J. Group Theory **12** (2009), 139–149 DOI 10.1515/JGT.2008.066

The aspherical Cavicchioli–Hegenbarth–Repovš generalized Fibonacci groups

Gerald Williams

(Communicated by A. Yu. Olshanskii)

Abstract. The Cavicchioli–Hegenbarth–Repovš generalized Fibonacci groups are defined by the presentations $G_n(m,k) = \langle x_1, \ldots, x_n | x_i x_{i+m} = x_{i+k} \ (1 \le i \le n) \rangle$. These cyclically presented groups generalize Conway's Fibonacci groups and the Sieradski groups. Building on a theorem of Bardakov and Vesnin we classify the aspherical presentations $G_n(m,k)$. We determine when $G_n(m,k)$ has infinite abelianization and provide sufficient conditions for $G_n(m,k)$ to be perfect. We conjecture that these are also necessary conditions. Combined with our asphericity theorem, a proof of this conjecture would imply a classification of the finite Cavicchioli– Hegenbarth–Repovš groups.

1 Introduction

A group Γ is said to be *cyclically presented* if it has a presentation of the form

$$\langle x_1,\ldots,x_n | w,\eta(w),\ldots,\eta^{n-1}(w) \rangle$$

where w is a word in $X = \{x_1, \ldots, x_n\}$ and η is an automorphism of the free group F(X) whose action on the generators is given by $\eta(x_i) = x_{i+1}$ (subscripts taken modulo *n*). Cyclically presented groups have been studied both for algebraic and for geometric reasons.

If w takes the form $w = x_i x_{i+m} x_{i+k}^{-1}$ then we obtain a class of groups introduced in [4]. Specifically, the *Cavicchioli–Hegenbarth–Repovš generalized Fibonacci groups* are the groups defined by the presentations

$$G_n(m,k) = \langle x_1, \dots, x_n \, | \, x_i x_{i+m} = x_{i+k} \, (1 \le i \le n) \rangle \tag{1.1}$$

where all indices are taken modulo *n* and take their values from the set $\{1, ..., n\}$. We shall sometimes refer to $G_n(m, k)$ as groups, when we mean the groups defined by the presentations.

The groups $G_n(1,2)$ are the Fibonacci groups F(2,n) introduced by Conway [7] (see [18] for a comprehensive survey of such groups); the groups $G_n(2,1)$ are the

Sieradski groups S(n) considered in [15], [19]. The groups $G_n(t, 1)$ are the Gilbert-Howie groups H(n, t) studied in [11].

The asphericity of cyclically presented groups and generalizations of Fibonacci groups have been studied in [1], [6], [11], [14], [16]. In this paper we consider the asphericity of presentations $G_n(m,k)$. In [11], Gilbert and Howie give (with certain excluded cases) necessary and sufficient conditions for $G_n(t, 1) \cong H(n, t)$ to be aspherical. A presentation G = A * B is aspherical if and only if at least one of the presentations A, B is aspherical (from [1, Lemma 2.1]), and for this reason it is enough to consider only cases where $G_n(m,k)$ does not factorize as a free product. Moreover, since the asphericity of presentations $G_n(t, 1)$ was considered in [11], we also do not need to consider these cases.

The presentation $G_n(m,k)$ is said to be *irreducible* if n, m, k satisfy

$$0 < m < k < n, \quad (n, m, k) = 1, \tag{1.2}$$

and is strongly irreducible if it is irreducible and additionally

$$(n,k) > 1, \quad (n,k-m) > 1.$$
 (1.3)

If $G_n(m,k)$ is not irreducible then it is either trivial, cyclic, or factorizable into a free product by [1, Lemma 1.2]. If $G_n(m,k)$ is irreducible but not strongly irreducible, then it is isomorphic to some Gilbert–Howie group H(n,t) by [1, Lemma 1.3]. (We remark that Edjvet [8] defines irreducibility for an arbitrary cyclically presented group. According to his definition, $G_n(m,k)$ is irreducible if and only if (n,m,k) = 1, and so this is a slightly weaker property than the one used here.)

