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Abstract

The n×n circulant matrix associated with the polynomial f(t) =
∑d

i=0 ait
i

(with d < n) is the one with first row (a0 . . . ad 0 . . . 0). The problem as to
when such circulants are unimodular arises in the theory of cyclically presented
groups and leads to the following question, previously studied by Odoni and
Cremona: when is Res(f(t), tn − 1) = ±1? We give a complete answer to this
question for trinomials f(t) = tm± tk±1. Our main result was conjectured by
the author in an earlier paper and (with two exceptions) implies the classifica-
tion of the finite Cavicchioli-Hegenbarth-Repovš generalized Fibonacci groups,
thus giving an almost complete answer to a question of Bardakov and Vesnin.

1 Introduction

The n×n circulant matrix Mn(f) associated with the polynomial f(t) =
∑d

i=0 ait
i

where d < n and ai ∈ Z is the one whose first row is (a0 . . . ad 0 . . . 0). Well known
properties of circulants and resultants give that det(Mn) = Res(f, tn − 1). The
question as to when Mn is unimodular arises in the theory of cyclically presented
groups and has been considered by Odoni [7] and Cremona [3].

For n ≥ 1 define
Rn(f) =

∏

θn=1

f(θ).

Our approach, as in [3],[7], is to work with Rn(f) rather than with Mn(f). It was
shown in [3],[7] that, for n > d, det(Mn) = Rn(f) so it is enough to consider when
Rn(f) = ±1. We note that Rn(f) is defined for all n ≥ 1 whereas Mn(f) is only
defined for n > d.

Briefly, the connection with cyclically presented groups is as follows. Fix a word
w(x0, . . . , xn−1) in generators x0, . . . , xn−1 and let Γn(w) be the group defined by
the presentation with these n generators and the n relators

w(x0, x1, . . . , xn−2, xn−1), w(x1, x2, . . . , xn−1, x0), . . . , w(xn−1, x0, . . . , xn−3, xn−2).

If ai is the exponent sum of xi in w(x0, . . . , xn−1) then Γn(w) has infinite abelian-
ization if and only if Rn(f) = 0 and is perfect if and only if Rn(f) = ±1 [5],[7].
Indeed Γn(w)ab has order |Rn(f)| ([5, page 77]).

1



In this paper we consider trinomials f(t) = tm ± tk ± 1. When both signs are
‘+’ it is easy to deduce that Rn(f) 6= ±1. In the other three cases we can reduce to
a polynomial of the form tm − tk + 1; moreover we may assume (n,m, k) = 1 (see
Section 3). We note that Lemma 5 of [8] and Lemma 2.3 of [4] determine when
Rn(tm ± tk ± 1) = 0.

The Cavicchioli-Hegenbarth-Repovš generalized Fibonacci groups Gn(m, k) are
the cyclically presented groups with generators x1, . . . , xn and relators xixi+mx−1

i+k

and these are our primary motivation for considering trinomials f(t) = tm− tk +1.
Our main result is

Main Theorem Let n ≥ 1 and f(t) = tm−tk +1 where m, k ∈ Z and (n,m, k) =
1. Then Rn(f) = ±1 if and only if ((n, 6) = 1 and m = 2k mod n) or k = 0 mod n

or k = m mod n.

This was conjectured (in group theoretic terms) in [8] and is a natural gener-
alization of a theorem of Odoni [7] which deals with the case k = 1. With the
exception of two groups, the Main Theorem implies the classification of the finite
groups Gn(m, k) (see [8]), thus giving an almost complete answer to a problem
posed by Bardakov and Vesnin ([1, Question 1]).

2 Preliminaries

A number of equivalent characterizations of Rn(f) = ±1 were given in [3],[7]. We
only need some of them:

Lemma 2.1 ([3, 7]) For f ∈ Z[t] and n ≥ 1 the following are equivalent:

(a) Rn(f) = ±1;

(b) f(ζd) is a unit in the ring Z[ζd] for all d|n where ζd denotes a primitive dth
root of unity;

(c) Res(f, tn − 1) = ±1.

