
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1
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Abstract—The bias feature is a major factor that makes a
multiobjective optimization problem (MOP) difficult for multi-
objective evolutionary algorithms (MOEAs). To deal with this
problem feature, an algorithm should carefully balance between
exploration and exploitation. The decomposition-based MOEA
decomposes an MOP into a number of single objective subprob-
lems and solves them in a collaborative manner. Single objective
optimizers can be easily used in this algorithm framework.
Covariance matrix adaptation evolution strategy (CMA-ES) has
proven to be able to strike good balance between the explo-
ration and the exploitation of search space. This paper proposes
a scheme to use both differential evolution (DE) and covariance
matrix adaptation in the MOEA based on decomposition. In this
scheme, single objective optimization problems are clustered into
several groups. To reduce the computational overhead, only one
subproblem from each group is selected to optimize by CMA-ES
while other subproblems are optimized by DE. When an evo-
lution strategy procedure meets some stopping criteria, it will
be reinitialized and used for solving another subproblem in the
same group. A set of new multiobjective test problems with bias
features are constructed in this paper. Extensive experimental
studies show that our proposed algorithm is suitable for dealing
with problems with biases.

Index Terms—Bias feature, covariance matrix adaptation evo-
lution strategy (CMA-ES), decomposition, multiobjective evolu-
tionary algorithms (MOEAs).

I. INTRODUCTION

W ITH the effort of more than twenty years from
researchers and practitioners in different fields, mul-

tiobjective evolutionary algorithms (MOEAs) have become
a major methodology for dealing with multiobjective opti-
mization problems (MOPs) [1]–[4]. An MOEA drives a
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population of candidate solutions toward the Pareto front (PF)
of an MOP. To design an MOEA, one should consider two
highly related issues. One is how to select solutions to
become parents for reproduction or enter the next genera-
tion. The other is how to generate new solutions. Based on
their selection operators, most MOEAs can be classified into
three classes: 1) Pareto dominance-based algorithms [5]–[8];
2) decomposition-based ones [9]–[12]; and 3) performance
indicator-based ones [13]–[16]. Although not always very
easy, it is a common practice to apply or generalize repro-
duction operators developed in single objective evolutionary
algorithms in these frameworks for dealing with MOPs.

In recent years, an MOEA based on decomposi-
tion (MOEA/D) proposed in [17] has attracted much attention
in the area of MOEAs. It decomposes an MOP into a number
of subproblems and solves them in a collaborative manner.
Each subproblem can be either single objective or multiobjec-
tive [18]. Compared with other MOEAs, a major advantage
of MOEA/D is that it is very suitable to accommodate sin-
gle objective optimizers when the subproblems are single
objective. In fact, some well-known single objective algo-
rithms, including differential evolution (DE) [19], particle
swarm optimization [20], simulated annealing [21], ant colony
optimization [22], and efficient global optimization [23], have
been used in the MOEA/D framework. More recently, some
extensive work on MOEA/D for many-objective optimization
have been done [24]. The archiving strategy has also been
studied in MOEA/D for combinatorial optimization [25].

To design an algorithm, one has to take problem features
into consideration. Various MOP problem features have been
identified and studied [8], [19], [26]–[32]. Most of them
are related to the geometric shapes of PF in the objective
space [26]–[29] or the geometric shapes of Pareto set (PS)
in the decision space [19], [30]. In [26], [28], and [29], a
class of MOPs with biases on its PS have been studied. The
biases on the PS mean that a tiny change on the decision vari-
ables of some Pareto solutions may cause significant changes
of their objective vectors in the objective space. To deal with
bias, the search operator with very powerful ability in exploita-
tion must be considered in MOEAs. The typical examples of
the benchmark multiobjective test problems with bias include
DTLZ6 [28] and WFG1 [29], of which the objective func-
tions contain the power function of decision variables. The
previously reported experimental results showed these two
benchmark test problems cannot be solved by any existing
MOEAs. We believe that the reason is twofold: 1) the hard-
ness of two test problems is extremely high and 2) the search
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operators in most existing MOEAs lack the ability for exploit-
ing solutions with high precision. To have better understanding
on the bias difficulties for MOEAs, it is also quite important
to study how to generate new but challenging test problems
with bias.

Covariance matrix adaptation evolution strategy
(CMA-ES) [33]–[36] is one of the most successful single
objective evolutionary algorithms for continuous optimiza-
tion. It generates new solutions by sampling a multivariate
Gaussian distribution model. CMA-ES can adaptively balance
the exploration and the exploitation of search space very
well. The use of CMA-ES should also be a good option for
solution reproduction in MOEAs. Some efforts along this line
are summarized and commented as follows.

1) In [37], MO-CMA-ES, an extension of CMA-ES for
multiobjective optimization, was proposed and studied
under the framework of NSGA-II. This algorithm uses
Pareto dominance and a performance indicator in its
selection. Each individual solution is associated with a
different Gaussian model. Due to the invariant prop-
erties of CMA-ES, MO-CMA-ES was proved to be
advantageous when handling the MOPs with interacting
variables. Note that the update of a covariance matrix
involves high computational overheads, MO-CMA-ES
is not very efficient when its population size is large.

2) In [38] and [39], two similar versions of MOEA/D
with CMA-ES have been suggested. To optimize all
subproblems, each solution is associated with a dif-
ferent Gaussian model. This is the same as that in
MO-CMA-ES. The experimental results showed that
MOEA/D with CMA-ES is promising for solving bench-
mark and real-world MOPs. But these two MOEA/D
variants still suffer from low efficiency when the large
population size is used.

Since CMA-ES considers the adaptive strategy for control-
ling step size in sampling new solutions, it has the potential to
exploit the optimal solutions in a small area. For this reason,
CMA-ES should be promising for solving the MOPs with
biases. However, sampling new solutions with only CMA-ES
will cause very high computational cost as in the previous
work using CMA-ES in NSGA-II or MOEA/D. To ensure
the efficiency, some commonly-used reproduction operators
with good ability in exploration can also be used for generat-
ing new solutions. To this end, we consider DE as the other
reproduction operator in this paper since it is simple but pow-
erful. Under the framework of MOEA/D, this paper further
extends CMA-ES into multiobjective optimization, where the
balance between CMA-ES and DE is highly addressed. The
proposed algorithm is denoted by MOEA/D-CMA. Our major
contributions of this paper are as follows.

1) Construction of MOP Test Instances With Biases: It has
been recognized that solution distribution bias is a major
factor to determine the difficulty of an MOP. However,
little effort has been made to investigate it. We propose
a set of MOP test instances with position-related bias
and distance-related bias.

2) Clustering Strategy for Using CMA-ES: To reduce the
computational overhead, MOEA/D-CMA does not use

CMA-ES to optimize every subproblem at each gen-
eration. Instead, each Gaussian model in CMA-ES is
responsible for a group of subproblems, in which only
one subproblem is optimized at a time. If a CMA-ES
converges on its subproblem or its Gaussian model
becomes ill-conditioned, it will select another subprob-
lem from the same group to optimize.

