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Brain-computer interface (BCI) is technology that is deveping fast, but it remains

inaccurate, unreliable and slow due to the dif culty to obtén precise information from

the brain. Consequently, the involvement of other biosigria to decode the user control

tasks has risen in importance. A traditional way to operate 8Cl| system is via motor
imagery (MI) tasks. As imaginary movements activate similaortical structures and

vegetative mechanisms as a voluntary movement does, hearate variability (HRV) has
been proposed as a parameter to improve the detection of Ml rated control tasks.

However, HR is very susceptible to body needs and environmeéal demands, and as

BCI systems require high levels of attention, perceptual pcessing and mental workload,

it is important to assess the practical effectiveness of HRVI'he present study aimed

to determine if brain and heart electrical signals (HRV) amodulated by MI activity

used to control a BCI system, or if HRV is modulated by the useperceptions and

responses that result from the operation of a BCI system (i.euser experience). For this
purpose, a database of 11 participants who were exposed to gjht different situations

was used. The sensory-cognitive load (intake and rejectiotasks) was controlled in those
situations. Two electrophysiological signals were utie: electroencephalography and
electrocardiography. From those biosignals, event-reled (de-)synchronization maps
and event-related HR changes were respectively estimatedThe maps and the HR

changes were cross-correlated in order to verify if both bisignals were modulated due
to Ml activity. The results suggest that HR varies accordintp the experience undergone
by the user in a BCI working environment, and not because of # Ml activity used to

operate the system.

Keywords: brain-computer interface, motor imagery, event-rel ated desynchronization, event-related

synchronization, event-related heart rate, user experien ce
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INTRODUCTION mobilization required by the forthcoming movement. In fact,
they later showed that HR was increased by about 50% in an

The impact of brain-computer interfaces (BCls) has beerxercise condition, whereas this increase was about 32% in a
increasing over the past few years, owing to a great inteffest gental condition, where no work was produced but the same
the scienti c community for developing technology capable ofmovement was mentally executefiecety et al., 1993It also
establishing communication between the human brain and &eems that those central programming structures are aetivat
computing system. Although, considerable advances have beg proportion to the degree of mental e ort involved in MI.
made to date, BCls remain inaccurate, unreliable and slowor instance, a more di cult Ml task elicits a greater autoriwat
due to the di Culty to obtain pI'ECiSG information from the responsemecety etal., 1991; Oishi et al., 2’]0&5 MI activity is
brain. As a result, the involvement of other electrophysyital  accompanied by a HR variation, this indicator has been proposed
signals to decode the mental state of a BCI user has risen {§ improve BCI performance in the following wag{urtscheller
importance. A BCI system that makes use of other biosignals: al., 2008, 20)3As MI related control tasks typically used to
is called hybrid BCI (hBCI). To nd the ideal combination operate a BCI system may be detected either by the modulation
of biosignals that could enhance and enrich BCI performancef brain or heart electrical activity, researchers in théd dave
is a serious challenge because of the variable informatigsroposed to use the ECG signal to identify a control task when
content between electrophysiological sources and the diere electroencephalographic (EEG) signals are very di use, and do
degrees of non-stationaryA(lison et al., 2012; Muller-Putz not determine the user desires. Indeed, some researchees ha
et al, 201p However, there is a growing body of literature gone further by attempting to identify Ml related control task
(Mdller-Putz et al., 2011; Amiri et al., 20Lthat has shown only using cardiovascular activitj/archal-Crespo et al., 20).2
the improvement of BCI performance (in terms of accuracyin brief, the intention of all of this is to include ECG sigsabr
and information transfer rate) through the inclusion of @h even replace EEG signals, owing to the versatility of recgrdin
biosignals such as electrocardiography (ECG), electrorapby  heart activity in comparison with brain activity, so as toastsh
or electrooculography. amore e ective brain-computer communication.