We record some properties of Rn; those in Proposition 2.2 follow directly from
its definition.

Proposition 2.2 Let f, g ∈ Z[t] and let n ≥ 1. Then the following hold:

(a) Rn(fg) = Rn(f)Rn(g);

(b) Rn(t) = (−1)n+1;

(c) If m|n then Rm(f)|Rn(f).
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Proposition 2.3 ([7]) Let f(t) = c
∏k

j=1(t− βj). Then

Rn(f) =
(
(−1)kc

)n
k∏

j=1

(βn
j − 1).

In [3] the expression cn
∏k

j=1(β
n
j −1) was denoted B(f, n) and so Rn(f) = ±B(f, n).

Proposition 2.4 Let f, F ∈ Z[t] be polynomials such that f(t) = F (tα) for some α ∈
N. Then

Rn(f) =
(
Rn/(n,α)(F )

)(n,α)
.

In particular Rn(tm ± tk ± 1) =
(
RN (tM ± tK ± 1)

)(n,m,k) where N = n/(n,m, k),
M = m/(m, k), K = k/(m, k).

Proof
Let d = (n, α). Then we have

Rn(f) =
∏

θn=1

F (θα) =
n−1∏

q=0

F (e2πiqα/n) =
n−1∏

q=0

F (e2πiq(α/d)/(n/d))

which is equal to 


n/d−1∏

q=0

F (e2πiq(α/d)/(n/d))




d

.

so Rn(f) =
(
Rn/d(F )

)d. Now since (α/d, n/d) = 1, for each q = 0, . . . , (n/d − 1)
there exists a unique Q = 0, . . . , (n/d− 1) such that q(α/d) = Q mod n/d. Hence

n/d−1∏

q=0

F (e2πiq(α/d)/(n/d)) =
n/d−1∏

Q=0

F (e2πiQ/(n/d)) =
∏

φn/d=1

F (φ) = Rn/d(F )

so Rn(f) =
(
Rn/d(F )

)d.
To prove the last claim let f(t) = tm ± tk ± 1 and F (t) = tM ± tK ± 1. 2

Since (N, M, K) = 1, in considering when Rn(tm± tk±1) = ±1 Proposition 2.4
allows us to assume that (n,m, k) = 1.

3 Properties of Rn(t
m ± tk ± 1)

We have that R1(tm + tk + 1) = 3 so by Proposition 2.2(c) Rn(tm + tk + 1) 6= ±1
for all n. Thus we may assume that at least one of the signs is a ‘−’.

Proposition 3.1 (a) |Rn(tm − tk − 1)| = |Rn(tk − tm + 1)|;
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(b) |Rn(tm + tk − 1)| = |Rn(tk−m − tk + 1)|;

(c) |Rn(tm − tk + 1)| = |Rn(tm − tm−k + 1)|.

Proof
(a) tm − tk − 1 = −(tk − tm + 1) so |Rn(tm − tk − 1)| = |Rn(tk − tm + 1)|.
(b) tm + tk − 1 = tk(tm−k − t−k + 1) so

Rn(tm + tk − 1) = Rn(tk)Rn(tm−k − t−k + 1)

= (Rn(t))kRn(tk−m − tk + 1)

= ±Rn(tk−m − tk + 1).

(c) tm − tk + 1 = tm(t−m − tk−m + 1) so

Rn(tm − tk + 1) = Rn(tm)Rn(t−m − tk−m + 1)

= (Rn(t))mRn(tm − tm−k + 1)

= ±Rn(tm − tm−k + 1).

2

Other similar identities can be established. For example [2, Theorem 2] implies
that if n,m, k,m′, k′ are integers such that (n, m, k) = 1, (n,m′, k′) = 1, (n, k′) = 1
and m′(m− k) = mk′ mod n then Rn(tm − tk + 1) = ±Rn(tm

′ − tk
′
+ 1).

