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The purpose of this article is to provide mathematical
insights into the results of some Monte Carlo
simulations published by Tolhurst and colleagues
(Clatworthy, Chirimuuta, Lauritzen, & Tolhurst, 2003;
Chirimuuta & Tolhurst, 2005a). In these simulations, the
contrast of a visual stimulus was encoded by a model
spiking neuron or a set of such neurons. The mean spike
count of each neuron was given by a sigmoidal function
of contrast, the Naka-Rushton function. The actual
number of spikes generated on each trial was
determined by a doubly stochastic Poisson process. The
spike counts were decoded using a Bayesian decoder to
give an estimate of the stimulus contrast. Tolhurst and
colleagues used the estimated contrast values to assess
the model’s performance in a number of ways, and they
uncovered several relationships between properties of
the neurons and characteristics of performance.
Although this work made a substantial contribution to
our understanding of the links between physiology and
perceptual performance, the Monte Carlo simulations
provided little insight into why the obtained patterns of
results arose or how general they are. We overcame
these problems by deriving equations that predict the
model’s performance. We derived an approximation of
the model’s decoding precision using Fisher
information. We also analyzed the model’s contrast
detection performance and discovered a previously
unknown theoretical connection between the Naka-
Rushton contrast-response function and the Weibull
psychometric function. Our equations give many
insights into the theoretical relationships between
physiology and perceptual performance reported by
Tolhurst and colleagues, explaining how they arise and
how they generalize across the neuronal parameter
space.

Introduction

This work was inspired by a series of articles from
Tolhurst and colleagues that described Monte Carlo
simulations of contrast coding in the visual cortex
(Chirimuuta, Clatworthy, & Tolhurst, 2003; Clatwor-
thy, Chirimuuta, Lauritzen, & Tolhurst, 2003; Chir-
imuuta & Tolhurst, 2005a, 2005b). In these
simulations, the contrast of a visual stimulus was
encoded by a model spiking neuron, or a set of such
neurons, and the spike counts were decoded using a
Bayesian decoder to give an estimate of the stimulus
contrast. The contrast estimates were then used to
assess the model’s decoding precision or to generate
decisions in simulations of psychophysical tasks.

Although these studies made a very useful contri-
bution to our understanding of the relationship
between physiology and perceptual performance, the
Monte Carlo simulations provided little insight into
why the obtained patterns of results arose or how
general they are. It was not clear whether the findings
applied to just the specific sets of model parameters
that were used in the simulations or to any parameter
values. The goal of the present study was to derive
equations that predict the performance of this kind of
model from its parameters in order to better under-
stand the relationships between physiology and per-
ceptual performance and to allow the model’s
performance to be calculated quickly and easily, thus
removing the need for Monte Carlo simulations, which
are difficult to program and time consuming to run.

Our article focuses on two key sets of results from
the work of Tolhurst and colleagues. The first focus is
the relationships between decoding precision and
neuronal properties discovered by Clatworthy et al.
(2003); we find that these relationships can be explained
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by approximating the decoding precision using Fisher
information. The second focus is the model’s psycho-
metric function for detection, studied by Chirimuuta
and Tolhurst (2005a); we derive an expression that
approximates this function and sheds light onto one of
Chirimuuta and Tolhurst’s (2005a) results.

Some of the derivations and technical details are
included in appendices in the supplementary
information. Each supplementary appendix is labeled
with a letter. Equations and figures in an appendix are
labeled with the appendix’s letter, followed by a dot,
followed by the equation or figure number within that
appendix. Supplementary Appendix A provides a list of
the main symbols used in the text and their meanings.

The contrast coding model

The contrast coding model used by Tolhurst and
colleagues consisted of an encoding stage, in which the
stimulus was encoded as neuronal spike counts, and a
decoding stage, which used Bayesian inference to
estimate the stimulus contrast from the spike counts.
The encoding stage was based on standard physiolog-
ical models of the neuronal response, while the
decoding stage was simply a Bayesian decoder, with no
proposed physiological implementation.

The model has three elements: (a) the form of the
tuning function, which specifies the mean spike count
of each neuron for a given stimulus; (b) the random
process that generates spikes at the given rate; and (c)
the method of decoding the population response to give
an estimate of the stimulus. We consider these three
elements in turn.

We use the same basic terminology as May and
Solomon (2015): We represent random variables using
uppercase letters and their values on particular trials1

using corresponding lowercase letters. X and x repre-
sent the stimulus level, R and r(x) represent the mean
spike count, N and n represent the actual spike count,
and N and n are vectors holding the spike counts of all
the neurons in the population. These variables are
explained in more detail in our companion article (see
the first paragraph of the section titled ‘‘The sensory
coding model’’ in May & Solomon, 2015).

The tuning function

The tuning function, r(x), specifies the mean spike
count for stimulus x. For visual stimulus contrast, the
tuning function is called the contrast-response function.
Tolhurst and colleagues modeled this function using
the Naka-Rushton function (Naka & Rushton, 1966;
Albrecht & Hamilton, 1982). For contrast, c, in linear

(e.g., Michelson) units, the Naka-Rushton function has
the following form:

N�RrðcÞ ¼
rmaxc

q

c
q
1=2 þ cq

þ r0: ð1Þ

If we measure contrast in log units, x¼ logbc, then the
Naka-Rushton is given by

N�RrðxÞ ¼
rmaxb

qx

bqz þ bqx
þ r0; ð2Þ

where

z ¼ logbc1=2: ð3Þ
See our companion article (May & Solomon, 2015) for
a description of all the parameters and for plots of the
Naka-Rushton function. On the log contrast scale, the
gradient of the Naka-Rushton function peaks at a log
contrast of x ¼ z. The term c1/2, called the semi-
saturation contrast, is the contrast for which the mean
response exceeds r0 by rmax/2. Many authors use c50 to
represent this contrast, but we use the less common
term c1/2 (except when quoting other authors) because
this form is easier to extend to other fractions of rmax,
such as c1/3 (the contrast for which the mean response
exceeds r0 by rmax/3, which we show to be the contrast
that is coded most accurately by a model neuron with a
Naka-Rushton contrast-response function with r0¼ 0).

In this article, whenever we use the term contrast
without specifying the units, we mean log Michelson
contrast. To be compatible with Clatworthy et al.
(2003) and Chirimuuta et al. (2003), we always used log
to base 10 in our modeling (i.e., x¼ log10 c and z¼ log10
c1/2); however, our equations are derived for the general
case of any base, b.

Note that the units of the Naka-Rushton function’s
output are often taken to be spikes per second, but we
find it more convenient to use units of spikes without
making assumptions about the time interval over which
the neuron’s output is integrated.

The random process for spike generation

The tuning function gives the mean spike count, and
we now turn to the stochastic process that generates
spikes at the specified rate. The Poisson process is
sometimes used as a stochastic spiking model because
of its considerable mathematical convenience (e.g., see
Dayan & Abbott, 2001, chapter 1). The Poisson
distribution is defined as

PPoissonðN ¼ njR ¼ rðxÞÞ ¼ rðxÞn

n!
expð�rðxÞÞ: ð4Þ

In Equation 4, we use a right subscript on P to indicate
the type of stochastic process being used.

Journal of Vision (2015) 15(6):9, 1–21 May & Solomon 2

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933934/ on 11/15/2016

http://
http://
http://


For the Poisson process, the variance in the number of
spikes for repeated trials is equal to themean, r(x), always
giving a Fano factor (ratio of variance to mean) of 1. In
the visual cortex, the Fano factor is usually greater than 1
(Dean, 1981b; Tolhurst, Movshon, & Thompson, 1981;
Tolhurst, Movshon, & Dean, 1983; Bradley, Skottun,
Ohzawa, Sclar, & Freeman, 1987; Skottun, Bradley,
Sclar, Ohzawa,&Freeman, 1987; Scobey&Gabor, 1989;
Vogels, Spileers, & Orban, 1989; Snowden, Treue, &
Andersen, 1992; Britten, Shadlen, Newsome, & Mov-
shon, 1993; Softky & Koch, 1993; Swindale & Mitchell,
1994; Geisler & Albrecht, 1997; Bair & O’Keefe, 1998;
Buracas, Zador, DeWeese, & Albright, 1998; McAdams
& Maunsell, 1999; Oram, Weiner, Lestienne, & Rich-
mond, 1999; Durant, Clifford, Crowder, Price, &
Ibbotson, 2007). To get a Fano factor greater than 1,
Tolhurst and colleagues (Chirimuuta et al., 2003;
Clatworthy et al., 2003; Chirimuuta & Tolhurst, 2005a,
2005b) used a doubly stochastic Poisson process, which
we refer to as the Tolhurst process. This process is a
Poisson process in which the mean is itself a random
variable sampled from a Poisson process with mean r(x):

PTolhurstðN ¼ njR ¼ rðxÞÞ

¼
X‘

l¼0

PPoissonðN ¼ njR ¼ lÞ

·PPoissonðN ¼ ljR ¼ rðxÞÞ: ð5Þ
For this process, the mean spike count is r(x) and the
variance is 2r(x), giving a Fano factor of 2. The infinite
series in Equation 5 is difficult to handle, so in
Supplementary Appendix B we derive a finite series
expansion of the Tolhurst process that is more useful.

