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With the rapid advancement of wireless network technologies and the rapid increase in the number of mobile devices, mobile users
(MUs) have an increasing high demand to access the Internet with guaranteed quality-of-service (QoS). Data and energy integrated
communication networks (DEINs) are emerging as a new type of wireless networks that have the potential to simultaneously
transfer wireless energy and information via the same base station (BS). This means that a physical BS is virtualized into two parts:
one is transferring energy and the other is transferring information. The former is called virtual energy base station (eBS) and the
latter is named as data base station (dBS). One important issue in such setting is dynamic resource allocation. Here the resource
concerned includes both power and time. In this paper, we propose a fair data-and-energy resource allocation algorithm for DEINs
by jointly designing the downlink energy beamforming and a power-and-time allocation scheme, with the consideration of finite
capacity batteries at MUs and power sensitivity of radio frequency (RF) to direct current (DC) conversion circuits. Simulation
results demonstrate that our proposed algorithm outperforms the existing algorithms in terms of fairness, beamforming design,
sensitivity, and average throughput.

1. Introduction

The strength of network virtualization is upsurge, such as
software defined networking (SDN) and collaborative radio
access networks (C-RAN). For instance, SDN is expected to
transform the way services are created, sourced, deployed,
and supported [1–3]. This paper discusses another type of
virtualization, namely, a base station, being virtualized into
providing not only information transferring but also energy
transferring to charge mobile devices. This is largely driven
by the fact that mobile devices, while getting more powerful
in processing and networking, exhaust their battery more
quickly.

To address this challenge, this paper utilizes energy
harvesting into wireless communications, namely, the so-
called DEINs (Data and energy integrated communication
networks). With the development of energy harvesting (EH)
technologies and wireless energy transfer (WET) techniques,
the DEIN becomes an emerging trend focusing on the study

of wireless power and information cooperation communi-
cations [4–7]. Compared with simultaneous wireless infor-
mation and power transfer (SWIPT) which mainly focuses
on the physical layer, DEINs focus on the whole network
system, resource allocation, and protocols design in different
layers.The typical architecture of aDEIN is shown in Figure 1,
which has three major components, that is, a virtual energy
base station (eBS), a data base station (dBS), and massive
mobile users/mobile devices. The wireless communication
is divided into two parts. The virtual eBS first transfers
energy to multiple mobile users (MUs) that do not have
embedded energy sources via downlink (DL), and then MUs
use the harvested energy to perform uplink (UL) wireless
information transmission (WIT) to the dBS.

No existent works have taken into account the power sen-
sitivity of RF-DC circuits when DL transfer energy in DEINs,
which can lead to a falsely higher data rate when received
RF signals cannot be converted into DC (i.e., energy transfer)
if their power level is lower than the power sensitivity of an
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Figure 1: A typical architecture of a DEIN based on virtualization.

RF-DC circuit [8]. Besides, none of these works have consid-
ered the possibility of energy overflow or the opportunities
for users to optimize the use of harvested energy across UL
WIT slots. It has been shown that a user using all available
energy for WIT in each slot achieves a lower data rate than
uniformly distributing energy between energy arrivals [9–11].
Therefore, new dynamic time allocation schemes are needed
since not all MUs can harvest energy in every slot, which take
into consideration the policy that the energy harvesting of
every user should not overflow in every DL WET phase and
the energy harvested in theDLWETphase of former slotmay
be used in the ULWIT of the next.

In this paper, we devise a fair resource allocation algo-
rithm for a DEIN based on dynamical time-slot division to
guarantee the received power fairness among all MUs, by
maximizing the minimum average DL WET power via opti-
mizing the DL energy beamformer. In particular, considering
the power sensitivity of the RF-DC conversion circuits, the
virtual eBS transfers energy to these MUs whose estimated
received power is larger than the corresponding certain
threshold 𝛼. The proposed algorithm benefits the following
features.

(1) Fairness. Since there are more than one user in our
scenario, fairness among all MUs should be taken into
account naturally. While each MU is allocated the same
slot for UL transmission by space-division-multiple-access
(SDMA) leading to the fact that the increase or decrease
of slot length would lead to similar trend of each MU’s
throughput, the fairness of the model is mainly reflected by
the WET energy beamforming. To achieve the fairness, we
aim to allocate the optimal beamformer to maximize the
minimum received power among MUs, which can further
lead to the fairness of throughput on the whole.

(2) Sensitivity. We study the UL transmission powered by
WET in a DEIN and model the WET of every user as
a Bernoulli process with different probability while taking
into account the different sensitivity of RF-DC circuits and
calculate the accurate WET probability of different users.

(3) Throughput Performance. Considering the sensitivity of
RF-DC circuits, that is, the WET probability, we propose a
new low complexity resource allocation algorithm to achieve
near optimization throughput with finite capacity batteries,
which employs the zero-forcing (ZF) based receive beam-
forming in the UL information transmission [12].

