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Abstract—Barrier coverage with wireless sensors aims at
detecting intruders who attempt to cross a specific area, where
wireless sensors are distributed remotely at random. This paper
considers limited-power sensors with adjustable ranges deployed
along a linear domain to form a barrier to detect intruding
incidents. We introduce three objectives to minimize: 1) total
power consumption while satisfying full coverage; 2) the num-
ber of active sensors to improve the reliability; and 3) the
active sensor nodes’ maximum sensing range to maintain fair-
ness. We refer to the problem as the tradeoff barrier coverage
(TBC) problem. With the aim of obtaining a better trade-
off among the three objectives, we present a multiobjective
optimization framework based on multiobjective evolutionary
algorithm (MOEA)/D, which is called problem specific MOEA/D
(PS-MOEA/D). Specifically, we define a 2-tuple encoding scheme
and introduce a cover-shrink algorithm to produce feasible
and relatively optimal solutions. Subsequently, we incorporate
problem-specific knowledge into local search, which allows search
procedures for neighboring subproblems collaborate each other.
By considering the problem characteristics, we analyze the com-
plexity and incorporate a strategy of computational resource
allocation into our algorithm. We validate our approach by
comparing with four competitors through several most-used met-
rics. The experimental results demonstrate that PS-MOEA/D
is effective and outperforms the four competitors in all the
cases, which indicates that our approach is promising in dealing
with TBC.

Index Terms—Barrier coverage, evolutionary algorithms,
multiobjective optimization, wireless sensor networks (WSNs).

I. INTRODUCTION

IN LAST several years, there are a growing number of appli-
cations in the domain of wireless sensor networks (WSNs).

One of the most significant applications is intrusion detection.
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Specifically, wireless sensors are deployed to detect intruders
that attempt to penetrate a country border or boundary of bat-
tlefield. These surveillance applications using WSNs solution,
which are referred to as barrier coverage [1], have been exten-
sively studied and discussed in the past few years [2], [3].
In most of the applications, the deployment region of wire-
less sensors can be abstracted as a line segment. The linear
WSNs own the advantages of high efficiency, easy implemen-
tation, and extension [4], [5]. With respect to deterministic
deployment of sensors, the high efficiency of WSNs can be
achieved by comprehensive and detailed analysis [6], [7].
However, surveillance tasks may need to be carried out in
hard-to-reach areas, where limited-power sensors have to be
distributed remotely in random. For example, wireless sen-
sors, which are dropped from aircraft, have to wake up and
operate independently in an unattended and hostile envi-
ronment, organize themselves as a network to detect the
intrusion.

Power conservation is a crucial issue for extending life-
time of wireless barrier. Because the power of sensor nodes
is limited and can hardly be recharged after deployment,
energy-efficient mechanism is needed to reduce power con-
sumption of nodes while meeting the coverage requirement.
With regard to deploying sensor nodes in random, redundant
sensor nodes are needed to satisfy full coverage and extend
the lifetime of the barrier. Hence, it is desirable to make
some sensors in active state and keep other sensors in sleep-
ing state. Inspired by this technique, the problem of min-cost
linear coverage (MCLC) problem [8] is to minimize the total
power consumption while each point on the barrier is covered.
However, this problem cannot be solved optimally by efficient
algorithms since it has been proved to be NP-hard [8]. In
addition, minimizing total power consumption of the network
cannot ensure minimizing individual sensor’s power consump-
tion. Sensor nodes can consume different amount of power.
Sensor nodes’ power will get depleted quickly by using large
sensing ranges, which then lead to the decrease of network life-
time. Thus, minimizing active sensor nodes’ maximum sensing
range is significant, which is to measure the sensor networks
performance in a fairness perspective. Moreover, sensors are
failure-prone and each single sensor fails independently with
a certain probability [9]. Given the requirement of full cover-
age, the fewer sensors are activated, the higher reliability will
be achieved. Thus, it is important to minimize the number of
active sensors to improve the reliability without impacting the
coverage.
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In this paper, instead of solving the single objective prob-
lems with various constraints found in previous works, we
formulate a multiobjective optimization algorithm to obtain a
better tradeoff among the following three objectives.

1) Objective 1 (Power): Minimizing the total power con-
sumption.

2) Objective 2 (Reliability): Minimizing the number of
active sensors.

3) Objective 3 (Fairness): Minimizing the active sensor
nodes’ maximum sensing range.

However, these three objectives are conflicting in nature and
the detailed illustration can refer to Section III-B.

This problem can be regarded as a multiobjective opti-
mization problem (MOP), named tradeoff barrier coverage
(TBC) problem. Traditional algorithms might not be applicable
and only a few techniques address these objectives simul-
taneously. Multiobjective evolutionary algorithm (MOEA),
which is a population based algorithm that naturally leads
to Pareto optimal solutions, has been successfully applied to
deal with MOPs in WSNs [10]–[12]. In recent years, sev-
eral MOEAs have been proposed to give approximations on
the Pareto optimal solutions (Pos). However, a high-efficiency
MOEA should attain solutions while maintaining high diver-
sity and convergence and be in close proximity to the Pos.
Among the most-used approaches, strength Pareto evolution-
ary algorithm 2 (SPEA2) [13] and nondominated sorting
genetic algorithm II (NSGA-II) [14] consider a MOP as a
whole and utilize the Pareto dominance relation to sort the
solutions. However, evenly distributed Pareto solutions may
not always be easily attained. MOEA/D treats a MOP as a
group of subproblems with initial weights before searching,
and optimizes these subproblems in a collaborative manner.
The decomposition framework cannot only help to guaran-
tee the fast convergence of the approximated solutions but
also maintain a considerable diversity of the Pareto solutions.
Moreover, it is reported in [15] that, MOEA/D with objective
normalization is able to handle objectives with disparate scales
efficiently for complex problems. Inspired by the benefits of
the framework of MOEA/D, a novel and MOEA/D-based algo-
rithm using problem specific knowledge is applied to TBC in
this paper.