A traditional way to control a BCI system is via motor  As far as we are concerned, the rst study where HR was
imagery (MI) tasks, and one of the auxiliary biosignal propose@valuated as an external communication channel for BCesyst
to improve the performance of this type of systems hasyas conducted byfurtscheller et al. (2006)They associated
been ECG activity. Heart rate (HR) is the most commonHR deceleration with stimulus anticipation, motor preparatio
parameter estimated to monitor ECG changes because this dsd decision making; and related HR acceleration to comjoetiti
a psychophysiological marker of the adaptive environmentadnd mental e ort. Another attempt to improve BCI functionality
engagement orges, 2007 HR is principally modulated by via HR was made bycherer et al. (2007who proposed to
respiration, blood pressure waves and central commandsmploy HR for self-initiation of a BCI. However, majority of
(Tonhajzerova et al., 20).2t is extremely sensitive to central jnvestigations have examined the fusion of EEG and ECG ksigna
in uences, which reect the dynamic interaction between to enhance BCI performance. Firsthahid et al. (201 9bserved
sympathetic and parasympathetic nervous systems, and is/highhat the average classi cation accuracy of this type of hBCls
inuenced by mental activity, including states from stinusl \yas sometimes slightly higher than the traditional BCI. The
expectation to high-level cognitive processeifynova et al., system, however, was not reliable for all subjects. Théahid
2013 SpeCi Ca”y, HR deceleration has been related to StimU|U§t al. (2013)mpr0ved o ine and online performance of a hBClI
intake and orienting responses, whereas HR acceleration hpgsed on EEG and ECG, in comparison with a traditional BCI.
been associated with stimulus rejection and defensive r&s&®  Finally, Marchal-Crespo et al. (2012chieved the detection of
It has been found that HR decreases during intensive attenti motor execution exclusively based on automatic nervoussyst

to stimuli, superior perceptual performance and practice ofesponses (blood pressure, breathing rate, skin conductande
transcendental meditation. Conversely, HR increases @ue HR), yielding an accuracy level of 84.5%.

physical activity, psychological stress, acquisition phéserbal As there is an increasing interest in employing the heart
learning, and mental elaboration in a problem solving tasksate variability (HRV) associated with the MI activity used as
(Andreassi, 2013 control task in BCI systems, it is important to assess the [ralct

With reference to motor activity,Florian et al. (1998) e ectiveness of such cardiovascular parameter as an external
demonstrated that slow movements provoked HR deceleratiofhformative channel in this type of systems. Owing to the high
during preparatory and execution phases, whereas brisysceptibility of the HRV to body needs and environmental
movements brought about a biphasic deceleration-accéerat demands, we question the possibility of improving the detercti
e ect. More recently,Pfurtscheller et al. (2006ghowed that of M related control tasks based on automatic nervous system
voluntary self-paced hand movements are preceded by a slighisponses, as has been proposed previously. To date, HRV due
but stable HR deceleration. As real and imaginary movemenig M| activity has been successfully used to identify di erent
activate similar cortical structures, it is not SUrpriSingat imaginary movements, but Oniy isolated situations havenbee
MI activates vegetative mechanisms as a voluntary movemegénsidered. The control of a BCI system, however, requiigis h
does Pfurtscheller et al., 2096In this regard,Decety et al. |evels of attention, ability to perform the control task atitg(MI
(1991) hypothesized that central programming structures ar€n this case), perceptual processing, mental workload and many
activated by MI because they anticipate the need for energetighers. We hypothesize that HRV in a BCI working environment
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is governed by theser experienceather than the control tasks. neurological disorders, nine of them had normal vision, and
Namely, the user perceptions and responses that result from theo of them had corrected-to-normal vision. Just over hak th
operation of a BCI systemL@ar et al., 20)1determines the sample (6:11) was right-handed male, and the rest (5:11) was
HRV, and not the MI activity related to the control tasks in use right-handed female.

To examine this hypothesis, it is proposed to study the HRV For the purpose of this study, two electrophysiological signals
that accompanies Ml related control tasks during the humanwere employed: EEG and ECG. The EEG signals were recorded
computer coupling in a BCI application, i.e., from training using the international 10/10 system with 64 recording site
sessions to online control. For this purpose, EEG and ECG ignéut only 2 EEG channels are used in this work. Those were
of 11 participants, who were guided from modulating their EEGC3 and C4. The ECG signal was measured using the lead |
signals via Ml tasks to controlling a BCI system in a simulatedf the Einthoven triangle. To record both electrophysiol@adic
living environment, are analyzed. The participant guidan@sw activities, the ActiveTwo ampli er and the ActiView softwear
undertaken in eight di erent stages, where perceptual proogssi were employed. Both systems are produced by the BIOSEMI
and number of tasks to attend were controlled. In this wayGEE Company (The Netherlands). The data were recorded at a
and ECG signals related to the control tasks used to opera@ a Bsampling rate of 256 Hz, within a frequency band between 0 and
system were examined to determine 52 Hz.

