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Introduction
Augmented Reality (AR) combines real world imagery with synthetic content gener-
ated by a computer. The first comprehensive review of AR [1] identified a broad range of 
applications of this technology, including medicine, manufacturing and robot path plan-
ning. Subsequently, AR has been applied in cultural heritage [2] such as the reconstruc-
tion of ancient Olympia in Greece [3, 4]. Although it is reported that AR enriches human 
perception [5] in general, the principal reason for performing AR reconstructions in cul-
tural heritage is that the owners of sites are usually reticent to permit physical recon-
structions in situ so that the archaeology remains undisturbed for future generations [3].

Developments in multimedia technology facilitate the learning experience in cultural 
heritage  [6] with the aid of improved user interaction methods. Developed models or 
virtual tours in reconstructions of archaeological sites (e.g.  [7, 8]) provide entertaining 
means of learning. However, ex situ reconstructions such as models and movies are diffi-
cult to visualize in the context of the archaeological remains. AR reconstructions can be 
produced in situ with minimal physical disturbance, an attractive property, even though 
they may take a significant time to develop [9].

There are several forms that AR reconstructions may take, and the work reported 
here is directed towards a kind of ‘historical mirror,’ in which virtual buildings are built 
around flat surfaces visible in the real world and human participants are clothed appro-
priately for the historical period. The literature presents examples of using Kinect for 
cultural heritage [10–12]. It was used as a 3D scanner in the work given in [10] and as a 
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motion tracker to navigate in virtual reality reconstructions in [11, 12]. User experience 
for large screens with Kinect in a cultural heritage setting, such as in an exhibition, has 
been demonstrated in [13].

This paper uses Kinect to establish 3D world and 2D image correspondences and, from 
them, determine camera pose. It then finds planar objects within the real world and aug-
ments them, the aim being to render the appearance in antiquity in front of real-world 
features. The advantage of this work over the system in [14], which tries to augment syn-
thetic objects over camera images, is that no offline phase is needed to create a map of 
the environment: data from the Kinect is used in real time to augment the appearance 
of flat surfaces in the real world. Moreover, this can be achieved without GPU program-
ming, particularly promising for systems that require low power or are mobile.

Using the human tracking functionality of the OpenNI library [15], humans within the 
environment are identified and their appearances are also augmented; existing AR sys-
tems in the cultural heritage domain do not attempt the latter, yet it is essential if par-
ticipants are truly to experience a sense of presence following the ideas presented in [16] 
and [17].

The rest of the paper is structured as follows: "Background" presents the use of vision-
based methods for augmented reality and gives examples from the literature making use 
of Kinect for cultural heritage. "In situ augmentation" describes a method for determin-
ing the camera pose and registering 3D models with real world objects. "Augmenting 
participants" then describes the use of skeleton tracking to augment participants with 
clothes etc. "Creating 3D models" describes the modelling phase, while "Results" assesses 
the effectiveness of the in situ augmentation algorithm and presents the results of aug-
mentation. Finally, conclusions are drawn in "Conclusions".

Background
The principal problem faced in AR applications concerns the accuracy of user tracking 
and, consequently, the registration of 3D models with real-world features  [1, 18, 19]. 
When the 3D structure of the environment (feature positions, and internal/external 
parameters of the camera, etc.) is known, sufficient accuracy can be obtained to match 
virtual and real objects seamlessly; as a rule of thumb, this involves identifying the direc-
tion of gaze to ~1° in azimuth and elevation, and locating the position to ~0.1 m.

It is sensible to use a camera to perform tracking since the images from the real-world 
can be used both for rendering the synthetic content and finding the viewpoint of the 
user  [20]. This sort of vision-based tracking can be classified into two groups namely 
marker-based and markerless methods [19].

A marker is a distinguishable element placed in the environment so it can be identified 
apart from other objects [21]. Once the marker is detected then the pose of the camera 
can be obtained and models can be rendered on the camera image. An example of this 
usage is shown in Figure 1 where ARToolkita is used to track a marker to place 3D mod-
els in the scene.

Placing markers is not always practical especially when the concerns on preserv-
ing the original structure of the ruins are taken into account. In this case, markerless 
methods can be used to extract features which are already present in the environment. 
These features can be points [22], lines [23] or higher-level geometric structures such as 
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planes [24]. It is important to note that these natural features should be robust and stable 
so that the tracking can be performed accurately.