A. Overview of Our Contributions

In this paper, we redefine the barrier coverage problem to a
MOP with three objectives, which is called TBC. Objective 1
is related to the power efficiency issue, since sensors are
equipped with a limited-power battery. To this end, the net-
work as a whole must minimize the total power consumption
for the sake of power conservation. Objective 2 focuses on
minimizing the number of active sensors. This objective is
motivated by the facts that the sensors are failure-prone and
there is an inverse correlation between the number of active
sensors and reliability [9]. In addition, to put it crudely, min-
imizing the active sensor nodes’ maximum sensing range is
to make sure that the sensing ranges of the activated sen-
sors are distributed fairly, which is referred to as objective 3.
This objective is suitable to measure the sensor network

performance from a fairness perspective. Below are the main
contributions of this paper.

1) With the aim of optimizing the TBC, we present
a multiobjective optimization algorithm based on
MOEA/D [16]. Specifically, we define a 2-tuple encod-
ing scheme. Then, we discover an interesting obser-
vation on the geometric structure of the problem and
introduce a cover-shrink algorithm to repair our solu-
tions, which allows us to have feasible and relatively
optimal solutions.

2) Subsequently, we incorporate problem-specific knowl-
edge into local search, which allows search procedures
for neighboring subproblems collaborate each other.
By considering the problem characteristics, we ana-
lyze the complexity of the problem and find out the
distribution of the hardness. It is desirable to incorpo-
rate a strategy of computational resource allocation to
our problem [17]. Each subproblem is allocated a cer-
tain amount of computational resource according to the
distribution.

3) We validate our approach by comparing with four rep-
resentative MOEAs through three most-used metrics.
The experimental results show that PS-MOEA/D out-
performs the four competitors in almost all the cases.
In addition, we analyze the convergence of our algo-
rithm and show the benefits of computational resource
allocation strategy.

The remainder of this paper is organized as follows. A liter-
ature review is conducted to get an overview on the most influ-
ential studies in Section II. Section III gives the network model
and assumptions, and describes a multiobjective formulation
on TBC. The framework of the proposed PS-MOEA/D for
TBC is presented in Section III-C. The details of PS-MOEA/D,
including the specification and implementation, are given in
Section IV. The experiment results and performance com-
parisons are provided in Section V. Finally, this paper is
concluded in Section VI.

II. RELATED WORKS

Barrier coverage with wireless sensors concentrates on
detecting intruders that attempt to penetrate a specific
area [18], [19], where a chain of sensor nodes are deployed
on or along the virtual border to form a network [20]. With
the requirement of protecting sensitive facilities and national
borders increasing, barrier coverage has a growing number of
applications.

Power scarcity is a crucial issue for wireless barrier cov-
erage due to the restrictions on sensors’ battery size. A
number of barrier coverage problems with respect to power
issue have been explored in recent years [21]–[23]. Sensor
scheduling [24], [25] is a widely used method to prolong the
lifetime of networks. It helps to extend the lifetime of networks
by inactivating some sensors while satisfying the coverage
requirement. However, minimizing the instant energy is more
practical than maximizing coverage lifetime, because the unan-
ticipated failure of sensors invalidates the obtained scheduling.
Fan et al. [8] studied MCLC to minimize the instant power
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consumption, which has been prove to be NP-hard. In addition
to these studies, some approximation algorithms have been
proposed [8], [26].

Network outage or service unavailability, partial or whole,
may not only be due to power exhaustion of the sensor nodes.
Some sensors may lose its function due to mechanical issues
when they are working. This may result in unexpected conse-
quences. Very few researchers focus on the reliability of the
sensor networks for coverage. To improve the reliability of
WSN, Shakkottai et al. [27] considered an unreliable wireless
sensor grid network for coverage, where the sensors are placed
in a square area. In this model, all sensors are failure-prone,
i.e., each single sensor node fails independently with a certain
probability.

A sensor can maintain its functioning until its battery power
is fully exhausted. The function of the virtual barrier keeps on
working until power exhaustion of the first active sensor. Any
dead sensor can result in gaps or holes of the barrier, which
may lead to incalculable consequences [28]. If one active sen-
sor’s sensing range in the coverage is set to be too large, its
battery power will be depleted quickly [29].

Giving a proposal for wireless barrier coverage taking
into account so many aspects simultaneously is a challeng-
ing and significant issue. To this end, it is desirable to
use MOEAs to solve such WSNs optimization problems.
Rajagopalan et al. [30] presented MOEA approaches to deal
with distributed detection for area coverage or monitoring. The
target of the problem is to minimize the power consumption
and path loss while the energy of detected signal is maximized.
Lanza-Gutierrez et al. [31] tried to solve the relay node place-
ment problem under SPEA2 [13] and NSGA-II frameworks.
However, it is difficult to address the complex instances since
the running time is very long. While both coverage and power
issues have been extensively explored in the past few years,
little effort however, has been made to tackle the coverage,
power consumption and reliability simultaneously or explicitly.
Martins et al. [32] give a multiobjective hybrid optimization
algorithm to maintain the network connectivity and a certain
degree of coverage, while prolonging the network lifetime.
They also considered that sensors are failure-prone. This is
a good attempt to address WSN optimization problem in the
multiobjective perspective.

