[1] M. Gomez-Domenech, H. García-Mozo, P. Alczar, R. Brandao, E. Caeiro,  a V. Munhoz, C. Galn, Evaluation of efficiency of the Coriolis air sampler for a pollen detection in south Europe, Aerobiologia (Bologna) 26 (2010) 149e155, http://dx.doi.org/10.1007/s10453-009-9152-4. [2] J.M. Prospero, E. Blades, G. Mathison, R. Naidu, Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust, Aero biologia (Bologna) 21 (2005) 1e19. [3] Y. Macklin, A. Kibble, F. Pollitt, Impact on health of emissions from landfill sites, Advice from the Health Protection Agency, 2011. [4] L.J. Pankhurst, C. Whitby, M. Pawlett, L.D. Larcombe, B. Mckew, L.J. Deacon, S.L. Morgan, R. Villa, G.H. Drew, S. Tyrrel, S.J.T. Pollard, F. Coulon, Temporal and and allergy prevalence in single-family homes, Sci. Total Environ. 423 (2012) spatial changes in the microbial bioaerosol communities in green-waste composting, FEMS Microbiol. Ecol. 79 (2012) 229e239, http://dx.doi.org/ 10.1111/j.1574-6941.2011.01210.x. [5] A. Sharma, E. Clark, J.D. McGlothlin, S.K. Mittal, Efficiency of airborne sample analysis platform (ASAP) bioaerosol sampler for pathogen detection, Front. Microbiol. 6 (2015), http://dx.doi.org/10.3389/fmicb.2015.00512. [6] D.J.O. Connor, S.M. Daly, J.R. Sodeau, On-line monitoring of airborne bio aerosols released from a composting/green waste site, Waste Manag. 42 (2015) 23e30, http://dx.doi.org/10.1016/j.wasman.2015.04.015. [7] B. Ghosh, H. Lal, A. Srivastava, Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms, Environ. Int. 85 (2015) 254e272. [8] X. Xie, Y. Li, A.T.Y. Chwang, P.L. Ho, W.H. Seto, How far droplets can move in indoor environmentserevisiting the wells evaporationefalling curve, Indoor Air 17 (2007) 211e225, http://dx.doi.org/10.1111/j.1600-0668.2007.00469.x.[9] M.M.T. de Rooij, F. Borlee, L.A.M. Smit, A. de Bruin, I. Janse, D.J.J. Heederik, I.M. Wouters, Detection of Coxiella burnetii in ambient air after a large Q fever outbreak, PLoS One 11 (2016) e0151281. [10] J.P.G. Van Leuken, A.N. Swart, J. Brandsma, W. Terink, J. Van de Kassteele, P. Droogers, F. Sauter, A.H. Havelaar, W. Van der Hoek, Human Q fever inci dence is associated to spatiotemporal environmental conditions, One Heal 2 (2016) 77e87, http://dx.doi.org/10.1016/j.onehlt.2016.03.004. [11] R. Persoons, S. Parat, M. Stoklov, A. Perdrix, A. Maitre, Critical working tasks and determinants of exposure to bioaerosols and MVOC at composting facilities, Int. J. Hyg. Environ. Health 213 (2010) 338e347, http://dx.doi.org/ 10.1016/j.ijheh.2010.06.001. [12] S.M. Walser, D.G. Gerstner, B. Brenner, J. Bünger, T. Eikmann, B. Janssen, S. Kolb, A. Kolk, D. Nowak, M. Raulf, H. Sagunski, N. Sedlmaier, R. Suchenwirth, G. Wiesmüller, K. Wollin, I. Tesseraux, C.E.W. Herr, Evaluation of exposure response relationships for health effects of microbial bioaerosols e a sys tematic review, Int. J. Hyg. Environ. Health 218 (2015) 577e589, http:// dx.doi.org/10.1016/j.ijheh.2015.07.004. [13] Y. Kim, U. Platt, M.B. Gu, H. Iwahashi, Atmospheric and biological environ mental monitoring, Springer Science & Business Media, 2009, http:// dx.doi.org/10.1007/978-1-4020-9674-7. [14] J. Kim, J.-H. Jin, H.S. Kim, W. Song, S.-K. Shin, H. Yi, D.-H. Jang, S. Shin, B.Y. Lee, [37] W. Lorenz, T. Diederich, M. Conrad, Practical experiences with MVOC as an Fully automated field-deployable bioaerosol monitoring system using carbon nanotube-based biosensors, Environ. Sci. Technol. 