Parts (a) and (b) of Proposition 3.1 show that Rn(tm − tk − 1) = ±Rn(tm
′ −

tk
′
+1) (for some m′, k′) and Rn(tm + tk−1) = ±Rn(tm

′− tk
′
+1) (for some m′, k′),

so we only need consider Rn(f) for f(t) = tm−tk +1. Moreover, by Proposition 2.4
we may assume that (n,m, k) = 1. Proposition 3.1(c) shows that the roles of k and
(m− k) can be interchanged.

The next result was prompted by [1, Lemma 1.3].

Proposition 3.2 (a) If (k, n) = 1 then Rn(tm− tk + 1) = Rn(tm`− t + 1) where
` = k−1 mod n;

(b) if (m − k, n) = 1 then Rn(tm − tk + 1) = Rn(tm` − t + 1) where ` = (m −
k)−1 mod n;

(c) if (m,n) = 1 then Rn(tm − tk + 1) = Rn(t− tk` + 1) where ` = m−1 mod n.

Proof
(a) Let φ = θk, then θ = φ` so

Rn(tm − tk + 1) =
∏

θn=1

θm − θk + 1 =
∏

φn=1

(φ`)m − φ + 1 = Rn(tm` − t + 1).
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(b) This follows from (a) by interchanging the roles of k and (m− k).
(c) Similar to (a). 2

Parts (a),(b) of Proposition 3.2 show that it is sometimes enough to consider the
polynomials considered by Odoni [7] (that is, polynomials of the form tm − t + 1).

When k = 0 mod n or k = m mod n it is clear that Rn(tm − tk + 1) = ±1. We
can obtain the value of Rn in some other cases; for example by Proposition 2.3 and
Proposition 2.4 we have that Rn(t0− tk +1) =

(
2n/(n,k) − 1

)(n,k)
. By [8, Lemma 3]

we also have

Lemma 3.3 Suppose that n is even, (m, k) = 1 and either k = n/2 mod n or
(m− k) = n/2 mod n. Then |Rn(tm − tk + 1)| = 2n/2 − (−1)m+n/2.

4 Proof of Main Theorem

Odoni proved the Main Theorem in the case k = 1: we summarize this result ([7,
Theorem 2(ii),(iii)]) as

Theorem 4.1 ([7]) Let n ≥ 1 and f(t) = tm− t+1 where m ∈ Z. Then Rn(f) =
±1 if and only if ((n, 6) = 1 and m = 2 mod n) or m = 1 mod n.

Corollary 4.2 Let n ≥ 1 and f(t) = tm − tk + 1 where m, k ∈ Z, (n,m, k) = 1
and suppose that either (k, n) = 1 or (m−k, n) = 1. Then Rn(f) = ±1 if and only
if ((n, 6) = 1 and m = 2k mod n) or k = 0 mod n or k = m mod n.

Proof
By interchanging the roles of k and (m − k) we may assume that (k, n) = 1.
By Proposition 3.2(a) Rn(f) = Rn(tm` − t + 1), where ` = k−1 mod n. Now
m` = 1, 2 mod n if and only if m = k, 2k mod n, so the result follows from Theo-
rem 4.1. 2

The following corollary generalizes [7, Lemma 3.2] to our setting.

Corollary 4.3 Let n = pu where p = 2 or 3, u ≥ 1, and f(t) = tm − tk + 1
where m, k ∈ Z, (n,m, k) = 1. Then Rn(f) = ±1 if and only if k = 0 mod n or
k = m mod n.

Proof
The hypotheses imply that either (k, n) = 1 or (m − k, n) = 1 and so the result
follows from Corollary 4.2. 2

The ‘if’ direction of the Main Theorem is straightforward to prove (see [8,
Lemma 5]) so from now on we focus on the ‘only if’ direction.
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Lemma 4.4 Let n = 2r3s ≥ 1 and f(t) = tm−tk+1 where m, k ∈ Z, (n,m, k) = 1.
If Rn(f) = ±1 then k = 0 mod n or k = m mod n.

Proof
By Corollary 4.3 we may assume r ≥ 1, s ≥ 1. Now Rn(f) = ±1 implies R2r(f) =
±1 and so by Corollary 4.3 we have k = 0 mod 2r or (m − k) = 0 mod 2r. By
interchanging the roles of k and (m − k) we may assume that the first of these
holds. We also have R3s(f) = ±1 so k = 0 mod 3s or k = m mod 3s. In the first
case we have k = 0 mod n, so assume the second.

