |  |
| 129       AT5G16600       myb domain protein 43         129       AT5G64170       dentin sialophosphoprotein-like protein         130       AT1G05460       P-loop containing nucleoside triphosphate hydrolases superfamily protein         130       AT1G19610       defensin-like protein         130       AT1G19610       defensin-like protein         130       AT2G14520       CBS domain protein (DUF21)         130       AT2G3290       NAD(P)-binding Rossmann-fold superfamily protein         131       AT5G4570       expansin-like A1         131       AT5G45750       RAB GTPase homolog A1C         131       AT5G45760       RAB GTPase homolog A1C         131       AT5G45760       RAB GTPase homolog A1C         132       AT1G12560       expansin A7         132       AT1G25780       S-adenosyl-L-methionine-dependent methyltransferases superfamily protein         132       AT4G262680       Alkaline-phosphatase-like family protein         133       AT1G22000       Disease resistance-responsive (dirigent-like protein) family protein         133       AT1622900       Disease resistance-responsive (dirigent-like protein) family protein         133       AT4G228680       Alkaline-phosphatase         134       AT3G21250       transmembrane prote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 129 | AT4G14630 | germin-like protein 9                                                                                   |  |
| 129       AT5G64170       dentin sialophosphoprotein-like protein         130       AT1605460       P-loop containing nucleoside triphosphate hydrolases superfamily protein         130       AT1619610       defensin-like protein         130       AT1632170       xyloglucan endotransglucosylase/hydrolase 30         130       AT26329200       NAD(P)-binding Rossmann-fold superfamily protein         131       AT3645970       expansin-like A1         131       AT4005330       ARF-GAP domain 13         131       AT5645750       RAB GTPase homolog A1C         132       AT1612560       expansin-like family transcription factor         132       AT1673600       S-adenosyl-L-methionine-dependent methyltransferases superfamily protein         132       AT2617265       homoserine kinase         132       AT2612650       cytochrome P450, family 82, subfamily G, polypeptide 1         132       AT3625180       cytochrome P450, family grotein         133       AT1622000       Disease resistance-responsive (dirigent-like protein) family protein         134       AT3624120       DEAD/DEAH box RNA helicase family protein         133       AT1622000       Disease resistance-responsive (dirigent-like protein) family protein         133       AT3624120       sadenylyhyhosphosulfate reductase 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 129 | AT5G16600 | myb domain protein 43                                                                                   |  |
| 130AT1605460P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein130AT1619610defensin-like protein130AT1632170xyloglucan endotransglucosylase/hydrolase 30130AT2614520CSS domain protein (DUF21)130AT26029290NAD(P)-binding Rossmann-fold superfamily protein131AT2602950phytochrome kinase substrate 1131AT4605330ARF-GAP domain 13131AT5645750RAB GTPase homolog A1C131AT5645750RAB GTPase homolog A1C132AT1672600S-adenosyl-L-methionine-dependent methyltransferases superfamily<br>protein132AT2617265homoserine kinase133AT26217265homoserine kinase134AT4629680Alkaline-phosphatase-like family protein135AT167000B-box zinc finger family R2, subfamily G, polypeptide 1136AT1622900Disease resistance-responsive (dirgent-like protein) family protein135AT1622900Disease resistance-responsive (dirgent-like protein) family protein136AT262150transmembrane protein, putative (DUF679 domain membrane protein 1)137AT4620070allantoate amidohydrolase138AT4620070allantoate amidohydrolase139AT4620070allantoate amidohydrolase139AT4620070allantoate amidohydrolase139AT462080FAD-binding Berberine family protein131AT462080FAD-binding Berberine family protein131AT462080FAD-binding Berb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 129 | AT5G64170 | dentin sialophosphoprotein-like protein                                                                 |  |
| 130       AT1G19610       defensin-like protein         130       AT1G32170       xyloglucan endotransglucosylase/hydrolase 30         130       AT2G14520       CBS domain protein (DUF21)         130       AT2G29290       NAD(P)-binding Rossmann-fold superfamily protein         131       AT2G02950       phytochrome kinase substrate 1         131       AT2G04550       expansin-like A1         131       AT5G45750       RAB GTPase homolog A1C         131       AT5G51910       TCP family transcription factor         132       AT1G73600       S-adenosyl-L-methionine-dependent methyltransferases superfamily protein         132       AT1G7260       expansin A7         133       AT3G25180       cytochrome P450, family 82, subfamily G, polypeptide 1         134       AT4629680       Alkaline-phosphatase-like family protein         135       AT167200       DEAD/DEAH box RNA helicase family protein         136       AT1622100       DEAD/DEAH box Size family protein         137       AT1622000       Disease resistance-responsive (dirigent-like protein) family protein         138       AT2G2120       NAD(P)-binding Rossmann-fold superfamily protein         139       AT4G20070       allantoate amidohydrolase         131       AT4G20120       a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130 | AT1G05460 | P-loop containing nucleoside triphosphate hydrolases superfamily protein                                |  |
| 130       AT1G32170       xyloglucan endotransglucosylase/hydrolase 30         130       AT2G14520       CBS domain protein (DUF21)         130       AT2G29290       NAD(P)-binding Rossmann-fold superfamily protein         131       AT2G02950       phytochrome kinase substrate 1         131       AT4G05330       ARF-GAP domain 13         131       AT4605330       ARF-GAP domain 13         131       AT5G5190       TCP family transcription factor         132       AT1G12560       expansin A7         132       AT1G73600       S-adenosyl-L-methionine-dependent methyltransferases superfamily protein         132       AT3G5180       cytochrome P450, family 82, subfamily G, polypeptide 1         133       AT3G25180       cytochrome P450, family brotein         134       AT5G11200       DEAD/DEAH box RNA helicase family protein         135       AT1G06040       B-box zinc finger family protein         136       AT2G21520       transmembrane protein, putative (DUF679 domain membrane protein 1)         137       AT3G21520       transmembrane protein, putative (DUF679 domain membrane protein 1)         138       AT4G20070       allantoate amidohydrolase       1         139       AT4G5150       P-loop containing nucleoside triphosphate hydrolases superfamily protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 130 | AT1G19610 | defensin-like protein                                                                                   |  |
| 130       AT2G14520       CBS domain protein (DUF21)         130       AT2G29290       NAD(P)-binding Rossmann-fold superfamily protein         131       AT3G45970       expansin-like A1         131       AT4G05330       ARF-GAP domain 13         131       AT5G45750       RAB GTPase homolog A1C         131       AT5G51910       TCP family transcription factor         132       AT1G73600       S-adenosyl-L-methionine-dependent methyltransferases superfamily protein         132       AT1G73600       S-adenosyl-L-methionine-dependent methyltransferases superfamily protein         132       AT2G17265       homoserine kinase       .         132       AT3G25180       cytochrome P450, family 82, subfamily G, polypeptide 1         133       AT4G29800       Alkaline-phosphatase-like family protein         134       AT5G11200       DEAD/DEAH box RNA helicase family protein         135       AT1G22900       Disease resistance-responsive (dirigent-like protein) family protein         133       AT2G24190       NAD(P)-binding Rossmann-fold superfamily protein         133       AT3G2520       transmembrane protein, putative (DUF679 domain membrane protein 1)         133       AT4G20070       allantoate amidohydrolase       2         134       AT4G201520       transmembr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130 | AT1G32170 | xyloglucan endotransglucosylase/hydrolase 30                                                            |  |
| 130AT2G29290NAD(P)-binding Rossmann-fold superfamily protein130AT3G45970expansin-like A1131AT2G02950phytochrome kinase substrate 1131AT4G05330ARF-GAP domain 13131AT5G45750RAB GTPase homolog A1C131AT5G45750RAB GTPase homolog A1C131AT5G45750RAB GTPase homolog A1C132AT1G12560expansin A7132AT1G73600S-adenosyl-L-methionine-dependent methyltransferases superfamily<br>protein132AT2G17265homoserine kinase132AT3G25180cytochrome P450, family 82, subfamily G, polypeptide 1132AT3G25180cytochrome P450, family grotein133AT1G20900Disease resistance-responsive (dirigent-like protein) family protein133AT1G22900Disease resistance-responsive (dirigent-like protein) family protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G2295EXS (ERD1/XPR1/SYG1) family protein133AT4G20070allantoate amidohydrolase134AT4G21520transmembrane protein, putative (DUF679 domain membrane protein<br>1)135AT1G621805'adenylylphosphosulfate reductase 2134AT3G15210ethylene responsive element binding factor 4135AT1G620730NAD(P)-linked oxidoreductase superfamily protein136AT3G35970P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein135AT1G20800Subtilase family protein135AT1G32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 130 | AT2G14520 | CBS domain protein (DUF21)                                                                              |  |
| 130AT3G45970expansin-like A1131AT2G02950phytochrome kinase substrate 1131AT4G05330ARF-GAP domain 13131AT5G45750RAB GTPase homolog A1C131AT5G51910TCP family transcription factor132AT1G12560expansin A7133AT2G17265homoserine kinase134AT2G17265homoserine kinase135AT42G27680cytochrome P450, family 82, subfamily G, polypeptide 1136AT4G29680Alkaline-phosphatase-like family protein137AT4G29680Alkaline-phosphatase-like family protein138AT1G22900Disease resistance-responsive (dirigent-like protein) family protein139AT1G22900Disease resistance-responsive (dirigent-like protein) family protein131AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G24295EXS (ERD1/XPR1/SYG1) family protein133AT4G20070allantoate amidohydrolase134AT4G16060hypothetical protein135AT1G23807P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein136AT1G32960Subtilase family protein137AT4G20830FAD-binding Berberine family protein138AT1G2380FAD-binding Berberine family protein139AT4G20830FAD-binding Berberine family protein131AT4G20830FAD-binding Berberine family protein135AT1G23960Subtilase family protein136AT4G37530Peroxidase superfamil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130 | AT2G29290 | NAD(P)-binding Rossmann-fold superfamily protein                                                        |  |
| 131AT2G02950phytochrome kinase substrate 1131AT4G05330ARF-GAP domain 13131AT5G45750RAB GTPase homolog A1C131AT5G51910TCP family transcription factor132AT1G12560expansin A7132AT1G73600S-adenosyl-L-methionine-dependent methyltransferases superfamily<br>protein132AT2G17265homoserine kinase132AT3G25180cytochrome P450, family 82, subfamily G, polypeptide 1132AT4G29680Alkaline-phosphatase-like family protein133AT5G11200DEAD/DEAH box RNA helicase family protein134AT5G22900Disease resistance-responsive (dirigent-like protein) family protein133AT1G224190NAD(P)-binding Rossmann-fold superfamily protein133AT2G24120transmembrane protein, putative (DUF679 domain membrane protein 1)133AT4G20070allantoate amidohydrolase134AT4G21520transmembrane protein, putative (DUF679 domain membrane protein 1)135AT4G20070allantoate amidohydrolase134AT4G21520sadenylylphosphosulfate reductase 2134AT4G26070ethylene responsive element binding factor 4134AT4G20300NAD(P)-linked oxidoreductase superfamily protein135AT1G22600Subtilase family protein136AT3G55700P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein135AT1G20300NAD(P)-linked oxidoreductase superfamily protein136AT4G20830FAD-binding Berberine family pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130 | AT3G45970 | expansin-like A1                                                                                        |  |