Since the aim of this article is to explain the modeling
results of Tolhurst and colleagues, all the Monte Carlo
simulations in this article use the Tolhurst process to
generate spikes. However, to make our theoretical
results more general, we consider two other Poisson-
based spiking processes.

The first additional spiking process is the generalized
Poisson distribution, devised by Consul and Jain
(1973). Sakata and Harris (2009) used this process to
model neuronal spiking distributions. This process is
more flexible than the Tolhurst process because the
Fano factor, F, is set as a parameter and can take any
value greater than or equal to 1. The Consul-Jain
distribution takes the following form:

PC�JðN ¼ njR ¼ rðxÞÞ ¼ rðxÞ
n!

ffiffiffi
F
p An�1expð�AÞ; ð6Þ

where

A ¼
rðxÞ þ n

ffiffiffi
F
p
� 1

� �
ffiffiffi
F
p : ð7Þ

Like the Poisson and Tolhurst processes, the Consul-Jain

process generates only nonnegative numbers of spikes,
and the spike count variance is proportional to the mean.
When F¼ 1, the Consul-Jain process reduces to the
ordinary Poisson process, given in Equation 4. However,
the Consul-Jain process with F¼ 2 is not identical to the
Tolhurst process, even though theFano factor is the same.

The second additional spiking process that we
consider is the doubly stochastic Poisson process
recently proposed by Goris, Movshon, and Simoncelli
(2014). We refer to this as the Goris process. It is a
Poisson process in which the mean is modulated by a
multiplicative gain mechanism. The gain value on each
stimulus presentation is a gamma-distributed random
variable. The Goris process is described in detail in our
companion article (May & Solomon, 2015). The gain
fluctuations result in a Fano factor that increases with
the firing rate, which is more physiologically plausible
than the fixed Fano factor produced by the Tolhurst
and Consul-Jain processes. For mathematical simplic-
ity, we assume that each neuron in the population has
the same gain signal and that each neuron’s Poisson
spiking process is independent (see May & Solomon,
2015, for justification of these restrictions). The shared
gain signal causes the neuronal responses to be
correlated, with a realistic correlation structure. How-
ever, because each neuron’s Poisson spiking process is
independent, a decoder that knows the gain signal on
each stimulus presentation can express the spiking
distributions as independent Poisson distributions.
Therefore, the neurons can be decoded as if they were
statistically independent (see May & Solomon, 2015,
for a more detailed explanation of this).

Bayesian population decoding

All the results that we report from Tolhurst and
colleagues were obtained using maximum-likelihood
decoding. The estimated stimulus level is the one that
had the highest probability of giving rise to the obtained
set of spike counts; that is, it is the value of x that
maximizes the likelihood, P(N¼ njX¼ x). In Tolhurst
and colleagues’ model, the neurons were statistically
independent; in addition, if we use May and Solomon’s
(2015) parameterization of the Goris process, the
neurons are implicitly decorrelated if the decoder knows
the gain signal. For statistically independent neurons,
the population likelihood is then given by the product of
the likelihoods of the individual neurons:

PðN ¼ njX ¼ xÞ ¼
YK
j¼1

PðNj ¼ njjX ¼ xÞ ð8Þ

¼
YK
j¼1

PðNj ¼ njjRj ¼ rjðxÞÞ: ð9Þ
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K is the number of neurons. Nj is a random variable
representing the spike count of neuron j, and nj is its
value. Rj is a random variable representing the mean
spike count for neuron j, and rj(x) is its value. The
second equality (Equation 9) arises because each rj(x) is
a deterministic function of the stimulus value, x. To
evaluate the probabilities in Equation 9, we use the
appropriate expression, depending on which spiking
process we are using. For the Consul-Jain process, we
use Equation 6. For the Goris process, assuming the
decoder knows the gain value, we use the gain-
modulated Poisson distribution (May & Solomon, 2015;
Equation 10). All the modeling in this article used the
Tolhurst process, which is defined in Equation 5.

Measuring decoding precision

Definition of decoding precision

Decoding precision is usually taken to be the
reciprocal of the variance of the estimated stimulus
value; this is how it is defined in our companion article
(May & Solomon, 2015). However, in their Monte
Carlo simulations, Tolhurst and colleagues (Chiri-
muuta et al., 2003; Clatworthy et al., 2003) used a
slightly different measure of decoding performance.
They called it accuracy, defined as the reciprocal of the
mean squared difference between the individual esti-
mate and the true stimulus value:

accuracy ¼ TX
ðx̂� xÞ2

; ð10Þ

where T is the number of trials (¼ 10,000), x̂ is the
estimated log contrast estimate (note that we use an
uppercase X̂ to represent the random variable and a
lowercase x̂ to represent its value on a particular trial),
and the denominator is the sum over all trials. For the
models that we consider in this study, the log contrast
estimate is largely unbiased (except at very low
performance levels), so we have mean[X̂ ] ’ x. In this
case, the accuracy score in Equation 10 is essentially
the same as the precision. For consistency with
Tolhurst and colleagues, we used their measure of
decoding accuracy (Equation 10) when analyzing our
Monte Carlo simulations. However, we refer to it as
precision (except when directly quoting Tolhurst and
colleagues) because our analytical approximations of it
are formally measures of precision and because the
term accuracy is often used to mean the inverse of bias
(e.g., Smith, 1999, chapter 2). We found that, except in
degenerate conditions where the model’s performance
level was very low, it made a negligible difference
whether we plotted Tolhursts’s accuracy score or true

precision. Note that in the Monte Carlo simulations in
our companion article (May & Solomon, 2015), we
calculated true decoding precision (i.e., reciprocal of
the variance of the estimated stimulus value), not the
accuracy score defined in Equation 10.

Approximating decoding precision using Fisher
information

For an unbiased maximum-likelihood decoder, the
precision cannot exceed a quantity called the Fisher
information. This limit is known as the Cramér-Rao
bound (Rao, 1945; Cramér, 1946; see Dayan & Abbott,
2001, pp. 120–121). For populations that give suffi-
ciently large numbers of informative spikes, the preci-
sion of a maximum-likelihood decoder is very close to
the Fisher information; when the tuning function is a
sigmoid function like the Naka-Rushton function, this
applies even if the population consists of a single neuron.
This means that we can use the Fisher information as an
analytical approximation of the decoding precision,
thereby giving us a real insight into why Tolhurst and
colleagues’ results occurred and how general they are.

The Fisher information depends on the tuning
function and the spiking process. Unfortunately, for
the Tolhurst and Consul-Jain spiking processes, the
derivation of an exact formula for the Fisher infor-
mation turned out to be intractable. In Supplementary
Appendix E, we derive approximations of the Fisher
information for each of these spiking processes:
sTolhurst(x) and sC-J(x). As long as the mean spike
count of the most informative neurons is not too low,
both sTolhurst(x) and sC-J(x) are very close to the
following general approximation of the decoding
precision, s̃(x):

s̃ðxÞ ¼ 1

v

XK
j¼1

r0jðxÞ
2

rjðxÞ
; ð11Þ

where r0j(x) is the first derivative of neuron j’s tuning
function with respect to x. To parameterize s̃(x) so that
it approximates sTolhurst(x) or sC-J(x), v should be equal
to the Fano factor; the Fano factor is fixed at 2 for the
Tolhurst process and can take any value greater than
or equal to 1 for the Consul-Jain process. The tilde ( ˜ )
above s indicates that this estimate of decoding
precision is based on an approximation of the Fisher
information that is not always accurate. With a Fano
factor of 1, the Consul-Jain process is the ordinary
Poisson, in which case s̃(x) with v ¼ 1 is exactly equal
to the Fisher information (see Dayan & Abbott, 2001,
chapter 3). For the Tolhurst process, and the Consul-
Jain process with F 6¼ 1, s̃(x) with v equal to the Fano
factor is an approximation of the Fisher information.
For the Goris process, May and Solomon (2015)

Journal of Vision (2015) 15(6):9, 1–21 May & Solomon 4

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933934/ on 11/15/2016

http://
http://


showed that an appropriate estimate of the decoding
precision is given exactly by Equation 11 with v¼ 1/(1
� r2

G), where r2
G is the variance of the gain signal (see

equation 26 and relation 31 of May & Solomon, 2015).
In this case, v is not the Fano factor—the Fano factor
for Goris et al.’s (2014) spiking process is variable and
depends on the mean spike count. When the gain is
known by the decoder, the Fisher information of the
Goris process varies from trial to trial due to the
fluctuating gain, and s̃(x) with v¼ 1/(1� r2

G) gives the
modal value of the Fisher information exactly.

