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A thesis submitted for the degree of

Doctor of Philosophy in Economics

Department of Economics

University of Essex

United Kingdom

January 2017



Contents

Acknowledgements 3

Abstract 4

Introduction 5

1 Estimation bias in continuous time models with stock and flow variables 8

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 The continuous time model . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Bias formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Stock variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Flow variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Asymptotic variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Asymptotic bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Bias reduction methods in continuous time models with stock and flow

variables 52

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Continuous time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2.1 Univariate model . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2.2 Multivariate model . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3 Bias reduction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.1 Jackknife . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.2 Indirect inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.3 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3.4 Stochastic expansions of the bias corrected estimators . . . . . . . 64

2.4 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.4.1 Univariate model . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1



2.4.2 Multivariate model . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.4.3 Non-normal and heteroskedastic disturbances . . . . . . . . . . . 79

2.4.4 Misspecified model . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.4.5 Bias correction for inconsistent estimators . . . . . . . . . . . . . 83

2.5 Empirical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.7 Appendix: Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.7.1 Results for the univariate model with known mean . . . . . . . . 94

2.7.2 Results for the univariate model with unknown mean . . . . . . . 95

2.7.3 Results for the multivariate model . . . . . . . . . . . . . . . . . . 96

2.8 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.9 Appendix: Additional information for the empirical application . . . . . 100

3 Cointegrated continuous time models with mixed sample data 102

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2 First-order model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3 Mixed-order model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.3.1 The continuous time model and its solution . . . . . . . . . . . . 106

3.3.2 The exact discrete model for common data sampling . . . . . . . 108

3.3.3 The exact discrete time model for mixed data sampling . . . . . . 111

3.3.4 Properties of the discrete time disturbances . . . . . . . . . . . . 113

3.3.5 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.5 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.5.1 First-order system . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.5.2 Mixed-order system . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.8 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Conclusions 140

2



Acknowledgements

I would like to express my deep gratitude to my supervisor Prof. Marcus J.

Chambers for his continuous guidance, helpful advice and constructive suggestions

during my doctoral studies. His willingness to give his time so generously and to share

his immense knowledge has been very much appreciated. My thanks are also extended

to my professors, especially Prof. João Santos Silva, whose passion and dedication to

teaching have inspired my academic career. I am grateful for the helpful comments of

my examiners Dr. Gordon Kemp and Dr. Michael Thornton.

I gratefully acknowledge the study leave granted by National University of Colombia

to pursue my PhD studies. I also acknowledge the financial support from Colciencias

(Call 512, 2010) and from University of Essex.

I wish to thank my family. My parents, Cristina and Jorge, for their unconditional love

and support throughout my life. Lastly and most importantly, my loving husband, Mario,

for always believing in me and encouraging me to follow my dreams. I am profoundly

grateful for his spiritual, emotional and intellectual support along this journey.

3



Abstract

This dissertation consists of three papers on finite sample properties of the maximum

likelihood (ML) estimator of parameters in continuous time dynamic models. In the first

chapter, we obtain analytical expressions to approximate the bias and variance of the ML

estimator in a univariate model with a known mean. We analyze two cases, when the

variable of interest is a stock and when it is a flow. We also study the effect of the initial

condition by considering both a fixed and a random initial value. A Monte Carlo study

suggests that the performance of the formulae is reasonably good.

Analytical bias expressions are then used in the second chapter to compute bias

corrected estimators. This chapter also explores other methods for bias reduction that

have been employed in the literature, these being the bootstrap, jackknife, and indirect

inference. A Monte Carlo experiment shows that all approaches deliver substantial bias

reductions. We also explore the robustness of the results to model misspecifications, and

provide an empirical application to the broad effective exchange rate series for euro area.

The third chapter derives the exact discrete representation corresponding to a

cointegrated system of mixed first- and second-order stochastic differential equations

with mixed sampling and observable stochastic trends. We also provide some formulae

to implement the Gaussian estimation and conduct a Monte Carlo experiment to

examine the finite sample properties of the Gaussian estimator. Monte Carlo

simulations suggest that the bias and variance of the estimators of the short-run,

long-run and adjustment coefficients as well as the variance of the intercepts are mainly

determined by the data span, while the bias and variance of the covariance coefficients

seem to depend on the sample size.
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Introduction

The advantages of continuous time models over those formulated in discrete time have

been widely discussed in the literature (see for example, Bergstrom, 1996; Bergstrom and

Nowman, 2007). Among them, is their invariance property, which implies that a model

can be specified and analysed independently of the data observation interval to be used

for estimation. This property however, does not hold for discrete time models since a

model built on a particular data frequency, for instance monthly, will be different from one

based on another frequency, for instance quarterly. Another advantage is the possibility

of obtaining a continuous time path for each variable in the model, which can be then

used, for example, to forecast at any point in time.