| 131AT4G05330ARF-GAP domain 13131AT5G45750RAB GTPase homolog A1C131AT5G51910TCP family transcription factor132AT1G12560expansin A7132AT1G73600S-adenosyl-L-methionine-dependent methyltransferases superfamily<br>protein132AT3G25180cytochrome P450, family 82, subfamily G, polypeptide 1132AT3G25180cytochrome P450, family 82, subfamily G, polypeptide 1132AT3G25180cytochrome P450, family 82, subfamily G, polypeptide 1133AT4G29680Alkaline-phosphatase-like family protein134AT5G11200DEAD/DEAH box RNA helicase family protein135AT1G2900Disease resistance-responsive (dirigent-like protein) family protein133AT1G22300Disease resistance-responsive (dirigent-like protein) family protein133AT3G21520transmembrane protein, putative (DUF679 domain membrane protein<br>1)133AT4G20070allantoate amidohydrolase134AT4G21070allantoate amidohydrolase135AT4G2070allantoate amidohydrolase136AT4G235970P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein135AT1G32900Subtilase family protein136AT4G20303FAD-binding Berberine family protein137AT4G20070allantoate amidohydrolase138AT4G20830FAD-binding Berberine family protein139AT4G20830FAD-binding Berberine family protein136AT4G23530Peroxidase superfamily protein<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 131 | AT2G02950 | phytochrome kinase substrate 1                                                                          |  |
| 131AT5G45750RAB GTPase homolog A1C131AT5G51910TCP family transcription factor132AT1G12560expansin A7132AT1G73600S-adenosyl-L-methionine-dependent methyltransferases superfamily<br>protein132AT2G17265homoserine kinase132AT3G25180cytochrome P450, family 82, subfamily G, polypeptide 1132AT4G29680Alkaline-phosphatase-like family protein132AT5G11200DEAD/DEAH box RNA helicase family protein133AT1G06040B-box zinc finger family protein133AT1622900Disease resistance-responsive (dirigent-like protein) family protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G2120transmembrane protein, putative (DUF679 domain membrane protein 1)133AT4G20070allantoate amidohydrolase134AT4G2180S'adenylylphosphosulfate reductase 2134AT3G15210ethylene responsive element binding factor 4134AT4G16060hypothetical protein135AT1G32960Subtilase family protein136AT4G20830FAD-binding Berberine family protein137AT4G20830FAD-binding Berberine family protein138AT4G20830FAD-binding Berberine family protein139AT1G26400calmodulin binding protein134AT6G2730NAD(P)-linked oxidoreductase superfamily protein135AT1G22800calmodulin binding protein136AT3G37530Peroxidase superfamily protein<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 131 | AT4G05330 | ARF-GAP domain 13                                                                                       |  |
| 131AT5G51910TCP family transcription factor132AT1G12560expansin A7132AT1G73600S-adenosyl-L-methionine-dependent methyltransferases superfamily<br>protein132AT2G17265homoserine kinase132AT3G25180cytochrome P450, family 82, subfamily G, polypeptide 1132AT4G29680Alkaline-phosphatase-like family protein132AT5G11200DEAD/DEAH box RNA helicase family protein133AT1G06040B-box zinc finger family protein133AT1622900Disease resistance-responsive (dirigent-like protein) family protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein134AT3G21520transmembrane protein, putative (DUF679 domain membrane protein 1)133AT4G20070allantoate amidohydrolase134AT4621805'adenylylphosphosulfate reductase 2134AT4621805'adenylylphosphosulfate reductase 2134AT462180byothetical protein135AT1G2960Subtilase family protein136AT4G29830FAD-binding Berberine family protein137AT4620830FAD-binding Berberine family protein138AT5G57010calmodulin-binding family protein136AT4G2980Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein135AT162400FAD-binding Berberine family protein136 </td <td>131</td> <td>AT5G45750</td> <td>RAB GTPase homolog A1C</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 131 | AT5G45750 | RAB GTPase homolog A1C                                                                                  |  |
| 132AT1G12560expansin A7132AT1G73600S-adenosyl-L-methionine-dependent methyltransferases superfamily<br>protein132AT2G17265homoserine kinase132AT3G25180cytochrome P450, family 82, subfamily G, polypeptide 1132AT4G29800Alkaline-phosphatase-like family protein133AT5G11200DEAD/DEAH box RNA helicase family protein133AT1G06040B-box zinc finger family protein133AT1G22900Disease resistance-responsive (dirigent-like protein) family protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G3295EXS (ERD1/XPR1/SYG1) family protein133AT4G20070allantoate amidohydrolase134AT4G20070allantoate amidohydrolase135AT1G62180S'adenylylphosphosulfate reductase 2134AT3G15210ethylene responsive element binding factor 4134AT4G20830P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein135AT1G32960Subtiliase family protein136AT4G20830FAD-binding Berberine family protein137AT4G20830FAD-binding Berberine family protein138AT5G57010calmodulin binding protein139AT3G13450Transketolase family protein136AT3G3580Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein<br>family136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein137AT1G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 131 | AT5G51910 | TCP family transcription factor                                                                         |  |
| 132AT1G73600S-adenosyl-L-methionine-dependent methyltransferases superfamily<br>protein132AT2G17265homoserine kinase132AT3G25180cytochrome P450, family 82, subfamily G, polypeptide 1132AT4G29680Alkaline-phosphatase-like family protein132AT5G11200DEAD/DEAH box RNA helicase family protein133AT1G06040B-box zinc finger family protein133AT1G22900Disease resistance-responsive (dirigent-like protein) family protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G3295EXS (ERD1/XPR1/SYG1) family protein133AT4G20070allantoate amidohydrolase134AT4G21070allantoate amidohydrolase135AT4G2100ethylene responsive element binding factor 4134AT5G3570P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein135AT1G60730NAD(P)-linked oxidoreductase superfamily protein136AT4G2080FAD-binding Berberine family protein137AT4G20830FAD-binding Berberine family protein138AT1G60730NAD(P)-linked oxidoreductase superfamily protein139AT4G23580calmodulin binding family protein131AT4G20830FAD-binding Berberine family protein132AT1G26400FAD-binding Berberine family protein135AT1G26400FAD-binding Berberine family protein136AT3G5710calmodulin binding family protein137AT4G3580Late embryogenesis abundant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 132 | AT1G12560 | expansin A7                                                                                             |  |
| 132A12G17265homoserine kinase132AT3G25180cytochrome P450, family 82, subfamily G, polypeptide 1132AT4G29680Alkaline-phosphatase-like family protein133AT5G11200DEAD/DEAH box RNA helicase family protein133AT1G06040B-box zinc finger family protein133AT1G22900Disease resistance-responsive (dirigent-like protein) family protein133AT1G22900Disease resistance-responsive (dirigent-like protein) family protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G21520transmembrane protein, putative (DUF679 domain membrane protein<br>1)133AT4G20070allantoate amidohydrolase134AT4G21805'adenylylphosphosulfate reductase 2134AT3G51210ethylene responsive element binding factor 4134AT4G16060hypothetical protein135AT1G32960Subtilase family protein136AT1G32960Subtilase family protein137AT4G20830FAD-binding Berberine family protein138AT4G2960NAD(P)-linked oxidoreductase superfamily protein136AT4G37530Peroxidase superfamily protein137AT4G2960calmodulin-binding family protein138ATG20830FAD-binding Berberine family protein139ATG20830FAD-binding Berberine family protein136ATG26400FAD-binding Berberine family protein136ATG26400FAD-binding Berberine family protein136ATG26400FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 132 | AT1G73600 | S-adenosyl-L-methionine-dependent methyltransferases superfamily protein                                |  |
| 132A13G25180cytochrome P450, family 82, subfamily G, polypeptide 1132AT4G29680Alkaline-phosphatase-like family protein133AT5G11200DEAD/DEAH box RNA helicase family protein133AT1606040B-box zinc finger family protein133AT1622900Disease resistance-responsive (dirigent-like protein) family protein133AT1622900Disease resistance-responsive (dirigent-like protein) family protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G32295EXS (ERD1/XPR1/SYG1) family protein133AT3G21520transmembrane protein, putative (DUF679 domain membrane protein 1)133AT4G20070allantoate amidohydrolase134AT4G21805'adenylylphosphosulfate reductase 2134AT3G5210ethylene responsive element binding factor 4134AT4G16060hypothetical protein135AT1G32960Subtilase family protein136AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT4G20830FAD-binding Berberine family protein135AT5G57010calmodulin-binding family protein136AT3G2450Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136AT3G13450Transketolase family pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 132 | AT2G17265 | homoserine kinase                                                                                       |  |
| 132Al4G29680Alkaline-phosphatase-like family protein132AT5G11200DEAD/DEAH box RNA helicase family protein133AT1G06040B-box zinc finger family protein133AT1G22900Disease resistance-responsive (dirigent-like protein) family protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G32295EXS (ERD1/XPR1/SYG1) family protein133AT2G32295EXS (ERD1/XPR1/SYG1) family protein133AT3G21520transmembrane protein, putative (DUF679 domain membrane protein 1)133AT4G20070allantoate amidohydrolase134AT1G621805'adenylylphosphosulfate reductase 2134AT3G15210ethylene responsive element binding factor 4134AT4G16060hypothetical protein135AT1G62960Subtilase family protein136AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT4G20830FAD-binding Berberine family protein135AT5G57010calmodulin binding protein136AT1G26400FAD-binding Berberine family protein136AT3G13450Transketolase family protein136AT3G5580Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family136AT3G15770hypothetical protein136AT3G15700katonia protein136AT3G1450Transketolase family protein136AT3G1450Transketolase family protei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 132 | AT3G25180 |                                                                                                         |  |
| 132AT5G11200DEAD/DEAH box RNA helicase family protein133AT1G06040B-box zinc finger family protein133AT1G22900Disease resistance-responsive (dirigent-like protein) family protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G32295EXS (ERD1/XPR1/SYG1) family protein133AT3G21520transmembrane protein, putative (DUF679 domain membrane protein<br>1)133AT4G20070allantoate amidohydrolase134AT1G621805'adenylylphosphosulfate reductase 2134AT3G15210ethylene responsive element binding factor 4134AT4G16060hypothetical protein135AT1G32960Subtilase family protein136AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT4G37530Peroxidase superfamily protein136AT3G17501calmodulin-binding family protein137AT1G26400FAD-binding Berberine family protein138AT1G26400FAD-binding Berberine family protein136AT1626400FAD-binding family protein136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136AT3G124020biztwordene identify protein136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132 | AT4G29680 | Alkaline-phosphatase-like family protein                                                                |  |
| 133AT1G06040B-box zinc finger family protein133AT1G22900Disease resistance-responsive (dirigent-like protein) family protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G32295EXS (ERD1/XPR1/SYG1) family protein133AT3G21520transmembrane protein, putative (DUF679 domain membrane protein<br>1)133AT4G20070allantoate amidohydrolase134AT1G621805'adenylylphosphosulfate reductase 2134AT3G15210ethylene responsive element binding factor 4134AT4G16060hypothetical protein135AT1G32960Subtilase family protein136AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT4G20830FAD-binding Berberine family protein135AT5G57010calmodulin-binding family protein136AT3G26400FAD-binding family protein136AT1G26400FAD-binding Berberine family protein136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136AT3G12420myb domain protein 28136AT3G12420myb domain protein 28137AT3G26400FAD-binding Berberine family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 132 | AT5G11200 | DEAD/DEAH box RNA helicase family protein                                                               |  |
