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The aspherical Cavicchioli-Hegenbarth—Repovs generalized
Fibonacci groups

Gerald Williams
(Communicated by A. Yu. Olshanskii)

Abstract. The Cavicchioli-Hegenbarth-Repovs generalized Fibonacci groups are defined
by the presentations G, (m, k) = {x1,..., %, | XiXitm = Xtk (1 <i<n)). These cyclically pre-
sented groups generalize Conway’s Fibonacci groups and the Sieradski groups. Building on a
theorem of Bardakov and Vesnin we classify the aspherical presentations G,(m, k). We deter-
mine when G, (m, k) has infinite abelianization and provide sufficient conditions for G, (m, k) to
be perfect. We conjecture that these are also necessary conditions. Combined with our aspher-
icity theorem, a proof of this conjecture would imply a classification of the finite Cavicchioli—
Hegenbarth—Repovs groups.

1 Introduction

A group T is said to be cyclically presented if it has a presentation of the form

XNy ey X | Wymp(w), .. .,n”‘l(w)>

where w is a word in X = {xy,...,x,} and # is an automorphism of the free group
F(X) whose action on the generators is given by #n(x;) = x;41 (subscripts taken
modulo n). Cyclically presented groups have been studied both for algebraic and for
geometric reasons.

If w takes the form w = x,-x,-+mxi‘+'k then we obtain a class of groups introduced in
[4]. Specifically, the Cavicchioli— Hegenbarth—Repovs generalized Fibonacci groups are
the groups defined by the presentations

Gn(mvk) = <X1, sy Xn |xixi+m = Xitk (1 <i< I’l)> (11)

where all indices are taken modulo 7 and take their values from the set {1,...,n}. We
shall sometimes refer to G, (m, k) as groups, when we mean the groups defined by the
presentations.

The groups G,(1,2) are the Fibonacci groups F(2,n) introduced by Conway [7]
(see [18] for a comprehensive survey of such groups); the groups G,(2,1) are the

Brought to you by | Periodicals Section, Albert Sloman Libr. (Periodicals Section, Albert Sloman Libr.)
Authenticated | 172.16.1.226
Download Date | 1/4/12 1:11 PM



140 G. Williams

Sieradski groups S(n) considered in [15], [19]. The groups G,(z,1) are the Gilbert—
Howie groups H (n, ) studied in [11].

The asphericity of cyclically presented groups and generalizations of Fibonacci
groups have been studied in [1], [6], [11], [14], [16]. In this paper we consider the as-
phericity of presentations G,(m, k). In [11], Gilbert and Howie give (with certain
excluded cases) necessary and sufficient conditions for G,(z,1) = H(n,t) to be as-
pherical. A presentation G = A4 x B is aspherical if and only if at least one of the pre-
sentations A, B is aspherical (from [1, Lemma 2.1]), and for this reason it is enough to
consider only cases where G,(m, k) does not factorize as a free product. Moreover,
since the asphericity of presentations G,(¢,1) was considered in [11], we also do not
need to consider these cases.

The presentation G, (m, k) is said to be irreducible if n, m, k satisfy

O<m<k<n, (nmk)=1, (1.2)
and is strongly irreducible if it is irreducible and additionally
(n,k)>1, (nk—m)>1. (1.3)

If G,(m, k) is not irreducible then it is either trivial, cyclic, or factorizable into a free
product by [1, Lemma 1.2]. If G,(m,k) is irreducible but not strongly irreducible,
then it is isomorphic to some Gilbert—Howie group H(n,t) by [1, Lemma 1.3]. (We
remark that Edjvet [8] defines irreducibility for an arbitrary cyclically presented
group. According to his definition, G, (m, k) is irreducible if and only if (rn,m, k) = 1,
and so this is a slightly weaker property than the one used here.)

In [1], Bardakov and Vesnin give sufficient conditions for a strongly irreducible
presentation G,(m, k) to be aspherical. In Section 2 we build on this to determine pre-
cisely when such presentations are aspherical (Theorem 2). In Section 3 we determine
when G, (m, k) has infinite abelianization (Theorem 4) and provide sufficient condi-
tions for G,(m, k) to be perfect (Lemma 5). We conjecture (Conjecture 6) that these
conditions are also necessary; using MAGMA we have verified this for n < 200. Bar-
dakov and Vesnin [1] have asked for a classification of the finite Cavicchioli—
Hegenbarth—Repovs groups. We address this question in Section 4 and show that
the classification of the finite, strongly irreducible groups G,(m,k) would follow
from a proof of Conjecture 6; therefore, we have obtained such a classification for
n < 200.