The rest of this paper is organized as follows. Section 2
illustrates some related works about DEINs in recent years.
Section 3 presents a multiantenna DEIN model based on
virtualization and formulates problems based on fairness.
Section 4 presents a dynamic resource allocation to make
a near throughput optimization for this problem. Section 5
provides simulation results to compare the performances of
proposed solutions with exiting algorithms. Finally, Section 6
concludes the paper.

Notations. All lowercased and uppercased boldface let-
ters represent vectors and matrices, respectively. Let tr(𝑋),
det(𝑋), 𝑋−1, and 𝑋

𝐻 denote the trace, determinant, inverse,
and Hermitian of a symmetric matrix 𝑋, respectively. C and
R denote the set of complex and real matrices of size 𝑥 × 𝑦,
and C and R denote the set of complex and real vectors of
size 𝑥×1, respectively. All the log(⋅) functions are of base 2 by
default and ln(⋅) stands for the natural logarithm. All letters
at the right bottom of different variables can be explained by
the following: 𝑙 shows the 𝑙th slot and 𝑖 is the different users.

2. Related Works

In this section, we introduce the related energy harvesting-
based data-and-energy transmission techniques.

There are so many works focusing on designing resource
allocation schemes for different networks. In [13], an
energy-efficient context-aware resource allocation problem
in caching-enabled ultradense small cells is investigated.
In [14], a new analytical performance model is developed
to evaluate the QoS of multihop cognitive radio networks.
Moreover, we introduce some current researches on DEINs
in the following.

SWIPT has been recently studied in the literature (see,
e.g., [15–22]), where the achievable information versus energy
transmission tradeoffs was characterized under different
channel setups. SWIPT, proposed in [15], has been exten-
sively studied, which can offer great convenience to mobile
users with concurrent data and energy supplies. SWIPT has
been studied in orthogonal frequency division multiplexing
(OFDM) systems [16–18] and multiuser channel setups such
as relay channels [19, 20] and interference channels [21, 22].

Moreover, another problem, addressing the joint design
of DL energy transfer and UL information transmission, is
worth investigating [12, 23–25]. UL WIT powered by DL
WET inDEINswas studied in [23]. Assuming perfect channel
state information (CSI), the single-user DEIN scenario was
studied in [23]. The authors maximized the energy efficiency
of uplink WIT by jointly optimizing the time duration and
transmitted power for downlinkWET. Besides, some work is
focusing on resource allocation for optimization throughput
in DEINs. In [24], a DEIN with single-antenna access point
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Figure 2: A DEIN system model.

(AP) and users has been studied for joint DL energy transfer
and UL information transmission. A harvest-then-transmit
protocol was proposed and orthogonal time allocations for
the DL energy transfer and UL information transmissions
of all users are jointly optimized to maximize the network
throughput. In [12], a DEIN where one multiantenna AP
coordinates energy transfer and information transfer to/from
a set of single-antenna users was studied, and the author
maximizes the minimum throughput among all users by a
joint design of the DL-UL time allocation, the DL energy
beamforming, and the UL transmit power allocation, as well
as receive beamforming. A WET enabled massive MIMO
system with imperfect CSI was studied in [25], where it is
based on time-division-duplexing (TDD) protocol and each
frame is divided into three phases: the UL channel estimation
phase, the DLWET phase, and the ULWIT phase.

But all these works take the idea that the MUs transfer all
the received power in DL, ignoring the power sensitivity of
RF-DC circuits [9–11]. Besides, no works take the advantage
of the battery storage capacity to make a dynamic power
allocation, which can have a higher throughput. Even though
some works use the parameter (i.e., the battery storage
capacity), they also overlook the fact that the capacity
cannot overflow when making the resource allocation. In the
following, we are going to discuss these questions.

3. System Model and Problem Formulation

In this section, we present a dynamical time slotted transmis-
sion scheme and analyze the DL WET phase and UL WIT
phase. Finally, we formulate problems based on fairness.

We provide a DEIN model consisting of a BS with
𝑀 antennas and 𝐾 single-antenna MUs with finite battery

DL WIT

DL WET UL WIT

Premable FCH
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Figure 3: Frame structure.

capacity denoted by 𝑈
𝑖

(𝑖 = 1, . . . , 𝐾), as shown in Figure 2.
It is assumed that 𝑀 ≥ 𝐾. It should be noted that the
BS is virtualized into two parts, that is, a virtual eBS and
a dBS, as shown in Figure 1. Each MU uses the harvested
energy from DL WET phase via beamforming of the virtual
eBS to power its UL information transmission via the dBS,
under the assumption that two BSs and all MUs are perfectly
synchronized and there is no other energy source ofMUs.The
total capacity of battery storage in every MU is 𝑄max.

