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Abstract

We compare approval voting with other scoring rules for environments with common values

and private information. For finite electorates, the best equilibrium under approval voting is

superior to plurality rule or negative voting. For large electorates, if any scoring rule yields a

sequence of equilibria that aggregates information, then approval voting must do so as well.

1 Introduction

We compare the ability of approval voting to aggregate private information in elections with com-

mon values versus other scoring rules such as plurality rule or the Borda count. Our main results

demonstrate the advantages of approval voting in aggregating information and their proofs illumi-

nate a basic mechanism: its flexibility allows approval voting to outperform plurality or negative

voting in finite elections, and in large elections, mixing ballots under approval voting can approxi-

mate the outcome of an arbitrary scoring rules.

Our paper adds to an active literature that studies information aggregation for multiple candi-

dates, where a common theme is the superiority of approval voting over other institutions.1 This

comparison is currently understood mainly for special environments with specific restrictions on

the support of possible values. Goertz and Maniquet (2011) consider a class of environments where

voters are indifferent between the two inferior candidates. Within this class, approval voting is

the only scoring rule that admits an informationally efficient limit equilibrium. Bouton and Cas-

tanheira (2012) consider the divided majority problem, where a majority block of voters shares a
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1Another literature considers approval voting as a method to aggregate preferences with private values. For

example, Giles and Postl (2014) characterize Bayesian equilibria and consider approval voting within the class of all
scoring rules.
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common preference for two candidates over a third minority candidate but has incomplete infor-

mation about which of the two preferred candidates is superior, and show that approval voting

yields a unique limit equilibrium that efficiently aggregates information while plurality rule can

have multiple equilibria. This advantage for divided majority problems is shown for small elec-

torates in theory and in experiments by Bouton, Castanheira, and Llorente-Saguer (2016). Our

main substantive contribution is to understand the performance of approval voting under arbitrary

forms of common preference.

Our main methodological contribution is to adapt the following insight due to McLennan (1998):

in a common-value election, a strategy that maximizes utility is an equilibrium. Therefore, any

voting rule that provides more flexibility for voters to express their information cannot leave voters

any worse off. Approval voting can replicate any plurality rule outcome by having voters submit

ballots supporting a singleton set of candidates, so approval voting must be weakly better under

common values. For arbitrary scoring rules beyond plurality rule, approval voting can arbitrarily

approximate any outcome with appropriate mixing of ballots. The main benefit of our approach

is that it illuminates an essential advantage of approval voting in common-value environments,

namely the flexibility it affords the voters in adapting their votes to their information.

McLennan’s observation makes no assumptions on the information or preferences of the voters,

so is general enough to apply to arbitrary environments with common values. However, we do

not explicitly construct equilibria and instead focus attention on efficiency bounds. While our

assumptions are more general than those in the literature, our conclusions are commensurately less

sharp. We cannot speak to the uniqueness of equilibrium nor to its characterization. An analysis

of inefficient equilibria is more delicate and requires direct consideration of the environment. For

example, Goertz and Maniquet (2011) present one environment with inferior limit equilibria under

approval voting while Bouton and Castanheira (2012) show that the unique limit equilibrium of

approval voting for the divided majority problem is efficient.

Our analysis is limited to approval voting and scoring rules, which excludes some prominent vot-

ing systems such as instant runoff. Simple examples demonstrate that feasible conditional outcomes

under instant runoff cannot be replicated by approval voting.2 However, these examples are knife-

edge. Barelli, Bhattacharya, and Siga (personal communication, June 16, 2016) recently proved

a general efficiency result that establishes as a corollary the efficiency of information aggregation

under in large elections for a generic set of statistical environments.

2 Model

A finite set of I voters must collectively decide a winner among three candidates K = {a, b, c}.3

Each voter i can submit a ballot, or vote vector, (ci(1), ci(2), ci(3)), where ci(k) denotes the score

2We thank an anonymous referee for observing this possibility and providing an example. To our knowledge, he
or she is the first to understand this point that had been previously unnoticed in the literature.