3) Elite Strategy for Updating CMA-ES Models: The cur-
rent best solutions of some subproblems optimized by
CMA-ES are always involved in the update of dis-
tribution mean although they are not sampled by the
corresponding Gaussian models. This is beneficial for
speeding up the convergence of the proposed algorithm.

4) Experimental Studies of MOEA/D-CMA on the Proposed
MOP Test Instances: Systematical experimental stud-
ies have been conducted to study the behavior of
our proposed MOEA/D-CMA on a number of MOPs
with bias.

The remainder of this paper is organized as follows.
Section II introduces some basic definitions in multiobjective
optimization. In Section III, some existing work on the bias in
MOPs are discussed, and a set of new MOP test instances with
controllable bias are suggested. Section IV gives the details of
the proposed algorithm. Section V presents and analyzes the
experimental results. The algorithmic behavior of the proposed
algorithm is studied in Section VI. The final section concludes
the paper.

II. BASIC DEFINITIONS

This paper considers the following continuous MOP:

minimizex∈� F(x) = ( f1(x), . . . , fm(x))T (1)

where x = (x1, . . . , xn)
T is a vector of n decision variables in

� = ∏n
j=1 [aj, bj], and F : � → Rm is a vector function of

m individual objective functions f1, . . . , fm. � and Rm are the
decision space and the objective space, respectively. Due to
the conflict among different objectives, solution optimality in
multiobjective optimization is often defined in terms of Pareto
dominance.

Definition 1 (Dominance): Let x, y ∈ �, x is said to domi-
nate y, denoted by x ≺ y, if fi(x) ≤ fi(y) for all i = 1, . . . , m
and F(x) �= F(y). F(x) is said to dominate F(y), denoted by
F(x) ≺ F(y), if x ≺ y.

Definition 2 (Pareto Optimality): A solution x∗ ∈ � is said
to be Pareto-optimal if no solution in � dominates it. The set
of all Pareto-optimal solutions in � is called the PS. The set
of all the corresponding objective vectors is called the PF.

Definition 3 (Tchebycheff Subproblem): Given a weight
vector λ = (λ1, . . . , λm)T with λi ≥ 0 and

∑m
i=1 λi = 1, and

a reference point z = (z1, . . . , zm)T , the objective function in
a Tchebycheff subproblem of (1) for minimization is

g(tch)(x|λ, z) = max
i∈{1,...,m} λi| fi(x)− zi|. (2)

Under certain conditions, the optimal solution of (2) is a
Pareto solution to (1). Solving a set of such subproblems
with appropriate and different λ settings can produce a good
approximation to the PF of (1).
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Fig. 1. Distributions of 20 000 random solutions for Deb’s problem.

III. MULTIOBJECTIVE OPTIMIZATION PROBLEMS

WITH BIAS FEATURES

In this section, some existing MOP test problems with bias
features are reviewed and discussed. Then, two methods are
proposed for constructing test problems with bias features.

A. Existing MOP Test Instances With Bias Feature

As pointed in [26] and [29], the bias feature is a major fac-
tor that makes MOPs difficult for MOEAs. Bias means that the
slopes of objective functions are large in the vicinities of some
Pareto solutions [29]. Many real world MOPs should have this
property. The position-related bias means that a small change
on the position-related variable of one Pareto solution will
cause significant change along PF in the objective space. On
the other hand, the distance-related bias means that a small
variation on the distance-related variables of a Pareto solu-
tion will cause significant deterioration on its closeness toward
the PF.

To study how to deal with the bias, one needs a set of test
instances with controllable biases for conducting experimen-
tal studies. The following bi-objective problem was studied
in [26]:

f1(x) = x1

f2(x) =
(
1.0+ xγ

2

)
⎡

⎣1−
(

f1(x)

1.0+ xγ

2

)2
⎤

⎦ (3)

where x1 ∈ [0, 1] is the position-related variable and
x2 ∈ [0, 1] is the distance-related variable. Its PF is f2 = 1−f 2

1 .
The difficulty of (3) in terms of convergence is mainly caused
by the term xγ

2 , i.e., the power function of x2. To visualize its
solution distribution in the objective space, the objective vec-
tors of 20 000 uniformly randomly selected solutions in the
search space (i.e., [0, 1]2) are plotted in Fig. 1 for γ = 0.1.
It is obvious that these solutions are far away from the PF.
This is due to the fact that a solution close to the PF must
have an extremely small x2 value. For example, if we want

f2 < 1.1 − f 2
1 /1.1, then x2 must be smaller than 10−10.

Most crossover and mutation operators are unable to work in
such precision. The well-known benchmark test problem with
distance-related bias constructed by using power function is
DTLZ6 [28].

In [29], the similar transformations are applied to gener-
ate bias on both distance-related variables and position-related
variables in the WFG test suite. Taking WFG1 as an exam-
ple, its position or distance function contains the term x̄0.02

j ,
where x̄j is the underlying non-negative variable. When the
value of x̄j changes from the optimal value 0 to 10−50, the cor-
responding distance function value is significantly increased
by 0.1. It should be pointed out that most crossover and muta-
tion operators used in MOEAs lack the ability of refining a
solution with such high precision.

As far as we know, both DTLZ6 and WFG1 have not be
well optimized by any existing MOEAs. Due to the unsov-
able hardness of these two benchmark test problems, very little
progress has been made on the development of MOEAs for the
MOPs with biased search space. Note that the bias hardness
in the formulation (3) can be controlled by the parameter γ .
However, it is not easy to construct a test problem with suit-
able hardness to study the search behavior of MOEAs when
dealing with biased search space. This is because the bench-
mark test problems generated by the method formulated in (3)
are either too easy or extremely hard for MOEAs. Therefore,
the design of new challenging but solvable test problems with
bias becomes quite important.

B. New Multiobjective Test Problems With Bias Feature

To facilitate the study of the ability of MOEAs for dealing
with biases, we generalize our work in [19] and propose the
following way for constructing multiobjective test problems:

fk(x) = αk
(
x̂1:m−1

)+
∑

j∈Ik⊂{m:n}
x̂j, k = 1, . . . , m (4)

where:
1) x̂1:m−1 = (x̂1, . . . , x̂m−1)

T ∈ Rm−1 is an intermediate
position-related vector, and αk, k = 1, . . . , m−1 are the
position functions, which define the PF geometric shape;

2) x̂m:n = (x̂m, . . . , x̂n)
T ∈ Rn−m+1 is an intermedi-

ate non-negative distance-related vector, and βk(x̂Ik) =∑
j∈Ik

x̂j, k = 1, . . . , m, is the distance function of fk(x)
with Ik = { j ∈ {m : n}|mod( j, m) = k − 1};

3) Each component x̂j is defined as

x̂j =
{

S
(
xj|γ

)
j = 1, . . . , m− 1

D
(
g
(
xj, x1:m−1

)∣
∣θ
)

j = m, . . . , n
(5)

with:
a) the position-related transformation S is a one-to-

one mapping from [aj, bj] into itself. The parameter
γ is used to control position-related bias;

b) the distance-related transformation D maps R into
[0,+∞). The function value of D equals to zero
if and only if g(xj, x1:m−1) = 0. The parameter θ

is used to control distance-related bias.
To construct an MOP instance with bias difficulties, the

position functions αk, k = 1, . . . , m, the function g for defining
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Fig. 2. Plots of S1 (top) and S2 (bottom) with γ = 0.02, 0.1, 0.5.

the PS geometric shape, and two bias mappings S and D should
be specified. In the following, we suggest two methods for
specifying these functions.