| 133AT1G22900Disease resistance-responsive (dirigent-like protein) family protein133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G32295EXS (ERD1/XPR1/SYG1) family protein133AT3G21520transmembrane protein, putative (DUF679 domain membrane protein<br>1)133AT4G20070allantoate amidohydrolase134AT1G621805'adenylylphosphosulfate reductase 2134AT3G15210ethylene responsive element binding factor 4134AT4G16060hypothetical protein135AT1G32960Subtilase family protein136AT1G32960Subtilase family protein135AT4G20830FAD-binding Berberine family protein136AT4G37530Peroxidase superfamily protein137AT5G57010calmodulin-binding family protein138AT2G28980Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein<br>family136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136AT3G13450 <t< td=""><td>133</td><td>AT1G06040</td><td>B-box zinc finger family protein</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 133 | AT1G06040 | B-box zinc finger family protein                                                                        |  |
| 133AT2G24190NAD(P)-binding Rossmann-fold superfamily protein133AT2G32295EXS (ERD1/XPR1/SYG1) family protein133AT3G21520transmembrane protein, putative (DUF679 domain membrane protein<br>1)133AT4G20070allantoate amidohydrolase134AT1G621805'adenylylphosphosulfate reductase 2134AT3G15210ethylene responsive element binding factor 4134AT4G16060hypothetical protein134AT4G16060hypothetical protein135AT1G32960Subtilase family protein136AT1G32960Subtilase family protein135AT4G20830FAD-binding Berberine family protein135AT4G20830FAD-binding Berberine family protein135AT5G04020calmodulin binding protein136AT1G263980Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein<br>family136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 133 | AT1G22900 | Disease resistance-responsive (dirigent-like protein) family protein                                    |  |
| 133AT2G32295EXS (ERD1/XPR1/SYG1) family protein133AT3G21520transmembrane protein, putative (DUF679 domain membrane protein<br>1)133AT4G20070allantoate amidohydrolase134AT1G621805'adenylylphosphosulfate reductase 2134AT3G15210ethylene responsive element binding factor 4134AT4G16060hypothetical protein134AT4G16060hypothetical protein135AT1G32960Subtilase family protein135AT1G32960Subtilase family protein135AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT4G20830FAD-binding Berberine family protein135AT4G37530Peroxidase superfamily protein135AT5G04020calmodulin binding protein136AT1G26400FAD-binding Berberine family protein136AT2G35980Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein<br>family136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein <td< td=""><td>133</td><td>AT2G24190</td><td>NAD(P)-binding Rossmann-fold superfamily protein</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 133 | AT2G24190 | NAD(P)-binding Rossmann-fold superfamily protein                                                        |  |
| 133AT3G21520transmembrane protein, putative (DUF679 domain membrane protein<br>1)133AT4G20070allantoate amidohydrolase134AT1G621805'adenylylphosphosulfate reductase 2134AT3G15210ethylene responsive element binding factor 4134AT4G16060hypothetical protein134AT5G35970P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein135AT1G32960Subtilase family protein135AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT4G20830FAD-binding Berberine family protein135AT4G37530Peroxidase superfamily protein135AT5G04020calmodulin binding protein136AT1G26400FAD-binding Berberine family protein136AT1G26400FAD-binding Berberine family protein136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136AT3G1420myb domain protein136AT3G1420myb domain protein136AT3G1420myb domain protein136AT3G1420myb domain protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133 | AT2G32295 | EXS (ERD1/XPR1/SYG1) family protein                                                                     |  |
| 133AT4620070analytotic anitotity of base134AT1G621805'a denylyl phosphosulfate reductase 2134AT3G15210ethylene responsive element binding factor 4134AT4G16060hypothetical protein134AT5G35970P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein135AT1G32960Subtilase family protein135AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT4G20830FAD-binding Berberine family protein135AT4G37530Peroxidase superfamily protein135AT5G04020calmodulin binding protein136AT1G26400FAD-binding Berberine family protein136AT1G26400FAD-binding Berberine family protein136AT3G13450Transketolase family protein136AT3G15770hypothetical protein136AT3G15770hypothetical protein136AT3G1450Transketolase family protein136AT3G12450Transketolase family protein136AT3G13450Transketolase family protein136AT3G12420hypothetical protein136AT3G12420hypothetical protein136AT3G15770hypothetical protein136AT3G12420myb domain protein 28137AT40402020hiptore dage with the section of the section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 133 | AT3G21520 | transmembrane protein, putative (DUF679 domain membrane protein<br>1)                                   |  |
| 134ATIG62180Stadenylylphosphosphosphosphosphosphosphosphosphos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 | AT4G20070 |                                                                                                         |  |
| 134AT3G15210ethylene responsive element binding factor 4134AT4G16060hypothetical protein134AT5G35970P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein135AT1G32960Subtilase family protein135AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT4G20830FAD-binding Berberine family protein135AT4G37530Peroxidase superfamily protein135AT4G37530Peroxidase superfamily protein135AT5G04020calmodulin binding protein136AT1G26400FAD-binding Berberine family protein136AT1G26400FAD-binding Berberine family protein136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136AT3G15770hypothetical protein136AT3G15770hypothetical protein136AT3G15450Transketolase family protein136AT3G15450Transketolase family protein136AT3G13450Transketolase family protein136AT3G15770hypothetical protein136AT3G15770hypothetical protein136AT5G61420myb domain protein 28137AT5G61420hiptere dage in the method in the protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 134 | AT1G02100 | stadenyiyiphosphosullate reductase 2                                                                    |  |
| 134AT4G 16060hypothetical protein134AT5G35970P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein135AT1G32960Subtilase family protein135AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT4G20830FAD-binding Berberine family protein135AT4G37530Peroxidase superfamily protein135AT4G37530Peroxidase superfamily protein135AT5G04020calmodulin binding protein135AT5G57010calmodulin-binding family protein136AT1G26400FAD-binding Berberine family protein136AT2G35980Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein<br>family136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136AT3G165770hypothetical protein136AT3G61420myb domain protein 28137AT4G2020biatere dia with protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 134 | AT3G15210 | ethylene responsive element binding factor 4                                                            |  |
| 134A15G35970P-loop containing nucleoside triphosphate hydrolases superfamily<br>protein135AT1G32960Subtilase family protein135AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT4G20830FAD-binding Berberine family protein135AT4G37530Peroxidase superfamily protein135AT5G04020calmodulin binding protein135AT5G57010calmodulin-binding family protein136AT1G26400FAD-binding Berberine family protein136AT1G26400FAD-binding Berberine family protein136AT2G35980Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein<br>family136AT3G13450Transketolase family protein136AT3G15770hypothetical protein136AT5G61420myb domain protein 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 134 | AT4G16060 |                                                                                                         |  |
| 135AT1G60730NAD(P)-linked oxidoreductase superfamily protein135AT4G20830FAD-binding Berberine family protein135AT4G37530Peroxidase superfamily protein135AT5G04020calmodulin binding protein135AT5G57010calmodulin-binding family protein136AT1G26400FAD-binding Berberine family protein136AT2G35980Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein<br>family136AT3G13450Transketolase family protein136AT3G15770hypothetical protein136AT5G61420myb domain protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 134 | AT5G35970 | P-loop containing nucleoside tripnosphate hydrolases superfamily<br>protein<br>Subtilase family protein |  |
| 135AT4G20830FAD-binding Berberine family protein135AT4G37530Peroxidase superfamily protein135AT5G04020calmodulin binding protein135AT5G57010calmodulin-binding family protein136AT1G26400FAD-binding Berberine family protein136AT2G35980Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein<br>family136AT3G13450Transketolase family protein136AT3G13450Transketolase family protein136AT3G15770hypothetical protein136AT5G61420myb domain protein 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 135 | AT1G60730 | NAD(P)-linked oxidoreductase superfamily protein                                                        |  |
| 135AT4626000Fride binding Derbohne ranny protein135AT4G37530Peroxidase superfamily protein135AT5G04020calmodulin binding protein135AT5G57010calmodulin-binding family protein136AT1G26400FAD-binding Berberine family protein136AT2G35980Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein<br>family136AT3G13450Transketolase family protein136AT3G15770hypothetical protein136AT5G61420myb domain protein 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135 | AT4G20830 | FAD-binding Berberine family protein                                                                    |  |
| 135AT5G04020calmodulin binding protein135AT5G57010calmodulin-binding family protein136AT1G26400FAD-binding Berberine family protein136AT2G35980Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein<br>family136AT3G13450Transketolase family protein136AT3G15770hypothetical protein136AT5G61420myb domain protein 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 135 | AT4G37530 | Peroxidase superfamily protein                                                                          |  |
| 135AT5G57010calmodulin-binding family protein136AT1G26400FAD-binding Berberine family protein136AT2G35980Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein<br>family136AT3G13450Transketolase family protein136AT3G15770hypothetical protein136AT5G61420myb domain protein 28137AT4040200histore days in the set of the set                                                                                                                                                                                                                                                                      | 135 | AT5G04020 | calmodulin binding protein                                                                              |  |
| 136AT1G26400FAD-binding Berberine family protein136AT2G35980Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein<br>family136AT3G13450Transketolase family protein136AT3G15770hypothetical protein136AT5G61420myb domain protein 28137AT4040200histore de crister                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135 | AT5G57010 | calmodulin-binding family protein                                                                       |  |
| <ul> <li>AT2G35980 Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family</li> <li>AT3G13450 Transketolase family protein</li> <li>AT3G15770 hypothetical protein</li> <li>AT5G61420 myb domain protein 28</li> <li>AT4C10200 bistore de science de s</li></ul> | 136 | AT1G26400 | FAD-binding Berberine family protein                                                                    |  |
| <ul> <li>136 AT3G13450 Transketolase family protein</li> <li>136 AT3G15770 hypothetical protein</li> <li>136 AT5G61420 myb domain protein 28</li> <li>137 AT4C102020 history days in the second second</li></ul> | 136 | AT2G35980 | Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein                                      |  |
| <ul> <li>AT3G15770 hypothetical protein</li> <li>AT5G61420 myb domain protein 28</li> <li>AT4C102020 history days in the second second</li></ul>  | 136 | AT3G13450 | family<br>Transketolase family protein                                                                  |  |
| 136 AT5G61420 myb domain protein 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 136 | AT3G15770 | hypothetical protein                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 136 | AT5G61420 | myb domain protein 28                                                                                   |  |
| 137 A I 1G19330 Instone deacetylase complex subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 137 | AT1G19330 | histone deacetylase complex subunit                                                                     |  |