In summary, Equation 11 gives a general approxi-
mation of the decoding precision for a variety of
Poisson-based spiking distributions. For two processes
(Poisson and Goris) it is based on an exact expression
for the Fisher information; for the other two processes
(Tolhurst and Consul-Jain) it is based on an approx-
imation of the Fisher information that is accurate as
long as the mean spike count of the most informative
neurons is not too low.

If we expand rj(x) and r0j(x) in Equation 11 using
the Naka-Rushton function (Equation 2), then we have

s̃ðxÞ ¼ 1

v

XK
j¼1

rmaxðqlnbÞ2bqð2zþxÞ

ðbqz þ bqxÞ3
if r0 ¼ 0:

ð12Þ
Tolhurst and colleagues always used r0 ¼ 0 in their
modeling. Since we are focusing on their modeling
results, we consider only the case of r0 ¼ 0 in this
article. In Equation 12, each neuronal parameter can
vary from neuron to neuron, so, strictly speaking,
each parameter should be indexed by the neuron
number, j, but we omit these indices to reduce
notational clutter.

In the next section, many of the populations of
neurons that we analyze consist of either just a single
neuron or a set of identical neurons. In this case,
Equation 12 reduces to

s̃ðxÞ ¼ KrmaxðqlnbÞ2bqð2zþxÞ

vðbqz þ bqxÞ3
if r0 ¼ 0; ð13Þ

with K ¼ 1 in the case of a single neuron.

Explaining Clatworthy et al.’s
contrast decoding results

Clatworthy et al. (2003) applied their Bayesian
contrast decoding algorithm to single Tolhurst-spiking
neurons, or populations of them, and discovered several
relationships between the neuronal parameters and the
peak of decoding precision along the contrast axis.

1. ‘‘Increasing Rmax increases the contrast identifica-
tion accuracy of single neurons at all contrasts, most
obviously the peak accuracy, without changing the
contrast at which accuracy is a maximum’’ (Clat-
worthy et al., 2003, p. 1991; note that they use Rmax

where we use rmax). This can be summarized by
saying that there is an approximately multiplicative
effect of rmax on decoding precision.

2. ‘‘The position of the accuracy peak along the
contrast axis is consistently close to but, interest-
ingly, slightly below the neuron’s c50’’ (Clatworthy et
al., 2003, p. 1989).

3. ‘‘The peak value of accuracy is independent of c50’’
(Clatworthy et al., 2003, p. 1989).

4. ‘‘The relationship between the maximum accuracy
and q is a steep straight line on log-log coordinates’’
(Clatworthy et al., 2003, p. 1989).

5. ‘‘To change the maximum accuracy . . . requires only
a change in the product of Rmax and number of
neurons, i.e., the total number of action potentials
generated on average . . . ; for a given accuracy,
there is a simple trade-off between the number of
neurons and the response amplitude of individual
neurons’’ (Clatworthy et al., 2003, p. 1990).

The numerical nature of Clatworthy et al.’s method
means that it gave little insight into why these
relationships arose or how generally they apply. In this
section we explain Clatworthy et al.’s findings by
deriving equations that explain corresponding findings
for the analytical approximation of decoding precision,
s̃(x), given in Equation 13.

First, we examined whether s̃(x) was sufficiently
close to the true decoding precision to make this
approach valid. This is important because the Fisher
information, on which s̃(x) is based, is only an upper
bound on the decoding precision and can far exceed the
true decoding precision for small population sizes (Xie,
2002). In one of their investigations (shown in their
figure 5A), Clatworthy et al. (2003) examined the effect
of rmax on decoding precision for a single Tolhurst-
spiking neuron with Naka-Rushton exponent (q) equal
to 2, c1/2¼ 0.1, and r0¼ 0. rmax took values of 5, 20, 50,
100, or 180 spikes. We replicated their methods (see
Supplementary Appendix G for details) and obtained
contrast decoding precision scores (calculated using
Equation 10) that were essentially identical to those
that we read off from their figure 5A. The small
differences were almost certainly attributable to the
stochastic nature of the simulations and small inaccu-
racies in our transcription of the data from Clatworthy
et al.’s figure. The symbols in Figure 1 show these
precision scores. The thin, colored curves show the true
Fisher information, calculated numerically (for meth-
od, see Supplementary Appendix H). The thick, black
curves show s̃(x) with v¼ 2. The two panels in Figure 1
are identical except that Figure 1A has a linear vertical

Journal of Vision (2015) 15(6):9, 1–21 May & Solomon 5

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933934/ on 11/15/2016

http://
http://


axis and Figure 1B has a logarithmic one. The linear
vertical axis facilitates comparison with Clatworthy et
al.’s figure 5A, which used linear vertical axes, and the
logarithmic vertical axis gives a clearer picture of the
data for low rmax values, which are flattened out on the
linear axis. The logarithmic vertical axis tends to
exaggerate the deviations of the decoding precision
from Fisher information because the precision scale is
expanded for the worst-matching conditions (those

with low precision) relative to the best-matching
conditions.

First, note that s̃(x) is very close to the true Fisher
information at the peaks (compare the thick, black lines
against the thin, colored lines). This is important
because the five observations that we analyze in this
section are about the peaks, and our justification for
using s̃(x) to predict decoding precision is that it is
approximately equal to the Fisher information.

For rmax of 50 spikes or more, the horizontal and
vertical position of the peak of precision coincides
closely with the peak of s̃(x) (compare symbols against
solid curves). This allows us to explain many of
Clatworthy et al.’s observations about the precision
peak by deriving equations that explain corresponding
findings for s̃(x). For rmax values substantially lower
than 50 spikes, the decoding precision does not match
s̃(x) at all well, even at the peak, but Clatworthy et al.’s
observations do not apply here either. In the following
five subsections, we explain each of the five observa-
tions listed previously using the approximation of the
decoding precision, s̃(x), given by Equation 13.

Observation 1: Multiplicative effect of
increasing rmax

From Equation 13, we see that s̃(x) is proportional
to rmax, so increasing rmax increases the precision by the
same multiplicative factor for each contrast level; the
position of the peak across contrast is unchanged, and
the largest absolute change is for the peak precision.
This multiplicative change gives rise to the vertical
shifts seen for the black curves on the logarithmic
vertical axis in Figure 1B.

Observation 2: Precision peaks slightly below
the semisaturation contrast

The exact position of the peak of s̃(x) along the
contrast axis can be found by differentiating s̃(x) with
respect to x, setting the derivative to zero, and solving
for x. From Equation 13, we have

d s̃ðxÞ
dx

¼ KrmaxðqlnbÞ3bqð2zþxÞ

vðbqz þ bqxÞ4
ðbqz � 2bqxÞ: ð14Þ

Setting this to zero gives

d s̃ðxÞ
dx

¼ 0) bqz ¼ 2bqx

) x ¼ z� logbð21=qÞ ð15Þ

) c ¼ 2�1=qc1=2: ð16Þ

Figure 1. Comparison of contrast decoding precision against the

analytical prediction for single Tolhurst-spiking neurons. (A)

Squares show Clatworthy et al.’s (2003) Bayesian decoding

precision scores for a Tolhurst-spiking neuron with q¼2, c1/2¼0.1

(i.e., z¼�1), r0¼ 0, and five different rmax values, indicated by

different colors; the data were read off from Clatworthy et al.’s

figure 5A. Circles show the results of our replication of their

simulations. The thin, colored curves plot each neuron’s true

Fisher information for decoding contrast, calculated numerically

(see Supplementary Appendix H). The thick, black curves show the

analytical approximation of the decoding precision, s̃(x), calcu-
lated using Equation 13 with K¼ 1 and v¼ 2. The vertical black

line passing through the peaks of the black curves is positioned

along the log contrast axis at log10(c1/3)—that is, the log of the

Michelson contrast for which the mean response is rmax/3. (B) The

same as panel A except that the vertical axis has a log scale.
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Using Equation 15 to substitute for x in Equation 2
gives (for r0 ¼ 0)

N�RrðxÞ ¼ rmax=3 if s̃ðxÞ is at its peak: ð17Þ
So, regardless of the values of v, rmax, q, or c1/2, s̃(x) for
a single neuron will always peak at the contrast for
which the mean response is rmax/3. We introduce the
term c1/3 for the Michelson contrast that gives rise to a
mean response of rmax/3, to be consistent with the term
c1/2 for the semisaturation contrast. The value of
log10(c1/3) is indicated by the black vertical line in each
panel of Figure 1, and it passes through the peak of
each thick, black curve.

