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Abstract. We investigate the flow of a one-dimensional nonlinear Schrödinger model

with periodic boundary conditions past an obstacle, motivated by recent experiments

with Bose–Einstein condensates in ring traps. Above certain rotation velocities,

localized solutions with a nontrivial phase profile appear. In striking difference from the

infinite domain, in this case there are many critical velocities. At each critical velocity,

the steady flow solutions disappear in a saddle-center bifurcation. These interconnected

branches of the bifurcation diagram lead to additions of circulation quanta to the phase

of the associated solution. This, in turn, relates to the manifestation of persistent

current in numerous recent experimental and theoretical works, the connections to

which we touch upon. The complex dynamics of the identified waveforms and the

instability of unstable solution branches are demonstrated.

PACS numbers: 03.75.Kk, 67.85.-d, 37.10.Vz, 47.37.+q
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1. Introduction

Persistent flow is a remarkable property of macroscopic quantum systems. Bose–Einstein

condensates (BECs) in a ring geometry [1, 2, 3, 4, 5, 6] have been shown recently to

support circulating superfluid flow [5, 7, 8]. The ring trap can have a highly tunable

radius and controllable transverse oscillation frequency [9, 10], which makes such a

system ideal for the creation of, e.g., a multiply connected BEC [5, 8] as well as for

applications in interferometry [11].

A characteristic feature associated with superfluidity is the existence of a critical

velocity above which its breakdown leads to the creation of excitations. In experiments

with BECs, evidence for a critical velocity was obtained by moving an obstacle, i.e. a

tightly focused laser beam, through a BEC [12, 13]. This setting has been demonstrated

to be prototypical for dark soliton formation in 1D [14, 15] (see [16] for experiments,

although the latter were only quasi-one-dimensional), and for vortex formation in 2D

[17], which can be thought of as a type of nonlinear Cherenkov radiation. In the case

of obstacles in a supersonic flow of the BEC, the formed Cherenkov cone [18, 19, 20]

transforms into a spatial shock wave consisting of a chain of dark solitons [21]. The

appearance of such radiation in photonic crystals [22] is yet another illustration of the

importance of the fundamental study of critical velocity. The formation of vortex dipoles

in a similar setting was also directly observed experimentally in the work of [23]. The

case of a heavy impurity and the associated drag force were studied in [24].

In a homogeneous weakly interacting Bose gas the critical velocity is the same as the

speed of sound, as per the associated Landau criterion [25]. Moving inhomogeneities can

alter this critical value. For a ring geometry it has been shown in [26] that the instability

of the superfluid is caused by outer and inner edge surface modes, in a similar fashion as

in an infinite cylindrically symmetric tube with transverse harmonic confinement [27, 28].

The different mechanism is due to the presence of a centrifugal force arising from the

nature of the rotation. The effect of potential barriers in BECs confined in a ring trap has

been studied experimentally and theoretically [7, 29, 30, 31, 32, 33]. The weak link due

to the barrier, which affects the current around the loop, has a promising application as

a closed-loop atomic circuit (atomtronics), e.g. as analogs of superconducting quantum

interference devices (SQUIDs) [34, 35]. The current-phase relation of a BEC flowing

through a weak link was explored for a repulsive square barrier in [36]. The existence

of a critical velocity above which superfluid flow stops in the ring is connected to

Cherenkov radiation through the excitations of vortex-antivortex pairs [7, 29], in analogy

to the rectilinear case [23]. Nevertheless, the relevant instability remains somewhat

inconclusive (in connection to corresponding experiments [7]) with different mechanisms

proposed to account for discrepancies between theory and observation including thermal

fluctuations [37] and imaging system resolution [38].