| 137 | AT1G66840  | PLASTID MOVEMENT IMPAIRED protein (DUF827)                                      |
|-----|------------|---------------------------------------------------------------------------------|
| 137 | AT1G76650  | calmodulin-like 38                                                              |
| 137 | AT3G55970  | jasmonate-regulated gene 21                                                     |
| 137 | AT4G37290  | transmembrane protein                                                           |
| 137 | AT5G01100  | O-fucosyltransferase family protein                                             |
| 138 | AT1G18440  | Peptidyl-tRNA hydrolase family protein                                          |
| 138 | AT2G44195  | pre-mRNA splicing factor domain-containing protein                              |
| 138 | AT3G01180  | starch synthase 2                                                               |
| 138 | AT3G01830  | Calcium-binding EF-hand family protein                                          |
| 138 | AT5G07690  | myb domain protein 29                                                           |
| 139 | AT2G23180  | cytochrome P450, family 96, subfamily A, polypeptide 1                          |
| 139 | AT2G29460  | glutathione S-transferase tau 4                                                 |
| 139 | AT3G22942  | G-protein gamma subunit 2                                                       |
| 139 | AT3G25250  | AGC (cAMP-dependent, cGMP-dependent and protein kinase C) kinase family protein |
| 139 | AT4G17680  | SBP (S-ribonuclease binding protein) family protein                             |
| 140 | AT2G37240  | Thioredoxin superfamily protein                                                 |
| 140 | AT3G07330  | Cellulose-synthase-like C6                                                      |
| 140 | AT4G13400  | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein         |
| 140 | AT2C 41800 | camodulin o                                                                     |
| 141 | AT2G41890  | containing protein<br>NAD-dependent protein deacetylase HST1-like protein       |
| 141 | AT3G09770  | RING/LI-box superfamily protein                                                 |
| 141 | AT5G20700  | senescence-associated family protein putative (DUE581)                          |
| 142 | AT1G73590  | Auxin efflux carrier family protein                                             |
| 142 | AT1G78590  | NAD(H) kinase 3                                                                 |
| 142 | AT2G41560  | autoinhibited Ca(2)-ATPase_isoform 4                                            |
| 142 | AT3G52720  | alpha carbonic anhydrase 1                                                      |
| 143 | AT1G18300  | nudix hydrolase homolog 4                                                       |
| 143 | AT1G24520  | homolog of Brassica campestris pollen protein 1                                 |
| 143 | AT3G25585  | aminoalcoholphosphotransferase                                                  |
| 143 | AT4G09180  | basic helix-loop-helix (bHLH) DNA-binding superfamily protein                   |
| 143 | AT4G17350  | auxin canalization protein (DUF828)                                             |
| 144 | AT1G19630  | cytochrome P450, family 722, subfamily A, polypeptide 1                         |
| 144 | AT1G30370  | alpha/beta-Hydrolases superfamily protein                                       |
| 144 | AT1G63030  | Integrase-type DNA-binding superfamily protein                                  |
| 144 | AT3G11800  | Expp1 protein                                                                   |
| 144 | AT3G25780  | allene oxide cyclase 3                                                          |
| 145 | AT4G12130  | Glycine cleavage T-protein family                                               |
| 145 | AT4G15810  | P-loop containing nucleoside triphosphate hydrolases superfamily protein        |
| 145 | AT4G26400  | RING/U-box superfamily protein                                                  |
| 145 | AT5G04110  | DNA GYRASE B3                                                                   |
| 146 | AT3G21750  | UDP-glucosyl transferase 71B1                                                   |
| 146 | AT3G21760  | UDP-Glycosyltransferase superfamily protein                                     |
| 146 | AT4G37000  | accelerated cell death 2 (ACD2)                                                 |
| 146 | AT5G16170  | Core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase family              |