Observation 3: The peak value of precision is
independent of the semisaturation contrast

The peak value of s̃(x) occurs at a log contrast given
by Equation 15. Using this equation to substitute for x
in Equation 13, we find that the peak value of s̃(x) is
given by

max s̃ðxÞ½ � ¼ 4KrmaxðqlnbÞ2

27v
; ð18Þ

which is independent of c1/2.

Observation 4: The relationship between the
maximum precision and q is a steep straight line
on log-log coordinates

From Equation 18, we see that max[s̃(x)] is
proportional to q2, giving a straight line on log-log
coordinates. Figure 2 plots max[s̃(x)] as a function of q
for a single Tolhurst-spiking neuron with rmax ¼ 50
spikes and shows that max[s̃(x)] is very close to the true
peak of precision for this model neuron obtained using
Clatworthy et al.’s Monte Carlo methods.

Observation 5: Linear tradeoff between rmax

and number of neurons

Clatworthy et al. (2003) and Chirimuuta and
Tolhurst (2005a) both noted that rmax and the number
of neurons, K, trade off so that, regardless of the
individual values of rmax and K, the decoding precision
is a function of their product. In fact, unless rmax · K is
very low, the decoding accuracy is close to being
proportional to rmax · K. This observation is easily
explained by Equation 13, which shows that s̃(x) is
proportional to rmax · K.

The crosses in Figure 3 replot data from Clatworthy
et al.’s (2003) figure 5C. These data show the

Figure 2. The relationship between the maximum precision and

the Naka-Rushton exponent for rmax¼ 50 spikes. Squares show

maximum precision as a function of exponent, q, when rmax ¼
50 spikes, read off from Clatworthy et al.’s (2003) figure 4C.

Circles show the results of our replication of their methods; the

differences are negligible. The solid line plots max[s̃(x)],
calculated using Equation 18 with K ¼ 1 and v¼ 2.

Figure 3. Maximum precision as a function of rmax · K. The

crosses plot data from Clatworthy et al.’s (2003) figure 5C,

showing the height of the peak in decoding precision as a

function of rmax · K for a variety of neuronal populations, all

with q ¼ 2 and c1/2 ¼ 0.1. The straight line plots max[s̃ (x)],
calculated according to Equation 18 with v ¼ 2.
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maximum decoding precision of various populations

of neurons, all with q ¼ 2 and c1/2 ¼ 0.1. The near

proportionality between decoding accuracy and rmax

· K is indicated by the fact that most of the points lie

on a straight line of gradient 1 on these log-log axes.

The straight line in our Figure 3 is a plot of max[s̃(x)],
calculated according to Equation 18. It clearly

provides a very good match to the decoding precision

data for rmax · K � 50.

Note that although s̃(x) gives an exact linear trade-

off between rmax and K, the true Fisher information for

the Tolhurst process does not. As rmax decreases, s̃(x)
tends to underestimate the true Fisher information.

A more accurate estimate of the decoding precision
is given by sTolhurst(x), derived in Supplementary
Appendix E:

sTolhurstðxÞ ¼
XK
j¼1

HTolhurstðxÞ·
r0jðxÞ

2

rjðxÞ
; ð19Þ

where

HTolhurstðxÞ ¼
1

2
� 1þ 0:06630·rðxÞ

e

� �

· exp rðxÞð1=e� 1Þ½ � þ 1

2
: ð20Þ

HTolhurst(x) is plotted in Figure 4. As the spike rate of
each individual neuron increases, HTolhurst(x) for that
neuron approaches 1/2, and so sTolhurst(x) approaches
s̃(x) (Equation 11) with v ¼ 2. However, as the spike
rate decreases, HTolhurst(x) increases, and so sTolhurst(x)
exceeds s̃(x) and better reflects the true decoding
precision.

For the Naka-Rushton function with r0¼ 0, we can
expand Equation 19 in a similar way to Equation 12:

sTolhurstðxÞ ¼
XK
j¼1

HTolhurstðxÞ·
rmaxðqlnbÞ2bqð2zþxÞ

ðbqz þ bqxÞ3
:

ð21Þ
Unlike s̃(x), sTolhurst(x) is specific to the Tolhurst
spiking process rather than being a general approxi-
mation of the decoding precision that applies to several
different spiking processes.

In each panel of Figure 5, the solid line is the same as
in Figure 3, while the dashed line plots the maximum

Figure 5. The inexact nature of the trade-off between rmax and K for the decoding precision of the Tolhurst process. In each panel, the

solid line is the same as that in Figure 3 and shows the maximum value of s̃(x); for this approximation of the decoding precision, the

trade-off is exact. The dashed curve shows the maximum value of sTolhurst(x), calculated numerically from Equation 21. Here, the

trade-off is only approximate, and the peak of Fisher information does depend slightly on the individual values of rmax and K rather

than being simply a function of their product.

Figure 4. HTolhurst(x), as defined in Equation 20, plotted as a

function of r(x). This function approaches (1 – 1/e) as r(x) � 0

and approaches 0.5 as r(x) � ‘.
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value of sTolhurst(x). As rmax decreases, sTolhurst(x) and
s̃(x) start to diverge by a factor that approaches (1 – 1/
e)/0.5 ¼ 1.264—that is, the ratio of the maximum to
minimum values of HTolhurst(x).

This inexact trade-off between rmax and K applies to
the Tolhurst process but not to the Poisson or Goris
processes: for these, s̃(x) is derived from the exact
expression for the Fisher information, so the trade-off
that we derived for s̃(x) applies to these processes
exactly.

Failure of Clatworthy et al.’s observations for
single neurons at low spike rates

When rmax (or, for populations, rmax · K) is
substantially less than 50 spikes, the peak of precision
does not coincide closely with that of s̃(x) or even the
true Fisher information, so the explanations of
Clatworthy et al.’s findings given above are no longer
valid. However, most of these findings do not apply for
these low rmax values either. The failure of observations
1 and 2 at low spike rates is clear from Figure 1, the
failure of observation 5 at low spike rates is shown in

Figure 3, and the failure of observation 4 at low spike
rates is demonstrated in Figure 6.

The median rmax for a 200-ms stimulus is only
around 5.7 spikes for V1 neurons (Geisler & Albrecht,
1997), suggesting that, with single-neuron models, the
spike count has to be implausibly high for the decoding
precision to be well approximated by the Fisher
information. However, as shown by Clatworthy et al.
(2003), Chirimuuta and Tolhurst (2005a), and our
Figure 3, rmax can be approximately traded off against
the number of neurons so that what is important is the
average total spike count of the population rather than
that of the individual neurons. With a population code,
it is possible to achieve a high total population spike
count while keeping the spike counts for the individual
neurons at a plausible level. This makes the Fisher
information more relevant to understanding popula-
tion-coding models than coding schemes based on a
single neuron. So far we have considered only
populations of identical neurons. We now turn to
populations of differently tuned neurons.

Population coding of contrast

Clatworthy et al. (2003) applied maximum-likeli-
hood decoding to three different populations of 18
model Tolhurst-spiking neurons, each with rmax¼10, r0
¼ 0, and q¼ 2. One population had log10(c1/2) values
uniformly distributed between �3 and 0.1, and the
other two had c1/2 values distributed according to the
recorded values in either cat or monkey populations,
found by arranging the neurons in ascending order of
c1/2 and then sampling the population at equal
percentile intervals. We did not have access to the exact
sets of cat or monkey c1/2 values that they used, but we
estimated them by fitting functions to the cat or
monkey c1/2 distributions given in Clatworthy et al.’s
figure 6 and then sampling these distributions in equal
percentile steps (see Supplementary Appendix I for
details). The advantage of our method is that it can
easily be extended to neuronal populations of any size.
Having set up the populations of neurons, we then
calculated decoding precision scores using Clatworthy
et al.’s Monte Carlo methods (see Supplementary
Appendix G for details). Figure 7 shows that our
decoding precision scores are very similar to those of
Clatworthy et al., confirming that our method of
generating the sets of c1/2 values is a good approxima-
tion to that of Clatworthy et al. The colored curves in
Figure 7 show s̃(x), calculated using Equation 12 with v
¼ 2. Since rmax¼ 10 in these simulations, HTolhurst(x) ’
0.5 for the most informative neurons, so sTolhurst(x) ’
s̃(x); there was no advantage in using the closer but
more complex approximation. Figure 7 shows that,
even for these small populations of neurons, with rmax

Figure 6. The effect of rmax on the relationship between the

maximum accuracy and the Naka-Rushton exponent. Results of

an investigation the same as that shown in Figure 2 but with

three different rmax values (indicated by different colors) and a

wider range of exponents, q. Thick, solid lines plot max[s̃ (x)],
calculated using Equation 18 with K ¼ 1 and v¼ 2; symbols

(joined by thin lines) plot the height of the peak of decoding

precision from Monte Carlo simulations. At high spike rates, the

relationship between maximum precision and q is a straight line

on log-log coordinates that is well predicted by max[s̃ (x)]; at
low spike rates, the relationship between maximum precision

and q becomes a shallow curve.
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of only 10 spikes, the decoding precision from the
Monte Carlo simulations is very close to s̃(x) over a
wide range of contrasts.