1) Position-Related Bias: Similar to [29], the following two
polynomial transformations are proposed to map all position-
related variables xj from [0, 1] to [0, 1], j = 1, . . . , m− 1:

x̂j = S1
(
xj|γ

) = ∣∣xj
∣
∣γ (6)

or

x̂j = S2
(
xj|γ

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− (1− 4xj
)γ

4
if xj ∈ [0, 0.25)

1+ (4xj − 1
)γ

4
if xj ∈ [0.25, 0.5)

3− (3− 4xj
)γ

4
if xj ∈ [0.5, 0.75)

3+ (4xj − 3
)γ

4
if xj ∈ [0.75, 1].

(7)

Fig. 2 plots the shapes of S1 and S2 with various settings of γ .
When γ = 0.02, a very small change on x1 may lead to a large
change on x̂1. For example, in the case when α1(x̂1) = x̂1 and

Fig. 3. Contour lines of β1(x2, x3|D1) in [0, 1]2 (left) and in
[0.5− 10−2, 0.5+ 10−2]2 (right).

Fig. 4. Contour lines of β2(x2, x3|D2) in [0, 1]2 (left) and in
[0.5− 10−2, 0.5+ 10−2]2 (right).

α2(x̂1) = 1 −√x̂1, the approximation of the part of PF near
f1 = 0 will become very difficult due to the bias of S1. More
precisely, f1 ∈ [0, 0.9] in the PF means x1 ∈ [0, 0.0052], a
very small subset of [0, 1]. The PF near f1 = 0.25 or f1 = 0.75
has position-related bias caused by S2. Fig. 2 shows that the
position-related bias decreases as γ increases.

2) Distance-Related Bias: For every component of
y = (g(xm, x1:m−1), . . . , g(xn, x1:m−1))

T , the following two
nonlinear transformations are used to generate the distance-
related bias:

x̂j = D1
(
g
(
xj, x1:m−1

)∣
∣θ
) = g2 + 1− exp

(−g2
/
θ
)

5
(8)

x̂j = D2
(
g
(
xj, x1:m−1

)∣
∣θ
) = g2 + |g|

θ

5
. (9)

The minimal values of D1 and D2 are zero when g = 0. To
understand the distance-related bias determined by D1 and D2
when m = 2, we study the landscapes of the following two
distance functions with only two distance variables x2 and x3:

β1(x2, x3|D1) = D1(g(x2)|0.001)+ D1(g(x3)|0.001) (10)

β2(x2, x3|D2) = D2(g(x2)|0.1)+ D2(g(x3)|0.1) (11)

where g(xj) = xj− 0.5, j = 2, 3. The minimal solutions of the
distance functions in (10) and (11) are (0.5, 0.5). Fig. 3 plots
the landscape of β1 within two regions, i.e., a large area [0, 1]2

on the left and a small one [0.5− 10−2, 0.5+ 10−2]2 on the
right. In the large area, the overall landscape of β is similar
to that of a quadratic function, and there is a narrow trap
near (0.5, 0.5). In the small area shown on the right of Fig. 3,
the local landscape of β is still similar to a convex quadratic
function. Fig. 4 shows the landscape of β2 in two regions. It
can be observed that the landscape in the large area is quite
similar to that of β1 based on D1. But the difference between
them in the small area is significant. The local landscape of β2
based on D2 is nonconvex, and still has a trap near (0.5, 0.5).
Therefore, β2 should be more difficult to optimize than β1.
This will be verified in our experimental results in Section V.
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Using (4), a set of nine new multiobjective test instances
with bias, BT1–BT9, presented in Appendix A, are designed.
The features of BT1–BT9 are summarized as follows.

1) BT1–BT8 are bi-objective while BT9 is a three-objective
test instance. The number of decision variables is 30 in
all test problems.

2) BT3 and BT4 are two test instances with position-related
bias, while all other instances have no position-related
bias.

3) BT2 is a test problem with distance-related bias defined
by D2 while all others have the distance-related bias
defined by D1.

4) The PF of BT5 is disconnected. BT6 and BT8 have
simple nonlinear PSs while BT7 has a complicated
nonlinear PS. BT8 is multimodal.

IV. MOEA/D-CMA

This section first briefly introduces CMA-ES and its exten-
sions in multiobjective optimization. Then, the details of
MOEA/D-CMA are presented.

A. Related Work

CMA-ES is one of the most successful EAs for global
optimization. It does not use crossover and mutation for repro-
ducing new solutions. Instead, a Gaussian model is maintained
for sampling new solutions in the search space. Therefore, it
belongs to a class of estimation of distribution algorithms [40].
In CMA-ES, the distribution mean vector, covariance matrix,
and step size are updated iteratively by collecting informa-
tion on a number of selected solutions with high quality.1 As
mentioned earlier, CMA-ES has an adaptive mechanism for
exploring and exploiting search space. Many computational
experiences have demonstrated that CMA-ES is not only a
powerful global optimizer but also an excellent local opti-
mizer for searching solutions with satisfactory precision. This
is mainly due to its mechanism on step size control.

Treating CMA-ES as a solution reproduction opera-
tor, its extension into MOEAs is quite straightforward.
The pioneering MOEAs integrated with CMA-ES include
MO-CMA-ES [37] and MO-CMA-D [38], which are based
on the frameworks of NSGA-II and MOEA/D, respectively.
Both MO-CMA-ES and MO-CMA-D associate each individ-
ual with a Gaussian model. It should be pointed out that the
sorting of solutions in the latter is much easier than that in
the former since each subproblem in MO-CMA-D is a sin-
gle objective problem. MO-CMA-D matches individuals and
Gaussian models in a fixed way. In MO-CMA-ES, only sur-
viving solutions after nondominated sorting have the chance
to update the Gaussian model of its parent solution. In fact,
neither MO-CMA-ES nor MO-CMA-D is efficient when the
population size is large since the update of large number of
covariance matrices involves much higher computational com-
plexity than those of commonly-used crossover and mutation
operators. To overcome this weakness, the number of Gaussian
models should be limited in MOEAs.

1The details of three major steps of a standard CMA-ES algorithm are
illustrated in Appendix B.

Fig. 5. Graphical illustration on the groups of subproblems in
MOEA/D-CMA. In this example, nine subproblems are clustered into three
groups G1 = {1, 2, 3}, G2 = {4, 5, 6}, and G3 = {7, 8, 9}. Only three sub-
problems s1 = 2 ∈ G1, s2 = 5 ∈ G2, and s3 = 8 ∈ G3 are optimized by
CMA-ES at a time.