A time slotted transmission scheme is considered as
shown in Figure 3. We assume that the period of DL DIT in
every slot can be neglected since there is little information
to transmit in the DL phase. So, each slot has a constant
period 𝑇, consisting of two phases, namely, the DL WET
phase of duration 𝜏 ⋅ 𝑇 and the UL WIT phase of duration
(1 − 𝜏) ⋅ 𝑇, where 0 ≤ 𝜏 ≤ 1. The WET phase starts with
several control frames, including the preamble, frame control
header (FCH), DL map, and UL map. These frames define
transmission parameters, such as coding schemes, available
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resources, the duration of DL and UL transmission, and the
WET probability (which will be defined in the following).
Then, virtual energy BS transmits energy to 𝑈

𝑖

through
wireless energy beamforming. The received power level and
the energy harvested at 𝑈

𝑖

in slot 𝑙 (𝑙 = 1, . . . , 𝑁) are
denoted by 𝑃

𝑙,𝑖

and 𝐸
𝑙,𝑖

. It is worth noting that, due to the
power sensitivity of RF energy harvesting circuits, 𝑈

𝑖

cannot
harvest any RF energy if the received signal power 𝑃

𝑙,𝑖

is
below a certain level. Thus, the received power at every MU
can be used if the received power level 𝑃

𝑙,𝑖

is larger than
the corresponding certain threshold (e.g., −10 dBm). This
indicates that the WET of every MU follows a Bernoulli
process with different probability 𝑝

𝑖

, where 𝑝
𝑖

stands for the
probability of delivering energy from virtual eBS. Next, all
MUs do UL WIT phase simultaneously via SDMA, which is
powered by the energy stored in the batteries. For simplicity,
we assume that 𝑇 = 1 s and that the harvested energy is
stored in the battery first and then used for UL information
transmission. Note that since the length of control frames is
much smaller than that of DL WET and UL WIT, we ignore
the time duration of control frames in the following analysis.

We consider frame-based transmissions over flat-fading
channels on a single frequency band [26] (i.e., which means
the channel remains constant in each slot). Denote ℎ

𝑙,𝑖

∈

C𝑀∗1 as the UL channel of 𝑈
𝑖

in the 𝑙th slot and we have

ℎ
𝑙,𝑖

= (𝛼
0

󵄨
󵄨
󵄨
󵄨
𝐷
𝑖

󵄨
󵄨
󵄨
󵄨

−𝛽

𝐶
𝑖

)

1/2

𝑔
𝑙,𝑖

𝑖 = 1, . . . , 𝐾, (1)

where 𝛼
0

denotes a constant determined by the RF propa-
gation environment, 𝐷

𝑖

is the propagation distance, 𝛽
𝑖

is the
path loss,𝐶

𝑖

is Shadow fading, and𝑔
𝑙,𝑖

∈ C𝑀∗1 is thematrix of
Rayleigh fading coefficients and 𝑔

𝑘,𝑖

∼ 𝐶𝑁(0, 1). By exploit-
ing the channel reciprocity, the DL transmission channel can
be obtained as ℎ𝐻

𝑙,𝑖

. For simplicity, we assume that 𝐶
𝑖

= 1 and
that CSI is available at both two BSs and 𝑈

𝑖

.

3.1. DL WET Phase. Assume that just one energy beam is
to transmit energy from virtual energy BS to those users
satisfying the probability 𝑝

𝑖

, since we just transmitted energy
signals in the DL [27]. Besides, we can allocate the optimal
beamformer on the constraint that the power transferred at
all of the antennas is equal to the eBS’s transmitted power.
Hence, we can assume the beamformer as a ratio of 𝑃 which
satisfies the fact that its norm is a unit value, where 𝑃 is
the transmitted power of eBS. Then, the practical power
transferred can be denoted as the beamformer multiplied by
eBS transmitted power 𝑃. Moreover, ambient channel noise
energy cannot be harvested. Thus, the DL received signal,
received power, and harvested energy of 𝑈

𝑖

in the 𝑙th slot are
expressed as

𝑦
𝑙,𝑖

= ℎ
𝐻

𝑙,𝑖

𝜔
𝑙

𝑥
𝑙0

+ 𝑛
𝑙,𝑖

𝑖 = 1, . . . , 𝐾, (2)

𝑃
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2
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ℎ
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𝑙,𝑖

𝜔
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𝜔
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𝑙

ℎ
𝑙,𝑖

𝑖 = 1, . . . , 𝐾, (3)

𝐸
𝑙,𝑖

= 𝜖
𝑙

𝜏
𝑙

𝑃
𝑙,𝑖

= 𝑥
2

𝑙0

ℎ
𝐻

𝑙,𝑖

𝜔
𝑙

𝜔
𝐻

𝑙

ℎ
𝑙,𝑖

𝑖 = 1, . . . , 𝐾, (4)

where 𝑛
𝑙,𝑖

∼ 𝐶𝑁(0, 𝜎
2

𝑖

) is the receiver noise, 𝜔
𝑙

is the 𝑀 × 1

beamforming and satisfies ‖𝜔
𝑙

‖
2

= 1, 𝑥
𝑙0

is the transmission

signal and satisfies 𝑥2
𝑙0

≤ 𝑃max, where 𝑃max is the transmit
power constraint, and 𝜖

𝑖

denotes the energy harvesting
efficiency at𝑈

𝑖

, which should satisfy 0 < 𝜖
𝑖

≤ 1. For simplicity,
we assume 𝜖

𝑖

= 1.

