
Int. J. of Mathematics in Operational Research, Vol. x, No. x, 201X 1

A Two-Phase Heuristic for Set Covering

Salim Haddadi
LabSTIC, 8 Mai 1945 University, PO Box 401, 24000 Guelma, Algeria
E-mail: salim.haddadi@yahoo.com

Fatima Guessoum

LabSTIC, 8 Mai 1945 University, PO Box 401, 24000 Guelma, Algeria
E-mail: fatima_guessoum@yahoo.fr

Meryem Cheraitia

LabSTIC, 8 Mai 1945 University, PO Box 401, 24000 Guelma, Algeria
E-mail: meryem.cheraitia@hotmail.fr

Abdellah Salhi

Department of Mathematical Sciences, University of Essex, Wivenhoe
Park, Colchester CO4 3SQ, UK E-mail: as@essex.ac.uk

Abstract: The set covering problem (SCP) is a well-known computationally
intractable problem. We suggest here a two-phase heuristic to solve it. The
first phase reduces substantially the size of the given SCP by removing some
variables; the second phase applies a simple Lagrangian heuristic applied to the
reduced problem. Construction and improvement heuristics are embedded in the
Lagrangian solution approach. The construction heuristic provides good covers
by solving small SCPs. The improvement heuristic inserts these covers into larger
ones from which better covers are extracted, again by solving different but also
small SCPs. The novelty lies in the reduction of the problem size by an effective
variable-fixing heuristic, which, in practice, eliminates up to 95% of the variables
of the problem without sacrificing the solution quality. Extensive computational
and comparative results are presented.

Keywords: Set Covering; Variable-fixing Heuristic; Greedy Heuristic with
Regret; Lagrangian Heuristic.

Reference to this paper should be made as follows: Haddadi, S., Cheraitia, M.,
Guessoum, F. and Salhi, A. (201X) ‘A Two-Phase Heuristic for Set Covering’,
International Journal of Mathematics in Operational Research, Vol. x, No. x,
pp.xxx–xxx.

Biographical notes:
Salim Haddadi received his PhD in Computer Science from Blaise Pascal
University, Clermont-Ferrand, France. He is professor of operations research at
the Computer Science department, University of Guelma. His areas of interest
include combinatorial optimisation, computational complexity, and scheduling.

Copyright © 2012 Inderscience Enterprises Ltd.

2 S. Haddadi et al.

He has published several research papers at international journals and a book
edited by Hermes/Lavoisier.

Meryem Cheraitia and Fatima Guessoum are preparing their PhD in Computer
Science at the University of Guelma. Their research interests include issues related
to image recognition, data mining, and operational research. They coauthored,
with S. Haddadi, a paper published at an international journal, and several
conference papers.

Abdellah Salhi is Professor of Operational Research. He obtained his PhD from
the University of Aston in Birmingham, UK. His research interests are in the
design, analysis, implementation and application of mathematical programming
algorithms. Application areas include optimisation, scheduling, decision making
under partial information, data-mining and forecasting. Recently, he led a project
on workforce scheduling in container terminals, in conjunction with the Port of
Felixstowe, UK. He has introduced the Plant Propagation Algorithm for global
optimisation, a heuristic inspired by the way strawberry plants propagate using
runners. He has published over sixty papers in refereed journals and conference
proceedings.

1 Introduction

Consider n positive numbers c1, · · · , cn and a binary m× n-matrix A. Each cost cj is
attached to the jth column of A. We say that column j covers row i if aij = 1. Let N =
{1, · · · , n} and M = {1, · · · ,m}. A cover is any subset C ⊂ N such that

∑
j∈C aij ≥ 1

for all i ∈M . Clearly, a cover exists when A does not have a null row. The cost of the
cover C is

∑
j∈C cj . SCP aims at finding a minimum cost cover. A well-known integer

programming formulation of SCP is

min
∑
j∈N cjxj∑

j∈N aijxj ≥ 1 i ∈M
xj ∈ {0, 1} j ∈ N

(1)

where x is the indicator vector of the cover, i.e.

xj =

{
1 if column j is in the cover
0 otherwise

We shall use the set C and the vector x to alternatively refer to the cover. A column
j ∈ C is redundant if C \ {j} is still a cover. A cover that contains a redundant column
is called redundant. Let Ij = {i ∈M |aij = 1} , j ∈ N , be the set of all rows covered by
column j, and Ji = {j ∈ N |aij = 1} , i ∈M , be the set of all columns covering row i.

1.1 Well-known facts

SCP is strongly NP -hard, which means that we do not expect a pseudo-polynomial-time
algorithm unless P = NP . In fact, SCP is hard even on very special instances (Haddadi,
2015). Similarly, we do not expect any polynomial-time approximation scheme unless P =
NP . Furthermore, the best achievable performance guarantee is Θ(logm) (Feige, 1998).

A Two-Phase Heuristic for Set Covering 3

1.2 Applications

Despite these discouraging facts, SCP has been successfully applied in a number of domains
such as crew scheduling (Azadeh et al., 2012), location of emergency facilities (Ablanedo-
Rosas et al., 2009; Rajagopalan et al., 2008), vehicle routing (Cacchiani et al., 2014),
selection of portfolio (Nepal et al., 2009), and conservation biology (Moore et al., 2003).