In [1], Bardakov and Vesnin give sufficient conditions for a strongly irreducible presentation $G_n(m, k)$ to be aspherical. In Section 2 we build on this to determine precisely when such presentations are aspherical (Theorem 2). In Section 3 we determine when $G_n(m, k)$ has infinite abelianization (Theorem 4) and provide sufficient conditions for $G_n(m, k)$ to be perfect (Lemma 5). We conjecture (Conjecture 6) that these conditions are also necessary; using MAGMA we have verified this for $n \leq 200$. Bardakov and Vesnin [1] have asked for a classification of the finite Cavicchioli–Hegenbarth–Repovš groups. We address this question in Section 4 and show that the classification of the finite, strongly irreducible groups $G_n(m, k)$ would follow from a proof of Conjecture 6; therefore, we have obtained such a classification for $n \leq 200$.

Many of the results in this paper were formulated after performing computational experiments in MAGMA [2].

2 Asphericity

A presentation *P* is said to be *aspherical* if $\pi_2(P) = 0$; the group defined by an aspherical presentation is torsion-free, and hence either trivial or infinite.

For $(n, t) \notin \{(8, 3), (9, 4), (9, 7)\}$ Gilbert and Howie have determined precisely when the presentation H(n, t) is aspherical ([11, Theorem 3.2]). If (n, t) = (8, 3) then a cal-

culation in MAGMA shows that H(n, t) defines a finite group of order 295245, and hence H(8, 3) is not aspherical.

We shall consider when a strongly irreducible presentation $G_n(m,k)$ is aspherical. Bardakov and Vesnin [1] have provided the following sufficient condition.

Theorem 1 ([1]). Let $G_n(m,k)$ be strongly irreducible. Then $G_n(m,k)$ is aspherical if none of the following conditions are satisfied:

- (1) there exists an integer $l \ge 1$ such that n divides l(2k m) and also 1/l + (n,k)/n + (n,k-m)/n > 1;
- (2) n = k + m;
- (3) n = 2(k m) and $(n, k) \le n/2$;
- (4) n = 2k and (n, k m) < n/2.

We build on this result to provide necessary and sufficient conditions for $G_n(m,k)$ to be aspherical.

Theorem 2. Suppose that $G_n(m,k)$ is strongly irreducible. If (m,k) = 1 and either n = 2k or n = 2(k - m) then $G_n(m,k)$ is not aspherical. In all other cases $G_n(m,k)$ is aspherical.

Before embarking on the proof, we first identify classes of finite cyclic groups among the groups $G_n(m,k)$.

Lemma 3. Suppose that (m,k) = 1 and either (i) n = 2k, or (ii) n = 2(k-m). Then $G_n(m,k) \cong \mathbb{Z}_s$ where $s = 2^{n/2} - (-1)^{m+n/2}$.

Proof. Consider first case (i). Let P be the presentation of $G_n(m,k)$ defined as in (1.1). That is, P has generators x_1, \ldots, x_{2k} and relations

$$x_i x_{i+m} = x_{i+k} \quad (1 \le i \le 2k) \tag{2.1}$$

(with subscripts taken modulo 2k). Setting i = q - m - k in (2.1) we obtain $x_{q-m} = x_{q-m-k}x_{q-k}$; on the other hand, setting i = q - m gives $x_{q-m} = x_{q-m+k}x_q^{-1}$. Hence $x_{q-k} = x_q^{-1}$ and so we may add the relations

$$x_{i-k} = x_i^{-1} \quad (1 \le i \le 2k) \tag{2.2}$$

to P without changing the group that it defines. Relations (2.1) and (2.2) imply $x_i x_{i+m} = x_i^{-1}$ and so we may add relations

$$x_{i+m} = x_i^{-2} \quad (1 \le i \le 2k).$$
 (2.3)

The relations (2.1) are a consequence of (2.2) and (2.3) and so can be removed.

Suppose that *m* is even; then *k* is odd. By (2.2) we may remove all generators x_i where *i* is odd (and hence also the relations (2.2)). Thus *P* has generators x_{2i} $(1 \le j \le m)$ and relations

$$x_{2j+m} = x_{2j}^{-2} \quad (1 \le j \le k),$$
 (2.4)

(from (2.3)). Since (m, k) = 1 and *m* is even, (m/2, k) = 1, and so for each *j* with $1 \le j \le k$ there exists a unique *J* with $1 \le J \le k$ such that $J(m/2) = j \mod k$ and hence $Jm = 2j \mod 2k$. Thus we can write the generators of *P* as x_{Jm} $(1 \le J \le k)$ and the relations (2.4) as

$$x_{(J+1)m} = x_{Jm}^{-2} \quad (1 \le J \le k).$$
 (2.5)