|     |           | protein                                                                  |
|-----|-----------|--------------------------------------------------------------------------|
| 147 | AT1G17340 | Phosphoinositide phosphatase family protein                              |
| 147 | AT2G39450 | Cation efflux family protein                                             |
| 147 | AT4G23496 | SPIRAL1-like5                                                            |
| 148 | AT1G71696 | carboxypeptidase D                                                       |
| 148 | AT3G19710 | branched-chain aminotransferase4                                         |
| 148 | AT3G60530 | GATA transcription factor 4                                              |
| 149 | AT1G35560 | TCP family transcription factor                                          |
| 149 | AT1G60960 | iron regulated transporter 3                                             |
| 149 | AT2G31790 | UDP-Glycosyltransferase superfamily protein                              |
| 149 | AT3G03780 | methionine synthase 2                                                    |
| 150 | AT3G04310 | transmembrane protein                                                    |
| 150 | AT3G61190 | BON association protein 1                                                |
| 150 | AT4G30700 | Pentatricopeptide repeat (PPR) superfamily protein                       |
| 150 | AT5G53030 | hypothetical protein                                                     |
| 151 | AT1G28480 | Thioredoxin superfamily protein                                          |
| 151 | AT1G56060 | cysteine-rich/transmembrane domain protein B                             |
| 151 | AT3G46070 | C2H2-type zinc finger family protein                                     |
| 152 | AT1G06550 | ATP-dependent caseinolytic (Clp) protease/crotonase family protein       |
| 152 | AT5G08415 | Radical SAM superfamily protein                                          |
| 152 | AT5G57300 | S-adenosyl-L-methionine-dependent methyltransferases superfamily protein |
| 153 | AT1G14205 | Ribosomal L18p/L5e family protein                                        |