1.3 Our contributions

They are as follows:

• A new greedy heuristic based on the concept of regret is proposed. We do not study
its theoretical performance (recall that we do not expect a better complexity bound
than Θ(logm)). Nevertheless, an empirical analysis tells us that this heuristic is more
effective than the well-known greedy heuristic (Chvátal, 1979).

• Applying a subgradient method to the Lagrangian relaxation of the constraints to
discard a number of variables, thus reducing the problem size drastically; up to 95% of
variables are removed. Solving the reduced problem gives good approximate solutions.
This very attractive in practice.

• An effective Lagrangian heuristic is applied to the much smaller resulting SCP.

1.4 Outline of the paper

The paper is organized as follows. Section 2 is a review of the most recent literature on
SCP and related topics. Section 3 is on the methodology followed to address the issues of
concern. Section 4 concerns the computational experience and reports comparative results
of the Lagrangian heuristic put forward here and existing approaches on benchmark problem
instances. Section 5 is the conclusion.

2 Related work

This section reviews the most prominent literature related to SCP. Let us begin with the
existing exact algorithms. Caprara et al. (2000) surveyed all of them. Surprisingly, they
reported that the general-purpose commercial solver Cplex is superior to all of these tree-
search algorithms. Since exact methods are applicable only on small to medium instances,
to deal with the large scale instances arising in practice, heuristic algorithms are necessary
for finding near-optimal covers in a reasonable amount of time.

Roughly speaking, there are two classes of approximate methods, Lagrangian heuristics
and metaheuristics. Lagrangian heuristics try to repair the solution of the relaxed problem
during the subgradient method. We consider three of them here. The effective algorithm
of Caprara et al. (1999) has two main characteristics which are a dynamic pricing scheme
for the variables and a systematic use of variable-fixing. Ceria et al. (1998) investigate a
Lagrangian-based heuristic for solving large-scale SCPs arising from crew-scheduling at the
Italian Railways Company. Haddadi (1997) presents a simple Lagrangian-based heuristic
which repairs the solution of the relaxed problem, and then extracts the best cover from it.

Metaheuristics are high-level methods whose purpose is to drive simple low-level
heuristics for finding good solutions to an optimization problem, without guaranteeing

4 S. Haddadi et al.

optimality, by sampling the solution space which is too large to be completely searched.
Although effective in identifying optimal or near solutions, they often lack theoretical
analysis, and suffer from the non-reproducibility of the results.

In the indirect genetic algorithm of Aickelin (2002), the actual solutions are found by
an external decoder and post optimized by hill-climbing. Beasley and Chu (1996) suggest
several modifications to a basic genetic algorithm (new fitness-based crossover, variable
mutation rate, heuristic feasibility operator). Brusco et al. (1999) use a simulated annealing
heuristic in which a morphing procedure is incorporated. The latter enables the replacement
of columns in the cover by better ones (morphs). A dynamic primal-dual algorithm is
proposed by Caserta (2007), where a tabu search primal method is hybridized with a
Lagrangian based dual scheme. A cultural evolutionary architecture is used in Crawford et
al. (2014) to maintain knowledge of diversity and fitness learned over each generation during
the search. Lan et al. (2007) develop a Meta-RaPS heuristic where solutions are generated
and improved. Random factors are introduced in the construction and improvement methods.
In the metaheuristic of Naji-Azimi et al. (2010), an initial population is generated. A fixed
number of local search and movement iterations based on the electromagnetism metaphor is
allowed. Mutation is applied for escaping from local optima. The metaheuristic of Ohlsson
et al. (2009) is based on a mean field feedback artificial neural network. In combination
with annealing, a set of mean field equations is iterated for obtaining an approximate energy
minimum. The approach of Ren et al. (2010) is based on ant colony optimization. Yagiura
et al. (2006) use a 3-flip neighborhood where moves consist in cleverly exchanging at most
three columns.

3 Solution methodology

We now present the solution approach advocated in this paper. It consists of three
components: a new greedy heuristic to construct covers; a variable-fixing heuristic to reduce
the size of the SCP problem; and a Lagrangian heuristic to generate a solution to the problem.

3.1 New greedy heuristic

Since we are willing to apply the subgradient method, our goal in this section is to construct
a good cover to start with. For this purpose, we propose a new greedy heuristic.

Greedy heuristics are constructive algorithms that build feasible solutions, step by step,
by making irreversible decisions. This is where lies their benefit (speed) as well as their
drawback (good decisions made at first steps have deplorable consequences in last stages).
Our idea here is to incorporate the concept of regret for choosing between alternatives.
This idea is not new, and usually results in better quality solutions (see for example Hassin
and Keinan (2008) where the regret is incorporated in greedy heuristics for the traveling
salesman problem).

The standard greedy heuristic for SCP (Chvátal, 1979) considers the columns with the
question: which of the columns is to be picked up first ? The question is solved in the
following way. Beginning with an empty cover, 1) compute a score for each column, 2)
pick the column with the least score up in the cover, 3) remove the covered rows, and repeat
the three steps until all rows are covered.

In the regret version, instead of the columns, we propose to consider the rows with the
question: which of the rows is to be covered first ? To deal with this question, we compute

A Two-Phase Heuristic for Set Covering 5

a value for each row, call it regret, based on the score of the columns. For computing the
regret of row iwe consider all the columns covering it. The regret is the difference between
the second smallest and the smallest score of these columns. Now, the row with the largest
regret value should be covered first by the column having the least score. Details are given
in Figure 1.

