
Augmented reality applications
for cultural heritage using Kinect
Erkan Bostanci1*, Nadia Kanwal2 and Adrian F Clark3

Introduction
Augmented Reality (AR) combines real world imagery with synthetic content gener-
ated by a computer. The first comprehensive review of AR [1] identified a broad range of
applications of this technology, including medicine, manufacturing and robot path plan-
ning. Subsequently, AR has been applied in cultural heritage [2] such as the reconstruc-
tion of ancient Olympia in Greece [3, 4]. Although it is reported that AR enriches human
perception [5] in general, the principal reason for performing AR reconstructions in cul-
tural heritage is that the owners of sites are usually reticent to permit physical recon-
structions in situ so that the archaeology remains undisturbed for future generations [3].

Developments in multimedia technology facilitate the learning experience in cultural
heritage [6] with the aid of improved user interaction methods. Developed models or
virtual tours in reconstructions of archaeological sites (e.g. [7, 8]) provide entertaining
means of learning. However, ex situ reconstructions such as models and movies are diffi-
cult to visualize in the context of the archaeological remains. AR reconstructions can be
produced in situ with minimal physical disturbance, an attractive property, even though
they may take a significant time to develop [9].

There are several forms that AR reconstructions may take, and the work reported
here is directed towards a kind of ‘historical mirror,’ in which virtual buildings are built
around flat surfaces visible in the real world and human participants are clothed appro-
priately for the historical period. The literature presents examples of using Kinect for
cultural heritage [10–12]. It was used as a 3D scanner in the work given in [10] and as a

Abstract 

This paper explores the use of data from the Kinect sensor for performing augmented
reality, with emphasis on cultural heritage applications. It is shown that the combina-
tion of depth and image correspondences from the Kinect can yield a reliable estimate
of the location and pose of the camera, though noise from the depth sensor intro-
duces an unpleasant jittering of the rendered view. Kalman filtering of the camera
position was found to yield a much more stable view. Results show that the system is
accurate enough for in situ augmented reality applications. Skeleton tracking using
Kinect data allows the appearance of participants to be augmented, and together
these facilitate the development of cultural heritage applications.

Keywords:  Pose estimation, Kinect, Augmented reality, Cultural heritage

Open Access

© 2015 Bostanci et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20
DOI 10.1186/s13673-015-0040-3

*Correspondence:
ebostanci@ankara.edu.tr
1 Computer Engineering
Department, Ankara
University, Ankara, Turkey
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-015-0040-3&domain=pdf

Page 2 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

motion tracker to navigate in virtual reality reconstructions in [11, 12]. User experience
for large screens with Kinect in a cultural heritage setting, such as in an exhibition, has
been demonstrated in [13].

This paper uses Kinect to establish 3D world and 2D image correspondences and, from
them, determine camera pose. It then finds planar objects within the real world and aug-
ments them, the aim being to render the appearance in antiquity in front of real-world
features. The advantage of this work over the system in [14], which tries to augment syn-
thetic objects over camera images, is that no offline phase is needed to create a map of
the environment: data from the Kinect is used in real time to augment the appearance
of flat surfaces in the real world. Moreover, this can be achieved without GPU program-
ming, particularly promising for systems that require low power or are mobile.

Using the human tracking functionality of the OpenNI library [15], humans within the
environment are identified and their appearances are also augmented; existing AR sys-
tems in the cultural heritage domain do not attempt the latter, yet it is essential if par-
ticipants are truly to experience a sense of presence following the ideas presented in [16]
and [17].

The rest of the paper is structured as follows: "Background" presents the use of vision-
based methods for augmented reality and gives examples from the literature making use
of Kinect for cultural heritage. "In situ augmentation" describes a method for determin-
ing the camera pose and registering 3D models with real world objects. "Augmenting
participants" then describes the use of skeleton tracking to augment participants with
clothes etc. "Creating 3D models" describes the modelling phase, while "Results" assesses
the effectiveness of the in situ augmentation algorithm and presents the results of aug-
mentation. Finally, conclusions are drawn in "Conclusions".

Background
The principal problem faced in AR applications concerns the accuracy of user tracking
and, consequently, the registration of 3D models with real-world features [1, 18, 19].
When the 3D structure of the environment (feature positions, and internal/external
parameters of the camera, etc.) is known, sufficient accuracy can be obtained to match
virtual and real objects seamlessly; as a rule of thumb, this involves identifying the direc-
tion of gaze to ~1° in azimuth and elevation, and locating the position to ~0.1 m.

It is sensible to use a camera to perform tracking since the images from the real-world
can be used both for rendering the synthetic content and finding the viewpoint of the
user [20]. This sort of vision-based tracking can be classified into two groups namely
marker-based and markerless methods [19].