Many of the results in this paper were formulated after performing computational
experiments in MAGMA [2].

2 Asphericity

A presentation P is said to be aspherical if 7, (P) = 0; the group defined by an aspher-
ical presentation is torsion-free, and hence either trivial or infinite.

For (n,1) ¢ {(8,3),(9,4), (9,7)} Gilbert and Howie have determined precisely when
the presentation H(n,1) is aspherical ([11, Theorem 3.2]). If (n, ) = (8,3) then a cal-
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Generalized Fibonacci groups 141

culation in MAGMA shows that H(n,t) defines a finite group of order 295245, and
hence H(8,3) is not aspherical.

We shall consider when a strongly irreducible presentation G,(m, k) is aspherical.
Bardakov and Vesnin 1] have provided the following sufficient condition.

Theorem 1 ([1]). Let G,(m, k) be strongly irreducible. Then G,(m,k) is aspherical if
none of the following conditions are satisfied:

(1) there exists an integer 1>=1 such that n divides [(2k —m) and also
1/l + (nk)/n+ (n,k —m)/n> 1,

2) n=k+m;
(3) n=2(k —m) and (n,k) < n/2;
4) n =2k and (n,k —m) < n/2.

We build on this result to provide necessary and sufficient conditions for G, (m, k)
to be aspherical.

Theorem 2. Suppose that G,(m,k) is strongly irreducible. If (m,k) =1 and either
n =2k or n =2(k —m) then G,(m,k) is not aspherical. In all other cases G,(m,k) is
aspherical.

Before embarking on the proof, we first identify classes of finite cyclic groups
among the groups G,(m, k).

Lemma 3. Suppose that (m,k) =1 and either (i) n =2k, or (ii) n = 2(k — m). Then
G,(m, k) = Z; where s = 21> — (—1)""/2,

Proof. Consider first case (i). Let P be the presentation of G,(m, k) defined as in (1.1).
That is, P has generators xp, ..., xy; and relations

XiXi+m = Xit+k (1 <i< 2k) (21)
(with subscripts taken modulo 2k). Setting i=¢g—m—k in (2.1) we obtain
Xg—m = Xq—m—kXq—k; on the other hand, setting i = g —m gives x,_,, = xq,m%x;'.
Hence x,_; = x;l and so we may add the relations

ik =x" (1<i<2k) (2.2)

to P without changing the group that it defines. Relations (2.1) and (2.2) imply
XiXipm = x{l and so we may add relations

Xim = X2 (1 <i<2k). (2.3)

The relations (2.1) are a consequence of (2.2) and (2.3) and so can be removed.
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142 G. Williams

Suppose that m is even; then k is odd. By (2.2) we may remove all generators
x; where i is odd (and hence also the relations (2.2)). Thus P has generators
X7 (1 < j <m) and relations

X2j4m = xz_jz (1 < ] < k)a (24)

(from (2.3)). Since (m,k) =1 and m is even, (m/2,k) =1, and so for each j with
1 < j < k there exists a unique J with 1 < J < k such that J(m/2) = j mod k and
hence Jm = 2j mod 2k. Thus we can write the generators of P as xy, (1 <J <k)
and the relations (2.4) as

Xgstm = Xpm (1< T <k). (2.5)
Then for each J we have
- -2)? A 7
Xam = x(JZ*Um = xélf)Z)m == x;n 27 = X]((m :

and so we may add relations
X =P (1T <kh). (2.6)

The relations (2.5) are a consequence of (2.6) and so we may remove them. Using
(2.6) we may remove generators X, for 1 < J < k — 1 together with the correspond-
ing relations, leaving the presentation
P = Gt | Xam = X > = ot | 5, =1,

and so (since m is even and k is odd) Gk (m, k) = Z,, as required.

Suppose then that m is odd. Then (m,2k) = 1 and so for each i/ with 1 <i <2k
there exists a unique J with 1 < J < 2k such that i = Jm. Thus the generators of P
can be written as x,,, (1 < J < 2k), the relations (2.2) as

Xphm = Xp (1 <J < 2K), (2.7)
and (2.3) as
Xrim =X (1<T <k 1), (28)
Xkt 1)m = X (2.9)
X(tkitm = Xjrmm (1 <JT <k —1), (2.10)
X = X (2.11)

Using (2.7) we can remove generators X(s4x)m (I <J < k) and the relations (2.7).
Since X7 k)ym = X, for each J the relations (2.10) become equivalent to (2.8) and so
can be removed; relations (2.9) and (2.11) both become