50 (2016) 5163e5171, http://dx.doi.org/10.1021/acs.est.5b06361. [15] E.V. Usachev, A.V. Pankova, E. a. Rafailova, O.V. Pyankov, I.E. Agranovski, Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms, J. Environ. Monit. 14 (2012) 2739, http:// dx.doi.org/10.1039/c2em30317e. [16] J.D. Oliver, The viable but nonculturable state in bacteria, 43 Spec No, J. Microbiol. (2005) 93e100. doi:2134 [pii]. [17] J. Mandal, H. Brandl, Bioaerosols in indoor environment e a review with special reference to residential and occupational locations, Open Environ. Biol. Monit. J. 41 (2011) 83e96, http://dx.doi.org/10.2174/1875040001104010083. [18] E. Toprak, M. Schnaiter, Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study, Atmos. Chem. Phys. 13 (2013) 225e243. [19] M.S. Schmidt, A.J.R. Bauer, Preliminary correlations of feature strength in spark-induced breakdown spectroscopy of bioaerosols with concentrations measured in laboratory analyses, Appl. Opt. 49 (2010) C101eC109. [20] G. Pardon, L. Ladhani, N. Sandstrom, M. Ettori, G. Lobov, W. van der Wijngaart, Aerosol sampling using an electrostatic precipitator integrated with a microfluidic interface, Sensors Actuators B Chem. 212 (2015) 344e352, http:// dx.doi.org/10.1016/j.snb.2015.02.008. [21] A. Srivastava, M.E. Pitesky, P.T. Steele, H.J. Tobias, D.P. Fergenson, J.M. Horn, S.C. Russell, G.A. Czerwieniec, C.B. Lebrilla, E.E. Gard, Comprehensive assign ment of mass spectral signatures from individual Bacillus trophaeus spores in matrix-free laser desorption/ionization bioaerosol mass spectrometry, Anal. Chem. 77 (2005) 3315e3323, http://dx.doi.org/10.1021/ac048298p.[22] C. Willers, P.J. Jansen van Rensburg, S. Claassens, Phospholipid fatty acid profiling of microbial communities e a review of interpretations and recent applications, J. Appl. Microbiol. 119 (2015) 1207e1218, http://dx.doi.org/ 10.1111/jam.12902. [23] S. Mason, D. Cortes, W.E. Horner, Detection of gaseous effluents and by products of fungal growth that affect environments (RP-1243), HVAC&R Res. 16 (2010) 109e121, http://dx.doi.org/10.1080/10789669.2010.10390896.[24] M.C. Lemfack, J. Nickel, M. Dunkel, R. Preissner, B. Piechulla, mVOC: a database of microbial volatiles, Nucleic Acids Res. 42 (2014) D744eD748, http:// dx.doi.org/10.1093/nar/gkt1250. [25] R. Konuma, K. Umezawa, A. Mizukoshi, K. Kawarada, M. Yoshida, Analysis of mi crobial volatile organic compounds produced by wood-decay fungi, Biotechnol. Lett. 37 (2015) 1845e1852, http://dx.doi.org/10.1007/s10529-015-1870-9.[26] D. Schenkel, M.C. Lemfack, B. Piechulla, R. Splivallo, A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles, Front. Plant Sci. 6 (2015) 707, http://dx.doi.org/10.3389/ fpls.2015.00707. [27] A. Araki, A. Kanazawa, T. Kawai, Y. Eitaki, K. Morimoto, K. Nakayama, E. Shibata, M. Tanaka, T. Takigawa, T. Yoshimura, H. Chikara, Y. Saijo, R. Kishi, The relationship between exposure to microbial volatile organic compound 18e26, http://dx.doi.org/10.1016/j.scitotenv.2012.02.026.[28] M. Cauchi, D.P. Fowler, C. Walton, C. Turner, R.H. Waring, D.B. Ramsden, J.O. Hunter, P. Teale, J. a. Cole, C. Bessant, Comparison of GCeMS, HPLC-MS and SIFT-MS in conjunction with multivariate classification for the diagnosis of Crohn's disease in urine, Anal. Methods 7 (2015) 8379e8385, http:// dx.doi.org/10.1039/C5AY01322D. [29] S.T. Chambers, S. Bhandari, A. Scott-Thomas, M. Syhre, Novel diagnostics: progress toward a breath test for invasive Aspergillus fumigatus, Med. Mycol. Off. Publ. Int. Soc. Hum. Anim. Mycol. 