A marker is a distinguishable element placed in the environment so it can be identified
apart from other objects [21]. Once the marker is detected then the pose of the camera
can be obtained and models can be rendered on the camera image. An example of this
usage is shown in Figure 1 where ARToolkita is used to track a marker to place 3D mod-
els in the scene.

Placing markers is not always practical especially when the concerns on preserv-
ing the original structure of the ruins are taken into account. In this case, markerless
methods can be used to extract features which are already present in the environment.
These features can be points [22], lines [23] or higher-level geometric structures such as

Page 3 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

planes [24]. It is important to note that these natural features should be robust and stable
so that the tracking can be performed accurately.

Estimation of the camera pose in 3D is a widely-studied research topic [25, 26], nor-
mally obtained using vision-only methods such as the Perspective-n-Point (PnP) solu-
tion, which aims to recover camera pose using the positions of 3D features and their
projections. For instance, [14] recently used OpenCV’s PnP functionality for real-time
AR: In a preliminary (offline) phase, a map of features was first created from known 3D
positions in the real world, with each point being described by a SURF descriptor [27].
Subsequently, an online system matched SURF features from the camera to those of
the map, and then the camera pose was calculated. The time taken for calculating and
matching SURF features is significant, so this had to be performed on a GPU.

The advent of the Kinect [28] permits both colour and depth of a scene to be sensed
concurrently. This allows extracting the 3D structure of the surrounding and creating a
representation of the environment and the use of Kinect data with the PnP algorithm
has already been investigated [29] for image-based registration. The analysis involved
determining relative and absolute accuracies of the Kinect and another sensor according
to the camera pose obtained by using Efficient PnP (EPnP) algorithm [30].

Kinect has also been used in the context of cultural heritage. For instance, Remon-
dino [10] presented a review of using different types of imaging and depth sensors
including Kinect to perform 3D scanning of archaeological objects for the purposes of
digital recording, historical documentation and preservation of cultural heritage. Rich-
ards-Rissetto et al. [11] used Kinect’s body motion detection features to perform naviga-
tion in a 3D reconstructed model of an ancient Maya city using virtual reality.

In addition to the usages described above, this innovative sensor also provides new
opportunities in terms of on-site learning described in [6] by presenting the learners an
interesting visualization of structures overlaid on top of the ruins as we aim in this study.

a Fiducial marker b Marker detected

c Augmented view
Figure 1  Stages of augmentation using markers.

Page 4 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

In situ augmentation
Since the viewpoint information is required for augmentation, the first step is to estab-
lish correspondences between 2D image features and their depth since, from them, the
camera pose can be calculated. With that knowledge, rectangular features in the image
are identified and augmented with columns, as this is a common requirement in cultural
heritage reconstructions in the eastern Mediterranean as shown in Figure 2.

Generating 3D–2D correspondences

The distance between the two sensors of the Kinect results in different projected loca-
tions in the RGB and the depth images for the same 3D point. To compensate for this,
the calibration parameters of both sensors must be estimated, or errors will ensue [33].
These calibration parameters can be computed using the Kinect Calibration Tool-
box [34], or obtained using a method [35] similar to stereo calibration [36]. The first
method provides a semi-automatic way of calibrating the camera, by both allowing the
user to select corners manually from a calibration target (a chess-board pattern) in the
RGB image and the plane where the calibration target is placed in the depth image; these
selections are used as an initial guess for the calibration parameters for a set of RGB and
depth images (~30 images). A non-linear minimization method is then used to reduce
the projection errors. This work uses the calibration parameters obtained by the second
method [35], which again finds corners on the calibration target and performs the cali-
bration only for the RGB camera. Then the depth camera is also calibrated by manually
finding corresponding corners in the depth image.

The transformations (R and T) between the depth and RGB sensors of the Kinect
are used to align the two sensors and are obtained as calibration results along with the
intrinsic parameters (focal lengths and distortions) for both sensors. The camera matri-
ces KD and KC for the depth and RGB sensors respectively are:

where fx and fy are the focal lengths in the x and y directions and cx and cy are the centre
coordinates of the relevant sensor.

(1)KD =





fxD 0 cxD
0 fyD cyD
0 0 1





(2)KC =





fxC 0 cxC
0 fyC cyC
0 0 1





Figure 2  Views of the Hadrian Temple in Ephesus in Turkey. b Obtained from [31, 32].

Page 5 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

Figure 3 illustrates the process of back-projecting raw depth values into 3D coordi-
nates and then projecting them onto the RGB image.

