
Computational Linguistic Models of Mental Spaces

Cli� O'Reilly

A thesis submitted for the degree of MSc By Dissertation

Department of Computer Science and Electronic Engineering

University of Essex

Date of submission: October 2014



Abstract

In this report we describe a computational linguistic model of mental spaces. We take theories

from cognitive science as inspiration and, using the FrameNet database, construct a model upon

which we execute a number of experiments.

Our underlying assumption is that, in order to develop computer systems that have near-

human capacities for natural language processing, those systems will need to model cognitive

processes. Gilles Fauconnier's theory of Mental Spaces provides a detailed background of par-

titioned semantic relations. These relationships can be constrained by Frames and Scripts. We

use pre-existing computer tools to develop a model that mimics this framework. Fauconnier's

and Turner's work on Conceptual Integration and current theories of dynamic systems are fur-

ther inspiration for a model of conceptual integration using Latent Dirichlet Allocation, a topic

modelling algorithm.

We choose three experiments with which to validate the usefulness of this approach. Our

�rst experiment investigates text classi�cation using the Full Text corpus within FrameNet. Our

second experiment uses the corpora supplied for the SemEval Textual Semantic Similarity Task

in order to validate the hypothesis that mental space networks are related to semantic similarity.

The third experiment in this report investigates the Blending model and the hypothesis that this

is related to the style of the document text.

The results for these experiments were mixed. We are pleased with some high Micro F1 scores

(0.9), but disappointed that overall the results are not conclusive. We describe the analysis of

the outcomes and also the drawbacks of our methods.

Finally we explain our thoughts on how these models could be improved and extended by

learning lessons from our work and also including other work and approaches.
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Chapter 1

Introduction

The approach taken in this research is one that uses theories from cognitive science and linguistics

as inspiration to create a computer model that can mimic human-level language processing. This

is an ambitious aim, but in this report it will be shown that there is potential in this methodology

to improve computational linguistics systems.

The background to this report derives from the idea that arti�cial intelligence applications

need world knowledge and context in order to provide mechanisms to calculate or capture the

full meaning from language.

"The key to building more powerful AI applications is to model the world knowledge

and the linguistic and other basic abilities that people bring to bear. We now know

that these abilities can not be fully expressed in abstract formalisms, but require

models that map onto human biology and behaviour. Cognitive Science is the �eld

that is best placed to unite the theory and applications of intelligence." [Feldman,

2007]

"language does not represent 'meaning': language prompts for the construction of

meaning in particular contexts with particular cultural models and cognitive resources

it draws heavily on 'backstage' cognition" [Fauconnier and Turner, 2002]

"Meaning Potential is the essentially unlimited number of ways in which an expres-

sion can prompt dynamic cognitive processes, which include conceptual connections,
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mappings, blends, and simulations." [Fauconnier and Turner, 2002]

1.1 Pragmatics

"Why don't people just say what they mean?" [Thomas, 2014]

"It is possible that natural language has only syntax and pragmatics" [Chomsky,

1995]

Pragmatics is a �eld of linguistics concerning the meaning of natural language. Unlike Se-

mantics, Pragmatics investigates how context a�ects the meaning of language in complex ways

such as in social interaction. Pragmatics is also concerned with pre-existing knowledge of in-

dividuals and intention. In fact, in any of the almost in�nite ways in which we communicate,

we bring to the words more than the words themselves convey. Pragmatics also investigates

the complex ways that words can have an impact on the world, for example with the theory of

Speech Acts developed by J.L. Austin. Our research is interested in this area because our goal

is to computationally record, describe and use the contextual information that humans use so

e�ortlessly to give meaning to the world. Fauconnier's Mental Spaces theory investigates the

structure of language, from a cognitive perspective that involves the pragmatic content of situ-

ations. Fauconnier's work on Mental Spaces develops the idea of Pragmatic Functions. Often

called Connectors, these theoretical links connect entities in a mental space network, for example

a situation in which a dog and a man interact would relate the dog and the man by a Pragmatic

Function which links the two. Fauconnier contrasts the partitioning method necessary for the

metaphysical Possible Worlds idea [Hintikka, 1962; Kripke, 1963] with a cognitive partitioning

scheme [Fauconnier, 1994]. This drives a key concept for our research: that by partitioning

the pragmatic information that is evoked by a text in a computational manner, we can develop

bene�cial language applications.

In order to derive a computer model, we use tools based on the theory of Frame Semantics,

speci�cally FrameNet, which is a database of semantic relationships. These relationships extend

into the contextual by way of the highly complex and interrelated database of frames and their

relations. A FrameNet frame is a "script-like conceptual structure that describes a particular
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type of situation, object, or event along with its participants and props" [Ruppenhofer et al.,

2006]. We populate into the model, the evoked and related frames, participants and props, in

order to capture many possible pragmatic interpretations of the sentence.

"Language forms do not 'carry' information; they latch on to rich pre-existent net-

works in the subjects' brains and trigger massive sequential and parallel activations"

[Fauconnier, 2004]

In order to compute meaningful outputs to these massive activations, we use machine learning

algorithms over the evoked and related elements. Speci�cally, we use the topic modelling mixture

model Latent Dirichlet Allocation.

1.2 Formalism and Dynamism

"If concept formation can be explained by facts of nature, shouldn't we be interested,

not in grammar, but rather in what is its basis in nature?" [Wittgenstein, 1953]

"Cognition is a dynamic process, continually changing over time" [Prinz and Barsalou,

2014]

A modern trend in brain science is concerned with an embodied, situated or dynamical

systems approach. This recent method "focuses on concrete action and emphasises the way in

which an agent's behaviour arises from the dynamical interaction between its brain, its body and

its environment." [Beer, 2014] Rather than a formalist or representational view of information

processing, "a dynamical system is any system that evolves over time in a law-governed way"

[Bermúdez, 2014]

Formal tools for understanding and manipulating language, such as parsing algorithms, are

important, however we believe that this newer approach to information processing is potentially

even more useful. From the perspective of natural language, we believe that the brain conforms

to a mode more akin to a dynamic system than a formal or representational one.

The research described in this report uses the idea of dynamic systems to develop the output

of the computer model we create. Our computer system is formal at �rst - using the output of
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language parsing and populating a set of delineated mental space approximations that represent

words, and evoked entities etc. This approach is representational. It contains rules and structures

that may run counter to modelling a dynamic, neural system. However, we extend this by

attempting to create a matrix of Meaning Potential with which to mimic neural processes. We

then, via Latent Dirichlet Allocation and machine learning algorithms, restrict the resultant

output of the computer system. In essence this is a simulation of a dynamic system.

1.3 Statistical models

We also assert in this work that statistical modelling is crucial to create computer systems that

can model cognition e�ectively. The sheer volume of information, and therefore computer data,

that surrounds even simple sentences must be �ltered and manipulated in a goal-directed way

such that the outputs are �t for our use.

"A more radical argument for probability as part of scienti�c understanding of lan-

guage is that human cognition is probabilistic and that language must therefore be

probabilistic too since it is an integral part of cognition" [Manning and Schütze, 1999]

We use lexical cues and semantic database lookups to generate a multi-dimensional meaning

space that correlates to the meaning potential from text. We further extend this by attempting

to model emergent structures via the Latent Dirichlet Allocation algorithm.

1.4 The problem

As previously stated, we believe that the goal of human-level language processing is unachievable

without addressing how humans process language at a cognitive level. While signi�cant progress

has been made in many areas of arti�cial intelligence research, there is still a long way to go

before we can say that machines can process language in a similar capacity to humans.

Advances in cognitive science, and speci�cally cognitive linguistics, have progressed many

theories that explain how language is processed. We have attemped to take a leading theory in

this �eld - Mental Spaces theory - and develop a computer modelling method which investigates

the bene�ts to a number of known problems. We also make use of FrameNet, which is a database
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of semantic frames. By processing and partitioning textual data according to our interpretation

of these theories we hope to mimic cognitive processing of language.

1.5 The structure of this thesis

The structure of this thesis is as follows:

• Chapter 1: Introduction - we introduce the ideas and motivations for the research

• Chapter 2: Background - we describe the cognitive science theories, the statistical tools,

and the computer model developed in this project

• Chapter 3: Experiments - we discuss, in detail, the three experiments undertaken in our

research. We also present the results for each experiment and an analysis of each one

• Chapter 4: Discussion - we take each experiment in turn and analyse the results in the

context of what we were attempting to achieve

• Chapter 5: Conclusion & Future Work - we discuss our interpretation of the experimental

results and present our thoughts on the drawbacks. We then present our ideas for further

work on this project.
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Chapter 2

Background

In the Introduction, we argue that to construct computers that can use natural language in a

similar way to humans, we need to look to �elds such as cognitive science for theories that can

be modelled. In this way the mechanisms that underlie human mental processing of language

can be brought into action by computing systems. In this chapter, we further expand on these

ideas regarding some of the theoretical background from cognitive science and computer science

and also some of the background to the techniques used in the implementation of the models

constructed during this research. We re-iterate that this is an ambitious goal and we recognise

that this report goes only a limited way towards it. We begin by looking to the theory of Mental

Spaces and Conceptual Blending, both of which develop from the �eld of Cognitive Linguistics.

2.1 Mental Spaces

The Cognitive Science theory of Mental Spaces was developed by Gilles Fauconnier in the 1980s

[Fauconnier, 1994], seeded by the wealth of research undertaken during the 1970s into the cogni-

tive basis of language. A mental space is a conceptual packet assembled for purposes of thought

and action. It is represented as a bounded set of elements with neural correlates, rather than a

continuous domain. It is an abstract representation which, in the neural interpretation, is a set

of activated neuronal assemblies with connections between spaces as coactivation-bindings (see

[Yang et al., 2013], for neurological study of Blending). It "attempts to model the cogniser's
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understanding of the world, not the world itself [and] contain[s] elements that include roles, val-

ues and relations recruited from various semantic frames" [Oakley and Hougaard, 2008]. Mental

Spaces can be distinguished into types and can be constructed in many ways, for example when

new information is given or discovered, and under the in�uence of cues in language. Types in-

clude Domain spaces, where world knowledge can reside; Space spaces, related to locations; and

Time spaces, related to chronological events. Space-building linguistic cues might be changes in

tense, conditionals or locative and temporal phrases, e.g. "In 1929" or "In London".