49 (Suppl 1) (2011) S54eS61, http:// dx.doi.org/10.3109/13693786.2010.508187. [30] G.A. Eiceman, J.A. Stone, Ion mobility spectrometry in homeland security, Anal. Chem. 76 (2004) 390e397. [31] G. Fischer, T. Muller, R. Thißen, S. Braun, W. Dott, Process-dependent emission of airborne fungi and MVOC from composting facilities, Gefahrst. Reinhalt. Der Luft 64 (2004) 160e167. [32] P. Gao, F. Korley, J. Martin, B.T. Chen, Determination of unique microbial volatile organic compounds produced by five Aspergillus species commonly found in problem buildings, Am. Ind. Hyg. Assoc. J. 63 (2002) 135e140, http:// dx.doi.org/10.1080/15428110208984696. [33] T. Muller, R. Thissen, S. Braun, W. Dott, G. Fischer, T. Müller, R. Thißen, S. Braun, W. Dott, G. Fischer, T. Muller, R. Thissen, S. Braun, W. Dott, G. Fischer, (M)VOC and composting facilities. Part 2: (M)VOC dispersal in the environment, Envi ron. Sci. Pollut. Res. 11 (2004) 152e157, http://dx.doi.org/10.1007/BF02979669.€  [34] G. Strom, J. West, B. Wessen, U. Palmgren, Quantitative analysis of microbial volatiles in damp Swedish houses, Heal. Implic. Fungi Indoor Environ. 1 (1994) 291e305. [35] M. Brandt, C. Brown, J. Burkhart, N. Burton, J. Cox-Ganser, S. Damon, H. Falk, S. Fridkin, P. Garbe, M. McGeehin, Mold prevention strategies and possible health effects in the aftermath of hurricanes and major floods, Morb. Mortal. Wkly. Rep. 55 (2006) 1e27. [36] V. Vishwanath, M. Sulyok, G. Weingart, B. Kluger, M. Taubel, S. Mayer, R. Schuhmacher, R. Krska, Evaluation of settled floor dust for the presence of microbial metabolites and volatile anthropogenic chemicals in indoor envi ronments by LCeMS/MS and GCeMS methods, Talanta 85 (2011) 2027e2038, http://dx.doi.org/10.1016/j.talanta.2011.07.043.indicator for microbial growth, in: Proc. Indoor Air 2002, 2002, pp. 341e346. [38] A. Korpi, J. Jarnberg, A.-L. Pasanen, Microbial volatile organic compounds, Crit. Rev. Toxicol. 39 (2009) 139e193. [39] T. Müller, R. Thißen, S. Braun, W. Dott, G. Fischer, T. Muller, R. Thißen, S. Braun, W. Dott, G. Fisher, (M) VoC and composting facilities Part 1: (M) VOC emis sions from municipal biowaste and plant refuse, Environ. Sci. Pollut. Res. 11 (2004) 91e97, http://dx.doi.org/10.1007/BF02979708.[40] M. Kuske, A.C. Romain, J. Nicolas, Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environ ments? Build. Environ. 40 (2005) 824e831, http://dx.doi.org/10.1016/j.buildenv.2004.08.012.[41] A. Albrecht, G. Fischer, G. Brunnemann-Stubbe, U. Jackel, P. K€mpfer, Rec- € a ommendations for study design and sampling strategies for airborne micro organisms, MVOC and odours in the surrounding of composting facilities, Int. J. Hyg. Environ. Health 211 (2008) 121e131, http://dx.doi.org/10.1016/ j.ijheh.2007.05.004. [42] T.J. Ryan, C. Beaucham, Dominant microbial volatile organic compounds in 23 US homes, Chemosphere 90 (2013) 977e985, http://dx.doi.org/10.1016/ j.chemosphere.2012.06.066. [43] A. Mehrer, W. Lorenz, Potential influences on MVOC measurements, in: Proc. Indoor Air 2005, 2005, pp. 2444e2449. [44] K.R. Murphy, G. Parcsi, R.M. Stuetz, Non-methane volatile organic compounds predict odor emitted from five tunnel ventilated broiler sheds, Chemosphere 95 (2014) 423e432, http://dx.doi.org/10.1016/j.chemosphere.2013.09.076.