3.2. UL WIT Phase. In the UL WIT phase of each slot,
MUs use the harvested energy to power UL information
transmission to the virtual dBS. For convenience, we assume
the circuit energy consumption at𝑈

𝑖

is 0. The received signal
at the normal dBS in the 𝑙th slot is given by

𝑦
𝑙

=

𝐾

∑

𝑖=1

ℎ
𝑙,𝑖

𝑥
𝑙,𝑖

+ 𝑛
𝑙

𝑖 = 1, . . . , 𝐾, (5)

where 𝑛
𝑙

∈ C𝑀×1 denotes the receiver additivewhiteGaussian
noise (AWGN). It is assumed that 𝑛

𝑙

∼ 𝐶𝑁(0, 𝜎
2

𝑙

Γ). Besides,
we assume that the normal information BS employs linear
receivers to decode 𝑥

𝑙,𝑖

in the UL. 𝑥
𝑙,𝑖

denotes the transmit
signal of 𝑈

𝑖

and satisfies 𝑥
2

𝑙,𝑖

= 𝑃
󸀠

𝑙,𝑖

, where 𝑃
󸀠

𝑙,𝑖

is the
transmit power of 𝑈

𝑖

. Specifically, let V
𝑙,𝑖

∈ C𝑀×1 denote
the receive beamforming vector for decoding 𝑥

𝑙,𝑖

and define
𝑉 = {V

𝑙,1

, . . . , V
𝑙,𝐾

}. In order to reduce complicity, we employ
the ZF based receive beamforming in the normal information
BS proposed by [12], which is not related to 𝑤

𝑙

and 𝜏
𝑙

.
Define 𝐻

−𝑙,𝑖

= [ℎ
𝑙,1

, . . . , ℎ
𝑙,𝑖−1

, ℎ
𝑙,𝑖+1

, . . . , ℎ
𝑙,𝑖

]
𝐻

, 𝑖 = 1, . . . , 𝐾,
including all the UL channels except ℎ

𝑙,𝑖

. Then the singular
value decomposition (SVD) of 𝐻

−𝑙,𝑖

is given as 𝐻
−𝑙,𝑖

=

𝑋
𝑙,𝑖

Λ
𝑙𝑖

𝑌
𝐻

𝑙,𝑖

= 𝑋
𝑙,𝑖

Λ
𝑙,𝑖

[𝑌
𝑙,𝑖

𝑌̃
𝑙,𝑖

]
𝐻. Thus, the beamforming can

be expressed as VZF
𝑙,𝑖

= 𝑌̃
𝑙,𝑖

𝑌̃

𝐻

𝑙,𝑖

ℎ
𝑙,𝑖

/‖𝑌̃

𝐻

𝑙,𝑖

ℎ
𝑙,𝑖

‖. Then, throughput
of 𝑈
𝑖

in bits/second/Hz (bps/Hz) can be expressed as

𝑅
ZF
𝑙,𝑖

= (1 − 𝜏
𝑙

) log(1 +
𝑃
󸀠

𝑙,𝑖

̃
ℎ
𝑙,𝑖

𝜎
2

𝑖

) 𝑖 = 1, . . . , 𝐾, (6)

where ̃ℎ
𝑙,𝑖

= ‖𝑌̃
𝑙,𝑖

𝐻ℎ
𝑙,𝑖

‖
2.

The energy consumption of UL WIT of 𝑈
𝑖

in the 𝑙th slot
is given by

𝑞
𝑙𝑖

= (1 − 𝜏
𝑙

) 𝑃
󸀠

𝑙,𝑖

. (7)

Let 𝑄
𝑙,𝑖

represent the amount of energy available in the
battery of 𝑈

𝑖

at slot 𝑙 and its updating function is as follows:

𝑄
𝑙,𝑖

= min (𝑄
𝑙−1,𝑖

+ 𝐸
𝑙,𝑖

− 𝑞
𝑙−1,𝑖

, 𝑄max) . (8)

There are two constraints in the UL WIT phase: the
energy causality constraint and the battery storage constraint
[9, 11]. Specifically, the energy causality constraint requires
that the UL WIT can only use the energy harvested at the
current and previous slots, and the battery storage constraint
indicates that the energy available of 𝑈

𝑖

cannot exceed the
maximum battery capacity at any time; that is,

𝑁

∑

𝑙=0

[𝐸
𝑙,𝑖

− 𝑞
𝑙,𝑖

] ≥ 0,

𝑁+1

∑

𝑙=0

𝐸
𝑙,𝑖

−

𝑁

∑

𝑙=0

𝑞
𝑙,𝑖

≤ 𝑄max.