Then for each J we have

$$x_{Jm} = x_{(J-1)m}^{-2} = x_{(J-2)m}^{(-2)^2} = \dots = x_m^{(-2)^{J-1}} = x_{km}^{(-2)^J}$$

and so we may add relations

$$x_{Jm} = x_{km}^{(-2)^J} \quad (1 \le J \le k).$$
 (2.6)

The relations (2.5) are a consequence of (2.6) and so we may remove them. Using (2.6) we may remove generators x_{Jm} for $1 \le J \le k - 1$ together with the corresponding relations, leaving the presentation

$$P = \langle x_{km} | x_{km} = x_{km}^{(-2)^{k}} \rangle = \langle x_{km} | x_{km}^{(-2)^{k}-1} = 1 \rangle,$$

and so (since *m* is even and *k* is odd) $G_{2k}(m,k) \cong \mathbb{Z}_s$, as required.

Suppose then that *m* is odd. Then (m, 2k) = 1 and so for each *i* with $1 \le i \le 2k$ there exists a unique *J* with $1 \le J \le 2k$ such that i = Jm. Thus the generators of *P* can be written as x_{Jm} $(1 \le J \le 2k)$, the relations (2.2) as

$$x_{(J+k)m} = x_{Jm}^{-1} \quad (1 \le J \le 2k),$$
 (2.7)

and (2.3) as

$$x_{(J+1)m} = x_{Jm}^{-2} \quad (1 \le J \le k-1),$$
 (2.8)

$$x_{(k+1)m} = x_{km}^{-2}, (2.9)$$

$$x_{(J+k+1)m} = x_{(J+k)m}^{-2} \quad (1 \le J \le k-1),$$
(2.10)

$$x_m = x_{2km}^{-2}.$$
 (2.11)

Using (2.7) we can remove generators $x_{(J+k)m}$ $(1 \le J \le k)$ and the relations (2.7). Since $x_{(J+k)m} = x_{Jm}^{-1}$ for each *J* the relations (2.10) become equivalent to (2.8) and so can be removed; relations (2.9) and (2.11) both become

$$x_m = x_{km}^2. (2.12)$$

Thus *P* has generators x_{Jm} $(1 \le J \le k)$ and relations (2.8) and (2.12). For each *J* we therefore obtain

$$x_{Jm} = x_{(J-1)m}^{-2} = x_{(J-2)m}^{(-2)^2} = \dots = x_{(J-(J-1))m}^{(-2)^{J-1}} = (x_{km}^2)^{(-2)^{J-1}}.$$

We can therefore add the relations

$$x_{Jm} = x_{km}^{-(-2)^J} \quad (1 \le J \le k).$$
 (2.13)

The relations (2.8) are a consequence of these, so we may remove them. Using (2.13) we may remove generators x_{Jm} for $1 \le J \le k-1$ together with the corresponding relations, leaving the presentation

$$P = \langle x_{km} \mid x_{km} = x_{km}^{-(-2)^k} \rangle.$$

Since *m* is odd we have $G_{2k}(m,k) \cong \mathbb{Z}_s$, as required.

Consider then case (ii). We shall use [1, Theorem 1.1] to show that if a number *K* is coprime to *m* then the group $G_{2K}(m, m + K)$ is isomorphic to $G_{2K}(m, K)$. To this end, let K' = m + K, m' = m, r = (2K, K - m). Then r = (m, K) = 1, and so there exists *J* with $1 \le J \le 2K$ such that $J(K - m) = 1 \mod 2K$. Let i = 1, $j = -mJ \mod 2K$; then $1 \le i \le r$, $1 \le j \le 2K/r$, and

$$i + j(K - m) = 1 - m \mod 2K$$
, $i + jK' = 1 + m' \mod 2K$.

By [1, Theorem 1.1] we have $G_{2K}(m, m+K) \cong G_{2K}(m, K)$ as claimed; since also (m, K) = 1 part (i) of this lemma shows that this is isomorphic to \mathbb{Z}_s where $s = 2^K - (-1)^{K+m}$. Now if n = 2(k-m), then setting K = k - m gives that $G_n(m,k) = G_{2K}(m, m+K) \cong \mathbb{Z}_s$ where $s = 2^{n/2} - (-1)^{m+n/2}$, as required. \square

Proof of Theorem 2. If (m, k) = 1 and either n = 2k or n = 2(k - m) then by Lemma 3 the group $G_n(m, k)$ is finite and non-trivial, and so is not aspherical. Suppose then that neither of these possibilities occurs. We shall show that none of the conditions (1), (2), (3), (4) of Theorem 1 holds, and hence $G_n(m, k)$ is aspherical.