As an example, see Figure 2.2 where a simple set of mental spaces has been shown involving a

hypothetical conversation between a modern philosopher and Immanuel Kant (The Debate with

Kant network). The example sentence used is: "I'm claiming that reason is self-developing. Kant

says that it's innate. I mention Neuronal Group Selection and he gives no answer." [Fauconnier

and Turner, 2002]

Input spaces 1 and 2 contain elements related to Kant and to the modern philosopher and

after the blending process a new mental space is constructed that contains references to the

inputs, but also emergent structure.

Fauconnier develops the Mental Space theory by relating the components and elements to

Frames. "They are ... structured by frames" and "we say that the mental space is framed

and we call that organisation a 'frame'". Further, Fauconnier describes a situation with various

participants. This relates exactly to a Semantic Frame (Frame Semantics) and therefore to the

concept of a Frame in FrameNet: Commercial Event [Fillmore, 2006] and the Commerce_buy

frame in FrameNet: "a mental space in which Julie purchases a co�ee at Peet's co�ee shop has

individual elements that are framed by commercial transaction as well as by the subframe -

highly important for Julie - of buying a co�ee at Peet's" [Fauconnier and Turner, 2002].

Connections across and within spaces relate elements by Pragmatic Functions. These are

relationships that are often complex and multi-dimensional and, by addressing semantic frame

structures, can generate a very large network of inter-connections. In e�ect, by referencing and

connecting between all the many mental spaces and frame-related contextual information, an

enormous cognitive possible worlds network is generated. This is a dynamic and very large

structure: "mental spaces are partial models of present, past, future, possible, impossible, or

otherwise imagined states of a�airs understood by the cognizer. They are not models of the
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world; they are dynamic models of the moment-to-moment understanding of states of a�airs"

[Oakley, 2009]

2.2 Conceptual Integration (Blending)

A Conceptual Integration Network is a network of mental spaces that are inter-connected and

interact in complex ways via connectors and rules. Connectors can be of various kinds such as

psychological, cultural or pragmatic. Connectors and Counterparts link objects across spaces,

for example:

• "He thinks" - a Mental Image Connector that links from reality to beliefs

• "In the picture" - Image Connector that links from models to pictures

• "In that movie" - Drama Connector that links from actors to characters

A blended mental space is an integration of received input projections from other mental spaces

in the network and it develops emergent structure not available from the inputs alone. It operates

under a set of constitutive and governing principles. In a Conceptual Integration Network (the

blending situation) the various categories of mental space include (see Figure 2.1 for the basic

diagram):

• Input space - the spaces that exist prior to the blend and any relationships and connectors

• Generic space - a single space that contains generic versions of the elements in the input

spaces, e.g. if the input spaces both have human people represented then the generic space

would have a 'human' object that is connected to all the input space objects that are human

• Blend space - these are the outputs of the blending process and contain new objects and

connectors to existing objects in the input and generic spaces.
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Figure 2.1: Conceptual Blending - the basic diagram (adapted from [Fauconnier and Turner,
2002])

Blending develops emergent structure not contained in the input spaces by a standard process:

• Composition � �new� objects are created in the blended spaces

• Completion � objects interact imaginatively/logically to �complete� the scenario

• Elaboration � simulated scenarios are �played out� to infer new objects and relationships

Related work on computational models of Blending have tended to focus either on a gener-

ative ([Goguen and Harrell, 2004], [Harrell, 2005]) or representational and algorithmic approach

([Veale and O'Donoghue, 2000]). This research's implementation of Conceptual Integration the-

ory does not correspond exactly to the representational view of mental spaces as described

previously. It is also not generative nor algorithmic. What we attempt is to mimic the general

function of Blending via the process of using grouped, di�erentiated textual elements (and their

associated correspondences, e.g. frame-related elements) as inputs to statistical mixture models.

We theorise that this is an approximation to Blending, where the grouped texts approximate to

mental spaces and the statistical models approximate to Blending. Our implementation is much
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simpli�ed and does not relate groups (what we call m-Frames) in a structured way, as in the

Mental Spaces theory, however we discuss this as a possibility for future work.

Figure 2.2: Example set of Mental Spaces and Blending (adapted from [Fauconnier and Turner,
2002])

2.3 Frame Semantics & Scripts

From the above, it can be seen that a model involving mental spaces requires semantic frames.

The two work together in tandem, one providing relationships and referential framework (mental

spaces theory) and the other �lling in the concepts (frames). FrameNet facilitates a very good

method to develop frame semantic elements from text. By using lexical matching (after usual

pre-processing and parsing) it is possible to link words to frames and then by extension to �ll

out mental spaces with conceptual information related to the sentence, see Figure 2.3 for a
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diagrammatic representation.

Figure 2.3: High level view of some of the frames evoked from the example sentence

Frame Semantics, developed mainly by Fillmore and Minsky in the 1970s and 80s, is a theory

that says that "words represent categorisations of experience, and each of these categories is

underlain by a motivating situation occurring against a background of knowledge and experience"

[Fillmore, 2006]. In this theory a Frame is a system of categories linked to words. The motivating

context is a collection of in�uences that humans have reason to be concerned with such as social

manners, community history and practices, recent contextual cues. Meanings have internal

structure which is determined relative to a background frame or scene; "to understand any one

of them [a concept] you have to understand the whole structure [of concepts] in which it �ts"

[Fillmore, 2006].

Frames are often situational, for example the Commercial Transaction Frame, which consists

of buyer, seller, goods and money elements etc (see Figure 2.4 [Hamm, 2007]). The connections

between these words and speci�c or general situations are obvious (not all frames are like this).

13



Figure 2.4: Frame Semantics - Commercial Transaction Frame ([Hamm, 2007])

The ability of Frame Semantics to formalise contextual information in relation to text, espe-

cially when used with Mental Space theory, is crucial when attempting to process the semantics

of natural language. When analysing words we need to see the bigger picture if we are to get to

the meaning(s) that can be attributed to those words: "Frame Semantics, as a common, largely

language-independent word sense and role inventory, holds great promise for the cross-lingual

analysis and application of lexical semantic information." [Burchardt et al., 2006]

We recognise, too, the work of Schank and Abelson on Scripts. Similar to Frame Semantics,

the theory of scripts relates scenes and plans to particular contexts, where the chronology or

sequence is important - "A script, as we use it, is a structure that describes an appropriate

sequence of events in a particular context" [Schank and Abelson, 1975]. Whereas, then, Frame

Semantics de�nes a "situation against a background of knowledge or experience", a Script could

be a "pre-determined, stereotyped sequence of actions that de�ne a well-known situation" [Schank

and Abelson, 1975]. From the perspective of our project there is overlap between these theories,

however they treat the context in subtly di�erent ways. Our research doesn't distinguish between

them except that we utilise FrameNet which is more connected to Frame Semantics. We predict

that, to be as e�ective as possible, future iterations of this model would bene�t from scripts

being integrated somehow so that mental spaces can be organised, for example chronologically,

in relation to pre-de�ned sequences.
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2.4 FrameNet

Our intention is to model mental spaces. As we have discussed in previous sections, we require a

method to model semantic frames in order to supply contextual organisation. We want to create

approximations to mental spaces and in order to structure the resultant network of data we need

a data source for the context and structure. We are fortunate to be able to use FrameNet as a

source of data.

FrameNet1 [Ruppenhofer et al., 2006] is a lexical database of English that has been used

extensively in computational Natural Language research. Derived from the concept of a Frame

(from Frame Semantics), it is composed of a dictionary of word senses that centre on Frames.

Frames are made up of Frame Elements, which can be Core or Non-Core and also a set of Frame

to Frame relations. Words that can evoke a frame are called Lexical Units. For example the

words fry, bake and boil can evoke the frame Apply_heat that contains frame elements such as

Cook and Heating_Instrument etc.

A frame can be considered as a "script-like conceptual structure that describes a particular

type of situation, object or event along with its participants and props" [Ruppenhofer et al.,

2006]. Frame elements describe the semantic roles of the frame, whereas Lexical Units are the

words that evoke the frame. There are many di�erent Frame Elements including Location,

Theme, Degree, Duration etc.

Frame to frame relations capture the relationships between frames in a structured way. This

is described in Tables 2.1 [Ruppenhofer et al., 2006] and 2.2. This framework allows a semantic

network to be described automatically by referencing �rst the evoked frames and then to consider

related frames. This is a corollary for the idea that, as we process language, we do so via a network

of semantic relationships. We can mimic this semantic network to a degree, by generating a

FrameNet network. For example, the frame Arraignment has a frame-frame relation with the

Criminal_Process frame as a Subframe of relationship. The Precedes relation includes the

Arrest frame and the Preceded by includes the Trial frame.

1https://framenet.icsi.berkeley.edu/fndrupal/home
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Relation Sub Super
Inheritance Child Parent
Perspective_on Perspectivized Neutral
Subframe Component Complex
Precedes Later Earlier
Inchoative_of Inchoative State
Causative_of Causative Inchoative/State
Using Child Parent

Table 2.1: FrameNet frame to frame relation ([Ruppenhofer et al., 2006])

Frame-frame relation Example
Is inherited by Mention "Is inherited by" Indicating
Perspectivized on Drop_in_on "Perspective on" Visit_host_arrival
Uses Abusing "Uses" Cause_harm
Used by Diversity "Used by" Delimitation_of_diversity
Has subframe Activity "Has subframe" Activity_start
Causative Emitting "Caustive of" Emanating
Preceded by Trial "Is preceded by" Arrest
Inherits from Absorb_Heat "Inherits from" Becoming
Precedes Arrest "Precedes" Arraignment
Subframe of Arraignment "Subframe of" Criminal_process

Table 2.2: FrameNet frame to frame relation examples

2.5 Latent Dirichlet Allocation

As we have discussed so far in this chapter, the cognitive sciences provide theories that describe

the way humans process language, at a cognitive level. In this project we attempt to create

a model based on some of these theories and also extend this formal approach into a dynamic

one. The purpose of this is to blend together the various input data in a statistical analysis that

mimics the conceptual integration that occurs in the brain. Subsequent to creating a model of

mental spaces (our approximations) we want to develop this by calculating a series of statistical

models. Our intuition is that our mental space approximations are partitioned in such a way as

to develop relationships in a contextual domain both in tandem with, and as a comparison to,

statistical models exercised over words in sentences. We chose Latent Dirichlet Allocation for

this task since it provided an unsupervised learning algorithm (we don't have training data with

which to calculate under supervised algorithms) and is becoming widely used in computational
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linguistics. It also provided a mixture model that matches our dynamic aims and has been shown

to perform very well at topic discovery.