Input:

Output: Cover and its cost

Step 0 ,

Step 1 // Compute the score of each column

If then else

Step 2 // Compute the regret of each row
For , uncovered

 // Remember the column which covers row

Step 3 // Let be the row with maximum regret
)

Repeat steps 1, 2, 3 until

Return

Figure 1 New greedy heuristic.

To understand the rationale behind the concept of regret, suppose that row i∗ has the
maximum regret. This means, by letting Ji∗ be the set of all the columns of the binary matrix
A covering row i∗, by letting j∗, j̃ ∈ Ji∗ be the columns with respectively the smallest and
second smallest score cj/ |Ij |, that the value

σi∗ =
cj̃∣∣∣Ij̃∣∣∣ −

cj∗

|Ij∗ |

is maximum. Normally we should cover row i∗ with column j∗ (i.e. column j∗ enters the
cover). Suppose this is not the case, and suppose another column is selected. This column
may cover most of the rows covered by column j∗, so that the latter will no longer be
selected. So, for covering row i∗ we have to call upon a column which is at best as bad as j̃.
Since the “distance” σi∗ between the columns j∗ and j̃ is maximum, we would regret not
to choose column j∗ first.

6 S. Haddadi et al.

As we shall see later, when examining the computational effect of allowing the regret
in the greedy approach, we will show the evident superiority of the greedy heuristic with
regret.

3.2 Variable-fixing heuristic

Before describing the variable-fixing heuristic, let us recall some relevant results on
Lagrangian relaxation and subgradient optimization. Subsequently,

3.2.1 Basic facts on Lagrangian relaxation and subgradient optimization

Given a vector of Lagrangian multipliers π ∈ Rm+ , associated with them constraints of (1),
the Lagrangian relaxation problem is

LR(π)

{
min z (π) =

∑
j∈N

(
cj −

∑
i∈Ij πi

)
xj +

∑
i∈M πi

xj ∈ {0, 1} , j ∈ N
A detailed description of Lagrangian relaxation and subgradient optimization can be

found, for instance, in Umetani and Yagiura (2007). We recall here that, for fixed π, z (π)
constitutes a lower bound for the optimal value of SCP. Usually, instead of computing the
best Lagrangian lower bound, which is the optimal value z (π∗) of the Lagrangian dual
maxπ∈Rm

+
z (π), we compute a near optimal value zLB by means of the popular iterative

subgradient method. This method generates a sequence of vectors π(0), π(1), · · · and lets
zLB = maxk≥0 z

(
π(k)

)
.

In every iteration r, for fixed π(r), the relaxation problem LR(π(r)) is easily solved by
setting for j ∈ N

x
(r)
j = 1 if cj −

∑
i∈Ij π

(r)
i < 0

x
(r)
j = 0 if cj −

∑
i∈Ij π

(r)
i > 0

x
(r)
j = 0 or 1 if cj −

∑
i∈Ij π

(r)
i = 0

(2)

Typically, a maximum number T of iterations is fixed, and the method takes
O (m× n× d) time, where d is the number of nonzero entries in A.

3.2.2 The variable-fixing heuristic

This procedure reduces heuristically the number of columns of A (or variables of SCP).
Suppose that P is a subset of N with P = {j1, · · · , jp}. Consider the problem

(REDSCP)

 min
∑
k∈P ckxk∑

k∈P aikxk ≥ 1 i ∈M
xk ∈ {0, 1} k ∈ P

REDSCP is a set covering problem. It may have no feasible solution unless the constraint
matrix has no null row. Clearly, it is a restriction of SCP since it is obtained from it by
adding the constraints xj = 0, j /∈ P . Therefore, any feasible solution of REDSCP can be
extended to a feasible solution of SCP. We shall construct REDSCP by specifying the set
P , has two significant properties:

(i) It has much less variables than the original SCP (p� n);

A Two-Phase Heuristic for Set Covering 7

(ii) it potentially contains the optimal cover of the original SCP.

The set P is constructed by applying the subgradient method to the original instance of
SCP. When the method finishes, we compute for each index j ∈ N the value

fj =
1

T

T−1∑
r=0

x
(r)
j

where x(r)j , j ∈ N , is obtained in every iteration r by the formula (2). Clearly, 0 ≤ fj ≤
1, j ∈ N . The value fj is the “frequency” of the inclusion of the variable xj in the relaxed
solution. It is in some sense a score function of column j which suggests that the greater
the value fj , the greater our wish to put column j in a set P of promising candidates.
Surprisingly, the value fj is null for most of the columns, which means that the variable xj
is never selected by the subgradient algorithm because the reduced cost cj −

∑
i∈Ij π

(r)
i is

never non-positive. As a consequence of this observation, our idea is to include in REDSCP
only the columns j corresponding to nonzero fj’s. Let p be their number. We claim that
these columns are the most likely to belong to an optimal cover of the original SCP. We do
not have a formal proof of this claim. In fact, if we remove the term “most likely” the claim
becomes false for there exist instances for which the constructed REDSCP does not contain
the optimal cover. However, the computational experience confirms the claim by showing
that REDSCP defined in this way always contains the optimal (or best-known) cover.