As reported in [10], fuzzy dominance is incorporated into
the original MOEA/D to solve the differentiated coverage
problem. They aimed to obtain a better tradeoff among the
coverage, energy consumption, and the network lifetime.
MOEA/D is an easily-extensible but efficient evolutionary
multiobjective algorithm framework. Several applications and
extensions on MOEA/D have been made recently [33]–[35].
Zhang et al. [36] considered a barrier coverage problem in
multiobjective perspective. In addition to sensor nodes for
sensing the intruders, the sink nodes are used to gather data
in [36]. Except for the objectives of power consumption and
reliability, they study the efficiency of data gathering between
sensors and sink nodes without consideration for the power
consumption of sink nodes. For this MOP, they present an
algorithm based on MOEA/D, which was compared with a
weighted sum algorithm experimentally.

Fig. 1. Wireless barrier coverage model.

III. MODEL AND PROBLEM FORMULATION

A. Model and Assumptions

1) Barrier Model: We view the barrier as a long, narrow
region. It can be abstracted to a line segment, where a set of
sensors {s1, s2, . . .} from left to right are distributed in random.
Fig. 1 gives an example scenario to illustrate the barrier model.
An intruder can be detected by the WSN as it attempts to
penetrate the linear barrier.

Assumption 1: The sensor nodes with limited power are
randomly deployed on a linear domain.

Assumption 2 (Disc Sensing): Each active sensor has an
adjustable sensing range of r; any moving object within the
sensing range can be reliably detected by the sensor.

Assumption 3: The power consumption for each sensor si

is Pi = ρ · ri
κ where κ ∈ [2, 6] is path-loss exponent and ρ is

a proportionality constant.

B. Multiobjective Formulation

We define the TBC as a MOP in the following way. Let
B be a line segment on the x-axis, called a barrier. With a
little abuse of notation, for any point x on L, we also use
x to denote its coordinated on L. We say the coordinates of
left and right endpoint of B is 0 and β, respectively. Let S =
{s1, s2, . . . , sn} be a set of n sensors and randomly located on
the line segment B. Each sensor si with coordinate xi has a
sensing range ri. The problem is to activate a subset S∗ ⊆ S
and assign them sensing ranges such that the barrier B is fully
covered by the sensors in S∗. TBC is formulated as a MOP.

Decision Variable 1: Working status of sensor si

μi =
{

1, if sensor si is active

0, otherwise.
(1)

Decision Variable 2: Sensing range of sensor si: ri, 0 ≤
ri ≤ rmax.

Constraint: Every point p of the barrier B is covered by at
least one active sensor si: p ∈ [xi − ri, xi + ri].

Objective 1 (Power): Minimizing the total power consump-
tion: f1 =∑

si∈S∗ ρ · ri
κ .

Objective 2 (Reliability): Minimizing the number of active
sensors nodes: f2 =∑

si∈S∗ μi.
Objective 3 (Fairness): Minimizing the active sensor nodes’

maximum sensing range: f3 = min maxsi∈S∗ ri.
Next, we take a simple instance to illustrate the conflict

among the objectives. Fig. 2 shows three feasible solutions
for the coverage problem, where the length of the barrier is
assumed to be 1 and κ = 2.
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(a) (b) (c)

Fig. 2. Example to illustrate of conflict among the objectives. (a) P1 = r2
1 =

(1/4). (b) P2 = r2
2 + r2

3 = (1/8). (c) P3 = r2
4 + r2

5 = (9/32).

1) Power Versus Reliability: In the first solution [Fig. 2(a)],
the power consumption is P1 = r2

1 = (1/4), the number
of active sensors R1 is 1, and the active sensor nodes’
maximum sensing range F1 = (1/2). In the second solu-
tion [Fig. 2(b)], the power consumption is calculated by
P2 = r2

2 + r2
3 = (1/8), and the number of active sensors

R2 is 2. Thus, we have that P1 > P2 yet R1 < R2.
2) Power Versus Fairness: Considering Fig. 2(c), P3 =

r2
4 + r2

5 = (9/32), and the active sensor nodes’ maxi-
mum sensing range F3 = (3/8). We have P1 < P3 yet
F1 > F3.

3) Reliability Versus Fairness: In Fig. 2(c), the number of
active sensors R3 is 2. We have F1 > F3 yet R1 < R3.

In summary, minimizing the total power consumption may
increase the number of active sensors, and require the active
sensors to be distributed evenly along the barrier. In addi-
tion, reducing the maximum sensing range of sensor nodes,
may increase the number of active sensors and/or power con-
sumption. However, to meet the coverage requirement, either
more sensors, if available, are activated to cover the region
or larger sensing ranges are assigned, leading to higher power
consumption. Thus, finding the tradeoff among them is worth
exploring.