Let d = 2 · 3s. Now k 6= m mod d, for otherwise 2|(n,m, k) = 1; thus
k = m + d/2 mod d. It follows that (m mod d, k mod d) = 1 so Lemma 3.3
implies that Rd(f) 6= ±1 and hence Rn(f) 6= ±1. 2

Our next lemma generalizes [7, Lemma 3.3] to our setting. We use ideas from
the proof of that result.

Lemma 4.5 Let n = pq where q = 2 or 3 and p ≥ 5 is prime, f(t) = tm − tk + 1
where m, k ∈ Z, (n,m, k) = 1. If Rn(f) = ±1 then k = 0 mod n or k = m mod n.

Proof
By Corollary 4.2 we may assume (k, n) > 1, (m− k, n) > 1 so (since (n,m, k) = 1)
either (q|k and p|(m − k)) or (p|k and q|(m − k)). By interchanging the roles of
k and (m − k) we may assume that the first case occurs, i.e. k = 0 mod q and
(m − k) = 0 mod p. Moreover we may assume k 6= 0 mod p, (m − k) 6= 0 mod q

for otherwise k = 0 mod n or (m− k) = 0 mod n.
If either p or q divides m then we get a contradiction to (n,m, k) = 1 so (m,n) =

1. Now by Proposition 3.2 Rn(f) = Rn(g) where g(t) = tm
′ − tk

′
+1 where m′ = 1,

k′ = km−1. The conditions on m, k imply k′ = 0 mod q, (m′ − k′) = 0 mod p,
(m′ − k′) 6= 0 mod q. When q = 2 we have that (m′ − k′) = n/2 mod n and since
(m′, k′) = 1 Lemma 3.3 implies Rn(g) 6= ±1.

Suppose then that q = 3 and Rn(g) = ±1. We have that k′ = 1 mod p,
k′ = 0 mod 3. Now R3p(g) = ±1 so, writing ζd for a primitive dth root of unity,
Lemma 2.1 implies that g(θ) is a unit in Z[ζ3p] whenever θ is a primitive (3p)th
root of unity. In particular g(ζpζ3) = ζp(ζ3−1)+1 and g(ζpζ

2
3 ) = ζp(ζ2

3 −1)+1 are
units in Z[ζ3p] and hence so is their product 3ζ2

p − 3ζp + 1, which must therefore
also be a unit in Z[ζp]. Let h(x) = 3x2−3x+1. Then h(1) = 1 and h(ζp) are units
in Z[ζp] so by Lemma 2.1 we have that Rp(h) = ±1. Now Proposition 2.3 implies
that Rp(h) = 3p(βp

1 − 1)(βp
2 − 1) where β1, β2 = 3−1/2e±iπ/6 are the roots of h. But

3p(βp
1 − 1)(βp

2 − 1) = 3p + 1± 3(p+1)/2 6= ±1

and we have a contradiction. 2
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Our next result (Lemma 4.8) deals with the case (n, 6) = 1. It generalizes [7,
Lemma 3.1] to our setting and its proof is essentially a re-run of the proof of that
result. We will require the following theorem of Kronecker, a proof of which can
be found on page 46 of [6].

Lemma 4.6 Let β = β1 be a non-zero algebraic integer and let β1, . . . , βk be the
conjugates of β over Q. If maxj |βj | ≤ 1 then β is a root of unity.

We will also need the following:

Lemma 4.7 If
∑`

i=1 wj
i =

∑`
i=1 zj

i for all j = 1, . . . , ` then the multisets {w1, . . . , w`}
and {z1, . . . , z`} are equal.

The proof is a standard application of the Newton-Girard formula and so is
omitted.

Lemma 4.8 Let n ≥ 1 and f(t) = tm − tk + 1 where m, k ∈ Z, (n,m, k) = 1
and suppose (n, 6) = 1. If Rn(f) = ±1 then m = 2k mod n or k = 0 mod n or
k = m mod n.