These models also have the advantage of allowing for separate treatment of stock and

flow variables. It is explicitly recognised that stocks are observed at specific points of

time, while flows are measured as the accumulation of the underlying rate over a time

interval. In terms of modelling, the main difference of this last variable as compared

to instantaneously observed ones is that the temporal aggregation occurring with flows

induces serial correlation in the disturbances. Because of the distinction in the treatment

of these two kind of variables, these models do not suffer from time aggregation bias

whereas it may be a serious problem in their discrete time counterpart. Furthermore,

both type of variables can be incorporated within the model simultaneously.

Although these models may be more appropriate for describing the dynamics of

economic behaviour, they are more difficult to deal with econometrically than discrete

time models. A difficulty arises since a continuous record of the variables over time is

not available. It is, however, possible to obtain a discrete representation of the

continuous time model and to estimate the parameters from discrete data. The

approach adopted is to make a discrete approximation to the continuous model or

alternatively to derive the exact discrete analogue, and then apply standard estimation

methods on the discrete representation.

In the last decades much work has been done on estimating continuous time models

based on the exact discrete analogue. The Gaussian methods proposed by Bergstrom

(1983, 1985, 1986), which under appropriate conditions yield exact maximum likelihood
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estimates, has been commonly employed. Recently, it has been found that the

maximum likelihood estimates of parameters in continuous time models may be

seriously biased in finite samples, being especially pronounced when the continuous time

process has a root near zero. Unfortunately, estimation bias may have important

implications on hypothesis testing, analysis and prediction. Understanding the bias of

parameter estimates is, therefore, of great practical importance and is the main concern

of this dissertation.

Estimation bias has been widely studied in the context of discrete time models, and has

begun to receive much attention in the continuous time framework. Some attempts along

this line of research have been undertaken by Tang and Chen (2009) and Yu (2012), who

derived analytical expressions to approximate the bias and variance of the mean reversion

estimator. These works have discussed the problem when the variables of interest are

stocks, but the finite sample behaviour of estimators in the presence of flow variables

have not received attention in the literature. This research focuses in this last case.

The main contribution of the first chapter is the derivation of explicit expressions to

approximate the bias of the maximum likelihood estimator in a univariate continuous

time model when the variable is a flow. A secondary contribution is the use of a

methodology for the derivation of these expressions, that had not been applied in the

context of continuous time models. This methodology offers some advantages in terms

of ease of implementation and produces results that are comparable to those available in

the literature. The performance of the bias expressions is examined through Monte

Carlo simulations.

Once an analytical expression has been derived, a simple bias correction can be

computed by subtracting the leading term of the expression from the parameter

estimate. This approach has the disadvantage that it is only applicable to models for

which a bias expression is available. Furthermore, bias expressions may be complex and

are often difficult to obtain, this being the case for models with correlated disturbances.

In view of these difficulties, other approaches could be preferred in practice.

The aim of the second chapter is to compare four methods of bias reduction for

stationary continuous time processes. The first one uses analytical expressions of the

type derived in the first chapter, while the other three are based on methods which do

not rely on the explicit form of an asymptotic expansion for the bias, those being the

jackknife, bootstrap and indirect inference. We consider two scenarios, the former

assumes that the model is correctly specified and the latter allows for model

misspecifications, these being heteroskedasticity, non-normality and serial correlation in

the disturbances. Special attention is given to models with correlated discrete time

disturbances. The performance of the four bias corrected estimators is study through
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Monte Carlo simulations and an empirical application to the broad effective exchange

rate serie for euro area.

The finite sample properties of the maximum likelihood estimators have been studied

in the context of stationary models, but have not received much attention in the

cointegration framework. The third chapter explores the behaviour of the Gaussian

estimator of parameters in cointegrated continuous time systems with mixed stock and

flow data. Another contribution of the chapter is the derivation of the exact discrete

representation corresponding to a system of mixed first- and second-order stochastic

differential equations, which is required to implement the Gaussian estimation.
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Chapter 1

Estimation bias in continuous time

models with stock and flow variables

1.1 Introduction

Estimation bias has been widely studied in the context of discrete time models, and

has begun to receive considerable attention in the continuous time framework in recent

years. It has been shown that estimators can suffer from substantial bias in finite

samples, being especially severe when the continuous time process has a root near zero

and further exacerbated when intercepts and trends are estimated. Bias may have

serious implications. Since parameter estimates serve as input for statistical inference

and model analysis, we expect to have distortions not only in hypothesis testing, but

also in confidence intervals and impulse response functions. In addition, estimation bias

may affect the accuracy of the forecasts and may have a large impact on many practical

applications. In finance, for example, it has been found that any bias in the mean

reversion estimate is transmitted to the pricing formulae for bonds, bond options, and

other derivative securities (see Phillips and Yu, 2005). Obtaining more accurate

estimators is, therefore, of great practical importance and is the main concern of this

paper.