Latent Dirichlet Allocation, LDA, is a Generative Probabilistic Model under the rubric of

Topic Models � a suite of algorithms that aim to discover thematic information [Blei et al., 2003].

The purpose of this statistical model is to analyse discrete datasets such as text corpora, but can

be used with other domains, e.g. images and genetic data [Blei et al., 2010]. In comparison with

earlier techniques like tf-idf, Latent Semantic Indexing (LSI), and Probabilistic Latent Semantic

Indexing (pLSI), LDA utilises the exchangeability principle of words and documents and, as per

de Finetti, considers mixture models to capture intra-document statistical structure. In the LDA

model, the exchangeability principle can be seen as meaning that elements are independent and

identically distributed and conditioned by underlying latent parameters. Further, the elements

can be words in sentences, but also extended to, for example, n-grams or paragraphs.

The intuition behind LDA is that documents exhibit multiple topics. The generative process

assumes that there exists a posterior distribution over the hidden random variables (the topic

structure). That is then calculated from a joint probability distribution of those hidden variables

and the observed variables (the vocabulary of words). More formally:

Figure 2.5: LDA formula

where K=number of topics; D=number of documents; β1:K � topics themselves; Θ1:D � topic

proportions (has dimension K); z1:D � topic assignments; w1:D � observed words. [Blei et al.,

2010]

Another way of analysing LDA is with a graphical model, e.g. in Figure 2.6.
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Figure 2.6: LDA graph

In this diagram the same algebraic elements are presented where the boxes are "plates" that

represent replication of elements. The inner plate is the repeated choice of topics and words

within a document and the outer plate represents documents. The Dirichlet parameter (α)

controls the mean shape and sparseness of the topic distribution.

Each topic is considered to be a distribution over a �xed vocabulary. The algorithm that

calculates the topic distribution has no background information about the topics: we infer the

hidden topic structure by calculating the joint distribution of every possible instantiation of

hidden topic structure, however for large data sets this is too large a calculation. Instead we

approximate the posterior distribution. There are two approaches to this:

• Sampling-based � we collect samples from the posterior in order to approximate, e.g. Gibbs

sampling using Markov-chains

• Variational-based � we posit a distribution over the hidden structure and �nd the member

that is closest to the posterior (in this case it becomes an optimisation problem).

Each method has bene�ts and the use depends on the problem to be addressed. The process

can be shown as a series of steps:

i For each document d, draw a topic mixture Θd from Dir(Θd; αn)
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ii For each topic t, draw a distribution over words φt from Dir(φt; βm)

iii For each position i in document d:

iv Draw a topic zi from Θd

v Draw a word wi from φzi

All the documents in the corpus share the same topics and exhibit each topic in di�erent pro-

portions related to the probability of each element in the topic. An assumption that we work

under in this research is that, since words are related to all topics via probability distributions,

topic-to-topic distributions can be generated from the set of word-to-topic distributions.

The usual method of evaluation is to hold out a test segment of data and then run the model

against this held out section in order to validate the e�ectiveness. By running various models we

can determine the best one by using these results. One of the problems with LDA at the moment

is that, in certain domains, where supervised learning methods are not possible, there is di�culty

in evaluating the models e�ectively. The best method for selecting the most appropriate model

for a task is currently an open problem. The advantages of LDA over other models are that it

can be readily "embedded in a more complex model" (not possible with LSI) [Blei et al., 2003];

also the probabilistic nature of the topic discovery is very useful:

"Representing the content of words and documents with probabilistic topics has one

distinct advantage over a purely spatial representation. Each topic is individually in-

terpretable, providing a probability distribution over words that picks out a coherent

cluster of correlated terms." [Steyvers and Gri�ths, 2007]

But most important for this project is that the model can be extended and augmented with

various techniques. There are a number of assumptions that LDA uses and by relaxing these

we can obtain di�erent results. The bag of words assumption is that the word order is not

important to topic classi�cation (see [Wallach, 2006] and [Gri�ths et al., 2004] for examples of

relaxation and extension of this assumption by extending the model to include a bigram language

model and Hidden Markov Models, respectively). Similarly, the order of documents is assumed

not to matter for standard LDA models, however by ordering the documents, a richer posterior

topical structure can be obtained that is, for example, dynamic over time [Blei and La�erty,
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2006]. There is also an assumption that the number of topics is �xed and known. By using

Markov-chain Monte Carlo sampling schemes for posterior inference with hierarchical Dirichlet

processes, [Teh et al., 2006] are able to determine the number of topics before the main algorithm

starts and also allow new documents to suggest new topics.

We make use of a variant of LDA, called Labeled LDA (L-LDA) ([Ramage et al., 2009]),

which is di�erent from the standard LDA algorithm in that the topics chosen are constrained

to a set of pre-de�ned topics. This enables the model to proceed with some supervision. It has

been used as a generative model for labeled corpora, often with multiple labels per word. We

use this variant to constrain the resulting topics to the supplied list of frames that we calculate

as being evoked by sentences. See Figure 2.7 for a plate graph of the L-LDA algorithm.

Figure 2.7: Labaled LDA graph

2.6 The Model

The aim of the model is to approximate a Mental Spaces Network (MSN) that is evoked by words

and phrases in a text (although this could extend to any form of language or communication such

as spoken, non-verbal etc). The intuition here is that it is not possible, computationally, to fully
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represent meaning without using a model encompassing pragmatic complexity; without adding

contextual and situational information to computer models of language it will not be possible

for full processing of the meaning that humans develop when they process communications.

This model attempts to construct an approximate MSN that goes some way towards repre-

senting the actual, likely invoked elements. The model is limited to the dictionary of relationships

(FrameNet) and the various corpora used. We are therefore careful not to assume too much into

each MSN that is evoked. Each time we analyse the relationships of words and phrases we only

can populate the model with a speci�c instance of a network. A real, human MSN may not

be the same; it may be larger or smaller than the one(s) we assume. Fauconnier and Turner

theorise that "mental spaces are small conceptual packets constructed as we think and talk and

... correspond to activated neuronal assemblies and linking between elements corresponds to

some kind of neurobiological binding, such as co-activation.", and further, that "Meaning Po-

tential is the essentially unlimited number of ways in which an expression can prompt dynamic

cognitive processes, which include conceptual connections, mappings, blends, and simulations."

[Fauconnier and Turner, 2002]. The real Mental Space network developed in the brain is likely

to be a vast, almost incomprehensibly complicated interconnection of activated excitatory and

inhibitory neurons and bundles of neurons, encompassing both long-term memory and working

memory. This network would seem impossible to model. The important point for this project is

that the computer system mimics the natural process and is only an approximation which we can

incorporate into experiment, hopefully in order to improve computational linguistic applications.

The key area that we utilise from Mental Spaces theory is the partitioning and population of

discrete collections of entities related to and evoked by words in a sentence. We create bounded

assemblies that contain particular words or related elements from text. In e�ect this is simply

a text �le that contains comma-separated groups of words in columns that are used by the

controlling Java program. The rules used to populate the mental space vary depending on the

experiment being undertaken, but could include the nouns and the evoked frames - literally just

the noun words and names of the evoked frames. We continue to populate these mental space

approximations with elements from the FrameNet database, for example, further frames that are

related to the initially-evoked frames along pre-de�ned relationship types, such as Inherited By.

We are using only the most rudimentary facet from the theory of Mental Spaces. We do
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not extend our model to include the many ways in which mental spaces vary and interrelate.

We explain in the Future Works section in this report that these further areas of the theory are

possible to develop, but this was not included in the research so far.

The basic model, described above, is useful as a resource for analysis, for example in our

Semantic Similarity experiment, but we also overlay statistical analysis on the model. By us-

ing LDA we "blend" together the elements from the MSN. This gives us an approximation to

Conceptual Integration (Blending). Again we are conscious that this process is limited by the

LDA algorithm and the necessary assumptions made by the nature of the information available

to the model. However, the potential to provide further enhancements to computer applications

of natural language is exciting.

Our approach only goes as far as representing a semantic network of the basic elements from

the Mental Spaces theory. It does not include relationships between spaces nor di�erentiation

between di�erent kinds of mental spaces, for example, but it would be straightforward to do

so given that these experiments are focussed on comparison. This is discussed further in the

Future Work chapter. This initial simplicity is a signi�cant drawback for a more generic model,

but there are clear areas for extension that are also discussed in the Future Work section of this

report. The purpose of this rudimentary model is to make an approximation of the contextual

information around a sentence and do something useful with it.
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Chapter 3

Experiments

In the previous chapter, we described the background and motivation for a computer model to

be constructed that will encompass pragmatic information in order to provide a set of related

information to be called upon in various experiments. In the model the initial pragmatic in-

formation comes from the FrameNet database, by way of the script-like conceptual structure

that we query. Following the creation of the MSN, we extend the pragmatic information by

"blending" the results via LDA topic discovery and analysis. In this chapter we present a techni-

cal description of the modelling approach, the experiments performed and the results obtained.

We describe the basic model that underlies the various experiments undertaken, consisting of

a multi-layered pre-processing platform upon which a series of experimental models are built.

We give examples of the construction of the computer model and describe the relations to the

theoretical background. We also discuss the three experiments that were undertaken. The �rst

is a classi�cation task using the FrameNet corpus, the second is a textual semantic similarity

experiment using the corpus from the SemEval task, and the third experiment is an analysis of

blending and writing style. After describing the basic approach we discuss each experiment in

turn, along with the results obtained.
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3.1 Extracting Mental Spaces from text - the Basic Ap-

proach

For a given text, structures from input sentences are analysed, in order to construct bounded

collections of related entities. In e�ect this takes the form of organised bags-of-words collections

that can be used in various tasks. The types of entities can include words, phrases, Names or

FrameNet entities. As discussed in section 2.4, FrameNet categorises various elements according

to their function. For example the frame, named Time_vector, is related to the Lexical Unit

before.prep and the Frame Element of Direction etc. The bounded collections we call m-

Frames and are grouped into di�erent types. The basic m-Frames include collections of nouns,

lexical units or named entities from the sentence. Using the FrameNet database, more complex

m-Frames are put together that may contain the frames evoked by the sentence and, further,

collections of related frames to that original evoked frame. These collections of related frames

are separated into m-Frames for each Frame-Frame relation, e.g. Inchoative, Causative etc.