In the present study we consider a BEC confined in an effectively one-dimensional

annular trap with a moving potential barrier, which is equivalent to a stationary barrier

and a moving condensate as realized in [7, 30]. Using the mean-field, i.e. Gross-Pitaevskii
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(GP) approximation in the infinite domain, it was shown that the critical velocity vc
corresponds to a saddle-center bifurcation of two branches of solutions [14], a stable

(center) and an unstable (saddle) one. Using a 1D approximation (for a narrow ring

geometry) in an effectively periodic domain, we reveal in an analytical and corroborate

in a numerical fashion the existence of a sequence of saddle-center bifurcations and

associated critical velocities. These, in turn, correspond to different topological charges

that are all connected within the same bifurcation diagram. We present numerical

simulations as well as analytical calculations, where it is shown that the critical points

can be obtained from solving two coupled nonlinear equations. We also observe the

presence of a critical strength of the inhomogeneity (or length of the domain) above

(respectively, below) which there is no critical velocity, i.e. the inhomogeneity can

move with any velocity while preserving the superfluidity. This occurs when the ring

circumference becomes shorter than the healing length (a setting that may thus be

less relevant from a physical perspective) or when the obstacle is strong enough. Our

examination reveals a series of unstable branches in the relevant dynamics; we explore

the dynamical evolution of the solutions associated with these branches by means of

direct numerical simulations.

The results presented here are intimately connected with recent experimental and

theoretical observations. One of the early attempts to identify topological winding

(and unwinding) in atomic BECs resulted in the seminal findings of [39, 40, 41]. In

these works, rather than a defect rotating inside a BEC, a setting where a rotation

was imposed on the entire quasi-1D ring BEC was examined. This has similarities

but also substantial differences from our setup. A similarity is that the system is

analytically tractable; in fact, it is a genuinely homogeneous system (1D in the co-

rotating frame) where the effective 1D GP equation associated with the dynamics

(including the rotational term) can be solved analytically by means of elliptic function

cnoidal wave solutions which account for the phase slip events also identified here. On

the other hand, there are nontrivial differences from that case. In particular, in our

setting (and in recent experiments such as [7, 30, 31, 34, 35, 42], the phase slips do not

arise in a “distributed” manner, associated with these periodic cnoidal solutions, but

rather in a localized manner being co-located with the defect. Hence, the analytical

considerations presented herein are expected to be more closely connected to recent

experiments. Among the latter, a few [34, 35] have been more directly related to the

case with a pair of weak links or Josephson junctions, aiming at least in part to potential

superconducting quantum interference (SQUID) related applications, while here we will

focus solely on the realm of a single weak link. Arguably, the recent experimental settings

most clearly related to our own work are those of [30, 31]. The former one measures

experimentally the emergence of the phase slips and uses a qualitative model based on

the Bohr-Sommerfeld quantization condition and an approximate current-phase relation

at the weak link to theoretically trace a structure similar to the one that we analytically

identify in the present work [cf. their Fig. 4 and our bifurcation diagrams of Figs. 2 and

3 below]. The latter work of [31], in fact, explicitly identifies the hysteretic dynamics
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that has been proposed to be a key characteristic of this system in the above figures.

However, it also recognizes the disparity of the experimental observations from the

Gross-Pitaevskii findings (a feature that retraces discussions of earlier work mentioned

above [37, 38]). The analytical tractability of our findings in this system (in a sense,

adapting to it the spirit of calculations performed earlier in the homogeneous rotated

system of [39, 40, 41]) may offer further insight in the relevant comparison.

As a final step in this theme of comparisons, we would like to mention recent

work, which has explored the case of a rotating weak link as a function not of the

potential/domain parameters considered here (such as the barrier strength or the domain

length), but rather as a function of the interaction strength [43]. This elaborate task

requires different approaches in the weakly interacting limit (treated by means of a

Gross-Pitaevskii equation) and in the strongly interacting limit (treated by means of a

Luttinger liquid approach and in the case of a Tonks gas by a Bose-Fermi mapping to the

case of non-interacting fermions). Intermediate regimes were treated by density-matrix

renormalization group computations which, in fact, revealed an unexpected optimality

in the observed persistent currents at some intermediate interaction strengths between

the above limits.