Estimation of the camera pose in 3D is a widely-studied research topic [25, 26], nor-
mally obtained using vision-only methods such as the Perspective-n-Point (PnP) solu-
tion, which aims to recover camera pose using the positions of 3D features and their 
projections. For instance,  [14] recently used OpenCV’s PnP functionality for real-time 
AR: In a preliminary (offline) phase, a map of features was first created from known 3D 
positions in the real world, with each point being described by a SURF descriptor [27]. 
Subsequently, an online system matched SURF features from the camera to those of 
the map, and then the camera pose was calculated. The time taken for calculating and 
matching SURF features is significant, so this had to be performed on a GPU.

The advent of the Kinect [28] permits both colour and depth of a scene to be sensed 
concurrently. This allows extracting the 3D structure of the surrounding and creating a 
representation of the environment and the use of Kinect data with the PnP algorithm 
has already been investigated  [29] for image-based registration. The analysis involved 
determining relative and absolute accuracies of the Kinect and another sensor according 
to the camera pose obtained by using Efficient PnP (EPnP) algorithm [30].

Kinect has also been used in the context of cultural heritage. For instance, Remon-
dino  [10] presented a review of using different types of imaging and depth sensors 
including Kinect to perform 3D scanning of archaeological objects for the purposes of 
digital recording, historical documentation and preservation of cultural heritage. Rich-
ards-Rissetto et al. [11] used Kinect’s body motion detection features to perform naviga-
tion in a 3D reconstructed model of an ancient Maya city using virtual reality.

In addition to the usages described above, this innovative sensor also provides new 
opportunities in terms of on-site learning described in [6] by presenting the learners an 
interesting visualization of structures overlaid on top of the ruins as we aim in this study.

a Fiducial marker b Marker detected

c Augmented view
Figure 1  Stages of augmentation using markers.
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In situ augmentation
Since the viewpoint information is required for augmentation, the first step is to estab-
lish correspondences between 2D image features and their depth since, from them, the 
camera pose can be calculated. With that knowledge, rectangular features in the image 
are identified and augmented with columns, as this is a common requirement in cultural 
heritage reconstructions in the eastern Mediterranean as shown in Figure 2.

Generating 3D–2D correspondences

The distance between the two sensors of the Kinect results in different projected loca-
tions in the RGB and the depth images for the same 3D point. To compensate for this, 
the calibration parameters of both sensors must be estimated, or errors will ensue [33]. 
These calibration parameters can be computed using the Kinect Calibration Tool-
box  [34], or obtained using a method  [35] similar to stereo calibration  [36]. The first 
method provides a semi-automatic way of calibrating the camera, by both allowing the 
user to select corners manually from a calibration target (a chess-board pattern) in the 
RGB image and the plane where the calibration target is placed in the depth image; these 
selections are used as an initial guess for the calibration parameters for a set of RGB and 
depth images (~30 images). A non-linear minimization method is then used to reduce 
the projection errors. This work uses the calibration parameters obtained by the second 
method [35], which again finds corners on the calibration target and performs the cali-
bration only for the RGB camera. Then the depth camera is also calibrated by manually 
finding corresponding corners in the depth image.

The transformations (R and T) between the depth and RGB sensors of the Kinect 
are used to align the two sensors and are obtained as calibration results along with the 
intrinsic parameters (focal lengths and distortions) for both sensors. The camera matri-
ces KD and KC for the depth and RGB sensors respectively are:

where fx and fy are the focal lengths in the x and y directions and cx and cy are the centre 
coordinates of the relevant sensor.

(1)KD =





fxD 0 cxD
0 fyD cyD
0 0 1





(2)KC =





fxC 0 cxC
0 fyC cyC
0 0 1





Figure 2  Views of the Hadrian Temple in Ephesus in Turkey. b Obtained from [31, 32].
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Figure  3 illustrates the process of back-projecting raw depth values into 3D coordi-
nates and then projecting them onto the RGB image.