Finite sample bias can be corrected if the bias function, which relates the bias of the

estimates to the values of the parameters, is known. Unfortunately, this function is often

unknown. In the continuous time framework, analytical expressions to approximate the

bias function have been derived for the Vasicek model (Vasicek, 1977) and the CIR model

(Cox et al., 1985). In the univariate case, Tang and Chen (2009) approximated the bias

of the mean reversion estimator when the long run mean is unknown. It was shown that

the bias in both models is of order T−1, but not of order n−1, where T is the data span
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and n is the number of observations, implying that the bias will not disappear unless the

data span goes to infinity. This result suggests that the estimation bias in continuous

time models is mainly determined by the data span, but not by the sample size.

In the context of Vasicek processes with a known long run mean, Yu (2012) obtained

two analytical expressions to approximate the bias of the mean reversion estimator. The

first is analogous to that of Marriott and Pope (1954) for the discrete time model and is

equivalent to the bias formula in Tang and Chen (2009) of the Vasicek process with an

unknown mean. The second expression includes a non-linear term in the bias formula,

which was found to be particularly important when the mean reversion parameter is close

to zero. The bias has been studied in the context of continuous time Lévy processes by Bao

et al. (2015), who approximated the bias of the mean reversion estimator with known and

unknown mean, and studied the effects of non-Gaussianity on the bias. In the multivariate

case, an analytical expression was derived by Wang et al. (2011). Despite these works

having made major contributions to the understanding of the bias in continuous time

models, they have only discussed the problem when the variable of interest is a stock.

Economic models can comprise not only stocks, but also flows. Such flow variables as

GDP, consumption and exports differ from stocks in that the former are measured as an

integral over an interval of time while the latter are observed at points of time. Continuous

time models have been used in economics, where several applications have appeared

in the literature since the development of the first continuous time macroeconometric

model by Bergstrom and Wymer (1976). Although much work on estimating continuous

time models in the presence of flow data has been done, the finite sample properties of

these estimators have been entirely unexplored. In particular, what is unknown is the

magnitude of the bias arising from estimation when the variable is a flow. The main aim

of this paper is, therefore, to extend existing bias formulae for the flow case.

Approaches based on approximate moments and distributions, such as Nagar’s

approximations and Edgeworth expansions, have been commonly employed to obtain

analytical bias expressions. Several formulae for a large class of estimators are available

in the literature (see for example, Cox and Snell, 1968; Bao and Ullah, 2007). Some of

them could be applied to continuous time models with flows. Nevertheless, dealing with

flow data is a considerably more complex problem. Because of this complexity, bias

expressions may be difficult to compute explicitly or they may be analytically involved.

In this paper we employ the formula obtained by Cox and Snell (1968), which is

tractable and hence straightforward to implement. We believe that this approach may

offer some advantages compared to other methodologies. To illustrate this, we derive an

alternative expression for approximating the bias when the variable is a stock and the

mean is known. Our results are comparable to those available in the literature. In

particular, we show that our bias expressions for the stock case are analogous to those
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of Bao et al. (2015) and Yu (2012) for the Vasicek process.

The plan of this paper is as follows. Section 2 presents the basics of the continuous time

model. Section 3 derives analytical expressions to approximate the bias under different

cases: stock or flow variables, fixed or random initial condition. Explicit expressions for

the asymptotic variance and the asymptotic bias that arises when the correlation of the

disturbances induced by temporal aggregation is not taken into account are derived in

Section 4 and 5, respectively. Section 6 reports some simulation results to examine the

performance of the analytical expressions and section 7 concludes.

1.2 The continuous time model

We consider the continuous time model given by

dx(t) = ax(t)dt+ ζ(dt), t > 0, (1.1)

where x(t) is a scalar continuous time process, a is a scalar parameter, ζ(dt) is white

noise with mean zero and variance σ2dt and the initial condition x(0) is defined later.1 It

is assumed that a is negative in order for x(t) to be stationary. Note that x(t) has a root

near zero when a is close to zero.

Since x(t) is only observed at discrete intervals of time, the parameters a and σ2 must

be estimated from discrete data. For this purpose, it is necessary to obtain a discrete

representation of the continuous time model. Assuming equispaced discrete data observed

at (h, 2h, ..., nh(= T )), the exact discrete model is given by

xth = eahxth−h + ηth, t = 2, ..., n, (1.2)

where h is the sampling interval (i.e. the period between observations), n is the total

number of observations and T is the data span.2 The exact discrete analogue, which

is obtained from the solution to the differential equation (1.1), has the property that it

satisfies data generated by the continuous time model exactly.