C. PS-MOEA/D for TBC

TBC is generally formulated as follows:

minimize F
(̃
δ
) = (

f1
(̃
δ
)
, f2

(̃
δ
)
, f3

(̃
δ
))

subject to δ̃ ∈ �̃ (2)

where δ̃ = {(μ1, r1), (μ2, r2), . . . , (μi, ri), . . .} is the decision
variable, and �̃ is the decision space. f1, f2, and f3 correspond
to objective 1 (power), objective 2 (reliability), and objective 3
(fairness) in Section III-B, respectively.

We have shown that the objectives in problem (2) may
conflict with each other and an improvement on one objec-
tive may lead to the deterioration of another. Pos are optimal
tradeoff candidates among all objectives. The details of Pareto
optimum terminology are given in [37], in which Pareto dom-
inance, Pareto optimal, Pareto set (PS), and Pareto front (PF)
are explained explicitly. The true PF is difficult to find, so
an approximation of the true PF is required to give a good
perception to the practical problems.

Tchebycheff approach [38] is employed to decompose the
MOP into a number of subproblems. Let λ1, λ2, . . . , λj, . . . ,

be a set of uniformly spread weighted vectors and z̃ be
an ideal point. The problem can be decomposed into scalar

optimization subproblems as follows:

minimize gte(x|λj, z̃
) = max

1≤i≤3

{
1

λ
j
i

· |fi(x)− z̃|
}

. (3)

Using the Tchebycheff approach with different weight vec-
tors, different Pos can be obtained. MOEA/D minimizes all
the three objective functions simultaneously. Neighborhood
relations among these decomposed subproblems are deter-
mined according to the weight vectors. The original MOEA/D
was first presented in [16], in which all the subproblems
received equal treatment and were allocated the same amount
of computational resource (i.e., evolution process). The idea
of computational resource allocation was first given in [39], in
which it had been observed that specific portions of the PF in
an MOP would need more efforts to be computed than others.
Thereby, it is reasonable that more computational resource
should be assigned to the subproblems with higher complexity.
The proposed PS-MOEA/D adopts the high-level idea of the
computational resource strategies in MOEA/D-GRA [17] and
adapts this technique to be applied to TBC. As shown in
Algorithm 1, each subproblem with index j ( jth subproblem),
which refers to gte(x|λj, z̃) in (3), is associated with a different
probability probi.

First of all, we give the general framework with initial set-
tings of PS-MOEA/D. The details of each algorithm will be
specified in Section IV. At each iteration, they pass the pop-
ulation as parameters, and maintain and update the following
data, in which (i = 1, . . . , n), n is the number of subproblems.

1) λi is to lead the operators for adjusting different objec-
tive preference for ith subproblem.

2) Ñi ⊂ {1, . . . , n}: The neighborhood index set of ith
subproblem.

3) x̃i: The current solution to ith subproblem, which is
defined as a struct. x̃i is with domains of decision
variables and three objectives values of ith subproblem.

4) F(̃xi): The objective function value of x̃i, which
is computed by the λi and the three objective
values in x̃i.

5) probi: The probability that ith subproblem should be
invested. If probi is higher than some others, more evo-
lution process will be conducted on the ith subproblem.

6) z̃ = z̃1, . . . , z̃m: An invalid ideal solution, in which
m = 3 is the number of objectives. It is a reference point
of the optimal values in terms of the three objectives.

In Algorithm 1, TBC is decomposed into n scalar optimiza-
tion subproblems. As indicated in line 13, for TBC, as one of
the objectives, the number of active sensors, is discrete. It is
natural to decompose the MOP based on the number of active
sensors. In this end, the hardness for all subproblems are differ-
ent and the hardness of each subproblem H̃i follows a binomial
distribution H̃i = (Ci

N/2N) as shown in Fig. 3 where we set
the problem scale N = 100. Thus, the proposed PS-MOEA/D
is based on the MOEA/D-GRA, in which each ith subproblem
is associated with a different probability probi. Remark that
probi corresponds to H̃i. The probability set p decides how
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Algorithm 1 PS-MOEA/D Framework for TBC
Input:

N: Total number of sensors
xi: Coordinate for each sensor si for 1 ≤ i ≤ n
f1, f2, f3: Objective functions
NP: Population size
NN : Size of neighborhood

Output:
Pop: Final solutions

1: Initialize λi, Ñi, x̃i and probi for each i-th subproblem,
1 ≤ i ≤ n

2: Initialize z̃ = {̃z1, z̃2, z̃3} and Pop.
3: while Stopping criteria not satisfied do
4: for i = 1 to n do
5: if rand() ≤ probi then
6: Produce the sensors status ỹ′ for i-th subproblem.

/* Offspring Reproduction and Replacement */
7: Conduct a Cover-Shrink algorithm on ỹ′ for i-th

subproblem to obtain the trial solution ỹ.
8: Local Search Procedure on i-th subproblem and

generate two trial solutions ỹa and ỹb.
9: Update z̃j (j =1,2,3) by min{̃zj, fj(y)}.

10: Update the population Pop by ỹ, ỹa and ỹb in terms
of F.

11: end if
12: end for
13: Update the probability set p = {prob1, . . . , probn}.
14: end while
15: return Pop

Fig. 3. Hardness distribution for subproblems.

computational resources are to be assigned among subprob-
lems. If probability probi ≥ rand(), ith subproblem is picked
to be computed in lines 6–10.