Given raw depth (d) values from the depth image captured by the Kinect, the world 
coordinates of a 3D point (p ≡ (px,py,pz)

T) are calculated using

where x and y denote a position in the depth data. dm is a conversion from raw depth 
values (d) to depth in meters [37] and is calculated as:

Unreliable values (those having the maximum raw disparity value of 2047 [29], as illus-
trated in Figure 3) are discarded and the remainder stored.

Using the transformation and distortion (used for modelling radial and tangential dis-
tortions arising from the inaccuracies in the manufacturing process) parameters for the 
Kinect sensor [24], the 3D points are projected onto the RGB image [36]. For a 3D point p,  
first the transformation parameters (R and T) are applied to p to find p′ ≡ (p′x, p

′
y, p

′
z)

T:

from which the projected coordinates (p′x, p′y) are calculated (p′z is ignored) using

(3)

px =
(

x × cxD
)

×
dm

fxD

py =
(

y× cyD
)

×
dm

fyD
pz = dm

(4)dm = 0.1236× tan

(

d

2842.5
+ 1.1863

)

(5)p′ = Rp+ T

(6)

p′x =
p′x
p′z

p′y =
p′y
p′z

p′z =
p′z
p′z

= 1

Figure 3  Back-projection of depth data and projecting 3D points; shaded values (red) in the depth data 
show unreliable raw disparities.
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The radial (k1, k2, k3) and tangential (p1, p2) distortion parameters of the RGB camera are 
applied to get p′′ ≡ (p′′x , p

′′
y )

T :

where r =
√

p′x
2 + p′y

2. Finally, the pixel locations are obtained using the camera matrix 
KC:

The 3D points resulting from this back-projection of the depth sensor and their corre-
sponding projection points are stored in a data structure (Table 1) that allows the 3D 
position corresponding to a 2D pixel (p′′′) to be obtained quickly.

Finding the camera pose

The camera position must be found relative to the 3D points obtained from the Kinect 
sensor, and that is best performed by tracking reliable image features over several 
frames. The set of points used for tracking needs to be stable in order to achieve robust 
localization of the camera. To achieve this, the FAST feature detector [38] was used to 
find features in the RGB image. This detector produces features that are repeatable [39] 
and widely scattered across the image  [40], important characteristics if the resulting 
homography matrix is to be accurate, and the system is to operate at video rate. The 
key-points obtained from FAST were described using the BRIEF descriptor [41], which 
is also known to be robust and operate at video rate. The binary structure of the BRIEF 
descriptor allows two descriptors to be matched using XOR instructions, and is there-
fore rapid to execute.

After the initial set of features has been obtained, these points are matched against 
the features detected in subsequent frames, outliers being rejected using RANSAC [42]. 
3D information for matched points is obtained from data structure (Table  1) alluded 
to in the previous section. There can be cases where a pixel position may not have an 
associated 3D datum, perhaps due to reflection of the infra-red beam or the disparity 
between the depth sensor and camera; when this happens, the closest 2D point in the 

(7)

p′′x = p′x

(

1+ k1r
2
+ k2r

4
+ k3r

6
)

+ 2p1p
′
xp

′
y + p2

(

r2 + 2p′x
2
)

p′′y = p′y

(

1+ k1r
2
+ k2r

4
+ k3r

6
)

+ p1

(

r2 + 2p′y
2
)

+ 2p2p
′
xp

′
y

(8)p′′′ =

[

p′′′x
p′′′y

]

= KC

[

p′′x
p′′y

]

Table 1  Data structure to store point data

Index Data
〈

p′′′x1 , p
′′′
y1

〉

p1
〈

p′′′x2 , p
′′′
y2

〉

p2
.
.
.

.

.

.
〈

p′′′xn , p
′′′
yn

〉

pn
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data structure is used and the corresponding depth calculated as the mean of depths 
within a 21× 21-pixel region.

Algorithms for calculating the position and orientation of the camera are well-estab-
lished  [43,  44], provided that the intrinsic parameters (focal length etc.) are known 
through calibration. Correspondences between 3D points and their 2D projections are 
used in order to recover the camera pose. For three correspondences, four possible solu-
tions can be found, whereas a unique solution can be found for six or more correspond-
ences [45]. The corresponding 2D and 3D points stored in Table 1 are used to calculate 
the camera position using a recent PnP solution known as EPnP [30, 46] as the initial 
estimate.

