
NetCodCCN: a Network Coding approach for
Content-Centric Networks

Jonnahtan Saltarin∗, Eirina Bourtsoulatze∗, Nikolaos Thomos† and Torsten Braun∗
∗University of Bern, Bern, Switzerland

Email: {saltarin,braun}@inf.unibe.ch, eirina.bourtsoulatze@gmail.com
†University of Essex, Colchester, United Kingdom

Email: nthomos@essex.ac.uk

Abstract—Content-Centric Networking (CCN) naturally sup-
ports multi-path communication, as it allows the simultaneous
use of multiple interfaces (e.g. LTE and WiFi). When multiple
sources and multiple clients are considered, the optimal set of
distribution trees should be determined in order to optimally
use all the available interfaces. This is not a trivial task, as
it is a computationally intense procedure that should be done
centrally. The need for central coordination can be removed by
employing network coding, which also offers improved resiliency
to errors and large throughput gains. In this paper, we propose
NetCodCCN, a protocol for integrating network coding in CCN.
In comparison to previous works proposing to enable network
coding in CCN, NetCodCCN permit Interest aggregation and
Interest pipelining, which reduce the data retrieval times. The
experimental evaluation shows that the proposed protocol leads
to significant improvements in terms of content retrieval delay
compared to the original CCN. Our results demonstrate that
the use of network coding adds robustness to losses and permits
to exploit more efficiently the available network resources. The
performance gains are verified for content retrieval in various
network scenarios.

I. INTRODUCTION

In the IP protocol, core of the current Internet architecture,
each packet is routed based on the location of the host to
which it is addressed. However, nowadays Internet users care
more about the content they want to obtain rather than where
this content is stored. To address this mismatch, Jacobson et
al. [1] proposed Content-Centric Networking (CCN), a new
communication paradigm in which the importance is shifted
from where the content is located, to what the content is. In
the CCN model, the content is described by its name and the
users demand content with the help of Interest messages that
contain the name of the requested content. These Interests are
transmitted over the network until they reach a node holding
a copy of the content whose name matches that of the Interest
message. Once such a node is reached, a copy of the requested
content is encapsulated in a Data message and it is sent back
to the requester following the reverse path of that followed
by the Interest message. As the Data message is transmitted
backwards to the requester, intermediate nodes can store copies
of it, so they can reply to future Interests for the same content.

One of the advantages of CCN is that it allows clients to
exploit multiple paths in a native way, as clients can simul-
taneously transmit Interests over all their network interfaces
(e.g., LTE and WiFi) to retrieve the content segments that

comprise the requested content. This leads to a better use of
the network resources and reduces the time needed to collect
all the content segments. However, when multiple clients are
interested in the same content (e.g., a popular video stream),
and/or when the content is distributed across multiple sources
(e.g., in a distributed storage system), the optimal content
delivery rate is only attained if the segments are delivered
over the optimal set of multicast trees [2]. This means that
the Data and Interest messages should be transmitted over
these multicast trees, thus, the nodes need to know where
they need to forward each Interest to follow these multicast
trees, which does not scale for large and dynamic topologies.
Furthermore, the computation of the optimal set of multicast
trees needs a central entity that is aware of the network
topology, which is hard to be done in dynamic networks. An
alternative solution to the computation of the optimal multicast
trees is to use network coding [3]. With network coding all
the network nodes perform coding operations on the received
packets instead of just replicating and forwarding them as
in traditional networks. The receivers decode the information
when they receive a decodable set of packets, i.e., as many
linearly independent coded packets as the number of source
data segments.

The application of network coding in CCN has been ex-
plored in [4] where the NC3N architecture has been intro-
duced. In this approach, Interests contain information about
the content segments available at the client, based on the
approach proposed in [5]. Nodes holding content segments
that matches the name prefix of the Interest, reply only if they
can provide a network coded content segment that increases
the content available at the client. However, in the presence of
multiple clients, (i) the aggregation of Interests is problematic,
since Interests for the same content segment from different
clients contain different content availability information; and
(ii), when a client sends multiple Interests in parallel to receive
multiple content segments, it will include the same information
about the content that it already has. This is undesirable as
a node that has a matching content segment will reply to
multiple Interests with the same content segment, that will
be duplicated for the client. Inspired by [4], CodingCache has
been proposed in [6] which uses network coding to replace the
content segments in the cache of the network nodes. Due to
the increased content segment diversity in the network, the

ar
X

iv
:1

51
2.

00
25

9v
1

 [
cs

.N
I]

 1
 D

ec
 2

01
5

cache hit rate is improved. However, this approach suffers
from the same drawbacks as the architecture in [4]. In [7], the
multicast delivery of network coded content in Information-
Centric Networks is optimized by finding the evolution of the
content segments that are stored in the network. The drawback
of this approach is that it does not scale well with the number
of network nodes, because it needs a central entity that is
aware of the network topology and the clients’ requests.

In this paper we propose NetCodCCN, a protocol for
integrating network coding in CCN. Our proposed solution
solves the shortcomings of the approaches presented in [4]
and [6]. Specifically, (i) we eliminate the need to include
in the Interests the information about the content available
at the client, thus, simplifying Interest aggregation; (ii) we
allow nodes to keep information about the content segments
they have sent on each face, reducing the number of duplicate
segments; and (iii) we allow clients to send multiple Interests
in parallel, by modifying the way in which the nodes process
the Interest messages.

We have implemented NetCodCCN by making the nec-
essary changes to CCNx [8], and performed experiments to
compare it to unmodified CCNx. Our results demonstrate
that NetCodCCN offers large gains in terms of the time
needed to retrieve the original content object. Moreover, it adds
robustness to losses and permits to exploit more efficiently the
available network resources in multi-source multicast scenar-
ios. To the best of our knowledge, this is the first practical
implementation of network coding integrated into CCNx.