IV. ALGORITHM SPECIFICATION AND IMPLEMENTATION

A. Solution Encoding

The solution is represented by a 2-tuple coding structure
C = {Cs, Cr} = {(μ1, r1), (μ2, r2), . . . , (μi, ri), . . . , (μN, rN)}.
The boolean μi describes the working status of the sensor
node and ri denotes the value of its radius. This encoding
scheme is associated with the population initialization as
line 6 of Algorithm 1. As shown in Fig. 4 for an example,

Fig. 4. Example of 2-tuple coding structure and the corresponding solution.

(a) (b)

Fig. 5. Offspring reproduction. (a) Crossover. (b) Mutation.

we assume that the length of the line segment is 1 and three
sensors are deployed on the line segment with coordinates
(0.25, 0.5, 0.75). The solution picks two sensors {(μ1 = 1,
r1 = 0.25), (μ3 = 1, r3 = 0.25)} with the coordinates
(0.25,0.75), excluding the sensor with the coordinate (0.5)
which is encoded as {(μ2 = 0, r2 = 0)}.

B. Reproduction and Replacement

1) Crossover and Mutation: The sensors status Csy of the
solution ỹ is produced in line 6 in Algorithm 1. We set one
parent a to the current solution for ith subproblem, and ran-
domly select a solution b as the other parent from {̃xt|t ∈ Ñi}.
Then, one could produce two new solutions by an one-point
crossover on solutions a and b [40], as shown in Fig. 5(a).
We choose the better solution as y1, then replace the solu-
tion x̃t of corresponding tth subproblem if improved. We can
use mutation operator, i.e., interchange as shown in Fig. 5(b),
to make the number of gene “1” or “0” be equal with x̃a.
The mutation operator selects two nonidentical genes within
a relatively small interval in random, in order to be further
improved by fine-tuning the solution. For the replacement,
we can use the newly generated solution x̃′ to replace x̃i if
improved. The details are shown in Algorithm 2.

2) Repair Operator: The repair operator is to handle the
constraint of full coverage, i.e., to ensure the feasibility of the
solutions. We design a cover-shrink algorithm, which consists
of two parts (cover and shrink), is to ensure the requirement
and functionality of barrier coverage with the smallest possible
deterioration on the objectives. We set x0 as the leftmost point
and β as the rightmost point of the line segment B. We use
d(i−1)i to denote the distance xi − xi−1 for 1 < i < n, d1 = x1
and dn = β − xn. The cover part is based on an algorithm
in [8]. Though it is an approximation algorithm, and there
could be several overlaps between sensors, we can improve
it by the shrink part. The detail of cover-shrink algorithm is
shown in Algorithm 3, whose overall time complexity is O(N).
After this, we finalize the initialization and generate the trial
solutions as shown in line 6 of Algorithm 1.

Consider the example in Fig. 6, we process the
cover and shrink procedures as follows. First, we set
r1 = max(d1, (d12/2)), r2 = max((d12/2), (d23/2)), and
r3 = max((d23/2), d3) according to the cover procedure. We
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Algorithm 2 Offspring Generation for ith Subproblem
1: Set population

Pool =
{

Ñi if rand() < probi

{1, · · · , N} otherwise

2: x̃a ← x̃i, and select x̃b ∈ Ñi in random
3: Generate a new solution y1 by an one-point crossover

operator on x̃a and x̃b /* With the probability of crossover
P_Cr */

4: if gte(̃xt|λj, z∗) > gte(y1|λj, z∗) then
5: Set x̃t = y1
6: end if
7: Generate a new solution y2 by randomly interchange two

non-identical genes (0 - 1) on x̃i /* With the probability
of mutation P_Mu */

8: if gte(̃xi|λj, z∗) > gte(y2|λj, z∗) then
9: Set x̃i = y1

10: end if

Algorithm 3 Cover-Shrink Algorithm
1: Initialize k = 0 and a solution x̃
2: for i = 1 to N do
3: if ui = 1 then
4: k = k + 1, vk = 1, coordinate xk = xi

5: end if
6: end for
7: for j = 1 to k do
8: if j == 1 then
9: r1 = max(d1,

d(2)(1)

2 ) /* Cover part */
10: else if j == k then
11: rk = max(

d(k)(k−1)

2 , dk)

12: else
13: rj = max(

d(j)(j−1)

2 ,
d(j+1)(j)

2 )

14: end if
15: end for
16: for i = 2 to k − 1 do
17: if (xi− ri < xi−1+ ri−1)&&(xi+ ri > xi+1− ri+1) then
18: ri = max(0, min(xi − xi−1 − ri−1, xi+1 − xi − ri+1))

/* Shrink part */
19: end if
20: end for

can see that there are two overlaps o1 and o2 for sensor s2.
Then, we can shrink the sensing range of s2 by min(o1, o2)
to make it tangent with s1 or s3.

C. Local Search Procedure

In each iteration as shown line 8 in Algorithm 1, when
the best-so-far solutions x̃ls are updated, a local search proce-
dure is performed to refine x̃ls. The idea of problem-specific
local search strategies is inspired by workload balancing. After
we randomly choose the ith subproblem with solution x̃i, we
conduct our problem-specific local search strategies on it,
specifically forward operator and backward operator. With
respect to the search direction, the original point can be chosen

Fig. 6. Illustration of cover-shrink algorithm.