2. Theoretical Setup

The 3D Gross-Pitaevskii equation is given by [44]

i~∂tψ = − ~2

2m
∆ψ + g3Dn|ψ|2ψ + V (x)ψ + U(x, t)ψ, (1)

with x = (x, y, z) ∈ R3, ψ(x, t) is the mean-field wave function, m is the atomic mass,

∆ = ∂xx+∂yy+∂zz is the Laplacian, µ is the chemical potential, g3D = 4π~2as
m

the atomic

interaction strength, which is proportional to the atomic scattering length as, n is the

number of atoms, V is the external trapping potential, and U is a short range potential

representing the moving obstacle with an angular velocity ω. Here, the wave function

is scaled by the integral ∫
R3

|ψ|2 dx = 1.

BECs on a ring, with radius R, can be described by the GP equation (1) with a trapping

potential that can be written in cylindrical coordinates (r, z, θ) as

V (r, z) =
1

2
m[ω2

r(r −R)2 + ω2
zz

2]

where ωr, ωz � 1, such that the dynamics of the BECs would be confined at r = R

and z = 0, which is the minimum of the confining potential V (r, z). Typical parameters

used in experiments ([30]) with 23Na are ωr/2π = 110 Hz, ωz/2π = 550 Hz,R = 20µm,

n ∼ 105 and the Planck constant ~ = 1.05× 10−34 Js.

In this case, ∆ = ∂rr + 1
r
∂r + 1

r2
∂θθ + ∂zz and the moving potential U can be

treated as a δ potential of strength α, i.e., U(r, θ, t) = αδ (r − L/π) δ(θ−ωt). Assuming
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a concentration around the minimum (r = R, z = 0) and using ωz, ωr � 1, one can

then write ψ(x, t) = ψ1(r)ψ2(z)ψ3(θ, t), where ψ1(r) and ψ2(z) are the ground states

satisfying the equations[
− ~

2m

(
∂rr +

1

r
∂r

)
+

1

2
m[ω2

r(r −R)2]

]
ψ1(r) = κ1ψ1(r),[

− ~
2m

∂zz +
m

2
ω2
zz

2

]
ψ2(z) = κ2ψ2(z),

under the scaling
∫
R+ r|ψ1|2 dr =

∫
R |ψ2|2 dz = 1. Substituting ψ(x, t) =

ψ1(r)ψ2(z)ψ3(θ, t) into (1) one obtains approximately

i~∂tψ3(θ) = − ~2

2m

1

R2
∂θθψ3(θ) + g3Dn|ψ1(R)|2|ψ2(0)|2|ψ3(θ)|2ψ3(θ) + (µ1 + µ2)ψ3(θ)

+ U(R, θ, t)Ψ3(θ). (2)

Using the scaling t̃ = t/t0 and ψ̃ =
√
g̃ψ3, with

t0 =
~

2m
, g̃ = (g3Dn|ψ1(R)|2|ψ2(0)|22m)/(~2),

and setting κ̃ = (κ1 + κ2)t0/~, ω̃ = ωt0, and α̃ = α/(~t0) accordingly, Eq. (2) can be

reduced into the scaled equation (after dropping all the tildes)

iψt = − 1

R2
ψθθ + κψ + |ψ|2ψ + αδ(θ − ωt)ψ, (3)

where the periodic boundary conditions along the azimuthal direction are

ψ(−π, t) = ψ(π, t), ψθ(−π, t) = ψθ(π, t).

A static BEC with a moving potential is equivalent to the flow of a nonlinear

Schrödinger (NLS) fluid past an immobile obstacle. Writing R = L/π, taking Rθ → x,

and considering the travelling frame (i.e., x → x − vt), Eq. (3) for the effectively 1D

problem can be written as

iψt = ivψx − ψxx + κψ + |ψ|2ψ + αδ(x)ψ, −L ≤ x < L. (4)

In order to study the existence of persistent superflow, we search for a steady state

solution ψ(x, t) = exp(−iµ∗t)u(x) of the GP equation (4), where µ∗ is the chemical

potential, which leads to

ivux − uxx + κu+ |u|2u+ αδ(x)u = µ∗u, (5)

or equivalently

ivux − uxx − µu+ |u|2u+ αδ(x)u = 0 (6)

with µ = µ∗ − κ.
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Denoting NL as the norm of the solution u(x), i.e. NL =
∫ π
−π |u|

2dx = g̃, Eq. (6)

is solved simultaneously with the scaling equation, without loss of generality, NL = 2L,

using a Newton-Raphson method by discretizing the Laplacian with a central finite

difference method [45].