Condition (1). If n/(n,k) = 2 then (since 0 < k < n) we have n = 2k, and so by our assumption, (m,k) > 1. On the other hand, (n,m,k) = (2k,m,k) = (m,k) > 1, a contradiction. If n/(n,k-m) = 2 then n = 2(k-m) and so by our assumption, (m,k) > 1. On the other hand, (n,m,k) = (2(k-m),m,k) = (m,k) > 1, a contradiction.

Thus we may assume that $n/(n,k), n/(n,k-m) \ge 3$, and so the inequality 1/l + (n,k)/n + (n,k-m)/n > 1 implies that either (i) l = 1 or (ii) l = 2 and n/(n,k) = p, n/(n,k-m) = q where $\{p,q\} = \{3,3\}, \{3,4\}, \{3,5\}.$

G. Williams

Suppose that l = 1. Then *n* must divide (2k - m). But k < n implies that 2k - m < 2n and hence n = 2k - m. Then 1 = (n, m, k) = (2k - m, m, k) = (m, k) and 1 < (n, k) = (2k - m, k) = (m, k), a contradiction.

Suppose then that l = 2. Then n/(n,k) = p, n/(n,k-m) = q imply $\alpha n = pk$, $\beta n = q(k-m)$ for some α, β with $(\alpha, p) = 1$, $(\beta, q) = 1$. Thus $\beta pk = \alpha q(k-m)$ and hence $\alpha qm = (\alpha q - \beta p)k$. But m > 0 and k > 0, so that $\alpha q > \beta p$.

If p = q = 3 then $\alpha, \beta \in \{1, 2\}$ and $3\alpha > 3\beta$ so $\alpha = 2$, $\beta = 1$. That is, 2n = 3kand n = 3(k - m) and so k = 2m, n = 3m. Then (n, m, k) = m = (n, k - m). But (n, m, k) = 1, (n, k - m) > 1, and we have a contradiction. If p = 3 and q = 4 then $\alpha \in \{1, 2\}$, $\beta \in \{1, 3\}$ and $4\alpha > 3\beta$, so that $(\alpha, \beta) = (1, 1)$ or (2, 1). If $(\alpha, \beta) = (1, 1)$ then n = 3k, n = 4(k - m), so that k = 4m, n = 12m, and then (n, k, m) = 1 implies m = 1, and so k = 4, n = 12. But then $n \neq l(2k - m)$, and so condition (1) does not hold. If $(\alpha, \beta) = (2, 1)$ then 2n = 3k, n = 4(k - m). Then 5k = 8m so 5|m; let m = 5M, say. Then k = 8M, n = 12M, and (n, m, k) = 1 implies M = 1. Hence m = 5, k = 8, n = 12 and so $n \neq l(2k - m)$.

Similar arguments show that if (p,q) = (4,3) then the tuple (n,m,k) is (12,5,9) or (12,1,9); if (p,q) = (3,5) then (n,m,k) is one of (15,2,5), (15,7,10), (15,4,10) or (15,1,10); if (p,q) = (5,3) then (n,m,k) is one of (15,1,6), (15,4,9), (15,7,12) or (15,2,12). In each case $n \not\downarrow l(2k-m)$.

Condition (2). Strong irreducibility implies

$$(n,m,k) = 1, (n,k) > 1.$$

But n = k + m implies (n, m, k) = (n, k), a contradiction.

Condition (3). Under this condition n = 2(k - m), and so by our initial assumption (m,k) > 1. Then (n,m,k) = (2(k - m),m,k) = (m,k) > 1; but (n,m,k) = 1 and so we have a contradiction.

Condition (4). Under this condition n = 2k, and so by our initial assumption (m,k) > 1. Then (n,m,k) = (2k,m,k) = (m,k) > 1, but (n,m,k) = 1 and so we have a contradiction. \Box

3 Abelianizations

In this section we consider the abelianizations of groups $G_n(m,k)$. Using [13, Lemma 1.1] we have the following criterion that determines when $G_n(m,k)$ has infinite abelianization or when $G_n(m,k)$ is perfect. Let $f(t) = t^m - t^k + 1$ and

$$R_n(f) = \prod_{\theta^n = 1} f(\theta).$$

Then $G_n(m,k)^{ab}$ is infinite if and only if $R_n(f) = 0$, and $G_n(m,k)$ is perfect if and only if $R_n(f) = \pm 1$.

