






This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CAI et al.: DBS AND ABS FOR EVOLUTIONARY MULTIOBJECTIVE AND MANY-OBJECTIVE OPTIMIZATION 13

TABLE VII
MEAN AND STANDARD DEVIATION VALUES OF IGD, OBTAINED BY

MOEA/D-SAS AND NSGA-III ON DTLZ INSTANCES

TABLE VIII
MEAN AND STANDARD DEVIATION VALUES OF IGD, OBTAINED BY

MOEA/D-SAS AND MOEA/D-AWA ON DTLZ TEST PROBLEMS

WITH DISCONNECTED AND DEGENERATE PFS

MOEA/D-SAS is much more similar to that of true PFs than
the ones obtained by NSGA-III.

2) MOEA/D-SAS Versus MOEA/D-AWA: In the MOEA/D
with adaptive weight adjustment (MOEA/D-AWA) [33], an
adaptive weight vector adjustment strategy is introduced. The
weight vectors of subproblems are adjusted periodically to be
redistributed adaptively for obtaining better uniformity of solu-
tions. Different from MOEA/D-AWA, MOEA/D-SAS uses the
fixed set of weight vectors. However, different solutions can
be associated with the same subproblems; and some subprob-
lems are allowed to have no associated solution. To compare
the effects of MOEA/D-AWA and MOEA/D-SAS on irregular
MOPs, experiments are conducted between these two algo-
rithms on 5-, 8-, and 10-objective DTLZ5–7 test problems that

have disconnected or degenerate PFs, as shown in Table VIII.
It can be seen that MOEA/D-SAS performs significantly better
than MOEA/D-AWA on all DTLZ5-6 test problems though it
performs worse than MOEA/D-AWA on DTLZ7.

VII. CONCLUSION

This paper proposed an SAS as the selection operator for
MOEA/D to address MOPs. In SAS, the balance between
convergence and diversity is achieved by two components,
DBS and ABS. Different from other selection schemes, e.g.,
global STM model, DBS only conducts sorting within the
local neighboring solutions, which drastically reduce the com-
putational cost of SAS. Meanwhile, ABS utilizes the angle
information in the objective space to maintain a fine-grained
diversity. Different from many other MOEA/D variants, SAS
allows one subproblem to associate with any number of solu-
tions, or even no solutions, which makes it more flexible for
MOPs with different shapes of PFs. SAS is integrated into
MOEA/D and the algorithm, called MOEA/D-SAS, is com-
pared with four classical (NSGA-II, MSOPS-II, MOEA/D, and
MOEA/D-DE) and three state-of-the-art MOEAs (MOEA/D-
STM, NSGA-III, and MOEA/D-AWA) on continuous MOPs
or MaOPs. The experimental results show that MOEA/D-SAS
outperforms other compared algorithms. In addition, the com-
putational efficiency of DBS and the effects of ABS are also
discussed in this paper in detail.
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