Fig. 7. Forward local search operator.

in random, and the destination is its neighborhood. When an
offspring shows improvement in terms of the objective func-
tion, it is adopted as the solution of this subproblem. The
details are given in Algorithm 4. After the local search pro-
cedure, we update the solutions of (i − 1)th subproblem and
(i + 1)th subproblem. Take the forward operator in Fig. 7 as
example, the active sensor j with a large sensing range to cover
a specific region B of the barrier. Then, search from the nearby
sleeping sensors to check if there exists two sleeping sensors
i and k, which can be assigned sensing ranges to cover B. If
exists and there is an improvement on objectives, the status of
sensor i is set from active to sleeping, and the status of sensors
i and k is set from sleeping to active with corresponding radii.
Similarly, backward operator is the inverse process of forward
operator. Noted that the solutions produced by Algorithm 4
have been repaired to be feasible.

D. Complexity Analysis

1) Space Complexity: During the search, PS-MOEA/D uses
an internal population O(N) to store nondominated solutions
and external population to store current solutions O(N) for
each iteration. The size of population is determined after the
initialization. It will not increase with the iterations.

2) Time Complexity: The major computational cost in
each iteration of PS-MOEA/D is involved in lines 6–8 of
Algorithm 1. Specifically, after the initialization, Algorithm 3
needs O(N) time. In each generation, two individuals are
chosen for later processing, which can be done in constant
time. In relation to the local search, as shown in Algorithm 4,
line 2 for searching the gene g with maximum radii takes O(N)

time. Then, for the lines 2–7, they take O(1) time. Line 8 for
finding the minimum d takes O(N) time, and the other lines
take O(1) time. Overall, Algorithm 4 runs in O(N) time. Thus,
the overall time complexity for each generation is O(N2).
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Algorithm 4 Local Search Strategies

1: Pick the i-th subproblem with solution x̃i

2: Search the gene g with maximum radii rg and two nearest
genes g1 = g2 = 0 /* forward operator */

3: Assign the radii to genes g1 and g2 to replace the cover
range of the gene g

4: Set g = 0, g1 = g2 = 1 and obtain x̃i+1
ls

5: if x̃i+1
ls is better than x̃i+1 then

6: x̃i+1 ← x̃i+1
ls

7: end if
8: Find two disjoint genes g3 and g4 with the minimum d

/* backward operator */
9: Find the nearest gene g0 = 0 between g3 and g4 if exists

10: Assign the radii to g0 to replace the cover range of the
gene g3 and g4

11: Set g0 = 1, g3 = g4 = 0 and obtain x̃i−1
ls

12: if x̃i−1
ls is better than x̃i then

13: x̃i−1 ← x̃i−1
ls

14: end if

V. EXPERIMENTS AND DISCUSSION

In this section, we assess the performance of the pro-
posed PS-MOEA/D for TBC. The proposed PS-MOEA/D is
compared with MOEA/D-GRA and other three well-known
MOEAs to prove the effectiveness and validate the perfor-
mance. The details of this experimentation are introduced as
follows.

A. Experimentation

This section is devoted to give the techniques and param-
eters adopted in the experiments. Then, three performance
measures are given for the evaluation on MOEAs.

1) Compared Techniques: With the aim of studying
whether the solutions of PS-MOEA/D is comparable to
the widely used MOEAs, we compare the implemented
PS-MOEA/D with the following algorithms.

1) MOEA/D-GRA is the baseline algorithm, in which a
generalized resource allocation strategy based on util-
ity function is incorporated into the original MOEA/D.
Computational efforts are distributed to the subproblems
based on their utilities [36]. The utility for each subprob-
lem is computed by the relative decrease of the objective
in a number of times of evaluation. Tchebycheff decom-
position is employed in MOEA/D-GRA.

2) NSGA-II [14] selects individuals according to Pareto
dominance relation and reproduces offsprings iteratively.
Specifically, the new population is sorted by ranking
according to the relationship of dominance, and the
solutions are widespread by using crowding distance.

3) SPEA2 is an elitist MOEA. This algorithm adopts a den-
sity estimation to discriminate between individuals and
an enhanced archive truncation for diversity preserva-
tion. SPEA2 is widely used to treat theory and practice
problems in recent year, such that it becomes a reference
algorithm.

TABLE I
PARAMETER CONFIGURATION FOR MOEAS, WHERE S_PO REFERS TO

THE SIZE OF POPULATION, P_CR REFERS TO THE PROBABILITY OF

CROSSOVER, P_MU REFERS TO THE PROBABILITY OF MUTATION,
AND S_NE REFERS TO THE SIZE OF NEIGHBORHOOD

Fig. 8. Wireless sensor deployments following uniform and Gaussian
distribution.

4) IBEA [41] defines the optimization goal in the light of
a performance measure (hypervolume indicator in this
paper) and then directly uses this hypervolume indicator
in the selection process to control the new population.

Note that we are using the same reproduction mechanism
(crossover, mutation, and solution repair procedure) for the
four competitors and PS-MOEA/D.

2) Parameters Setup and Test Data: The experiments were
conducted on a 3.4 GHz Intel PC with 4 GB RAM. The
programming language is MATLAB (R2013a). Following the
practice in [11], the parameters for each algorithm have been
tuned slightly according to the preliminary experiments on the
quality of the solutions produced. With the purpose of mak-
ing a fair comparison, for all MOEAs, we set the parameters
based on the best performance, as shown in Table I. Unless
stated otherwise, the experiments are conducted under these
settings.