We then examine the (linear) stability of a solution u(x) for which we introduce the

linearization ansatz ψ(x, t) = exp(−iµ∗t)(u(x) + ε(r(x)eiωt + s∗(x)e−iω
∗t)), where ε is a

formal small parameter, ω an eigenfrequency and (r, s) an eigenvector. Substituting it

into eq. (4) and keeping the linear terms in r and s, one obtains the linear eigenvalue

problem (EVP)[
L u2

−(u∗)2 −L∗

][
r(x)

s(x)

]
= −ω

[
r(x)

s(x)

]
, (7)

where L = iv∂x − ∂xx − µ + 2|u|2 + αδ(x) and L∗ = −iv∂x − ∂xx − µ + 2|u|2 + αδ(x).

Note that eigenvalues in Hamiltonian systems come in complex quartets [46]. In

particular, in the realm of the Schrödinger systems (3), if ω is an eigenfrequency of

(7) with a corresponding eigenfunction [r(x) s(x)]T and T represents the transpose,

then (−ω), (−ω∗) and ω∗ are also eigenfrequencies with corresponding eigenfunctions

[s(−x) r(−x)]T , [s(x)∗ r(x)∗]T and [r(−x)∗ s(−x)∗]T , using the fact that (u(x)2)∗ =

u(−x)2 and L∗f(x) = Lf(−x). A solution u(x) is therefore stable if and only if

Im(ω) = 0 for all eigenfrequencies ω.

3. Numerical Results and Connections to Theory

In Figure 1 we show one of the principal results of the present work, namely the

bifurcation diagram of superfluid flow for varying velocity v starting from the static

solution v = 0 of (3) for a system with NL = 2L = 10 and α = 0.5. As we fix the

norm, the bifurcation diagram is depicted in µ as a function of v. From Figure 1 we

observe that the solution experiences many saddle-center bifurcations (turning points)

as indicated by black dots. Since steady flows do not exist beyond the turning points

(i.e. for either larger or smaller v for the respective turning point), the abscissa of

the bifurcation points corresponds to critical velocities vc. Note that hysteresis in one-

dimensional rings and in optical lattices has been reported before in [47], where it was

argued that superfluidity can be naturally viewed as a hysteretic response to rotation.

In a ring trap geometry the phase of the BEC circulates around the centre by an

integer multiple of 2π (see figure 1). The so-called topological charge q corresponds to

how many times the phase winds along the ring. Macroscopic states with different q

have distinct energies and the effect of q on persistent flow has been recently studied

experimentally [8]. Considering the phase of the solutions along the branch in figure 1,

it is interesting to note that the topological charge jumps along the branch segments

that correspond to decreasing velocity v. More precisely, q increases at the points where

the density at the obstacle vanishes. Hence, the solutions for all values of q are smoothly

connected along the diagram. In Fig. 1, the upper insets show the density and the phase



Superfluid flow past an obstacle in annular Bose–Einstein condensates 7

0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

4

v

µ

−5 0 5
0.7

0.8

0.9

1

1.1

|u
|2

x

q = 0

−5 0 5
−0.01

−0.005

0

0.005

0.01

A
rg

(u
)/

2π
−5 0 5
0

1

2

|u
|2

x

q = 0

−5 0 5
−0.5

0

0.5

A
rg

(u
)/

2π

−5 0 5
0.7

0.8

0.9

1

1.1

1.2

|u
|2

x
−5 0 5

−0.5

0

0.5

1

1.5

2

A
rg

(u
)/

2π

q = 2

−5 0 5
0

1

2

|u
|2

x

q = 1

−5 0 5
0

0.5

1

A
rg

(u
)/

2π

−5 0 5
0.6

0.8

1

1.2

|u
|2

x

q = 1

−5 0 5
−0.5

0

0.5

1

A
rg

(u
)/

2π

Figure 1. Bifurcation diagram of the steady flow solution for a model system with