Observation xh takes different forms depending on the way in which the variable is

sampled, as a stock or as a flow. When x(t) is a stock, xh = eahx(0) + ηh, and when x(t)

is a flow xh = a−1(eah− 1)x(0) + ηh. The properties of the error term ηth also depend on

1The Vasicek model with a known mean setting to zero can be seen as a special case of (1.1) with
a = −k and ζ(dt) = σdB(t), where B(t) is a standard Brownian motion. The parameter k reflects
the rate of convergence towards its long term mean and is the parameter of major interest in the bias
literature.

2For example, if quarterly data are recorded in a 20 year time interval, then h = 1/4, T = 20 and
n = 80.
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the nature of the variable of interest. When x(t) is a stock variable, the error is given by

ηth =

∫ th

th−h
ea(th−r)ζ(dr), t = 1, ..., n, (1.3)

and satisfies the following properties

E(η2
th) = σ2

η =
σ2

2a

[
e2ah − 1

]
, (1.4)

E(ηthηth−kh) = 0 for k ≥ 1. (1.5)

If x(t) is a flow variable, the observed data take the form of integrals xth =
∫ th
th−h x(r)dr.

In this case, the error term is defined by

ηh =
1

a

∫ h

0

(
ea(h−r) − 1

)
ζ(dr), (1.6)

ηth =
1

a

[∫ th

th−h

(
ea(th−r) − 1

)
ζ(dr) +

∫ th−h

th−2h

(
eah − ea(th−h−r)) ζ(dr)

]
, (1.7)

for t = 2, ..., n, and satisfies

E(η2
h) = γ̃0 =

σ2

2a3

[
3 + 2ah− 4eah + e2ah

]
, (1.8)

E(η2
th) = γ0 =

σ2

a2

[
h(e2ah + 1) +

1− e2ah

a

]
, t = 2, ..., n, (1.9)

E(ηthηth−h) = γ1 =
σ2

a2

[
e2ah − 1

2a
− heah

]
, (1.10)

E(ηthηth−kh) = 0 for k ≥ 2. (1.11)

We can see that the form of the exact discrete model differs depending on whether

observations are stocks or flows. The exact discrete model is an AR(1) when the variable

is observed at points of time while it is an ARMA(1,1) if the variable is measured as a

flow over an interval of time. It is important to notice that although the autoregressive

coefficient eah is identical in the two cases, the error given in (1.7) differs from that

given in (1.3) in that the former is correlated. It follows from the implied conditions on

E(ηthηth−h) that the error given in (1.7) is a first-order moving average.

Another important point to notice is that a < 0 implies eah < 1 and therefore

stationarity. The discrete model has a root near unity when the parameter a is close to

zero3 or when the sampling interval h tends to zero. Note that eah → 1 when a → 0 or

3A root near zero in a continuous time process corresponds to a root near unity in a discrete time
process.
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h → 0. The initial condition x(0) can be assumed to be either fixed or random. We

consider both a fixed value equal to zero and a random value obtained from a normal

distribution. It should be noted that whereas the starting value of the stock variable is

part of the sample, the starting value of the flow variable is unobservable.

After characterizing the continuous time model we turn now to the calculation of the

bias expressions.

1.3 Bias formula

We start by briefly describing the approach employed in this paper. Cox and Snell

(1968) derived a formula to approximate the bias of the maximum likelihood (ML)

estimator in models with independent but not necessarily identically distributed

samples. Cordeiro and Klein (1994) pointed out that this formula is also valid for

non-independent observations, and rewrote the bias expression given by Cox and Snell

for a single parameter estimator β̂s, 1 ≤ s ≤ p, as

biass = E(β̂s − βs) =

p∑
i=1

ksi
p∑

j,l=1

(
k

(l)
ij −

1

2
kijl

)
kjl + O(n−2), (1.12)

where K−1 = {−kij} is the inverse of the Fisher Information matrix of dimension p × p
evaluated at the parameter vector β of dimension p × 1, kij = E(∂2`/∂βi∂βj), kijl =

E(∂3`/∂βi∂βj∂βl), k
(l)
ij = ∂kij/∂βl, for i, j, l ≤ p, with p being the total number of

parameters and ` the log-likelihood function. The result in (1.12) is valid provided that

all of the k terms are O(n) and `(β) is regular with respect to all derivatives up to and

including the third order.

In order to derive bias expressions of the ML estimators in continuous time models it

is convenient to write the bias in matrix notation as follows

bias = E(β̂ − β) = K−1F vec(K−1) + O(n−2), (1.13)

where F = {F (1)| · · · |F (p)}, with the p× p matrix F (l) = {f (l)
ij } and f

(l)
ij = k

(l)
ij − 1

2
kijl for

l = 1, ..., p, and vec(K−1) is the vector obtained by stacking the columns of K−1.