3We assume three candidates for ease of exposition. Suitable versions of our results hold for an arbitrary number
of candidates.
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allocated by voter i to candidate k. A scoring rule is therefore defined by a range of permitted

ballots. As in Myerson (2002), we consider (A,B)-scoring rules defined by two parameters 0 ≤ A ≤
B ≤ 1. For a fixed (A,B)-scoring rule, each voter can submit either a permutation of (1, B, 0) or

of (1, A, 0). Let C denote the space of all possible ballots. Given a profile of ballots (c1, . . . , cI),

the winner W (c1, . . . , cI) the candidates whose total score
∑

I ci(k) is maximal. In the case of a

tie, uniform randomization is used to select among the winners.

The following (A,B)-scoring rules are notable. The case (A,B) = (0, 0) is plurality voting,

where each voter can support a single candidate but cannot express any intensity of preference

between inferior candidates. The case (A,B) = (1, 1) is negative voting, where each voter can

oppose a single candidate but cannot express preference among superior candidates. The case

(A,B) = (0.5, 0.5) is the Borda count, where candidates are totally ranked by each voter and

receive scores proportional to their ranks. Of particular interest is the case (A,B) = (0, 1) which

is approval voting, where each voter decides a set of one or two candidates to support.

Let Ω be a finite set of states of the world. The prior probability of state ω ∈ Ω is P (ω).

All voters share a common utility U(k|ω) for candidate k in state ω. We assume that a unique

best candidate kω maximizes U(k|ω) for each state ω. Voters do not know the state of the world.

The finite set S is a set of possible signals. Given the state ω, each voter receives a conditionally

independent signal following the conditional distribution F (s|ω).

A (mixed) strategy σi : S → ∆C assigns a probability over vote vectors to each signal. When

σi(s) is a degenerate lottery with probability one of c, we slightly abuse notation and write σi(s) = c.

A profile σ = (σ1, . . . , σI) of strategies is symmetric if σi = σj for all i, j. When referring to

symmetric strategy profiles, we drop the voter subscript. The common expected utility for the

strategy profile σ(s) = σ1(s1), . . . , σI(sI) is

EU(σ) =

∫
Ω

∫
S

∫
X I

U (W (c1, . . . , cI) |ω) dσ(s) dF (s|ω) dP (ω).

A symmetric equilibrium is a symmetric strategy profile where no single voter can strictly improve

the common expected utility by changing her strategy. Consider a sequence of symmetric strategy

profiles (σI) indexed by population size I. We say that the probability of error goes to zero if, for

every ω, ∫
S

∫
X I

U (W (c1, . . . , cI) |ω |ω) dσI(sI) dF (sI |ω) −→ U(kω|ω),

as I goes to infinity. The probability of error goes to zero if and only if the probability of the best

candidate kω winning the election goes to one for every state of the world.

3 Results

Our first result asserts that the maximal equilibrium utility under approval voting is greater than

or equal to the maximal equilibrium utility under plurality rule or under negative voting.
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Proposition 1. If σ∗ is a symmetric equilibrium for plurality rule or for negative voting, then

there exists a symmetric equilibrium ρ∗ of approval voting such that EU(ρ∗) ≥ EU(σ∗).

Proof. Suppose σ∗ is a symmetric equilibrium of plurality rule. Define the strategy profile ρ for

approval voting by ρ(s) = σ∗(s).4 The expected utility of ρ is identical to the expected utility of σ∗.

Since U is continuous and the space of symmetric strategies is compact, there exists a symmetric

strategy profile ρ∗ that maximizes the common expected utility U for approval voting among all

symmetric strategy profiles. By Theorem 2 of McLennan (1998), ρ∗ is an equilibrium for approval

voting. By construction, EU(ρ∗) ≥ EU(ρ) = EU(σ∗).

The argument for negative voting is identical.