II. DATA RETRIEVAL IN CCN

We focus on content communication over wired networks
represented by directed acyclic graphs G = (V, E), where V
and E denote the set of network nodes and the set of links
connecting them, respectively. Each network consists of a set
of source nodes S that generate and/or store content objects,
a set of clients U that demand content objects and a set of
intermediate nodes R through which the content objects are
requested and transmitted. Hence, we have V = S ∪ U ∪R,
where every node v ∈ V is connected with its neighboring
nodes through a set of faces Fv .

In CCN, content objects are split into smaller segments that
fit into Data messages. Each segment is uniquely identified by
a name. We denote a content object as Cp = {cp,1, . . . , cp,N}
where N is the number of segments in Cp and p is the name
of the content object, which serves as a name prefix for the
segments. The name of each segment cp,n ∈ Cp is generated
by appending the name of the content object p with the seg-
ment identifier n. For instance, the name of the segment cp,1
is /provider/videos/largevideo.h264/1, where
/provider/videos/largevideo.h264 is the name
prefix, p and 1 is the segment id.

Each source s ∈ S stores content objects that can be
requested by the clients. A client u ∈ U that is interested
in a content object Cp = {cp,1, . . . , cp,N} should send a
set of Interest messages Ip = {ip,1, . . . , ip,N}, one for each
segment. These interests are sent over a set of faces Fp

u that are

configured to forward Interests for content with name prefix
p. The information about which faces a node can use to send
Interests for specific name prefixes is stored in the Forwarding
Information Base (FIB) table.

In CCN, each node v ∈ V has a cache, or Content Store (CS)
in CCN terminology, where segments that pass through the
node can are stored. These segments can be used later to reply
to Interests for segments with a matching name. Therefore, a
node v ∈ I ∪ S holding a copy of the segment cp,n in its CS
will reply to any Interest ip,n. If the CS of node v does not
contain a segment matching the name of the Interest ip,n, the
node v first checks its Pending Interest Table (PIT), that keeps
track of the Interests forwarded by the node and all the faces
over which those Interests have arrived. If the node v finds in
its PIT an entry that matches the name in the Interest, it knows
that it has already forwarded ip,n and hence the segment cp,n
is expected. In this case v does not forward ip,n again, but
only adds the face f over which the Interest has arrived to the
respective PIT entry. When the PIT does not have any entry
that matches the Interest ip,n, the node v forwards the Interest
to its neighboring nodes over the set of faces Fp

u configured
in its FIB.

Once the requested segment is found in the CS of an
intermediate node or in a source node, it is transmitted to the
client in a Data message over the reverse path of that followed
by the Interest. When a node v receives a Data message with
the segment cp,n over a face f ∈ Fv , it first checks its CS.
If a segment with the same name exists, the arrived segment
cp,n is considered duplicated and is not transmitted further. If
there is no matching segment in the CS, the node checks the
PIT for an entry that matches the name of the segment cp,n. If
there is no matching PIT entry, the segment cp,n is considered
unsolicited and it is discarded. If a matching PIT entry is
found, the segment is forwarded to all the faces specified in
the corresponding PIT entry. Additionally, the segment cp,n
may be added to the CS, according to the caching policy.

III. TOWARDS NETWORK CODING ENABLED CCN

In this section we describe the benefits that network coding
can bring to CCN. First, we motivate the use of network coding
by presenting three scenarios in which CCN does not perform
efficiently. Then, we show how network coding can alleviate
the drawbacks of CCN in the mentioned scenarios, while also
bringing additional benefits.

A. Motivation

Nowadays, communication devices usually come with mul-
tiple network interfaces that can be used to gather content,
e.g., smart-phones usually have WiFi and 3G/LTE interfaces.
However, in the traditional host-centric networking, using
multiple interfaces in parallel to retrieve content is a difficult
task, as end-to end connections need to be established for
each interface. In CCN, multipath content retrieval is naturally
supported, as the clients can distribute all the Interest messages
needed to retrieve a content object over all its available faces.

However, there are some scenarios where CCN does not
provide efficient support for multipath content retrieval:

• Multi-source unicast: Let us consider the case illustrated
in Fig. 1a, where a client u is interested in a content
object Cp composed of N segments that are distributed
across multiple sources S. In this case, the client and
the intermediate nodes need to select properly the face
over which they send the Interest for each segment, such
that it reaches the right source. This is done using the
information stored in the FIB table. However, keeping
the FIB tables of all the nodes updated for each segment
of Cp does not scale well, in particular in large networks
and in the presence of unreliable sources that can become
available/unavailable at any moment.

• Single-source multicast: Let us now consider the case
where a single source stores the N segments that com-
pose the content object Cp, but more than one client is
interested in Cp, as illustrated in Fig. 1b. In order to
minimize the time needed for each client to receive the
complete set of segments that compose Cp, while also
minimizing the number of duplicated transmissions of
the same segment in the network, the segments need to
travel over cost-efficient multicast distribution trees [2].
In CCN, this means that each node of the network should
know where each Interest ip,n should be forwarded such
that all the Interests for the segment cp,n from different
clients are aggregated in the optimal point in the network
that reduces the number of copies of cp,n transmitted
before reaching all the clients interested in it. However,
finding the optimal set of multicast distribution trees in a
distributed manner is a very complicated task [2], which
requires the knowledge of the network topology. In the
simple example shown in Fig. 1b, if all the clients send
the Interest ip,n over the LTE face, the segment cp,n will
be transmitted from the source to the LTE network and
then to the clients. However, if some of the clients decide
to send the Interest ip,n over the WiFi face, the segment
cp,n will also be transmitted from the source to the WiFi
network, wasting resources that could have been used to
transmit another segment.