Further still, the frames related to the original evoking frame can have their associated lexical

units grouped into an m-Frame. For example the word, part-of-speech pair [bake, verb] evokes

the frame Apply_Heat. The Apply_Heat frame is related to the Cooking_Creation frame by

the Is Used By relationship. The Cooking_Creation frame is evoked by many lexical units,

including [prepare, verb] and [concoct, verb] etc. The words Bake and Prepare and Concoct are

all synonyms and this relationship could be discovered via other lexical databases. In this model,

however, there is a semantic connection between the words that is related via a well-de�ned and

queryable semantic network (FrameNet).

The Mental Space Networks that are constructed can become vast in size and dimension very

quickly, for example a single sentence could evoke ten frames, each of which could be related to

ten frames. Each of these one hundred frames could be referenced by ten Lexical Units and ten

Frame Elements, giving a total of two thousand elements from a single sentence. This is only

two levels of transition along the network, but there's no reason why three or more cannot be

calculated. This will result in a large network that has many valid, but unlikely connotations

for the sentence. The model is initially large in scope and in order to discover useful meaning it

needs to be constrained or �ltered.
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Tables 3.1 and 3.6 show examples of m-Frame matrices for the word Claiming and also as

applied to the Semantic Similarity problem.

3.2 Pre-processing

In this section we present the pre-processing mechanism. All the following experiments use the

same pre-processing mechanism. The process is divided into phases during which a set of comma-

separated variable (csv) �les is produced. The csv �les form the output and input of adjoining

phases, Figure 3.1 shows a representation of the process.

Figure 3.1: Pre-Processing data �ow

This model and subsequent analysis is undertaken using the Java programming language,

implemented in a suite of interrelated classes. The processing of input texts takes place via
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the Java API implementation of the Stanford CoreNLP tool1. The input text �le is tokenized,

sentence-split, part-of-speech tagged and lemmatized. Named Entity Recognition, grammatical

dependencies and Coreference occurrences are also analysed and the whole parse output saved

as a csv �le. This parsed �le is then input into the next phase which uses the FrameNet API

by Nils Reiter2. This API is a Java implementation of an XML reader, speci�c to extracting

data from FrameNet. The FrameNet API does not provide disambiguation or computation in

our model. In our case we use it purely to extract relations from FrameNet based on the data

we supply. It facilitates the easy manipulation of the FrameNet database which is, in essence, a

set of text �les. We supply a lemma and part of speech pair to the API, which then returns the

FrameNet Lexical Unit(s) that are related in the FrameNet model. As each word from the text,

and its part of speech, is cross-referenced against the FrameNet database of lexical units (via

the API), matches indicate a link to a FrameNet frame. For example the word claiming when

lemmatized and tagged to [claim - Verb], links to the FrameNet lexical unit claim.v, which, in

turn, evokes the Statement frame. These evoked frames go to populate the FrameNet Frames

m-Frame for the sentence.

Word FrameNet frame Frame Elements Frame relations
claiming Statement Medium Place Epis-

temic_stance Depictive
Iteration Message Manner
Internal_cause Group
Event_description Means
Time Particular_iteration
Degree Topic Frequency
Addressee Occasion Con-
taining_event Speaker

Recording Complain-
ing Reveal_secret
Telling Chatting
Unattributed_information
Attributed_information
Adducing Judg-
ment_communication
Renunciation Communi-
cation

claiming Claim_ownership Claimant Bene�ciary Role
Property

Communication

claiming Predicting Place Eventuality De-
scriptor Time Accuracy
Manner Evidence Speaker
Time_of_Eventuality

Expectation

Table 3.1: Example m-Frame (partial) output for the word claiming

Following the discovery of frames, the pre-processing continues by adding Frame Elements

1http://nlp.stanford.edu/software/corenlp.shtml
2http://www.cl.uni-heidelberg.de/trac/FrameNetAPI
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and Lexical Units for the originally-evoked frames and other frames that relate to the �rst frames,

grouped by relationship type (Inchoative, Causative etc). An example output is shown in Table

3.1 and a high level view of the example sentence, as already seen, in Figure 2.3.

After adding m-frames, various further comma-separated variable �les (csv) are output de-

pending on the experiment. Each of these will be looked at in turn, below.

3.3 Experiment 1: Classi�cation Task

3.3.1 Method

This experiment measures the ability of the Stanford topic modelling toolbox to classify unseen

sentences. For this classi�cation task we use the Full Text corpus that is associated with the

FrameNet database. This corpus comprises 79 texts across various subjects, manually-annotated

with evoked frames. There are 4026 sentences in the corpus. Within the annotation, each frame

is related to the evoking word by sentence position. This enables a more �ne-grained analysis,

however, for this experiment, we have only used the relationship between evoked frame and the

sentence. The fact that the corpus is manually-annotated gives us a good indicator to use for

classifying text.

In this experiment we take the output of the pre-processing phase and run a Labeled Latent

Dirichlet Analysis (L-LDA) model over it. This is an approximation to Blending (as mentioned in

previous sections) that gives a probability distribution over groups of words (Topics) by providing

a guiding set of Labels for each sentence. In e�ect it enables us to relate the Labels (the associated

frames) with the sentence, probabilistically, and across the entire corpus.

Our hypothesis is that there is a relationship between the L-LDA distribution such that we

can classify unseen texts with appropriate topics (frames).

As described previously, L-LDA allows us to restrict the probabilistic topic discovery to a

set of associated labels. In this experiment these labels are initially the names of the annotated

frames. We extend this, however, by varying the set of input labels across the m-Frames that

were collated in pre-processing. The assumption is that we don't know what the best classifying

features will be - it may be that frames alone are enough, however, perhaps a combination of
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frames, nouns and subframes is better.

When undertaking this experiment we noticed that the annotated frames would sometimes

be incomplete, i.e. that there are evoking words in the sentences whose frames are not in the

manual annotation set. We also discovered that, due to the nature of the pre-processing work

being done, that some manually-annotated frames were not included in our automated frame

discovery process. In both cases we added the two sets together to form a complete set of evoked

frames - some from the manual annotation and some from the automatic lexical matching, pre-

processing phase.

After running the Java pre-processing modules on the input text, the Stanford Topic Mod-

elling Toolbox3 was used to create the L-LDA model.

In this scenario, repetition of words can have an impact on the LDA model so, for example, we

don't remove duplicate m-Frame elements if they appear multiple times in the output document.

The output word frequency is a consequence of the relationships discovered by the pre-processing

and may be important. The fact that the same frame may be evoked multiple times in the same

sentence could have relevance. The approach has been to leave words rather than �lter them as

they add to the mixture model of LDA.

At the end of the pre-processing phase the main output is split, in order to provide 10-fold

cross validation.

The Stanford Topic Modelling Toolbox uses a Scala script to manipulate the input �le and

alter parameters of the model. We use most of the standard parameters and input processing

variables, but vary the Term Smoothing between 0.01 and 0.5. We learn and then infer an L-LDA

model on the csv �les processed in the previous step. The LDA algorithm works in three stages:

1. Use the training dataset to learn a probability distribution, guided by the label set, and

save the model

2. Use the training dataset to generate a per-sentence distribution over all topics and then to

generate a per-label distribution over topics

3. Use the test dataset to generate a per-sentence distribution over all topics

3http://nlp.stanford.edu/software/tmt/tmt-0.4/
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The �rst step of the L-LDA process outputs a distribution over documents (our input training

sentences), quantifying how related each one is to each topic. Step 2 in this process is necessary

in order to create a Gold Standard with which to compare the test data inference distribution.

The training dataset is used to infer using the model generated in step 1. The per-label topic

distributions gives us the relationship between labels and topics, from which we create a ranked

list.

Since the distribution relates all topics to all documents (sentences) with varying probability,

we need to arrange a cut-o� probability level to reduce the number of results. We also realise that,

similarly, the distribution across topics and labels includes all topics and labels and therefore a

cut-o� number of labels to associate with each topic is necessary. Varying these numbers causes

the recall and precision to �uctuate respectively and so we chose numbers that seemed to be

intuitive initially and then varied them to achieve an appropriate output.

Next we analyse the distribution data in order to compare the Gold Standard of classi�cation

with the Predicted Labels. In e�ect we have a multi-class, multi-label classi�cation problem

and therefore to analyse the e�ectiveness we use Micro-F1 and Macro-F1 scoring. We have a

classi�cation prediction score for each iteration of the experiment - for each m-Frame used as the

label set, for each Term Smoothing parameter fed to the L-LDA algorithm, for each label cut-o�

level, and for each cut-o� probability. This is averaged over the 10-fold cross validation set and

gives us the results detailed in the next section of this report.

With multi-label classi�cation, there are two methods used in this report to calculate the

average across the sets of data: micro-average and macro-average (also known as Micro and

Macro F1). In Micro F1, precision and recall are obtained by summing over all individual

decisions, whereas in Macro F1, precision and recall are calculated "locally" for each category

and then "globally" by averaging over the results of the di�erent catagories. We included both

methods of calculation because "These two methods may give quite di�erent results" [Sebastiani,

2002].
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3.3.2 Experiment Summary

In summary, we use the Stanford Topic Modelling Toolbox to train and then infer the topics

on a set of inputs. The inputs are the sentences from the FrameNet full text corpus and the

topic-constraining labels, which are derived from the pre-processing algorithms. This experiment

was executed many times with varying input labels, such as the associated evoked frames. We

extended the experiment by using the various sets of related frames as labels in input �les, and

even used the part of speech tags and part of speech group. An example input record is shown

in Table 3.2. In Table 3.3, we show how the m-Frame relates to the input text. As described

previously, what we call the m-Frame is a bag of words construction, intended to approximate a

mental space. Our experiments create many possible versions of an m-Frame in order to calculate

the many possible interpretations of a sentence.

ID Corpus File Sentence Labels

1 ANC__110CYL067.xml Your contribution to Good-

will will mean more than you

may know.

Giving Goal Purpose

Increment Awareness

Likelihood

2 ANC__110CYL067.xml Now I can buy a soda and

spend money.

Capability Com-

merce_buy

Money Tempo-

ral_collocation

Table 3.2: Example input record

Sentence m-Frame Types m-Frame

Now I can buy a soda and

spend money.

FrameNet Frame

names

Capability Commerce_buy Money

Temporal_collocation

Now I can buy a soda and

spend money.