1. Whether both types of signals are modulated by Ml activity aEX erimental Procedure
has been suggested previously, or P

2. Whether ECG signals are modulated by the user perceptio {ef expegrljg'r;t WBF]S_ Lun on a sw_nula(tjedfh\;]lng enV|dro|nm.en1t
and responses that result from the operation of a BCI systenp/atiorm ( ), which was constituted of three modules: (1)

even when those signals are analyzed in the course of synchronou; Mi-based BCI system calledBCl software
Alonso-Valerdi and Sepulveda, 2QL&2) a computer program

activity. . . - . L
to assist motor-impaired people in everyday situations called
assistive softwgrand (3) a virtual dwelling place. The SLEP
METHODS essentially functioned as follows. TheBCI software translated
MI (left and right hand imaginary movements) and non-
Data Collection Ml (relaxed but focused mental state) control tasks into

Data for this study were collected from 11 participants, whacontrol commands for the assistive software. In turn, the
studied or worked at the University of Essex (United Kingdom)assistive software attended to priority demands grouped into
at the time of the experiment. Prior to data collection, e#tlic four tabs: “necessities and desires,” “mobility,” “enmmeent
clearance was obtained from the Ethics Committee of theontrol” and “messenger.” The tab titled “mobility” alled to
University. A written informed consent from the 11 participant navigate through the virtual dwelling placélpnso-Valerdi and
was obtained. Sepulveda, 20}4

Allthe participants aged between 25 and 60 at the beginning of All the participants attended to three sessions that lasted

the study. None of them reported auditory impairments and/orbetween 120 and 180 min each one. They were exposed to nine

A Cueiﬂset et Prigne Wivon Scenariol B Scenario 2
WARNING [ Braskscreex |
i \Reference” {\— 7% ” RanEdom Imeii
| Sigpal | Beep Control Task H H sl 4 SAMPLE T
H o H I 1 | 1 | 1 1 P 1 | trial Period)

0 1000 2000 3000 4000 5000 6000 7000 8000 ~ [MILLISECONDS]

o =
a _@..@...@..%\.a_.fa__m__

FIGURE 1 | Graphical-user interfaces used to familiarize parti cipants with the assistive software. ~ For scenario 1(A), the traditional timing protocol was
applied to trigger three control tasks: left MI, right MI, and an-MI. Notice that this timing protocol was employed to triggr the control tasks in the rest of the
scenarios. For scenario 2(B), right Ml was a moving forward command; left Ml was used to svich between menus and submenus, or to select a currently actiated
task; and non-MI was employed as a waiting period for seleatig a desired task in the last bar of tools, which was controllé automatically by the system.
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increasingly demanding scenarios organized in the follgwinaurally emulated the activity process or visually simulatee t
way. In the rst session, participants were familiarized witie  displacement from one room to another in the virtual dwelling
assistive software by running three scenarios. The rshade place Figure 2B).

was the traditional paradigm used to modulate the participant It is worth noting that the development of the platform, the
EEG signals through the three aforementioned control taskeecruitment of participants and the data collection were dame
(Figure 1A). The second scenario was employed to associateprevious studyAlonso-Valerdi and Sepulveda, 2Q1For the

the control tasks with the control commands of the SLEP. Thipresent analysis, we are making use of the raw data collected in
means that right hand MI was associated with navigation, lefsuch study. It is also important to mention that scenario 9 was
hand MI was related to selection, and non-Ml was used adiscarded owing to the uncertainty to categorize the cortaeks
waiting period Eigure 1B). In the third scenario, participants into left Ml, right MI, and non-Ml. In line with these statements,
interacted for the rsttime with the real application by pracing  there were in total 48 conditions for EEG analysis (2 reaugdi
their control tasks, and observing how those control tasksew sites 3 control commands 8 scenarios) and 24 conditions
executed on the assistive softwaFggre 2A). In the second for ECG analysis (3 control commands 8 scenarios) per
and the third sessions, participants were initially involvied participant. Besides, it is relevant to have in mind that naitd