In Figure 7, the only substantial deviation of decoding
precision from Fisher information occurs at the ends of
the contrast range, where the precision scores shoot up.
This is an artifact, discussed by Clatworthy et al., caused
by the fact that in the simulations the likelihood
functions were calculated over a finite range of contrasts.
This means that on trials where the inferred contrast
would have fallen beyond the ends of the contrast range,
the inferred contrasts instead pile up on the ends of the
range, artificially boosting the number of trials on which
the inferred contrast takes those values. Thus, when the
stimulus contrast really is at or close to one of the ends
of the range, it is likely to be close to the inferred
contrast, so the precision is artificially high. The Fisher
information does not show this effect because it is a

purely local measure, derived from the contrast-response
functions at each point along the contrast axis, so it is
unaffected by any bounds on the range of contrasts.

s̃(x) is a good approximation of the decoding
precision for the Tolhurst process as long as rmax is not
too low. For low values of rmax, s̃(x) tends to
underestimate the true Fisher information. As noted
earlier, this means that there is not an exact trade-off
between rmax and the number of neurons, K. For low
values of rmax, it is better to use sTolhurst(x) to accurately
predict decoding precision. This is demonstrated in
Figure 8.

There are at least two reasons why we sometimes
need an expression for the decoding precision that
remains a close approximation down to very low spike
rates. First, the median spike count for a 200-ms
stimulus presentation is only around 5.7 spikes for a V1
neuron tuned to the stimulus (Geisler & Albrecht,
1997), and observers can make complex judgements
based on exposures even shorter than that (Thorpe,
Fize, & Marlot, 1996). Second, in many situations the
majority of neurons will not be well tuned to the
stimulus but may still contribute to task performance
due to their abundance; these neurons would be
expected to have a very low average spike count over
the course of a stimulus presentation.

The psychometric function for
contrast detection

Chirimuuta and Tolhurst (2005a) used their contrast
coding model to simulate a two-alternative forced-
choice (2AFC) contrast detection task, in which the
observer is presented with a zero-contrast nontarget
stimulus and an above-zero-contrast target stimulus
and has to pick the target. Chirimuuta and Tolhurst
(2005a) measured the model’s proportion of correct
responses as a function of the target contrast and fitted
a Weibull psychometric function to the data.

For 2AFC tasks, the Weibull function can be defined
as

PðcorrectÞ ¼ 1� 0:5exp �ðc=aÞb
h i

: ð22Þ

a is the threshold—that is, the target contrast that gives
P(correct)¼ 1 – 0.5/e ¼ 0.816. . .—and b controls the
function’s shape on linear axes or slope on log axes (see
May & Solomon, 2013, for an in-depth analysis of the
Weibull function). In psychophysical contrast detection
experiments with human observers, b usually takes a
value of about 3 (Foley & Legge, 1981; Nachmias,
1981; Mayer & Tyler, 1986; Meese, Georgeson, &
Baker, 2006; Wallis, Baker, Meese, & Georgeson,
2013).

Figure 7. Population decoding precision for three different

populations of K ¼ 18 neurons. Within each population, the

log10(c1/2) values were uniformly distributed between log

contrasts of �3 and 0.1 (red) or distributed according to

recorded cat (green) or monkey (blue) populations (see

Supplementary Appendix I for details). For each neuron, rmax¼
10, r0 ¼ 0, and q ¼ 2. Squares show Clatworthy et al.’s (2003)

decoding precision data, read off from their figure 7. Circles

show the decoding precision data from our replication of their

Monte Carlo methods. The solid curves show s̃ (x), calculated
using Equation 12 with v¼ 2. Note that because our method of

selecting the c1/2 values differed slightly from that of

Clatworthy et al., our decoding precision scores show a very

slight systematic difference from theirs, which is more

noticeable in the cat data. s̃ (x) was calculated using our c1/2
values and therefore shows a slightly better match to our

precision scores than to those of Clatworthy et al.
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When Chirimuuta and Tolhurst’s (2005a) model had
a standard Naka-Rushton contrast-response function
with r0¼ 0 and q ¼ 2, Weibull b for detection varied
from 1.75 to 1.99 as the number of neurons increased
from 1 to 23, but the model’s b never reached the
normal human level of around 3. Chirimuuta and
Tolhurst then introduced a threshold to the Naka-
Rushton function by subtracting a constant value from
the output and setting negative values to zero. With a
threshold on the Naka-Rushton function, b ranged
from 2.25 to 4.20, providing a better match to
psychophysically obtained values. Chirimuuta and
Tolhurst assumed that their failure to obtain suffi-
ciently high Weibull b values with the standard Naka-
Rushton function had been caused by the lack of a
threshold, and they suggested that the standard,
unthresholded Naka-Rushton function ‘‘may be cru-
cially inadequate’’ as a model of the neuronal contrast-
response function (Chirimuuta & Tolhurst, 2005a, p.

2956). However, we now show that, when r0 ¼ 0, the
model’s psychometric function is close to a Weibull
function with b ¼ q. Thus, the real reason that
Chirimuuta and Tolhurst always obtained a b of about
2 with the standard Naka-Rushton function is that they
always kept q at 2 in these simulations. We show that
one can obtain any Weibull b by setting q close to the
required b value.

Proof that, when r0¼0, the model’s psychometric
function for 2AFC contrast detection is close to a
Weibull function with b¼ q

At the low contrasts corresponding to the model’s
contrast detection threshold, the population spike
rate is typically so low that the Fisher information
does not provide a useful approximation of perfor-

Figure 8. Results of four sets of simulations the same as those in Figure 7 except with different values of rmax and K, indicated at the

top of each panel. As in Figure 7, circles plot decoding precision from the Monte Carlo simulations and solid curves plot s̃ (x),
calculated using Equation 12 with v¼ 2. Dashed curves plot sTolhurst(x), calculated using Equation 21. For rmax¼ 16, s̃ (x) and sTolhurst(x)
are very well matched to each other and to the true decoding precision. For rmax¼4 and below, only sTolhurst(x) is well matched to the

true decoding precision. This figure also illustrates the breakdown of the linear trade-off between rmax and K when rmax is low. Each

panel has the same product rmax · K, but the decoding precision falls with increasing rmax. This breakdown of the linear trade-off

applies to the Tolhurst process shown here but not to the ordinary Poisson process or the Goris process.
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mance. Therefore, we need to use other methods. For
contrast detection, the model’s performance can be
derived straightforwardly from basic probability
theory.

Because r0 ¼ 0, there is zero response to zero
contrast: The nontarget stimulus can never elicit a
single spike. If the target elicits at least one spike, the
model will respond correctly. If the target fails to elicit
any spikes, the model has to guess and will be correct
half the time on a 2AFC task. In summary, the model
will be correct on all 2AFC trials except half of those
on which the target failed to elicit any spikes. This
statement can be formalized as follows:

PðcorrectÞ ¼ 1� 0:5Pðno spikesÞ; ð23Þ
where P(no spikes) is the probability of getting no
spikes in response to the target. We can already see
that the model’s psychometric function has a similar
form to the Weibull function: PðcorrectÞ ¼ 1� 0:5·
something:

From Equation E.4 of Supplementary Appendix E,
we see that, for a single Tolhurst-spiking neuron,

Pðno spikesÞ ¼ PTolhurstðN ¼ 0jR ¼ rðcÞÞ
¼ exp ð1=e� 1ÞrðcÞ½ �: ð24Þ

Note that since the Weibull function is defined as a
function of contrast in Michelson (linear) units, we
express the mean response, r(�), as a function of
Michelson contrast (rather than log contrast) in
Equation 24. For a population of K statistically
independent neurons,

Pðno spikesÞ ¼
YK
j¼1

exp ð1=e� 1ÞrjðcÞ
� �

¼ exp ð1=e� 1Þ
XK
j¼1

rjðcÞ
 !