Nouns I soda money

Now I can buy a soda and

spend money.

Mixed Capability Commerce_buy Money

Temporal_collocation I soda money

Table 3.3: Example m-Frames

The input �les are sectioned using 10-fold cross validation and the training sample is 10%

of the total input records. For each round of the experiment, the L-LDA algorithm trains a

topic model. This forms the gold standard. The topic modelling toolbox is used again, to infer

against the held-out 90% and the result is a probability distribution over topics and sentences.

The comparison of the gold standard with the predicted (or infered as described by the Stanford

toolset) is performed, and the resulting performance �gures were obtained.
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3.3.3 Results

The aim of this experiment was to determine whether the Mental Spaces model, with the Latent

Dirichlet Allocation algorithm overlaid, can be used as a classi�cation tool. Our intuition was

that the di�erent m-Frames would have a di�erent result - some m-Frames are intuitively more

in�uential than others. We ran various iterations of the model with various parameters that

were altered at each iteration. For each m-Frame type, and by changing the values for the

Term Smoothing, Probability Cut-O� and Topic Cut-O� values we achieve di�erent results. The

results for each analysis are shown in Tables 3.4 and 3.5. Where parameters achieved the same

performance results, we have indicated the range, e.g. for Probability Cut-O�, 0.05 - 0.1 indicates

that all probabilities in this range achieve the same result.

m-Frame L-LDA Term Smoothing Probability cut-o� Topic cut-o� Macro F1

AllInheritedFrames 0.01 0.05 - 0.1 29 0.23

AllInheritingFrames 0.01 0.05 - 0.07 29 0.15

Causative 0.1 0.12 - 0.14 10 0.11

CausativeStatice 0.2 0.1 10 0.08

Earlier 0.2 0.13 - 0.14 10 0.13

Frame 0.01 0.05 - 0.07 29 0.13

FrameElements 0.01 0.05 29 0.05

HasSubFrame 0.2 0.1 - 0.11 10 0.20

Inchoative 0.5 0.12 10 - 29 0.08

InchoativeStative 0.5 0.13 10 - 29 0.10

InheritsFrom 0.01 0.1 - 0.12 23 0.20

IsInheritedBy 0.01 0.09 28 0.19

Later 0.2 0.12 10 0.16

Manually-annotated 0.01 0.11 10 0.09

Neutral 0.1 0.05 - 0.14 10 0.16

Perspectivized 0.01 0.05 - 0.07 10 - 29 0.15

POS 0.01 0.05 - 0.12 20 0.44

POSGroup 0.01 0.05 - 0.06 10 - 29 0.89

Referred 0.2 0.14 10 0.16

Referring 0.5 0.14 10 0.11

SubFrameOf 0.1 0.08 10 0.14

UsedBy 0.01 0.09 - 0.1 29 0.17

Uses 0.01 0.1 - 0.11 26 0.18

Table 3.4: Text Classi�cation Experiment Results by best m-Frames - Macro F1 scores

m-Frame L-LDA Term Smoothing Probability cut-o� Topic cut-o� Micro F1

AllInheritedFrames 0.01 0.05 - 0.1 18 0.68

AllInheritingFrames 0.1 0.08 - 0.08 29 0.35

Causative 0.5 0.12 10 0.15

CausativeStatice 0.1 0.05 - 0.14 10 0.09

Earlier 0.5 0.12 - 0.12 10 0.15

Frame 0.2 0.09 - 0.1 22 0.47

FrameElements 0.01 0.05 29 0.42

HasSubFrame 0.5 0.14 10 0.13

Inchoative 0.5 0.12 10 - 29 0.083

InchoativeStative 0.5 0.14 10 - 29 0.11

InheritsFrom 0.1 0.09 - 0.13 13 0.61

IsInheritedBy 0.01 0.05 - 0.1 25 0.43

Later 0.2 0.12 10 0.20

Manually-annotated 0.2 0.08 - 0.09 10 0.23

Neutral 0.01 0.05 - 0.08 10 0.31

Perspectivized 0.01 0.05 - 0.07 10 - 29 0.19

POS 0.5 0.05 - 0.14 13 0.74

POSGroup 0.01 0.05 - 0.06 10 - 29 0.90

Referred 0.5 0.11 10 0.19

Referring 0.5 0.13 - 0.14 10 0.13

SubFrameOf 0.2 0.12 10 0.20

UsedBy 0.1 0.11 - 0.12 27 0.47

Uses 0.2 0.11 - 0.12 15 0.57

Table 3.5: Text Classi�cation Experiment Results by best m-Frames - Micro F1 scores
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In total we executed over 180,000 iterations for this experiment. We present a subset of the

results - the best values of Micro and Micro F1. There is a wide variation of results from this

experimental subset, ranging from 0.05 to 0.89 for Macro F1 and 0.09 to 0.9 for Micro F1. We

present these as a chart in Figure 3.2

Figure 3.2: Micro F1 and Macro F1 scores by m-Frame analysis

By far the best performing m-Frame, for both Macro and Micro F1, is the POSGroup m-

Frame. This is data related to the Stanford CoreNLP parsing algorithm that takes input words

and assigns a part of speech to them, e.g. run -> Verb etc. All the other m-Frames score relatively

low for Macro F1, with the exception of POS. The di�erence between POS and POSGroup

could be signi�cant. POSGroup is a grouping of more speci�c tags. There is not a one-to-one

correspondence between them, e.g. for the word "set", the POS Group could be "Verb" and the

POS could be "VBD" (Verb, past-tense). The Stanford CoreNLP parser uses the Penn Treebank

for tag categories. In this way we see that the grouping performs better than the lower level

POS tags.

When we look at the best performing m-Frame that includes FrameNet evoked entities, the

All Inherited Frames and Inherits From perform better than 0.6 (Micro F1). There is seemingly
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no correlation between the parameters that were varied in the experiment (Term Smoothing,

Probability Cut-O� and Topic Cut-O�) and the performance. The AllInheritedFrames Micro F1

score of 0.68 was obtained with Term Smoothing of 0.01, all Probability Cut-O�s between 0.05

and 0.1, and Topic Cut-O� of 18. Compared with the highest Micro F1 score for the InheritsFrom

m-Frame the parameters were quite di�erent: the Term Smoothing used was 0.1, all Probability

Cut-O�s between 0.09 and 0.13, and Topic Cut-O� of 13. This indicates that the parameters

don't, in themselves, in�uence the output, but this is discussed further in later chapters.

These results compare favourably with alternative methods or text classi�cation using seman-

tic databases, see [Moldovan et al., 2004] for a Support Vector Machine model using FrameNet.

The best results in our model (F1 of 0.9) are in advance of alternatives we have seen.

3.4 Experiment 2: Semantic Similarity

Measuring the similarity of sets of linguistic units has uses in many di�ering NLP tasks, such as

Textual Entailment, Word Sense Disambiguation, Information Extraction and Machine Transla-

tion [Agirre et al., 2009]. Semantic Similarity is focussed, speci�cally, on the semantic elements

of the compared language structures, for example, the meaning associated with phrases. There

are di�erent approaches to analysing the similarity of word sequences, such as knowledge-based

approaches and distributional approaches. If we assume that we can assign a single measurement

to the complex semantic relationship between groups of words then we use this as a factor in

determining the e�ectiveness of computer models that attempt to compute similarity.

3.4.1 Method

In this experiment, the corpera from the Semantic Similarity Task workshop hosted at the

SemEval conference (from years 2012, 2013 and 2014)4 are used as a measure of Textual Semantic

Similarity. These corpora take the form of sentence pairs with associated manual score of semantic

similarity, e.g. {"The dog bit the man", "The hound bit the man", 4.8}. The scores range from

0 to 5. I have used the corpora from the 2012, 2013 and 2014 tasks.

The hypothesis for our experiment is that there is a relationship between the Mental Space

4http://alt.qcri.org/semeval2014/task10/
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Network, resulting from the two sentences, and the manual scores. By building various can-

didate Mental Space Networks for these sentence pairs, running a linear regression predictive

machine learning algorithm over the outputs, and then calculating a set of correlations, a value

for the relatedness is determined. Figure 3.3 shows a representation of the intuition behind this

experiment.

Figure 3.3: Intuition behind this experiment. Investigating the relationship between the manual
similarity score and the combination of calculated similarity scores between each M-Frame.

After the inputs are parsed and pre-processed in the standard manner, we create a matrix

of features for each sentence - derived from the m-Frame matrix data. In order to analyse

numerically the similarity of the Mental Space Networks, we numerate the features. This is done

in two phases. The �rst phase consists of counting the elements within each sentence or elements

evoked by each sentence, e.g. if there are 3 frames evoked by the sentence then the numerical

value in the 6th column of the numerical output would equal 3. Table 3.6 shows an example of

the resulting m-Frame matrix with �rst phase counts. The purpose of the �rst phase is to create

a measurement from which to generate a single �gure that represents the overlap or similarity

between sentences (we count duplicates since this is potentially a factor in the method - that

duplicates could indicate importance or value). There are many ways to do this, but we settled
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on those described in Table 3.7, which rely on the three further calculations performed in this

phase, listed below:

• (a) numerate the number of elements in each feature for sentence 1 that match the elements

in the corresponding feature in sentence 2. For example, for the feature POS, taking each

element in sentence 1 in turn we compare with each element in sentence 2 and numerate

through. The elements from sentence 1 that match elements in sentence 2 are numerated

as NNP, NNP, VBD, TO, VB, JJ, NN, which equals 7.

• (b) number of elements from each feature in sentence 1 that are also to be found in the

corresponding feature for sentence 2. For example, for the feature POS, we take each

element from sentence 1 and incremenent the count where there is a single match in sentence

2, therefore since NNP, VBD, TO, VB, JJ and NN all appear in sentence 2, the total equals

6.

• (c) number of elements from each feature in sentence 2 that are also to be found in the

corresponding feature for sentence 1. For example, for the feature POS, we take each

element from sentence 2 and incremenent the count where there is a single match in sentence

1, therefore, since NNP, NNP, VBD, TO, VB, JJ and NN all appear in sentence 1, the

total equals 7.
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Feature Sentence 1 Sentence 2 count
1

count
2

(a) (b) (c)

Input Sentence Netanyahu set to call early
vote

Israel's Netanyahu set to call
early vote

6 7 6 6 6

POS NNP VBD TO VB JJ NN NNP POS NNP VBD TO
VB JJ NN

6 8 7 6 7

POS Group Noun Verb Verb Adjective
Noun

Noun Noun Verb Verb Ad-
jective Noun

5 6 11 5 6

Lemmata Netanyahu set to call early
vote

Israel 's Netanyahu set to
call early vote

6 8 6 6 6

Nouns Netanyahu vote Israel Netanyahu vote 2 3 2 2 2
Named Entities Netanyahu Israel Netanyahu 1 2 1 1 1
Frames Bail_decision

Change_of_consistency
Placing
Cause_change_of_consistency
...