an adjustment cycle, where the BCI system rst adapted t@nalysis of scenario 6 only included 9 of the 11 participantsesi
participants (scenarios 4 and 7 respectively), and later, thie B@&vo of them did not establish brain-computer communication i
system assessed participants' skills to reproduce the contretenario 6.

tasks recorded previously in scenarios 4 and 7. The testing

scenarios were correspondingly numbered 5 and 8. Once the . . .

BCI system had been personalized to every participant at thBnalysis of the EEG Signals Using

beginning of second and third sessions, each participant wdlsRD/ERS maps

immersed into two di erent simulated living situations. Tee Prior to analyzing the data, EEG signals related to the
were scenarios 6 and 9. In scenario 6, an everyday situati@ontrol tasks were extracted according to the timing protoco
was set, a sequence of cues for the selection of 13 activftiesillustrated inFigure 1A As a result, signals of 7 s were obtained
daily living (ADLs) framed by that situation was programmed, (warning, Ml, and resting state of 2 s). After the extractidhn o
and participants were required to select each of the 13 ADLshe control tasks, event-related desynchronization (ERBJ a
Whenever the BCI system failed to predict the cued controbynchronization (ERS) patterns were estimated using the ndetho
task, neither navigation nor selection commands were ebeelcu proposed byGraimann et al. (2002Using this method, a time-

on the SLEP. Following these premises, participants did ndtequency map showing power changes in narrow frequency
need to redirect the navigation strategy. Similar to scEnar bands was obtained. ERD/ERS maps ranged from 7 to 34 Hz,
6, an everyday situation was set along with nine associateshd were calculated with lower cut-o frequencies of 7, 8,26
ADLs for scenario 9. The necessary cues to select the niiz. Bandwidths of 2, 4, and 8 Hz were respectively used for the
ADLs were not pre-set, so the SLEP always re ected the contrédllowing three frequency ranges: 7-15, 16-23, and 24—281kiz.
command predicted by the BCI system. In both scenariosaverage of 250 ms over time samples to smooth data and reduce
every time one of the ADLs was successfully selected, the SL¥iability was calculated. Only the two central recordsites

FIGURE 2 | Assistive software (A) and virtual dwelling place ( B) (top view) of the SLEP. There were two different templates of tabs in the assistivedftware, the
one exempli ed in the tab “environmental control” and the onellustrated in the tab “mobility.”
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(C3 and C4) where more signi cant Ml activity is detected werecomplexes. Having determined the NN intervals, the event-
analyzed. related HR (ER-HR) time course was estimated according to
ERD/ERS maps re ect the power decrease (ERD) or powehe procedure offurtscheller et al. (20068imilar to ERD/ERS
increase (ERS) in comparison with a reference interval (1.5maps, trials of 7 s with 1.5 s reference intervals were employed
in our case) before cue onset. These maps re ect sensory Notice that the number of trials in both cases (ERD/ERS maps
stimulation, cognitive activities, and motor behavior. ERD and ER-HR changes) varied from participant to participant. The
involved in processing of sensory and cognitive informationnumber of trials was determined by the participant performance
and production of motor behaviorKfurtscheller and Lopes da in each scenario (high performance implied low number of

Silva, 1999; Neuper et al., 200BRS is associated with awake-trials). At least, 20 trials were obtained in each conditibar the
restful states, inhibition processes, rebound eventsn@dier  precise number of trials, refer tlonso-Valerdi and Sepulveda

related demands (e.g., attentive expectation of relevanuis  (2014)

omission, working memory activation, and episodic short-

term memory task), and cognitive-mnemonic processesdda, Statistical Comparison between ERD/ERS
2009. What is expected of the MI related control tasks areand ER-HR

contralateral alpha (8-12 Hz) and beta (16-24 Hz) ERD, angto compare the ERD/ERS maps and the ER-HR changes, a

ipsilateral alpha and beta ERS over the sensorimotor cortic@brmalized cross-correlation was applied using the methods of

area during movement preparation and imagination. After Ml, Shapiro and Haralick (1992ndLewis (1995)The algorithm was

a beta ERS can be found as wale(iper et al., 2006; Szurhaj and jmplemented by MathWorks Corporation, and this computed

Derambure, 2006 the similarity of the ER-HR changes and the ERD/ERS maps as
a function of the lag of the former relative to the latter.