(9)
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3.3. Problem Formulation. Considering fairness, we optimize
maximum-minimum (max.-min.) average ULWIT through-
put of all MUs by jointly optimizing the time allocation 𝜏

𝑙

, the
DL energy beams 𝑤

𝑙

, and the UL transmit power allocation
𝑃
󸀠

𝑙,𝑖

.
Let 𝑟ZF
(𝑞𝑙,𝑖)

denote theULdata rate of𝑈
𝑖

in slot 𝑙 as a function
of the allocated energy 𝑞

𝑙,𝑖

forUL transmission in slot 𝑙. Notice
that 𝑞

𝑙,𝑖

is a feasible energy allocation policy, which satisfies

0 ≤ 𝑞
𝑙,𝑖

≤ 𝑄max,

𝑄
𝑙+1,𝑖

= min (𝑄
𝑙,𝑖

+ 𝐸
𝑙+1,𝑖

− 𝑞
𝑙,𝑖

, 𝑄max) ,

𝑞
𝑙,𝑖

= 𝜙 (𝑙, {𝐸
𝑖

}
𝑙

𝑚=1

) .

(10)

The expression (10) shows energy causality constraint, the
battery storage constraint, and casualty CSI. We should note
that (4) should satisfy the constraint 𝑥2

𝑙0

≤ 𝑃max.
Thus, the optimization problem satisfying constraints (10)

can be defined as

max min lim
𝑁→∞

1

𝑁

𝑁

∑

𝑙=1

(1 − 𝜏
𝑙

) log(1 +
𝑃
󸀠

𝑙,𝑖

̃
ℎ
𝑙,𝑖

𝜎
2

𝑖

)

0 ≤ 𝜏
𝑙

≤ 𝜂
𝑙

,

(11)

where 𝜂
𝑙

= min(min
𝑙

((𝑄
𝑙,max−𝑄𝑙,𝑖)/𝑃𝑙,𝑖), 1) denotes the upper

bound of 𝜏
𝑙

, preventing the battery overflow.

4. Dynamic Resource Allocation Algorithm

In this section, we present a dynamic resource allocation
to make a near throughput optimization for the problem
formulated in the former section, including DL beamformer
design and allocation of WIT energy and duration.

As the optimization problem is formulated, we can divide
it into two parts, one of which is the optimal beamformer
designing of DLWET for fairness and the other is the optimal
time and power allocation of UL WIT for throughput, since
we employ the ZF based receive beamforming in the normal
information BS proposed by [12], which is not related to 𝑤

𝑙

and 𝜏
𝑙

.

4.1. Design of WET Beamforming and Computation of EH
Probability. Considering fairness of the received power, we
determine an optimal beamformer design to maximize the
minimum received power for differentMUs. Tomaximize the
received power at 𝑈

𝑖

, we can set 𝑥2
𝑙0

= 𝑃max. Generally, the
received power for 𝑈

𝑙

is denoted by

𝑃
𝑙,𝑖

(𝜔
𝑙

) = 𝑃max𝜔
𝐻

𝑙

𝐻
𝑙,𝑖

𝜔
𝑙

, (12)

where 𝐻
𝑙,𝑖

= ℎ
𝑙,𝑖

ℎ
𝐻

𝑙,𝑖

. Then problem on fairness could be
formulated as

max
𝜔𝑙

min
1≤𝑙≤𝐾

𝑃
𝑙,𝑖

󵄩
󵄩
󵄩
󵄩
𝜔
𝑙

󵄩
󵄩
󵄩
󵄩

2

= 1.

(13)

It is easy to relax the max.-min. process by introducing a
slack variable 𝑃

𝑙

, and then problem (13) can be transformed
into the following:

max
𝜔𝑙

𝑃
𝑙

s.t. 𝑃
𝑙,𝑖

(𝜔
𝑙

) ≥ 𝑃
𝑙

∀1 ≤ 𝑖 ≤ 𝐾

󵄩
󵄩
󵄩
󵄩
𝜔
𝑙

󵄩
󵄩
󵄩
󵄩

2

= 1.

(14)

Since the problem is convex, we can follow the approach
of convex theory in [28] and consider its Lagrangian function
is given by

𝐿 (𝜆, 𝜔
𝑙

) = −

𝐾

∑

𝑖=1

𝜆
𝑖

(𝑃
𝑙,𝑖

(𝜔
𝑙

) − 𝑃
𝑙

) , (15)

where 𝜆 = [𝜆
1

, 𝜆
2

, . . . , 𝜆
𝐾

] ≥ 0 consists of Lagrange
multipliers associated with received power constraints of
MUs in problem (14).

The dual function of problem (14) is then given by

𝐺 (𝜆) = min
𝜔𝑙

𝐿 (𝜆, 𝜔
𝑙

) . (16)

The following rule can be used to determine whether
problem (14) is feasible. For given 𝑃

𝑙

> 0, problem (14) is
infeasible in the following interpretation if and only if there
exists any 𝜆 ≥ 0 such that 𝐺(𝜆) > 0.