€ € [45] G. Fischer, A. Albrecht, U. Jackel, P. Kampfer, Analysis of airborne microor ganisms, MVOC and odour in the surrounding of composting facilities and implications for future investigations, Int. J. Hyg. Environ. Health 211 (2008) 132e142, http://dx.doi.org/10.1016/j.ijheh.2007.05.003. [46] L. Vilavert, M. Nadal, I. Inza, M.J. Figueras, J.L. Domingo, Baseline levels of bioaerosols and volatile organic compounds around a municipal waste incinerator prior to the construction of a mechanical-biological treatment plant, Waste Manag. 29 (2009) 2454e2461, http://dx.doi.org/10.1016/ j.wasman.2009.03.012. [47] S. Matysik, O. Herbarth, A. Mueller, Determination of microbial volatile organic compounds (MVOCs) by passive sampling onto charcoal sorbents, Chemosphere 76 (2009) 114e119, http://dx.doi.org/10.1016/j.chemosphere.2009.02.010.[48] C. Rodríguez-Navas, R. Forteza, V. Cerd, Use of thermal desorption-gas a chromatography-mass spectrometry (TD-GC-MS) on identification of odorant emission focus by volatile organic compounds characterisation, Chemosphere 89 (2012) 1426e1436, http://dx.doi.org/10.1016/ technology for in vitro and in vivo metabolite analysis, Trends Anal. Chem. 80 j.chemosphere.2012.06.013. [49] E. Gallego, F.J.J. Roca, J.F.F. Perales, G. Sanchez, P. Esplugas, Characterization and determination of the odorous charge in the indoor air of a waste treat ment facility through the evaluation of volatile organic compounds (VOCs) using TDeGC/MS, Waste Manag. 32 (2012) 2469e2481, http://dx.doi.org/ 10.1016/j.wasman.2012.07.010. [50] C. Tiebe, T. Hübert, B. Koch, U. Ritter, I. Stephan, Investigation of gaseous metabolites from moulds by ion mobility spectrometry (IMS) and gas chromatography-mass spectrometry (GCeMS), Int. J. Ion. Mobil. Spectrom. 13 (2010) 17e24, http://dx.doi.org/10.1007/s12127-009-0035-8. [51] S. Siddiquee, S. Al Azad, F.A. Bakar, L. Naher, S.V. Kumar, Separation and identification of hydrocarbons and other volatile compounds from cultures of Aspergillus niger by GCeMS using two different capillary columns and sol vents, J. Saudi Chem. Soc. 19 (2015) 243e256, http://dx.doi.org/10.1016/ j.jscs.2012.02.007. € € €  [52] O. Ozden Üzmez, E.O. Gaga, T. Dogeroglu, Development and field validation of a new diffusive sampler for determination of atmospheric volatile organic compounds, Atmos. Environ. 107 (2015) 174e186, http://dx.doi.org/10.1016/ j.atmosenv.2015.02.040. [53] D. Verreault, L. Gendron, G.M. Rousseau, M. Veillette, D. Masse, W.G. Lindsley, S. Moineau, C. Duchaine, Detection of airborne lactococcal bacteriophages in cheese manufacturing plants, Appl. Environ. Microbiol. 77 (2011) 491e497, http://dx.doi.org/10.1128/AEM.01391-10. [54] K. Willeke, X. Lin, S.A. Grinshpun, Improved aerosol collection by combined impaction and centrifugal motion, Aerosol Sci. Technol. 28 (1998) 439e456. [55] A. Hussain, M.-Y. Tian, Y.-R. He, Y.-Y. Lei, Differential fluctuation in virulence and [78] H. Schleibinger, D. Laussmann, C.G. Bornehag, D. Eis, H. Rueden, Microbial VOC profiles among different cultures of entomopathogenic fungi, J. Invertebr. Pathol. 104 (2010) 166e171, http://dx.doi.org/10.1016/j.jip.2010.03.004.[56] E. Carvalho, C. Sindt, A. Verdier, C. Galan, L. O'Donoghue, S. Parks, M. Thibaudon, Performance of the Coriolis air sampler, a high-volume aerosol collection system for quantification of airborne spores and pollen grains, Aerobiologia (Bologna) 24 (2008) 191e201, http://dx.doi.org/10.1007/ s10453-008-9098-y. [57] V. Langer, G. Hartmann, R. Niessner, M. Seidel, Rapid quantification of bio aerosols containing L. pneumophila by Coriolis®m air sampler and chem iluminescence antibody microarrays, J. Aerosol Sci. 48 (2012) 46e55, http:// dx.doi.org/10.1016/j.jaerosci.2012.02.001. [58] A. Claeson, J. Levin, G. Blomquist, A. Sunesson, Volatile metabolites from mi croorganisms grown on humid building materials and synthetic media, J. Environ. Monit. 