• Multi-source multicast: In this scenario, both of the above
mentioned problems manifest, as it is a combination of
both scenarios. Hence, it is more challenging for CCN to
efficiently deliver the content to the clients.

B. Enabling network coding in CCN

The shortcomings of the CCN architecture discussed in Sec-
tion III-A can be dealt with by enabling network coding [3],
a technique in which the segments delivered to the clients are
coded at sources and intermediate nodes. The key idea behind
introducing network coding in CCN is that clients no longer
need to request specific data segments, but rather encoded data
segments as they all have the same amount of information.
This removes the need to coordinate the forwarding of Interests
and leads to a more efficient use of the available network
bandwidth.

Differently from the original CCN where an Interest mes-
sage ip,n requests a specific segment cp,n, in a network coding
enabled CCN variant an Interest message îp requests a coded
segment ĉp, without specifying a particular segment id. The
sources or intermediate nodes can reply to these Interests
with network coded segments, generated by combining the
segments in the CS of the node that match the name prefix p.
In matrix form, this can be expressed as ĉp = A ·CSp, where
A is a vector of coding coefficients drawn from a Galois field,
and CSp is a vector of the segments in the CS of the node that
match the name prefix p. When the coding coefficients in A
used to combine the packets are chosen uniformly at random
from a large enough Galois field, the generated segments
have high probability of being linearly independent, and thus
innovative. Whenever a client interested in a content object
Cp collects N innovative coded segments ĉp, it can decode
the original segments that compose Cp.

To illustrate the benefits that network coding brings to CCN,
let us revisit the scenarios described in Section III-A.

• Multi-source unicast: Differently to the original CCN,
when network coding is allowed, the client and the inter-
mediate nodes do not need to know over which face they
can reach a particular source, since they send Interests
for coded segments rather than for specific segments.
This implies that the FIB of the clients and intermediate
nodes do not need an entry for each segment, but only a
single entry for the name prefix leading Interests towards
the sources is enough. Each source then reply to these
Interests with coded segments ĉp, generated by combining
the segments that match the name prefix p.

• Single-source multicast: When network coding is allowed
the clients do not need to coordinate what Interests they
send over each face, since all of them are for coded
segments. Thus, when all the clients send an Interest îp
requesting a coded segment over a face (e.g., LTE) it
will be aggregated by the intermediate nodes, and only
one Interest requesting a coded segment will reach the
source.

• Multi-source multicast: In this scenario, when network
coding is allowed, neither clients nor intermediate nodes
need to coordinate the forwarding of the Interests, since
they are for coded data and can be satisfied by any coded
segment.

Network coding has also been shown to improve the
throughput when bottlenecks are present in the network and
the resiliency to packet erasures. In order to illustrate these
benefits, let us consider the scenario in Fig. 1c, commonly
known as the butterfly network. We consider that two clients
are interested in a content object Cp = {cp,1, cp,1} that
consists of two segments. Each source holds only one of the
segments. In this case, if network coding is not enabled, one of
the clients will always receive the content with higher delay.
This is because the link between nodes r3 and r4 becomes a
bottleneck since the only way in which the clients u1 and u2
can get cp,2 and cp,1 respectively, is through node r4. Thus, the

[cp
1]

LTE Network WiFi Network

[cp
2] [cp

3] [cp
4] [cp

5] [cp
6]

(a)

[cp
1,cp

2]

LTE Network WiFi Network

..
.

(b)

r3 r1 r5

r2 r4 r6

u1 u2

s1 s2

(c)

Fig. 1. Mobile devices retrieving segments in parallel over LTE and WiF): (a) multi-source unicast; (b) single-source multicast; (c) multi-source multicast
(butterfly network).

Interests sent by the clients u1 and u2 cannot be aggregated in
the node r4, since they are for different segments. In contrast,
when network coding is enabled, the Interests sent by the
clients u1 and u2 can be aggregated in the node r4, as they
are both for coded data. If the node v3 applies network coding
to the segments received from the sources, the resulting coded
segment will be useful for both clients u1 and u2.

C. Challenges

As discussed in Section III-B, enabling network coding in
CCN nodes brings benefits that can potentially improve the
performance of content object retrieval under certain scenarios.
However, some issues arise when the Interest messages do not
specify the segment id.

One of the issues that arises is that any node that has a
single coded segment ĉp cached in its CS will reply with it to
all the Interests îp, as the name prefix in the Interest matches
that of the cached segment ĉp. This is undesirable, since the
intermediate nodes will always reply with the same cached
segment ĉp, while clients need to receive N innovative coded
segments in order to decode the original segments. Therefore,
the intermediate nodes need a way to determine when they
cannot provide a coded segment that is innovative to client,
and thus a new coded segment need to be retrieved. In [4] the
authors propose to solve this problem by allowing the clients
to include information about the coded segments they have
collected so far. Intermediate nodes will reply to an Interest
only if they can provide innovative information. However, it is
not clear how intermediate nodes can aggregate Interests with
different information from the clients.

