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Abstract

We develop a novel, highly scalable estimation method for large Bayesian Vector
Autoregressive models (BVARs) and employ it to introduce an “adaptive” version of the
Minnesota prior. This flexible prior structure allows each coefficient of the VAR to have its
own shrinkage intensity, which is treated as an additional parameter and estimated from
the data. Most importantly, our estimation procedure does not rely on computationally
intensive Markov Chain Monte Carlo (MCMC) methods, making it suitable for
high-dimensional VARs with more predictors that observations. We use a Monte Carlo
study to demonstrate the accuracy and computational gains of our approach. We further
illustrate the forecasting performance of our new approach by applying it to a quarterly
macroeconomic dataset, and find that it forecasts better than both factor models and other
existing BVAR methods.

Keywords: Bayesian VARs, Minnesota prior, Large datasets, Macroeconomic forecasting

JEL Classifications: C11, C13, C32, C53

∗Essex Business School, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom. d.korobilis@essex.ac.uk
†Brandeis University, Sachar International Center, 415 South St, Waltham, MA. dpettenu@brandeis.edu

1

mailto: d.korobilis@essex.ac.uk
mailto:dpettenu@brandeis.edu


1 Introduction

A number of recent contributions have highlighted the empirical success of large Bayesian Vector

Autoregressive models (BVARs) in forecasting macroeconomic variables. These include, among

others, Banbura et al. (2010), Koop (2011), Carriero et al. (2009, 2012), Koop and Korobilis

(2013), Giannone et al. (2015), and Koop et al. (2016). The popularity of BVARs dates back to

the early work of Litterman (1979) and Doan et al. (1984) and the so-called Minnesota prior,

which imposes the belief that the dynamics of most macroeconomic variables can be described

accurately using a univariate random walk process. In this paper, we are concerned with a

specific aspect of these models, namely the choice of informativeness of their priors.1

We focus our attention on the very popular and successful Minnesota prior, which relies on a

small number of hyperparameters - often just one - to control the overall level of informativeness

of the prior. There are two general strategies to eliciting the values of these hyperparameters,

which differ mainly in the way they trade-off flexibility in the specification of the prior and

computational tractability. The first approach relies on the original formulation of Litterman

(1979), who suggested shrinking the lags of the dependent variable and the lags of the other

variables with a different intensity. This type of prior is sometimes referred to as an “asymmetric”

Minnesota prior (see for example Carriero et al., 2016), and is implemented by imposing a heavier

shrinkage on the lags of the other variables to reinforce the random walk nature of the prior. The

flexibility of this prior translates into costly and time-intensive computations, as the posterior

distribution of the VAR coefficients can only be obtained through the use of Markov Chain

Monte Carlo (MCMC) methods.2 This, in turn, makes the asymmetric Minnesota prior hard to

employ in large-dimensional VARs.3

The second strategy focuses on a restricted version of the original Minnesota prior, where all

1As noted by Giannone et al. (2015), the choice of informativeness of the prior distribution bears important
consequences for the performance of the BVARs, both in terms of in-sample fit as well as out-of-sample forecasting.

2In the pre-MCMC era, researchers used to fix the VAR covariance matrix to its OLS estimate (or even impose
a diagonal structure), and then draw inference about intercepts and coefficients of lagged variables using analytical
results. This is also the approach followed by Litterman (1986). See also Kadiyala and Karlsson (1997), and Koop
and Korobilis (2010) for excellent reviews on BVARs.

3In a recent paper, Carriero et al. (2016) propose a transformation of the original n-dimensional BVAR that
breaks its estimation into n univariate regressions. Their approach can handle asymmetric priors (and time-
varying volatility) and yields significant computational benefits, reducing the computational complexity by a
factor of n2 relative to the existing algorithms. However, this approach also relies on MCMC methods and can
still be cumbersome in high dimensions.
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the coefficients are shrunk with the same intensity. The symmetry restriction paves the way to

the use of the natural conjugate prior and the availability of analytical results for the parameter

posterior distributions and predictive densities. On the one hand, the symmetry of the priors

makes this approach particularly suited to handle large-dimensional VARs. In fact, this version

of the Minnesota prior has been used successfully by both Banbura et al. (2010) and Carriero

et al. (2012) to estimate BVARs with more than 120 variables. On the other hand, the symmetry

of the prior brings a number of undesirable consequences. Most importantly, it imposes that the

prior covariance of the coefficients in any two equations must be proportional to one another,

which is a very restrictive feature. Suppose for example that the researcher wishing to employ

the BVAR believes in money neutrality. This belief could be implemented by setting a very

tight prior around zero for the lagged money growth coefficients in the GDP equation, and a

much looser prior for the same coefficients in the other equations of the VAR. Unfortunately,

the natural conjugate prior cannot be adapted to fit this situation, and may ultimately lead to

an inferior model.4

In this paper, we propose a novel estimation procedure that combines the flexibility of the

original asymmetric Minnesota prior of Litterman (1979) with the computational tractability of

the natural conjugate prior. Following van den Boom et al. (2015a,b) we introduce a rotation

of the original data where, one at a time, we break the dependence between one of the BVAR

coefficients and all the remaining ones, which are effectively treated as nuisance parameters. This

rotation allows us to reduce a high-dimensional posterior derivation into a number of independent

scalar problems, each one yielding an approximated marginal posterior distribution that can be

derived analytically. We exploit this framework to introduce a new and highly flexible version of

the Minnesota prior, where each coefficient is allowed its own shrinkage hyperparameter. These,

in turn, are estimated from the data by maximizing the marginal likelihood of the rotated

regressions. We label this new prior “adaptive Minnesota prior”, to explicitly highlight the fact

that the shrinkage intensity is allowed to vary with the data, in a highly flexible way. Most

importantly, thanks to the independence between the approximated marginal posteriors and

the availability of analytical results, our proposed approach is highly scalable and can be easily

4In larger dimensional VARs, were one would expect more complex patterns of sparsity to occur, this problem
will likely be exacerbated.
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parallelized to fully exploit the power of modern computer clusters.5

We implement a thorough Monte Carlo analysis to investigate the performance of our

proposed approach, and compare it against some of the existing methods including a VAR

with flat priors (estimated by OLS) and the popular BVAR approach of Giannone et al.

(2015). We simulate VARs of different sizes, ranging from small (n = 3) to large (n = 20)

systems, and overall find that our adaptive Minnesota prior delivers the most accurate

estimates of the true underlying BVAR coefficients. This is particularly true in the large VAR

case, where the importance of shrinkage is higher. We also find that these improvements are

highly related to the ability of our approach to implement individualized shrinkage on the

various VAR coefficients. Specifically, we find that our approach generally imposes a heavier

shrinkage on the VAR coefficients when their true underlying values are in fact zero. We then

carry out a substantial macroeconomic forecasting exercise involving VARs with up to 40

dependent variables and five lags. We investigate the forecasting performance of seven key

macroeconomic variables, comparing the adaptive Minnesota prior to various popular

alternatives including, in addition to the VAR with flat priors and the BVAR approach of

Giannone et al. (2015), the Dynamic factor model of Stock and Watson (2002), the

Factor-Augmented VAR of Bernanke et al. (2005), the homoskedastic BVAR with asymmetric

priors of Carriero et al. (2016), and the BVAR of Banbura et al. (2010). Our results are quite

encouraging for the adaptive Minnesota prior, showing superior forecast improvements in

many cases and comparable forecast performance in the remainder.

Our adaptive Minnesota prior is related to a number of existing approaches that use the data

to infer the prior informativeness of the VAR coefficients. These include Litterman (1979), Doan

et al. (1984), Banbura et al. (2010), Bloor and Matheson (2011), Giannone et al. (2015), and

Huber and Feldkircher (2016). The last two papers, in particular, are the most closely related to

ours. Giannone et al. (2015) integrate the choice of the prior informativeness in the estimation

of a BVAR by adding an extra layer to the prior structure, and placing a separate prior on the

hyperparameters, in a hierarchical fashion. As with our approach, the prior hyperparameters are

estimated from the data. However, their method relies on the very restrictive natural conjugate

5This work made use of the High Performance Computing Cluster (HPC64) at Brandeis University.
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prior, and imposes that all coefficients are shrunk with the same intensity. In contrast, our

approach works with the less restrictive asymmetric Minnesota prior, and most importantly

yields individualized shrinkage factors on the BVAR coefficients. Huber and Feldkircher (2016)

consider a BVAR with stochastic volatility and do allow for idiosyncratic shrinkage on the BVAR

coefficients and covariance terms. The idiosyncratic shrinkage factors are estimated from the

data, using a multi-layered hierarchical setup and a Metropolis-within-Gibbs sampler. Relative

to their approach, our adaptive Minnesota prior is significantly simpler to implement, with

essentially no tuning required on the prior hyperparameters, and posterior distributions that

are available analytically, making it particularly suited for high dimensional VARs. To give an

idea of the computational burden involved with implementing our approach, estimation of the

largest VAR considered in this paper, a 40 variable VAR with five lags, takes about 40 seconds on

a 64-bit Windows PC with a 3.4 Ghz Quad-Core Intel i7-3770 processor and MatLab (R2015b).

The rest of the paper is organized as follows. Section 2 provides a general description of

Bayesian VARs and introduces our adaptive Minnesota prior. Next, Section 3 goes over the

estimation procedure we rely on to implement the adaptive Minnesota prior and automatically

select, one coefficient at a time, the optimal level of informativeness of the prior. Section 4

describes in details our Monte Carlo exercise, while Section 5 is devoted to the macroeconomic

forecasting application. Finally, Section 6 offers some concluding remarks.

2 Adaptive Minnesota Prior

Our starting point is the following n-dimensional VAR(p) model

yt = c+A1yt−1 + . . .+Apyt−p + εt, t = 1, ..., T, (1)

where yt is an n×1 vector of time series of interest, c is an n×1 vector of intercepts, A1, ...,Ap

are n× n matrices of coefficients on the lagged dependent variables, and εt ∼ N (0,Ω), with Ω

an n× n covariance matrix.

We are particularly interested in the situation when the dimension of the VAR, n, is large,

in which case the system in (1) suffers from the well-known curse of dimensionality. To deal

with this problem, we estimate the model using the Bayesian VAR (BVAR) approach, which
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deals with the over-parametrization of the VAR by imposing some informative prior beliefs on

the parameters c, a, and Ω, where a = vec ([A1, ...,Ap])
′ denotes the n2p×1 vector that groups

together all VAR coefficients associated with the lags of yt. We consider the following prior for

the VAR coefficients:

ci ∼ N
(
ci, V ci

)
, i = 1, ..., n,

ai,j ∼ N
(
ai,j , V ai,j

)
, i = 1, ..., n, j = 1, ..., np,

Ω ∼ IW (Ψ, d) ,

(2)

where ci and ai,j denote, respectively, the intercept and j-th coefficient in the i-th VAR equation.

Note that we have implicitly assumed prior independence among the elements of c and a. This

assumption is frequent in Bayesian analysis, as we do not have any reason to believe that

the coefficients ai,j should be a-priori correlated (this assumption is equivalent to assuming

that the coefficient vector a has a multivariate Normal prior with diagonal covariance matrix).

Despite the independence assumption for ci and ai,j , the prior in (2) is quite flexible and can

accommodate a number of prior choices for VARs, including the very popular and successful

Minnesota prior.6 This is also our starting point. However, we introduce an important twist to

the way we specify the Minnesota prior. Generally, this type of prior relies on a small number of

hyperparameters - often just one - to control the overall level of informativeness of the prior for

the parameter vector a. In our approach, we propose instead to modify the standard Minnesota

prior and allow the shrinkage intensity on each VAR coefficient to be potentially different. We

thus consider the following prior for the generic ai,j VAR coefficient:

ai,j =

{
δi if own first lag
0 otherwise

, V ai,j = λ2i,j ×


1
l2i,j

if own lags

ψ
l2i,j

σ2
i

σ2
k

otherwise
. (3)

In what follows, we will refer to the prior in (3) as an “adaptive Minnesota prior”. In fact, as

it can be easily seen from (3), this prior closely resembles a Minnesota prior and shares with it

a number of important features. First, the own first lag of each variable (i.e. ai,i) is centered

around δi, which in turn is generally set to either zero or one depending on the degree of mean

reversion on the i-th variable in the VAR.7 On the other hand, all other coefficients, including

6We should point out that there are some exceptions to this rule, and in fact some of the priors considered in
the BVAR literature do require prior correlation among the coefficients of the same equation. See for example
the sum of coefficients and unit root priors proposed by Sims (1993) and Sims and Zha (1998).