Next, for given 𝜆 ≥ 0, we would obtain 𝐺(𝜆) by the
problem

max
𝜔𝑙

𝐾

∑

𝑖=1

𝜆
𝑖

𝑃
𝑙,𝑖

(𝜔
𝑙

)

󵄩
󵄩
󵄩
󵄩
𝜔
𝑙

󵄩
󵄩
󵄩
󵄩

2

= 1.

(17)

With (12), the problem could be transformed as

max
𝜔𝑙

𝑃max𝜔
𝐻

𝑙

𝐴
𝑙

𝜔
𝑙

󵄩
󵄩
󵄩
󵄩
𝜔
𝑙

󵄩
󵄩
󵄩
󵄩

2

= 1,

(18)

where 𝐴
𝑖

= ∑
𝐾

𝑖=1

𝜆
𝑖

𝐻
𝑙,𝑖

.
Since 𝐴 is a symmetric matrix, the optimal beamformer

𝜔
∗

𝑙

could be obtained by the result of quadratic problem.
After obtaining 𝜔

∗

𝑙

for given 𝑃
𝑙

and 𝜆, we can compute
the corresponding 𝑃

𝑙,𝑖

(𝜔
∗

𝑙

) and 𝐺(𝜆) in (15). If 𝐺(𝜆∗) ≤ 0, it
indicates that problem (14) is infeasible.Therefore, we should
decrease 𝑃

𝑙

and solve the feasibility problem in (14) again.
On the other hand, if 𝐺(𝜆∗) ≤ 0, we can update 𝜆 using
ellipsoid method until 𝜆 converges to 𝜆

∗, which denotes the
maximizer of 𝐺(𝜆) or the optimal dual solution for problem
(14). If 𝐺(𝜆∗) ≤ 0, it indicates that the problem is feasible.
Then, we should increase 𝑃

𝑙

and solve the feasibility problem
again. Finally,𝑃

𝑙

∗ could be obtained numerically by iteratively
updating 𝑃

𝑙

by a simple bisection search. Meanwhile, the
corresponding𝜔∗

𝑙

should be the optimal beamformer. Finally,
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(1) set a large number𝑁 and suc time = 0, where suc time ∈ 𝑅
𝐾;

(2) loop
(3) set 𝑃down = 0, 𝑃up > 𝑃

𝑙

∗, generate a stochastic Rayleigh channel𝐻
𝑙

= [ℎ
𝑙,1

, . . . , ℎ
𝑙,𝐾

], 𝑛 = 0;
(4) loop

(5) 𝑃
𝑙

=

1

2

(𝑃down + 𝑃up);

(6) set 𝜆2 ≥ 0;
(7) Given 𝜆, obtain the optimal 𝜔

𝑙

by quadratic problem;
(8) Computing 𝐺(𝜆) using (15);
(9) if 𝐺(𝜆) > 0, 𝑃 is infeasible then
(10) set 𝑃up ← 𝑃

𝑙

, go to step (5);
(11) else
(12) update 𝜆 using ellipsoid method;
(13) if the stopping criteria of the ellipsoid method is not met then
(14) go to step (7);
(15) end if
(16) end if
(17) set 𝑃down ← 𝑃

𝑙

;
(18) if 𝑃up − 𝑃down < 𝛿, where 𝛿 > 0 is a given error tolerance then
(19) 𝑛 = 𝑛 + 1;
(20) break;
(21) end if
(22) end loop
(23) if 𝑛 = 𝑁 then
(24) obtain energy harvesting probability 𝑝

𝑖

= suc time(𝑖)/𝑁;
(25) break;
(26) end if
(27) end loop

Algorithm 1: Optimal beamformer and EH probability obtaining algorithm.

we can compute the received power for each MU and
determine whether they could harvest the energy, which can
be successful only if 𝑃

𝑙,𝑖

≥ 𝛼
𝑖

.
To obtain the EH probability, we can iterate the above

steps for 𝑁 times, where 𝑁 should be a large number and a
different transmitting channel is generated under the rule of
Rayleigh distribution for each time.The probability of𝑈

𝑖

can
be obtained by the ratio of successful harvested times and𝑁,
which is denoted by

𝑝
𝑖

= lim
𝑁→∞

suc time
𝑖

𝑁

, (19)

where suc time
𝑖

is the number of successful iterate times.
To summarize, the algorithm to solve the problem is given

in Algorithm 1. Steps 5 to 20 give the solution to obtain an
optimal beamformer in case that CSI is available.

4.2. Allocation of WIT Energy and Duration. After obtaining
the best WET beamformer, we have to determine an optimal
allocation ofWIT energy and duration. Consideringmultiple
slots, the optimization of the problem would be approached
if we keep the average transmitting energy in each slot.
This is because uniformly distributing the energy between
energy arrivals maximizes the data rate. As proposed in
[29], according to the EH probability 𝑝

𝑖

, we take a fraction
𝑝
𝑖

of available energy of 𝑈
𝑖

to transmit information in
UL duration. With this energy allocation, we only need to

compute the optimal UL duration in each slot and can obtain
a global optimization with multiple slots.