Another challenge that emerges when network coding is
enabled in CCN is related to the pipelining procedure, i.e.,
a client sending multiple concurrent Interests for different
segments of the same content object. In the original CCN
when a node receives an Interest that it cannot satisfy with
content stored in its CS, the node checks its PIT. If the node
finds an entry in the PIT indicating that an Interest for the
same name has been received previously over the same face,

it will consider this new Interest as a duplicate and will not
forward it. Since Interests for different segments will have
different names, as the segment id is appended to the name
prefix, pipelining is supported. However, when network coding
is enabled in CCN, concurrent Interests for the same content
object will be considered duplicated by the intermediate nodes,
as Interests for different (linearly independent) coded segments
of the same object will have the same name.

IV. THE NETCODCCN PROTOCOL

In this section, we present NetCodCCN, a practical im-
plementation of a network coding enabled content-centric
networking protocol. We build our proposal on the CCN [1]
architecture. We start by defining the content segmentation
and naming scheme in NetCodCCN. Then, we describe how
Interests and Data messages are processed in our proposed
protocol.

A. Content Segmentation

As in CCN, in NetCodCCN content objects are split into
smaller segments, Cp = {cp,1, . . . , cp,N}, that fit into Data
messages. Network coded segments ĉp are generated by the
sources by randomly combining the set of L segments, L ≤ N ,
with name prefix p that are stored in their CS. This set of
segments is denoted as CSp. Thus, ĉp =

∑l=L
l=0 al · cp,l,

where al is a randomly selected coding coefficient and cp,l
in sthe lth segment in CSp. As the segments CSp used to
create ĉp and the coding coefficients al are only known by
the node performing network coding, information about both
the segments and the coding coefficients should be included
in each network coded segment, in order to allow decoding by
the clients. In NetCodCCN, this is accomplished by following
the approach presented in [9], where an encoding vector gn
is associated to the segment cp,n ∈ Cp. The initial value of
this encoding vector is an nth unit vector, meaning it is a
vector that has value 1 in the nth position and 0 otherwise.
Network coding operations are performed on both the seg-
ments and their corresponding encoding vectors, generating

ĉp,g =
∑l=L

l=0 al · cp,l, where ĉp,g is a coded vector associated
with the encoding vector g and g =

∑l=L
l=0 al ·gl. Intermediate

nodes generate network coded segments as the sources, but
they combine segments that have been already coded, thus
ĉp,g =

∑l=L
l=0 al · ĉp,gl , where g =

∑l=L
l=0 al · ĝl .

The clients and intermediate nodes keep track of the re-
ceived innovative encoding vectors gl, Gp = [g1; . . . ; gL], so
that the original set of segments can be retrieved by performing
Gaussian elimination when the matrix Gp is full rank, i.e., it
contains L = N linearly independent coding vectors.

The use of the encoding vectors introduces a communication
overhead that leads to waste of network resources, especially
when the content object is segmented in a large number of
content segments. To limit this overhead, we adopt the concept
of generations [9], where the original set of segments that
compose Cp is partitioned into smaller groups of segments,
i.e., generations, and the coding operations are restricted only
between segments that belong to the same generation. For ex-
ample, let us consider that Cp is partitioned into K generations
of Hk segments each one. Hence, the Hk segments of the
kth generation are denoted as as Cp,k = {cp,k,1, ..., cp,k,Hk

},
where k is the generation id. The size of the generation,
Hk, controls the tradeoff between the decoding delay, the
packet diversity and the overhead required to communicate the
encoding vector. Overall, the encoding vectors do not pose any
limitations to our system as there are approaches to compress
them efficiently [10], [11]. In order to avoid mixing packets
from different generations, the segments are tagged with the
generation id.

B. Content Naming

From the discussion above, it is obvious that the nam-
ing in NetCodCCN should have two additional compo-
nents, i.e., the encoding vector g and the generation
id k. Let us consider a data object Cp with content
name p = /provider/videos/largevideo.h264.
This Cp is partitioned into K generations of Hk seg-
ments each one. Thus, in NetCodCCN the first segment
of the kth generation, cp,k,1, associated with the unit
vector [1, 0, 0, 0] when Hk = 4, is named {p, k, 1} =
/provider/videos/largevideo.h264/k/1000.

For the sake of clarity, and without loss of generality,
hereafter we consider that the name prefix p in ĉp,g , considers
both the name prefix and the generation id. Note that, the
proposed naming scheme is compatible with the original CCN
and can support the delivery of non coded segments.

C. Interest Message Processing

Similarly to CCN, in our protocol the data communication is
triggered by the clients who send Interest messages îp for data
with name prefix p. In the proposed NetCodCCN protocol,
the Interests have a NetworkCodingAllowed field that takes
the value “1” when network coded segments are expected,
otherwise, the field is not present or its value is set to “0”.
Nodes receiving an Interest with the NetworkCodingAllowed
field activated process the Interest messages following the

NetCodCCN procedure explained below and summarized in
Algorithm 1. Otherwise, the Interests are treated following the
original CCN procedures.

Algorithm 1 Interest Processing in NetCodCCN

Require: îp, f , CSp ← segments that match p in the CS
1: if Decoded(p) then
2: ĉp,g ←

∑l=L
l=0 al · ĉp,gl

3: Send segment ĉp,g over face f
4: else
5: ιp,f = Rank(Gp)− np,fsent

6: if ιp,f > 0 then
7: ĉp,g ←

∑l=L
l=0 al · ĉp,gl

8: Send segment ĉp,g over face f
9: else

10: InsertPIT (p, f)
11: if npendingp ≤ npendingp,f then
12: PropagateInterest(̂ip)
13: end if
14: end if
15: end if

When a node v ∈ V receives an Interest îp for a network
coded segment over a face f , it either (i) replies to the Interest
with a coded segment generated with the set of segments CSp;
or (ii) forwards the Interest to other nodes in order to receive
a new linearly independent segment. This is further explained
in the following.