While the reasoning for Proposition 1 is mathematically uncomplicated, to our knowledge it has

not been previously observed. Specifically, any ballot that can be submitted under plurality rule

can also be submitted under approval voting. So the expected utility under plurality rule can be

replicated under approval voting, by having each voter approve the singleton set corresponding to

the candidate that she would support under plurality rule. Of course, approval voting also allows

ballots supporting two candidates. However, McLennan (1998) observed that the best equilibrium

in a game of common values must be as good as any strategy profile. So the best equilibrium under

approval voting must be at least as efficient as any equilibrium under plurality rule. The argument

makes transparent the connection between approval voting and plurality rule: the fundamental

reason that approval voting outperforms plurality rule (or negative voting) is that approval voting

allows a larger set of feasible ballots. While similar arguments for approval voting are suggested

in private value environments, its flexibility has direct force in common-value environments where

the large set of possible ballots allows voters to replicate any outcome under plurality rule.

Our second finding is that the best asymptotic equilibrium under approval voting is at least as

good as the best asymptotic equilibrium under any interior (A,B)-scoring rule where 0 < A ≤ B <

1. Unlike plurality rule or negative voting, the strategies under general (A,B)-scoring rules cannot

be exactly replicated by approval voting. When A 6= B, a general (A,B)-scoring rule allows for

twelve distinct vote vectors, while approval voting allows only for six. However, the outcome of the

(A,B)-scoring rule can be approximated through appropriate randomization of the ballots under

approval voting. Specifically, the expected vote counts can be maintained under approval voting.

This approximation becomes asymptotically precise, so the limit outcome under a general scoring

rule can be replicated by approval voting.

Proposition 2. Suppose A,B ∈ (0, 1). If there exists a sequence (σI) of symmetric strategies for

the (A,B) scoring rule that takes the error probability to zero, then there exists a sequence (ρ∗I) of

symmetric equilibria for approval voting that takes the error probability to zero.5

4To be pedantic, we identify σ∗(s) within the strictly large strategy simplex for approval voting.
5The interiority of the scoring rule is required only to ensure that strategies provide some but not equal support for

the middle candidate. As the following proof of the Proposition should make clear, approval voting can approximate
the outcome of any interior voting strategy; the interiority of allowed scores mechanically ensures this case.
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Proof. For any symmetric strategy profile σ of the (A,B) scoring rule, define the symmetric strategy

profile ρ of approval voting with permutations of the following:

[ρ(s)](1, 1, 0) =
∑

X=A,B

X {[σ(s)](1, X, 0) + [σ(s)](X, 1, 0)} (1)

[ρ(s)](1, 0, 0) =
∑

X=A,B

(1−X) {[σ(s)](1, X, 0) + [σ(s)](1, 0, X)} (2)

Without loss of generality, fix a state ω such that kω = a. We now prove that the limit proba-

bility that candidate a wins the election goes to one, conditional on the state ω. All probabilities

and expectations hereon are conditional on ω. Define the random variable

δIi = σIi · (1, 0, 0)− σIi · (0, 1, 0),

where the “·” operation denotes the dot product. The random variable δIi is the difference in

the scores given to candidate a and candidate b by voter i when playing the strategy σI in the

(A,B)-scoring rule. Similarly, let

∆Ii = ρIi · (1, 0, 0)− ρIi · (0, 1, 0),

i.e. the difference in the scores of candidate a and candidate b when playing the strategy ρI under

approval voting.

We first show that the conditional expectations of the score differences are identical under σ

and ρ.

Lemma 1. E(δIi) = E(∆Ii).

Proof. We will show that the expectations conditional on a fixed signal are equal: E(δIi|si = s) =

E(∆Ii|si = s) for all signals si. Then the unconditional expectations are also equal.