α = 0.5 and NL = 2L = 10. Bold solid and dotted lines correspond to stable and

unstable solutions, respectively. The insets show the time independent solution profiles

in the ring trap along the branches for velocities corresponding to the position of the

crosses. Solid and dashed lines in the insets show the magnitude and phase of the

solutions. For each profile the solution charge q is given.

profile right before the charge jump (phase slip).

To provide a better understanding of the relation between the bifurcation diagram

in ring systems (figure 1) and that of the infinite domain, which only has one saddle-

center bifurcation [14], we now study bifurcation diagrams for different values of the

domain length L. For this calculation it is preferable to fix the chemical potential µ and

let the solution norm vary. Using α = 0.5 and µ = 1, the results are shown in Fig. 2.

Plotted is the square-root density of the stationary solution |u(0)| against the velocity.

It is known that in the infinite domain, the critical velocity corresponds to a saddle-

center bifurcation between a dark soliton pinned to the obstacle and the uniform solution

that is modified due to the inhomogeneity U(x) [14]. The continuation diagram of the

solution in this case forms a loop with its symmetric counterpart (note that Eq. (4) is

invariant under the transformation v → −v and x→ −x) shown as black curve in Fig.

2. As v varies further, one will go around in the closed loop.

In a ring system, when L is finite, we do not obtain a closed loop, but have connected
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)

 

 

Figure 2. (Colour online) Connection between ring systems with finite lengths L

(coloured) and the infinite domain (black line). We plot A(0) = |u(0)| as a function

of v for α = 0.5 for several values of L, i.e. ∞ (black), 5 (red), 2 (blue), 1/2 (green).

Solid and dotted curves represent stable and unstable solutions, respectively.

‘loops’ instead. The situation, when the curves touch the horizontal axis for finite L,

corresponds to the creation of dark-soliton-like states at the position of the impurity.

Exactly at these points the topological charge increases. While in the infinite domain

there is only one velocity point, where dark soliton-like-states can be created by the

impurity, there are several of these points in the ring systems. The implications of this

feature lead to complex dynamics as will be discussed further below.

With decreasing length L the initial ‘loops’ become smaller and the distance

between two consecutive ‘loops’ increases. There will be critical values of L when the

shrinking ‘loops’ become points, i.e. pairs of saddle-node bifurcations collide. In that

case, when one decreases the length further, the corresponding ‘loops’ will disappear as

is the case in the green curve in figure 2.

We have also studied the effect of varying the potential strength α on the existence

of steady state solutions. From our computations shown in figure 3, we obtain that as α

increases, the bifurcation ‘loops’ are getting smaller and two consecutive saddle-center

bifurcation points get closer to each other and then finally disappear at some value α.

This implies that there is a critical potential strength parameter αcr above which there

is no saddle-node bifurcation, i.e. the obstacle can move with any velocity. This may

be interpreted as a condition when the obstacle is strong enough to pin the ring BEC

such that moving the obstacle means moving the BEC as a whole and hence there is

no relative velocity between the two. This informs us that there is a limiting α above

which it is unfavourable for the BEC to have a non-vanishing density at the position of

the barrier, i.e. the BEC moves together with the barrier. In this case, the response of

the BEC to a moving barrier should not be distinguishable from that of a thermal gas.
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The green curve (L = 1/2) in figure 2 also corresponds to such a situation. This is a

feature that is not present in the infinite domain.