According to different deployment methods and purposes,
the coordinates of the sensor positions may obey different dis-
tributions. More specifically, when the sensors are dropped off
from an aircraft that flies over the middle of a field to protect
an important target, most sensors are expected to fall some-
where close to the central line, and a few sensors are likely
to end up further out. Thus, the resulting sensor deployment
obeys a Gaussian distribution. One could then argue that if
all of the sensors are deployed randomly and uniformly along
the axis of flight path, the resulting sensor deployment obeys a
uniform distribution. For these reasons and suggestions given
in [42], both uniform distribution and Gaussian distribution as
shown in Fig. 8 are studied. In the experiments, the length of
barrier is set as 1000 units. And we set ρ = 1 and κ = 2.
With the aim of evaluating the performance of our algorithm,
we will conduct comparative experiments in different scales
(the number of randomly deployed sensors). Specifically, we
name the test instance of 100 randomly deployed sensors under
uniform (Gaussian) distribution as U100 (G100), and so on.

3) Performance Metrics: In this paper, we use the met-
rics of hypervolume HV(X, R) [43], inverted generational
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distance (IGD) [44] and set coverage [43]. HV and IGD can
measure the quality of the obtained PF from the perspectives
of both convergence and diversity.

The hypervolume metric, as shown in (4), gives the volume
that is calculated by the solution set S and reference set r. We
calculate the volume by using normalized objective values.
The large value of hypervolume indicates that the algorithm
is able to produce good-quality solutions.

The IGD is defined as follows. Let P∗ denote the true PF in
an MOP. Let S be an obtained solution set. The mean distance
from P∗ to S is formulated as (5), where dis(s, P∗) computes
the smallest Euclidean distance from p to all points in S. In
order to attain a smaller value of IGD, one should be closer
to and lose less part of the complete true PF. However, except
for test benchmark problems, the real PFs of real world opti-
mization problems are usually unknown. As suggested in [45],
in the absence of the true PF in our problem, the unknown PF
is approximated by selecting nondominated solutions among
all solutions obtained by different MOEAs (i.e., PS-MOEA/D,
MOEA/D-GRA, NSGA-II, SPEA2, and IBEA)

HV(S, r) = Volume

⎛
⎝ |S|⋃

i=1
vi

⎞
⎠ (4)

IGD
(
S, P∗

) =
∑

p∈P∗ dis(p, S)

|P∗| . (5)

The set coverage C(̃A, B̃) metric computes the pairwise
domination relation between solution sets Ã and B̃. As shown
in (6), it concentrates on the overlaps between two solution
sets, a (b) denotes the solution in set Ã (̃B). The higher the
value of C(̃A, B̃) obtained, more diversely and evenly the
solution set Ã distributed. Remark that set coverage does not
depend on true PFs or reference set. It is applicable to make
the comparison among solutions obtained by MOEAs

C
(̃
A, B̃

) =
∣∣b ∈ B̃

∣∣∃a ∈ Ã : a ≺ b
∣∣∣∣̃B∣∣ . (6)

B. Performance Evaluation

In this section, we give the performance comparisons of
the proposed algorithm with MOEA/D-GRA, as well as three
representative approaches in the multiobjective domain, i.e.,
NSGA-II, SPEA2, and IBEA.

First, we compare above MOEAs with the proposed algo-
rithm by using hypervolume and IGD metrics. All the results
presented are obtained by executing 20 independent runs of
each algorithm on each instance. From the numerical point
of view, Tables II and III collect the average and standard
deviation values (meanstd) of hypervolume and IGD obtained
by PS-MOEA/D, MOEA/D-GRA, NSGA-II, and SPEA2. We
point out those instances in which there exists differences sta-
tistically nonsignificant between our proposed algorithm and
the competitors by S-indicator. A significance level is set to
5% as in [11].

The notation ++ reflects that our algorithm obtains a sig-
nificant improvement over all the four competitors, while N+
indicates an insignificant improvement of PS-MOEA/D over

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 9. Nondominated solutions of a single run of all the algorithms for
each instance. (a) U100. (b) U300. (c) U500. (d) U700. (e) U900. (f) G100.
(g) G300. (h) G500. (i) G700. (j) G900.

NSGA-II. Overall, PS-MOEA/D generally outperforms the
other approaches in all the instances. Furthermore, with the aim
of highlighting the superiority of PS-MOEA/D, we have selected
the nondominated solutions of a single run of all the algo-
rithms for each instance, and present graphic representations
of their obtained nondominated solutions in Fig. 9 and zoom in



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: PS-MOEA/D FOR BARRIER COVERAGE WITH WIRELESS SENSORS 9

TABLE II
PERFORMANCE COMPARISON OF MOEA/D, NSGA-II, SPEA2, AND IBEA WITH

PS-MOEA/D FROM THE VIEWPOINT OF HYPERVOLUME (meanstd)

TABLE III
PERFORMANCE COMPARISON OF MOEA/D, NSGA-II, SPEA2, AND IBEA

WITH PS-MOEA/D FROM THE VIEWPOINT OF IGD (meanstd)

(a)

(c)

(b)

(d)

Fig. 10. Pairwise comparison between PS-MOEA/D and competitors in terms of set coverage. PS-MOEA/D versus (a) MOEA/D-GRA, (b) NSGA-II,
(c) SPEA2, and (d) IBEA.

some area for better visualization. It can be observed that PS-
MOEA/D obtains higher quality solutions from the distribution
of the nondominated solutions in the figures.