7With highly persistent variables entering the VAR in levels or log-levels (e.g. interest rates or log-GDP), it is
typical to set δi = 1. In all other cases, it is customary to work with δi = 0.
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the more distant own lags (i.e., ai,j , i 6= j), are centered around zero. Second, the prior variance

of the VAR coefficients embodies the notion that more distant lags become increasingly less

important. This belief is reflected in the term 1/l2i,j , which controls the rate at which the prior

variance decreases as the lag length increases (we use li,j to denote the lag length associated

with the ai,j coefficient, which can be backed out by l = bj/ic).8 The parameter ψ, usually set

to be lower than one, implements additional shrinkage on the cross-equation coefficients, which

are deemed to be a-priori less important in describing the dynamics of a given variable. Finally,

the prior variance is rescaled by σ2i /σ
2
k, the ratio between the variance of variables i and k, which

controls for the different scale and variability in the data (k denotes the variable that the ai,j

coefficient belongs to, i.e. k = j − n (li,j − 1)).9

As we mentioned above, the key novelty of the prior specification in (3) is the presence of the

prior hyperparameter λi,j , which controls the tightness of the prior distribution and is allowed

to differ across the VAR coefficients. As a result, this simple modification gives rise to a highly

flexible variant of the original Minnesota prior. In contrast, all the existing Minnesota prior

formulations restrict the shrinkage parameter to be equal for all VAR coefficients (i.e., λi,j = λ).

As one may expect, plugging our flexible prior into equation (1) will lead to a complex parameter

posterior that can only be approximated with computationally intensive MCMC methods. In the

next section we develop an alternative algorithm that allows to compute the marginal posterior

of each VAR coefficient and its optimal level of prior informativeness λi,j analytically.

3 A New Bayesian VAR methodology

In this section we introduce a novel and highly scalable algorithm for BVAR inference that

relies on the adaptive Minnesota prior in (3) and at the same time automatically selects the

hyperparameters λi,j (i = 1, ..., n, j = 1, ..., np), controlling the optimal level of informativeness

of the prior. Our algorithm operates by breaking the evaluation of the multivariate posterior

distribution of the BVAR parameters {c,a,Ω} into a number of one-dimensional problems, each

one focusing on a single element of the parameter set. The approach proceeds in three steps.

In the first step, we rewrite the original VAR model in (1) in a form that allows to estimate

8We denote with bxc the floor of x, i.e. the smallest integer greater or equal to x.
9We follow standard practice and set σi, i = 1, ..., n, equal to the standard deviation of the residuals from n

univariate AR(1) models estimated using OLS. See Litterman (1986) for more details.
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the VAR coefficients {c,a} and the elements of the covariance matrix Ω one equation at a

time. Next, in the second step, we introduce a rotation of the original data which breaks the

dependence between a given coefficient of the VAR and all the remaining ones within the same

equation, which are effectively treated as nuisance parameters. This rotation allows to focus

on the marginal posterior distributions of the individual VAR coefficients, one at a time. In

the last step of our procedure, we derive analytical formulae for the moments of the marginal

posterior distribution of each VAR coefficient. Furthermore, we show how to integrate the

adaptive Minnesota prior in (3) within this last step of the algorithm, and how to automatically

select the prior hyperparameters λi,j from the data.

3.1 Triangularization of the VAR

To specify a prior distribution with implied moments as described in (3), we need first to rewrite

the VAR in (1) in a more convenient form. To that effect, we follow Carriero et al. (2016) and

Koop et al. (2016) and decompose the VAR covariance matrix Ω in (1) as Ω = Γ−1Σ
(
ΣΓ−1

)′
,

where

Γ−1 =


1 0 ... 0 0

γ2,1 1
. . .

...
...

...
. . .

. . . 0 0
γn−1,1 ... γn−1,n−2 1 0
γn,1 ... γn,n−2 γn,n−1 1

 , (4)

and Σ = diag (σ1, ..., σn). Under this decomposition the residuals of the original VAR(p) in (1)

can be written using the identity εt = Γ−1Σut, with ut ∼ N (0, In), which implies that the i-th

row of this identity is

εi,t = γi,1σ1u1,t + ...+ γi,i−1σi−1ui−1,t + σiui,t. (5)

As a result, the VAR(p) in equation (1) admits the following triangular structure,

y1,t = c1 + a1,·Xt + σ1u1t,

y2,t = c2 + a2,·Xt + γ2,1σ1u1,t + σ2u2,t,

...

yn,t = cn + an,·Xt + γn,1σ1u1,t + ...+ γn,n−1σn−1un−1,t + σnun,t,

(6)
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where ai,· = [ai,1, ..., ai,np] denotes the vector of coefficients in the i-th VAR equation, and

Xt =
[
y′t−1, ...,y

′
t−p
]′

. Next, we modify the prior in (2) to exploit the triangularization of the

VAR, breaking the IW prior for Ω into p (Ω) = p
(
Γ−1

)
p (Σ), and write

ci ∼ N
(
ci, V ci

)
, i = 1, ..., n,

ai,j ∼ N
(
ai,j , V ai,j

)
, i = 1, ..., n, j = 1, ..., np,

γi,i′ ∼ N
(
γ
i,i′
, V γi,i′

)
, i, i′ = 1, ..., n, i > i′,

σ2i ∼ IG
(
Ψi,i, d

)
, i = 1, ..., n.

(7)

As noted by Carriero et al. (2016), the re-parametrization of the VAR(p) in (6)-(7) allows for

estimation of the system recursively, equation-by-equation.10 For example, consider the generic

equation i, which we rewrite as

yi,t = ci + ai,·Xt + γi,1σ1u1,t + ...+ γi,i−1σi−1ui−1,t + σiui,t, (8)

or, more compactly,

yi,t = Zi,tβi + σiui,t, (9)

with Zi,t = (X ′t, ũ1,t, ..., ũi−1,t), βi =
(
ci,ai,·,γi,·

)′
, γi,· = (γi,1, ..., γi,i−1), and ũl,t = σlul,t,

l = 1, ..., i− 1. Furthermore, using (7) rewrite the prior for
(
βi, σ

2
i

)
as

βi ∼ N
(
β
i
,V βi

)
,

σ2i ∼ IG
(
Ψi,i, d

)
,

(10)

where

β
i

=


ci
ai,1

...
ai,np
γ ′
i,·

 , V βi
=



V ci 0 ... 0 0

0 V ai,1

. . .
...

...
...

. . .
. . . 0

...
0 ... 0 V ai,np 0

0 ... ... 0 V γi,·

 , (11)

10It is worth pointing out an important feature that affects all models that rely on the triangularization in
(6). Since in (7) the priors for Γ−1 and Σ are elicited separately, the implied prior for Ω will change if one
changes the equation ordering. As a result, different orderings of the variables in the VAR will lead to different
prior specifications for Ω and potentially different joint posteriors of the BVAR parameters {c,a,Ω}. As noted
by Primiceri (2005), this problem will likely be less severe in the case as it is here in which the elements of the
covariance matrix in Γ−1 do not vary with time, because the likelihood will quickly dominate the prior as the
sample size increases. On this point, see also the estimation algorithms of Smith and Kohn (2002) and George
et al. (2008) and discussions therein.
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γ
i,· =

(
γ
i,1
, ..., γ

i,i−1

)
, and V γi,·

= diag
(
V γi,1 , ..., V γi,i−1

)
.11 Provided that all previous i − 1

equations have been already estimated, all terms on the right hand side of (9) involving the

previous equation error terms can be replaced by their estimated counterparts. Hence, the full

posterior for the VAR parameters
{
c,a,Γ−1,Σ

}
can now be obtained recursively in separate

blocks, one equation at a time.

To conclude this section, we note that one could exploit the triangularization in (6)-(7)

to allow for a separate Minnesota shrinkage hyperparameter in each VAR equation (i.e., λi,

i = 1, ..., n). Nevertheless, implementing equation-specific adaptive shrinkage within this setting

would require computationally intensive MCMC methods, needed to obtain posterior predictive

distributions and marginal likelihoods. This would render the approach prohibitively expensive

even for medium size VARs. In the next subsection we show how to further transform the

triangular VAR in (6) to obtain suitable analytical expressions that are appropriate for adaptive

shrinkage in large dimensional settings.

3.2 A useful rotation of the original VAR

Reconsider now (9), the i-th equation of the triangular VAR in (6). We now describe how we

further transform equation (9) in order to obtain suitable expressions for the posterior

distributions of the VAR coefficients under the adaptive Minnesota prior. In order to achieve

that, we rotate each VAR equation so that we can isolate the marginal effect of the j-th

element of βi, j = 1, ..., ki, and derive an analytical expression for its marginal posterior.12

First, let us stack all time series observations of the i-th VAR equation (9) as follows,

yi = Ziβi + vi, (12)

where yi = (yi,1, ..., yi,T )′ is of dimension T × 1, Zi =
(
Z ′i,1, ...,Z

′
i,T

)′
is a T × ki matrix

containing all right-hand-side variables of equation i, and βi is the corresponding ki × 1 vector

of VAR coefficients. Finally, vi = (σiui,1, ..., σiui,T )′ ∼ N
(
0, σ2i IT

)
.

11Following the Bayesian VAR tradition, only the elements within the vector βi that correspond to the group of
coefficients ai,· will feature the adaptive Minnesota moments described in the previous section, while the intercept
ci and the covariance terms γi,· will have non-informative priors. However, it is worth noting that our algorithm
can be easily extended to allow for Bayesian shrinkage on those elements as well. In high dimensional VARs,
where the number of covariance terms can be extremely large, this added flexibility can be very beneficial.

12We use the subscript i in ki to denote the fact that after the triangularization of the VAR the number of
regressors within each VAR equation will now be different.
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Consider now the generic j-th coefficient βi,j (j = 1, ..., ki). Starting with (12), we follow

van den Boom et al. (2015a,b) and define the following rotation,

y∗i = q′1yi, ỹi = Q′2yi, (13)

where q1 = Zi,j/ ‖Zi,j‖ is a T × 1 unit vector in the direction of j-th column of Zi and Q2 is

an arbitrarily chosen T ×T − 1 matrix, subject to the constraint Q2Q
′
2 = IT − q1q′1. Note that

since the T ×T matrix Q = [q1|Q2] is of full rank, the suggested rotation provides a one-to-one

mapping between the original data yi and the rotated data (y∗i , ỹi).

Combining (12) and (13), it is possible to show that the distribution of the rotated data

(y∗i , ỹi) is given by13[
y∗i
ỹi

]∣∣∣∣βi, σ2i ∼ N ([ ‖Zi,j‖βi,j
0

]
+

[
q′1Zi,(−j)βi,(−j)
Q′2Zi,(−j)βi,(−j)

]
, σ2i IT

)
, (14)

where βi,(−j) = βi \βi,j is a (ki − 1)×1 vector of regression coefficients and, similarly, Zi,(−j) =

Zi\Zi,j is a T×(ki − 1) matrix. The rescaled regression in (14) separates a single observation for

which the scalar y∗i depends on βi,j from the remaining T − 1 observations, for which the vector

ỹi is conditionally independent of the effect of βi,j . Most importantly, the rescaled regression in

(14) shows that the (T − 1)× 1 vector ỹi is conditionally independent of βi,j . This result leads

to the following expression for p (βi,j |yi), the marginal posterior distribution of βi,j :

p (βi,j |yi) ∝ p (y∗i |βi,j , ỹi) p (βi,j) . (15)

In other words, the marginal posterior distribution of βi,j is proportional to the rotated likelihood

p (y∗i |βi,j , ỹi) and the prior p (βi,j).
14 Most importantly, equation (15) reveals that thank to the

rotation in (13), it is now possible to conduct posterior inference on the whole vector of VAR

coefficients βi one element at a time. Empirically, the usefulness of this result hinges on two

important conditions. First, the elements of p (βi) should be a priori independent, that is,

p (βi) =
∏ki
j=1 p (βi,j). Second, the rotated likelihood p (y∗i |βi,j , ỹi) should to be available in

closed form. As for the first condition, we note that the prior distribution we introduced in

13We provide a proof of this result in the Appendix A.
14The result in (15) is obtained by first noting that the one-to-one mapping between yi and (y∗i , ỹi) implies

that p (βi,j |yi) = p (βi,j |y∗i , ỹi). Next, rewrite p (βi,j |y∗, ỹi) = p (βi,j , y
∗
i |ỹi) /p (y∗i |ỹi). (15) then follows from

applying Bayes theorem to p (βi,j , y
∗
i |ỹi) and noting that: (i) p (y∗i |ỹi) does not not convey any information about

βi,j , so can effectively be treated as a normalizing constant; (ii) ỹi and βi,j are conditionally independent.
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equations (10)-(11) satisfies this requirement. The main challenge in using (15) for posterior

inference is therefore to evaluate the rotated likelihood, and this is where we turn our attention

next.