Replying an Interest: The node v replies to an Interest
îp when (i) it has collected enough network coded segments
to decode the original set of segments Cp; or when (ii) a
segment generated by node v has high probability to be
innovative for the node connected through face f from where
the Interest arrived. The number of coded segments ιp,f that
can be generated by the node v and have high probability to
be innovate for the node connected through face f , is given
by ιp,f = rank(Gp) − δp,fsent. The parameter δp,fsent denotes
the number of segments belonging to CSp that have been
previously sent over face f . When ιp,f is higher that 0, v
generates a new coded segment and sends it over face f .

Forwarding an Interest: The node v forwards an Interest
îp to its neighbors when ιp,f is equal to 0, since it needs a
new segment that increases the rank of Gp before it can reply
to Interest îp. As in CCN, prior to forwarding an Interest, the
node v checks its PIT. However, in order to support pipelining,
in NetCodCCN the PIT verification procedure is modified.
Specifically, if the node finds a matching PIT entry indicating
that an Interest for the same name prefix p has been previously
received over the same face f , the Interest is not considered
duplicated, but it is treated as a request for additional network
coded segments from the same face, as shown in Fig. 2. This
means that the face f can appear multiple times in the PIT
entry for the name prefix p. To decide whether the Interest
îp should be forwarded, the node v computes the number
νp of innovative coded segments matching the name prefix

Pending
faces

Prefix

f1
f2
f3

p f2

f1

Pending
faces

Prefix

f1
f2
f3
f3

p

f3

f2

f1

f3

Received
Interests

f

Sent
Interests

f

Sent
Interests

Fig. 2. Comparison of the PIT in CCN and in NetCodCCN.

p that it is expecting to receive before the Interest îp expires.
If νp > npendingp,f , where npendingp,f is the number of Interest
received over face f that are pending for a reply, the node
v does not forward the Interest îp, as it will receive enough
coded segments to satisfy all the pending Interests, including
the received Interest îp. Otherwise, if νp ≤ npendingp,f , the node
v forwards the Interest.

To compute the expected value of νp, the node v needs
a probabilistic model that can take into consideration the
loss rate of the system, the delays that segments may suffer,
etc. For the sake of simplicity, we make the assumption that
nodes follow a simple model in which any forwarded Interest
brings an innovative segment before its expiration. In this case,
νp = npendingp , where npendingp is the total number of pending
interests for the name prefix p. Thus, the node will forward
the Interest if npendingp ≤ npendingp,f .

When a segment with name prefix p is removed from the
CS of node v (e.g., when the CS eviction policy decides that
segments of name prefix p needs to be removed from the
cache), the corresponding vector should also be removed from
Gp, and δp,fsent needs to be decreased by 1 for all the faces.

D. Data Message Processing

The use of network coding in CCN imposes also modifica-
tions in the Data message forwarding procedure. Specifically,
when a node v ∈ V receives a coded segment ĉp,g on face f ,
it should determine whether ĉp,g is innovative. The segment
ĉp,g is innovative for the node v if the encoding vector g is
linearly independent in Gp, i.e., if it increases the rank of
Gp. A non innovative segment is considered as a duplicated
segment and therefore it is discarded by the node v. When the
segment ĉp,g is innovative, the node v inserts it into its CS, and
updates the encoding matrix Gp that should now contain the
received encoded vector g. Then, the node v checks its PIT.
If the node v finds a matching PIT entry, meaning that an
Interest with name prefix p is pending, it generates a network
coded segment ĉp,g′ =

∑l=L
l=0 al · ĉp,gl and sends it once over

each of the faces specified in the PIT entry. It is important
to note that since the face f can appear multiple times in the

PIT entry for the name prefix p, as a consequence of allowing
pipelining, a coded segment sent over face f consumes only
one of the appearances of f in the corresponding PIT entry.
If no matching PIT entry for the name prefix p is found,
the received coded segment is considered unsolicited and is
not further transmitted. However, it can be kept in the CS,
according to the CS insertion policy, as it can be useful to
serve future Interests. This procedure is outlined in Algorithm
2.

Algorithm 2 Content Processing in NetCodCCN
Require: ĉp,g

1: if g increases the rank of Gp then
2: Insert ĉp,g in the CS
3: PITp ← PIT entry for prefix p
4: if PITp = ∅ then
5: Discard ĉp,g
6: else
7: for all f in PITp do
8: if f has not been served then
9: ĉp,g′ =

∑l=L
l=0 al · ĉp,gl

10: Send segment ĉp,g′ over face f
11: np,fsent ← np,fsent + 1
12: Remove one appareace of f from PITp
13: end if
14: end for
15: end if
16: else
17: Discard ĉp,g
18: end if

It is important to note that the application of network
coding adds complexity to the Interest and Data message
processing in NetCodCCN. Performing algebraic operations
on the segments before forwarding them adds, effectively,
some complexity to the CCN node. In particular, as we have
seen in Section IV-A, a node generates a new coded segment
ĉp,g′ as ĉp,g′ =

∑l=L
l=0 al · ĉp,gl . If we consider that the

operations are performed in a Galois field of size 28 and that
segments are of size X symbols, each time a node needs
to generate a new coded segment, it should perform X · L
multiplications and X · (L − 1) additions. This complexity
does not pose limitations to our scheme as there are efficient
implementations of network coding [12]. Further, as it has
been shown in [13], a network coding coder and decoder can
operate at wire-speed with rates of up to 1000Mbps.