As discussed in [44], PnP solutions are easily affected by noise, and this manifests itself 
as an unpleasant jittering of the camera position and hence rendered imagery. To reduce 
this, the estimate of the camera pose is filtered. As will be shown below, a sliding window 
filter of size 15 reduces this effect but does not eliminate it, while a Kalman filter [47] 
was found to be more effective. The state of this filter comprises the x, y, z coordinates 
of the camera position and their velocities Vx, Vy and Vz. Measurements of (x, y, z) are 
obtained from the EPnP algorithm discussed above. The velocities were initialized to 
0.5 units/frame for the three axes, reasonable for a user standing and observing ancient 
ruins (i.e., little or no motion). The transition matrix F is:

At each frame, first the transition matrix F is applied to the current camera position as 
the prediction step (�t is the time passed between two consecutive frames). Then the 
measurements for the camera pose calculated using EPnP are used to refine this predic-
tion for updating the filter, and the state is used for the viewpoint of augmentation. It 
was found that this filter reduced jittering to the point where it was imperceptible.

Finding objects for augmentation

After determining the camera pose, the next step is to find planar objects, to be aug-
mented, in this work, by synthetic column models. Whether columns are cylindrical or 
fluted, their projection in the 2D image will be rectangular, and such shapes are relatively 
easy to detect: Any visual noise in the image was reduced by Gaussian smoothing, then 
the Canny edge detector [48] was applied to each of the colour channels independently. 
Contours were extracted from the edge images using an approximation method  [49]; 
contours that contain four vertices with angles between pairs of lines joining these verti-
ces close to 90° form reliable rectangles (Figure 4). Small rectangles and rectangles hav-
ing inappropriate aspect ratios for columns were rejected.

The rectangles detected using the method described above tend to disappear and re-
appear from frame to frame due to the changes in lightning conditions. For this rea-
son, the vertices of these rectangles were tracked using the Condensation algorithm [50], 
essentially a particle filter for visual tracking supporting a multi-modal estimate. For a 

(9)F =















1 0 0 �t 0 0

0 1 0 0 �t 0

0 0 1 0 0 �t
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1














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rectangle centred at X = (xc, yc)
T, the initial state is initialized from the rectangle detec-

tor and the particles were scattered within a 20-pixel radius of that point. The state X 
was updated using two models, one dynamical and the other observation.

The dynamic model A generates the predicted (hypothetical) state X̂ and is initialized 
to the identity matrix for simplicity:

At each frame the predicted state is calculated for all particles (1 . . . n):

Particle weights are updated using the observation model. Measurements 
(M = (mcx ,mcy)) from the rectangle detection algorithm are used to refine the particle 
confidences using

where wi denotes the weight of particle i and σ 2
x  and σ 2

y  are the variances of the samples 
for the x and y coordinates of the centre points. The hypothetical values of the rectangle 
centre are stored in pix and piy. From (12), it can be seen that a Gaussian probability dis-
tribution is used for the update of the particle confidences.

This process is followed by re-sampling, in which the new confidences will be used to 
create a new set of particles of the same size [36]. The number of particles for the algo-
rithm was selected as N = 50, which was found to be sufficient (i.e., not causing particle 
deprivation [51]). At each frame, the particles are updated using the result of the rectan-
gle detection algorithm described above, resulting in the centre of the rectangle being 
tracked robustly as depicted in Figure 5. After the re-sampling update is performed, the 

(10)A =

[

1 0

0 1

]

(11)X̂n = AXn

(12)

wix = e
−1

2σ2x
(mcx−pix)

2

wiy = e

−1

2σ2y

(

mcy−piy

)2

wi = wix × wiy

Figure 4  Rectangular features (marked in black) located within an image.
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particle with the largest weight is selected both for augmentation and propagation into 
the next state. The 3D position of each rectangle’s centre is retrieved and the column 
models are rendered at these 3D positions.

The complete augmentation algorithm is given in Algorithm 1.