Given raw depth (d) values from the depth image captured by the Kinect, the world
coordinates of a 3D point (p ≡ (px,py,pz)

T) are calculated using

where x and y denote a position in the depth data. dm is a conversion from raw depth
values (d) to depth in meters [37] and is calculated as:

Unreliable values (those having the maximum raw disparity value of 2047 [29], as illus-
trated in Figure 3) are discarded and the remainder stored.

Using the transformation and distortion (used for modelling radial and tangential dis-
tortions arising from the inaccuracies in the manufacturing process) parameters for the
Kinect sensor [24], the 3D points are projected onto the RGB image [36]. For a 3D point p,
first the transformation parameters (R and T) are applied to p to find p′ ≡ (p′x, p

′
y, p

′
z)

T:

from which the projected coordinates (p′x, p′y) are calculated (p′z is ignored) using

(3)

px =
(

x × cxD
)

×
dm

fxD

py =
(

y× cyD
)

×
dm

fyD
pz = dm

(4)dm = 0.1236× tan

(

d

2842.5
+ 1.1863

)

(5)p′ = Rp+ T

(6)

p′x =
p′x
p′z

p′y =
p′y
p′z

p′z =
p′z
p′z

= 1

Figure 3  Back-projection of depth data and projecting 3D points; shaded values (red) in the depth data
show unreliable raw disparities.

Page 6 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

The radial (k1, k2, k3) and tangential (p1, p2) distortion parameters of the RGB camera are
applied to get p′′ ≡ (p′′x , p

′′
y)

T :

where r =
√

p′x
2 + p′y

2. Finally, the pixel locations are obtained using the camera matrix
KC:

The 3D points resulting from this back-projection of the depth sensor and their corre-
sponding projection points are stored in a data structure (Table 1) that allows the 3D
position corresponding to a 2D pixel (p′′′) to be obtained quickly.

Finding the camera pose

The camera position must be found relative to the 3D points obtained from the Kinect
sensor, and that is best performed by tracking reliable image features over several
frames. The set of points used for tracking needs to be stable in order to achieve robust
localization of the camera. To achieve this, the FAST feature detector [38] was used to
find features in the RGB image. This detector produces features that are repeatable [39]
and widely scattered across the image [40], important characteristics if the resulting
homography matrix is to be accurate, and the system is to operate at video rate. The
key-points obtained from FAST were described using the BRIEF descriptor [41], which
is also known to be robust and operate at video rate. The binary structure of the BRIEF
descriptor allows two descriptors to be matched using XOR instructions, and is there-
fore rapid to execute.

After the initial set of features has been obtained, these points are matched against
the features detected in subsequent frames, outliers being rejected using RANSAC [42].
3D information for matched points is obtained from data structure (Table 1) alluded
to in the previous section. There can be cases where a pixel position may not have an
associated 3D datum, perhaps due to reflection of the infra-red beam or the disparity
between the depth sensor and camera; when this happens, the closest 2D point in the

(7)

p′′x = p′x

(

1+ k1r
2
+ k2r

4
+ k3r

6
)

+ 2p1p
′
xp

′
y + p2

(

r2 + 2p′x
2
)

p′′y = p′y

(

1+ k1r
2
+ k2r

4
+ k3r

6
)

+ p1

(

r2 + 2p′y
2
)

+ 2p2p
′
xp

′
y

(8)p′′′ =

[

p′′′x
p′′′y

]

= KC

[

p′′x
p′′y

]

Table 1  Data structure to store point data

Index Data
〈

p′′′x1 , p
′′′
y1

〉

p1
〈

p′′′x2 , p
′′′
y2

〉

p2
.
.
.

.

.

.
〈

p′′′xn , p
′′′
yn

〉

pn

Page 7 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

data structure is used and the corresponding depth calculated as the mean of depths
within a 21× 21-pixel region.

Algorithms for calculating the position and orientation of the camera are well-estab-
lished [43, 44], provided that the intrinsic parameters (focal length etc.) are known
through calibration. Correspondences between 3D points and their 2D projections are
used in order to recover the camera pose. For three correspondences, four possible solu-
tions can be found, whereas a unique solution can be found for six or more correspond-
ences [45]. The corresponding 2D and 3D points stored in Table 1 are used to calculate
the camera position using a recent PnP solution known as EPnP [30, 46] as the initial
estimate.