In the case of the system model, the total throughput of
𝑈
𝑖

in each slot is denoted by

𝑅
𝑙,𝑖

(𝜏) = (1 − 𝜏
𝑙

) log(1 +
̃
ℎ
𝑙,𝑖

𝑝
𝑖

(𝑄
𝑙,𝑖

+ 𝜏𝑃
𝑙,𝑖

)

(1 − 𝜏
𝑙

) 𝜎
2

) , (20)

where ̃
ℎ
𝑙,𝑖

, 𝑝
𝑖

, 𝑄
𝑙,𝑖

, and 𝑃
𝑙,𝑖

are considered as constant since
they are calculated out before duration allocation.

Like themethod proposed in Section 4.1, the optimization
problem can also be formulated as

max 𝑅

s.t. 𝑅
𝑙,𝑖

(𝜏) ≥ 𝑅 ∀1 ≤ 𝑖 ≤ 𝐾

0 ≤ 𝜏
𝑙

≤ 𝜂
𝑙

,

(21)

where 𝜂
𝑙

= min(min
𝑖

((𝑄
𝑖,max−𝑄𝑙,𝑖)/𝑃𝑙,𝑖), 1) denotes the upper

bound of 𝜏
𝑙

, preventing the battery from overflow.
Since the problem is convex, we can also solve the

problem by the Lagrangian method, which is proposed in
Section 4.1. What is different between two problems is how
to obtain max

𝜏𝑙
∑
𝐾

𝑖=1

𝜆
𝑖

𝑅
𝑙,𝑖

(𝜏
𝑙

).
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(1) set 𝑅min = 0, 𝑅max > 𝑅

∗;
(2) loop

(3) 𝑅 =

1

2

(𝑅min + 𝑅max);

(4) set 𝜆2 ≥ 0;
(5) Given 𝜆, obtain the optimal 𝜏

𝑙

according to the golden section search method;
(6) Computing 𝐺(𝜆);
(7) if 𝐺(𝜆) > 0 then
(8) 𝑅 is infeasible, set 𝑅max ← 𝑅, go to step (3);
(9) else
(10) update 𝜆 using ellipsoid method;
(11) if the stopping criteria of the ellipsoid method is not met then
(12) go to step (5)
(13) end if
(14) end if
(15) set 𝑅min ← 𝑅;
(16) if 𝑅max − 𝑅min < 𝛿, where 𝛿 > 0 is a given error tolerance then
(17) The corresponding 𝜏

𝑙

is the optimal duration;
(18) break;
(19) end if
(20) end loop

Algorithm 2: Optimal time allocation algorithm.

Since (20) is concave, with 𝜆 > 0, we can easily find that
the following function is also concave:

𝑓 (𝜏
𝑙

) =

𝐾

∑

𝑖=1

𝜆
𝑖

𝑅
𝑙,𝑖

(𝜏
𝑙

) . (22)

Consequently, one-dimensional search methods are con-
sidered to help us obtain the optimal 𝜏

𝑙

.
The algorithm to solve the problem is given in Algo-

rithm 2.

5. Performance Results and Analysis

In this section, we focus on algorithm simulations and
comparative analyses among algorithms by using MATLAB
simulation tool. Moreover, we analyze simulation results
based on the main problems which we have discussed in pre-
vious sections, including fairness, sensitivity, and throughput
performance.

5.1. Parameter Settings. In this section, several simulations
are executed to testify the performance of the proposed
algorithm in three aspects of fairness, sensitivity, and max.-
min. throughput. We make some comparison between the
fair allocation algorithmof using fraction𝑝 of energy (UFPE)
and the algorithm in [12], whereMUswould use all the energy
stored in their battery (UAE). Before the simulations, the
following settings are used unless stated otherwise, as shown
in Table 1.

5.2. Simulation Result and Analysis

5.2.1. Fairness. While each MU is allocated the same slot
to transmit information uplink leading to the fact that the

Table 1: Simulation parameters.

Parameters Value
BS antennas number,𝑀 3
MU number, 𝐾 2
Propagation constant, 𝛼

0

1
Path loss exponent, 𝛽 2
Shadow fading, 𝐶

𝑖

1
Propagation distance,𝐷

1

10m
Propagation distance,𝐷

2

5m
𝑃max 1W
Channel noise power, 𝜎2 10

−7W
Battery max capacity, 𝑄max 0.005 J
Power sensitivity of EH circuits, 𝛼

1

0.03W
Power sensitivity of EH circuits, 𝛼

2

0.05W

increase or decrease of slot length would lead to the same
trend of throughput of each MU, the fairness of the model
is mainly reflected on the WET energy beamforming. We
compare our algorithm of allocating beamformer by channel
in UFPE with the algorithm of allocating beamformer by
distance weight in UAE. Since the fairness will be more
obvious if received power difference among MUs is smaller,
we can obtain the standard deviation of received power
among all MUs. For simplicity, assuming that there are only
twoMUs, we can compute the results difference between two
MUs rather than the standard deviation of them.