Proof
By Lemma 2.1 λ = f(ζ) is a unit in the ring Z[ζ] for some primitive nth root of
unity ζ, and therefore so is σ(λ) for any σ ∈ Γ = Gal(Q(ζ)/Q). Let µ = λλ−1.
Then, since Γ is abelian, we have

|σ(µ)|2 = σ(µ)σ(µ) = σ(µµ) = σ(1) = 1.

Lemma 4.6 implies that µ is a root of unity in Q(ζ), and thus µ = sζj for some
j ∈ Z, s = ±1. Since µ = λλ−1 = f(ζ)f(ζ)−1 = f(ζ−1)f(ζ)−1 it follows that

sζj(ζm − ζk + 1) = ζ−m − ζ−k + 1. (4.1)

Case 1: s = −1. Let w1 = ζ−m, w2 = 1, w3 = ζm+j , w4 = ζj , z1 = ζ−k, z2 =
ζj+k, z3 = z4 = 0. Then (4.1) is equivalent to

w1 + w2 + w3 + w4 = z1 + z2 + z3 + z4. (4.2)

Since (n, 6) = 1 we have that (r, n) = 1 for r = 1, 2, 3, 4. Thus the maps ζ 7→ ζr

(r = 1, 2, 3, 4) are automorphisms of Q(ζ). Applying these to (4.2) we get

4∑

i=1

wr
i =

4∑

i=1

zr
i (r = 1, 2, 3, 4). (4.3)

By Lemma 4.7 we have that {w1, w2, w3, w4} = {z1, z2, z3, z4}, but z3 = 0 6∈
{w1, w2, w3, w4} which gives a contradiction.
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Case 2: s = +1. Let w1 = ζ−m, w2 = 1, w3 = ζk+j , z1 = ζ−k, z2 = ζj+m, z3 = ζj .
Then (4.1) is equivalent to

w1 + w2 + w3 = z1 + z2 + z3. (4.4)

As in Case 1, the maps ζ 7→ ζr (r = 1, 2, 3) are automorphisms of Q(ζ) and ap-
plying them to (4.4) gives {w1, w2, w3} = {z1, z2, z3}. If (z1, z2, z3) = (w3, w1, w2)
then ζ2k = ζ2m = 1 so k = 0 or n/2 mod n and m = 0 or n/2 mod n and so
k = 0 or m mod n or m = 2k mod n. If (z1, z2, z3) = (w1, w2, w3), (w1, w3, w2), or
(w2, w3, w1) then ζm−k = 1 and hence k = m mod n. If (z1, z2, z3) = (w3, w2, w1)
then 2k = m mod n. If (z1, z2, z3) = (w2, w1, w3) then k = 0 mod n. 2

Proof of Main Theorem
The ‘if’ direction was proved in [8, Lemma 5] so suppose that Rn(f) = ±1. By
Lemmas 4.4 and 4.8 we may assume n = ab where a = 2r3s > 1, (b, 6) = 1, b > 1.
Now Ra(f) = ±1 implies (by Lemma 4.4) that k = 0 mod a or (m−k) = 0 mod a.
By interchanging the roles of k and (m − k) we may assume that k = 0 mod a.
Also, Rb(f) = ±1 implies (by Lemma 4.8) that k = 0 mod b or m = 2k mod b or
k = m mod b. If k = 0 mod b then k = 0 mod n so assume otherwise.

Suppose m = 2k mod b. Then no prime divisor of n divides (m − k) for oth-
erwise it would also divide (n, m, k) = 1. Therefore (m − k, n) = 1 and the result
follows from Corollary 4.2. Suppose then that k = m mod b and let p ≥ 5 be a
prime divisor of b and let q = 2 if r ≥ 1 or q = 3 otherwise. Now k 6= m mod pq

and k 6= 0 mod pq for otherwise q|(n,m, k) = 1 or p|(n,m, k) = 1 (respectively)
and so Lemma 4.5 implies Rpq(f) 6= ±1 so Rn(f) 6= ±1. 2
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