Theorem 4. Suppose that (n, m, k) = 1. Then $G_n(m, k)$ has infinite abelianization if and only if $n = 0 \mod 6$ and $(m \mod 6, k \mod 6) = (2, 1)$ or (4, 5).

Proof. Observe that $R_n(f) = 0$ if and only if $f(\lambda) = 0$ for some $\lambda^n = 1$.

Suppose first that $n = 0 \mod 6$ and $(m \mod 6, k \mod 6) = (2, 1)$ or (4, 5), and that $(n, m, k) \ge 1$. Let $\lambda^3 = -1$, $\lambda \ne -1$; then $\lambda^6 = 1$, and therefore $\lambda^n = 1$. If $m = 2 \mod 6$ and $k = 1 \mod 6$ then $f(\lambda) = \lambda^2 - \lambda + 1$. If $m = 4 \mod 6$ and $k = 5 \mod 6$ then $f(\lambda) = \lambda^4 - \lambda^5 + 1 = -\lambda + \lambda^2 + 1$. Thus $(\lambda + 1)f(\lambda) = \lambda^3 + 1 = 0$ and since $(\lambda + 1) \ne 0$ we have $f(\lambda) = 0$.

For the converse, suppose that (n, m, k) = 1 and that $f(\lambda) = 0$ for some $\lambda^n = 1$. Thus $|\lambda| = 1$ so $\overline{\lambda} = \lambda^{-1}$ and then $f(\lambda) = 0$, $f(\lambda^{-1}) = f(\overline{\lambda}) = 0$ imply

$$\lambda^m = \lambda^k - 1, \tag{3.1}$$

$$\lambda^{-m} = \lambda^{-k} - 1. \tag{3.2}$$

Hence $1 = \lambda^m \cdot \lambda^{-m} = 2 - \lambda^k - \lambda^{-k}$, and so

$$\lambda^{2k} - \lambda^k + 1 = 0. (3.3)$$

Thus $\lambda^k = (1 \pm i\sqrt{3})/2$, and so λ is a (6k)th root of unity. Since $\lambda^n = 1$, 6k divides n and so, in particular,

$$n = 0 \mod 6. \tag{3.4}$$

By (3.1) and (3.3) we have $\lambda^m = \lambda^{2k}$, so that $\lambda^{m-2k} = 1$ and therefore

$$m - 2k = 0 \mod 6.$$
 (3.5)

Since (n, m, k) = 1, it follows from (3.4) and (3.5) that $(m \mod 6, k \mod 6) = (2, 1)$ or (4, 5), as required. \Box

We remark that necessary and sufficient conditions for $G_n(m,k)$ to have infinite abelianization were incorrectly asserted in [17, Example 3(3)].

We now consider when $G_n(m,k)$ is perfect. By [1, Lemma 1.1], if k = 0 or $m \mod n$ then $G_n(m,k)$ is trivial, and hence perfect. Here is another sufficient condition:

Lemma 5. If $m = 2k \mod n$ and (n/(n, m, k), 6) = 1 then $G_n(m, k)$ is perfect.

Proof. Suppose first that g(t) is any polynomial, and d = (k, n). Then

$$\prod_{\theta^n=1} g(\theta^k) = \prod_{q=0}^{n-1} g(e^{2\pi i qk/n}) = \prod_{q=0}^{n-1} g(e^{2\pi i q(k/d)/(n/d)})$$
$$= \left(\prod_{q=0}^{n/d-1} g(e^{2\pi i q(k/d)/(n/d)})\right)^d.$$

Since (k/d, n/d) = 1, for each $q \in \{0, ..., (n/d - 1)\}$ there exists a unique $Q \in \{0, ..., (n/d - 1)\}$ such that $q(k/d) = Q \mod n/d$. Hence

$$\prod_{q=0}^{n/d-1} g(e^{2\pi i q(k/d)/(n/d)}) = \prod_{Q=0}^{n/d-1} g(e^{2\pi i Q/(n/d)}) = \prod_{\phi^{n/d}=1} g(\phi)$$

and so

$$\prod_{\boldsymbol{\theta}^n=1}g(\boldsymbol{\theta}^k) = \bigg(\prod_{\boldsymbol{\phi}^{n/(n,k)}=1}g(\boldsymbol{\phi})\bigg)^{(n,k)}.$$