Bail_decision
Change_of_consistency
Placing

16 16 16 16 16

Frame Elements Place Status Means Judge
Time ...

Place Status Means Judge
Time ...

156 156 532 156 156

Frame LUs bail.n bond.n �x.v set.v or-
der.v soften.v ...

bail.n bond.n �x.v set.v or-
der.v soften.v

353 353 587 353 353

Is Inherited By Dispersal Besieging Invading
Labeling

Dispersal Besieging Invading
Labeling

4 4 4 4 4

Perspectivized On 0 0 0 0 0
Uses Communication Motion

Simple_name Judg-
ment_communication Com-
munication Being_named
...

Communication Motion
Simple_name Judg-
ment_communication Com-
munication Being_named
...

8 8 8 8 8

Used By 0 0 0 0 0
Has Subframe 0 0 0 0 0
Inchoative 0 0 0 0 0
Inchoative Stative Cause_change_of_consistency

Name_conferral
Cause_change_of_consistency
Name_conferral

2 2 2 2 2

Causative Change_of_consistency Change_of_consistency 1 1 1 1 1
Causative Stative Intentionally_act Event

Event Objective_in�uence
Transitive_action Event ...

Intentionally_act Event
Event Objective_in�uence
Transitive_action ...

19 19 55 19 19

Earlier Entering_of_plea Removing Entering_of_plea Removing 2 2 2 2 2
Inherits From Intentionally_act Event

Transitive_action Tran-
sitive_action Intention-
ally_a�ect ...

Intentionally_act Event
Transitive_action Tran-
sitive_action Intention-
ally_a�ect ...

9 9 11 9 9

Later 0 0 0 0 0
Neutral Placing_scenario Hos-

tile_encounter Simultaneity
Placing_scenario Hos-
tile_encounter Simultaneity

3 3 3 3 3

Referred 0 0 0 0 0
Referring Removing Filling

Time_vector
Removing Filling
Time_vector

3 3 3 3 3

Subframe Of Arraignment Cause_motion Arraignment Cause_motion 2 2 2 2 2
Evoking words set call early set call early 3 3 3 3 3

Table 3.6: Example Semantic Similarity m-Frame matrix, with �rst phase counts

The second phase involves taking the values from the �rst phase and creating bespoke mea-

sures of the similarity. These are described in Table 3.7.

ID Description
1 Number of matched entities (a, above) divided by the count of elements in sentence 1
2 Average of the number of existing examples (average of b and c, above)
3 For each feature, the absolute di�erence between the total number divided by the sum

Table 3.7: Similarity measurements, also called Measure IDs
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Once the matrix is in place, the hypothesis is tested by attempting to determine the combi-

nation of features that achieves the best correlation to the supplied manual similarity scores. To

achieve this, the output matrix of the numerical similarity values is analysed via a multivariate

linear regression. Using Octave5 to de�ne a set of parameters and coe�cients, the ideal linear

relationship can be determined via a Gradient Descent algorithm. The Theta parameters can

then be used as a predictive model.

The data contains 27 m-Frames for each sentence which are calculated into three di�erent

banks, one for each scoring method (measures of similarity). Each scoring method is analysed

independently via the linear regression algorithm. We don't know which set of features will

provide the best correlation to the supplied scores so, ideally, we would try all permutations. To

compute the full set of permutations of 27 independent features of variable length is intractable,

however, so we used all permutations of the following numbers of features: 1, 2, 3, 23, 24, 25

- that is, each regression analysis used a set of features from the permuted input variables as

singles, doubles, triples, and groups of 23, 24 and �nally up to the permutation of 25 features.

Using 10-fold cross validation the full set of sentence pairs from all years' SemEval tasks was

analysed (11441 records). As a predictive model, the output for each regression analysis was a

set of similarity scores which could be compared with the original held-out manual score.

3.4.2 Experiment Summary

What we are trying to achieve is a strong correlation between the manual similarity scores, that

are provided with the corpus, and the calculated similarity scores based on the model we develop.

After pre-processing, we obtain a set of m-Frames for each sentence. These are compared and

numerated for similarities in order to compute a set of values for the similiarity of the sentences

(the three similarity measurement calculation methods described previously, see table 3.7). An

example dataset at this stage is shown in tables 3.8, 3.9 and 3.10.

5http://www.gnu.org/software/octave/
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Sentence Pair ID m-Frame
1, Measure
ID 1

m-Frame
1, Measure
ID 2

m-Frame
1, Measure
ID 3

1 0.9 0.4 1.73
2 2.3 0.05 0.2
3 0.53 0.04 0.11

Table 3.8: Example similarity measurements between m-Frame 1

Sentence Pair ID m-Frame
2, Measure
ID 1

m-Frame
2, Measure
ID 2

m-Frame
2, Measure
ID 3

1 0.3 1.1 0.02
2 1.76 0.75 0.13
3 0.18 0.4 2.16

Table 3.9: Example similarity measurements between m-Frame 2

Sentence Pair ID m-Frame
3, Measure
ID 1

m-Frame
3, Measure
ID 2

m-Frame
3, Measure
ID 3

1 2.1 1.44 0.3
2 0.77 0.65 1.1
3 1.02 0.92 0.81

Table 3.10: Example similarity measurements between m-Frame 3

These tables show an example of a subset of data. At this stage we have built-up a set

of similarity scores for each sentence pair and for each m-Frame. In order to determine the

most e�ective combination of m-Frames, i.e. which m-Frames form the best model at predicting

similarity scores, we compute a linear regression analysis. The training and test data are a 10-

fold cross validation set, formed from the similarity scores per sentence pair as described above.

We did not seek to understand whether this model on its own could compete with state of the

art predictive semantic similarity systems - the model would, very likely, not perform at that

level. Instead we are seeking to show that this approach can be useful and worthy of further

study, possibly as incoroporated into a mixed approach to solving this task. Therefore we are not

attempting standard predictive model output that could be validated on those terms.. Instead,

because we don't compare directly the predicted similarity scores to the supplied manual scores,

we correlate them to determine the best �t. Speci�cally, we use Octave's cor function to calculate
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the crosscorrelation between the prediction and actual similiarity scores.

3.4.3 Results

The aim of this experiment was to compare the m-Frames evoked by sentences that were input

in pairs to the model. The intuition is that the similarity of sentences, as given in the SemEval

corpora, correlates with the similarity of the m-Frame sets related to each sentence in the pair.

The top results for each analysis are shown in Table 3.11.

Calculation Number of m-Frames Correlation
Measure ID - 2 25 44%
Measure ID - 1 23 41%
Measure ID - 1 24 41%
Measure ID - 1 25 41%
Measure ID - 1 3 38%
Measure ID - 1 2 33%
Measure ID - 1 1 29%

Table 3.11: Semantic Similarity Experiment - top results

Figure 3.4: Single feature m-Frame correlation against manual similarity score
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The best performing measurement is a combination of 25 m-Frames. This is intuitively

sensible - the more features that the linear regression algorithm has then the more e�ective it

will likely be. Not too far behind in terms of performance there are the triple, double and single-

feature results. These diminish in e�ectiveness in proportion to the number of m-Frames. Again,

this is intuitive, since the fewer features the regression has, the harder it would be to determine

the best �t algorithm.

Looking more closely at the small feature experiments we see that the best performing m-

Frames are not the ones evoked from FrameNet, see Tables 3.12, 3.13 and 3.14 for the data.

m-Frame 1 m-Frame 2 m-Frame 3 Correlation
POSGroup Lemma Noun 38%
POS Lemma Noun 37%
POS Lemma SubFrameOf 34%
POS Lemma Later 34%
POS Lemma Referring 34%
POS Lemma Earlier 34%
POS POSGroup Lemma 34%
POSGroup Lemma Later 34%
POS Lemma Inchoative 34%
POSGroup Lemma SubFrameOf 34%

Table 3.12: Triple feature similarity correlation - top 10

m-Frame 1 m-Frame 2 Correlation
POS Lemma 33%
POSGroup Lemma 33%
Noun Named Entity 32%
Noun Later 30%
Lemma Noun 30%
Noun SubFrameOf 30%
Noun Earlier 30%
Noun Referring 30%
POSGroup Noun 30%
Noun Inchoative 30%

Table 3.13: Double feature similarity correlation - top 10

40



m-Frame Correlation
Evoking Lexical Unit 29%
Noun 29%
Lemma 27%
Frame 23%
Frame Lexical Units 22%
Uses 20%
UsedBy 19%
Frame Elements 19%
Neutral 18%
Inherits From 18%

Table 3.14: Single feature similarity correlation - top 10

In the above tables we can see that the majority of m-Frames are not derived from FrameNet,

i.e. POS, POSGroup, Lemma, Noun and Evoking Lexical Unit.

Since we do not compute the predicted similarity score, as intended by the SemEval tasks for

which the corpus was compiled, we cannot compare our results with those from the competetive

task.

3.5 Experiment 3: Blending and Style

3.5.1 Method

The theory of Conceptual Integration Networks was discussed in section 2.2. We aim to explore

this theory and investigate the relationship between the evoked frames in a document. In this

experiment we take a corpus of text documents with associated, known styles or characteristics

and calculate a measurement for the Conceptual Integration Network of each one. We call the

measurement the Blending Factor. By correlating the known metadata for the text with the

blending factor we attempt to validate the hypothesis that di�erent styles of writing exhibit

related patterns of conceptual integration. The intuition behind this approach is that by com-

puting an LDA mixture model blend of the output of the Mental Space Network model, we

can approximate a Conceptual Integration Network. In e�ect our model is much simpli�ed and

constrained.

The corpus used in this experiment is a bespoke collection of blog entries. This corpus
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contains a number of blog entries from two sources: the humourist Scott Adams 6 and excerts

from the Telegraph newspaper Business Section blog7.