We now use formula (1.13) to derive explicit bias expressions for the parameter

estimator â.4 This approach requires specifying a distribution for the error term. We

assume that ηth is a Gaussian process.5 Let x denote the observed time series and σ2V

4We only focus on the estimator â because of the little bias that has been found in σ̂2 (see Phillips
and Yu, 2005; Tang and Chen, 2009).

5Note that under the assumption of a Gaussian distribution ζ(dt) = σ dB(t).
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the covariance matrix of x. The log-likelihood is defined as

`(a, σ2) = −n
2

ln(2π)− 1

2
ln|σ2V | − 1

2σ2
x′V −1x. (1.14)

It is straightforward to show that the bias formula for â is

E(â−a) = −

(
k111 − 2k

(1)
11

)
k2

22 + k12

(
−3k112k22 + 4k

(1)
12 k22

)
+ k2

12k122

2 (k2
12 − k11k22)

2 + O(n−2), (1.15)

where k11 = E(∂2`/∂a2), k12 = E(∂2`/∂a∂σ2), k22 = E(∂2`/(∂σ2)2), k111 = E(∂3`/∂a3),

k112 = E(∂3`/∂a2∂σ2), k122 = E(∂3`/∂a(∂σ2)2), k
(1)
11 = ∂k11/∂a and k

(1)
12 = ∂k12/∂a.

Formula (1.15) is equivalent to that proposed by Cordeiro and Klein (1994) for ARMA

models. The difference is that our formula requires computing the first three derivatives

of the likelihood function with respect to the parameters a and σ2 while the expression

in Cordeiro and Klein (1994) requires calculating the covariance matrix of the data, its

inverse and the first two partial derivatives of either one with respect to the parameters.

The inverse of the covariance matrix could be, however, difficult to compute for some

continuous time models such as those containing flow data. We believe that calculations

can be greatly facilitated by using the likelihood function instead of the covariance matrix

of the data. Furthermore, the likelihood function allows us to derive the bias expression

under the assumption of both a fixed and a random initial condition.

We turn now to the computation of the bias expressions assuming that both type

of variables are observed at (0, h, 2h, ..., nh − h), hence the sample size is n. We start

by considering the simplest case, this being when the variable is observed at points of

time. Since calculations are straightforward, but somewhat tedious, we only present the

resulting bias expressions. Details are given in the Appendix.

1.3.1 Stock variables

In order to compute a formula for the bias, it is convenient to use the predictive error

decomposition of the log-likelihood function, which for the model given in (1.2)-(1.5) for

t = 1, ..., n− 1 results in

`(a, σ2) = −n
2

ln(2π)− n− 1

2
lnσ2

η −
1

2σ2
η

n−1∑
t=1

(
xth − eahxth−h

)2 − 1

2
lnσ2

x −
x2

0

2σ2
x

, (1.16)

where σ2
η is the variance of the disturbances, σ2

x = −σ2/2a is the variance of x and the

initial condition x0 = x(0) is assumed to be x0 ∼ N(0,−σ2/2a). Taking the initial
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value x0 as deterministic and equal to zero, the log-likelihood function can be calculated

conditioning on the first observation. In this case, the log-likelihood function becomes

`(a, σ2) = −n− 1

2
ln(2π)− n− 1

2
lnσ2

η −
1

2σ2
η

n−1∑
t=1

(
xth − eahxth−h

)2
. (1.17)

The bias expressions are, therefore, found by computing the first three derivatives of

the exact log-likelihood function (1.16) and the conditional log-likelihood function (1.17)

with respect to a and σ2, taking expectations and then substituting these figures into

(1.15). The first result corresponding to a random initial condition and the second to a

fixed initial condition are presented in the following theorems.

Theorem 1.3.1. Under model given in (1.2)-(1.5) for t = 1, ..., n− 1 with a fixed initial

condition x0 = 0, the bias of â is given by

E(â− a) = −3 + e−2ah

2T
+ o(T−1). (1.18)

When a→ 0 the bias reduces to

E(â− a) = − 2

T
+ o(T−1), (1.19)

and when h→ 0 it becomes

E(â− a) = − 2

T
+ o(T−1). (1.20)

Theorem 1.3.2. Under model given in (1.2)-(1.5) for t = 1, ..., n − 1 with a random

Gaussian initial condition x0 with mean 0 and variance −σ2/2a, the bias of â is given by

E(â− a) = −3 + e−2ah

2T
+

4n− 2 + (5n− 6)e2ah − ne−2ah

2T (n− 1) [n− (n− 2)e2ah]
+ o(T−1). (1.21)

When a→ 0 the bias reduces to

E(â− a) = 0 + o(T−1), (1.22)

and when h→ 0 it becomes

E(â− a) = − 2

T
+

2

T (1− aT )
+ o(T−1). (1.23)
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The theoretical result indicates that the estimator is downward biased. The bias can

be substantial, being especially large when the continuous time parameter a is close to

zero. For example, for the case of fixed x0 and 10 years of monthly data (i.e. T = 10 and

h = 1/12), the percentage bias is 200% when a = −0.1, while it is less than 8% when

a = −3. Note that the leading term in equations (1.18) and (1.21), which is the same

as that obtained by Yu (2012), is of order O(T−1). It suggests that the bias is mainly

determined by the data span, implying that the bias will not disappear unless the data

span goes to infinity.