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

α

v c

Figure 3. The critical velocities vc as functions of the potential strength α, in a

ring with L = 5. The black dots correspond to those depicted in figure 1. Above a

certain critical strength the potential can move with any velocity without breaking

the superfluidity. This is because the critical points pairwise merge, as shown in the

figure. This is done in a way reminiscent of a swallowtail catastrophe surface [48] in

the context of Fig. 1 and results in a monotonic dependence of the chemical potential

µ vs. the velocity v and the absence of critical points.

The bifurcation diagrams can be analysed as follows (a similar derivation was

presented in the Supplemental Material of [43] without connection with bifurcations

that occur in the system). Using the Madelung’s transformation u(x) = A(x)eiϕ(x), one

obtains from the static version of (4)

Aϕxx = vAx − 2Axϕx, (8)

Axx = Aϕ2
x − µA+ A3 − vAϕx + U(x)A. (9)

Multiplying (8) with A and integrating yields

ϕx =
v

2
− C1

A2
, (10)

where C1 is a constant of integration, which can be directly taken to be any number

in the infinite domain [14]. Notice that Eq. (10) is suggestive (as discussed above in

connection with Fig. 2) of the fact that where A(0) → 0, sharp gradients in the phase

may arise; cf. the top profiles in Fig. 1. For a δ-potential U(x), one then obtains from

(9) the first integral

A2
x =

1

4A2

[
2A6 −

(
4µ+ v2

)
A4 + 4C2A

2 − 4C2
1

]
, (11)

with C2 being a constant of integration, and boundary conditions

A(0+) = A(0−), Ax(0
+)− Ax(0−) = αA(0). (12)
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Due to the symmetry (x→ −x), the latter equation is equivalent to Ax(0
+) = αA(0)/2.

Using the equations in (2), which are equivalent to A(−L) = A(L), Ax(±L) = 0, and

(12), it is straightforward to obtain from (11) evaluated at x = 0, L that

K1 = A(0)2
(
2A(0)2 −

(
α2 + v2 + 4µ

))
,

K2 = A(L)2
(
2A(L)2 −

(
v2 + 4µ

))
,

K3 = A(0)4
(
2A(0)2 −

(
α2 + v2

))
, K4 = A(L)4

(
2A(L)2 −

(
v2 + 4µ

))
,

C2
1 =

A(L)2A(0)2 (K1 −K2)

4 (A(L)2 − A(0)2)
, C2 =

K3 −K4 − 4A(0)µ

4 (A(L)2 − A(0)2)
. (13)

Let

Y (y) =

∫
dy√

2y3 − (4µ+ v2) y2 + 4C2y − 4C2
1

, (14)

which can be expressed in terms of the incomplete elliptic integral of the first kind [49].

Then, the solution of (11) is

A(x) =
√
Y −1 (x+ Y (A(0)2)), x > 0, (15)

and A(−x) = A(x). Hence, A(L) can be written in terms of A(0). Finally, using (10),

one obtains the nonlinear algebraic equation that will yield the diagrams in Fig. 2, i.e.

vL

2
− qπ =

∫ L

0

C1

Y −1 (x+ Y (A(0)2))
dx, (16)

where q ∈ Z is the topological charge. Figure 1 can be obtained similarly from solving

(16) simultaneously with the constraint
∫ L
0
Y −1 (x+ Y (A(0)2)) dx = NL/2 for µ and

A(0).

x
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Figure 4. (Colour online) Time dynamics of the two unstable solutions shown in the

insets of figure 1 for q = 0 and v = 0.6 (a) and q = 1 and v = 1.9 (b). In both panels, a

soliton is created and moves around the ring with constant velocity, while the density

of the BEC shows a periodic pattern. Depicted is the density |u(x, t)|2.
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It is then interesting to investigate the dynamics of solutions of eq. (4) in two specific

regions of the bifurcation diagram. To be more precise, we study the time-evolution of

unstable solutions under small perturbations (Figure 4) and discuss the time dynamics

of solutions for velocities beyond the critical values (Figure 5), i.e. below or above which

the corresponding steady state solutions do not exist.