Each document in the corpus is a set of many sentences and each one is pre-parsed in the

standard method. We develop an m-Frame matrix for each sentence, as per the previous ex-

periments, and output a comma-separated variable �le (csv) for each document (collection of

sentences). In order to approximate the Blending that occurs between the many m-Frames we

use a standard LDA analysis rather than Labeled LDA. In this experiment we run the algorithm

over each of the m-Frames instead of the original sentence.

The output of the LDA algorithm is a probability distribution over m-Frames and topics

which indicates the probability that a particular m-Frame set (which is a representation of the

Mental Space Network evoked by the initial sentence) is related to a particular characteristic of

the text. Figure 3.5 shows a representation of the relationship between sentences and topics.

Figure 3.5: Example of sentence, m-Frame, and probability relationships to Topics

6http://www.dilbert.com/blog/
7http://blogs.telegraph.co.uk/finance/
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We calculate a factor of the relatedness between m-Frames by assuming a transitive relation-

ship over the m-Frame-topic probability distribution: all m-Frames are probabilistically related

to topics and all topics are related to m-Frames by similar distributions - therefore, we assume

that m-Frames are related to one another by their relatedness to the same topics. By examining

the probability values and measuring the di�erences, we can calculate a relationship factor be-

tween m-Frames. Taking each m-Frame in turn, for each document, we calculate the di�erence

in the probabilities between each sentence-derived m-Frame in relation to each LDA Topic. For

example, looking at the m-Frame for Perspectivized On, for a document with �ve sentences, we

would see that there are probabilities for the �ve sentences that relate each one to the set of

LDA Topics (Table 3.15). For this set of �ve sentences there are ten unique permutations that

do not include the sentence relating to itself - see Table 3.16 for an example of this calculation.

Document m-Frame Sentence Topic 1 Topic 2 Topic 3 Topic 4 ... Sum

Telegraph Blog A Perspectivized On 1 0.01 0.05 0.04 0.23 ... 1

Telegraph Blog A Perspectivized On 2 0.03 0.097 0.07 0.15 ... 1

Telegraph Blog A Perspectivized On 3 0.01 0.01214 0.1 0.11 ... 1

Telegraph Blog A Perspectivized On 4 0.08 0.075 0.01 0.08 ... 1

Telegraph Blog A Perspectivized On 5 0.073 0.0134 0.18 0.13 ... 1

Table 3.15: m-Frame topic probability example

Sentence (X) Sentence (Y) Topic 1 X Topic 1 Y Absolute Di�erence ... Sum across all topics

1 2 0.01 0.03 0.02 ... 0.1

1 3 0.01 0.01 0.0 ... 0.04

1 4 0.01 0.08 0.07 ... 0.071

1 5 0.01 0.073 0.063 ... 0.3

2 3 0.03 0.01 0.2 ... 0.74

2 4 0.03 0.08 0.05 ... 0.61

2 5 0.03 0.073 0.043 ... 0.09

3 4 0.01 0.08 0.07 ... 1.4

3 5 0.01 0.073 0.063 ... 0.78

4 5 0.08 0.073 0.007 ... 1.22

Total 5.351

Reciprocal 0.1869

Table 3.16: m-Frame topic probability permutation calculation

Calculating the di�erence between all the probabilities of sentence m-Frames gives us a num-

ber for how dissimilar the sentences are, in terms of their m-Frame sets. What we want, however,

is a measure of the similarity between sentences. We take the reciprocal of the sum of the di�er-

ences for all the sentences for the document. This measure is not a probability of relationship,

but simply a relative factor that we use to calculate the next step. What the number represents

is the similarity of the m-Frames evoked by all the sentences in the document. This is a crude

method, as we will discuss in the conclusion, however when we correlate these numbers with the

given styles of document we see the results described in the next section.
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3.5.2 Experiment Summary

In this experiment we take text documents consisting of blogs from two known styles - humorous

and business-related. These are pre-processed as per the normal model, in order to generate a

set of m-Frames for each document. These are further processed via a standard LDA algorithm

so that we obtain a probablility distribution for each document that relates each sentence to a

set of topics. Using an assumption that there is a transitive relationship between sentences, e.g.

sentence 1 is related to sentence 2 by virtue of the fact that they are both related to topic X by

probabilities A and B, we further obtain a set of intra-document relationship values. To calculate

an overall �gure for the amount that sentences are similar across the document, we work out the

di�erences between each probability, sum them and take the reciprocal value, which we call the

Blending Factor.

Next we use a Mann-Whitney U test to determine the signi�cance of the di�erence between

the Blending Factor of each document and the known style.

3.5.3 Results

Our assumption is that humorous articles will show a di�erent Blending pattern from business-

related blogs.

This experiment's aim was to construct a mental space network m-Frame matrix for a given

set of documents and, overlaying an LDA analysis, to approximate a Conceptual Integration

Network. The probability distribution that results from this analysis is then used and, by way

of a bespoke di�erential algorithm, we calculate the intra-similarity of sentences across each

document. These similarity scores (Blending Factors) are then analysed with a Mann-Whitney

U test. The intuition is that the amount of similarity across the document's m-Frame matrix is

related to the style or theme of the document.

A drawback of our bespoke corpus is that the document counts were relatively low - 10

documents for each style - humorous and business. Due to the sparsity of the results, not all

m-Frames could be calculated. Where an output from the model was available however, a Mann-

Whitney U test was undertaken. This algorithm is a non parametric null hypothesis test that

calculates the di�erence between two classes of results, with the null hypothesis being that there
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is no di�erence between the medians of the result set. The results from this experiment are

shown in table 3.17. What we are looking for is a p-value below 0.05, which would indicate that

the distributions of the two groups di�ered signi�cantly.

m-Frame n1 n2 U p-value
Inherits From 10 8 14 0.01
All Inherited Frames 9 9 22 0.057
Used By 9 8 19 0.057
Uses 8 6 15 0.14
All Inheriting Frames 7 6 13 0.15
Frame Lexical Units 9 9 30 0.19
Frame 10 10 38 0.2
Is Inherited By 7 5 17 0.31
Lemma 10 9 39 0.33
Frame Elements 10 9 44 0.48

Table 3.17: Mann Whitney p-values between Blending factor and Document type

The results show that, in keeping with the semantic similarity experiment, the correlation is

not a particularly strong one. Only one m-Frame exhibited a strong di�erence between document

types with two others close to being signi�cant. In contrast to the semantic similarity experiment,

however, the highest score in this set of results is a FrameNet-related element (Inherits From).

We recognise that the Blending Factor is a single score for the whole document. We derived

it this way in order to correlate against other factors that are at the document level. When

we construct the Blending Factor, however, it's clear that there is a pattern across the whole

document that ought to correlate with the pattern of conceptual integration. For example, Figure

3.6 shows a visual representation of this landscape. The 17 sentences in this document, analysed

in this diagram are transitively related to each other in irregular proportions, indicated by the

height of the spikes in the chart. This feature of the analysis was not investigated further, but

highlights a potential further investigation into blending at a sub-document level.

We believe this approach to be novel, such that comparible performance measurements from

existing systems are not available.
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Figure 3.6: Blending Landscape - a topographical correlate to Conceptual Integration

3.6 Summary of experiments

The aim of these experiments was to create a basic model of mental spaces and conceptual

integration upon which to run a number of experiments. The results of these experiments was

quite mixed. Some very good results were obtained in experiment one (Classi�cation Micro F1

of 0.9), however generally the results were inconclusive. We discuss and interpret the nature of

the results in the next section.
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Chapter 4

Discussion

In this research we take the problem of computing the semantic and pragmatic content of natural

language. We use ideas from Cognitive Linguistics, speci�cally Gilles Fauconnier's and Mark

Turner's theories of Mental Spaces and Conceptual Integration and Charles Fillmore's theory

of Frame Semantics. These theories create frameworks to encapsulate the complex meaning in

scenes and situations and also to model the way our brains process information into a meaningful

set of interrelated entities. We began by using these theories to model their frameworks in a

computer system, taking text as our data and distributing it across the sets of m-Frames we build

making use of FrameNet's semantic network to drive the distribution. We construct a model of a

Mental Spaces Network and also execute a Latent Dirichlet Allocation algorithm over the model

in order to mimic a kind of Conceptual Integration Network (Blending).

We chose three experiments to test the validity of the model and to apply these techniques

to known problems:

• Classi�cation task, using the manually-tagged data supplied with FrameNet

• Semantic Similarity task, using data from the SemEval workshop

• Blending and Writing Style

We will discuss each experiment in turn and then a combined analysis at the end.
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4.1 Classi�cation Task

The results from this experiment were surprising. We make note of the di�erences between

the types of m-Frames, particularly in reference to Mental Spaces theory. Our model collects

entities into m-Frames based on what we provide via the pre-processing steps. Early in the

project we chose not to restrict our model to only outputs from FrameNet evocation. For

example, we decided to construct m-Frames of all the Nouns from the sentence, or all the Named

Entities. Further, we included m-Frames composed of the Part of Speech tags for all the words

in the sentence, see Table 3.6 which shows an example that includes Nouns, POS, POS Group

etc. We included these non Frame-Net-evoked elements as a comparison with the frame-related

information from FrameNet. We didn't expect these to outperform them! This is not di�cult to

understand when we consider the sparsity of some of the FrameNet coverage.

The best measures come out at 0.9 (Micro F1). This is a very good result and one that

needs further investigation as a potential new method for classi�cation. It is, however, not a

measurement that has come from a mental spaces m-Frame and therefore does not validate the

purpose of this research that derives from using Frame Semantics. The m-Frame related to our

initial theory that scores highest is the All Inheriting Frames (0.68). This is a good score and

one that could initiate further investigation in its own right. The corpus used in this experiment

is small and, in order to further investigate these results, it would be necessary to extend the

size of the dataset.

4.2 Semantic Similarity task

The results obtained in this experiment were disappointing. Overall, the best correlation obtained

was 44%. This is not a level that can show a successful experiment. The focus in this experiment

was to evaluate the performance of the Mental Spaces approach, so we would expect that the

performance might not be comparable to other research in this area that attempts to obtain

the best performance across all techniques. "The best performance is achieved using a method

that combines several similarity metrics into one" [Mihalcea et al., 2006]. So even though,

taken in isolation, the best correlations are uninspiring, we think that the work deserves further
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investigation as an approach to be combined with others in a common goal, namely accurate

semantic similarity scoring.