There are two additional remarks worth noting. First, the bias is larger when x0 is

fixed than when x0 is random, which is consistent with the result in Bao et al. (2015). To

see this, we plot the bias expression for the sampling interval h = 1/12 and three values

of data span, these being T = 5, 10, 20 (see Figure 1.1). These combinations correspond

to 5, 10 and 20 years of monthly data. The discrepancy seems to reduce when we increase

n by increasing T , implying that the influence of the initial value on the bias function

tends to be negligible as the data span goes to infinity. We note, however, that the initial

value has an important impact on the bias function when a is relatively small. As can be

seen in Theorems 1.3.1 and 1.3.2, as a goes to zero the bias converges to −2/T when x0

is fixed while the bias tends to zero when x0 is random.

Second, the bias decreases when we increase n by increasing the data frequency (i.e.

when h becomes smaller). This is illustrated in Figure 1.2, where we plot the bias

expression for T = 10 and three values of h, these being h = 1/4, 1/12, 1/252. These

combinations correspond to 10 years of quarterly, monthly and daily data. Results also

indicate that the implications of high frequency data differ depending on whether the

initial condition is fixed or random. Indeed, (1.20) suggests than the bias converges to

−2/T as h goes to zero when x0 is fixed, implying that the bias does not disappear

unless T goes to infinity. In contrast, (1.23) suggests that the bias tends to

−2/T + 2/T (1 − aT ) as h → 0 when x0 is random, implying that the bias approaches

zero when either a→ 0 or T →∞.

Third, the second term in equation (1.21) is of smaller order than 1/T and can be

ignored when a is far away from zero. However, this second term is not negligible when a

is close to zero, in which case it becomes of order O(T−1). This observation is consistent

with the result in Yu (2012).

1.3.2 Flow variables

We now illustrate how to compute analytical bias expressions when the variable is

measured as an integral. It should be noted that calculations for this case become more
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Figure 1.1: The bias of â for stock and monthly frequency data as a function of a. The graphs correspond to T = 5, 10, 20
(i.e. n = 60, 120, 240), respectively. The solid line is the approximate bias according to the formula (1.21) (i.e. x0 random)
and the dark solid line is the approximate bias according to the formula (1.18) (i.e. x0 fixed at zero).
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Figure 1.2: The bias of â for stock data and T = 10 as a function of a. The graphs correspond to quarterly, monthly and
daily data (i.e. n = 40, 120, 2520), respectively. The solid line is the approximate bias according to the formula (1.21) (i.e.
x0 random) and the dark solid line is the approximate bias according to the formula (1.18) (i.e. x0 fixed at zero).
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complicated than those for stocks since the error term in the exact discrete model is

correlated. In spite of the additional complications, the formula by Cox and Snell (1968)

can be applied by using the ARMA representation of xth, that is, by expressing the error

ηth as a first-order moving average. We present the MA representation of the disturbance

process in the following lemma.

Lemma 1.3.1. The disturbance process ηth defined in (1.7) with variance γ0 and

autocovariance γ1 given in (1.9) and (1.10) admits the representation

ηth = εth + θεth−h, t = 2, ..., n, (1.24)

where εth is a white noise process with mean zero and variance σ2
ε = γ1/θ = γ0/(1 + θ2),

θ = (1−
√

1− 4ρ2)/(2ρ), and ρ = γ1/γ0.

It should be noted that the moving average coefficient θ is a function of a, being

positive for a < 0 and reaching its maximum value of 2−
√

3 when the continuous time

process has a root near zero (see Figures 1.25 and 1.26). The ARMA representation leads

us to consider the log-likelihood function

`(a, σ2) = −n
2

ln(2π)− n− 1

2
lnσ2

ε −
1

2σ2
ε

n−1∑
t=1

(
xth − eahxth−h − θεth−h

)2 − 1

2
lnσ2

x −
x̃2

0

2σ2
x

,

(1.25)

where σ2
x is the variance of x given by6

σ2
x = −(1 + 2aheah − e2ah)(1 + θ2 + 2θeah)σ2

2a3θ(1− e2ah)
,

and x̃0 is the starting value assumed to be x̃0 ∼ N(0, σ2(1 + ah − eah)/a3). As it was

shown for the stock case, the initial condition plays an important role when a approaches

zero. To show that this situation also occurs for the flow case, in the derivation of the bias

formula it is assumed that the initial value of the flow variable is also part of the sample.