For the two unstable solutions depicted in the insets of Figure 1, we show the time

evolution dynamics in laboratory frame in Figure 4 by plotting the density distribution

along the ring. In both situations a dark soliton is released from the inhomogeneity after

initially travelling along the obstacle. The detachment of dark soliton from the ’pinning’

potential is the only dynamics of instability that we observed in all our simulations.

Whether the soliton travels ahead or behind the obstacle depends sensitively on the

perturbation. Note as well that the density of the cloud shows that after detachment

the dark soliton in panel (b) moves faster than that in panel (a).

We then analyse the dynamics beyond a critical value, i.e. we take the steady state

solution at a critical velocity vc as the initial condition and then compute the evolution

for v = vc + ∆v.
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Figure 5. (Colour online) Numerical integration of eq. (4) at v = 1.2 + ∆v close to

the bifurcation point. (a) For ∆v = 0.02 a soliton is created at the position of the

impurity, after one round-trip the soliton is trapped by the impurity and released after

some time. (b) For ∆v = 0.6 there are one or two solitons within the trap. Arrows

in the figure indicate the presence of two solitons at one instant of time. See text for

details.

In figure 5(a) we show the dynamics in moving coordinate frame for clarity with

v = vc + 0.02 for the second bifurcation point in Figure 1 at vc = 1.2. We observe that

a dark soliton is emitted from the impurity along the evolution. In striking difference

to the infinite domain [14], the released dark soliton interacts periodically with the

impurity, which then traps the soliton for some time (e.g. between t = 40 and t = 50)

before releasing it again. Note that the trapping time after each round trip is not

constant. For a wide interval of ∆v > 0 (1.2 < v < 1.3) we obtain similar dynamics
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with only one soliton present in the annular BEC. In the “laboratory frame” (where the

obstacle is rotating), this situation implies that the emitted dark soliton will tend to

be standing, even though it also slowly drifts due to the temporary entrapment that it

suffers from the moving obstacle.

When ∆v = 0.6, one or two dark solitons can be created within the ring, as is

shown in figure 5(b). For the first few time units, there is only one soliton present

within the ring. After some time an additional dark soliton can be created, and as a

result at the time instant indicated with arrows, two solitons exist in the trap. The

presence of several solitons in the trap and repeated interaction with the impurity can

lead to complex dynamics including collisions between the solitons or annihilation of

the soliton by the impurity.

4. Discussion and Future Challenges

In current state of the art ring traps that have been created e.g. by a spatial light

modulator (SLM) [8] or by magnetic potentials [50], the impurity can easily be added

through a focused blue detuned laser beam or by the SLM as well. In the setup of

[7, 34] the impurity is present and excitations have indeed been observed [30]. The

predictions of this paper are therefore directly relevant for the effects observed in current

experiments.

In summary, we have studied the creation of dark solitary waves (and more generally

the generation of phase slips/persistent currents) in a system with periodic boundary

conditions. In contrast to the infinite domain case, for our bounded domain setting

we find the existence of several critical velocities corresponding to different charges

q of the stable solution. A somewhat unexpected feature was also the existence of

sufficiently narrow domains or sufficiently strong obstacles for which no critical velocity

could be identified. The ability to create coherent structures by increasing the velocity

or to annihilate them through the impurity allows the creation –via the bifurcation

diagram presented herein– of a controllable number of 2π phase windings within the

ring trap. The analytical tractability of this formation through the quasi-1D theoretical

formulation proposed herein is a feature adding to the controllability of the process. The

exact dynamics of the resulting structures can be highly complex including possible

collisions and interactions and will be an interesting object for further study. It is

especially relevant to systematically extend such considerations to higher dimensional

contexts not only in 2D but also in 3D. In higher dimensions, the situations are distinct

as superfluid does not necessarily rotate like a solid body, see e.g., [29] for numerical

studies of flow dissipation in 2D in the mean field regime in the presence of a static

barrier, [33] for superfluid with q−topological charge in the presence of rotating barrier

and [32] for persistent currents in the 3D case.
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