The idea of eliminating variables is not new (see Caprara et al. (1999), Ceria et al.
(1998)). Usually, the rules of elimination are derived from the reduced costs. They are
mathematically correct, and the smaller resulting problem is equivalent to the original
problem. In this paper, the approach is different. It is purely heuristic. We discard every
variable that is never selected by the subgradient algorithm. Clearly, the reduced problem
and the original one are not equivalent. By dealing with the reduced problem we may
miss the optimal solution. So, if our goal is to solve exactly SCP, our approach should be
avoided. If the goal is to approximate SCP, our heuristic approach results in a very small
reduced problem, the solution of which includes, almost always, the best known solution
of the original SCP. This will be discussed later in the section devoted to the computational
experience. The details of the variable-fixing heuristic are given in a pseudo-code in Figure
2. Since our goal in this paper is to approximate SCP, from now on we shall be concerned
only with the much smaller REDSCP.

3.3 Lagrangian heuristic

A general scheme of a Lagrangian heuristic for a combinatorial optimization problem P
may be summarized as follows:

1. choose a Lagrangian relaxation of problem P;

2. use the subgradient method to solve the Lagrangian relaxation of P;

3. in each iteration of the subgradient method, try to derive a feasible solution from the
relaxed solution.

The third is the crucial step. However, it is not used in our method. Instead, we use the
reduced costs to select promising columns. Because we use the dual solution instead of the
primal, we continue referring to this kind of approach as Lagrangian heuristic.

8 S. Haddadi et al.

Input

Output Set // For the definition of REDSCP

Initialization

 Compute

 Using the greedy heuristic with regret, compute an upper
bound on the value of the optimal cover

 // is halved every 50 iterations in our implementation

Loop
For iteration

 Solve problem LR()

 If then

 // Compute the subgradient vector

 // Compute the new Lagrangian multipliers

End for

Return

Figure 2 Variable-fixing heuristic.

Recall that REDSCP is defined with m rows and p columns. Let us redefine for i ∈
M,Ji = {j ∈ P |aij = 1} to be the set of the columns in P covering row i.

Since we are willing to perform the subgradient method, our first task is to apply
the greedy heuristic with regret for computing an upper bound of the optimal value of
SCP. Let CoverSize be the size (number of columns) of the greedy cover found. Before
describing the Lagrangian heuristic, we begin by presenting its two main components which
are performed in every iteration of the subgradient method.

3.3.1 Construction procedure

The construction method begins with an empty cover in which a small subset S of the p
columns is inserted. The parameter %CoverSizeCons controls the number s = |S| of the
columns to be inserted with s = %CoverSizeCons× CoverSize. Half of the columns
(s/2) is greedily inserted with the regret principle where the costs are replaced with the
reduced costs. The second half is randomly selected.

A Two-Phase Heuristic for Set Covering 9

Define C1 = P \ S as the set of columns not in the cover, and letR1 be the set of rows
uncovered by the columns of S. Our task consists of solving the small SCP

(scp1)

min

∑
j∈C1 cjxj∑

j∈C1 aijxj ≥ 1 i ∈ R1

xj ∈ {0, 1} j ∈ C1

Let E be the optimal cover obtained. We have that C = S ∪ E is a feasible, possibly
redundant, cover. Clearly, the smaller the value of the parameter %CoverSizeCons, the
larger the size of problem scp1. There is no need for removing the redundant columns from
the cover obtained since this task will be implicitly performed by the improvement heuristic.

3.3.2 Improvement procedure

The improvement heuristic takes as input the coverC provided by the construction procedure
and computes a larger coverC ′ by adding toC a given number of columns fromP \ C. The
parameter %CoverSizeImp controls the number t = %CoverSizeImp× CoverSize of
columns to be added. Half of the columns (t/2) is inserted using the greedy with regret
heuristic with the reduced costs. The second half is randomly selected. Obviously, the larger
the number %CoverSizeImp, the larger the size of problem scp2. Clearly, the resulting
cover C ′ is redundant. Next, we extract from it the best cover by solving again a small SCP
(see Haddadi (1997)).

Let C2 ⊂ C ′ be the set of redundant columns and let R2 ⊂M be the set of rows not
covered by the columns inC ′ \ C2. To extract the best cover fromC ′ we solve the problem

(scp2)

min

∑
j∈C2 cjxj∑

j∈C2 aijxj ≥ 1 i ∈ R2

xj ∈ {0, 1} j ∈ C2

Let V be the optimal cover found. Then C ′ \ C2 ∪ V is the best cover extracted from
C ′. Clearly, it is at least as good as C. This improvement heuristic turns out to be effective,
as we shall see later.

The Lagrangian heuristic consists of a basic subgradient method where the construction
and the improvement procedures are embedded. Details are given in Figure 3.

4 Computational experience

The section reports our extensive computational experiments with benchmark instances,
and proposes to compare our approach with the state-of-art. All implementation details will
be provided to make our method reproducible.

4.1 Experimental setup

Our approach is coded in C and run on an Intel Pentium Dual Core, 2GHz. The web
site http://people.brunel.ac.uk/˜mastjjb/jeb/ provides the benchmark instances, which are
grouped in eight sets with five instances in each. These instances are well-known and
widely used to evaluate and compare exact and heuristic methods. Their characteristics are
presented in Table 1. The metaheuristics used for comparison are summarized in Table 2.

10 S. Haddadi et al.

Input Data of problem REDSCP,
Output Best cover and its cost

Initialization

 Using the greedy heuristic with regret, compute a cover
and its cost

Loop
For iteration

 Using the greedy heuristic with regret, insert columns in an empty set

 Randomly insert columns in

 Define and solve problem scp1, and let be the feasible cover found

 Update and its cost

 Construct a cover by adding in a greedy with regret manner columns
from to

 Add randomly chosen columns from to

 Extract the best cover from by solving problem scp2

 Update and its cost

 Solve the relaxed problem

 Compute the subgradient vector

 Compute the Lagrangian multipliers
Return and

Figure 3 Lagrangian heuristic.