We show in Appendix A that under a natural conjugate prior for
(
βi,(−j), σi

)
we have that

p (y∗i |βi,j , ỹi) = ‖Zi,j‖βi,j + t2d
(
µi,j , τ

2
i,j

)
≈ ‖Zi,j‖βi,j +N

(
µi,j , τ

2
i,j

)
,

(16)

where

µi,j = q′1Zi,(−j)βi,(−j), (17)

and

τ2i,j =
Ψi,i

d

(
1 + q′1Zi,(−j)V βi,(−j)Z

′
i,(−j)q1

)
. (18)

The exact formulas for the posterior moments βi,(−j), V βi,(−j) , Ψi,i, and d are standard to

derive, and are also provided in Appendix A. The key concept in equations (16) is that we

have chosen to approximate the Student-t predictive distribution using a Normal distribution.

An immediate question is how good an approximation this will be. If σ2i is known, then the

formulas are exact. In other words, the rotated likelihood p (y∗i |βi,j , ỹi) is indeed normal with

the moments specified above. When σ2i is unknown then the approximation can still be quite

accurate, and the accuracy will increases with the sample size.15

3.3 Implementing the adaptive Minnesota prior

Armed with an analytical expression for the rotated likelihood in (15), we are now ready to

implement the adaptive Minnesota prior set forth in (3), and allow for a different shrinkage

parameter λi,j for each coefficient of the VAR. We accomplish this by specifying a Gaussian

prior of the form

p (βi,j |λi,j) ∼ N
(
β
i,j
, V βi,j

)
, j = 1, ..., ki, (19)

where we remind that βi,j can be any of the three types of elements in the vector βi, namely

intercept ci, covariances γi,i′ , and coefficients on lags ai,·. Therefore, the moments β
i,j

and

V βi,j are adjusted accordingly depending on the type of parameter they refer to. First note that

15This is related to the fact that a Student-t distribution with a sufficient number of degrees of freedom -
typically 100 or more - converges to a Normal distribution.
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because of the approximation in (16), we can derive the marginal likelihood for y∗i analytically.

This takes the form

p (y∗i | λi,j , ỹi) =

∫
p (y∗i |βi,j , λi,j , ỹi) p (βi,j |λi,j) dβi,j

= N
(
y∗i |‖Zi,j‖βi,j + µi,j , ‖Zi,j‖2 V βi,j + τ2i,j

)
.

(20)

Next, we can choose the shrinkage parameter λi,j that maximizes the Marginal Likelihood of

the model, i.e.

λ̂i,j = arg max
λi,j

p (y∗i | λi,j , ỹi) . (21)

The key takeaway from (20) and (21) is that we have now derived a principled way to choose

the shrinkage parameter λi,j that maximizes the Marginal Likelihood of the model for βi,j , and

we can do so separately for each of the ki VAR coefficients within equation i, and similarly for

each of the n VAR equations. Finally, conditional on the optimal shrinkage intensity λ̂i,j , it is

straightforward to compute the marginal posterior of the VAR coefficient βi,j , which is available

analytically and is of the form

p
(
βi,j |λ̂i,j ,yi

)
∼ N

(
βi,j , V βi,j

)
, (22)

where both βi,j and V βi,j depend on λ̂i,j (indirectly, through V βi,j ), and are given by

V βi,j =
τ2i,jV βi,j

‖Zi,j‖2 V βi,j + τ2i,j
, βi,j =

‖Zi,j‖V βi,j

(
y∗i − µi,j

)
‖Zi,j‖2 V βi,j + τ2i,j

+
τ2i,jβi,j

‖Zi,j‖2 V βi,j + τ2i,j
. (23)

In practice we need to sequentially optimize λi,j in (21) and compute the posterior mean

and variance of βi,j in (23) for all j = 1, ..., ki and all VAR equations i = 1, ..., n. This procedure

will require multiple “for loops” (i.e. as many as the number of VAR coefficients). Doing so

might sound quite cumbersome, and at first the benefits relative to MCMC methods (which also

involve expensive “for loops”) might not be readily clear to the reader. However, it is important

to clarify at this point that all elements in in (21) and (23) are scalars, which means that all

formulas are extremely fast to evaluate. In addition, all the steps described in this section can

be parallelized, so the algorithm can be easily adapted to fully exploit the power of modern high-

performance computer clusters. These features guarantee that the proposed algorithm can be

implemented very efficiently and with very low computational costs, even for large-dimensional

VARs.
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4 Monte Carlo Analysis

In this section we use three simulated examples to illustrate the performance of the adaptive

Minnesota prior approach introduced in Section 2, and compare it against some of the existing

methods, including a VAR with flat prior and no shrinkage estimated by OLS (henceforth, VAR-

OLS), and a Bayesian VAR where the optimal shrinkage parameter is selected as in Giannone

et al. (2015) (henceforth, BVAR-GLP). To investigate the importance of shrinkage as a function

of the VAR size, we consider three different cases, each one differing in the number of variables

included in the VAR. More specifically, we investigate small (n = 3), medium (n = 7), and

large-scale (n = 20) VAR models. In all three cases, we set the number of lags to p = 2. We

model the persistence of each variable in the VAR by setting the first own lag coefficient to be

in the range [0.4, 0.6], i.e.

A1 = diag (ρ1, ρ2, ..., ρn) , (24)

where ρi ∼ U(0.4, 0.6), i = 1, ..., n. The coefficients on the subsequent own lags, (Al)i,i are

then generated according to the rule that (Al)i,i = (A1)i,i /l
2 (l = 2, ..., p), implying a geometric

decay in their magnitudes, with the more distant lags having a lesser impact, in the the spirit

of the Minnesota prior.16 As for the coefficients on the other lags, we set them according to the

following rule:

(Al)i,j =

{
N
(

0, σ2ξ

)
with prob ξ

0 with prob (1− ξ)
l = 1, ..., p, i 6= j, (25)

where ξ ∈ (0, 1) is the probability of obtaining a non-zero coefficient. We set σ2ξ = 0.1 and

calibrate the inclusion probability according the the VAR size by setting ξ = 1/ (n− 1). This

implies that the number of non-zero coefficients decreases with the VAR size, a feature that is

consistent with actual data.17 Next, we decompose the covariance matrix Ω as Ω = ΠΠ′ where

Π is lower triangular, i.e.

Π =


1 0 ... 0

π2,1 1
. . .

...
...

. . .
. . . 0

πn,1 ... πn,n−1 1

 , (26)

16When p = 2, these settings imply a total persistence for the variables in the VAR in the range [0.5, 0.75].
17We restrict our attention to covariance-stationary VARs and discard all simulated DGPs producing non-

stationary variables.
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and set its generic element πi,j according to the following rule:

πi,j =

{
U (0, 1) with prob ξπ
0 with prob 1− ξπ

i > j, (27)

where we fix ξπ = 0.5. Finally, as mentioned above, we only implement the adaptive shrinkage

prior on the elements of the vector a while we specify an uninformative prior on the intercept

and covariance terms, with mean equal to 0 and variance equal to 10. As for the remaining

prior hyperparameters in (3), we set δi = 0.9 (i = 1, ..., n), while we set the additional shrinkage

parameter ψ according to the VAR size, with ψ = 0.1 in the small and medium VARs, and

ψ = 0.05 in the large VAR.

Next, for each VAR size we generate 1000 VAR(p) models of size T = 150 each, and evaluate

the performance of the competing methods in two ways. First, we compare the optimal degree of

shrinkage estimated by the BVAR methods. Second, we look at the effectiveness of the various

methods in recovering the parameters of the true data generating process. To this end, for each

of the approaches considered in this section, we compute the Mean Absolute Deviation (MAD),

defined as

MAD(r,s) =
1

n2p

p∑
l=1

n∑
i=1

n∑
j=1

∣∣∣∣(A(r)
l

)
i,j
−
(
Â

(r,s)
l

)
i,j

∣∣∣∣ , (28)

where s denotes the method used, i.e. s ∈ (VAR-OLS, BVAR-GLP, adaptive Minnesota prior),

r = 1, ..., 1000 keeps track of the MC simulations, n2p denotes the total number of lag coefficients

in the VAR,
(
A

(r)
l

)
i,j

is the true VAR coefficient from the r-th simulation, and
(
Â

(r,s)
l

)
i,j

denotes

the (posterior mean of the) corresponding estimate according to method s.

Figure 1 displays the optimal degree of shrinkage we obtain by using either the BVAR-

GLP procedure of Giannone et al. (2015) or our adaptive Minnesota prior approach.18 The top

three panels of the figure show the empirical distribution, computed over the 1,000 Monte Carlo

simulations, of the posterior mean of λ obtained using the BVAR-GLP procedure. Moving

from left to right, the mean of the empirical distribution goes from 0.424 in the small VAR

case to 0.373 in the large VAR. This is consistent with Giannone et al. (2015, see Figure 1),

18In practice, instead of finding the maximum of the marginal likelihood function, we follow Banbura et al.
(2010) and define a very fine grid. We then select the value of λi,j that maximizes the marginal likelihood, as in
(21).
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who also find that the optimal degree of shrinkage decreases with the VAR size.19 Next, the

middle panels of Figure 1 display the empirical distributions of the average optimal shrinkage

parameter λ̂i,j obtained with our Adaptive shrinkage procedure. Overall, as it was the case with

the BVAR-GLP approach, we find that more shrinkage is required when the VAR size increases.

The average shrinkage intensity goes from 0.462 in the small VAR case to 0.345 in the large

VAR.

A notable feature of our procedure is that it yields individualized shrinkage coefficients for

the different VAR coefficients. While we find that on average our approach and the

BVAR-GLP method yield very similar shrinkage, we also uncover a large degree of

heterogeneity among the values of λi,j obtained using our algorithm. The bottom three panels

of Figure 1 provide additional details on this regard. While it would be impossible to plot each

individual hyperparameter, we show in the three bottom panels of the figure the average

degree of shrinkage broken down according to whether the corresponding true VAR coefficients

are either equal to zero (i.e., E [λi,j |ai,j = 0]) or not (i.e., E [λi,j |ai,j 6= 0]). It is interesting to

note how across all VAR sizes the two empirical distributions are markedly different. That is,

whenever the coefficients in the VAR are equal to zero, the estimated λ̂i,j tend to be

substantially smaller than the estimated prior hyperparameters associated with the non-zero

VAR coefficients. In other words, our adaptive procedure generally imposes a heavier shrinkage

when the underlying VAR coefficient is in fact zero.20 In contrast, traditional Minnesota

approaches rely on an “average” shrinkage parameter applied to all coefficients - even if the

VAR has hundreds of thousands of coefficients.

We next look into whether the additional flexibility that our approach brings is useful in

obtaining improved accuracy in the estimation phase. Figure 2 provides evidence on this regard,

summarizing the accuracy, as measured by the MAD metrics, of the VAR-OLS and the two

BVAR approaches in recovering the true underlying VAR coefficients. While we find no major

19There are a number of differences between the exercise we implement here and the simulation performed by
Giannone et al. (2015). In particular, the latter work with actual macro data while we simulate our series. Also,
their sample is a bit larger than ours, as is the lag length of their VAR models. In their case, they set T = 200
and p = 5. The stronger persistence in their data along with the longer lag length leads in their case to a much
stronger shrinkage than what we find, especially in the case of the large VAR.