V. NETCODCCN EVALUATION

In this section, we evaluate the performance of NetCodCCN
in various scenarios, and compare the results to the perfor-
mance of the standard CCN. First, we describe the simulation
setup. Then, we evaluate the performance of NetCodCCN in
the butterfly network. This toy network provides a controllable
environment which permits to verify the expected behavior
of NetCodCCN, and facilitates illustration of its benefits.
Finally, we present the simulation results in a more realistic

6 8 10
1

1.25

1.5

1.75

2

Bottleneck link capacity [Mbps]

N
or

m
al

iz
ed

de
la

y
(d

)

NetCodCCN
CCNx-LS
CCNx-PS
CCNx-DS

Fig. 3. Normalized delivery delay versus the
capacity of the bottleneck link in the butterfly
network.

2 5 10 15 20 25 30
1

1.25

1.5

1.75

2

Pipeline size

N
or

m
al

iz
ed

de
la

y
(d

)

NetCodCCN
CCNx-LS

Fig. 4. Normalized delivery delay versus the
pipeline size in the butterfly network.

0 10 20 30
1

1.5

2

2.5

3

Error rate [%]

N
or

m
al

iz
ed

de
la

y
(d

)

NetCodCCN
CCNx-LS

Fig. 5. Normalized delivery delay versus the error
rate in the butterfly network.

network topology, which is generated based on real network
measurements taken from the Planetlab project [14].

A. Simulation Setup

We implemented NetCodCCN by integrating the cahnges
to the CCN architecture described in Section IV into the
CCNx 0.8.2 [8] code, and we compare its performance to
that of the unmodified CCNx. The network topology is sim-
ulated using the NS-3 network simulator [15]. The software
forwarders/routers for CCNx and NetCodCCN are installed
on NS-3 nodes using the Direct Code Execution framework
(DCE) [16].

We consider that the clients are interested in a content object
composed of N = 100 segments. The size of each segment
is 5KB. The data segments are stored in a set of sources that
are connected to the clients through a network of intermediate
nodes. We consider that the intermediate nodes have sufficient
CS space to store all the incoming data. We assume that the
N = 100 source data segments comprise a single generation,
i.e., H = N and K = 1. The finite field in which the network
coding operations are performed is of size 28. In order to
evaluate our protocol in a challenging scenario, we consider
that all the clients send Interests for the content segments
during the same interval of time. In this way, we demonstrate
that by using our protocol, nodes are able to aggregate Interests
adequately.

For the evaluation of CCNx, we consider the three main
Interest forwarding strategies implemented in CCNx 0.8.2, and
described in [17]:

• The default (DS) strategy selects the fastest responding
face based on the face statistics.

• The loadsharing (LS) strategy distributes the Interest
forwarding load over all the available faces, sending each
Interest over the face with the smallest pending Interest
queue.

• The parallel (PS) strategy sends the Interests in parallel
over all the faces indicated on the FIB.

For the evaluation of NetCodCCN, we always consider the
parallel strategy, since by sending a single Interest over all
its faces the client can receive multiple useful segments, i.e.,
linearly independent.

To evaluate the performance of NetCodCCN, we measure
the time ∆tmeasured that a client needs in order to get
the N segments available at the sources. In the standard
CCN, ∆tmeasured is defined as the elapsed time between the
transmission of the first Interest and the reception of the N th
missing segment. In NetCodNCC, ∆tmeasured is defined as
the elapsed time between the transmission of the first Interest
and the reception of the N th linearly independent network
coded segment, which permits to decode the whole generation
of segments. We consider that clients can have heterogeneous
network resources, thus, in order to make a fair comparison
of the delivery delay, we define the normalized delivery delay
as d = ∆tmeasured/∆tmin, where ∆tmin is the theoretical
lower bound on the time that a client would need in order to
receive all the segments if it was alone in the network and was
able to receive at max-flow rate. Thus, a normalized delivery
delay equal to 1 means that the client was able to receive
the complete set of packets at the maximum rate. Note that
∆tmeasured ≥ ∆tmin, or equivalently, d ≥ 1 always holds.

B. Butterfly Topology
We begin by evaluating NetCodCCN in the butterfly topol-

ogy presented in Fig. 1c. We consider that every data segment
is stored randomly in at least one of the two sources, and a
copy of the same segment is also placed in the Content Store
of the other source with a duplication probability φ ∈ [0, 1].
We set the capacity of every link in the network to 5Mbps.

In the first set of experiments, we consider that φ = 1, i.e.,
both sources hold a copy of each data segment in their CS.
This corresponds to the single source multicast case presented
in Section III-A. In this case, clients u1 and u2 can reach
a copy of any segment over any of their faces. However, as
explained in Section III-B, with the original CCN protocol the
maximum performance can be achieved only if both clients
coordinate and send Interest messages for the same segments
over the faces that connect them to the node r4. In contrast,
when network coding is employed, the need for coordination
is eliminated, since clients do not send Interests for a specific
segment but rather for any network coded segment.

Fig. 3 depicts the normalized delivery delay as a function
of the capacity of the bottleneck link between nodes r3
and r4. We can see that NetCodCCN achieves the optimal

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

Duplication probability φ [%]

N
or

m
al

iz
ed

de
la

y
(d

)

NetCodCCN
CCNx-LS
CCNx-PS

Fig. 6. Normalized delivery delay versus the
source content duplication probability in the but-
terfly network.

1 2 3 4 5
1

1.5

2

2.5

Number of clients

N
or

m
al

iz
ed

de
la

y
(d

)

NetCodCCN
CCNx-LS
CCNx-DS

Fig. 7. Normalized delivery delay versus the
number of clients in the network in the PlanetLab
topology.