Algorithm 1 In situ augmentation
Require: IC : RGB image, ID: Depth image, 3D models for

augmentation.
Load models and camera calibration parameters.
Initialize the Kalman filter and rendering environment.
for all frames do

if first frame then
Extract the initial set of features for tracking using
FAST detector and BRIEF descriptor.
Find the initial number of rectangles for augmenta-
tion, initialize the Condensation filter.

else
Compute 3D points from the depth data.
Calculate projections and create the hash-map.
Find feature matches by detecting, describing and
matching features from the RGB image for the new
frame.
Calculate camera pose using EPnP.
Update the Kalman filter for camera pose using mea-
surements and set viewpoint for augmentation.
Detect rectangular objects.
Update Condensation filter.
Retrieve centre coordinates for augmentation.
Render the view.

end if
end for

Augmenting participants
This section describes the use of the skeleton tracking features of Kinect to augment a 
participant with clothes from ancient times. The OpenNI library  [15] processes depth 

Figure 5  Tracking selected rectangles. Small circles show the estimates of their centres whereas the large 
circle is the particle with largest weight.
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information from Kinect and performs detection of body parts identified as joints, as 
shown in Figure 6. In this work, three ‘joints’ are used: the head, torso and right hand, for 
superimposing a galea (Roman helmet), toga and a sword respectively.

As each joint is recognized by OpenNI, its position and orientation are returned. 
These transformations are absolute, not relative, and so can be used directly for render-
ing, with the exception that the rotation matrix for orientation RM must converted to a 
vector R using Rodrigues’ formula:

When using optical see-through displays, images from the real environment are 
obtained automatically using a mirror in the display device; when the graphics are ren-
dered, augmentation comes at no cost [52]. However, when using video see-through dis-
plays or a camera as the input source, the images of the real environment must also be 
rendered together with other graphics in order to generate the final image. The approach 
commonly adopted is to convert camera images to the texture format of the rendering 
engine (Irrlicht in our case); then, at each call to the function that draws the whole scene, 
the camera image is first rendered and then the computer models are superimposed on 
it.

Creating 3D models
The approach followed for creating the models used for AR applications is presented 
briefly in this section.

Modelling and optimization

The ancient columns and other models were created using 3D Max  [53]. Build-
ings were modelled  [8] in accordance with reconstruction images prepared by 

(13)R =





Ry

Rx

Rz



 =









sin−1 RM0,2

sin−1 −RM1,2

cosRy
sin−1 −RM0,1

cosRy









Figure 6  Skeleton joints identified by OpenNI.
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archaeologists [31, 32]. AutoCAD [53] was used to draw 2D profiles of buildings and other 
structures such as columns as shown in Figure 7a. These profiles were later exported to 
3D Max. 3D objects are created using modifiers such as bevel profile which rotates the 
given profile around a boundary (square, circle etc.) to get a 3D object (Figure 7b).

3D models having a large number of vertices (hence and hence faces) reduce the frame 
rate of a real time application. For this reason, created models were optimized using the 
MultiRes modifier, which works by first computing the number of vertices and faces in a 
model, then allows the user to eliminate some of them manually. This method proved to 
be effective for 3D models consisting of thousands of faces.

Texture baking

Texture baking (also known as “render to texture”) [54] is the process of creating a single 
texture map from multiple materials that have been applied to a model. There are several 
ways to perform this; the following method was found to produce the best results.

To produce a single texture from several materials applied to a model, one first uses an 
Unwrap UVW modifier to store the current material map—this defines how the texture 
must wrap around an object that has a complex structure. The next step is to unwrap all 
the individual faces of the model as shown in Figure 8 and render the material informa-
tion into the output texture.

When rendering, a diffuse map was selected (instead of the complete map model, 
which included maps for lighting or surface normals and failed to create the texture for 
the invisible side of the model). Later, this single texture was applied to the model again, 
by removing the previous material. Finally, the stored map must be applied to obtain the 
original look of the model before texture baking.