4.3 Blending and Writing Style

This experiment, again, had results that were not as positive as had been hoped. We were

encouraged to see one m-Frame that showed a p-value < 0.05, indicating a clear di�erence

between the medians of the two data sets (humorous and business blogs). We also note that two

other m-frames had p-values of 0.057 which indicates a strong di�erence. This is an encouraging

correlation and leads us to assert that further investigation is warranted.

4.4 Analysis

Overall, the results from the experiments indicate that there is potential in these techniques,

but that much further work would need to go into improving the outputs. The best results were

obtained not by m-Frames evoked from FrameNet, but by the elements derived from relatively

simple parsing. For example in the �rst experiment the Micro F1 and Macro F1 scores for POS

and POSGroup were signi�cantly beyond those for all other m-Frames. Similarly in the second

experiment (Semantic Similarity), the best results came from the POS, POSGroup, Lemma and

Noun m-Frames.

We explain this general trend in the results by a number of factors, such as the sparsity

of the m-Frame data. For example, a sentence of 5 words will always have POS, POSGroup,

Lemma and noun entity values populated in the m-Frame matrix. It is dependent on FrameNet

as to whether the other m-Frames are populated, for example there may be nothing at all in

the Causative or Referring m-Frames. This is a signi�cant problem that is made worse by the

relatively small corpora used. If we had larger corpora then this issue would be potentially

mitigated to some extent, since the aggregation of many more sentences would give a greater

amount of data. Statistical measurements abhor a lack of data and so, in the absence of values

for some of these m-Frames, we would expect that the results would be mixed.

We recognise a crucial next step in this research is to validate the results obtained. This
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would be achieved by undertaking statistical signi�cance tests. The relatively small size of the

corpora used, as well as the potentially low coverage of FrameNet could lead to doubts about

the validity of the outcome. Certainly, further work is required and would likely take the form

of a null hypothesis analysis.

The proposal we make to remedy this issue is to segment the mental space approximations

di�erently. In this initial model we take the simplest approach and create bags-of-words sets

functionally delineated, for example all the Nouns are combined into a single set for each sentence

and all the other m-Frames (POS, Referring etc) are similarly bounded by their function rather

than in relation to the semantic purpose in the sentence. This is not an approach that is in

keeping with the original Mental Spaces theory in which mental spaces are diverse in content

and semantically related. We also note again that we have not included relationships between

mental spaces nor mental space types into the model. This is something that would potentially

add more data to the model.

An improved model would create a set of semantically delineated entities. For example, a set

containing a noun and its evoked Frames and Frame Elements would be a di�erent method of

creating the mental space approximations, and one that is more directly related to the theory.

A number of assumptions have been made in this research. For example, we overlay a Latent

Dirichlet Allocation statistical analysis over the basic model that we hope approximates Blending.

Some of the results in this project would indicate that there is some validity to this assumption,

however this needs further investigation. The theory of Conceptual Integration (Blending) is

not simply a "hierarchical Bayesian model, in which each item of a collection is modelled as

a �nite mixture over an underlying set of topics" [Blei et al., 2003], but a conceptual network

that includes highly complex semantic entities and relationships. The brain doesn't "value" the

co-occurence of words as much as our LDA model. We have produced a two-step approximation

to Blending - a semantic network model using FrameNet, overlaid with a probabilistic mixture

model (LDA).
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Chapter 5

Conclusion & Future Work

In the previous chapter we discussed the various experiments undertaken in this research and

analysed the results. In this �nal chapter, we take this analysis and contextualise it based on

the assumptions and related theories. We also look at the future directions that are highlighted

as potential research areas.

We described earlier in this report the desire to utilise pragmatic theories, e.g. context and

knowledge. We see Pragmatics as crucially important for the development of computer systems

that can work with natural language in a capable way that is useful for humans. This is a key

goal for Arti�cial Intelligence research. The goal of this report is to draw a connection between

the models we built - that use FrameNet and partitioning mechanisms to address problems in

Computational Linguistics - and the larger goal of seemingly intelligent language systems.

What became evident early on in the project, is that the computing power necessary to

compute the model would be signi�cant. Even the simplest of models would take hours to

compute some of the complex experiments. This was due to the amount of data manipulation

required, especially the LDA calculations.

We were also hampered by the lack of a large corpus for this research. We had a number

of manually annotated corpora, but they were all fairly limited in their volume. This was a

drawback to the research. We would like to run the same experiments on larger corpora for

comparison.
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5.1 Extension of the model

The computer model we constructed is limited in a number of ways. To create a useful model of

human cognition is a highly complex and di�cult task. We chose to model the theories of Mental

Spaces and Frame Semantics and we managed to implement a small subset of these theories. The

Cognitive Linguistic theory of Fauconnier is large and detailed and we only scratched the surface

of the potential for a computer model. For example, we did not investigate the idea that across

a text there exists coreference and dependency chains (both readily available via parsing tools

such as the Stanford CoreNLP Parser). We explored this in an early phase of the research, but

it became di�cult to incorporate with the various other m-Frames that we �nally put in place.

We would have liked to perform more machine learning algorithms in the experiments we

undertook. For example in the semantic similarity experiment we created a linear regression

model. The next logical step would have been to investigate the same data via a neural network

model. This kind of statistical model would match better the dynamic system aims set out at

the start of this report.

Our research does not model mental space theory further than the very rudimentary. The

reasons are that the theory is complex and the computer processing necessary becomes a di�cult

problem to overcome. In future research we would expect that di�erentiating the mental space

types and recording the relationships and entity types in a more comprehensive and meaningful

manner would be bene�cial. This would mimic the theory's proposed real-world mental model

and therefore have greater potential for success.

Our model makes no assumptions about the semantic relationships across the text in the

order in which they appear throughout the text. Almost all texts have a semantic order in which

it is assumed they will be processed. For English this is almost always that words appearing in

the top left of a page are processed before all others and that by working one's way down (from

top to bottom) the page the meaning will gradually unfold. This is not always the case in other

languages, for example, Arabic texts move from right to left to unfold meaning. A drawback of

our model is that it doesn't take into account any gradual increases in conceptual understanding

as one reads through a text. This was a problem that we recognised and would have liked to

address. For example the way that concepts are introduced and manipulated across a document

52



can be modelled in a more interesting way than our experiment was able to.

Further to the idea that the location of concept-evocation in a text is important, the scope of

the frame analysis and overlaid statistical modelling is an area that we would like to investigate.

We have used the sentence as our main grouping of meaning. This is not realistic in terms of

how humans understand language. It makes the model simpler since we can de�ne segmentation

in a more ordered fashion, however for future work we would expect to see the scope of analysis

change to phrases or clauses within sentences. This would enable the model to become more

�ne-grained with respect to the mental space evocation and segmentation.

Three factors that have been paramatised in the model and the impact on results described to

some extent, are the LDA Term Smoothing parameter, the probability cut-o� and the topic cut-

o�. The values chosen for these parameters have not seemingly made an impact on the results,

however it would be necessary to further investigate their impact on the data in order to rule out

the importance they may have. The Term Smoothing parameter caters for the common problem

of "unseen" words appearing in documents, e.g. for a test text there may be words that have

not appeared at all in the training set which can cause statistical problems ; smoothing attempts

to work around this by "assigning positive probability to all vocabulary items whether or not

they are observed in the training set" [Blei et al., 2003]. The probability cut-o� and topic cut-o�

ate variables that a�ect the balance between Precision and Recall and therefore can be varied to

hone the output. Our model is, in a way, a system that creates a large matrix of relationships

between all the entities in the domain. This becomes unwieldy and not useful unless there is a

way to hone the output. The probability and topic cut-o�s provide that mechanism.

5.2 Limitations of FrameNet frames

Without the FrameNet database this project would not have been possible. It is a very important

resource for computational semantic models - "Knowledge of semantic structure is essential for

language understanding" [Palmer and Sporleder, 2010]. It is, however, limited in its coverage.

This is not a criticism of FrameNet since it is growing and evolving all the time and the coverage

is already large. At the moment however, it is recognised as being somewhat lacking in coverage

when text-based analyses are undertaken [Palmer and Sporleder, 2010]. This is a problem for
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our research since not only do we rely on as many evoked frames as possible being recognised,

but also that the inter frame relationships are fully covered.

Our choices of the entities that would populate m-Frames is something that we recognise

as being a variable for future work. We decided on a set of m-Frames that derive from parsed

elements in a sentence, e.g. Nouns, and also m-Frames consisting of frame-to-frame relationships.

The intention was to mimic a mental space network and we feel that this was achieved. It is,

however, a huge task, both in terms of the analysis required and the data necessary and we believe

that creating larger and more complex m-Frames that further use the FrameNet database would

be a valuable avenue to explore. We expect that the use of other lexical resources would improve

the model too. For example WordNet for synonyms and the population of context and/or

background information via knowledge bases such as FreeBase1 or DBPedia 2.

We also realised, while carrying out this project, that the manually-annotated corpus accom-

panying the FrameNet database is more detailed than originally understood. Each sentence is

annotated with intra-sentence relationships between words, semantic roles are noted, and frame

evocation is intra-sentence located. This information could be used to drive an analysis that is

more �ne-grained than ours.

The FrameNet project has been successful in its purpose. The practical bene�ts of a semantic

database such as FrameNet have been used to generate similar projects in other languages. There

are now projects working on German, Chinese, Brazilian Portuguese, Spanish, Japanses and

Swedish versions of FrameNet. There are also corpora that can be used to develop experiments

and computer models in languages other than English [Burchardt et al., 2006]. We would like to

see the same ideas as developed in our report transferred and extended into di�erent languages.

5.3 Conclusion

To conclude this report we say that the aims set out at the beginning have been achieved. We

have designed, created and explored a computer model of Mental Spaces and Frame Semantics.

We have designed and carried out a number of experiments. The results of those experiments are

mixed, however, but we believe that they indicate potential for future work. The goal is highly

1https://www.freebase.com/
2http://dbpedia.org/About
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ambitious and we were never under the illusion that the model could achieve a lot in a year's

research. We are pleased in some areas and disappointed in others. We are hopeful that some

useful applications could come from this limited achievement.

The potential applications that models of the kind generated in our research can be put

towards are manifold. From machine translation to text categorisation, from semantic similarity

to plagiarism detection, the kind of models we create, coupled with machine learning algorithms

and Bayesian models, can be very powerful mechanisms for computational linguistics research.
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