20Figure C.1 in Appendix C further breaks down the shrinkage intensity by own-lag and other-lag coefficients,
i.e. ai,i vs. ai,j (i = 1, ..., n, j = 1, ..., np and i 6= j). The latter group is further divided according to whether the
true other-lag coefficient is equal to zero or not.

16



differences between the three methods when focusing on small VARs, the second and third panels

of the figure clearly reveal the increasing beneficial effect of parameter shrinkage. In addition,

it appears that for both the medium and the large VARs, the adaptive Minnesota approach is

outperforming both alternative methods. In the medium VAR case, our procedure yields an

average MAD of 5.51% (with a standard deviation, computed over the 1, 000 simulations, of

2.09%), while the corresponding figures for the VAR-OLS and BVAR-GLP are 11.2% and 7.59%

(standard deviations are 4.07% and 2.29%, respectively). In the large VAR case, our approach

yields an average MAAD of 5.66% with a standard deviation of 1.36%. In contrast, the VAR-

OLS delivers an average MAD of 19.14% (standard deviation of 10.65%), while the BVAR-GLP

average MAD is equal to 6.35% (standard deviation of 2.43%).

5 Macroeconomic Forecasting

5.1 Data and Models

We use 124 quarterly variables for the US spanning the period 1959Q1 to 2015Q4.21 The

data, which are obtained from the Federal Reserve Economic Data (FRED) and are available

at https://fred.stlouisfed.org, cover a wide range of key macroeconomic variables that applied

economists monitor regularly, such as different measures of output, prices, interest and exchange

rates, and stock market performance. We provide the full list of data and their transformations

in order to achieve stationarity, in Appendix B. Out of the 124 series, we further distinguish

seven “variables of interest”, that is, key variables of interest which we will inspect very closely

in order to evaluate how well the different models perform. Consistent with previous studies

(Banbura et al., 2010; Giannone et al., 2015), the first three key variables are: real gross domestic

product (GDP), GDP deflator (GDPDEFL), and federal funds rate (FEDFUNDS). We also

evaluate the various models in terms of an additional set of four series: total employment

(PAYEMS), unemployment rate (UNRATE), consumer prices (CPIAUCSL), and the 10-year

rate on government securities (GS10).

We estimate several BVAR models, and for the sake of comparability, whenever possible,

we try to use the same exact prior settings. In particular, in all BVAR models we set δi = 0.9

21For the variables which are originally observed at the monthly frequency, we transform them into quarterly
series by computing the average of their monthly values within each quarter.
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(i = 1, ..., n) and calibrate the additional shrinkage parameter ψ according to the VAR size.

We start by estimating a BVAR using our adaptive Minnesota prior in (3), with the prior

hyperparameters λi,j tuned optimally using the algorithm described in Section 2. We label

this model with the mnemonic BVAR-KP. We next consider three variants of the BVAR with

Minnesota prior, as suggested by Banbura et al. (2010) (denoted with the mnemonic BVAR-

BGR), Carriero et al. (2016) (denoted BVAR-CCM), and Giannone et al. (2015) (denoted BVAR-

GLP). For the BVAR-BGR approach, we estimate the common shrinkage hyperparameter λ by

focusing on the same grid as in our BVAR-KP approach. As for the BVAR-CCM approach,

which require setting a-priori the overall prior tightness, we follow the recommendation of Sims

and Zha (1998) and set λ = 0.2. Finally, the BVAR-GLP method is fully automatic and requires

no further tuning of the prior hyperparameters.22 Along with the various BVAR models, we

also consider a dynamic factor model (DFM) as in Stock and Watson (2002), estimated with

OLS and with factors extracted using PCA, as well as a factor-augmented VAR (FAVAR) as in

Bernanke et al. (2005), also estimated using OLS and PCA.

We estimate all competing methods on three VAR sizes, medium (seven variables), large

(20 variables) and x-large (40 variables), where in all models the seven variables of interest,

as detailed above, are in common. We do this to gradually assess the role of shrinkage in

each competing method. Finally, we set the maximum number of lags to p = 5. For all

models/methods that rely on the Minnesota prior (i.e., our KP approach plus the three BVAR

variants) we focus on a VAR(p) specification and let the prior shrink to zero the irrelevant

coefficients. For the DFM and the FAVAR, we use the Bayesian information criterion (BIC) to

select the optimal number of factors (minimum is 1 and maximum is b
√
nc, with n the VAR

size) and the optimal number of lags (ranging from one to five).

5.2 Measuring Predictive Accuracy

We use the first twenty five years of data, 1959:Q3–1984:Q4, to obtain initial parameter estimates

for all models, which are then used to predict outcomes from 1985:Q1 (h = 1) to 1985:Q4 (h = 4).

The next period, we include data for 1985:Q1 in the estimation sample, and use the resulting

22Note that the BVAR-GLP approach allows other prior variants, such as the sum-of-coefficients prior. We have
estimated a number of these variants and, with the exception of the sum-of-coefficients prior, by and large the
results do not seem to change significantly. As expected, with stationary data as it our case, the sum-of-coefficients
prior does not work particularly well.
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estimates to predict the outcomes from 1985:Q2 to 1986:Q1. We proceed recursively in this

fashion until 2015:Q4, thus generating a time series of point and density forecasts for each

forecast horizon h, with h = 1, ..., 4.23

Next, for each of the seven key variables listed above we summarize the precision of the

h-step-ahead point forecasts for model i, relative to that from a benchmark VAR(p∗), by means

of the ratio of MSFEs:

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

, (29)

where the benchmark VAR(p∗) has flat prior and is estimated using OLS, p∗ denotes the

largest lag length that can be estimated in a VAR with OLS and the data at hand, t and t

denote the start and end of the out-of-sample period, and e2i,j,τ+h and e2bcmk,j,τ+h are the

squared forecast errors of variable j at time τ and forecast horizon h associated with model i

(i ∈ {DFM,FAVAR,BVAR-BGR,BVAR-CCM,BVAR-GLP,BVAR-KP}) and the VAR(p∗)

model, respectively.24 The point forecasts used to compute the forecast errors are obtained by

averaging over the draws from the various models’ h-step-ahead predictive densities. Values of

MSFEijh below one suggest that model i produces more accurate point forecasts than the

VAR(p∗) benchmark for variable j and forecast horizon h.

We also assess the accuracy of the point forecasts of the various methods using the

multivariate loss function of Christoffersen and Diebold (1998). Specifically, we compute the

ratio between the multivariate weighted mean squared forecast error (WMSFE) of model i and

the WMSFE of the benchmark VAR(p∗) model as follows:

WMSFEih =

∑t−h
τ=t wei,τ+h∑t−h

τ=t webcmk,τ+h
, (30)

where wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and webcmk,τ+h =

(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
are time

τ + h weighted forecast errors of model i and the benchmark model, ei,τ+h and ebcmk,τ+h are

either the (3× 1) or the (7× 1) vector of forecast errors for the key series we focus on, and W

is either a (3× 3) or a (7× 7) matrix of weights. Following Carriero et al. (2011), we set the

matrix W to be a diagonal matrix featuring on the diagonal the inverse of the variances of the

23Note that when h > 1, point forecasts are iterated and predictive simulation is used to produce the predictive
densities.

24That is, p = 5 for the medium VAR, p = 2 for the large VAR, and p = 1 for the x-large VAR.
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series to be forecast.

As for the quality of the density forecasts, we follow Geweke and Amisano (2010) and compute

the average log predictive likelihood differential between model i and the VAR(p∗) benchmark,

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) , (31)

where LPLi,j,τ+h (LPLbcmk,j,τ+h) denotes model i’s (benchmark’s) log predictive score of

variable j, computed at time τ + h, i.e., the log of the h-step-ahead predictive density

evaluated at the outcome. Positive values of ALPLijh indicate that for variable j and forecast

horizon h on average model i produces more accurate density forecasts than the benchmark

model.

In order to test the statistical significance of differences in point and density forecasts, we

consider pairwise tests of equal predictive accuracy (henceforth, EPA; Diebold and Mariano,

1995; West, 1996) in terms of MSFE, WMSFE, and ALPL. All EPA tests we conduct are based

on a two sided test with the null hypothesis being the VAR(p∗) benchmark. We use standard

normal critical values. Based on simulation evidence in Clark and McCracken (2013), when

computing the variance estimator which enters the test statistic we rely on Newey and West

(1987) standard errors, with truncation at lag h−1, and incorporate the finite sample correction

due to Harvey et al. (1997). In the tables, we use ***, ** and * to denote results which are

significant at the 1%, 5% and 10% levels, respectively, in favor of the model listed at the top of

each column.

5.3 Forecasting Results

We now present results on the short-term forecasting performance of the various methods

describesd above, based on the model sizes and forecast metrics outlined in the previous

subsections. Starting with Table 1, we report the WMSFE computed using all seven series

(right panels), as well as the smaller subset comprising the three key variables (left panels). In

particular, we compute the WMSFE metric from all six competing models, namely DFM,

FAVAR, BVAR-BGR, BVAR-CCM, BVAR-GLP and BVAR-KP, and for all three VAR sizes,

medium, large and x-large.
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A quick look at Table 1 reveals that in 20 of the 24 cases considered (that is, 3 VAR

sizes, 4 forecast horizons, and 2 sets of variables) our proposed prior and estimation method

generates the most accurate point forecasts. This is true whether we combine the three or the

seven variables of interest in the calculation of the multivariate WMSFE metric. Moreover, in

the four cases where our model does not come out on top, we find its performance to be still

quite strong, securing it the second place not too far behind the best model, the BVAR-CCM.

Interestingly, it also appears that both our BVAR-KP and the BVAR-CCM are overall doing

substantially better than the two other BVAR methods, BVAR-BGR and BVAR-GLP, which

rely on the more restrictive natural conjugate prior. As it can be seen moving from the top to the

bottom of the table, the wedge between the former and the latter sets of models tends to widen

with the VAR size, implying that as the number of coefficients to estimate grows, the symmetry

restrictions imposed by the natural conjugate prior become more and more detrimental to the

overall performance of the VAR. All in all, these results help establish the benefits of using

the independent Normal priors and the asymmetric version of the Minnesota prior originally

proposed by Litterman (1979). They also showcase the usefulness and forecast accuracy of our

adaptive Minnesota prior approach, which further improves over the BVAR-CCM method.25

Next, Figure 3 to Figure 5 show the cumulative sum of weighted forecast errors generated

by each of the competing models we considered, over the whole out-of-sample period. The

purpose of these graphs is to investigate the evolution of the forecast performance of the various

models over time. That is, while the WMSFE metric gives a picture of the average forecast

performance over the whole evaluation period, the cumulative sums are meant to reveal if there

are undesirable volatile behaviors during sub-samples of the evaluation period by any of the

competing methods.26 These weighted forecast errors are computed by multiplying the simple

forecast errors of all three (or seven) variables of interest by the weighting matrix W , as defined

25It is worth reminding the reader at this point that the BVAR-CCM is the only BVAR method we considered
that requires manual intervention in the tuning of the overall shrinkage intensity parameter λ. While in this
particular setting the recommendation of Sims and Zha (1998) of setting λ = 0.2 appears to work quite well,
we have also found in our experimentation that many other (reasonable) values of λ yields considerably worse
forecasts for the BVAR-CCM. On the other hand, our flexible and fully automated approach of selecting the
Minnesota shrinkage hyperparameter(s) λi,j does not suffer from such shortcomings. In light of the fact that
computationally our approach is considerably faster than the BVAR-CCM method, the excellent performance we
observe is even more remarkable.