B. Algorithmic Framework

MOEA/D-CMA optimizes N single optimization subprob-
lems in a collaborative manner. In this paper, the objective
function in subproblem s is defined by (2) with weight vec-
tor λs. Note that N Tchebycheff subproblems defined by a
set of N weight vectors with even spread may not lead to
N Pareto solutions with even spread along PF. To ensure
good diversity of final solutions, as suggested in [41], any
weight vector λs without zero components should be replaced
by λ̄, where λ̄j = (1.0/λs

j )/
∑m

k=1(1.0/λs
k). Compared with the

weighting scheme used in the original MOEA/D, the weighting
scheme adopted in this paper is clearly superior in finding the
approximation of PF with good diversity when solving the
MOPs with more than two objectives. Like other MOEA/D
algorithms, a subproblem neighborhood concept is needed in
MOEA/D-CMA. Subproblem s′ is a T-neighbor of subprob-
lem s if λs′ is among the T closest weight vectors to λs.
MOEA/D-CMA also clusters all the subproblems into K groups.
Each group of subproblems have close weight vectors. In our
implementation, we employ the K-means clustering algorithm
on the set of weight vectors for clustering all the subproblems.
An example of clustering subproblems into three groups in
MOEA/D-CMA is depicted in Fig. 5. In each group, only one
subproblem is optimized by CMA-ES at every generation.

MOEA/D-CMA needs the following settings before the
search.

1) N: The number of subproblems.
2) T: The neighborhood size.
3) K: The number of groups.
4) λs: The weight vector for subproblem s, s = 1, . . . , N.
5) Bs: The set of indexes of neighboring subproblems to

subproblem s, s = 1, . . . , N.
6) Gk: The set of indexes of subproblem group k,

k = 1, . . . , K.
7) Stopping condition.
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Algorithm 1: Framework of MOEA/D-CMA

Input: λ1, . . . , λN - a set of N weight vectors
Output: WP = {x1, . . . , xN} - working population
Step 1: Initialization

1.1 Initialize WP = {x1, . . . , xN}.
1.2 Initialize z = (z1, . . . , zm) by setting:

zi = minx∈WPfi(x), i = 1, . . . , m.

1.3 Initialize �k, k = 1, . . . , K.
Step 2: Reproduction and Update
foreach s ∈ {1, . . . , N} do

2.1 New solution reproduction and update:
if ∃�k such that sk = s then

B← Bs, X← CMA(�k)
�k ← UpdateCMA(xsk , X)

else
{B, x̃} ← DE(s), X← {x̃}

end
2.2 Update z and WP:

{z, WP} ← UpdatePopulation(X, B)

end
Step 3: Termination:
if The stopping condition is met. then stop and return WP;
otherwise, go to Step 2

It maintains and updates the following data at each
generation.

1) Working population WP = {x1, . . . , xN}, where xs is the
current solution to subproblem s.

2) z: The estimated reference point.
3) Data in CMA-ES for each group k

�k =
{

sk, x̄k, σk, Ck, pk
c, pk

σ

}

where
a) sk is the index of the subproblem in Gk that

CMA-ES optimizes;
b) x̄k ∈ Rn is the distribution mean;
c) σk is the step size;
d) Ck ∈ Rn×n is the covariance matrix;
e) pk

c and pk
σ are evolution path vectors.

The framework of MOEA/D-CMA is given in Algorithm 1.
In initialization, the working population WP is initialized with
N random solutions in � in step 1.1, the reference point z,
which is needed in computing the objective function value
of each subproblem, is initialized in step 1.2 and the data
for K CMA-ES procedures are initialized in step 1.3. In our
implementation, �k = {sk, x̄k, σk, Ck, pk

c, pk
σ } is initialized as

follows.
1) sk is a randomly selected index from Gk.
2) x̄k = xsk .
3) Ck = In×n (identity matrix).
4) σk = 0.5, pk

c = 0, and pk
σ = 0.

At each pass of the for-loop of step 2, one subproblem s
is considered. If a CMA-ES procedure k is for subproblem s,
then a set of new solutions X are generated by CMA-ES and
�k is updated. Otherwise, X containing only one solution
is produced by DE. B produced in step 2 is the working

Algorithm 2: DE(s)
Step 1. Set the working neighborhood:

B =
{

Bs if rand < ps
{1, . . . , N} otherwise.

where rand is a uniform random number in [0, 1].
Step 2. Select two indexes r1, r2 from B randomly and produce
a trial solution y ∈ Rn:

yj =
{

xs
j + SF × (xr1

j − xr2
j ) if rand < CR

xs
j otherwise.

where SF is the scaling factor in DE, and CR is the crossover
rate.
Step 3. Mutate y using the polynomial mutation [1]. For
j = 1, . . . , n,

yj ←
{

yj + τj(bj − aj) with probability pm
yj with probability 1− pm

with

τj =
⎧
⎨

⎩
(2× rand)

1
η+1 − 1 if rand < 0.5

1− (2− 2× rand)
1

η+1 otherwise.
where pm ∈ (0, 1) is the mutation rate, η ∈ Z

+ is the
distribution index.
Step 4. Do repairs:

x̃j =
⎧
⎨

⎩

yj if aj ≤ yj ≤ bj
aj if yj < aj
bj if yj > bj

j = 1, . . . , n.

Step 5. Return B and x̃.

Algorithm 3: CMA(�k)

Step 1. Independently sample μ new solutions:

x̃i ∼ N (x̄k, σ 2
k Ck), i = 1, . . . , μ

Step 2. Repair the above solutions in the same way as in
Algorithm 2 if necessary.

Step 3. Return X = {x̃1, . . . , x̃μ}.

neighborhood which will be used in step 2.2 for updating z and
WP by X. In the following, we give the details of these steps.

1) DE(s): It is given in Algorithm 2. In step 1, the working
neighborhood B is set to Bs with probability ps or the
set of all the indexes {1, . . . , N} with probability 1−ps.
As suggested in [19], ps is set to 0.9 in this paper.
In step 2, two parent solutions are selected from
{xj| j ∈ B} and then a DE operator is used for generat-
ing a trial solution y. Following [19], the scaling factor
SF and the crossover rate CR are set to 0.5 and 1.0,
respectively. To promote solution diversity, the polyno-
mial mutation with the distribution index 20 is used with
probability 1/n for mutating y in step 3. If y is out of
the search space, step 4 will repair it.

2) CMA(Σk): It is presented in Algorithm 3. It samples μ

new solutions from the Gaussian model and repairs them
if necessary. The setting of μ is given in Appendix C.

3) UpdateCMA(xsk , X): It is given in Algorithm 4. Step 1
adds the current solution xsk into X. Step 2 uses X to
update �k. Step 3 updates the data in CMA-ES models.
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Algorithm 4: UpdateCMA(xsk , X)

Step 1. Set X = X ∪ {xsk }.
Step 2. Use X to update x̄k, pk

c, pk
σ , σk, and Ck in the same

way as the standard CMA-ES detailed in Appendix B.
Step 3. If one of the stopping criteria presented in [35] is met,
then reset �k as follows:

3.1 Set sk to be another index randomly selected from Gk;
3.2 x̄k = xsk ;
3.3 The other parameters in �k are reset to their initial
values.