; ð25Þ

where rj (c) is the contrast-response function of neuron
j. Using Equation 1 to expand rj (c), we have

Pðno spikesÞ ¼ exp ð1=e� 1Þ
XK
j¼1

ðrmaxÞjcq

ðc1=2Þqj þ cq

 !
;

ð26Þ
where (rmax)j and (c1/2)j are the rmax and c1/2 parame-
ters, respectively, of neuron j. Using Equation 26 to
substitute for P(no spikes) in Equation 23, we get an
exactly correct expression for the model’s psychometric
function for contrast detection:

PðcorrectÞ ¼ 1� 0:5exp ð1=e� 1Þ
XK
j¼1

ðrmaxÞjcq

ðc1=2Þqj þ cq

 !
:

ð27Þ

If all the neurons in the population being monitored by
the observer have the same contrast-response function,
then Equation 27 reduces to

PðcorrectÞ ¼ 1� 0:5exp
ð1=e� 1ÞrmaxKc

q

c
q
1=2 þ cq

 !
:

ð28Þ
In this case, Equation 28 shows that there is an exact
linear trade-off between rmax and K in the psychometric
function for 2AFC detection rather than the approx-
imate trade-off that we get with the Fisher information.

Equations 27 and 28 are precisely correct, but it is
illuminating to derive an approximation. As long as
there are enough neurons or rmax is sufficiently high, the
contrast detection threshold will be somewhat lower
than the lowest c1/2 in the population. Thus, at
threshold (i.e., around the middle of the psychometric
function), the denominators of Equations 26 to 28
become dominated by the c

q
1=2 term, and the cq term will

make little difference. Dropping cq from the denomi-
nator of Equation 27, we get

PðcorrectÞ’ 1� 0:5exp �ðc=aÞq½ �; ð29Þ
where a is a constant, given by

a ¼ ð1� 1=eÞ
XK
j¼1

ðrmaxÞj
ðc1=2Þqj

 !�1=q

: ð30Þ

Relation 29 has the form of a Weibull function with b¼
q. The near equality in Relation 29 approaches equality
as K or rmax increase. A

The derivation of Relation 29 is similar to the
derivation of the psychometric function for Quick’s
(1974) vector-magnitude model of contrast detection.
The performance of the vector-magnitude model is
exactly equivalent to that of a model in which the
observer monitors a number of detectors that each have
a detection probability that can be described by a
Weibull function, with the same b for all detectors.
Nachmias (1981) called this assumption of identical b
for each detector the ‘‘homogeneity assumption,’’ and it
is largely equivalent to the implicit assumption in the
above proof that all neurons have the same q. In the
Discussion we expand on the links between our analysis
and that of Quick (1974).

Another attribute of the model’s psychometric
function: Lapse rate

Note that Relation 29 is a Weibull function with zero
lapse rate; that is, it predicts that the model’s
performance will asymptote to perfect performance,
P(correct)¼ 1, with increasing target contrast. For
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most instantiations of the model, this is very close to
the truth. However, when rmax and K are both very low,
the model’s asymptotic performance is far below 1.
This is because as c increases, the denominator of
Equation 26 becomes more and more dominated by the
cq term, and the c1/2

q term makes less and less
difference, so

lim
c�‘

Pðno spikesÞ ¼ exp ð1=e� 1Þ
XK
j¼1

ðrmaxÞj

 !
:

ð31Þ
For very low rmax and K, this value can be substantially
above zero so that, even for infinite contrast, the model
has to guess on a significant proportion of 2AFC trials.

This behavior can be accommodated by including a
‘‘lapse rate’’ parameter, k, in the definition of the
Weibull function:

PðcorrectÞ ¼ ð1� kÞ � ð0:5� kÞexp �ðc=aÞb
h i

:

ð32Þ
This equation approaches an asymptote of P(correct)

¼ ( 1 – k) as c� ‘. When k¼ 0, Equation 32 reduces to
Equation 22. We now derive an expression for the
model’s ‘‘lapse rate’’ parameter. (Strictly speaking, the
model never lapses; a low asymptotic performance level
arises from a low spike rate rather than a finger error or
a failure to look at the stimuli on some 2AFC trials.)

Using Equation 31 to substitute for P(no spikes) in
Equation 23, we obtain the asymptotic value of
P(correct) given by

lim
c�‘

PðcorrectÞ ¼ 1� 0:5exp
	
ð1=e� 1Þ

XK
j¼1

ðrmaxÞj


:

ð33Þ
Since this asymptotic value of P(correct) is (1 – k), we
have

k ¼ 0:5exp ð1=e� 1Þ
XK
j¼1

ðrmaxÞj

 !
: ð34Þ

This expression for k quickly approaches zero as rmax

or K increase.

Verifying our equations using Monte Carlo
simulations

We simulated the 2AFC contrast detection experi-
ments for a range of model parameterizations (see
Supplementary Appendix J for details of the method).
For each parameterization, each neuron in the popu-
lation had an identical contrast-response function. We

fitted the three-parameter Weibull function (Equation
32) to the data for each model parameterization. The
fitted values of a, b, and k are plotted as symbols in
Figures 9, 10, and 11, respectively. The solid lines plot
the corresponding analytical expressions (a given by
Equation 30, b given by q, and k given by Equation 34).

Equation 34 is the model’s true lapse rate parameter
(not an approximation), so it is not surprising that it
matches the fitted k values extremely well in Figure 11.
Our analytical expressions for a and b are approxima-
tions that become increasingly accurate as K or rmax

increase.

The Consul-Jain spiking process also generates a
Weibull psychometric function for detection

The analytical expressions for the psychometric
function for detection, derived above, apply only to the
Tolhurst spiking process. We can also derive analogous
expressions for the Consul-Jain process (which includes
the ordinary Poisson, when F ¼ 1). Equation E.17 of
Supplementary Appendix E states that, for a single
Consul-Jain-spiking neuron,

Pðno spikesÞ ¼ exp
	
� rðcÞ=

ffiffiffi
F
p 


; ð35Þ

where F is the Fano factor. If we follow a series of
mathematical steps analogous to Equations 23 to 29
above but use Equation 35 instead of Equation 24 to
express the probability of a single neuron not spiking,
we obtain an approximation of the psychometric
function with the same form as Relation 29 but with

a ¼
XK
j¼1

ðrmaxÞj
ðc1=2Þqj

ffiffiffiffiffi
Fj

p
 !�1=q

; ð36Þ

where Fj is the Fano factor or neuron j. Similarly, if we
follow a series of steps analogous to those in Equations
31 to 34 but use Equation 35 instead of Equation 24 to
express the probability of a single neuron not spiking,
we obtain the following expression for the ‘‘lapse rate’’
parameter:

k ¼ 0:5exp �
XK
j¼1

ðrmaxÞjffiffiffiffiffi
Fj

p
 !

: ð37Þ

Discussion

The purpose of this study was to explain a number
of empirical modeling results reported by Tolhurst
and colleagues. Their results were obtained from
Monte Carlo simulations using models of spiking
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neurons with Naka-Rushton contrast-response func-
tions and the doubly stochastic Poisson spiking
process defined in Equation 5. The numerical nature
of the simulations meant that it was not clear why the
results occurred or how they generalized across
parameter space.

We addressed these problems by deriving equa-
tions to explain the model’s performance. This kind
of analysis is essential if we are to understand the
brain: If we use realistic models to simulate brain
processes but do not understand why the models
behave in the way that they do, then we have not
really explained anything; we have just shifted the
problem from understanding the brain to under-
standing the model.

We began by deriving a closed-form expression for
the Tolhurst likelihood function that was more
tractable than the infinite series that originally defined

this function. This expression played a role in
understanding two facets of the model’s performance:
(a) the relationships between decoding precision and
the neuronal parameters, and (b) the form of the
psychometric function for contrast detection.

Decoding precision

To explain how the neuronal parameters map onto
decoding precision, we derived an analytical approx-
imation of the decoding precision, s̃(x), which can be
adjusted to apply to a variety of different spiking
processes by setting the value of a single scalar
parameter, v. For the Tolhurst and Consul-Jain
processes, v should be set to the Fano factor. For the
Goris process, v should be set to 1/1(1� r2

G), where r2
G

Figure 9. Filled circles show Weibull a parameters fitted to the 2AFC contrast detection simulation data. Each column of panels shows

a different rmax; each row shows a different q. The solid lines plot the approximation of a given by Equation 30.
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is the variance of the gain signal. For the Tolhurst and
Consul-Jain processes, s̃(x) is an estimate of the Fisher
information. For the Goris process, the Fisher
information varies across trials, and s̃(x) is its modal
value.

The expression for s̃(x) revealed some surprisingly
simple relationships between decoding precision and
the neuronal parameters, and explained the five
observations of Clatworthy et al. (2003) that we
investigated. For example, Equation 18 shows that,

Figure 10. Symbols show Weibull b parameters fitted to the 2AFC contrast detection simulation data. Each panel shows a different

rmax. Different values of q are indicated by different symbols and colors according to the legend on the right. The solid lines plot the

predicted values of b (¼ q) for our approximation of the psychometric function (Relation 29).