) . . To analyze the broad tendency among all the participants,
Analysis of the ECG Signals Using ER-HR the mean value of the ERD/ERS maps, ER-HR changes and
Visualization normalized cross-correlations per condition was calculated.
ECG activity was measured using the lead | of the EinthoveAlong with themean thestandard deviatiowas obtained as well.
triangle (left arm minus right arm leads). Based on that leadAll these statistical results are reported in the next sectio
the ECG signal was high-pass ltered at 0.1 Hz. Thereafter, QRS
complexes were detected by an algorithm based onRhe- RESULTS
Tompkinsmethod (Pan and Tompkins, 19§5and which was
implemented bySedghamiz (2014)0Once the complexes had ERD/ERS Maps
been localized, the NN intervals were determined. The ternThe mean ERD/ERS maps of all the participants in each scenario
“NN interval” refers to the distance between two adjacent QR&re set out inFigure 3 As can be seen from those average

FIGURE 3 | ERD/ERS maps of two EEG channels (C3 and C4) and three  control tasks (left MI, right MI, and non-MI) in eight differen t conditions
(scenarios). Every plot corresponds to the average map of all the particgnts.
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maps, neural desynchronization is detected on both hemiggher5, ER-HR in the three control tasks tends to decrease, yigldi

(ipsilateral and contralateral) in Ml related control taske; a diminution of 3%, 2s after cue onset. In scenario 6, ER-HR

contrast to non-Ml related ones, where the desynchronizatio in the non-MI related control task tends to decrease, yiajdn

e ectis negligible in ve of the eight conditions. Note thastight ~ diminution of 4%. Similarly, ER-HR in Ml related control tasks

level of desynchronization is detected in scenarios 1, 8,&n tends to decrease after cue onset, but the diminution is adoun

With regard to neural (de-) synchronizations in pre- and post-2%. Finally, in scenarios 7 and 8, ER-HR in the three control

movement stages, only a moderate ERS e ect is visible in lowéaisks shows a progressive decrease that tends toward 2 and 4%,

frequency bands (7-10 Hz) after imaginary movement o setrespectively.

(after 3.5 s). Surprisingly, the ERS e ectis also visible inates Similar to the ERD/ERS maps, the variation between

1, 5, 6, and 8 for the non-MI related control task. Finally,st i individual ER-HR changes (per participant) and the mean ER-

important to mention that ERD is less remarkable in scenarios 4HR changes provided ifrigure 4, the standard deviation was

7,and 8. estimated in each condition (per subplot and control task in
To evaluate the variation between individual ERD/ERS mapBigure 4). The standard deviation of most of the conditions was

(per participant) and the mean ERD/ERS maps presented ih.92% 0.494, yielding maximum deviation of 4.7% in scenarios

Figure 3, the standard deviation was estimated in each conditiors> and 8 for the three control tasks.

(per subplot inFigure 3). The maximum deviation (228.87%)

was found at low frequencies: (0 Hz) on Mi-related control Normalized Cross-Correlation

tasks, at recording site C3, and scenario 8. Apart from thighe mean results of the correlational analysis are preseinted

particular case, the deviation of the majority of the cormlits ~ Figure 5 Although, there is lack of correlation between ERD/ERS

was 21.76% 2.65. and ER-HR in most of the scenarios, this gure is quite revegli
in scenarios 5, 6, and 8, where feedback was provided. The
ER-HR Changes correlation between ER-HR and ERD/ERS is signi cant and