Step 4. Return �k.

Algorithm 5: UpdatePopulation(X, B)

foreach x ∈ X do
Step 1. Update the reference point z:
foreach i ∈ {1, . . . , m} do

if fi(x) < zi then zi = fi(x).
end
Step 2. Update the current working population WP:
Set nr = 0;
foreach s ∈ B do

if g(tch)(x|λs, z) < g(tch)(xs|λs, z) then
xs = x and nr ← nr + 1.

end
if nr ≥ 2 then break the for-loop.

end
end
Return z, WP

If one of the stopping criteria proposed in [35] for the
Gaussian model is met, it implies that subproblem sk has
been well optimized by CMA-ES or the data in CMA-ES
has become ill-conditioned. Then �k is reinitialized and
another subproblem is randomly selected from the rest
of other subproblems in Gk for CMA-ES to optimize.
This is very helpful for searching different parts of PF.
Note that some subproblems in the same group might be
selected repeatedly. But such a possibility is relatively
small and has very little influence on the performance
of MOEA/D-CMA.

4) UpdatePopulation(X, B): It is implemented in
Algorithm 5. Each solution in X is used to update z and
WP in steps 1–2 within the for-loop. As in [19], the max-
imal number of solutions in WP replaced by the same
new solution is 2, which is good for population diversity.

We would like to make the following remarks on
MOEA/D-CMA.

1) MOEA/D-CMA generates new solutions using two
methods, i.e., DE and CMA-ES. The former is com-
putationally cheap and fast while the latter is of high
computational complexity. On one hand, DE is a very
powerful tool for exploration, which is very effective for
exploring the search space when the current population
is far from the PF. On the other hand, CMA-ES is able
to do exploitation in an efficient way. In particular, it
is good at intensifying the search in the area close to
PF. Thus, using both of them can make MOEA/D-CMA
balance the exploration and the exploitation of search
space.

2) To reduce the computational overhead, only one sub-
problem from each group is optimized by CMA-ES.
In each generation, the number of new solutions sam-
pled by CMA-ES models is μ × K while N − K other
new solutions are produced by DE operators. When a
CMA-ES meets some stopping criteria, it implies that
the CMA-ES has lost its search ability. Then, it will be
reinitialized for optimizing another subproblems selected
from the same group. When K = 0, MOEA/D-CMA is
the same as MOEA/D-DE. In this case, no CMA-ES is
used for solution reproduction. When K = N, all sub-
problems are optimized by CMA-ES in MOEA/D-CMA.
This is similar to MO-CMA-D, which involves very high
computational complexity. To ensure the efficiency, a
small value of K is recommended in this paper.

3) In Algorithm 4—UpdateCMA(xsk , X), both the current
solution xsk of subproblem sk and all new solutions in X
produced by CMA-ES are used to update �k. This is
different from a standard implementation of CMA-ES,
which only uses the solutions in X for updating its
data. In fact, it is an elitism strategy for accelerating
the convergence speed of MOEA/D-CMA. Due to the
high-quality of xsk regarding subproblem sk, it will be
assigned with a large weight for the computation of dis-
tribution mean x̄k. As a result, x̄k will move toward
xsk with preference. In the following generations, the
kth Gaussian model may sample new solutions close
to xsk with high probability. In contrast, the other two
MOEAs based on CMA-ES, i.e., MO-CMA-ES and
MO-CMA-D, do not use any elitism strategy. They
update the data of Gaussian model in the same way as in
CMA-ES for single objective optimization, which only
uses half newly-sampled solutions with the best quality
for computing the distribution mean.

C. Connections Between MOEA/D-CMA and Other
MOEA/D Variants With CMA-ES

Both MOEA/D-CMA and MO-CMA-D integrate CMA-ES
into the MOEA/D framework for solution reproduction. The
differences between them mainly lie in two aspects. First,
MOEA/D-CMA only optimizes a few subproblems selected
from different groups by CMA-ES in each generation while
MO-CMA-D needs to optimize all subproblems by CMA-ES.
Second, the subproblems in MOEA/D-CMA are optimized
by either CMA-ES or DE with a certain probability. In
MO-CMA-D, these operators (called self mutation and social
mutation) are used for optimizing every subproblem and
produce two offspring solutions individually. The convex
combination of these two solutions is used to update the dis-
tribution mean vector. Note that the other MOEA/D variant
with CMA-ES studied in [39] can be regarded as a special
case of MOEA/D-CMA when K = N, i.e., each subproblem
belongs to a group only including itself.

V. EXPERIMENTAL STUDIES

This section studies the performance of MOEA/D-CMA on
BT1–BT9. Some discussions are also made for understanding
the behavior of the proposed algorithm.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. Plots of nondominated solutions found by MOEA/D-DE, MOEA/D-CMA, MO-CMA-D, MO-CMA-ES, and NSGA-II/DE in the run with the minimal
IGD value on BT1–BT8. The subgraphs with labels (a)–(h) are the results found by five algorithms on BT1-BT8 respectively.

A. Experimental Setting
In our experiments, three state-of-the-art EMO algorithms—

MOEA/D-DE, NSGA-II, and MO-CMA-ES, and the earlier

version of MOEA/D with CMA-ES, i.e., MO-CMA-D, are
considered in the comparison with MOEA/D-CMA. Both
NSGA-II and MOEA/D-DE use the DE operators and
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polynomial mutation for generating new solutions, whereas
MO-CMA-ES uses CMA-ES for generating new solutions
and the nondominated sorting for selection. MO-CMA-D uses
CMA-ES and DE operators to produce two solutions for the
same subproblem separately. In the three algorithms based on
MOEA/D, the scheme for generating weight vectors is the
same as in [41]. All algorithms are implemented in C++ and
executed in the PC with Intel Xeon CPU (3.3 GHZ×2) and
64 GB memory running Windows 7 operating system. The
parameter settings are as follows.

1) The population size of all the five algorithms is set to
100 for BT1–BT8 and 300 for BT9.

2) In the three variants of MOEA/D, i.e., MOEA/D-DE,
MOEA/D-CMA, and MO-CMA-D, the neighborhood
size T is set to 0.1 × N. The number K of Gaussian
models in MOEA/D-CMA is set to 5.

3) The stopping condition is determined by the total num-
ber of function evaluations, which is 106 for BT1–BT6,
2× 106 for BT7-BT8, and 5× 106 for BT9 in each run
of five algorithms.

To quantitatively measure the quality of the set A
of the nondominated solutions obtained by the
above-mentioned algorithms, we use the inverted generational
distance (IGD) [42] defined as follows:

IGD(A, B) = 1

|B|
∑

u∈B

dist(u, A) (12)

where B is a set of reference solutions, and dist(u, A) =
minv∈A ‖u − v‖. The smaller the IGD value is, the better the
quality of A is. The IGD indicator can measure the quality of
a set of solutions in convergence and diversity simultaneously.