4 (2002) 667e672, http://dx.doi.org/10.1039/b202571j.[59] E. Gallego, F.J. Roca, J.F. Perales, X. Guardino, Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs), Talanta 81 (2010) 916e924, http://dx.doi.org/ 10.1016/j.talanta.2010.01.037. [60] A. Korpi, A.L. Pasanen, P. Pasanen, Volatile compounds originating from mixed microbial cultures on building materials under various humidity conditions, Appl. Environ. Microbiol. 64 (1998) 2914e2919, http://dx.doi.org/10.1039/ b906856b. [61] A. Wilson, M. Baietto, Applications and advances in electronic-nose technol ogies, Sensors 9 (2009) 5099e5148, http://dx.doi.org/10.3390/s90705099.[62] A.D. Wilson, M. Baietto, Advances in electronic-nose technologies developed for biomedical applications, Sensors 11 (2011) 1105e1176, http://dx.doi.org/ 10.3390/s110101105. [63] Q. He, M. Yao, Integration of high volume portable aerosol-to-hydrosol sam pling and qPCR in monitoring bioaerosols, J. Environ. Monit. 13 (2011) 706e712, http://dx.doi.org/10.1039/c0em00559b. [64] M. Dybwad, G. Skogan, J.M. Blatny, Comparative testing and evaluation of nine different air samplers: end-to-end sampling efficiencies as specific perfor mance measurements for bioaerosol applications, Aerosol Sci. Technol. 48 (2014) 282e295. [65] K. Van Huffel, P.M. Heynderickx, J. Dewulf, H. Van Langenhove, Measurement of odorants in livestock buildings: SIFT-MS and TD-GC-MS, nose 2012 3Rd, Int. Conf. Environ. Odour Monit. Control 30 (2012) 67e72, http://dx.doi.org/10.3303/CET1230012.[66] S.U. Morath, R. Hung, J.W. Bennett, Fungal volatile organic compounds: a review with emphasis on their biotechnological potential, Fungal Biol. Rev. 26 (2012) 73e83, http://dx.doi.org/10.1016/j.fbr.2012.07.001.[67] L. Wady, A. Bunte, C. Pehrson, L. Larsson, Use of gas chromatographyemass spectrometry/solid phase microextraction for the identification of MVOCs from moldy building materials, J. Microbiol. Methods 52 (2003) 325e332, http://dx.doi.org/10.1016/S0167-7012(02)00190-2.[68] K. Demeestere, J. Dewulf, B. De Witte, H. Van Langenhove, Sample preparation for the analysis of volatile organic compounds in air and water matrices, J. Chromatogr. A 1153 (2007) 130e144, http://dx.doi.org/10.1016/j.chroma.2007.01.012.[69] Z. Zhang, G. Li, A review of advances and new developments in the analysis of biological volatile organic compounds, Microchem. J. 95 (2010) 127e139, http://dx.doi.org/10.1016/j.microc.2009.12.017.[70] D. Sun, A. Wood-Jones, W. Wang, C. Vanlangenberg, D. Jones, J. Gower, P. Simmons, R.E. Baird, T.E. Mlsna, Monitoring MVOC profiles over time from isolates of Aspergillus flavus using SPME GC-MS, J. Agric. Chem. Environ. 3 (2014) 48e63, http://dx.doi.org/10.4236/jacen.2014.32007.[71] Q. Zhang, L. Zhou, H. Chen, C. Wang, Z. Xia, Solid-Phase microextraction (2016) 57e65, http://dx.doi.org/10.1016/j.trac.2016.02.017. [72] S. Kildgaard, M. Mansson, I. Dosen, A. Klitgaard, J.C. Frisvad, T.O. Larsen, K.F. Nielsen, Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and a MS/HRMS li brary, Mar. Drugs 12 (2014) 3681e3705, http://dx.doi.org/10.3390/ md12063681. € € [73] R.-M. Rasanen, M. Håkansson, M. Viljanen, Differentiation of air samples with and without microbial volatile organic compounds by aspiration ion mobility spectrometry and semiconductor sensors, Build. Environ. 