As discussed in [44], PnP solutions are easily affected by noise, and this manifests itself
as an unpleasant jittering of the camera position and hence rendered imagery. To reduce
this, the estimate of the camera pose is filtered. As will be shown below, a sliding window
filter of size 15 reduces this effect but does not eliminate it, while a Kalman filter [47]
was found to be more effective. The state of this filter comprises the x, y, z coordinates
of the camera position and their velocities Vx, Vy and Vz. Measurements of (x, y, z) are
obtained from the EPnP algorithm discussed above. The velocities were initialized to
0.5 units/frame for the three axes, reasonable for a user standing and observing ancient
ruins (i.e., little or no motion). The transition matrix F is:

At each frame, first the transition matrix F is applied to the current camera position as
the prediction step (�t is the time passed between two consecutive frames). Then the
measurements for the camera pose calculated using EPnP are used to refine this predic-
tion for updating the filter, and the state is used for the viewpoint of augmentation. It
was found that this filter reduced jittering to the point where it was imperceptible.

Finding objects for augmentation

After determining the camera pose, the next step is to find planar objects, to be aug-
mented, in this work, by synthetic column models. Whether columns are cylindrical or
fluted, their projection in the 2D image will be rectangular, and such shapes are relatively
easy to detect: Any visual noise in the image was reduced by Gaussian smoothing, then
the Canny edge detector [48] was applied to each of the colour channels independently.
Contours were extracted from the edge images using an approximation method [49];
contours that contain four vertices with angles between pairs of lines joining these verti-
ces close to 90° form reliable rectangles (Figure 4). Small rectangles and rectangles hav-
ing inappropriate aspect ratios for columns were rejected.

The rectangles detected using the method described above tend to disappear and re-
appear from frame to frame due to the changes in lightning conditions. For this rea-
son, the vertices of these rectangles were tracked using the Condensation algorithm [50],
essentially a particle filter for visual tracking supporting a multi-modal estimate. For a

(9)F =















1 0 0 �t 0 0

0 1 0 0 �t 0

0 0 1 0 0 �t
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1















Page 8 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

rectangle centred at X = (xc, yc)
T, the initial state is initialized from the rectangle detec-

tor and the particles were scattered within a 20-pixel radius of that point. The state X
was updated using two models, one dynamical and the other observation.

The dynamic model A generates the predicted (hypothetical) state X̂ and is initialized
to the identity matrix for simplicity:

At each frame the predicted state is calculated for all particles (1 . . . n):

Particle weights are updated using the observation model. Measurements
(M = (mcx ,mcy)) from the rectangle detection algorithm are used to refine the particle
confidences using

where wi denotes the weight of particle i and σ 2
x and σ 2

y are the variances of the samples
for the x and y coordinates of the centre points. The hypothetical values of the rectangle
centre are stored in pix and piy. From (12), it can be seen that a Gaussian probability dis-
tribution is used for the update of the particle confidences.

This process is followed by re-sampling, in which the new confidences will be used to
create a new set of particles of the same size [36]. The number of particles for the algo-
rithm was selected as N = 50, which was found to be sufficient (i.e., not causing particle
deprivation [51]). At each frame, the particles are updated using the result of the rectan-
gle detection algorithm described above, resulting in the centre of the rectangle being
tracked robustly as depicted in Figure 5. After the re-sampling update is performed, the

(10)A =

[

1 0

0 1

]

(11)X̂n = AXn

(12)

wix = e
−1

2σ2x
(mcx−pix)

2

wiy = e

−1

2σ2y

(

mcy−piy

)2

wi = wix × wiy

Figure 4  Rectangular features (marked in black) located within an image.

Page 9 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

particle with the largest weight is selected both for augmentation and propagation into
the next state. The 3D position of each rectangle’s centre is retrieved and the column
models are rendered at these 3D positions.

The complete augmentation algorithm is given in Algorithm 1.

Algorithm 1 In situ augmentation
Require: IC : RGB image, ID: Depth image, 3D models for

augmentation.
Load models and camera calibration parameters.
Initialize the Kalman filter and rendering environment.
for all frames do

if first frame then
Extract the initial set of features for tracking using
FAST detector and BRIEF descriptor.
Find the initial number of rectangles for augmenta-
tion, initialize the Condensation filter.

else
Compute 3D points from the depth data.
Calculate projections and create the hash-map.
Find feature matches by detecting, describing and
matching features from the RGB image for the new
frame.
Calculate camera pose using EPnP.
Update the Kalman filter for camera pose using mea-
surements and set viewpoint for augmentation.
Detect rectangular objects.
Update Condensation filter.
Retrieve centre coordinates for augmentation.
Render the view.

end if
end for

Augmenting participants
This section describes the use of the skeleton tracking features of Kinect to augment a
participant with clothes from ancient times. The OpenNI library [15] processes depth

Figure 5  Tracking selected rectangles. Small circles show the estimates of their centres whereas the large
circle is the particle with largest weight.

Page 10 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

information from Kinect and performs detection of body parts identified as joints, as
shown in Figure 6. In this work, three ‘joints’ are used: the head, torso and right hand, for
superimposing a galea (Roman helmet), toga and a sword respectively.