The list of lowering time genes extracted from the list above – the genes highlighted in bold are those that are seen in the GRN of flowering genes.

| AT1G01480 | AT1G63030 | AT3G05120 | AT4G03210 | AT5G39860 |
|-----------|-----------|-----------|-----------|-----------|
| AT1G04390 | AT1G65060 | AT3G18520 | AT4G04760 | AT5G40630 |
| AT1G08230 | AT1G66400 | AT3G18990 | AT4G14640 | AT5G49730 |
| AT1G12610 | AT1G70560 | AT3G19170 | AT4G15900 | AT5G49740 |
| AT1G12820 | AT1G73250 | AT3G22160 | AT4G28700 | AT5G54840 |
| AT1G13260 | AT1G73660 | AT3G22370 | AT4G35900 | AT5G55950 |
| AT1G16750 | AT2G19670 | AT3G22380 | AT4G36050 | AT5G58930 |
| AT1G17680 | AT2G22540 | AT3G24130 | AT4G36930 | AT5G62000 |
| AT1G19190 | AT2G22930 | AT3G25730 | AT4G39210 | AT5G63960 |
| AT1G22770 | AT2G23950 | AT3G46070 | AT5G01600 |           |
| AT1G23020 | AT2G32950 | AT3G46820 | AT5G04000 |           |
| AT1G23860 | AT2G34060 | AT3G51630 | AT5G06850 |           |
| AT1G27460 | AT2G34850 | AT3G54560 | AT5G08020 |           |
| AT1G35720 | AT2G37340 | AT3G58070 | AT5G19430 |           |
| AT1G36150 | AT2G41100 | AT3G59420 | AT5G20320 |           |
| AT1G51140 | AT2G41250 | AT3G61700 | AT5G22290 |           |
| AT1G51200 | AT2G41890 | AT4G00360 | AT5G25220 |           |
| AT1G52310 | AT2G47890 | AT4G01060 | AT5G27320 |           |