4.2 Detailed results of the greedy heuristic with regret

The results and comparison with the greedy heuristic of Chvátal (1979) are shown in Table
3. The labels of the columns are self-explanatory. We show that the greedy heuristic with
regret almost always provides much better covers with smaller size. The average deviation
of the two greedy heuristics from best are respectively 14.46% and 7.98%. This tells that
the greedy heuristic with regret is almost twice more effective.

4.3 Detailed results of the variable-fixing heuristic

During the variable-fixing heuristic, the number of iterations of the subgradient method is
fixed to 200. The relaxation coefficient ρ starts with the value 2 and is halved every 50
iterations (Note that we are not interested in the value of the lower bound). The result of
the variable-fixing heuristic is the set P used for defining REDSCP.

Table 4 shows the results of the variable-fixing heuristic, where the columns labeled p
and % red. refer to the number of columns of REDSCP and the size reduction percentage

A Two-Phase Heuristic for Set Covering 11

Number of Density Number of Number of Optimal
Name instances (%) rows columns solution ?
A 5 2 300 3000 yes
B 5 5 300 3000 yes
C 5 2 400 4000 yes
D 5 5 400 4000 yes
NRE 5 10 500 5000 no
NRF 5 20 500 5000 no
NRG 5 2 1000 10000 no
NRF 5 5 1000 10000 no

Table 1 Characteristics of the instances

Label Methodology Reference
AICK Indirect genetic algorithm Aickelin (2002)
LAN Simple heuristic Lan et al. (2007)
OHLS Mean field approach Ohlsson et al. (2009)
REN Ant colony optimization Ren et al. (2010)
YAGI 3-flip neighborhood local search Yagiura et al. (2006)
HADD Our approach

Table 2 Heuristics in competition.

respectively. It can be seen that the computing times are small (less than one second) and
that the resulting REDSCP has a much smaller number of columns than the original SCP.
For instance, while the original number of variables of problem instance NRH1 is 10, 000,
the corresponding REDSCP has only 639 variables.

To be convinced that REDSCP contains the best known cover, it is submitted to Cplex
12.6, a general-purpose commercial solver, within a time-limit of 18, 000 seconds. This
step is intended only as a “certificate”, and is not considered as a method for approximating
SCP, although the instances in the data sets A, B, C and D, are satisfactorily solved (see
Table 4 where the symbol−means that the cost of the cover found by Cplex is equal to the
cost of the best known). The term ‘Limit’ in the column labeled ‘Time’ means that Cplex
reaches the fixed time-limit without finishing computing. In the remaining of the paper, we
shall deal only with the data sets NRE to NRH, which are the largest and the hardest, noting
that our heuristic identifies all the best covers for the instances in the data sets A, B, C and
D.

4.4 Parameter settings and results of the Lagrangian heuristic

The number of iterations of the subgradient method is fixed to 200. A good value of the
parameter %CoverSizeCons is 0.2 or 20%. It is obtained as a compromise between the
quality of the cover and its solution time. A smaller value (0.1 for example) gives better
constructed covers, at the expense of larger problem scp1. In the same manner, we found
that a good value of the parameter %CoverSizeImp is 1.2. A larger value (1.5 for example)
gives better improved covers by solving a larger problem scp2. Typically, problem scp1 has
a small number of constraints while problem scp2 has a small number of variables.

In our implementation, problems scp1 and scp2 are not solved exactly (this would take
a large computing time) but just approximated by using Cplex during a small time-limit.

12 S. Haddadi et al.

Greedy Greedy
Greedy w. regret Greedy w. regret

Best Cost Size Cost Size Best Cost Size Cost Size
A1 253 288 89 260 66 B1 69 77 45 78 40
A2 252 284 88 269 72 B2 76 86 47 84 40
A3 232 270 91 249 67 B3 80 89 47 83 40
A4 234 278 89 254 68 B4 79 89 50 83 43
A5 236 271 89 259 74 B5 72 78 45 77 42

15.31% 7.03% 11.40% 7.86%
C1 227 257 103 241 83 D1 60 74 52 69 43
C2 219 258 104 232 81 D2 66 74 51 71 44
C3 243 276 96 265 78 D3 72 83 52 78 47
C4 219 257 99 238 75 D4 62 71 55 63 43
C5 215 233 96 227 79 D5 61 69 51 64 42

13.76% 7.08% 15.67% 7.48%
NRE1 29 30 30 31 28 NRF1 14 16 16 15 15
NRE2 30 36 32 33 29 NRF2 15 16 15 16 16
NRE3 27 30 29 31 28 NRF3 14 17 17 15 14
NRE4 28 32 32 29 26 NRF4 14 17 17 16 15
NRE5 28 33 32 30 28 NRF5 13 16 16 15 15

13.34% 8.48% 17.38% 10.12%
NRG1 176 203 130 189 108 NRH1 63 76 67 69 56
NRG2 154 182 129 163 108 NRH2 63 74 65 68 58
NRG3 166 192 130 184 110 NRH3 59 65 60 64 58
NRG4 168 191 127 177 106 NRH4 58 69 62 62 55
NRG5 168 194 127 181 110 NRH5 55 63 60 60 58

15.67% 7.37% 16.36% 8.38%
Table 3 Comparison of the greedy heuristics

To make this time-limit depend on the instance size we define it to be M/2000. This way,
the computing time of our heuristic can be anticipated. For example, for an instance with
M = 1000, a simple count shows that our method requires an amount of computing time
of about 200 seconds, since there are 200 iterations, and in every iteration two small SCPs
are approximated within half a second each. The computational results of the Lagrangian
heuristic are shown in Table 5 where the symbol − has the same meaning.