As each joint is recognized by OpenNI, its position and orientation are returned.
These transformations are absolute, not relative, and so can be used directly for render-
ing, with the exception that the rotation matrix for orientation RM must converted to a
vector R using Rodrigues’ formula:

When using optical see-through displays, images from the real environment are
obtained automatically using a mirror in the display device; when the graphics are ren-
dered, augmentation comes at no cost [52]. However, when using video see-through dis-
plays or a camera as the input source, the images of the real environment must also be
rendered together with other graphics in order to generate the final image. The approach
commonly adopted is to convert camera images to the texture format of the rendering
engine (Irrlicht in our case); then, at each call to the function that draws the whole scene,
the camera image is first rendered and then the computer models are superimposed on
it.

Creating 3D models
The approach followed for creating the models used for AR applications is presented
briefly in this section.

Modelling and optimization

The ancient columns and other models were created using 3D Max [53]. Build-
ings were modelled [8] in accordance with reconstruction images prepared by

(13)R =





Ry

Rx

Rz



 =









sin−1 RM0,2

sin−1 −RM1,2

cosRy
sin−1 −RM0,1

cosRy









Figure 6  Skeleton joints identified by OpenNI.

Page 11 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

archaeologists [31, 32]. AutoCAD [53] was used to draw 2D profiles of buildings and other
structures such as columns as shown in Figure 7a. These profiles were later exported to
3D Max. 3D objects are created using modifiers such as bevel profile which rotates the
given profile around a boundary (square, circle etc.) to get a 3D object (Figure 7b).

3D models having a large number of vertices (hence and hence faces) reduce the frame
rate of a real time application. For this reason, created models were optimized using the
MultiRes modifier, which works by first computing the number of vertices and faces in a
model, then allows the user to eliminate some of them manually. This method proved to
be effective for 3D models consisting of thousands of faces.

Texture baking

Texture baking (also known as “render to texture”) [54] is the process of creating a single
texture map from multiple materials that have been applied to a model. There are several
ways to perform this; the following method was found to produce the best results.

To produce a single texture from several materials applied to a model, one first uses an
Unwrap UVW modifier to store the current material map—this defines how the texture
must wrap around an object that has a complex structure. The next step is to unwrap all
the individual faces of the model as shown in Figure 8 and render the material informa-
tion into the output texture.

When rendering, a diffuse map was selected (instead of the complete map model,
which included maps for lighting or surface normals and failed to create the texture for
the invisible side of the model). Later, this single texture was applied to the model again,
by removing the previous material. Finally, the stored map must be applied to obtain the
original look of the model before texture baking.

Results
This section first presents the created models and then presents a quantitative analysis
of the camera pose estimation. It finally shows the effects of the complete augmentation
process which can run at video rates (25 frames per second).

a Column profiles b 3D column created
from the profiles

Figure 7  Creating 3D models of the columns in front of the Hadrian temple by spinning its profile around a
circle based on the structure of the ruins and the reconstruction image in Figure 2.

Page 12 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

Models used in the experiments

The models created are shown in Figure 9. The optimization step resulted in a 10−25%
reduction in the number of faces for the models. Usually, the more complex the model
is, the higher the percentage of faces can be removed without a noticeable change in
appearance; here, these optimizations were most efficient in terms of removing faces for

a Wireframe view of the
model

b Faces unwrapped

Figure 8  Unwrapping the faces of a model for texture baking.

a Galea (Ro-
man helmet)

b Sword c
Toga

d Top arch

e Column
Figure 9  Models created for the augmenting participants.

Page 13 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

the galea model (Figure 9a) due to its roughly spherical shape (many faces are required
for a smooth surface, hence many can be removed during optimization) whereas the col-
umn (Figure 9e) was unable to accommodate the removal of many vertices without los-
ing detail of the capital (top) or pediment (base) (Figure 7a).

Performance of the in situ augmentation algorithm

The errors in the initial estimation are shown in Figure 10. The relative error is calcu-
lated for the initial set of 3D–2D correspondences by re-projecting 3D points using the
estimated translation and rotation for the camera, while the true re-projection error is
calculated using ground truth, obtained from the knowledge that the camera is station-
ary. A mean difference of ≃0.26 pixels was obtained between the true and estimated re-
projection errors, showing that the estimation is reasonably accurate.

Again using the ground truth, the calculated errors in rotation and translation and
are given in Figure 11. (Calculating the rotation error involves converting the actual and
estimated rotation matrices into quaternions and finding the distance between the two
quaternions. For the translation error, the Euclidean distance is calculated between the
actual and estimated translations.) Fluctuations are substantially higher for the trans-
lational error (σterror = 0.009) compared to the rotational error (σrerror = 0.0004). As

0 50 100 150 200 250

0.
80

0.
90

1.
00

1.
10

Frames

R
ep

ro
je

ct
io

n
E

rr
or

Figure 10  Estimated (red) and true (blue) re-projection errors calculated with EPnP.