Note that we have used a different letter to distinguish x̃0 from x0, this last value being

unobservable when the variable is a flow. Since x̃0 is used instead of x0, the equation

relating xh to x(0) = x0 is not employed. Instead of this, we use xh = eahx̃0 + εh + θε0.

It is important to notice that equation (1.25) is only an approximation to the exact

likelihood function. We could use the exact ` to derive the bias formula,7 but the algebra

is more involved and the resulting bias expression is, of course, more complicated than

6Using the representation (1.2) with disturbances given in (1.6)-(1.11), the variance of x can
alternatively be expressed as σ2

x = (1 + ah− eah)σ2/a3.
7See for example the innovation algorithm suggested by Brockwell and Davis (1991, pg. 254-256) to

obtain the exact likelihood of an ARMA model. Also, Bergstrom (1990) for the exact likelihood function
of a continuous time model with flow data.
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the one in Theorem 1.3.4. We believe that the gain in accuracy achieved by using the

exact likelihood function rather than an approximation does not justify the additional

complications involved. Moreover, as can be seen below this approximation appears to

work well.

Taking x̃0 as deterministic and equal to zero, the log-likelihood function can be

computed conditioning on the first observation as following

`(a, σ2) = −n− 1

2
ln(2π)− n− 1

2
lnσ2

ε −
1

2σ2
ε

n−1∑
t=1

(
xth − eahxth−h − θεth−h

)2
. (1.26)

The bias expressions are obtained by differentiating (1.25) and (1.26) with respect to

a and σ2. The first result corresponding to a random initial value and the second to a

fixed initial value presented in the following theorems are obtained by assuming that the

derivative of θ with respect to a is zero.8 It should be noted that although these results

provide a good approximation for a range of parameter values that would appear to be

relevant in practice, the quality of the approximation deteriorates as a moves away from

zero.

Theorem 1.3.3. Under model given in (1.2) and (1.24) for t = 1, ..., n− 1 with a fixed

initial condition x̃0 = 0, the bias of â is

E(â− a) = −3 + e−2ah

2T
+ o(T−1). (1.27)

When a→ 0 the bias reduces to

E(â− a) = − 2

T
+ o(T−1), (1.28)

and when h→ 0 it becomes

E(â− a) = − 2

T
+ o(T−1). (1.29)

Theorem 1.3.4. Under model given in (1.2) and (1.24) for t = 1, ..., n−1 with a random

Gaussian initial condition x̃0 with mean 0 and variance σ2(1 + ah− eah)/a3, the bias of

8From Lemma 1.3.1 we see that θ is a function of a, implying that dθ/da is non-zero. This derivative
is, however, a complex function of a and its inclusion considerably complicate calculations. Moreover, as
can be seen in the Appendix dθ/da is negligible. To simplify calculations the results given in Theorem
1.3.3 and 1.3.4 are obtained by assuming dθ/da = 0. Details are presented in Remarks 1 and 2.
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â is

E(â− a) = −3 + e−2ah

2T
+
e−2ahC

2TD2
+ o(T−1), (1.30)

where C and D are complicated functions of the continuous time parameter a (see the

Appendix). When a→ 0 the bias reduces to

E(â− a) = 0 + o(T−1), (1.31)

and when h→ 0 it becomes

E(â− a) = − 2

T
+

2

T (1− aT )
+ o(T−1). (1.32)

We see that (1.27) is identical to (1.18). Although the analytical bias expression for

flows is more complicated than that for stocks when the initial condition is random, the

implications seem to be similar. The leading term is the same in both expressions. Similar

to the stock case, in the near unit root situation the bias converges to zero as a→ 0 and

to −2/T + 2/T (1 − aT ) as h → 0. Evaluating the expressions at different values of a,

T and h (see Figures 1.3 and 1.4) we see that the bias for flows is slightly smaller in

magnitude than the bias for stocks, although the small gap vanishes when the sample

size increases. These results suggest that for large samples the size of the bias does not

depend on whether observations are stocks or flows. However, it is only true when the

correlation in the discrete time disturbances induced by temporal aggregation is taken

into account. As we will show in the next section the bias can be considerably large when

correlated errors are ignored.