Figure 11. Filled circles show Weibull k parameters fitted to the 2AFC contrast detection simulation data. Each column of panels

shows a different rmax; each row shows a different q. The solid curves plot k given by Equation 34. As shown in Equation 34 (and

borne out by our simulations), k depends only on K and rmax and is independent of q.
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for a population of identical, statistically independent
neurons, the height of the peak of decoding precision
is approximately proportional to rmax · K · q2 and is
independent of c1/2. The expression for s̃(x) also
revealed that, to a good approximation, the contrast
most accurately encoded by the neuron is that for
which the mean response is rmax/3; we call this
contrast c1/3. Figure 7 shows that s̃(x) matches the
decoding precision very closely for a population of
only 18 Tolhurst-spiking neurons with rmax of only 10
spikes.

s̃(x) is an exact expression for the modal Fisher
information for the Goris process and gives the exact
expression for the Fisher information for the Poisson
process, which is the Consul-Jain process with a Fano
factor of 1. However, for the Tolhurst process and the
Consul-Jain process with F . 1, s̃(x) is an approx-
imation of the Fisher information and is less accurate
when the mean spike rate of the most informative
neurons is very low. In Supplementary Appendix E, we
derived expressions, sTolhurst(x) and sC-J (x), that are
close approximations of the Fisher information of the
Tolhurst and Consul-Jain processes across all param-
eter values. These expressions reveal more complicated
relationships between decoding precision and the
neuronal parameters that hold when the spike rate is
very low. Figure 8 shows the superiority of sTolhurst(x)
over s̃(x) at very low spike rates.

The psychometric function for contrast
detection

To explain Chirimuuta and Tolhurst’s (2005a)
finding regarding the slope of the psychometric
function for contrast detection, we derived an analyt-
ical approximation of the model’s psychometric func-
tion, which we showed approaches a Weibull function
with b ¼ q as rmax or K increase. We thus refuted
Chirimuuta and Tolhurst’s conclusion that the stan-
dard Naka-Rushton function is unable to give Weibull
b values that are high enough to match those of human
observers. To obtain b values of around 3, typical of
human observers, we need a Naka-Rushton exponent
of around 3. Such levels are not atypical, and indeed
Table 1 shows that the mean q over 628 cells from three
physiological studies of V1 is 2.9.

This example illustrates the power of the analytical
approach taken here, compared with Monte Carlo
simulations. Because of the considerable time that it
takes to run the simulations, Chirimuuta and Tolhurst
(2005a) could not feasibly explore every corner of
parameter space in each investigation. Therefore, they
took the entirely reasonable step of fixing the Naka-
Rushton exponent, q, at a physiologically plausible
level of 2. However, this turned out to be a fatal
decision because it prevented them from ever finding a
parameterization of the model that gave a sufficiently
high Weibull b with the standard Naka-Rushton tuning
function. Using the analytical approach, Relation 29
makes it immediately clear that the Naka-Rushton
exponent, q, is the key parameter for controlling b, and
that the model’s psychometric function approximates a
Weibull function with b actually equal to q.

It should be noted that our derivation of a
psychometric function with the form of a Weibull
function applies only to the case of r0¼0. With nonzero
r0, the analytical form of the psychometric function is
different (we have analyzed this more general case and
will present it in another article). It is implausible that,
in human vision, contrast detection is mediated entirely
by neurons with zero spontaneous firing rate. The
assumption that there is no neuronal response to zero
contrast is often called the high-threshold assumption.2

Under the conventional assumption of additive, stim-
ulus-independent noise, the lack of response to zero
contrast implies that there is a threshold on the output
of the sensory units that lies enough standard
deviations above the mean of the noise for there to be a
negligible probability of a response to zero contrast.
Because Chirimuuta and Tolhurst’s model has no
sensory response to zero contrast, it is formally
equivalent to a high-threshold model even though (with
the standard Naka-Rushton function) it does not
actually contain a sensory threshold. In high-threshold
theory (and in Chirimuuta and Tolhurst’s model),

Study

No. of

neurons

Mean

q

Median

q

Albrecht & Hamilton (1982); cat 127 2.5 N/A

Albrecht & Hamilton (1982); monkey 98 3.4 N/A

Geisler & Albrecht (1997); cat 247 3.0 2.8

Geisler & Albrecht (1997); monkey 71 2.5 2.0

Sclar et al. (1990); monkey 85 2.65 2.4

Overall mean 2.9

Table 1. Mean and median Naka-Rushton exponent, q, from
three physiological studies of V1. Albrecht and Hamilton (1982)
did not report the median, so these are omitted. Sclar,
Maunsell, and Lennie (1990) did not report the mean, so the
value given in this table was calculated from the histogram of q
values shown in their figure 6. The centers of the bars of their
histogram ranged from 0.875 to 6.375 in steps of 0.25. The
numbers of neurons in the corresponding bins were 8, 5, 2, 12,
7, 6, 4, 3, 9, 3, 3, 5, 4, 4, 0, 4, 1, 1, 1, 2, 0, 0, and 1. Taking the q

of each neuron in a histogram bin to be the central value of the
bin (a reasonable approximation given the narrowness of their
bins), this gives a mean value of 2.65, calculated from 85
neurons. Sclar et al.’s (1990) study included one further V1
neuron, with q . 8, but because they were no more specific
about its q value than that, we excluded it from our analysis.
The overall mean was the average of the mean q values,
weighted by the number of neurons in each study (this is
equivalent to pooling the neurons across all three studies and
finding the mean of the pooled sample).
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detection errors are always unlucky guesses on 2AFC
trials that failed to elicit a response, whereas there is
plenty of psychophysical evidence that incorrect
responses are caused at least partly by hallucinations
due to noise in the nontarget interval rather than
entirely by unlucky guesses (Tanner & Swets, 1954;
Swets, Tanner, & Birdsall, 1961; Nachmias, 1981;
Solomon, 2007; Laming, 2013).

Despite the implausibility of Chirimuuta and Tol-
hurst’s model with r0 ¼ 0 as a model of contrast
detection, we presented our analysis of it for three
reasons.

1. It allows us to fully understand why Chirimuuta and
Tolhurst’s (2005a) contrast detection simulations
resulted in a fitted Weibull b that approached 2 with
increasing number of neurons. This in turn allows us
to refute their conclusion that the Naka-Rushton
function requires a threshold to make it a plausible
model of the neuronal contrast-response function.

2. Neurons with zero or negligible spontaneous firing
rates do exist (e.g., see Dean, 1981a, figure 2), so it is
not inconceivable that there are some organisms or
experimental situations to which our analysis
applies.

3. It allows us to address Tyler and Chen’s (2000) claim
that high-threshold analysis of probability summa-
tion is ‘‘fundamentally flawed.’’ This idea is explored
in the next subsection.

High-threshold probability summation

Our derivation of the model’s psychometric function
for detection is an example of high-threshold proba-
bility summation. When r0¼ 0, each neuron acts as a
detector; the observer detects the target if at least one
neuron responds during the target presentation, and
has to guess the correct answer otherwise. The more
neurons the observer is monitoring, the greater the
chance that at least one neuron will respond. The term
probability summation refers to this increase in detec-
tion probability due to an increase in the number of
detectors. The psychometric function in this case gives
the probability that at least one neuron responds
during the target presentation, or the observer guesses
correctly if none respond.

Quick (1974) showed that if the detectors are
statistically independent and each detector has a
detection probability that is a Weibull function with the
same b, then the observer’s psychometric function will
be a Weibull function with that b-value and with the
detection threshold parameter, a, given by

a ¼
XK
j¼1

a�b
j

 !�1=b

; ð38Þ

where aj is the detection threshold parameter of
detector j. For a very clear derivation of Equation 38,
see Nachmias (1981), but note that his equation 4 has a
typographical error: It is missing the minus sign on the
exponent, b. If all the detectors are identical (but
statistically independent), then they all have the same
aj, and Equation 38 reduces to

a ¼ K�1=baj: ð39Þ
Thus, in Quick’s model, the Weibull b parameter

controls how much of a reduction in detection
threshold we achieve by increasing the number of
detectors, K. If b is low, then the detection threshold, a,
decreases quickly as K increases; if b is high, then the
detection threshold decreases more slowly as K
increases.

Equation 38 gives the observer’s detection threshold
according to Quick’s model, while Equation 30 gives the
observer’s approximate detection threshold according to
Chirimuuta and Tolhurst’s (2005a) model. Equation 38
has the exact form of Equation 30 if b ¼ q and

aj ¼
ðc1=2Þj

ð1� 1=eÞðrmaxÞj
h i1=q

: ð40Þ

Thus, there is a near equivalence between Quick’s model
and that of Chirimuuta and Tolhurst. If all the neurons
in Chirimuuta and Tolhurst’s model have the same
contrast-response function, then the model’s detection
threshold approximation given by Equation 30 reduces
to

a ¼ K�1=q c1=2

ð1� 1=eÞrmax½ �1=q
: ð41Þ

Therefore, since b ’ q in Chirimuuta and Tolhurst’s
model, their model shows approximately the same
probability summation effects as Quick’s model, with
detection threshold proportional to K�1/b. For the
modeling in Figure 9, all the neurons were identical, so
Equation 41 is equivalent to Equation 30 (which was
used to generate the solid lines in Figure 9), and it is
clear that this equation does accurately predict the
detection threshold of Chirimuuta and Tolhurst’s model,
particularly for the higher values of rmax or K.