Figure 4 shows the average ER-HR changes in every scenafifeéctwhen the former variable is lagged with respect to altiet

for left MI (blue line), right MI (red line), and non-MI (black Variable. Note that the more surprising and stronger cottieta
line) related control tasks, respectively. In scenarios d 4na IS presented in the non-Mi related control task. The signi can
slight decrease of up to 2% is noticeable after cue onsetein t#9f this correlation is supported by low standard deviationttha
three control tasks. In scenarios 2 and 3, the ER-HR changes avas around 0.351 0.0484.

mostly kept below 2%, except for a modest increase of up to 2%

by the end of Ml activity in both Ml related control tasks. With DISCUSSION AND CONCLUSION

respect to the non-Ml related control task, the HR changes are

near to 0%, except for slight increases of up to 2% in scenariosThe present study was designed to determine if EEG and ECG
and 3 (2 s post-stimulus), and 4 (3's post-stimulus). In scenarisignals are modulated by MI activity used to control a BCI

FIGURE 4 | ER-HR changes of the left Ml (blue line), right MI (re  d line), and non-MI (black line) control tasks in eight differ ent conditions (scenarios).
These are the average time series of all the participants.
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system, as has been suggested previously, or if ECG sigaals ar Another important result was the ERS in the lowest
modulated by the user perceptions and responses that resdfequencies (7—10 Hz) when Ml activity ceased. This everiaan
from the operation of a BCI system (user experience), evebe associated with the post-movement beta synchronization
when ECG signals are analyzed in the course of Ml activity. Tbecause such synchronization is around 20 WZu(tscheller
date, several studies have proposed that HRV may be useful ébal., 199§ and because this emerged in non-Ml related control
identify more e ectively Ml related control tasks, on the kmsi tasks aswell (scenarios 5, 6, and 7). The observed synzhtimm

that imaginary movements activate vegetative mechanisreas a might be result of the control command expectation. That
voluntary movement does. However, HRV is very susceptibles, the user expectation that raised when he/she attended the
to the environmental demands and the e ectiveness of thisystem execution that followed each of his control tasks. Alpha
parameter must be assessed. Therefore, EEG and ECG sigrsgischronization (8—-12 Hz) usually arises widespread over the
recorded in the process of a BCI user-system adaptation wesealp and due to increasing attention demandsnk et al.,
analyzed (ERD/ERS maps and ER-HR changes, respectively)09, what justi es the ERS appearance in the lowest frequencies
and correlated in order to observe the eects of the useband.

experience on the HRV. The most relevant results are disdusse Finally, another unanticipated result was the amplitude of

below. ERD in scenarios 4, 7, and 8, which diminished in comparison
with the rest of the scenarios. These di erences can be exglaine
ERD/ERS Maps in part by the number of previous interactions with the scenari

It is well-established that MI activity brings about contitdral  at hand. Scenarios 4 and 7 were similar to scenario 3, andgoen
alpha and beta ERD, and ipsilateral alpha and beta ERS over tBavas similar to scenario 5. Furthermore, those three sienar
sensorimotor cortical area, in addition to the well-knoweth (4, 7, and 8) were the only situations that were reproducedfor
ERS around 20 HzJgeannerod, 2006; Neuper et al., 2006, p009second or a third time. On this basis, it seems possible that the
Contrary to expectations, the ERD/ERS maps of the current studyser interest at interacting with new human-computer ingerés
showed a widespread desynchronization during Ml activity orwas higher, which in turn led users to put in a higher mental
both hemispheres (C3 and C4 recording sites). This result mag ort on the control tasks. This result is consistent with thdt o
be explained by the lack of the user skills to modulate the braiiviyrden and Chau (2015yho showed that the BCI performance
signals using MI tasks. On the other hand, the minor neurabigni cantly improved when participants experienced low or
desynchronization e ect during the non-Ml related controlsia moderate fatigue, and high frustration. In fact, the role bét
can be also explained by the user incompetence in terms of Miser mental state has been quite investigated, and it hawsdven
dominance. It is well known that the modulation of brain sigma proposed to modify the BCI classi cation algorithm to adapt to
through mental tasks (Ml in this case) is a skill that requireschanges in the user mental statééih et al., 2011; Myrden and
training (Schumacher et al., 20115 Chau, 201