With regard to the IGD values in Table III, PS-MOEA/D
perform the best, having a clear advantage over the other four
competitors on all the test cases. Specifically, all the MOEAs
obtain better results on uniform test cases rather than Gaussian
ones. MOEA/D-GRA has the worst IGD results on all the
test cases compared to other approaches. This is because poor
IGD results are likely to be given to solution sets with good
convergence but small diversity when reference solutions have
large diversity.

Second, we compare the solutions of the MOEAs by using
the set coverage metric, which allows comparison of two algo-
rithms in terms of Pareto dominance. In Fig. 10, a coverage
relation by pairs is presented. As shown in Fig. 10(a), the solu-
tions obtained by PS-MOEA/D generally dominate above 60%
of those obtained by MOEA/D-GRA, and even over 80% on
uniform instances. PS-MOEA/D works fairly well on G700
and G900 over MOEA/D-GRA. This is probably because
MOEA/D-GRA could produce good but nonuniformly dis-
tributed solutions by assigning large amounts of computational
resources in some specific region. It can be observed from
Fig. 10(b) and (c) that the PS-MOEA/D dominates above 65%
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

(i) (j)

Fig. 11. Convergence analysis on five MOEAs for each instance. (a) U100. (b) U300. (c) U500. (d) U700. (e) U900. (f) G100. (g) G300. (h) G500. (i) G700.
(j) G900.

of the nondominated solutions obtained by the NSGA-II of
a run, and more than 80% of the nondominated solutions
obtained by the SPEA2. As we can see from Fig. 10(d),
PS-MOEA/D attains 100% approximately over IBEA in nearly
all the instances. Moreover, compared with NSGA-II, SPEA2,
and IBEA [Fig. 10(b)–(d)], we observe very good dominance
results obtained by our algorithm when the instance scale
becomes large.

Moreover, we show an example of the convergence analy-
sis on a single run of each instance in Fig. 11. We use the
hypervolume as the indicator. Obviously, we can see that all
MOEAs typically have good convergence in terms of hyper-
volume, but fall into slight degradation occasionally. This is
most probably because it is affected by failure of maintaining
the diversity of solutions. Nevertheless, it is clearly shown that
PS-MOEA/D achieves not only high-quality PFs, but also a
good convergence.

Furthermore, simulation results of convergence analysis on
PS-MOEA/D are also shown in Fig. 12 to investigate the influ-
ence of different evaluations on the obtained PFs. We only
show a portion for each PF for clearer presentation. Obviously,
we can observe that the solutions on large number of evalua-
tions is better than the others. It can be graphically observed
that the superiority of the solutions obtained on 30 000 evalu-
ations. Moreover, in the case that the number of active sensor
nodes is either very large or small, we can hardly obtain good
solutions when the evaluation time is very low. This is because

the assigned computational resource follows binomial distribu-
tion. When the evaluation time is low, very little computational
resource are assigned to the subproblems with very small or
large number of active senor nodes. Thus, few solutions can
be found during the low number of evaluation times. Besides,
comparing to the Gaussian instances, the PFs obtained spread
more evenly in the uniform ones. This is because a large num-
ber of sensors are deployed closely to the middle of the barrier
by following the Gaussian deployment. Since the constraint
for TBC is to fully cover the whole barrier instead of a spe-
cific target, densely-deployed sensors in a region reduce the
diversities of the PFs to some degree.

Summarizing, we have evaluated the performance of four
multiobjective algorithms in two different simulation scenar-
ios, i.e., uniform and Gaussian. Three quantitative metrics have
been adopted for the evaluation of solutions, which are hyper-
volume, IGD, and set coverage. Regarding to the hypervol-
ume and IGD, PS-MOEA/D outperforms the MOEA/D-GRA,
NSGA-II, and SPEA2 in all the cases. Also, PS-MOEA/D
shows good Pareto dominance over the other competitors.
We can say that our approach attains, in all cases, com-
parable performance to the most-used approaches, obtaining
the best results in TBC. With respect to the convergence
of our algorithm, it clearly shows that PS-MOEA/D attains
a fast convergence with high-quality solutions, and validate
the effectiveness of the computational resource allocation
strategy.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 12. PFs obtained by PS-MOEA/D convergence along the evaluations for
each instance. (a) U100. (b) U300. (c) U500. (d) U700. (e) U900. (f) G100.
(g) G300. (h) G500. (i) G700. (j) G900.

VI. CONCLUSION

In this paper, we study the multiobjective problem
TBC, which is refined from the barrier coverage problem.
A PS-MOEA/D is proposed for finding optimal tradeoff solu-
tions for TBC. More concretely, we define a 2-tuple encoding
scheme. Then, a cover-shrink algorithm is proposed to pro-
duce feasible and relatively optimal solutions. Subsequently,
we incorporate problem-specific knowledge into local search,

which allows search procedures for neighboring subproblems
collaborate each other. Experimental study is provided, which
explores the tradeoff among power consumption, reliability
and fairness. We perform diverse comparisons to validate our
approach. The results indicate that PS-MOEA/D is very com-
petitive in dealing with TBC. PS-MOEA/D may be further
improved by exploring more problem-specific knowledge in
future and would be significant to undertake a real-world
border surveillance task.
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