0 2 4
1

1.5

2

2.5

3

3.5

Error Rate [%]

N
or

m
al

iz
ed

de
la

y
(d

)

NetCodCCN
CCNx-LS

Fig. 8. Normalized delivery delay versus the
segment transmission error rate in the PlanetLab
topology.

performance in the whole range of link capacity values. This
is due to the fact that network coding removes the need for
coordinating the forwarding of Interest messages. In contrast,
the CCN forwarding strategies perform poorly and only the
LS strategy can achieve the performance of NetCodCCN but
requires significantly higher link capacity. When the bottleneck
link has the same capacity as all the other links, the average
delivery time d of CCNx-LS is around 1.2 times the minimum
delivery delay, ∆tmin. This is caused by the randomness
introduced by the LS strategy when choosing the faces over
which Interests are transmitted when all the faces have the
same load. This creates two extreme cases. In one case, all
the Interests sent by both clients to node r4 are the same, thus
d tends to one. In the other case, all the Interests are different,
thus d tends to 1.33. This happens because each node will
receive 2/3 of the segments through the link connecting them
to the sources, and 1/3 over the face connecting them to the
node r4, which means that 2/3 of the total segments will travel
on the bottleneck link. With the DS and the PS strategies, the
average delivery time is close to 2, as expected. With the DS
strategy, the face connecting the clients to the sources will
be chosen as the best, and thus most of the segments will be
received over that face. With the PS strategy, each client will
forward every Interest over both faces, thus bringing one copy
of each segment over each face.

We now investigate how the number of concurrent Interests
that a client can send, also known as the pipeline size,
affects the performance in terms of the average normalized
delivery delay. As shown in Fig. 4, the performance of CCN
is optimized for a pipeline size value between 5 and 10, where
the normalized delivery delay seen by the clients is 1.2. This
is due to the fact that clients need to send at least 4 Interest
messages over the faces connecting them to the node r4 in
order to create a continuous flow of segments. Since the LS
strategy distributes the Interests over all available faces, a
client has to send 4 Interests over each face while it also
has sent 3 or 4 Interests over the other face, which amounts
to 7 or 8 Interests in total. For smaller pipeline sizes, the
continuous flow is not set, while for larger pipeline sizes the
number of Interests sent over the bottleneck link increases,
thus worsening the client coordination problem. In contrast,

the performance of NetCodCCN is not affected by the pipeline
size, as can be verified in Fig. 4. This can be explained by the
fact that NetCodCCN eliminates the necessity that the clients
request the same segments over the bottleneck link. For the
rest of the experiments, we choose a pipeline size of 10.

In Fig. 5, we depict the influence of the data segment
loss rate on the performance of NetCodCCN and of the
original CCN. We consider losses that are caused both by
the transmission losses and the errors during the processing
of the segments. We can see that the performance of CCN
with the LS strategy degrades faster than the performance of
NetCodCCN as the segment error rate increases. This is caused
by the fact that in CCN, the client will be able to react to a
segment loss only when the corresponding Interest expires,
since any earlier re-transmission of an Interest with the same
prefix will be prevented by the PIT. Instead, with NetCodCCN,
the clients can send Interests for new coded segments until
they have a sufficient number of coded segments in order
to recover the original ones. It is important to note that the
maximum amount of concurrent Interests that a client can send
is controlled by the pipeline size.

Finally, we evaluate the performance of NetCodCCN for dif-
ferent values of the duplication probability φ. This corresponds
to the multi-source multicast case presented in Section III-A.
In CCNx, when φ < 1, the clients should not only coordinate
the requests sent over the bottleneck link as in the previous
scenario, but they also should have the knowledge of the
segments that each source stores, in order to avoid sending
Interests over the face connecting them directly to the source
that does not hold a copy of the requested segment. In Fig. 6
we can see that CCN with the LS strategy takes 3.4 times
longer to deliver all the segments to the clients, when each
segment is stored only in one of the sources. When the PS
strategy is employed, the clients do not need to know how the
content is distributed since each Interest message is sent over
both of its faces. However, since a copy of every segment will
cross the bottleneck link, the traffic over the bottleneck link
will be doubled compared to the network coding case. When
the probability that the segments are stored in both sources
increases, the performance of CCNx with the LS strategy
improves, but eventually saturates at 1.2 times the minimum

Source

23

25

1

2

3

4

5

6

7

9

10

11

13

20
21

22

24

8

12
14

15

16
19

17

18

Fig. 9. Planetlab topology used.

delay, which is consistent with the results depicted in Fig. 4.

C. Planetlab Topologies

We now evaluate our protocol in more realistic network
topologies captured by the PlanetLab project [14]. We use
the network topology shown in Fig. 9 that consists of one
source node, 5 client nodes and 20 intermediate nodes. The
links connecting the nodes have a capacity of 12Mbps. The
topology was generated using the procedure described in [18].
We measure the normalized delivery delay d for each client
and then compare its average.

First, we investigate how the performance is affected by
the number of clients in the network. In Fig. 7 we can see
that with a single client (in this case node 24), NetCodCCN
and CCNx perform similarly. In this case, network coding
does not introduce any gains since there is only one client
in the network and no losses are considered. However, the
performance of CCNx starts to degrade with the introduction
of more clients, as they start to compete for the network
resources. In contrast, we can see that the performance of
NetCodCCN does not deteriorate with the addition of new
clients to the network topology. These results show that
the NetCodCCN protocol uses more efficiently the available
network resources.