FIGURE 5 | Normalized cross-correlation between ERD/ERS maps and ER-HR changes of three control tasks (left MI, right MI, an d non-Ml) in eight
different conditions (scenarios).  These are the average cross-correlation of all the particimts.
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ER-HR Changes changes because of the range of magnitude. Last but not least
The most obvious nding to emerge from the ER-HR changes ishe inverse correlation observed in scenario 3 may be exgdiain
the cardiac deceleration after the cue onset for the thredrob by the user involvement due to the novelty of the system. This
tasks in all the scenario. This nding matches that observedorrelation cannot be associated with the control tasksabee
in earlier studies reported by\ndreassi (2013)According to the mental tasks were the same in all the scenarios, and then th
such report, the HR deceleration post-cue corresponds to mental e ort was not modi ed in terms of motor activity.
preparation period to respond to an expected and signi cant Taken together, these results suggest that HR varies angord
stimulus. to the user perceptions and responses that result from the

On the other hand, it is interesting to note that HR operation of a BCl system (user experience), and it does not
signi cantly decelerates in the three control tasks frorersario  re ect vegetative mechanisms associated with Ml activitiiaas
5 on ahead. Owing to the minor HR changes in the rst four been previously proposed. One of the issues that emerges from
scenarios and the HR diminution in the rest of scenarios, HR\his nding is that HRV is not a feasible parameter to improvesth
might closely associated with stimulus intake demandsakat detection of Ml related control tasks, at least in early useresyst
tasks (which induce cardiac deceleration) require atemti adaptation sessions. However, the results of this study have
to the environment, whereas rejection ones (which inducémportant implications for moving toward the user experience
cardiac acceleration) require environmental input to beueed evaluation and the psychophysiological adaptation in BCls. On
and attention to be placed on internal cognitive processingne hand, [aar et al., 20)lemphasized that BCI systems are
(Andreassi, 200)3Speci cally, in this study, intake tasks concerngenerally evaluated in accordance with the system aspect only
awareness of the warning periods, identi cation of the c@sl but no methodology has been proposed to evaluate the user
interpretation of the system feedback. Conversely, rejadtisks  experience. On the other handyrden and Chau (2015tressed
implicate MI activity and relaxed but focused mental statés. Ithe di culty of maintaining high BCI performance during long
HR slightly varied in the rst four scenarios and signi cdpt periods of time (intra-subject variability), and also comnteh
diminished from scenario 5 on ahead, where feedback startetie possibility of this inconsistent performance as a result of
being provided, it seems possible to associate HRV with stismul uctuations in psychological variables. Authors suggesteat
intake demands. Furthermore, HR decreased in both Ml andhe development of BCI should include an overt adaptation to
non-Ml related control tasks. On this basis, we hypothesizg th keep user mental state within the optimal region, and a covert
the environmental demands (intake tasks) could have played adaptation that automatically modi es the system functibtya
major role on HRV (than Ml activity) because the HR diminution to adapt such system to changes in the user mental state. On this
was signi cant when the environmental demands also incedas basis, the present study raises the possibility of improvied@1

This subsection is concluded by discussing one exceptionfinctionality as follows. Firstly, the dispersion and magdégtof
case: HR increase in scenario 3. HR only increased in scenathe neural desynchronization due to Ml activity cannot only b
3. A possible explanation for this might be that participantsused to detect the control tasks, but they might also be useful to
interacted with the assistive software for the rst time ihig  quantify the level of expertise (low aptitude: high dispersiony, a
scenario. The software could have been attractive and eymonitor the mental e ort (low e ort: low magnitude) at MI skill
catching for the users, so HR increased as a result of the usaecquisition. Secondly, HR deceleration is an indicator efldvel
interest and excitement. This resultis in agreement widnwork  of interaction between user and system (larger number okiata
of Pfurtscheller et al. (2006yvho observed cardiac accelerationtasks to attend: HR diminution), whereas HR acceleration is a
in virtual environment experiments and they presumed thissign of novel environmental stimulus processing (eye-datgh

phenomenon was owing to the user excitement. software: HR increase). Finally, the correlation between-n
_ _ Ml related control tasks and HR deceleration could become an
Normalized Cross-Correlation e ective way to discard false Ml related control tasks when siser