Xon = X . (2.12)

m
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Generalized Fibonacci groups 143

Thus P has generators x,,, (1 <J < k) and relations (2.8) and (2.12). For each J we
therefore obtain

B _9)2 _p)/-1 _o)/t
Xim = x(Jz—l)m = XEJ)Z)m == xgjf)ufl))m = (xim)( T
We can therefore add the relations
_ (=
Xgm = Xy, (I <J<k). (2.13)

The relations (2.8) are a consequence of these, so we may remove them. Using (2.13)
we may remove generators X, for 1 <J < k — 1 together with the corresponding
relations, leaving the presentation

ok
P = {Xpm |ka = Xk,,g ? >

Since m is odd we have Gy (m, k) =~ Zj, as required.

Consider then case (ii). We shall use [1, Theorem 1.1] to show that if a number KX is
coprime to m then the group Gax (m, m + K) is isomorphic to Gy (m, K). To this end,
let K'=m+K, m"=m, r=(2K,K —m). Then r = (m,K) = 1, and so there exists
J with 1 < J < 2K such that J(K —m) =1mod2K. Let i =1, j = —mJ mod 2K;
then 1 <i<r,1<,j<2K/r,and

i+ j(K—m)=1-—mmod2K, i+ jK'=1+m' mod2K.

By [1, Theorem 1.1] we have Gogx(m,m + K) = Grx(m, K) as claimed; since also
(m,K) =1 part (i) of this lemma shows that this is isomorphic to Z; where
s=2K ()X Now if n=2(k—m), then setting K =k —m gives that
Gu(m, k) = Gag(m,m + K) = Z, where s = 2"2 — (—1)"""? as required. []

Proof of Theorem 2. If (m, k) = 1 and either n = 2k or n = 2(k — m) then by Lemma
3 the group G, (m, k) is finite and non-trivial, and so is not aspherical. Suppose then
that neither of these possibilities occurs. We shall show that none of the conditions
(1), (2), (3), (4) of Theorem 1 holds, and hence G,(m, k) is aspherical.

Condition (1). If n/(n,k) = 2 then (since 0 < k < n) we have n = 2k, and so by our
assumption, (m,k) > 1. On the other hand, (n,m, k)= 2k,m,k) = (m,k)>1, a
contradiction. If n/(n,k —m) =2 then n=2(k —m) and so by our assumption,
(m, k) > 1. On the other hand, (n,m, k) = (2(k — m),m, k) = (m,k) > 1, a contradic-
tion.

Thus we may assume that n/(n,k),n/(n,k —m) >3, and so the inequality
1/14+ (n,k)/n+ (n,k —m)/n>1 implies that either (i) /=1 or (i) /=2 and
n/(n k) = p, n/(n,k —m) = q where {p,q} = {3,3},{3,4},{3,5}.
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144 G. Williams

Suppose that /=1. Then n must divide (2k —m). But k <n implies that
2k —m < 2n and hence n =2k —m. Then | = (n,m,k) = 2k —m,m, k) = (m, k)
and 1 < (n,k) = (2k — m, k) = (m, k), a contradiction.

Suppose then that /=2. Then n/(n,k) = p, n/(n,k —m) = q imply on = pk,
pn = q(k —m) for some o, f with («, p) =1, (B,q) = 1. Thus fipk = ag(k — m) and
hence agm = (0g — fp)k. But m > 0 and k > 0, so that ag > fip.

If p=¢g=3 then «,fe{1,2} and 300 >3f so a =2, f=1. That is, 2n =3k
and n=3(k —m) and so kK =2m, n=3m. Then (n,m, k) =m= (n,k —m). But
(n,m,k) =1, (n,k —m) > 1, and we have a contradiction. If p =3 and ¢ = 4 then
oe{l,2}, pe{l1,3} and 4o > 3f, so that («,f) = (1,1) or (2,1). If («,f) = (1,1)
then n = 3k, n = 4(k — m), so that k = 4m, n = 12m, and then (n,k,m) = 1 implies
m=1, and so k=4, n=12. But then n }I(2k —m), and so condition (1) does
not hold. If (o, ) = (2,1) then 2n = 3k, n = 4(k —m). Then 5k = 8m so 5|m; let
m=5M, say. Then k =8M, n=12M, and (n,m,k) =1 implies M = 1. Hence
m=25,k=28,n=12and so ntI(2k —m).