26The typical example of this would be a model producing a very low forecast error in one period, followed by
an extremely large forecast error in the next period.
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previously. As in Table 1, results are presented relative to the benchmark VAR(p∗) model. That

is, each line depicted in the figures denotes the cumulative differential between the weighted

forecasts of a given model and the benchmark VAR(p∗) model. More specifically, for each model

size and for each forecast horizon h, we plot the time series

CSWFEDiht =
t−h∑
τ=t

(webcmk,τ+h − wei,τ+h) , (32)

where i denotes the model considered, h is the forecast horizon, and t ∈
(
t, t
)

denotes the

time period. Positive values indicate smaller weighted forecast errors relative to the benchmark

VAR(p∗) and, as a consequence, better forecasting performance. All three figures reveal that

the excellent performance of the BVAR-KP in Table 1 is not due to any specific and short-

lived episodes, but is rather built gradually over the whole evaluation period, as indicated

by the (almost always) increasing CSWFED lines. The BVAR-CCM follows closely behind,

performing as well or slightly better than the BVAR-KP at the very short forecast horizon (this

happens for h = 1 in the large and x-large VARs), and trailing at longer forecast horizons. All

other factor models and BVARs fall significantly behind.

We next dissect the forecast performance of the various methods by looking at how they

fare when focusing on the individual series we are most interested on. In particular, Table 2,

Table 3, and Table 4 report individual MSFE ratios for the medium, large and x-large VARs,

broken down by each of the seven variables of interest and by forecast horizon. Note that, as

in Table 1, these ratios are relative to the benchmark VAR(p∗) model, with values smaller than

one implying an improvement over the benchmark model.27 Overall, all three tables confirm

the excellent forecast performance of our proposed BVAR-KP approach. The only case when

our method is not performing well is for the one-step ahead (h = 1) forecasts of the consumer

price index (CPIAUCSL). In this case, forecasts from the BVAR-KP are similar to those of the

DFM, while the alternative BVAR methods tend to perform better. Nevertheless, it is worth

noting that in the x-large case all approaches fail to improve for the one-step ahead forecasts

of the consumer price index (relative to the benchmark), and in the medium and large cases

27Note that Table 2 for the medium VAR does not include forecasts for the FAVAR model. This is because the
medium VAR only includes the seven variables of interest, which means that the equivalent FAVAR would only
be including all the variables of interest and no factors. In other words, in this case the FAVAR would collapse
down to a simple VAR.
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the improvements are never statistically significant. With regards to all other variables, our

approach provides significant improvements over the benchmark VAR(p∗), sometimes reaching

improvement in MSFEs of the order of 80%.

We conclude this section by evaluating performance over the whole predictive densities. So-

called density forecasts are important part of macroeconomic forecasting, since they allow us

to evaluate the degree of uncertainty produced around a point forecast. Table 5, Table 6 and

Table 7 report the ALPL statistics for all seven series and three different VAR sizes. The

evidence here appears more mixed, with no single method emerging as a clear winner. At h = 1

using the medium and large VARs our method is the best performing one in four out of the

seven series, while the BVAR-BGR works better in four out of seven cases in the x-large case for

the same h = 1 horizon. However, these improvements are statistically significant only for the

GS10 series. Other than this clear pattern, we can generally conclude that, based on all forecast

horizons, the BVAR-KP and BVAR-BGR methods are performing consistently well, with the

former doing well in the medium and large VARs and the latter doing well in the large and x-large

dimensions. The fact that there is no clear winner when looking at the accuracy of the whole

density forecasts should not come as a surprise. All competing methods, including the DFM and

FAVAR, are imposing some sort of shrinkage to the VAR coefficients. In large dimensional VARs

this shrinkage can introduce a substantial bias in the mean estimates while at the same time

significantly reducing their variances. This is true both regarding the variance of the estimated

BVAR coefficients as well as the final estimate of the VAR covariance matrix. What the final

impact of these different shrinkage procedures is, remains uncertain, as the optimal trade-off

between bias and variance will depend on the application and data used. In order to get an idea

of how this bias/variance trade-off works with shrinkage estimators, consider again the case of

one step-ahead (h = 1) forecasting of the consumer price index, and in particular the x-large

VAR case. While this was the only case where BVAR-KP failed to generate a point forecast that

was anywhere near the unrestricted VAR-OLS benchmark, the corresponding density forecast

is not only better than the VAR-OLS benchmark, but it is the best among all shrinkage-based

competing methods!
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6 Conclusions

We have introduced a novel methodology for estimating BVARs which features a number of

desirable properties, including scalability, flexibility, computational efficiency, and forecast

accuracy. Our approach works extremely well with BVARs of both small, medium, and high

dimensions, delivering analytical approximations to the marginal posterior distributions of the

BVAR coefficients that are very accurate. In addition, our proposed algorithm for posterior

inference is multiple times faster than the conventional Bayesian VAR methods that rely on

simulation methods. We exploit the flexibility of this novel approach to extend the traditional

Minnesota prior in an important new direction, where we allow each VAR coefficient to have

its own shrinkage intensity. The hyperparameters controlling the tightness of the priors, in

turn, are estimated alongside the BVAR coefficients, in a fully automated way and using only

information contained in the data. We implement a thorough Monte Carlo analysis to quantify

the benefits of our novel approach, and find that it can recover very accurately the underlying

VAR coefficients. We also demonstrate, using an extensive macroeconomic application, the

benefits of our adaptive shrinkage procedure in preventing over-fitting of large VARs and

providing excellent forecasting performance.
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Figures and Tables

Figure 1. Monte Carlo simulation - Shrinkage intensity
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The top three panels of this figure plot the empirical distribution of the estimated shrinkage parameter λ̂ obtained
using the Giannone et al. (2015) approach for a small (n = 3), medium (n = 7), and large (n = 20) VAR(p). The

middle three panels plot the empirical distribution of the estimated shrinkage intensity λ̂i,j (i = 1, ..., n and j =
1, ..., np) estimated using our adaptive shrinkage procedure, and averaged over all VAR coefficients. The bottom
three panels plot the average shrinkage intensity estimated by our adaptive procedure, broken down according

to whether the corresponding VAR coefficients in the simulated data are equal to zero (i.e., E
[
λ̂i,j |ai,j = 0

]
) or

not (i.e., E
[
λ̂i,j |ai,j 6= 0

]
). All empirical distributions are obtained by simulating 1, 000 VAR(p) of sample size

T = 150 and lag length p = 2. See Section 4 for additional details on the design of the Monte Carlo simulation.
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Figure 2. Monte Carlo simulation - Mean Absolute Deviations
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This figure reports box plots for the empirical distributions of the Mean Absolute Deviations (MAD), obtained
from estimating a VAR(p) with OLS, a BVAR using the Giannone et al. (2015) (BVAR-GLP), and our adaptive
Minnesota prior approach. These empirical distributions are obtained by simulating 1, 000 VAR(p) of sample size
T = 150 and lag length p = 2, and for each simulated dataset computing the optimal degree of shrinkage, either
using the Giannone et al. (2015) approach or our procedure. For each of the three approaches and each of the
1000 simulations we next compute the Mean Absolute Deviation (MAD), defined as

MAD(r,s) =
1

n2p

p∑
l=1

n∑
i=1

n∑
j=1

∣∣∣∣(A(r)
l

)
i,j
−
(
Â

(r,s)
l

)
i,j

∣∣∣∣
where s denotes the method used, i.e. s ∈ (VAR-OLS, BVAR-GLP, adaptive Minnesota prior), r = 1, ..., 1000

keeps track of the MC simulations, n2p denotes the total number of lag coefficients in the VAR,
(
A

(r)
l

)
i,j

is the

true DGP coefficient from the r-th simulation, and
(
Â

(r,s)
l

)
i,j

denotes the (posterior mean of the) corresponding

estimate according to method s. Results are reported separately for small (n = 3), medium (n = 7), and large
(n = 20) VARs.
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Figure 3. Cumulative sum of weighted forecast error differentials, Medium VAR
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This figure plots the cumulative sum of weighted forecast errors generated by the VAR(p) model minus the

cumulative sum of weighted forecast errors generated by model i for a medium size VAR. We define the

weighted forecast error of model i and the VAR(p) model at time τ + h as wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and webcmk,τ+h =

(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
, where ei,τ+h and ebcmk,τ+h are the (N × 1) vector of forecast

errors, and W is an (N ×N) matrix of weights. We set N = 7, to focus on the following key seven series,

{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}. In addition, we set the matrix W to

be a diagonal matrix featuring on the diagonal the inverse of the variances of the series to be forecast. t and t denote

the start and end of the out-of-sample period, i ∈ {DFM,BVAR-BGR,BVAR-CCM,BVAR-GLP,BVAR-KP}, and

h = 1, ..., 4. All forecasts are generated out-of-sample using recursive estimates of the models, with the out of

sample period starting in 1985:Q1 and ending in 2015:Q4. Each panel displays results for a different forecast

horizon.
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Figure 4. Cumulative sum of weighted forecast error differentials, Large VAR
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This figure plots the cumulative sum of weighted forecast errors generated by the VAR(p∗) model minus the

cumulative sum of weighted forecast errors generated by model i for a large size VAR. p∗ denotes the largest

lag length that can be estimated in a VAR with flat priors and the data at hand. We define the weighted

forecast error of model i and the VAR(p∗) model at time τ + h as wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and

webcmk,τ+h =
(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
, where ei,τ+h and ebcmk,τ+h are the (N × 1) vector of forecast

errors, and W is an (N ×N) matrix of weights. We set N = 7, to focus on the following key seven series,

{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}. In addition, we set the matrix W to

be a diagonal matrix featuring on the diagonal the inverse of the variances of the series to be forecast. t and t denote

the start and end of the out-of-sample period, i ∈ {VAR,BVAR-BGR,BVAR-CCM,BVAR-GLP,BVAR-KP}, and

h = 1, ..., 4. All forecasts are generated out-of-sample using recursive estimates of the models, with the out of

sample period starting in 1985:Q1 and ending in 2015:Q4. Each panel displays results for a different forecast

horizon.
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Figure 5. Cumulative sum of weighted forecast error differentials, X-large VAR
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This figure plots the cumulative sum of weighted forecast errors generated by the VAR(p) model minus the

cumulative sum of weighted forecast errors generated by model i for a x-large VAR. p∗ denotes the largest

lag length that can be estimated in a VAR with flat priors and the data at hand We define the weighted

forecast error of model i and the VAR(p) model at time τ + h as wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and

webcmk,τ+h =
(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
, where ei,τ+h and ebcmk,τ+h are the (N × 1) vector of forecast

errors, and W is an (N ×N) matrix of weights. We set N = 7, to focus on the following key seven series,

{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}. In addition, we set the matrix W to

be a diagonal matrix featuring on the diagonal the inverse of the variances of the series to be forecast. t and t denote

the start and end of the out-of-sample period, i ∈ {DFM,BVAR-BGR,BVAR-CCM,BVAR-GLP,BVAR-KP}, and

h = 1, ..., 4. All forecasts are generated out-of-sample using recursive estimates of the models, with the out of

sample period starting in 1985:Q1 and ending in 2015:Q4. Each panel displays results for a different forecast

horizon.
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Table 1. Out-of-sample forecast performance: Multivariate results

Medium VAR

3 series 7 series
DFM FAVAR† BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP DFM FAVAR† BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP

h=1 0.692*** 0.641*** 0.522*** 0.722*** 0.494*** 0.755*** 0.713*** 0.609*** 0.765*** 0.598***
h=2 0.705*** 0.650*** 0.580*** 0.711*** 0.555*** 0.769*** 0.723*** 0.657*** 0.766*** 0.640***
h=3 0.755*** 0.732*** 0.686*** 0.768*** 0.675*** 0.790*** 0.772*** 0.730*** 0.805*** 0.711***
h=4 0.710*** 0.700*** 0.675*** 0.749*** 0.669*** 0.759*** 0.765*** 0.739*** 0.808*** 0.724***

Large VAR

3 series 7 series
DFM FAVAR BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP DFM FAVAR BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP

h=1 0.643*** 0.578*** 0.584*** 0.456*** 0.671*** 0.447*** 0.761*** 0.663*** 0.659*** 0.546*** 0.711*** 0.564***
h=2 0.657*** 0.563*** 0.626*** 0.534*** 0.783*** 0.483*** 0.707*** 0.615*** 0.670*** 0.587*** 0.800*** 0.556***
h=3 0.744** 0.680** 0.707** 0.646*** 0.800** 0.620*** 0.787** 0.728*** 0.761*** 0.709*** 0.863* 0.680***
h=4 0.829 0.807* 0.808* 0.778** 0.883* 0.761** 0.837** 0.824** 0.843** 0.808** 0.942 0.791***