B. Experimental Results

Figs. 6 and 7 visualize the nondominated solutions found by
MOEA/D-DE, MOEA/D-CMA, MO-CMA-D, MO-CMA-ES,
and NSGA-II/DE with the minimal IGD value in 20 indepen-
dent runs on BT1–BT9. From these figures, it can be observed
that MOEA/D-CMA clearly outperforms the other four algo-
rithms on all test instances except BT2, which has extremely
strong distance-related bias defined by D2 transformation. On
BT2, MOEA/D-CMA, MOEA/D-DE, and NSGA-II/DE have
similar performance. Among three MOEAs with CMA-ES,
MOEA/D-CMA performs much better than the other two on
all test instances. More observations on MOEA/D-CMA can
be obtained from these figures.

1) On two instances with only distance-related bias, i.e.,
BT1 and BT2, the performance of MOEA/D-CMA is
quite different. MOEA/D-CMA is able to approximate
the PF of BT1 well shown in Fig. 6(a) while it fails to
find the PF of BT2 as shown in Fig. 6(b). The distance-
related bias with D2 in BT2 is more difficult to handle
than that with D1 since D2 is nonconvex near its optimal
solution, and has very narrow attraction region. For this
reason, any MOP with the distance-related bias D2 with
the value of θ in (0, 1/3] is often unsolvable for MOEAs.

2) On two instances with the position-related bias, i.e., BT3
and BT4, the solutions found by MOEA/D-CMA and

Fig. 7. Plots of nondominated solutions found by MOEA/D-CMA and
MOEA/D-DE in the run with the minimal IGD value on BT9.

MOEA/D-DE shown in Fig. 6(c) and (d) are close to
the PFs. But they fail to find parts of solutions of BT3
with f1 close to 0 and those of BT4 with f1 very close to
0.25 and 0.75. It is also evident from Fig. 6(c) and (d)
that: a) MO-CMA-D, MO-CMA-ES, and NSGA-II/DE
are outperformed by MOEA/D-DE and MOEA/D-CMA
on BT3 and BT4 and b) MOEA/D-CMA still performs
best while both MO-CMA-D and MO-CMA-ES perform
worse than the other three algorithms.

3) Fig. 6(e) shows that MOEA/D-CMA is the best opti-
mizer on BT5 with the distance-related bias D1 and the
disconnected PF. Both MO-CMA-D and MO-CMA-ES
perform very badly on this instance since the non-
dominated solutions found by them are very far away
from the PF of BT5. NSGA-II/DE performs better than
MO-CMA-D and MO-CMA-ES but clearly worse than
MOEA/D-DE.

4) Fig. 6(f)–(h) shows that the nondominated solutions in
the best run of five algorithms on BT6, BT7, and BT8,
which have the distance-related bias D1 and the nonlin-
ear PS. In Fig. 6(f), we can find that MOEA/D-CMA
is the only algorithm that can approximate the PF of
BT6 well in terms of both convergence and diversity
while all other algorithms only find parts of PF on BT6.
Interestingly, the performance of MO-CMA-ES is only
worse than that of MOEA/D-CMA on BT6. This might
be due to the good ability of CMA-ES for dealing with
interacting variables. The results plotted in Fig. 6(g)
indicate that all five algorithms except MO-CMA-ES
can find the nondominated solutions close to the PF
of BT7 with complicated nonlinear PS. Fig. 6(h) plots
the results of five algorithms on BT8 with many local
optima. MOEA/D-CMA still performs best. Similar to
the results in Fig. 6(f), MOEA/D-DE only finds the
nondominated solutions in the middle part of PF on
BT8. Note that MO-CMA-D performs slightly worse
than MOEA/D-CMA on BT8.

5) On the only instance with three objectives, i.e., BT9,
MOEA/D-CMA, and MOEA/D-DE perform much bet-
ter than the rest of other three algorithms. In Fig. 7,
we plot the nondominated solutions found by these two
algorithms in their best run. It is very clear that the
performance of MOEA/D-CMA is superior to that of
MOEA/D-DE in convergence and diversity on BT9.
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TABLE I
MEAN, STANDARD DEVIATION (IN ROUND BRACKETS), MINIMUM, AND MAXIMUM (IN ROUND BRACKETS) IGD VALUES OF

NONDOMINATED SOLUTIONS IN 20 RUNS FOUND BY MOEA/D-CMA, MO-CMA-D, MO-CMA-ES, MOEA/D-DE,
AND NSGA-II/DE ON BT1–BT9. THE BEST MEAN IGD VALUES ARE HIGHLIGHTED IN BOLD

Fig. 8. All nondominated solutions found by MOEA/D-CMA and MOEA/D-DE in 20 runs on BT1–BT8.

6) Among three MOEAs based on CMA-ES, i.e., MOEA/
D-CMA, MO-CMA-ES, and MO-CMA-D, it is quite
clear that MOEA/D-CMA performs significantly better
than the other two algorithms on all nine test problems.

The experimental results in Fig. 6 also indicate both
MO-CMA-ES and MO-CMA-D perform very poorly in
convergence on the half of test problems. The success of
MOEA/D-CMA on the test problems with bias is mainly
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TABLE II
STATISTICS OF PERFORMANCE COMPARISONS USING t-TEST ON THE IGD-METRIC. “+,”“≈,” AND

“−” DENOTE THAT THE PERFORMANCE OF CORRESPONDING ALGORITHM IS SIGNIFICANTLY

BETTER THAN, SIMILAR TO, WORSE THAN THE REST OF OTHER FOUR ALGORITHMS

Fig. 9. All nondominated solutions found by MOEA/D-CMA (left) and
MOEA/D-DE (right) in 20 runs on BT9.

due to two critical components, i.e., the use of DE for
exploration and the elitism strategy.

To further analyze the performance of five algorithms in
convergence and stability, we calculate the IGD values of
the nondominated solutions found by each algorithm on all
instances. The mean, standard deviation, minimal, and max-
imal IGD values of the results in 20 runs are provided
in Table I. The IGD values shown in this table indicate that
MOEA/D-CMA performs best among five algorithms on all
instances regarding the mean, the standard deviation, the mini-
mum, and the maximum of IGD values. In contrast, two other
multiobjective algorithms with CMA-ES, i.e., MO-CMA-ES
and MO-CMA-D, have the worst performance on all
test instances except BT6, BT7, and BT8, which have
nonlinear PSs. For BT2, the performances of MOEA/D-CMA
and MOEA/D-DE are quite similar since the mean IGD values
of them are about 0.14. This means that both algorithms fail to
obtain a good approximation of the PF for BT2. As analyzed
above, the reason is that the distance-related bias with D2 is
more challenging for MOEAs than that with D1.