Similar arguments show that if (p,q) = (4,3) then the tuple (n,m, k) is (12,5,9)
or (12,1,9); if (p,q) = (3,5) then (n,m, k) is one of (15,2,5),(15,7,10), (15,4, 10)
or (15,1,10); if (p,q) = (5,3) then (n,m, k) is one of (15,1,6),(15,4,9),(15,7,12)
or (15,2,12). In each case n t [(2k — m).

Condition (2). Strong irreducibility implies
(n,m,k) =1, (n,k) > 1.

But n = k + m implies (n,m, k) = (n, k), a contradiction.

Condition (3). Under this condition n = 2(k — m), and so by our initial assumption
(m,k) > 1. Then (n,m,k) = (2(k —m),m, k) = (m,k) > 1; but (n,m,k) =1 and so
we have a contradiction.

Condition (4). Under this condition n =2k, and so by our initial assumption
(m,k) > 1. Then (n,m,k)= (2k,m,k) = (m,k) > 1, but (n,m,k) =1 and so we
have a contradiction. []

3 Abelianizations

In this section we consider the abelianizations of groups G, (m, k). Using [13, Lemma
1.1] we have the following criterion that determines when G, (m, k) has infinite abelia-
nization or when G,(m, k) is perfect. Let f(f) = t" — t* 4 1 and

R(f) =] 1.
0"=1

Then G,(m, k)™ is infinite if and only if R,(f) =0, and G,(m,k) is perfect if and
only if R,(f) = 1.
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Generalized Fibonacci groups 145

Theorem 4. Suppose that (n,m, k) = 1. Then G,(m, k) has infinite abelianization if and
only if n =0 mod 6 and (m mod 6,k mod6) = (2,1) or (4,5).

Proof. Observe that R,(f) = 0 if and only if f(1) = 0 for some A" = 1.

Suppose first that » =0 mod6 and (m mod6,k mod6) = (2,1) or (4,5), and
that (m,m,k) > 1. Let 2> = —1, A# —1; then A°=1, and therefore A" =1. If
m=2mod6 and k=1mod6 then f(1)=i*—i+1. If m=4mod6 and
k=5mod6then f(A) =A* A4+ 1=-1+2*+1.Thus(A+1)f(A) =2 +1=0
and since (44 1) # 0 we have f(4) = 0.

For the converse, suppose that (n,m,k) = 1 and that f(1) =0 for some 1" = 1.
Thus |4 = 1so 2= 2""and then f(1) =0, f(2~") = f(A) = 0 imply

=k, (3.1)
A=k (3.2)

Hence 1 = A" - 27" =2 — K~ 7% and so
Pk r1=o0. (3.3)

Thus 2 = (1 +iv/3)/2, and so 4 is a (6k)th root of unity. Since A" = 1, 6k divides n
and so, in particular,

n =0 mod 6. (3.4)
By (3.1) and (3.3) we have 2™ = 4!, so that 2”2 = 1 and therefore
m — 2k =0 mod 6. (3.5)

Since (n,m, k) = 1, it follows from (3.4) and (3.5) that (m mod 6,k mod 6) = (2, 1) or
(4,5), as required. [

We remark that necessary and sufficient conditions for G,(m, k) to have infinite
abelianization were incorrectly asserted in [17, Example 3(3)].

We now consider when G, (m, k) is perfect. By [1, Lemma 1.1], if k = 0 or m mod n
then G, (m, k) is trivial, and hence perfect. Here is another sufficient condition:

Lemma 5. If m = 2k mod n and (n/(n,m,k),6) = 1 then G,(m, k) is perfect.

Proof. Suppose first that g(¢) is any polynomial, and d = (k,n). Then

n—1 n—1

ky _ 2migk/ny __ 2nig(k/d)/(n/d)
11 90" = g™ =] g(e )
0"=1 q=0 9=0
n/d—1 d
_ ( H g(62niq(k/d)/(n/d))) )
q=0
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146 G. Williams

Since (k/d,n/d) =1, for each qe{0,...,(n/d—1)} there exists a unique
Qe{0,...,(n/d— 1)} such that q(k/d) = Q modn/d. Hence

n/d—1 n/d—
H gle o2mialk/d)/( n/d H ZmQ/(n/d) H 9(¢)
q=0 =0 M1

and so

[To0~( I g<¢>)("’k).

0"=1 g/

If m = 2k mod n then setting g(¢) = t> — ¢ + 1 we have

SICGEEI g<¢>)("’k).