0 50 100 150 200 250

0.
02

0.
04

0.
06

0.
08

Frames

R
ep

ro
je

ct
io

n
E

rr
or

Figure 11  Rotational (blue) and translational (red) errors for the camera position estimate.

Page 14 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

alluded to above, the magnitude of this translational error results in rendered augmenta-
tion being unstable (‘jittering’).

Figure 12 shows the results from sliding window and Kalman filters, and it is clear that
the Kalman filter produces more stable positions. The jitter is reduced from σ̄raw = 0.43

0 50 100 150 200 250

6.
0

6.
5

7.
0

Frames

X
 c

oo
rd

in
at

e

a Estimated x coordinate

0 50 100 150 200 250

−
5

−
4

−
3

−
2

−
1

0

Frames

Y
 c

oo
rd

in
at

e

b Estimated y coordinate

0 50 100 150 200 250

−
99

.2
−
99

.0
−
98

.8
−
98

.6
−
98

.4

Frames

Z
 c

oo
rd

in
at

e

c Estimated z coordinate
Figure 12  Camera coordinate estimations using raw estimation result (blue), sliding window (red) and
Kalman filter (green).

Page 15 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

to σ̄Kalman = 0.07, where σ̄raw and σ̄Kalman are the standard deviations of the camera
coordinates for the initial estimate and Kalman filtered results.

Augmentation results

To illustrate the augmentation algorithms presented above, an application was devel-
oped to augment rectangular regions of a specific size and aspect ratio in the Kinect
imagery. When the camera position and orientation had been found and the centres of
suitable rectangles identified, the 3D column models described in the previous section
were rendered in front of them. When rectangles were found at are particular distance
apart, an arch could be placed above the columns to form an arch, as shown in Figure 13.

The result of augmenting users is shown in Figure 14a for a single user and in Fig-
ure 14b for two users. The general effect is acceptable for toga and sword but some
minor registration errors are apparent for the galea model in the case of a single user.
These registration errors become more severe when multiple users are present, and this
appears to be due to the accuracy of skeleton tracking decreasing when the user is not
centred in the field of view.

Conclusions
It is clear that the Kinect has great potential in AR applications for cultural heritage.
Different studies have shown that Kinect can be used as an imaging and depth sensor in
order to scan and record archaeological objects [10]. It can also be used as an interaction
device tracking the movements of users [11].

In this paper, we presented two novel usages of Kinect within the context of cul-
tural heritage. The first contribution is the in situ AR application using the algorithm
described in "In situ augmentation" which allows the camera pose to be estimated rea-
sonably precisely and robustly from Kinect imagery and depth values. Planar, rectan-
gular regions can be identified robustly through condensation and augmented with
features from historical buildings. The second contribution is the use of Kinect data to

Figure 13  Augmenting columns over rectangles.

Page 16 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

augment the appearance of humans, so that they can be clothed in a way that matches
their surroundings.

The analysis and augmentation presented in this paper can be achieved in real time using
a single computer equipped with a Kinect. The lack of any set-up phase (as opposed to [14])
and this speed of processing are important practical considerations for installations in muse-
ums that are to be used without supervision, or for use in educational games. Indeed, we
believe that AR applications similar to ones presented in this paper will improve the on-site
learning experience [6] and provide people with an incentive to learn about their and other
people’s past and protect our historical artefacts and monuments as a memory of the past.

Endnote
ahttp://www.hitl.washington.edu/artoolkit.

Authors’ contributions
EB designed and coded the application in addition to drafting the manuscript. NK helped in coding and testing the
developed algorithm as well as designing the test cases. AFC supervised the project and improved the presentation of
the paper. All authors read and approved the final manuscript.

a Augmenting a single user with toga, galea and sword

b Augmenting two users
Figure 14  Augmenting participants.

http://www.hitl.washington.edu/artoolkit

Page 17 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

Author details
1 Computer Engineering Department, Ankara University, Ankara, Turkey. 2 Lahore College for Women University, Lahore,
Pakistan. 3 School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK.

Compliance with ethical standard

Competing interest 
The authors declare that they have no competing interests.