From the results in Table I, we can also notice that
the overall performance of MOEA/D-DE is still better than
those of MO-CMA-D, MO-CMA-ES, and NSGA-II/DE on
the majority of instances. To compare the overall perfor-
mance of MOEA/D-CMA and MOEA/D-DE in convergence,
the nondominated solutions found by both algorithms in
20 runs are plotted in Figs. 8 and 9. These results show
that MOEA/D-CMA is clearly better than MOEA/D-DE in
convergence on all instance except BT2. The results on the
3-objective instance BT9 in Fig. 9 show that MOEA/D-CMA
performs much more stably than MOEA/D-DE since the
latter obtains quite many solutions distant to the PF of
BT9. The statistics of performance comparison among five
algorithms using t-test are provided in Table II. From this
table, we can see that the performance of MOEA/D-CMA
is significantly better on seven instances against all others
(including MOEA/D-DE) in terms of the IGD-metric. On the
other two instances, the performance of MOEA/D-CMA is

TABLE III
MEAN OF COMPUTATIONAL TIME (IN SECONDS) CONSUMED BY

MOEA/D-DE(DE1), MOEA/D-CMA(CMA1), MO-CMA-D(CMA2),
MO-CMA-ES(CMA3), AND NSGA-II/DE(DE2) ON BT1–BT9

similar to those of others. These results also indicate that
MOEA/D-CMA is significantly worse in none of instances.

Moreover, the mean computational time consumed by
five algorithms on BT1–BT9 in 20 runs are summarized
in Table III. It can be observed that both MOEA/D-DE
and NSGA-II/DE use less computational time than three
algorithms based on CMA-ES. The computational time
of MOEA/D-CMA is only about 2–3 times of that of
MOEA/D-DE, while the computational time of MO-CMA-ES
and MO-CMA-D is about 15–20 times of that of
MOEA/D-DE. This result indicates that MOEA/D-CMA is
more efficient than MO-CMA-D and MO-CMA-ES. The rea-
son is that MOEA/D-CMA has the limitation on the number
of Gaussian models in CMA-ES optimizer.

VI. MORE ANALYSIS ON THE ALGORITHMIC

BEHAVIORS OF MOEA/D-CMA

In this section, we first conduct experiments to study the
problem difficulties on the distance-related bias with various
settings of θ . Then, the balance between Gaussian models and
DE in MOEA/D-CMA is studied.

A. Problem Difficulties on the Distance-Related Bias

The distance-related bias of MOPs can be controlled by the
parameter θ in D transformation. To study the search ability of
MOEA/D-CMA on the MOPs with different levels of bias, we
conducted some experiments to test MOEA/D-CMA on BT1,
and BT7, with different values of θ . Note that BT1 and BT7
are the representative test problems, which have linear and
nonlinear PSs, respectively. The biases in both test problems
are introduced by the transformation D1 suggested by us in
this paper. All parameters used in MOEA/D-CMA remain the
same as in the previous section.

The evolutions of the IGD values found by MOEA/D-CMA
are shown in Fig. 10. It can be seen that the performance
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Fig. 10. IGD values found by MOEA/D-CMA with various settings of θ .

Fig. 11. IGD values found by MOEA/D-CMA with various settings of K.

of MOEA/D-CMA gets worse in convergence regarding
IGD-metric on two instances as the parameter θ decreases. The
results shown on the top of Fig. 10 show that MOEA/D-CMA
can solve BT1 well when θ in D1 is larger than 10−11.
The results shown on the bottom of Fig. 10 indicate that
MOEA/D-CMA can solve BT7 well when θ in D1 is larger
than 10−3. This means the instance with bias and nonlinear
PS is more difficult than that with only bias.

B. Balance Between DE and CMA-ES

From the experimental results reported in Section V-B, we
can see that using CMA-ES in MOEA/D as reproduction

operator for exploitation is very crucial when handling MOPs
with bias. In fact, the parameter K can be used to con-
trol the balance between CMA-ES and DE in MOEA/
D-CMA. To study the effect of K in MOEA/D-CMA, we
further conducted experiments to test the performance of
MOEA/D-CMA with various settings of K on BT1 and BT7.
All other parameters are the same as in the previous sec-
tion. The mean IGD values obtained by MOEA/D-CMA in
20 runs are presented in Fig. 11. From this figure, it can
be seen that the PF of BT1 can be well approximated by
MOEA/D-CMA when K takes the integers between 1 and
20. This means that MOEA/D-CMA with only one Gaussian
model can also solve BT1 well. This is because the PS of BT1
is linear and all its Pareto solutions have very similar struc-
ture in the decision space. In contrast, MOEA/D-CMA needs
no less than five Gaussian models to find a good approxima-
tion of the PF of BT7, which has nonlinear PS. When the
number of groups is larger than 25, the PFs of BT1 and BT7
are not well approximated by MOEA/D-CMA. In this case,
the performance of MOEA/D-CMA gets worse as the value
of K increases.

VII. CONCLUSION

In this paper, we have proposed a new variant of MOEA/D
with CMA-ES, named MOEA/D-CMA, for solving MOPs
with position-related bias and distance-related bias. This algo-
rithm decomposes an MOP into a number of single objective
optimization problems and solves them in a collaborative
way. It divides these subproblems into several groups. At
each generation, only one selected subproblem from each
group is optimized by CMA-ES, while other subproblems
are optimized by DE. When an evolution strategy proce-
dure meets some stopping criteria, it will be reinitialized
and used for dealing with another subproblem in the same
group. To study the ability of MOEA/D-CMA, a set of
new multiobjective test problems with bias features have
been constructed. Extensive experimental studies have been
conducted to compare MOEA/D-CMA and four other state-
of-the-art multiobjective algorithms. Our experimental results
have shown that MOEA/D-CMA outperforms others. This
confirms that our proposed algorithm has inherited the abil-
ity for the exploration and the exploitation of search space
from DE and CMA-ES. Our future work will include how to
use other advanced single objective optimizers in evolutionary
multiobjective optimization.

APPENDIX A
MULTIOBJECTIVE TEST INSTANCES WITH BIAS FEATURE

The detailed formulations of nine multiobjective test prob-
lems with bias feature are as follows:

1) BT1

f1(x) = x1 +
∑

j∈I1

D1

(
yj
∣
∣10−10

)

f2(x) = 1−√x1 +
∑

j∈I2

D1

(
yj
∣
∣10−10

)
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where x ∈ [0, 1]30, Ik = { j| mod ( j, 2) = k − 1, j =
2, . . . , n}, k = 1, 2, yj = xj − sin( jπ/(2n)), and j =
2, . . . , n. The PS is {x ∈ Rn|xj = sin( jπ/(2n)), j =
2, . . . , n, x1 ∈ [0, 1]}. The PF is {( f1, f2)|, f2 = 1 −√

f1, f1 ∈ [0, 1]}.
2) BT2

f1(x) = x1 +
∑

j∈I1

D2

(

yj
∣
∣1

5

)

f2(x) = 1−√x1 +
∑

j∈I2

D2

(

yj
∣
∣1

5

)

where x ∈ [0, 1]30, I1, I2, yj, and j = 2, . . . , n are the
same as in BT1. Its PS and PF are the same as those
of BT1.