4.5 Comparison with existing heuristics

As already shown in Table 2, five recent meta-heuristics are compared with our method,
called HADD. We do not re-implement them, but just use the published results which are
reported in Table 6 where the symbol − has the same meaning. The computing times are
reported in seconds and are related to the machine on which the method is run. Note that
Lan et al. (2007) and Ohlsson et al. (2009) report only the solution time, but not the total
computing time, so that their methods cannot be compared with ours from the execution
speed point of view. The times reported in the methods AICK, OHLS, REN, and YAGI, are
average times over ten runs.

A Two-Phase Heuristic for Set Covering 13

Variable-fixing solving REDSCP Variable-fixing solving REDSCP
p % red. Time Best Cost Time p % red. Time Best Cost Time

A1 259 91.37 0.08 253 − 0.23 B1 178 94.07 0.08 69 − 0.23
A2 268 91.07 0.07 252 − 0.28 B2 221 92.63 0.08 76 − 0.55
A3 284 90.53 0.07 232 − 0.22 B3 200 93.33 0.10 80 − 0.22
A4 287 90.43 0.05 234 − 0.17 B4 219 92.70 0.11 79 − 0.59
A5 268 91.07 0.08 236 − 0.17 B5 185 93.83 0.09 72 − 0.27

C1 321 91.98 0.11 227 − 0.25 D1 251 93.73 0.15 60 − 0.45
C2 346 91.35 0.11 219 − 0.31 D2 238 94.05 0.12 66 − 1.12
C3 354 91.15 0.08 243 − 0.66 D3 276 93.10 0.14 72 − 0.83
C4 348 91.30 0.09 219 − 0.30 D4 238 94.05 0.13 62 − 0.72
C5 302 92.45 0.10 215 − 0.36 D5 215 94.63 0.12 61 − 0.39

NRE1 242 95.16 0.40 29 − 19.27 NRF1 269 94.62 0.85 14 − 24.74
NRE2 309 93.82 0.41 30 − 277.28 NRF2 242 95.16 0.82 15 − 13.90
NRE3 267 94.66 0.43 27 − 24.35 NRF3 290 94.20 0.83 14 − 11.39
NRE4 264 94.72 0.40 28 − 30.50 NRF4 281 94.38 0.84 14 − 68.87
NRE5 277 94.46 0.39 28 − 13.81 NRF5 278 94.44 0.83 13 − 456.94

NRG1 663 93.37 0.34 176 − 4694.80 NRH1 639 93.61 0.86 63 − Limit
NRG2 638 93.62 0.35 154 − 630.95 NRH2 600 94.00 0.87 63 − Limit
NRG3 625 93.75 0.36 166 − 10815.64 NRH3 532 94.68 0.86 59 − Limit
NRG4 613 93.87 0.36 168 − Limit NRH4 580 94.20 0.85 58 − Limit
NRG5 636 93.64 0.34 168 − Limit NRH5 541 94.59 0.82 55 − Limit
Table 4 Details of the variable-fixing heuristic

Best Cost Time Best Cost Time
NRE1 29 − 85.32 NRF1 14 − 69.31
NRE2 30 − 108.05 NRF2 15 − 42.22
NRE3 27 − 95.33 NRF3 14 − 78.07
NRE4 28 − 106.04 NRF4 14 − 105.20
NRE5 28 − 55.71 NRF5 13 − 109.92

NRG1 176 − 166.38 NRH1 63 − 208.33
NRG2 154 − 182.11 NRH2 63 − 205.74
NRG3 166 − 189.63 NRH3 59 − 205.51
NRG4 168 − 190.21 NRH4 58 − 203.44
NRG5 168 − 196.77 NRH5 55 − 200.13

Table 5 Computational results on NRE-NRH instances.

From the point of view of accuracy, it can be seen in Table 8 that the methods LAN,
YAGI and HADD are effective since they are all able to find the optimal or best-known
solution, although a single run of YKI may fail. The methods REN and AICK are less
effective since they fail on one and three instances respectively, while the method OHLS
can be considered as inefficient.

14 S. Haddadi et al.

It remains to compare the methods from the execution speed point of view. As usual,
these comparisons are hard to perform because different platforms, languages and operating
systems are used (see Table 7). Computing times need to be scaled before we can compare
them. The reference (Dongarra, 2011) evaluates the performance of various computers using
linear algebra software. Although thousands of computers are tested, the machines used in
the comparison do not exist in the database. Nevertheless, similar machines, when found,
are taken into account. From the information provided by Dongarra (2011), if we consider
the Pentium II (400 MHz) as reference, rough scaling factors are shown in Table 7, and the
scaled times in Table 8.

From this comparison, our method turns out to be almost five times slower. This is
due to the use of Cplex, instead of a faster heuristic, for approximating problems scp1 and
scp2. On the other hand, average computing times seem not to be a fair way to count the
computing times of a method (AICK, OHLS, REN, YAGI) which is run ten times.