Results
This section first presents the created models and then presents a quantitative analysis 
of the camera pose estimation. It finally shows the effects of the complete augmentation 
process which can run at video rates (25 frames per second).

a Column profiles b 3D column created
from the profiles

Figure 7  Creating 3D models of the columns in front of the Hadrian temple by spinning its profile around a 
circle based on the structure of the ruins and the reconstruction image in Figure 2.
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Models used in the experiments

The models created are shown in Figure 9. The optimization step resulted in a 10−25% 
reduction in the number of faces for the models. Usually, the more complex the model 
is, the higher the percentage of faces can be removed without a noticeable change in 
appearance; here, these optimizations were most efficient in terms of removing faces for 

a Wireframe view of the
model

b Faces unwrapped

Figure 8  Unwrapping the faces of a model for texture baking.

a Galea (Ro-
man helmet)

b Sword c
Toga

d Top arch

e Column
Figure 9  Models created for the augmenting participants.
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the galea model (Figure 9a) due to its roughly spherical shape (many faces are required 
for a smooth surface, hence many can be removed during optimization) whereas the col-
umn (Figure 9e) was unable to accommodate the removal of many vertices without los-
ing detail of the capital (top) or pediment (base) (Figure 7a).

Performance of the in situ augmentation algorithm

The errors in the initial estimation are shown in Figure 10. The relative error is calcu-
lated for the initial set of 3D–2D correspondences by re-projecting 3D points using the 
estimated translation and rotation for the camera, while the true re-projection error is 
calculated using ground truth, obtained from the knowledge that the camera is station-
ary. A mean difference of ≃0.26 pixels was obtained between the true and estimated re-
projection errors, showing that the estimation is reasonably accurate.

Again using the ground truth, the calculated errors in rotation and translation and 
are given in Figure 11. (Calculating the rotation error involves converting the actual and 
estimated rotation matrices into quaternions and finding the distance between the two 
quaternions. For the translation error, the Euclidean distance is calculated between the 
actual and estimated translations.) Fluctuations are substantially higher for the trans-
lational error (σterror = 0.009) compared to the rotational error (σrerror = 0.0004). As 
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alluded to above, the magnitude of this translational error results in rendered augmenta-
tion being unstable (‘jittering’).

Figure 12 shows the results from sliding window and Kalman filters, and it is clear that 
the Kalman filter produces more stable positions. The jitter is reduced from σ̄raw = 0.43 
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Figure 12  Camera coordinate estimations using raw estimation result (blue), sliding window (red) and 
Kalman filter (green).
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to σ̄Kalman = 0.07, where σ̄raw and σ̄Kalman are the standard deviations of the camera 
coordinates for the initial estimate and Kalman filtered results.

Augmentation results

To illustrate the augmentation algorithms presented above, an application was devel-
oped to augment rectangular regions of a specific size and aspect ratio in the Kinect 
imagery. When the camera position and orientation had been found and the centres of 
suitable rectangles identified, the 3D column models described in the previous section 
were rendered in front of them. When rectangles were found at are particular distance 
apart, an arch could be placed above the columns to form an arch, as shown in Figure 13.

The result of augmenting users is shown in Figure  14a for a single user and in Fig-
ure  14b for two users. The general effect is acceptable for toga and sword but some 
minor registration errors are apparent for the galea model in the case of a single user. 
These registration errors become more severe when multiple users are present, and this 
appears to be due to the accuracy of skeleton tracking decreasing when the user is not 
centred in the field of view.

Conclusions
It is clear that the Kinect has great potential in AR applications for cultural heritage. 
Different studies have shown that Kinect can be used as an imaging and depth sensor in 
order to scan and record archaeological objects [10]. It can also be used as an interaction 
device tracking the movements of users [11].

In this paper, we presented two novel usages of Kinect within the context of cul-
tural heritage. The first contribution is the in  situ AR application using the algorithm 
described in "In situ augmentation" which allows the camera pose to be estimated rea-
sonably precisely and robustly from Kinect imagery and depth values. Planar, rectan-
gular regions can be identified robustly through condensation and augmented with 
features from historical buildings. The second contribution is the use of Kinect data to 

Figure 13  Augmenting columns over rectangles.
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augment the appearance of humans, so that they can be clothed in a way that matches 
their surroundings.

The analysis and augmentation presented in this paper can be achieved in real time using 
a single computer equipped with a Kinect. The lack of any set-up phase (as opposed to [14]) 
and this speed of processing are important practical considerations for installations in muse-
ums that are to be used without supervision, or for use in educational games. Indeed, we 
believe that AR applications similar to ones presented in this paper will improve the on-site 
learning experience [6] and provide people with an incentive to learn about their and other 
people’s past and protect our historical artefacts and monuments as a memory of the past.

Endnote
ahttp://www.hitl.washington.edu/artoolkit.
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