0"=1 /i)

Now
g(¢) _ H (¢ _ eZni/G) H (¢ _ 8727Ii/6)
¢n/ nk)__ ¢n/(n.k):l ¢’l/("«1\’):]

_ ((e2ni/6)”/(”~,k) _ 1)((6—2ni/6)n/(n,k) . 1)
o QCOS(M>
6

=1

since (n/(n,k),6) = (n/(n,m,k),6) = 1. Hence R,(f) = 1 and G, (m, k) is perfect, as
required. []

Since this paper was written a complete description of the abelianization of
G,(2k, k) has been provided in [3, Lemma 7]. We conjecture that the sufficient con-
ditions that we have given for G,(m, k) to be perfect are also necessary; we have veri-
fied this (using MaGMA) for n < 200.

Conjecture 6. If G,,(m, k) is perfect then either m = 2k modn and (n/(n,m,k),6) = 1
or k =0 or m modn.

Lemma 5 and Conjecture 6 form a natural generalization of [13, Theorem 2(ii),
(iii)] (see also [11, Theorem 2.3(b)]). It seems likely that Odoni’s methods [13] can be
applied to prove Conjecture 6 in the general case.
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Generalized Fibonacci groups 147

4 Finiteness

In [1, Question 1], Bardakov and Vesnin posed the following question:

Question. For which values of the defining parameters n, m, k subject to the natural
restrictions (1.2) are groups G,(m, k) finite?

If (n,k) =1 or (n,m—k) =1 then by [I, Lemma 1.3] the group G,(m, k) is iso-
morphic to some Gilbert—Howie group H(n,t). More precisely, we have

Lemma 7. (i) If (n,k) = 1 then
G,(m, k) = G,(t,1) = H(n, 1)

where tk = m modn.
(il) If (n,k —m) =1 then

Gy(m, k) = G,(t,1) = H(t,1)
where t(k —m) =n — m modn.

Proof. (i) See the proof of [1, Lemma 1.3].
(i) By [1, Lemma 1.1(3)] we have

G,(m,k) = Gy(n —m,n—m+k) = G,(K — k,K)

where K:n + (k—m). Then (n,K)= (n,k— m) I, and so by (i) we have
G,(K — k,K) = G,(t,1), where tK = K — k modn, i.e. where

t(k —m) =n—m modn,
as required. [

Now the finite Gilbert—-Howie groups H (n,t) have almost been classified. In [11]
the following theorem is proved:

Theorem 8 ([11]). Suppose that (n,t) # (8,3),(9,3),(9,4), ( 6),(9,7). Then H(n,t)
is finite if and only if t=0,1 or (nt)= 2kk+1) where k=1, or
(n,1) €{(3,2),(4,2),(5,2),(5,3), (5,4),(6,3),(7,4), (7,6}

As mentioned in Section 2, a calculation in MaGMa shows that H (8, 3) is finite of
order 295245. Cavicchioli, O’Brien and Spaggiari [3, Lemma 16] have recently
proved that the (isomorphic) groups H(9,3) and H(9,6) are infinite. It remains un-
known whether H(9,4) and H(9,7) define finite or infinite groups.

Suppose that (n,k) > 1 and (n,m — k) > 1, i.e. G,(m, k) is strongly irreducible.
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148 G. Williams

Since any non-trivial group with an aspherical presentation is infinite, the follow-
ing is an immediate corollary of Theorem 2 and Lemma 3.

Corollary 9. Let G = G, (m, k) be strongly irreducible and assume that G # 1. Then G
is finite if and only if (m,k) =1 and n =2k or n = 2(k —m), in which case G =~ Z;
where s = 2"2 — (—1)"*"/2,

Thus, to give a complete classification of the finite, strongly irreducible groups
G,(m, k) it suffices to prove that every such (strongly irreducible) group is non-trivial.
The problem as to which cyclically presented groups are trivial has been of interest
recently; see for example [8], [9], [10], [12].

If Conjecture 6 holds, it follows that every strongly irreducible group G,(m, k) is
not perfect, and hence non-trivial. To see this, observe that Conjecture 6 implies that
if G,(m, k) is perfect then m = 2k modn and so (n,m, k) = (n, k). But if G,(m, k) is
strongly irreducible then (n,m, k) =1, (n,k) > 1, a contradiction. Our MAGMA calcu-
lations supporting Conjecture 6 therefore imply a classification of the finite, strongly
irreducible groups G, (m, k) for n < 200.

Acknowledgement. Since this paper was originally written Eamonn O’Brien has
pointed out that Theorem 4 is implied by an earlier result of Cavicchioli, Repovs
and Spaggiari ([5, Corollary 5.8]). The author would like to thank Professor O’Brien
for this and other helpful comments.
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