If $m = 2k \mod n$ then setting $g(t) = t^2 - t + 1$ we have

$$R_n(f) = \prod_{\theta^n = 1} g(\theta^k) = \left(\prod_{\phi^{n/(n,k)} = 1} g(\phi)\right)^{(n,k)}.$$

Now

$$\prod_{\phi^{n/(n,k)}=1} g(\phi) = \prod_{\phi^{n/(n,k)}=1} (\phi - e^{2\pi i/6}) \prod_{\phi^{n/(n,k)}=1} (\phi - e^{-2\pi i/6})$$
$$= ((e^{2\pi i/6})^{n/(n,k)} - 1)((e^{-2\pi i/6})^{n/(n,k)} - 1)$$
$$= 2 - 2\cos\left(\frac{2\pi n/(n,k)}{6}\right)$$
$$= 1$$

since (n/(n,k), 6) = (n/(n,m,k), 6) = 1. Hence $R_n(f) = 1$ and $G_n(m,k)$ is perfect, as required.

Since this paper was written a complete description of the abelianization of $G_n(2k, k)$ has been provided in [3, Lemma 7]. We conjecture that the sufficient conditions that we have given for $G_n(m, k)$ to be perfect are also necessary; we have verified this (using MAGMA) for $n \leq 200$.

Conjecture 6. If $G_n(m,k)$ is perfect then either $m = 2k \mod n$ and (n/(n,m,k), 6) = 1 or k = 0 or $m \mod n$.

Lemma 5 and Conjecture 6 form a natural generalization of [13, Theorem 2(ii), (iii)] (see also [11, Theorem 2.3(b)]). It seems likely that Odoni's methods [13] can be applied to prove Conjecture 6 in the general case.

4 Finiteness

In [1, Question 1], Bardakov and Vesnin posed the following question:

Question. For which values of the defining parameters n, m, k subject to the natural restrictions (1.2) are groups $G_n(m,k)$ finite?

If (n,k) = 1 or (n,m-k) = 1 then by [1, Lemma 1.3] the group $G_n(m,k)$ is isomorphic to some Gilbert–Howie group H(n, t). More precisely, we have

Lemma 7. (i) If (n, k) = 1 then

$$G_n(m,k) \cong G_n(t,1) = H(n,t)$$

where $tk = m \mod n$. (ii) If (n, k - m) = 1 then

$$G_n(m,k) \cong G_n(t,1) = H(t,1)$$

where $t(k - m) = n - m \mod n$.

Proof. (i) See the proof of [1, Lemma 1.3].(ii) By [1, Lemma 1.1(3)] we have

$$G_n(m,k) \cong G_n(n-m,n-m+k) = G_n(K-k,K)$$

where K = n + (k - m). Then (n, K) = (n, k - m) = 1, and so by (i) we have $G_n(K - k, K) \cong G_n(t, 1)$, where $tK = K - k \mod n$, i.e. where

 $t(k-m) = n - m \bmod n,$

as required. \Box

Now the finite Gilbert–Howie groups H(n, t) have almost been classified. In [11] the following theorem is proved:

Theorem 8 ([11]). Suppose that $(n, t) \neq (8, 3), (9, 3), (9, 4), (9, 6), (9, 7)$. Then H(n, t) is finite if and only if t = 0, 1 or (n, t) = (2k, k + 1) where $k \ge 1$, or $(n, t) \in \{(3, 2), (4, 2), (5, 2), (5, 3), (5, 4), (6, 3), (7, 4), (7, 6)\}$.

As mentioned in Section 2, a calculation in MAGMA shows that H(8,3) is finite of order 295245. Cavicchioli, O'Brien and Spaggiari [3, Lemma 16] have recently proved that the (isomorphic) groups H(9,3) and H(9,6) are infinite. It remains unknown whether H(9,4) and H(9,7) define finite or infinite groups.

Suppose that (n,k) > 1 and (n,m-k) > 1, i.e. $G_n(m,k)$ is strongly irreducible.

G. Williams

Since any non-trivial group with an aspherical presentation is infinite, the following is an immediate corollary of Theorem 2 and Lemma 3.