AICK LAN OHLS REN YAGI HADD
Best Cost Time Cost Time Cost Time Cost Time Cost Time Cost Time

NRE1 29 − 17 − − − 21.12 − 180 − 85.32
NRE2 30 − 63 − 32 − 23.49 − 180 − 108.05
NRE3 27 − 60 − 28 − 21.50 − 180 − 95.33
NRE4 28 − 41 − 29 − 23.27 − 180 − 106.04
NRE5 28 − 99 − 29 − 23.72 − 180 − 55.71

NRF1 14 − 21 − − − 30.13 − 180 − 69.31
NRF2 15 − 44 − − − 28.23 − 180 − 42.22
NRF3 14 − 234 − 15 − 30.70 − 180 − 78.07
NRF4 14 − 174 − 15 − 28.94 − 180 − 105.20
NRF5 13 − 241 − 14 − 27.13 − 180 − 109.92

NRG1 176 − 144 − 180 − 31.16 − 180 − 166.38
NRG2 154 155 327 − 157 − 29.03 − 180 − 182.11
NRG3 166 − 408 − 173 − 30.24 − 180 − 189.63
NRG4 168 − 303 − 175 − 29.73 − 180 − 190.21
NRG5 168 − 532 − 175 − 30.85 − 180 − 196.77

NRH1 63 − 668 − 65 64 71.47 − 180 − 208.33
NRH2 63 66 443 − 66 − 71.04 − 180 − 205.74
NRH3 59 − 648 − 62 − 69.66 − 180 − 205.51
NRH4 58 59 235 − 60 − 70.38 − 180 − 203.44
NRH5 55 − 66 − 56 − 68.23 − 180 − 200.13

Table 6 Results of the competitive heuristics.

5 Conclusion

In this paper, we proposed:

A Two-Phase Heuristic for Set Covering 15

Theoretical Scaling Number
Machine used Frequency Similar machine found in the database peak (Mflops) factor of runs

AICK Pentium II 450 MHz Intel Pentium II Xeon 450 MHz 450 1.13 10
LAN Pentium IV 1.7 GHz Not found Not known 1
OHLS Pentium II 400 MHz Not found 400 (expected) 1.00 10
REN Pentium IV 2.0 GHz Not found Not known 10.00 ? 10
YAGI SUN Ultra2 2300 Sun UltraSparc II 300 MHz 600 1.50 10
HADD Pentium Dual Core 2.0 GHz HP DL385 2.2 GHz (dual core) Opteron 275 4000 (expected) 10.00 1
Table 7 Machines used.

AICK LAN OHLS REN YAGI HADD
Number of best
solutions found 17 20 3 19 20 20

Average
computing time 238.40 38.00 180.00 140.17
Average scaled

computing time 269.39 380.00 270.00 1401.70
Table 8 Comparison of the heuristics.

1. a greedy heuristic with regret which turns more effective than the greedy heuristic of
Chvátal (1979);

2. an effective and promising variable-fixing procedure, eliminating up to 95% of the
variables of the problem, without sacrificing solution quality;

3. a simple and easy to implement Lagrangian heuristic, competitive with the state-of-
the-art.

The main two conclusions that can be drawn are the following:

• If we are interested in approximating SCP, we have just to deal with the reduced
problem which represents a small piece of the entire original SCP. But as shown, it
always contains the best-known cover. Furthermore, any successful heuristic would
benefit from this size reduction and applies much faster. This may be appealing for
practitioners, since instead of dealing with the whole data, one’s attention can be
restricted to the reduced problem.

• The idea underlying the definition of REDSCP, from the information provided by
the subgradient method, is generic enough and can potentially be applied to any
combinatorial optimization problem.

The following are some limitations of our approach. Solving problems scp1 and scp2
with Cplex was not a good idea. The Lagrangian solution approach can run faster if a good
heuristic is used instead of Cplex. Second, our heuristic is tailored for non-unicost SCP
instances (unicost set covering instances are those with identical costs). RAIL instances
are well-known very large scale instances arising from crew scheduling in the Italian
Railway company, with the costs being 1 or 2. Because precisely of the cost structure,
we unfortunately found that our heuristic performs poorly on unicost and RAIL instances,

16 S. Haddadi et al.

since can remove only a small part of the columns during the variable-fixing phase. Without
removing a large part of the latter, problem scp1 would be very large to be approximated
by using Cplex within a reasonable amount of time.

As a direction for future research, we will be focusing on the design and implementation
of a fast heuristic for approximating problems scp1 and scp2. It would also be interesting
to study the theoretical performance of the greedy heuristic with regret.

Acknowledgement

The authors are grateful to the two anonymous referees whose comments and suggestions
contribute to greatly improve the presentation and the readability of the manuscript.

References

Ablanedo-Rosas, J.H., Gao, H., Alidaee, B. and Teng W.Y.W. (2009) ‘Allocation of
emergency and recovery centres in Hidalgo, Mexico’. International Journal of Services
Sciences, Vol. 2, No. 2, pp.206–218.

Aickelin, U. (2001) ‘An indirect genetic algorithm for set covering problems’. Journal of
the Operational Research Society, Vol. 53, No. 10, pp.1118–1126.

Azadeh, A., Asadipour, G., Eivazy, H. and Nazari-Shirkouhi, S. (2012) ‘A unique hybrid
particle swarm optimisation algorithm for simulation and improvement of crew scheduling
problem’. International Journal of Operational Research, Vol. 13, No. 4, pp.406–422.