First, computing the expectation for the (A,B)-scoring rule:

E(δIi|si = s) =
∑

X=A,B

{[σI(s)](1, 0, X)− [σI(s)](0, 1, X)}

+
∑

X=A,B

X {[σI(s)](X, 0, 1)− [σI(s)](0, X, 1)}

+
∑

X=A,B

(1−X) {[σI(s)](1, X, 0)− [σI(s)](X, 1, 0)}
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Next, using the construction of ρI in (1) and (2) for approval voting:

E(∆Ii|si = s) = [ρI(s)](1, 0, 0) + [ρI(s)](1, 0, 1)− [ρI(s)](0, 1, 0)− [ρI(s)](0, 1, 1)]

=
∑

X=A,B

(1−X) {[σI(s)](1, X, 0) + [σI(s)](1, 0, X)}

+
∑

X=A,B

X {[σI(s)](1, 0, X) + [σI(s)](X, 0, 1)}

−
∑

X=A,B

(1−X) {[σI(s)](X, 1, 0) + [σI(s)](0, 1, X)}

−
∑

X=A,B

X {[σI(s)](0, 1, X) + [σI(s)](0, X, 1)}

Basic algebra confirms that the right hand sides are equal to each other.

Let V(·) denote the variance of a random variable, again conditional on ω. Consider the case

where limV(δIi)→ 0 for sufficiently large I. Then δIi converges to a point mass on some constant

E for large I. However, because (A,B) are interior, 0 is not part of the support of δIi because

it is impossible for a ballot to provide equal scores to candidates a and b. Therefore, since the

probability that
∑

Ii δIi > 0 goes to one, it must be the case that the point mass is suppored at a

strictly positive point. This point defines the expectation limE(δIi) = E > 0 for large enough I.

By Lemma 1, it is also the case that limE(∆Ii) = E > 0 for large enough I. By the weak law of

large numbers for triangular arrays, the probability that
∑I

i=1 ∆Ii/I > 0 goes to one. Hence the

probability
∑I

i=1 ∆Ii > 0 also goes to one.

So, without loss of generality, suppose limV(δIi) > 0 for all I, i. First, note that:

Pr

(
I∑
i=1

δIi ≤ 0

)
= Pr

(∑I
i=1 δIi − IE(δIi)√

IV(δIi)
≤ − IE(δIi)√

IV(δIi)

)

By the Central Limit Theorem for triangular arrays (Billingsley 1995, Theorem 27.2):∣∣∣∣∣Pr

(∑I
i=1 δIi − IE(δIi)√

IV(δIi)
≤ − IE(δIi)√

IV(δIi)

)
− Φ

(
− IE(δIi)√

IV(δIi)

)∣∣∣∣∣→ 0

Since Pr
(∑I

i=1 δIi ≤ 0
)

must go to zero by the assumed efficiency of σI , the triangle inequality

implies that Φ

(
− IE(δIi)√

IV(δIi)

)
must go to zero. Hence:

√
I

E(δIi)√
V(δIi)

→∞.

6



Then

√
I

E(∆Ii)√
V(∆Ii)

=
√
I

E(δIi)√
V(∆Ii)

, by Lemma 1

=
√
I

E(δIi)√
V(δIi)

×

√
V(δIi)

V(∆Ii)
.

The second factor
√

V(δIi)
V(∆Ii)

is strictly positive. It is uniformly bounded away from zero, since

limV(δIi) > 0 and V(∆Ii) is uniformly bounded ∆Ii takes values in a bounded set [−1, 1]. Since

the first factor E(δIi)√
V(δIi)

goes to infinity, so does the product:

√
I

E(∆Ii)√
V(∆Ii)

→∞.

Hence Φ

(
−
√
I E(∆Ii)√

V(∆Ii)

)
→ 0. Applying the Central Limit Theorem for triangular arrays and the

triangle inequality as before, we have that Pr
(∑I

i=1 ∆Ii ≤ 0
)

goes to zero.

So the probability of the complementary event
∑I

i=1 ∆Ii > 0, where the total score for candidate

a is strictly larger than the total score for candidate b, must go to one. Similarly, the probability

that the total score for candidate a is strictly larger than the total score for candidate c also goes

to one. The intersection event is that candidate a wins the election, and the probability of this

event goes to one.

By Theorem 2 of McLennan (1998), there must exist a sequence of symmetric equilibrium ρ∗Ii
that provides weakly more common utility than ρIi for each fixed population I. But since ρIi takes

the probability of error to zero, then ρ∗Ii must also take the probability of error to zero.
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