Corollary 9. Let $G = G_n(m,k)$ be strongly irreducible and assume that $G \neq 1$. Then G is finite if and only if (m,k) = 1 and n = 2k or n = 2(k - m), in which case $G \cong \mathbb{Z}_s$ where $s = 2^{n/2} - (-1)^{m+n/2}$.

Thus, to give a complete classification of the finite, strongly irreducible groups $G_n(m,k)$ it suffices to prove that every such (strongly irreducible) group is non-trivial. The problem as to which cyclically presented groups are trivial has been of interest recently; see for example [8], [9], [10], [12].

If Conjecture 6 holds, it follows that every strongly irreducible group $G_n(m,k)$ is not perfect, and hence non-trivial. To see this, observe that Conjecture 6 implies that if $G_n(m,k)$ is perfect then $m = 2k \mod n$ and so (n,m,k) = (n,k). But if $G_n(m,k)$ is strongly irreducible then (n,m,k) = 1, (n,k) > 1, a contradiction. Our MAGMA calculations supporting Conjecture 6 therefore imply a classification of the finite, strongly irreducible groups $G_n(m,k)$ for $n \leq 200$.

Acknowledgement. Since this paper was originally written Eamonn O'Brien has pointed out that Theorem 4 is implied by an earlier result of Cavicchioli, Repovš and Spaggiari ([5, Corollary 5.8]). The author would like to thank Professor O'Brien for this and other helpful comments.

References

- V. G. Bardakov and A. Yu. Vesnin. A generalization of Fibonacci groups. Algebra and Logic 42 (2003), 131–160.
- W. Bosma, J. Cannon and C. Playoust. The Magma algebra system I: The user language. J. Symbolic Comput. 24 (1997), 235–265.
- [3] A. Cavicchioli, E. A. O'Brien and F. Spaggiari. On some questions about a family of cyclically presented groups. (Preprint, 2007.)
- [4] A. Cavicchioli, F. Hegenbarth and D. Repovš. On manifold spines and cyclic presentations of groups. In *Knot theory*, Banach Centre Publ. 42 (Polish Academy of Sciences, 1998), pp. 49–56.
- [5] A. Cavicchioli, D. Repovš and F. Spaggiari. Topological properties of cyclically presented groups. J. Knot Theory Ramifications 12 (2003), 243–268.
- [6] C. P. Chalk. Fibonacci groups with aspherical presentations. *Comm. Algebra* **26** (1998), 1511–1546.
- [7] J. H. Conway. Advanced problem 5327. Amer. Math. Monthly 72 (1965), 915.
- [8] M. Edjvet. On irreducible cyclic presentations. J. Group Theory 6 (2003), 261–270.
- [9] M. Edjvet and P. Hammond. On a class of cyclically presented groups. *Internat. J. Algebra Comput.* 14 (2004), 213–240.
- [10] M. Edjvet, P. Hammond and N. Thomas. Cyclic presentations of the trivial group. *Experiment. Math.* 10 (2001), 303–306.
- [11] N. D. Gilbert and J. Howie. LOG groups and cyclically presented groups. J. Algebra 174 (1995), 118–131.

- [12] G. Havas and E. F. Robertson. Irreducible cyclic presentations of the trivial group. Experiment. Math. 12 (2003), 487–490.
- [13] R. W. K. Odoni. Some Diophantine problems arising from the theory of cyclicallypresented groups. *Glasgow Math. J.* 41 (1999), 157–165.
- [14] M. I. Prishchepov. Asphericity, atoricity and symmetrically presented groups. Comm. Algebra 23 (1995), 5095–5117.
- [15] A. J. Sieradski. Combinatorial squashings, 3-manifolds, and the third homology of groups. *Invent. Math.* 84 (1986), 121–139.
- [16] F. Spaggiari. Asphericity of symmetric presentations. Pub. Mat. 50 (2006), 133-147.
- [17] A. Szczepański and A. Vesnin. HNN extension of cyclically presented groups. J. Knot Theory Ramifications 10 (2001), 1269–1279.
- [18] R. M. Thomas. The Fibonacci groups revisited. In *Groups*, St Andrews 1989, vol. 2, London Math. Soc. Lecture Note Ser. 160 (Cambridge University Press, 1991), pp. 445–454.
- [19] R. M. Thomas. On a question of Kim concerning certain group presentations. Bull. Korean Math. Soc. 28 (1991), 219–224.

Received 3 November, 2006

Gerald Williams, Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K. E-mail: gwill@essex.ac.uk