As noted previously, there is psychophysical evidence
against Quick’s high-threshold model. Tyler and Chen
(2000) went further, arguing not just that high-threshold
theory has evidence against it but that the analysis of
probability summation using high-threshold theory is
‘‘fundamentally flawed.’’ Their analysis of high-thresh-
old theory made several basic assumptions about the
high-threshold model, including the following five.

1. The observer monitors a set of channels.
2. Within each channel is a continuous signal that

increases linearly with the stimulus strength.
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3. Noise is added to this signal.
4. The noise might be additive (standard deviation

independent of the signal level) or multiplicative
(standard deviation proportional to a power func-
tion of the signal level), or the noise could be the
sum of an additive and a multiplicative component.

5. A sensory threshold is applied to the noisy internal
signal in each channel so that a stimulus is detected
if and only if the noisy signal falls above threshold in
at least one of the channels.

We should emphasize that Tyler and Chen (2000) were
not arguing in support of this model; they argued that it
was fundamentally flawed.

Tyler and Chen noted that if the internal noise in this
model were fully multiplicative, then the internal
signal-to-noise ratio would be unchanged by a change
in stimulus strength. Thus, detection performance
would remain the same for any stimulus level, and
measurement of detection thresholds would be impos-
sible! They concluded that even if there is a multipli-
cative component to the noise, detection performance
must be limited by an additive component.

Tyler and Chen derived the shape of the additive
noise distribution that would give rise to a Weibull
psychometric function for the high-threshold model
outlined previously.3 They showed that, for most
Weibull b values, the noise distribution deviated
markedly from a Gaussian. They found this unac-
ceptable because, according to the central limit
theorem, the sum of a large number of non-Gaussian-
distributed random variables is asymptotically
Gaussian distributed. Therefore, if there are many
different sources of noise from the stimulus to the
neuronal decision mechanism, the noise is likely to be
Gaussian at the decision mechanism. They then
showed that high-threshold probability summation
fails for additive Gaussian noise. They showed that, if
the sensory threshold were low enough to be exceeded
by the noisy signal in one channel 75% of the time,
then the noisy signal would exceed the sensory
threshold in at least one of 100 channels almost all the
time, even when the stimulus intensity was reduced to
zero. Thus, if the stimulus area or number of
components increased so that the observer was
monitoring many more channels, the observer would
almost always be in a detect state, even when the
stimulus was absent. The signal would have to be
reduced to a physically unachievable negative contrast
for the observer to be in a detect state 75% of the time.
This problem does not occur with the noise distribu-
tion implied by the Weibull function because the
Weibull probability density function falls to zero at
the sensory threshold (see Supplementary Appendix
K, especially Figure K.1); therefore, when the stimulus
intensity is zero, no detector’s noisy signal will exceed
its sensory threshold. However, as already noted,

Tyler and Chen (2000) rejected that distribution
because of its ‘‘bizarre’’ non-Gaussian nature when b
is not close to 4 (p. 3127). They therefore concluded
that probability summation with high-threshold the-
ory is fundamentally flawed.

Tyler and Chen’s arguments are perfectly valid, but
they apply only to the set of high-threshold models
defined by their assumptions (i.e., that each channel
contains a continuous signal to which noise is added).
With a detection model based on spiking neurons, the
signal is discrete. When the spontaneous firing rate is
zero, as it was in Chirimuuta and Tolhurst’s model,
detection occurs when a single neuron produces a
single spike. In these circumstances, it is not appro-
priate to approximate the neuronal signal as a
continuous signal to which noise is added. It is
perfectly legitimate to apply probability summation to
find the probability that at least one neuron gives at
least one spike. When we do this, we find that the
model’s threshold is very close to being proportional to
K�1/b, as in standard high-threshold Weibull analysis.
The contrast threshold for detection never reaches zero
regardless of how many neurons the observer is
monitoring, but we do not have to rely on bizarre
model characteristics to achieve this. Aside from the
zero spontaneous firing rate, the neurons in Chir-
imuuta and Tolhurst’s model have contrast-response
functions and noise distributions that are physiologi-
cally plausible to a reasonable extent. One could ask
what the equivalent ‘‘continuous signal plus additive
noise’’ model is. Since Chirimuuta and Tolhurst’s
model produces a psychometric function that closely
approximates a Weibull function, the equivalent
‘‘continuous signal plus additive noise’’ model is
closely approximated by the one derived by Tyler and
Chen (and outlined in Supplementary Appendix K),
with the ‘‘bizarre’’ noise distributions. However, this
bizarreness comes from forcing Chirimuuta and
Tolhurst’s model into the Procrustean bed of ‘‘con-
tinuous signal plus additive noise’’ rather than being an
implausible characteristic of the model itself.

Conclusions

We derived equations that explained the perfor-
mance of the contrast coding model described by
Tolhurst and colleagues (Clatworthy et al., 2003;
Chirimuuta & Tolhurst, 2005a). These equations gave a
deep insight into the results of their Monte Carlo
simulations.

As long as the stimulus contrast is high enough (and
the neuronal population is large enough) to generate a
sufficiently high population spike rate, the decoding
precision can be closely approximated by the Fisher
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information. We derived an estimate of decoding
precision, s̃(x), which approximates the Fisher infor-
mation for a population of neurons with Tolhurst’s
spiking process as long as the mean spike count of the
most informative neurons is around five spikes or more.
s̃(x) is also an estimate of the Fisher information for the
Consul-Jain spiking process. Furthermore, it gives the
exact Fisher information for the Poisson process and
the exact modal value of the Fisher information for the
Goris process when the decoder has access to the gain
signal in Goris et al.’s (2014) model of neuronal
spiking. Our expression for s̃(x) revealed simple
relationships between the properties of the neurons and
the decoding precision that hold to a good approxi-
mation when the mean count rate is sufficiently high.
We used this expression to explain five relationships
between decoding precision and the neuronal param-
eter values that Clatworthy et al. (2003) observed from
their Monte Carlo simulations.

For the case of contrast detection, the spike rate is
too low for the Fisher information to match decoding
precision. To analyze the performance of Chirimuuta
and Tolhurst’s (2005a) model in a 2AFC contrast
detection task, we used basic probability theory. We
derived an expression for the model’s psychometric
function for contrast detection and showed that as K or
rmax increase, the psychometric function asymptotically
approaches a Weibull function with b¼ q. Our work
therefore reveals a previously unknown theoretical
connection between two of the most widely used
functions in vision science: the Weibull psychometric
function and the Naka-Rushton contrast-response
function. This relationship explained why Chirimuuta
and Tolhurst always obtained a Weibull b of about 2 in
their modeling (they always had q ¼ 2 in their
assessments of the model’s Weibull b) and allowed us to
refute their conclusion that it is necessary to have a
threshold on the Naka-Rushton function to achieve
Weibull b values that match those found with human
observers. Their threshold on the Naka-Rushton
function had a similar effect to increasing q, as it made
the spike rate increase more abruptly with increasing
contrast.

Keywords: Fisher information, doubly stochastic
Poisson distribution, decoding, detection, probability
summation
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Footnotes

1 In this paper, we use the word trial in two ways.
First, we use it in the way a physiologist would, to
mean a stimulus presentation. Second, we use it to
mean a trial on a two-alternative forced-choice (2AFC)
psychophysical experiment, in which the observer is
presented with two stimuli and has to make a response.
To distinguish these two meanings, we always refer to
the latter type of trial as a 2AFC trial.

2 In this discussion, we use the word threshold in two
ways: (a) to refer to an internal threshold on the
sensory signal, and (b) to refer to the stimulus contrast
corresponding to a particular level of detection
performance. We have tried to make the meaning clear
in each case by using the term sensory threshold for the
former case and the term detection threshold for the
latter.

3 As pointed out by Mortensen (2002), Tyler and
Chen’s (2000) published equation for the probability
density function (PDF) of the noise (Tyler and Chen’s
equation 4b) contains errors. However, Tyler and
Chen’s plots of the noise PDFs (shown in their figure
2b) are correct, so we assume that the errors in Tyler
and Chen’s equation 4b are typographical errors rather
than fundamental problems with their analysis. To
clarify matters, we present in Supplementary Appendix
K a derivation of the PDF that is based on Mortensen’s
derivation but is hopefully easier to follow than
Mortensen’s derivation or that of Tyler and Chen.
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