X-large VAR

3 series 7 series
DFM FAVAR BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP DFM FAVAR BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP

h=1 0.626*** 0.582*** 0.577*** 0.441*** 0.732*** 0.476*** 0.734*** 0.648*** 0.658*** 0.552*** 0.747*** 0.610***
h=2 0.788** 0.714*** 0.787*** 0.623*** 0.988 0.580*** 0.794*** 0.711*** 0.769*** 0.656*** 0.899 0.634***
h=3 0.857** 0.793*** 0.791*** 0.732*** 0.921 0.704*** 0.861** 0.783*** 0.814*** 0.768*** 0.919 0.734***
h=4 0.934 0.885 0.847** 0.816** 0.926 0.817** 0.904 0.848** 0.863** 0.826** 0.955 0.809***

This table reports the ratio between the multivariate weighted mean squared forecast error (WMSFE) of model
i and the WMSFE of the benchmark VAR(p∗) model, computed as

WMSFEih =

∑t−h
τ=t wei,τ+h∑t−h

τ=t webcmk,τ+h
,

where p∗ is the largest lag length that can be estimated in a VAR with flat priors and the data at hand,

wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and webcmk,τ+h =

(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
denote the weighted forecast

errors of model i and the benchmark model at time τ + h, ei,τ+h and ebcmk,τ+h are the (N × 1) vector of

forecast errors, and W is an (N ×N) matrix of weights. The left panels are based on N = 3, and focus on the

following three series {FEDFUNDS, GDP, GDPDEFL} . The right panels focus on N = 7 and the following

series {PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}. We set the matrix W to be a

diagonal matrix featuring on the diagonal the inverse of the variances of the series to be forecast. t and t denote the

start and end of the out-of-sample period, i ∈ {DFM,FAVAR,BVAR-BGR,BVAR-CCM,BVAR-GLP,BVAR-KP},
and h = 1, ..., 4. All forecasts are generated out-of-sample using recursive estimates of the models, with the out of

sample period starting in 1985:Q1 and ending in 2015:Q4. Bold numbers indicate the lowest WMSFE and across

all models for any given VAR size - forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the

5% level; ∗∗∗ significance at the 1% level.
† The factor-augmented VAR (FAVAR) of medium size only has the seven variables of interest observed but no

additional variables to extract factors from. Therefore, the FAVAR estimated on the medium size is equivalent

to the VAR estimated with OLS, and for that reason we do not report its results.
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Table 2. Out-of-sample point forecast performance, Medium VAR

Variable DFM BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP DFM BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP

h = 1 h = 2
PAYEMS 0.876 0.667** 0.572** 0.746** 0.566*** 0.686 0.672** 0.573** 0.730** 0.549***
CPIAUCSL 0.976 0.975 0.966 0.956 1.029 1.010 0.956 0.945 0.966 0.950
FEDFUNDS 0.575*** 0.467*** 0.301*** 0.655*** 0.230*** 0.566*** 0.443*** 0.374*** 0.597*** 0.336***
GDP 0.846 0.821* 0.743** 0.782*** 0.738** 0.788** 0.808* 0.745** 0.780*** 0.745**
UNRATE 0.776 0.734** 0.670** 0.842** 0.691* 0.801 0.741** 0.679** 0.812* 0.669**
GDPDEFL 0.821* 0.886 0.846 0.826** 0.904 0.922 0.923 0.845* 0.888 0.816*
GS10 0.789** 0.800** 0.670*** 0.766*** 0.650*** 0.885 0.867 0.801* 0.833** 0.801*

h = 3 h = 4
PAYEMS 0.685 0.693* 0.638** 0.751* 0.595** 0.690* 0.702** 0.681* 0.777* 0.627**
CPIAUCSL 1.057 0.950 0.962 0.978 0.946 1.010 1.014 1.021 0.999 1.019
FEDFUNDS 0.588*** 0.559*** 0.498*** 0.666*** 0.490*** 0.481*** 0.500*** 0.448*** 0.603*** 0.436***
GDP 0.823* 0.787** 0.767** 0.800*** 0.764** 0.920 0.827* 0.850 0.860** 0.859
UNRATE 0.759* 0.745** 0.696** 0.815 0.664** 0.727* 0.746** 0.715* 0.838 0.685**
GDPDEFL 0.944 0.952 0.891 0.901 0.861 0.852** 0.912 0.870** 0.879** 0.854**
GS10 0.850* 0.896 0.845* 0.855* 0.829* 0.905 0.962 0.911 0.923 0.905

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark VAR(p) for the
medium size VAR, computed as

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

,

where p = 5, e2i,j,τ+h and e2bcmk,j,τ+h are the squared forecast errors of variable j at time τ and

forecast horizon h generated by model i and the VAR(p) model, respectively. t and t denote the start

and end of the out-of-sample period, i ∈ {DFM,BVAR-BGR,BVAR-CCM,BVAR-GLP,BVAR-KP}, j ∈
{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1985:Q1

and ending in 2015:Q4. Bold numbers indicate the lowest MSFE across all models for a given variable-forecast

horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Table 3. Out-of-sample point forecast performance, Large VAR

Variable DFM FAVAR BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP DFM FAVAR BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP

h = 1 h = 2
PAYEMS 1.211 0.582*** 0.571** 0.481*** 0.641*** 0.471*** 0.907 0.622*** 0.718** 0.578*** 0.876 0.525***
CPIAUCSL 1.282 1.095 1.049 1.020 0.959 1.245 0.820* 0.777** 0.754** 0.740** 0.787*** 0.756**
FEDFUNDS 0.474*** 0.471*** 0.489*** 0.295*** 0.672** 0.203*** 0.418*** 0.311*** 0.450*** 0.356*** 0.727** 0.288***
GDP 1.005 0.673 0.674* 0.592* 0.656* 0.584* 1.105 0.863 0.872 0.748 0.955 0.699
UNRATE 0.770** 0.731** 0.607*** 0.563*** 0.795** 0.571*** 0.715*** 0.674*** 0.686*** 0.601*** 0.885 0.595***
GDPDEFL 0.612*** 0.710** 0.697*** 0.663*** 0.686*** 0.839 0.687*** 0.793* 0.743** 0.694*** 0.711** 0.676***
GS10 0.776** 0.721** 0.773** 0.625*** 0.697*** 0.640*** 0.693*** 0.639*** 0.734** 0.656*** 0.770** 0.662**

h = 3 h = 4
PAYEMS 0.943 0.748** 0.845 0.751** 1.021 0.678*** 0.841 0.764** 0.818* 0.792* 1.055 0.733**
CPIAUCSL 0.814 0.793* 0.791* 0.799** 0.844** 0.781* 0.871 0.881 0.890 0.893 0.883* 0.889
FEDFUNDS 0.508** 0.465** 0.508** 0.438** 0.692* 0.425** 0.510** 0.528** 0.553** 0.498** 0.673*** 0.491**
GDP 1.013 0.888 0.873 0.822 0.962 0.779 1.175 1.091 1.011 1.022 1.120 0.988
UNRATE 0.818 0.823 0.830 0.779* 1.019 0.752* 0.788** 0.829* 0.829** 0.774** 1.073 0.766**
GDPDEFL 0.778** 0.766** 0.823* 0.768** 0.760** 0.742** 0.951 0.940 1.022 0.977 0.947 0.970
GS10 0.783** 0.766*** 0.824* 0.779** 0.878** 0.765** 0.881* 0.901 0.974 0.898 0.965 0.906

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark VAR(p∗) for the large
size VAR, computed as

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

,

where p∗ is the largest lag length that can be estimated in a VAR with flat priors and the data

at hand, e2i,j,τ+h and e2bcmk,j,τ+h are the squared forecast errors of variable j at time τ and forecast

horizon h generated by model i and the VAR(p∗) model, respectively. t and t denote the start and

end of the out-of-sample period, i ∈ {DFM,FAVAR,BVAR-BGR,BVAR-CCM,BVAR-GLP,BVAR-KP}, j ∈
{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1985:Q1

and ending in 2015:Q4. Bold numbers indicate the lowest MSFE across all models for a given variable-forecast

horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Table 4. Out-of-sample point forecast performance, X-large VAR

Variable DFM FAVAR BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP DFM FAVAR BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP

h = 1 h = 2
PAYEMS 1.084 0.558*** 0.569*** 0.554*** 0.544*** 0.518*** 0.963 0.601*** 0.714** 0.621*** 0.721*** 0.536***
CPIAUCSL 1.299 1.079 1.013 1.004 0.942 1.385 0.961 0.972 0.894 0.870 0.933 0.922
FEDFUNDS 0.444*** 0.485*** 0.501*** 0.271*** 0.621*** 0.220*** 0.553*** 0.507*** 0.716*** 0.466*** 1.086 0.391***
GDP 1.012 0.792* 0.728** 0.674** 0.756* 0.649** 1.227 0.962 0.913 0.784 0.852 0.750*
UNRATE 0.640** 0.581*** 0.546*** 0.585*** 0.730* 0.567*** 0.749* 0.655*** 0.687*** 0.712** 0.828 0.665***
GDPDEFL 0.622*** 0.575*** 0.585*** 0.540*** 0.901 0.769 0.708*** 0.799* 0.770** 0.717*** 0.967 0.717***
GS10 0.762** 0.701*** 0.843 0.692** 0.751** 0.706** 0.665*** 0.631*** 0.717*** 0.606*** 0.749*** 0.643***

h = 3 h = 4
PAYEMS 0.981 0.725*** 0.817* 0.756** 0.872 0.632*** 0.918 0.769** 0.849 0.761** 0.990 0.664***
CPIAUCSL 0.930 0.916 0.924 0.908* 1.023 0.906 0.984 0.981 0.986 0.989 1.002 0.997
FEDFUNDS 0.609*** 0.581*** 0.636*** 0.558*** 0.852 0.532*** 0.644** 0.611*** 0.639*** 0.600*** 0.717*** 0.589***
GDP 1.112 0.959 0.865 0.821* 0.892 0.795* 1.204 1.116 0.925 0.929 1.016 0.934
UNRATE 0.806 0.699*** 0.792* 0.790 0.930 0.744** 0.791** 0.723*** 0.827* 0.774** 1.038 0.735***
GDPDEFL 0.869* 0.889 0.944 0.891 1.091 0.857* 1.012 1.004 1.107 1.033 1.169 1.045
GS10 0.779** 0.764*** 0.819** 0.775** 0.859* 0.771** 0.843 0.830 0.872 0.850 0.900 0.866

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark VAR(p∗) for the
X-large size VAR, computed as

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

,

where p∗ is the largest lag length that can be estimated in a VAR with flat priors and the data

at hand, e2i,j,τ+h and e2bcmk,j,τ+h are the squared forecast errors of variable j at time τ and forecast

horizon h generated by model i and the VAR(p∗) model, respectively. t and t denote the start and

end of the out-of-sample period, i ∈ {DFM,FAVAR,BVAR-BGR,BVAR-CCM,BVAR-GLP,BVAR-KP}, j ∈
{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1985:Q1

and ending in 2015:Q4. Bold numbers indicate the lowest MSFE across all models for a given variable-forecast

horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Table 5. Out-of-sample density forecast performance, Medium VAR

Variable DFM BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP DFM BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP

h = 1 h = 2
PAYEMS 0.535 0.704 0.742 0.472* 0.745 0.232 0.322* 0.328* 0.285* 0.357*
CPIAUCSL 2.367 1.856 1.983 1.455 2.096 0.622 0.309 0.616 -0.420 0.828
FEDFUNDS 0.055 0.183** 0.191 0.065 0.211 0.049 0.160*** 0.108 0.127*** 0.111
GDP -0.008 0.045 0.020 0.047 0.059 0.086 0.142* 0.081 0.085 0.056
UNRATE 1.077 0.894 1.046 0.520 0.944 0.388 0.452 0.456 0.261 0.478
GDPDEFL 0.028 -0.005 -0.026 0.062 -0.030 -0.032 -0.003 -0.007 0.011 0.019
GS10 0.281* 0.266* 0.311** 0.292** 0.353** 0.077 0.084 0.097 0.116* 0.116

h = 3 h = 4
PAYEMS 0.334 0.282** 0.382* 0.338* 0.388* 0.068 -0.047 0.132 -0.090 0.178
CPIAUCSL 0.891 0.939 0.411 1.123 0.697 1.210 -0.251 -0.214 -0.217 0.075
FEDFUNDS -0.023 0.063** 0.006 0.035* 0.020 0.019 0.108*** 0.054 0.073*** 0.066
GDP 0.136 0.150** 0.100 0.122** 0.170** -0.023 -0.001 -0.024 0.029 -0.048
UNRATE 0.352 0.153** 0.321 0.252 0.196** 0.260 -0.007 0.171 -0.010 0.075
GDPDEFL -0.026 -0.013 -0.009 0.020 0.017 0.010 0.017 -0.003 0.031 0.017
GS10 0.057 0.036 0.034 0.071 0.069 0.023 -0.005 -0.014 0.024 0.009