3) BT3

f1(x) = S1(x1|0.02)+
∑

j∈I1

D1

(
yj
∣
∣10−8

)

f2(x) = 1−√S1(x1|0.02)+
∑

j∈I2

D1

(
yj
∣
∣10−8

)

where x ∈ [0, 1]30, I1, I2, yj, and j = 2, . . . , n are the
same as in BT1. Its PS and PF are the same as those
of BT1.

4) BT4

f1(x) = S2(x1|0.06)+
∑

j∈I1

D1

(
yj
∣
∣10−8

)

f2(x) = 1−√S2(x1|0.06)+
∑

j∈I2

D1

(
yj
∣
∣10−8

)

where x ∈ [0, 1]30, I1, I2, and yj, j = 2, . . . , n are the
same as in BT1. Its PS and PF are the same as those
of BT1.

5) BT5

f1(x) = x1 +
∑

j∈I1

D1

(
yj
∣
∣10−10

)

f2(x) = (1− x1)[1− x1 sin(8.5πx1)]

+
∑

j∈I2

D1

(
yj
∣
∣10−10

)

where x ∈ [0, 1]30, I1, I2, yj, and j = 2, . . . , n are the
same as in BT1. Its PS is the same as that of BT1. Its PF
is the part of {( f1, f2)| f2 = (1− f1)(1− f1 sin(8.5π f1)),
f1 ∈ [0, 1]}.

6) BT6

f1(x) = x1 +
∑

j∈I1

D1

(
yj
∣
∣10−4

)

f2(x) = 1−√x1 +
∑

j∈I2

D1

(
yj
∣
∣10−4

)

where x ∈ [0, 1]30, I1, and I2 are the same as in BT1.

yj = xj − x0.5+1.5( j−1)/(n−1)

1 , j = 2, . . . , n. Its PS is
{x ∈ Rn|xj = x0.5+1.5( j−1)/(n−1)

1 , j = 2, . . . , n,

x1 ∈ [0, 1]}. Its PF is the same as that of BT1.

7) BT7

f1(x) = x1 +
∑

j∈I1

D1

(
yj
∣
∣10−3

)

f2(x) = 1−√x1 +
∑

j∈I2

D1

(
yj
∣
∣10−3

)

where x ∈ [0, 1] × [−1, 1]29, I1, and I2 are the same
as in BT1, yj = xj − sin(6πx1), j = 2, . . . , n. Its PS is
{x ∈ Rn|xj = sin(6πx1), j = 2, . . . , n, x1 ∈ [0, 1]}. Its
PF is the same as that of BT1.

8) BT8

f1(x) = x1 +
∑

j∈I1

Q
(

D1

(
yj
∣
∣10−3

))

f2(x) = 1−√x1 +
∑

j∈I2

Q
(

D1

(
yj
∣
∣10−3

))

where x ∈ [0, 1]30, I1, I2 are the same as in BT1,
yj, j = 2, . . . , n is the same as in BT6, and Q(z) =
4z2− cos(8πz)+ 1 is a multimodal function. Its PS and
PF are the same as that of BT6.

9) BT9

f1(x) = cos(0.5x1π) cos(0.5x2π)+ 10
∑

j∈I1

D1

(
yj
∣
∣10−9

)

f2(x) = cos(0.5x1π) sin(0.5x2π)+ 10
∑

j∈I2

D1

(
yj
∣
∣10−9

)

f3(x) = sin(0.5x1π)+ 10
∑

j∈I3

D1

(
yj
∣
∣10−9

)

where x ∈ [0, 1]30, Ik = { j|mod( j, 3) = k − 1,
j = 3, . . . , n}, k = 1, 2, 3. yj = xj − sin( jπ/(2n)),

and j = 3, . . . , n. Its PS is {x ∈ Rn|xj =
sin( jπ/(2n)), j = 3, . . . , n, x1 ∈ [0, 1], x2 ∈ [0, 1]}.
Its PF is {( f1, f2, f3)|, f 2

1 + f 2
2 + f 2

3 = 1, fi ∈ [0, 1],
i = 1, 2, 3}.

APPENDIX B
MAJOR STEPS IN STANDARD CMA-ES

The major steps in standard CMA-ES are illustrated in the
following:

1) Step 1: Sampling and sorting

x̃i ← x̄+ σN (0, C) ∼ N
(

x̄, σ 2C
)
, i = 1, . . . , μ.

(13)

2) Step 2: Update of distribution mean

y(k) =
(

x̃k:(μ+1) − x̄
)/

σ, k = 1, . . . , μ′

yw =
μ′∑

k=1

(
wk × y(k)

)
, x̄← x̄+ σyw (14)

where x̃k:(μ+1) is the kth best solution among {xsk } ∪
{x̃i|i = 1, . . . , μ}, wk > 0, k = 1, . . . , μ′ is the weighted
coefficient and

∑μ′
k=1 wk = 1. The setting of wk is given

in Appendix C.
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3) Step 3: Update of evolution paths

pσ ← (1− cσ )pσ +
√

cσ (2− cσ )μeffC
− 1

2 yw

pc ← (1− cc)pc + hσ

√
cc(2− cc)μeffyw. (15)

4) Step 4: Update of step size and covariance matrix

σ ← σ × exp

(
cσ

dσ

×
( ‖pσ ‖

E‖N (0, I)‖ − 1

))

C← (
1− c1 − cμ

)
C + c1

(
pcpc

T + δ(hσ )C
)

+ cμ

μ∑

k=1

wky(k)y(k)T
(16)

where E‖N (0, I)‖ = √2�(((n+ 1)/2))/�((n/2)) ≈√
n + O(1/n) is the expectation of Euclidean norm of

a distributed random vector N (0, I). I ∈ Rn×n is an
identity matrix, and �(·) is a gamma distribution.

APPENDIX C
PARAMETER SETTINGS IN CMA-ES [35]

In MOEA/D-CMA, the parameter settings used in CMA-ES
are the same as in [35], which consist of the following three
parts:

1) Sampling and selection

μ = 4+ �3 ln n�, μ′ =
⌊μ

2

⌋

wi = ln μ+1
2 − ln i

∑μ′
j=1

(
ln μ+1

2 − ln i
) for i = 1, . . . , μ′.

2) Control of step size

μeff = 1
∑μ′

i=1 w2
i

, cσ = μeff + 2

n+ μeff + 5

dσ = 1+ 2 max

(

0,

√
μeff − 1

n+ 1
− 1

)

+ cσ .

3) Covariance

cc = 4+ μeff/n

n+ 4+ 2μeff/n
, c1 = 2

(n+ 1.3)2 + μeff

cμ = min

(

1− c1,
μeff − 2+ 1/μeff

(n+ 2)2 + μeff

)

hσ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if
‖pσ ‖

√
1− (1− cσ )2(gen+1)

<
(

1.4+ 2
n+1

)
E‖N (0, I)‖

0 otherwise
δ(hσ ) = (1− hσ cc(2− cc)) ≤ 1.
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