45 (2010) 2184e2191, http://dx.doi.org/10.1016/j.buildenv.2010.03.018.   [74] G. Vivo-Truyols, J.R. Torres-Lapasio, A.M. van Nederkassel, Y. Vander Heyden, D.L. Massart, Automatic program for peak detection and deconvolution of multi-overlapped chromatographic signals part I: peak detection, J. Chromatogr. A 1096 (2005) 133e145, http://dx.doi.org/10.1016/ j.chroma.2005.03.092. [75] K.R. Murphy, P. Wenig, G. Parcsi, T. Skov, R.M. Stuetz, Characterizing odorous emissions using new software for identifying peaks in chemometric models of gas chromatography-mass spectrometry datasets, Chemom. Intell. Lab. Syst. 118 (2012) 41e50, http://dx.doi.org/10.1016/j.chemolab.2012.07.006.[76] L.D.J. Bos, P.J. Sterk, M.J. Schultz, Volatile metabolites of pathogens: a sys tematic review, PLoS Pathog. 9 (2013) 1e8, http://dx.doi.org/10.1371/journal.ppat.1003311.[77] M. Dunkel, U. Schmidt, S. Struck, L. Berger, B. Gruening, J. Hossbach, I.S. Jaeger, U. Effmert, B. Piechulla, R. Eriksson, SuperScentda database of flavors and scents, Nucleic Acids Res. 37 (2009) D291eD294, http://dx.doi.org/10.1093/nar/gkn695.volatile organic compounds in the air of moldy and mold-free indoor envi ronments, Indoor Air 18 (2008) 113e124, http://dx.doi.org/10.1111/j.1600-0668.2007.00513.x.[79] C.N. Kanchiswamy, M. Malnoy, M.E. Maffei, Chemical diversity of microbial volatiles and their potential for plant growth and productivity, Front. Plant Sci. 6 (2015) 1e23, http://dx.doi.org/10.3389/fpls.2015.00151.[80] M. Syhre, J.M. Scotter, S.T. Chambers, Investigation into the production of 2- Pentylfuran by Aspergillus fumigatus and other respiratory pathogens in vitro and human breath samples, Med. Mycol. 46 (2008) 209e215, http:// dx.doi.org/10.1080/13693780701753800. [81] G. Stotzky, S. Schenck, Volatile organic compounds and microorganisms, CRC Crit. Rev. Microbiol. 4 (1976) 333e382, http://dx.doi.org/10.3109/ 10408417609102303. [82] V. Polizzi, B. Delmulle, A. Adams, A. Moretti, A. Susca, A.M. Picco, Y. Rosseel, R. Kindt, J. Van Bocxlaer, N. De Kimpe, C. Van Peteghem, S. De Saeger, JEM Spotlight: fungi, mycotoxins and microbial volatile organic compounds in mouldy interiors from water-damaged buildings, J. Environ. Monit. 11 (2009) 1849e1858, http://dx.doi.org/10.1039/b917562h.[83] R. Hung, S. Lee, J.W. Bennett, Fungal volatile organic compounds and their role in ecosystems, Appl. Microbiol. Biotechnol. 99 (2015) 3395e3405, http:// dx.doi.org/10.1007/s00253-015-6494-4. [84] R. Wihlborg, D. Pippitt, R. Marsili, Headspace sorptive extraction and GC- TOFMS for the identification of volatile fungal metabolites, J. Microbiol. Methods 75 (2008) 244e250, http://dx.doi.org/10.1016/j.mimet.2008.06.011.[85] A. Mette, A. Zervas, K. Tendal, J. Lund, Microbial diversity in bioaerosol sam ples causing ODTS compared to reference bioaerosol samples as measured using Illumina sequencing and MALDI-TOF, Environ. Res. 140 (2015) 255e267, http://dx.doi.org/10.1016/j.envres.2015.03.027.[86] G. Fischer, R. Schwalbe, R. Ostrowski, W. Dott, Airborne fungi and their sec ondary metabolites in working places in a compost facility, Mycoses 41 (1998) 383e388, http://dx.doi.org/10.1111/j.1439-0507.1998.tb00358.x.[87] S.J. Macnaughton, T.L. Jenkins, M.H. Wimpee, M.R. Cormier, D.C. White, Rapid extraction of lipid biomarkers from pure culture and environmental samples using pressurized accelerated hot solvent extraction, J. Microbiol. Methods 31 (1997) 19e27, http://dx.doi.org/10.1016/S0167-7012(97)00081-X.