This table reports the average log predictive likelihood (ALPL) differential between model i and the benchmark
VAR(p) for the medium VAR, computed as

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) ,

where LPLi,j,τ+h and LPLbcmk,j,τ+h are the log predictive likelihoods of variable j at time τ and

forecast horizon h generated by model i and the VAR(p∗), respectively. t and t denote the start

and end of the out-of-sample period, i ∈ {DFM,BVAR-BGR,BVAR-CCM,BVAR-GLP,BVAR-KP}, j ∈
{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1985:Q1

and ending in 2015:Q4. Bold numbers indicate the lowest MSFE across all models for a given variable-forecast

horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Table 6. Out-of-sample density forecast performance, Large VAR

Variable DFM FAVAR BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP DFM FAVAR BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP

h = 1 h = 2
PAYEMS 0.043 0.410 0.491 0.484 0.221*** 0.492 0.087 0.275** 0.253** 0.320** -0.106 0.342**
CPIAUCSL 1.584 1.460 0.964 0.925* -0.250 1.682 1.453 1.363 0.060 1.047 -1.164 1.090
FEDFUNDS 0.291 0.289 0.251** 0.359* 0.004 0.315 0.103* 0.123* 0.216*** 0.147** 0.043 0.073
GDP 0.149 0.283 0.354 0.310 0.394* 0.324 -0.080 0.037 0.077 0.114 -0.105 0.120
UNRATE 0.488 0.497 0.594 0.650 0.168* 0.708 0.182* 0.206* 0.251*** 0.248*** -0.218 0.249***
GDPDEFL 0.105 0.100 0.125** 0.094 0.159*** -0.001 0.088* 0.058 0.099** 0.086* 0.150*** 0.067
GS10 0.185** 0.219** 0.209** 0.252** 0.218*** 0.255** 0.310 0.340 0.299 0.309 0.264 0.309

h = 3 h = 4
PAYEMS -0.011 0.068 0.032 0.042 -0.421 0.141** 0.124 0.163** -0.033 0.047 -0.912 0.243*
CPIAUCSL 1.069 1.709 -0.239 0.382 -1.421 0.828 0.145 0.477 -0.514 -0.095 -0.711 0.474
FEDFUNDS 0.039 0.045 0.184*** 0.097** 0.134*** -0.009 0.032 0.045 0.172*** 0.079** 0.138*** -0.018
GDP 0.111 0.182 0.150* 0.253 0.118* 0.292 -0.127 -0.039 -0.128 -0.032 -0.188 0.019
UNRATE 0.030 -0.003 -0.020 -0.007 -0.230 -0.072 0.116 0.071 -0.146 0.016 -0.528 0.138**
GDPDEFL 0.021 0.026 0.060 0.037 0.109*** 0.022 -0.002 -0.008 0.018 -0.015 0.058** -0.025
GS10 0.098** 0.104** 0.085* 0.076 0.045* 0.069 0.043 0.047* 0.032 0.019 0.028 0.006

This table reports the average log predictive likelihood (ALPL) differential between model i and the benchmark
VAR(p∗) for the large VAR, computed as

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) ,

where p∗ is the largest lag length that can be estimated in a VAR with flat priors and the data

at hand, LPLi,j,τ+h and LPLbcmk,j,τ+h are the log predictive likelihoods of variable j at time τ and

forecast horizon h generated by model i and the VAR(p∗), respectively. t and t denote the start and

end of the out-of-sample period, i ∈ {DFM,FAVAR,BVAR-BGR,BVAR-CCM,BVAR-GLP,BVAR-KP}, j ∈
{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1985:Q1

and ending in 2015:Q4. Bold numbers indicate the lowest MSFE across all models for a given variable-forecast

horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Table 7. Out-of-sample density forecast performance, X-large VAR

Variable DFM FAVAR BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP DFM FAVAR BVAR-BGR BVAR-CCM BVAR-GLP BVAR-KP

h = 1 h = 2
PAYEMS -0.045 0.300*** 0.324*** 0.237** 0.323*** 0.234** 0.179 0.410* 0.221** 0.335 0.133 0.356*
CPIAUCSL 0.536 0.520 0.331 1.095** -1.996 1.452 0.278 0.014 -0.633 0.020 -1.955 1.034
FEDFUNDS 0.369 0.362 0.368*** 0.338 0.310*** 0.326 0.035 0.037 0.176*** -0.011 -0.247 -0.086
GDP 0.059 0.126 0.244** 0.155 0.156* 0.202* -0.137 -0.028 -0.030 -0.028 -0.037 0.059
UNRATE 0.575* 0.695** 0.755** 0.605* 0.475 0.630* 0.179* 0.301* 0.047 0.225* 0.039 0.301**
GDPDEFL 0.185* 0.244*** 0.267*** 0.206** 0.100 0.094 0.062 0.032 0.098*** 0.040 -0.098 -0.014
GS10 0.213** 0.260** 0.193** 0.223* 0.209** 0.226* 0.217*** 0.233*** 0.193*** 0.216** 0.129** 0.179*

h = 3 h = 4
PAYEMS 0.083 0.261 0.074 0.209 -0.470 0.249 0.001 0.161 -0.352 0.105 -0.910 0.211
CPIAUCSL -0.058 0.075 -1.184 -0.451 -2.532 0.346 0.030 0.126 -0.807 -0.508 -2.157 -0.020
FEDFUNDS 0.034 0.037 0.213*** 0.003 0.129*** -0.103 0.044* 0.051** 0.224*** 0.022 0.171*** -0.099
GDP 0.072 0.129 0.061 0.181 0.105 0.160 -0.076 -0.057 -0.260 -0.010 -0.250 0.019
UNRATE 0.072 0.045 -0.131 0.056 -0.478 0.032 0.057 0.137 -0.324 0.180 -0.657 0.057
GDPDEFL 0.014 0.007 0.042 -0.013 -0.190 -0.064 -0.016 -0.016 0.019 -0.035 -0.228 -0.100
GS10 0.091* 0.108** 0.099*** 0.065 0.054 0.038 0.040 0.043 0.057 0.018 0.056 -0.031

This table reports the average log predictive likelihood (ALPL) differential between model i and the benchmark
VAR(p∗) for the X-large VAR, computed as

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) ,

where p∗ is the largest lag length that can be estimated in a VAR with flat priors and the data

at hand, LPLi,j,τ+h and LPLbcmk,j,τ+h are the log predictive likelihoods of variable j at time τ and

forecast horizon h generated by model i and the VAR(p∗), respectively. t and t denote the start and

end of the out-of-sample period, i ∈ {DFM,FAVAR,BVAR-BGR,BVAR-CCM,BVAR-GLP,BVAR-KP}, j ∈
{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1985:Q1

and ending in 2015:Q4. Bold numbers indicate the lowest MSFE across all models for a given variable-forecast

horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Appendix A Proofs

In this section, we provide detailed derivations and proofs for all the main results in the paper.

A.1 Proof of rescaled regression

In this subsection, we provide details on the derivation of the rescaled regression in equation

(14). Start from the original regression model for the i-th equation of the VAR(p) in (1),

yi = Ziβi + vi, (A.1)

Next, as in the text, introduce the rotation

y∗i = q′1yi, ỹi = Q′2yi, (A.2)

where q1 = Zi,j/ ‖Zi,j‖ is a T × 1 unit vector in the direction of j-th column of Zi, Q2 is an

arbitrarily chosen T×T−1 matrix subject to the constraintQ2Q
′
2 = IT−q1q′1, andQ = [q1|Q2]

is the full-rank T × T matrix providing a one-to-one mapping between the original data yi and

the rotated data (y∗i , ỹi). Start by rewriting (A.1) as

yi = Zi,jβi,j +Zi,(−j)βi,(−j) + vi (A.3)

Next, pre-multiply both LHS and RHS of (A.3) by Q, to obtain

Qyi = QZi,jβi,j +QZi,(−j)βi,(−j) +Qvi, (A.4)

or, using the fact that Q = [q1|Q2],[
q′1
Q′2

]
yi =

[
q′1
Q′2

]
Zi,jβi,j +

[
q′1
Q′2

]
Zi,(−j)βi,(−j) +Qvi. (A.5)

Now, combining (A.5) with (A.2) and using the definition of q1, we have that[
y∗i
ỹi

]
=

[ (
Z ′i,jZi,j/ ‖Zi,j‖

)
Q′2q1 ‖Zi,j‖

]
βi,j +

[
q′1Zi,(−j)
Q′2Zi,(−j)

]
βi,(−j) +Qvi, (A.6)

Further simplifications lead to[
y∗i
ỹi

]
=

[
‖Zi,j‖βi,j

0

]
+

[
q′1Zi,(−j)βi,(−j)
Q′2Zi,(−j)βi,(−j)

]
+Qvi, (A.7)

where we have exploited the following two results:
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1.
(
Z ′i,jZi,j/ ‖Zi,j‖

)
= ‖Zi,j‖. This is due to the fact that Z ′i,jZi,j = ‖Zi,j‖2;

2. By definition, Q′2 and q1 are orthogonal. They all are columns of the orthogonal matrix

Q = [q1|Q2]), so by construction Q′2q1 ‖Zi,j‖ = 0.

Finally, note that E (Qvi) = 0 while var (Qvi) = σ2iQQ
′ = σ2i IT , which gives equation

(14). �

A.2 Approximating the rotated likelihood

In this subsection, we provide details on the results in equations (16), (17), and (18). Start

by focusing on the top row of (14), and note that the conditional density p
(
y∗i |βi, σ2i

)
can be

decomposed as follows

y∗i = ‖Zi,j‖βi,j + y+i (A.8)

where

y+i |βi,(−j), σ
2
i ∼ N

(
q′1Zi,(−j)βi,(−j), σ

2
i

)
(A.9)

Notice that the newly defined p
(
y+i |βi,(−j), σ2i

)
can be interpreted as essentially the

predictive distribution associated with the auxiliary regression that is defined in the second

row of (14). This leads to the following result,

p (y∗i |βi,j , ỹi) = ‖Zi,j‖βi,j + p
(
y+i |ỹi

)
= ‖Zi,j‖βi,j +

∫ ∫
p
(
y+i |βi,(−j), σ

2
i , ỹi

)
p
(
βi,(−j), σ

2
i |ỹi

)
dβi,(−j)dσ

2
i

(A.10)

The key to solving (A.10) it to compute the integral in the second row of the equation, which

in turn will depend on the prior distribution adopted for p
(
βi,(−j), σ

2
i

)
. There are many

alternatives available for this. To stay consistent with the rest of our approach, we have chosen

to rely on a natural conjugate Minnesota-type prior, which can cope well with the potentially

high dimension of the (ki − 1) × 1 vector of VAR coefficients βi,(−j), and at the same time

yields a closed-form expression for the predictive density in (A.10). In particular, we specify

βi,(−j)|λi,(−j), σ2i ∼ N
(
β
i,(−j), σ

2
i V βi,(−j)

)
σ2i ∼ IG

(
Ψ(i,i), d

) (A.11)

where we have made explicit that the prior for βi,(−j) depends also on the shrinkage parameter

λi,(−j), which enter through the prior variance V βi,(−j)
. The key difference between the prior
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in (A.11) and the prior for the individual VAR coefficients βi,j that we specified in (19) is the

reliance in (A.11) on a common shrinkage coefficient λi,(−j).
28 Our motivation for this choice is

that the sole purpose of the auxiliary regression is to compute the predictive density in (A.10),

which is only the first step in implementing the adaptive shrinkage prior we discuss in the main

body of the paper.