Figure 4 shows the received power difference between two
MUs versus the distance between𝑈

2

and the virtual eBS. It is
easy to see that both curves achieve the minimum when the
distance is around 10m and increase as the distance increases
or decreases from this value. It is because of the fact that
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Figure 4: Received power difference between two MUs versus the
distance between 𝑈
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and virtual energy BS.
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Figure 5: EH probability of two MUs versus circuit sensitivity.

the distance between 𝑈
1

and BS is fixed to 10m in this
scenario; the factors influencing both channels would be
much similar when the distance of 𝑈

2

fluctuates around this
value.We can also see that our algorithmUFPE shows a lower
difference comparedwithUAE, indicating that fairness of our
model is more highlighted.

5.2.2. Sensitivity. Since the sensitivity of circuit of receiver
exits, MUs may not always harvest the energy they received.
The energy harvesting probability of twoMUs versus different
circuit sensitivity is shown in Figure 5. It is easy to see that
the energy harvesting probabilities ofMU1 andMU2decrease
with the circuit sensitivity since it will become more difficult
for the receiver to harvest energy when the circuit sensitivity

UFPE
UAE
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Figure 6: Maximum-minimum throughput between two MUs
versus circuit sensitivity.

ismuch too high.What ismore,𝑈
2

shows a higher probability
than 𝑈

1

at the same 𝛼 since the distance between 𝑈
2

and
virtual eBS is shorter, causingmore power to be received than
𝑈
1

. Since 𝑈
1

’s channel is worse, its EH probability decreases
rapidly when 𝛼 is not too big.

5.2.3.Throughput Performance. On theWITphase, we aim to
maximize the minimum throughput among MUs by obtain-
ing an optimal power and time allocation.This subsection can
be divided into two parts, one is for power allocation and the
other is for time allocation.

(a) Power Allocation. In this part, we compare our algorithm
UFPE, in which the power allocation is using fraction 𝑝 of
energy, with UAE, in which the power allocation is using
up all the battery energy. The max.-min. throughput among
MUs versus circuit sensitivity can be seen in Figure 6, which
indicates that the max.-min. throughput of both algorithms
decreases as the sensitivity grows. Moreover, UFPE shows a
higher throughput than UAE when 𝛼 is larger than 0.02W,
and the difference will enlarge as 𝛼 grows. The throughput
of UFPE is about 3.3 times of that of UAE when 𝛼 achieves
0.09W.This means that our algorithm performs better in the
practical scenario where circuit sensitivity exits.

Figure 7 depicts the max.-min. throughput among MUs
versus 𝑄max. It can be seen that the max.-min. throughput of
both algorithms increases as 𝑄max grows. It is because of the
fact that as 𝑄max grows, the constraints of battery would be
more relaxed, which can help MUs allocate a more adaptive
slot to transmit information. On the other hand, both curves
increasemore smoothlywhen𝑄max is higher, since the energy
harvested at MUs will be more difficult to make the battery
fully charged, causing the battery constraint to work nomore.
What is more, UFPE also shows a better performance than
UAE with each specific 𝑄max.
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Figure 7: Maximum-minimum throughput between two MUs
versus 𝑄max.
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Figure 8: Maximum-minimum throughput versus circuit sensitiv-
ity with different 𝜏.

(b) Slot Allocation. An optimal slot allocation is also necessary
to obtain better throughput performance. Figure 8 shows
the comparison of our algorithm (dynamically allocating 𝜏

in each slot) and other models, where the slot 𝜏 is fixed
to several values during every period. Generally, we choose
five values with 𝜏 = 0.1, 0.3, 0.5, 0.7, 0.9, respectively. It can
be seen that the algorithm of dynamic allocating 𝜏 shows
better performance than any other algorithm with fixed 𝜏.
The model of 𝜏 = 0.5 performs better than any other model
of fixed 𝜏. On the contrary, the model of 𝜏 = 0.1 shows the
worst performance.

6. Conclusion

In this paper, we have studied a DEIN model based on
virtualization, with a multiantenna virtual eBS, a multi-
antenna dBS, and 𝐾 single-antenna MUs with finite battery
capacity. We proposed a fair resource allocation algorithm
by joint optimization of the DL-UL time allocation, DL
energy beamforming, andUL transmit power allocation with
ZF based receive beamforming. Considering fairness, we
firstly design the DL energy beamforming to maximize the
minimum received power. After calculating the probability
of energy being transmitted from the virtual eBS to MUs,
we propose a simple power allocation with a fraction 𝑝 of
available energy allocated for UL WIT and adaptive time
allocation in each slot.The simulation results have shown that
the proposed UFPE algorithm achieves good performance.
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