Received: 4 December 2014 Accepted: 10 July 2015

References
	1.	 Azuma R (1997) A survey of augmented reality. Presence Teleop Virtual Environ 6:355–385
	2.	 Papagiannakis G, Singh G, Magnenat-Thalmann N (2008) A survey of mobile and wireless technologies for aug-

mented reality systems. Comput Anim Virtual Worlds 19:3–22
	3.	 Stricker D, Kettenbach T (2001) Real-time and markerless vision-based tracking for outdoor augmented reality

applications. In: International symposium on augmented reality
	4.	 Dahne P, Karigiannis J (2002) Archeoguide: system architecture of a mobile outdoor augmented reality system. In:

IEEE international symposium on mixed and augmented reality, pp 263–264
	5.	 Ribo M, Lang P, Ganster H, Brandner M, Stock C, Pinz A (2002) Hybrid tracking for outdoor augmented reality appli-

cations. IEEE Comput Graph Appl 22(6):54–63
	6.	 Hawkey R, Futurelab N (2004) Learning with digital technologies in museums, science centres and galleries. NESTA

Futurelab Series, Futurelab Education
	7.	 Chiara R, Santo V, Erra U, Scanarano V (2006) Real positioning in virtual environments using game engines. In: Euro-

graphics Italian chapter conference
	8.	 Koyuncu B, Bostanci E (2007) Virtual reconstruction of an ancient site: Ephesus. In: Proceedings of the XIth sympo-

sium on mediterranean archaeology, pp 233–236. Archaeopress
	9.	 Wolfenstetter T (2007) Applications of augmented reality technology for archaeological purposes. Tech. rep., Tech-

nische Universität München
	10.	 Remondino F (2011) Heritage recording and 3d modelling with photogrammetry and 3d scanning. Remote Sens

3(6):1104–1138
	11.	 Richards-Rissetto H, Remondino F, Agugiaro G, Robertsson J, vonSchwerin J, Girardi G (2012) Kinect and 3d gis in

archaeology. In: International conference on virtual systems and multimedia, pp 331–337
	12.	 Pietroni E, Pagano A, Rufa C (2013) The etruscanning project: gesture-based interaction and user experience in the

virtual reconstruction of the regolini-galassi tomb. In: Digital heritage international congress, vol 2, pp 653–660. IEEE
	13.	 Ioannides M, Quak E (2014) 3D research challenges in cultural heritage: a roadmap in digital heritage preservation.

Lecture notes in computer science/information systems and applications, incl. Internet/Web, and HCI. Springer,
Berlin. https://books.google.com.tr/books?id=Mf-JBAAAQBAJ

	14.	 Tam DCC, Fiala M (2012) A real time augmented reality system using GPU acceleration. In: 2012 ninth conference on
computer and robot vision (CRV), pp 101–108

	15.	 OpenNI: OpenNI library. http://openni.org/. Last access Nov 2013
	16.	 Bostanci E, Clark AF (2011) Living the past in the future. In: International conference on intelligent environments,

international workshop on creative science, pp 167–172
	17.	 Bostanci E, Kanwal N, Clark AF (2013) Kinect-derived augmentation of the real world for cultural heritage. In: UKSim,

pp 117–122
	18.	 Noh Z, Sunar MS, Pan Z (2009) A review on augmented reality for virtual heritage system. In: Proceedings of the 4th

international conference on e-learning and games: learning by playing. Game-based Education System Design and
Development, pp 50–61

	19.	 Bostanci E, Kanwal N, Ehsan S, Clark AF (2010) Tracking methods for augmented reality. In: The 3rd international
conference on machine vision, pp 425–429

	20.	 Bostanci E, Clark A, Kanwal N (2012) Vision-based user tracking for outdoor augmented reality. In: 2012 IEEE sympo-
sium on computers and communications (ISCC), pp 566–568

	21.	 Johnston D, Fluery M, Downton A, Clark A (2005) Real-time positioning for augmented reality on a custom parallel
machine. Image Vis Comput 23(3):271–286

	22.	 Chia K, Cheok A, Prince S (2002) Online 6 dof augmented reality registration from natural features. In: International
symposium on mixed and augmented reality, pp 305–313

	23.	 Jiang B, Neumann U, You S (2004) A robust hybrid tracking system for outdoor augmented reality. In: IEEE virtual
reality conference

	24.	 Bostanci E, Kanwal N, Clark AF (2012) Extracting planar features from Kinect sensor. In: Computer science and elec-
tronic engineering conference, pp 118–123

	25.	 Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press, Cambridge
	26.	 Ma Y, Soatto S, Kosecka J, Sastry SS (2004) An invitation to 3-D vision: from images to geometric models. Springer,