## Appendix B

The list of T-DNA insertional lines obtained from NASC and screened to identify loss-of-function mutants.

| Line name | Gene Locus Identified | Mutant line   | NASC No. |
|-----------|-----------------------|---------------|----------|
| rap2.12-1 | At1g53910             | GK-503A11     | N448203  |
| rap2.12-2 | At1g53910             | SAIL_1215_H10 | N878557  |
| rap2.12-3 | At1g53910             | GK-137C12     | N413092  |
| rap2.12-4 | At1g53910             | SALK_019187   | N519187  |
| rap2.12-5 | At1g53910             | SALK_070755   | N570755  |
| rap2.12-6 | At1g53910             | SALK_106201   | N606201  |
| rap2.12-7 | At1g53910             | SALK_106203   | N606203  |
| rap2.12-8 | At1g53910             | SALK_152421   | N652421  |
| uktf-1    | At1g16750             | SALK_061668   | N561668  |
| uktf-2    | At1g16750             | SALK_089535   | N589535  |
| uktf-3    | At1g16750             | SALK_144830C  | N658962  |
| uktf-4    | At1g16750             | SAIL_327_D01  | N815201  |
| uktf-5    | At1g16750             | SAIL_744_D11  | N833296  |
| uktf-6    | At1g16750             | SAIL_802_F11  | N863293  |
| fd-2      | At4g35900             | SALK_013288   | N513288  |
| fd-3      | At4g35900             | SALK_054421c  | N678498  |
| fd-4      | At4g35900             | SALK_118487c  | N676655  |
| fd-5      | At4g35900             | SALK_150991   | N650991  |
| fd-6      | At4g35900             | SALK_013272   | N513272  |
| poz-1     | At1g55760             | SALK_038930c  | N654605  |
| poz-2     | At1g55760             | SALK_127778c  | N676860  |
| poz-3     | At1g55760             | SALK_075267c  | N680500  |
| poz-4     | At1g55760             | SAIL_672_G04  | N862962  |
| agl22-1   | At2g22540             | SALK_141694   | N641694  |
| agl22-2   | At2g22540             | SALK_141683   | N641683  |
| agl22-3   | At2g22540             | SALK_141674   | N641674  |
| agl22-4   | At2g22540             | SAIL_583_C08  | N824840  |
| agl22-5   | At2g22540             | SALK_141675   | N641675  |
| svp-31    | At2g22540             | SALK_026551C  | N660785  |
| svp-32    | At2g22540             | SALK_072930C  | N666411  |
| bhlh038-1 | At3g56970             | SALK_020183c  | N664471  |
| bhlh038-2 | At3g56970             | SALK_108159c  | N655819  |
| bhlh038-3 | At3g56970             | SAIL_106_F03  | N805131  |
| bhlh038-4 | At3g56970             | SAIL_447_H01  | N874278  |
| bhlh038-5 | At3g56970             | GK-047G03     | N404491  |
| anl2-2    | At4g00730             | SALK_000196c  | N661242  |
| anl2-3    | At4g00730             | SALK_007529   | N507529  |
| anl2-4    | At4g00730             | SAIL_418_C10  | N819318  |
| anl2-5    | At4g00730             | SAIL_604_C01  | N825790  |
| anl2-6    | At4g00730             | SALK_103392   | N603392  |
| anl2-7    | At4g00730             | SAIL_1158_C12 | N842731  |

# Appendix C

#### Primers for screening T-DNA insertional mutants

| scr_GK1_RAP2.12_F | TGGCTACTCCTGAATGCAAAC                                                                                                                                                                                                                                                                                                                                |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| scr_GK1_RAP2.12_R | CTCAGCTGTCTTGAACGTTCC                                                                                                                                                                                                                                                                                                                                |
| scr_GK2_RAP2.12_F | AAAGTTACTGGCTTGGATGGG                                                                                                                                                                                                                                                                                                                                |
| scr_GK2_RAP2.12_R | AATTTACGAGAACCGGTTTGG                                                                                                                                                                                                                                                                                                                                |
| UKTF_F_screen     | CTTTGGCTCGCTCCACTTATCTGA                                                                                                                                                                                                                                                                                                                             |
| UKTF_R_screen     | TCTCTTGTTCGAGCTTAGAGACCGTA                                                                                                                                                                                                                                                                                                                           |
| FD_F_screen       | AGTCACACATGAAAGTTGAAAGTGA                                                                                                                                                                                                                                                                                                                            |
| FD R stop         | TCAAAATGGAGCTGTGG                                                                                                                                                                                                                                                                                                                                    |
| POZ F start       | caccATGACTGATTCTGCTTACAGAGTAG                                                                                                                                                                                                                                                                                                                        |
| POZ R stop        | CTAAAATCCTTTCCAGGTACTG                                                                                                                                                                                                                                                                                                                               |
| AGL22 F start     | caccATGGCGAGAGAAAAGATTC                                                                                                                                                                                                                                                                                                                              |
| AGL22 R stop      | CTAACCACCATACGGTAAGCTGCACAACAC                                                                                                                                                                                                                                                                                                                       |
| scr3_AGL22_F      | TCAGCGAACTTCAGAAAAAGG                                                                                                                                                                                                                                                                                                                                |
| AGL22 R stop      | CTAACCACCATACGGTAAGCTGCACAACAC                                                                                                                                                                                                                                                                                                                       |
| BHLH038 F start   | caccATGTGTGCATTAGTCCCTTC                                                                                                                                                                                                                                                                                                                             |
| scr_BHLH038_R     | ATCAGCCCCTCGTCTCTCTAG                                                                                                                                                                                                                                                                                                                                |
| BHLH038 F start   | caccATGTGTGCATTAGTCCCTTC                                                                                                                                                                                                                                                                                                                             |
| BHLH038 R stop    | CTAGTTAAACGAGTTTTCACATTTC                                                                                                                                                                                                                                                                                                                            |
| ANL2 F start      | caccATGAACTTCGGTAGTCTCTTCG                                                                                                                                                                                                                                                                                                                           |
| ANL2 R stop       | TCAGCTTTCGCATTGTAAAG                                                                                                                                                                                                                                                                                                                                 |
| scr2_ANL2_SAIL_F  | GCATCCAGACGAGAAACAAAG                                                                                                                                                                                                                                                                                                                                |
| scr2_ANL2_SAIL_R  | GCAGAACCGGAGGAAATTAAC                                                                                                                                                                                                                                                                                                                                |
|                   | scr_GK1_RAP2.12_F<br>scr_GK1_RAP2.12_R<br>scr_GK2_RAP2.12_R<br>uKTF_F_screen<br>UKTF_R_screen<br>FD_F_screen<br>FD R stop<br>POZ F start<br>POZ R stop<br>AGL22 F start<br>AGL22 R stop<br>scr3_AGL22_F<br>AGL22 R stop<br>BHLH038 F start<br>scr_BHLH038_R<br>BHLH038 R stop<br>ANL2 F start<br>ANL2 R stop<br>scr2_ANL2_SAIL_F<br>scr2_ANL2_SAIL_R |