In line with the discussion of previous subsections, the mosare dynamically interacting with the system, and they dithb
relevant results were the following. ER-HR changes weeetyr  brain-computer communication at will.

correlated to ERD/ERS patterns with time lags of around 5s The generalizability of previous implications is, however,
(20 samples 256 Hz) in scenarios 5, 6, and 8. In thosesubject to certain limitations. On one side, the low number
scenarios, there existed a real user-system interactimhtlee  of trials in some cases of study could be a problem. As was
correlation between both electrophysiological signals wexy  mentioned in Section Analysis of the ECG Signals using ER-
high, particularly in the non-MI control task. As participants HR Visualization, the minimum number of trials recorded per
dealt with a larger number of intake tasks and the correlatio participant was 20. Howevegraimann and Pfurtscheller (2006)
appeared in the three control tasks, the HR may have decreasedggested to have at least 30 trials for an optimal quantiocat
due to the environmental demands rather than the Ml activity. and visualization of ERD/ERS patterns. On the other side, the
amajor correlation is observed in the non-Ml related contadk  meanis only displaying the average tendency of the ERD/ERS
might be due to the similar magnitude between ER-HR changasaps, ER-HR changes and the correlation thereof. Nonetheles
and ERD/ERS patterns. Note that ER-HR changes yielded esch participant displayed speci ¢ tendencies that were in some
maximum decrease of 4%, when ERD can show a decrease ofegses opposite to the overall behavior reported herein (high
to 40%. Consequently, non-MI control tasks that only displayedtandard deviatiorin some cases of study show this). Further
tiny ERD patterns could be much more correlated with ER-HRwork is required on this issue since BCI systems are gegpeely
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personalized to each individual, and then, the consideratid
all these particularities are essential. In this resgeleshid et al.

present study make a signi cant contribution. It seems th&W
associated with Ml based control tasks re ects the engagéemen

(2011)showed that hBCls based on the fusion of EEG and EC@&vel of the user with the system, which in turn can help to

were not reliable for all subjects.

identify the conditions of a symbiotic system. For example; ER

Lastly, it is worth noting that this is an important issue for HR changes were insigni cant in the rst four scenarios, waer

future research. For instance, extensive research shoglasf

user was trained to acquire Ml skills and familiarized witreth

on determining whether HR is modulated via MI such assystem to control, but there was no a human-machine inteoact

the brain rhythms, after long training sessions. Demortstia

(low workload condition). In contrast, ER-HR decreased up

this hypothesis, it can be more feasible to consider HRV as @ 4% in the next scenarios, where BCI control in simulated
parameter to improve classi cation accuracy of EEG patterndiving situations was necessary (high workload condition)
Klimesch (2013has suggested that brain-body interactions mayn the future, scenarios simulating disturbing living e ects
be described as a complex system that couples and decoup{eg., tra ¢ noise, public conversations, environmental sit)

on the basis of a specic harmonic frequency structure. Thewill be implemented to analyze HRV (overload condition).
understanding and inclusion of the coordinate system thaits seems that ER-HR is an adequate parameter to identify

controls brain and body oscillations (brainstem oscillasdhat
trigger inhaling and exhaling, breathing frequency, and\HIR

accurately low and high workload conditions in BCI working
environments. In overload conditions, we would expect ER-

could lead to develop more versatile, friendly and robust BCHR increases since it has been found that when tasks become

technology.

SUMMARY

too dicult, there is tendency for human to disengage from
the task, resulting in an increase in HRWR¢we et al., 1998
As far as we know, onlyRowe et al. (1998had proposed to
include HRV as indicator of user state in human-computer

In BCI research, it is not only important to optimize the systeminteraction. The present study provides evidence of how HRV
performance by identifying the user control tasks accugatel (speci cally ER-HR) can become an external channel in BCI
but knowledge about the user state is also necessary tovachisystems as a user state indicator, rather than a control task

a successful user-system adaptation. Accordingvdo Erp

identi er.

et al. (2010) a user state should be regarded as the result of

many psychophysiological processes that regulate the badg-b AUTHOR CONTRIBUTIONS
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