Bautista, J. and Pereira, J. (2007) ‘A GRASP algorithm to solve the unicost set covering
problem’. Computers and Operations Research, Vol. 34, No. 10, pp.3162–3173.

Beasley, J.E. and Chu, P.C. (1996) ‘A genetic algorithm for set covering problems’. European
Journal of Operational Research, Vol. 94, No. 2, pp.392–404.

Brusco, E., Jacobs, L.W. and Thompson, G.M. (1999) ‘A morphing procedure to supplement
a simulated annealing heuristic for cost- and coverage-correlated set covering problems’.
Annals of Operations Research, Vol. 86, No. 0, pp.611–627.

Cacchiani, V., Hemmelmayr, V.C. and Tricoire, F. (2014) ‘A set-covering based heuristic
algorithm for the periodic vehicle routing problem’. Discrete Applied Mathematics, Vol.
163, pp.53–64.

Caprara, A., Fischetti, M. and Toth, P. (1999) ‘A heuristic method for the set covering
problem’. Operations Research, Vol. 47, No. 5, pp.730–743.

Caprara, A., Toth, P. and Fischetti, M. (2000) ‘Algorithms for the set covering problem’.
Annals of Operations Research, Vol. 98, No. 1–4, pp.353–371.

Caserta, M. (2007) ‘Tabu search-based metaheuristic algorithm for large-scale set covering
problems’. In K. F. Doerner et al. (Eds.), ‘Metaheuristics: Progress in complex systems
optimization’ (pp. 43–63), Springer, New-York.

A Two-Phase Heuristic for Set Covering 17

Ceria, S., Nobili, P. and Sassano, A. (1998) ‘A Lagrangian-based heuristic for large scale
set covering problems’. Mathematical Programming, Vol. 81, No. 2, pp.215–228.

Chvátal, V. (1979) ‘A greedy heuristic for set-covering problem’. Mathematics of Operations
Research, Vol. 4, No. 3, pp.233–235.

Crawford, B., Soto, R. and Monfroy, E. (2014) ‘Cultural Algorithms for the Set Covering
Problem’. Lecture Notes in Computer Science, Vol. 7929 , pp.27–34.

Dongarra J.J. (2011) Performance of various computers using standard linear
equations software. [online] Technical report CS-89-85, University of Manchester.
http://ash2.icl.utk.edu/sites/ash2.icl.utk.edu/files/publications/2006/icl-utk-282-
2006.pdf (Accessed December 2015).

Feige U. (1998) ‘A threshold of log n for approximating set cover’. Journal of the ACM,
Vol. 45, No. 4, pp.634–652.

Haddadi S. (1997) ‘Simple Lagrangian heuristic for the set covering problem’. European
Journal of Operational Research, Vol. 97, No. 1, pp.200–204.

Haddadi S. (2015) ‘Benders decomposition for set covering problems almost
satisfying the consecutive ones property’. Journal of Combinatorial Optimization,
doi:10.1007/s10878.015-9935.

Hassin, R. and Keinan, A. (2008) ‘Greedy heuristics with regret, with application to the
cheapest insertion algorithm for the TSP’. Operations Research Letters, Vol. 36, No. 2,
pp.243–246.

Lan, G., DePuy, G.W. and Whitehouse, G.E. (2007) ‘An effective and simple heuristic for
the set covering problem’. European Journal of Operational Research, Vol. 176, No. 3,
pp.1327–1333.

Moore, J.L., Folkmann, M., Balmford, A., Brooks, T., Burgess, N., Rahbek, C., Williams,
P.H. and Krarup, J. (2003) ‘Heuristic and optimal solutions for set-covering problems in
conservation biology’. Ecography, Vol. 26, No. 5, pp.595–601.

Naji-Azimi, Z., Toth, P. and Galli, P. (2010) ‘An electromagnetism metaheuristic for the
unicost set covering problem’. European Journal of Operational research, Vol. 205, No.
2, pp.290–300.

Nepal, B., Lassan, G., Drow, B. and Chelst, K. (2009) ‘A set-covering model for optimizing
selection of portfolio of microcontrollers in an automotive supplier company’. European
Journal of Operational Research, Vol. 193, No. 1, pp.272–281.

Ohlsson, M., Peterson, C. and Södeberg, B. (2009) ‘An efficient mean field approach to
the set covering problem’. European Journal of Operational Research, Vol. 133, No. 3,
pp.583–595.

Rajagopalan, H.K., Saydam, C. and Xiao, J. (2008) ‘A multiperiod set covering location
model for dynamic redeployment of ambulances’. Computers and Operations Research,
Vol. 35, No. 3, pp.814–826.

18 S. Haddadi et al.

Ren, Z.G., Feng, Z.R., Ke, L.J. and Zhang, Z.J. (2010) ‘New ideas for applying ant colony
optimization to the set covering problem’. Computers and Industrial Engineering, Vol.
58, No. 4, pp.774–784.

Umetani, S. and Yagiura, M. (2007) ‘Relaxation heuristics for the set covering problem’.
Journal of the Operational Research Society of Japan, Vol. 50, No. 4, pp.350–375.

Yagiura, M., Kishida, M. and Ibaraki, T. (2006) ‘A 3-flip neighborhood local search for
the set covering problem’. European Journal of Operational Research, Vol. 172, No. 2,
pp.472–499.