#### Primers for Gateway® cloning and RT-PCR

| RAP2.12 | RAP F cloning   | caccATGTGTGGAGGAGCTATAATA      |
|---------|-----------------|--------------------------------|
|         | RAP R stop      | TCAGAAGACTCCTCCAATC            |
| UKTF    | UKTF F start    | caccATGTCTGGAGACTCTCTGCT       |
|         | UKTF R stop     | CTACGGAAGAAACAAATATCG          |
| FD      | FD F start      | caccATGTTGTCATCAGCTAAGCAT      |
|         | FD R stop       | TCAAAATGGAGCTGTGG              |
| POZ     | POZ F start     | caccATGACTGATTCTGCTTACAGAGTAG  |
|         | POZ R stop      | CTAAAATCCTTTCCAGGTACTG         |
| AGL22   | AGL22 F start   | caccATGGCGAGAGAAAAGATTC        |
|         | AGL22 R stop    | CTAACCACCATACGGTAAGCTGCACAACAC |
| BHLH038 | BHLH038 F start | caccATGTGTGCATTAGTCCCTTC       |
|         | BHLH038 R stop  | CTAGTTAAACGAGTTTTCACATTTC      |
| ANL2    | ANL2 F start    | caccATGAACTTCGGTAGTCTCTTCG     |
|         | ANL2 R stop     | TCAGCTTTCGCATTGTAAAG           |
|         |                 |                                |

#### Primers to verify overexpressors using qPCR

| qPCR_RAP_5_R       | ATTCTTCTTCAGATCCGGCCAAA                                                                                                                                                                                                                                     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| qPCR_RAP_6_F       | CAGCTCTGACCAGGGTAGTAATTC                                                                                                                                                                                                                                    |
| qPCR_RAP_6_R       | CGCAGAAGAGATGTCGGGAG                                                                                                                                                                                                                                        |
| qPCR_UK_F          | CGGGATGCACTCATCTCCTG                                                                                                                                                                                                                                        |
| qPCR_UK_R          | CTTGGGCTCACTCCCACTGA                                                                                                                                                                                                                                        |
| qPCR_FD_F_II       | ACCTTGCTTCCATCCACCAC                                                                                                                                                                                                                                        |
| qPCR_FD_R_II       | TTTTGGCCCCTGAACCTTGG                                                                                                                                                                                                                                        |
| qPCR_POZ_2,3_F     | ACTGGGAAAATCATCATCGACGT                                                                                                                                                                                                                                     |
| qPCR_POZ_2,3_R     | ACCGTTGGCCCAGATAGAGT                                                                                                                                                                                                                                        |
| qPCR_AGL22_3_F     | CTCTCCGTTCTCTGCGACG                                                                                                                                                                                                                                         |
| qPCR_AGL22_3_R     | GGGCGTGATCACTGTTCTCA                                                                                                                                                                                                                                        |
| qPCR_AGL22_4_F     | CGGAAGAGAACGAGCGACTT                                                                                                                                                                                                                                        |
| qPCR_AGL22_4_R     | TTCTCCGATTCAGCACCACC                                                                                                                                                                                                                                        |
| qPCR_BHLH038_1,4_F | AAGGCGGTCGCGAGTTATCTCTCA                                                                                                                                                                                                                                    |
| qPCR_BHLH038_1,4_R | TGCAAAGTGTAGAAGAGCCTCTC                                                                                                                                                                                                                                     |
| qPCR_ANL2_1_F      | CCGGTGAAGATCAAGACGCT                                                                                                                                                                                                                                        |
| qPCR_ANL2_1_R      | GTTTCTCGTCTGGATGCGGA                                                                                                                                                                                                                                        |
| qPCR_ANL2_4_F      | GCTTGGACGGTGAGAGAGAC                                                                                                                                                                                                                                        |
| qPCR_ANL2_4_R      | CTTCAGTAGCTAAACCGGTTGGT                                                                                                                                                                                                                                     |
|                    | qPCR_RAP_5_R         qPCR_RAP_6_F         qPCR_RAP_6_R         qPCR_UK_F         qPCR_UK_R         qPCR_FD_F_II         qPCR_POZ_2,3_F         qPCR_AGL22_3_F         qPCR_AGL22_4_F         qPCR_BHLH038_1,4_F         qPCR_ANL2_1_F         qPCR_ANL2_4_R |

### Primers to test network connections using qPCR

| GCTCTGTGAGGCGTAGAAGC  |
|-----------------------|
| AGTAACACTGCGACGCCTTG  |
| CGGAAGCCAAGCAGATTCGT  |
| AGGTCCTGGCTGCTCATTGA  |
| GACTTTGACCACGCCGATGT  |
| CAGCCGCGGAGAACAAAGAA  |
| TCGTCGGTTCCGTCACTTCT  |
| ACCCATCACAACCCTCAACG  |
| AGACGTCCTCCTTTGGCACA  |
| CCCGCTTGGCTCTGATCTTAC |
| CCAACAAGGTGGAAAGGTGGA |
| GCTGTGTTCCGGGATGTCTG  |
| GCCAACGCCGTGAAGATCAT  |
| CCACCCACCTCCACTCATCA  |
| CCGCTTGTGACGGTTCCTAG  |
| ATCTGTTGTTCTGCCGCCTG  |
| TCAAGAATCTGGCTCGGGACT |
| CGCCGGCTAACTTGGGAAAA  |
| TGAGATGTGTGATGCGACGAC |
| AAACATCGCCTCATCGTGCA  |
|                       |

| qPCR_WRKY20_F  | CTGGCCGAGATGAGAAGGGA  |
|----------------|-----------------------|
| qPCR_WRKY20_R  | CGCTTCTCCACCATCGTCAG  |
| qPCR_PIL2_F    | TTGGGGCCGAACTACTCTCA  |
| qPCR_PIL2_R    | GCAAGCCAGCTCCTAGAACA  |
| qPCR_BZO2H1_F  | CTGCTCCCATGACGACGAAG  |
| qPCR_BZO2H1_R  | TCACAGACCCAACCCGAAGA  |
| qPCR_XPB1_F    | GGCTCTACAAAAGGCGAGACG |
| qPCR_XPB1_R    | TGCTGACCGGATTTGTGACG  |
| qPCR_BPC7_F    | ACCCACTACCCATGAGCACA  |
| qPCR_BPC7_R    | GTCATAGCCTTCGTCCGCAA  |
| qPCR_WNK5_F    | GGACACGAGAACACAGGTGC  |
| qPCR_WNK5_R    | GTGGACGACGGTTGAGGTTG  |
| qPCR_GID1C_F   | GGCCCGAGAAGCAAGAGTCT  |
| qPCR_GID1C_R   | TTCTTGAGCCCTTCCGCGTA  |
| qPCR_SIS8_F    | GTTGGGGCAGTTGGGTTTCA  |
| qPCR_SIS8_R    | TTTGAATCCGTCTGCCAGCA  |
| qPCR_NF-YA10_F | TCGCCACCACAGACTCCTT   |
| qPCR_NF-YA10_R | TGCCTCCGTAGTAACTGCCT  |
| qPCR_DEL2_F    | TCTCGCTCCCCAGGTTTACA  |
| qPCR_DEL2_R    | CGGCATCATCGAGCCCAAAT  |