Berlin
	27.	 Bay H, Tuytelaars T, Gool LV (2006) SURF: speeded up robust features. EECV, LNCS: 3951, pp 404–417
	28.	 Corporation M (2010) Kinect for xbox360. http://www.xbox.com/en-GB/Kinect. Last access Nov 2013
	29.	 Weinmann M, Wursthorn S, Jutzi B (2011) Semi-automatic image-based co-registration of range imaging data with

different characteristics. In: Photogrammetric image analysis PIA11, LNCS: 6952, pp 119–124

https://books.google.com.tr/books?id=Mf-JBAAAQBAJ
http://openni.org/
http://www.xbox.com/en-GB/Kinect

Page 18 of 18Bostanci et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:20

	30.	 Lepetit V, Moreno-Noguer F, Fua P (2009) EPnP: an accurate O(n) solution to the PnP problem. Int J Comput Vis
81(2):155–166

	31.	 Alzinger W (1972) Die Ruinen von Ephesos. Koska
	32.	 Hueber F, Erdemgil S, Buyukkolanci M (1997) Ephesos. Zaberns Bildbande zur Archaologie. von Zabern
	33.	 Khoshelham K (2010) Accuracy analysis of kinect depth data. GeoInform Sci 38(5/W12)
	34.	 Castro D, Kannala J, Heikkila J (2011) Accurate and practical calibration of a depth and color camera pair. In: Interna-

tional conference on computer analysis of images and patterns, vol 6855, pp 437–445
	35.	 Burrus N (2012) Kinect calibration method. http://nicolas.burrus.name/index.php/Research
	36.	 Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV library. O’Reilly
	37.	 Magnenat S (2013) Kinect depth estimation approach. http://openkinect.org/wiki/Imaging
	38.	 Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. Comput Vis ECCV 2006:430–443
	39.	 Rosten E, Porter R, Drummond T (2010) Faster and better: a machine learning approach to corner detection. IEEE

Trans Pattern Anal Mach Intell 32:105–119
	40.	 Bostanci E, Kanwal N, Clark AF (2012) Feature coverage for better homography estimation: an application to image

stitching. In: Proceedings of the IEEE international conference on systems, signals and image processing
	41.	 Calonder M, Lepetit V, Strecha C, Fua P (2010) BRIEF: binary robust independent elementary features. In: European

conference on computer vision, pp 778–792
	42.	 Fischler M, Bolles R (1981) Random sample consensus: a paradigm for model fitting with applications to image

analysis and automated cartography. Commun ACM 24:381–395
	43.	 Haralick RM, Lee C, Ottenberg K, Nölle M (1994) Review and analysis of solutions of the three point perspective pose

estimation problem. Int J Comput Vis 13(3):331–356
	44.	 Szeliski R (2011) Computer vision: algorithms and applications. Springer, Berlin
	45.	 Lepetit V, Fua P (2005) Monocular model-based 3D tracking of rigid objects: a survey. Found Trends Comput Graph

Vis 1(1):1–89
	46.	 Moreno-Noguer F, Lepetit V, Fua P (2007) Accurate non-iterative O(n) solution to the PnP problem. In: IEEE interna-

tional conference on computer vision
	47.	 Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82(Series

D):35–45
	48.	 Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698
	49.	 Douglas D, Peuker T (1973) Algorithms for the reduction of the number of points required to represent a digitised

line or its caricature. Can Cartograph 10:112–122
	50.	 Isard M, Blake A (1998) Condensation—conditional density propagation for visual tracking. Int J Comput Vis

29(1):5–28
	51.	 Thrun S, Burgard W, Fox D (2006) Probabilistic robotics. MIT Press, Cambridge
	52.	 Piekarski W, Thomas BH (2004) Augmented reality working planes: a foundation for action and construction at a

distance. In: International symposium on mixed and augmented reality
	53.	 (2014) Autodesk: AutoCAD and 3D studio max. http://usa.autodesk.com/autocad/, http://usa.autodesk.com/3ds-

max/. Last access Nov 2013
	54.	 Apollonio FI, Corsi C, Gaiani M, Baldissini S (2010) An integrated 3D geodatabase for Palladio’s work. Int J Archit Com-

put 8(2):111–133

http://nicolas.burrus.name/index.php/Research
http://openkinect.org/wiki/Imaging
http://usa.autodesk.com/autocad/
http://usa.autodesk.com/3ds-max/
http://usa.autodesk.com/3ds-max/

	Augmented reality applications for cultural heritage using Kinect
	Abstract
	Introduction
	Background
	In situ augmentation
	Generating 3D–2D correspondences
	Finding the camera pose
	Finding objects for augmentation

	Augmenting participants
	Creating 3D models
	Modelling and optimization
	Texture baking

	Results
	Models used in the experiments
	Performance of the in situ augmentation algorithm
	Augmentation results

	Conclusions
	Endnote
	Authors’ contributions
	Received: 4 December 2014 Accepted: 10 July 2015References