We also evaluate how the error in segment transmission
affects the performance of the NetCodCCN for larger topolo-
gies. For this evaluation, we choose to keep only one client, in
order to compare the results with the performance of the CCN.
As with the butterfly topology, we consider losses that are
caused both by the transmission losses and the errors during
the processing of the segments. In Fig. 8 we can see that
NetCodCCN maintains the delivery delay close to the expected
one, while the performance of CCN degrades very fast with
the introduction of errors. As in the butterfly topology, this
fast degradation is due to the fact that when a segment is lost,
the client needs to wait until the corresponding Interest expires
before it can re-send a new one.

VI. CONCLUSIONS

In this paper, we have presented NetCodCCN, a protocol
that integrates network coding in CCN. Specifically, we have
defined novel algorithms to process Interest and Data messages
so that consider network coded content. In NetCodCCN, the
clients express Interest messages for coded segments of a
given prefix instead of asking a specific segment as in CCN.
The network nodes combine the Data messages by means
of RLNC before forwarding them in order to take advantage
of the network diversity. Our protocol is able to (i) simplify
the aggregation of Interest for coded content; (ii) reduce the
number of duplicate segments; and (iii) allow clients to send
multiple Interests for the same content in parallel. The overall
system has been tested in networks with multiple clients and
sources, where we have observed large performance gains in
terms of the time needed to retrieve the demanded content.

Our future research includes the investigation of optimal
Interest forwarding strategies that enable flow control in the
case of multiple different content objects. We will also con-
sider the transmission of video content characterized by strict
delivery deadlines. Furthermore, we will focus on enabling
content security on NetCodCCN.

ACKNOWLEDGMENTS

This work has been partially funded by the Swiss National
Science Foundation under grant number 149225.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in Proc. of ACM
CoNEXT, New York, NY, USA, 2009, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1658939.1658941

[2] Y. Wu, P. Chou, and K. Jain, “A Comparison of Network Coding and
Tree Packing,” in Proc. of IEEE ISIT’04, June 2004, pp. 143–.

[3] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network Information
Flow,” IEEE Trans. Information Theory, vol. 46, no. 4, pp. 1204–1216,
Jul 2000.

[4] M.-J. Montpetit, C. Westphal, and D. Trossen, “Network Coding Meets
Information-Centric Networking: An Architectural Case for Information
Dispersion Through Native Network Coding,” in Proc. of the 1st
ACM NoM Workshop. New York, NY, USA: ACM, 2012, pp. 31–36.
[Online]. Available: http://doi.acm.org/10.1145/2248361.2248370

[5] J. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzenmacher,
and J. Barros, “Network coding meets tcp: Theory and implementation,”
Proceedings of the IEEE, vol. 99, no. 3, pp. 490–512, March 2011.

[6] Q. Wu, Z. Li, and G. Xie, “CodingCache: Multipath-Aware CCN
Cache with Network Coding,” in Proc. of the 3rd ACM ICN Workshop.
New York, NY, USA: ACM, 2013, pp. 41–42. [Online]. Available:
http://doi.acm.org/10.1145/2491224.2491240

[7] J. Llorca, A. Tulino, K. Guan, and D. Kilper, “Network-Coded Caching-
Aided Multicast for Efficient Content Delivery,” in Proc. of IEEE
ICC’13, June 2013, pp. 3557–3562.

[8] “Project CCNx R©, version 0.8.2,” http://www.ccnx.org/releases/ccnx-
0.8.2/doc/.

[9] P. Chou and Y. Wu, “Network Coding for the Internet and Wireless
Networks,” IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 77–
85, Sept 2007.

[10] N. Thomos and P. Frossard, “Toward one Symbol Network Coding
Vectors,” IEEE Communications letters, vol. 16, no. 11, pp. 1860–1863,
Nov. 2012.

[11] D. E. Lucani, M. V. Pedersen, J. Heide, and F. H. P. Fitzek, “Fulcrum
Network Codes: A Code for Fluid Allocation of Complexity,” available
at http://arxiv.org/abs/1404.6620, 2014.

http://doi.acm.org/10.1145/1658939.1658941
http://doi.acm.org/10.1145/2248361.2248370
http://doi.acm.org/10.1145/2491224.2491240

[12] M. Pedersen, J. Heide, P. Vingelmann, and F. Fitzek, “Network coding
over the 232 − 5 prime field,” in Communications (ICC), 2013 IEEE
International Conference on, June 2013, pp. 2922–2927.

[13] M. Zhang, H. Li, F. Chen, H. Hou, H. An, W. Wang, and J. Huang,
“A general co/decoder of network coding in hdl,” in Network Coding
(NetCod), 2011 International Symposium on, July 2011, pp. 1–5.

[14] “PlanetLab,” https://www.planet-lab.org/.
[15] “The network simulator - ns3,” http://www.nsnam.org/.
[16] “Direct Code Execution (DCE),” https://www.nsnam.org/overview/projects/

direct-code-execution/.
[17] “CCNDC(1) Manual Page, Project CCNx R©, version 0.8.2,”

https://www.ccnx.org/releases/ccnx-0.8.2/doc/manpages/ccndc.1.html.
[18] N. Cleju, N. Thomos, and P. Frossard, “Selection of Network Coding

Nodes for Minimal Playback Delay in Streaming Overlays,” IEEE Trans.
Multimedia, vol. 13, no. 5, pp. 1103–1115, Oct 2011.

	I Introduction
	II Data retrieval in CCN
	III Towards Network coding enabled CCN
	III-A Motivation
	III-B Enabling network coding in CCN
	III-C Challenges

	IV The NetCodCCN Protocol
	IV-A Content Segmentation
	IV-B Content Naming
	IV-C Interest Message Processing
	IV-D Data Message Processing

	V NetCodCCN Evaluation
	V-A Simulation Setup
	V-B Butterfly Topology
	V-C Planetlab Topologies

	VI Conclusions
	References