Continuing on, it is easy to show that the posterior distribution p
(
βi,(−j), σ

2
i |λi,(−j), ỹi

)
also

belongs to the normal-inverse-gamma family, and is given by

βi,(−j)|λi,(−j), σ2i , ỹi ∼ N
(
βi,(−j), σ

2
i V βi,(−j)

)
σ2i |ỹi ∼ IG

(
Ψi,i, d

) (A.12)

where d = d+ (T − 1) /2,

V βi,(−j) =
(
V −1βi,(−j)

+Z ′i,(−j)Q2Q
′
2Zi,(−j)

)−1
, (A.13)

βi,(−j) = V βi,(−j)

(
V −1βi,(−j)

β
i,(−j) +Z ′i,(−j)Q2ỹi

)
, (A.14)

and

Ψi,i = Ψi,i +
1

2

(
ỹ′iỹi + β′

i,(−j)V
−1
βi,(−j)

β
i,(−j) − β

′
i,(−j)V

−1
βi,(−j)

β(−j)

)
. (A.15)

The marginal likelihood for ỹi is also easy to compute, and is given by:

p
(
ỹi|λi,(−j)

)
=

∫ ∫
p
(
ỹi|βi,(−j), σ2i

)
p
(
βi,(−j), σ

2
i |λi,(−j)

)
dβi,(−j)dσ

2
i

=

∫ ∫
N
(
Q′2Zi,(−j)βi,(−j), σ

2
i

)
N
(
β
i,(−j), σ

2
i V βi,(−j)

)
IG
(
Ψi,i, d

)
dβi,(−j)dσ

2
i

= MV St2d

(
ỹi | Q′2Zi,(−j)βi,(−j),

Ψi,i

d

(
IT−1 +Q′2Zi,(−j)V βi,(−j)

Z ′i,(−j)Q2

))
.

(A.16)

The last step to conclude the derivation of equation (16) is to choose the shrinkage parameter

λi,(−j). Two approaches present themselves. The first option is to fix λi,(−j), calibrating it to

28Again, in the spirit of the Bayesian VAR tradition, we only shrink the elements of the vector βi,(−j) that
correspond to the group of coefficients ai,·. The intercept ci and the covariance terms γi,· will have non-informative
priors. We have experimented with alternative approaches, including one where we apply the shrinkage coefficient
λi,(−j) also to the covariance terms in γi,·.
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the desired overall shrinkage level. The second approach is to choose λi,(−j) by maximizing the

marginal likelihood in (A.16), i.e. mirroring the approach we implemented for λi,j . That is,

λ̂i,(−j) = arg max
λi,(−j)

p
(
ỹi|λi,(−j)

)
. (A.17)

Regardless of the approach chosen, i.e. whether we fix λi,(−j) or compute λ̂i,(−j) as in (A.17),

we are now ready to derive the predictive density of the auxiliary regression (to ease the notation,

we drop the dependence on the shrinkage parameter):

p (y∗i |βi,j , ỹi) = ‖Zi,j‖βi,j +

∫ ∫
p
(
y+i |βi,(−j), σ

2
i , ỹi

)
p
(
βi,(−j), σ

2
i |ỹi

)
dβi,(−j)dσ

2
i

= ‖Zi,j‖βi,j +

∫ ∫
N
(
q′1Zi,(−j)βi,(−j), σ

2
i

)
×

×N
(
βi,(−j), σ

2
i λ

2
i,(−j)V βi,(−j)

)
IG
(
Ψi,i, d

)
dβi,(−j)dσ

2
i

= ‖Zi,j‖βi,j + t2d
(
µi,j , τ

2
i,j

)
≈ ‖Zi,j‖βi,j +N

(
µi,j , τ

2
i,j

)
(A.18)

where

µi,j = q′1Zi,(−j)βi,(−j) (A.19)

and

τ2i,j =
Ψi,i

d

(
1 + q′1Zi,(−j)V βi,(−j)Z

′
i,(−j)q1

)
. (A.20)

This concludes the derivations of equations (16), (17), and (18). �
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Appendix B Data and transformations

Table B.1. List of series

Series id Tcode Medium Large X-large FRED Description

1 5 X X RPI Real Personal Income
2 5 X X W875RX1 RPI ex. Transfers
3 5 X X DPCERA3M086SBEA Real PCE
4 5 X X CMRMTSPLx Real M&T Sales
5 5 X X RETAILx Retail and Food Services Sales
6 5 X INDPRO IP Index
7 5 IPFPNSS IP: Final Products and Supplies
8 5 IPFINAL IP: Final Products
9 5 IPCONGD IP: Consumer Goods
10 5 IPDCONGD IP: Durable Consumer Goods
11 5 IPNCONGD IP: Nondurable Consumer Goods
12 5 IPBUSEQ IP: Business Equipment
13 5 IPMAT IP: Materials
14 5 IPDMAT IP: Durable Materials
15 5 IPNMAT IP: Nondurable Materials
16 5 IPMANSICS IP: Manufacturing
17 5 IPB51222S IP: Residential Utilities
18 5 IPFUELS IP: Fuels
19 2 CUMFNS Capacity Utilization: Manufacturing
20 2 X HWI Help-Wanted Index for US
21 2 X HWIURATIO Help Wanted to Unemployed ratio
22 5 X CLF16OV Civilian Labor Force
23 5 CE16OV Civilian Employment
24 2 X X X UNRATE Civilian Unemployment Rate
25 2 UEMPMEAN Average Duration of Unemployment
26 5 UEMPLT5 Civilians Unemployed ≤ 5 Weeks
27 5 UEMP5TO14 Civilians Unemployed 5-14 Weeks
28 5 UEMP15OV Civilians Unemployed > 15 Weeks
29 5 UEMP15T26 Civilians Unemployed 15-26 Weeks
30 5 UEMP27OV Civilians Unemployed > 27 Weeks
31 5 CLAIMSx Initial Claims
32 5 X X X PAYEMS All Employees: Total nonfarm
33 5 USGOOD All Employees: Goods-Producing
34 5 CES1021000001 All Employees: Mining and Logging
35 5 USCONS All Employees: Construction
36 5 MANEMP All Employees: Manufacturing
37 5 DMANEMP All Employees: Durable goods
38 5 NDMANEMP All Employees: Nondurable goods
39 5 SRVPRD All Employees: Service Industries
40 5 USTPU All Employees: TT&U
41 5 USWTRADE All Employees: Wholesale Trade
42 5 USTRADE All Employees: Retail Trade
43 5 USFIRE All Employees: Financial Activities
44 5 USGOVT All Employees: Government
45 5 X CES0600000007 Hours: Goods-Producing
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Table B.1 continued

Series id Tcode Medium Large X-large FRED Description

46 2 AWOTMAN Overtime Hours: Manufacturing
47 5 AWHMAN Hours: Manufacturing
48 5 HOUST Starts: Total
49 5 HOUSTNE Starts: Northeast
50 5 HOUSTMW Starts: Midwest
51 5 HOUSTS Starts: South
52 5 HOUSTW Starts: West
53 5 AMDMNOx Orders: Durable Goods
54 5 AMDMUOx Unfilled Orders: Durable Goods
55 5 BUSINVx Total Business Inventories
56 2 ISRATIOx Inventories to Sales Ratio
57 5 X M1SL M1 Money Stock
58 5 X M2SL M2 Money Stock
59 5 X M2REAL Real M2 Money Stock
60 5 X X BUSLOANS Commercial and Industrial Loans
61 5 REALLN Real Estate Loans
62 5 X X NONREVSL Total Nonrevolving Credit
63 2 X X CONSPI Credit to PI ratio
64 5 X S&P 500 S&P 500
65 5 X S&P: indust S&P Industrial
66 2 X S&P div yield S&P Divident yield
67 5 X S&P PE ratio S&P Price/Earnings ratio
68 2 X X X FEDFUNDS Effective Federal Funds Rate
69 2 X X CP3M 3-Month AA Comm. Paper Rate
70 2 X TB3MS 3-Month T-bill
71 2 X TB6MS 6-Month T-bill
72 2 X GS1 1-Year T-bond
73 2 X GS5 5-Year T-bond
74 2 X X X GS10 10-Year T-bond
75 2 X AAA Aaa Corporate Bond Yield
76 2 X BAA Baa Corporate Bond Yield
77 1 COMPAPFF CP - FFR spread
78 1 TB3SMFFM 3 Mo. - FFR spread
79 1 TB6SMFFM 6 Mo. - FFR spread
80 1 T1YFFM 1 yr. - FFR spread
81 1 T5YFFM 5 yr. - FFR spread
82 1 T10YFFM 10 yr. - FFR spread
83 1 AAAFFM Aaa - FFR spread
84 1 BAAFFM Baa - FFR spread
85 5 X X EXSZUS Switzerland / U.S. FX Rate
86 5 X X EXJPUS Japan / U.S. FX Rate
87 5 X X EXUSUK U.S. / U.K. FX Rate
88 5 X X EXCAUS Canada / U.S. FX Rate
89 5 WPSFD49107 PPI: Final demand less energy
90 5 WPSFD49501 PPI: Personal cons
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Table B.1 continued

Series id Tcode Medium Large X-large FRED Description

91 5 WPSID61 PPI: Processed goods
92 5 WPSID62 PPI: Unprocessed goods
93 5 X OILPRICEx Crude Oil Prices: WTI
94 5 PPICMM PPI: Commodities
95 6 X X X CPIAUCSL CPI: All Items
96 5 CPIAPPSL CPI: Apparel
97 5 CPITRNSL CPI: Transportation
98 5 CPIMEDSL CPI: Medical Care
99 5 CUSR0000SAC CPI: Commodities
100 5 CUUR0000SAD CPI: Durables
101 5 CUSR0000SAS CPI: Services
102 5 CPIULFSL CPI: All Items Less Food
103 5 CUUR0000SA0L2 CPI: All items less shelter
104 5 CUSR0000SA0L5 CPI: All items less medical care
105 5 PCEPI PCE: Chain-type Price Index
106 5 DDURRG3M086SBEA PCE: Durable goods
107 5 DNDGRG3M086SBEA PCE: Nondurable goods
108 5 DSERRG3M086SBEA PCE: Services
109 5 CES0600000008 Ave. Hourly Earnings: Goods
110 5 CES2000000008 Ave. Hourly Earnings: Construction
111 5 CES3000000008 Ave. Hourly Earnings: Manufacturing
112 5 MZMSL MZM Money Stock
113 5 DTCOLNVHFNM Consumer Motor Vehicle Loans
114 5 DTCTHFNM Total Consumer Loans and Leases
115 5 X INVEST Securities in Bank Credit
116 5 X X X GDP Real Gross Domestic Product
117 5 PCDG PCE: Durable Goods
118 5 PCESV PCE: Services
119 5 PCND PCE: Nondurable Goods
120 5 FPI Fixed Private Investment
121 5 PRFI Private Residential Fixed Investment
122 5 GCEC1 Government Cons Expenditures & Gross Inv
123 6 X X X GDPDEFL GDP deflator
124 5 PCEDEFL PCE deflator
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Appendix C Additional results

Figure C.1. Monte Carlo simulation - Shrinkage intensity by coefficient group
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This figure plot the empirical distribution of the shrinkage parameter λ̂i,j estimated using our adaptive shrinkage

procedure (i = 1, ..., n and j = 1, ..., np). The empirical distributions are obtained by simulating 1, 000 VAR(p) of

sample size T = 150 and lag length p = 2. See Section 4 for additional details on the design of the Monte Carlo

simulation. Next, for each simulated dataset we compute the optimal degree of shrinkage using our adaptive

shrinkage procedure. We construct empirical distributions of the estimated shrinkage parameters λ̂i,j according

to whether the corresponding VAR coefficients belong to the own-lags category (E
(
λ̂i,i
)

, i = 1, ..., n) or the

other-lags category (E
(
λ̂i,j
)

, i = 1, ..., n j = 1, ..., np, and i 6= j). We further break down the latter group

according to whether the corresponding coefficients in the simulated data are equal to zero (i.e., E
[
λ̂i,j |ai,j = 0

]
)

or not (i.e., E
[
λ̂i,j |ai,j 6= 0

]
).
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