It should be noted that the approach of Cox and Snell (1968) is particularly convenient

for deriving the bias formula when the variable of interest is a flow since it only requires

computing the first three partial derivatives of the likelihood function with respect to

the parameters. Alternatively, we could use other formulae available in the discrete

time literature, for example that of Bao and Ullah (2007) (for its implementation in the

continuous time framework see Yu, 2012). One possible advantage of the approach of Bao

and Ullah (2007) as compared with the approach used in this paper is that the former

does not require any distributional assumption, and therefore their analytical results are

valid for both normal and non-normal samples of observations. It should be emphasized,

however, that our bias expressions are expected to be robust to non-normality (for details

see Bao et al., 2015).9 Moreover, we believe that the approach of Cox and Snell (1968) is

9Bao et al. (2015) studied the bias of the estimator of the mean reversion parameter in the context of
continuous time Lévy processes, and showed that the bias expression is robust to non-normality under
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Figure 1.3: The bias of â for monthly data and a random initial condition as a function of a. The graphs correspond to
T = 5, 10, 20 (i.e. n = 60, 120, 240), respectively. The solid line is the approximate bias according to the formula (1.21)
(i.e. the variable is a stock) and the dashed line is the approximate bias according to the formula (1.30) (i.e. the variable
is a flow).
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Figure 1.4: The bias of â for T = 10 and a random initial condition as a function of a. The graphs correspond to quarterly,
monthly and daily data (i.e. n = 40, 120, 2520), respectively. The solid line is the approximate bias according to the
formula (1.21) (i.e. the variable is a stock) and the dashed line is the approximate bias according to the formula (1.30) (i.e.
the variable is a flow).
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simpler and hence easier to implement.

1.4 Asymptotic variance

Another advantage of the Cox and Snell’s approach is that an analytical expression

for the asymptotic variance of the estimators can be obtained straightforwardly. The

following theorem presents the corresponding formula for â.

Theorem 1.4.1. Under model (1.2) with disturbances given in (1.3)-(1.5) or (1.24) for

t = 1, ..., n− 1, the asymptotic variance of â is

V ar(â) = −1− e−2ah

Th
+ o(T−1). (1.33)

This result is identical to that obtained by Tang and Chen (2009) and Yu (2012) for

the stock case. In the next section we derive the asymptotic bias that arises when the

temporal aggregation implicit in the definition of a flow variable, which induces serial

correlation in the disturbances of the exact discrete model, is not taken into account.

The finite sample bias caused by serial correlation in the errors and the finite sample

variance will be explored in section 1.6 through simulations.

1.5 Asymptotic bias

It is well known from the discrete time literature that ignoring correlated errors in

dynamic models leads to inconsistent estimates. Maeshiro (1999) provides an intuitive

explanation of this bias. He points out that since the disturbance term ηth is correlated

with the regressor xth−h, part of the variation in the dependent variable xth that is caused

by ηth is credited to xth−h, contaminating the autoregressive coefficient. The sign of this

contaminating effect is the same as that of the moving average coefficient.

Maeshiro (1999) derived the following expression for the asymptotic bias of the least

square (LS) estimator of the autoregressive coefficient φ = eah when the disturbances

follow a MA(1) process10

plim(φ̂− φ) =
Cov(ηth, xth−h)

σ2
x

=
(1− φ2)θ

1 + θ2 + 2φθ
. (1.34)

the case of a random initial condition. They also found that although the skewness parameter matters
for the bias expression when the initial condition is fixed, the effect disappears when it is assumed to be
zero.

10The asymptotic bias was also derived by Phillips and Wickens (1978) for a more general model that
includes exogenous variables. Both MA(1) and AR(1) disturbances were considered.
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Using the alternative expression for the variance of x (i.e. σ2
x = (1 + ah− eah)σ2/a3), the

asymptotic bias can be written in terms of the continuous time parameter a as following

plim(φ̂− φ) =
(e2ah − 2aheah − 1)

2(1 + ah− eah)
. (1.35)

Since â = ln(φ̂)/h we can use the result given in (1.35) to derive the asymptotic bias of

the estimator â. The resulting bias of the conditional maximum likelihood estimator is

presented in the following theorem.11

Theorem 1.5.1. Under model given in (1.2) and (1.24) the asymptotic bias of the ML

estimator â (conditional on the initial condition) is

plim(â− a) =
1

h
ln

[
(eah − 1)2

2eah(−1− ah+ eah)

]
. (1.36)

Since θ is positive the sign of the bias must be positive as noted by Maeshiro (1999)

for the discrete model. This condition is equivalent to

(eah − 1)2

2eah(eah − 1− ah)
> 1. (1.37)

Simpliying (1.37) becomes e2ah − 2aheah − 1 < 0. Note that e2ah − 2aheah − 1 = 2a3γ1.

Since a < 0, the condition is satisfied if γ1 > 0. Evaluating γ1 at different values of a and

h, we see that γ1 > 0 for a < 0 (see also Figure 1.24 which shows ρ = γ1/γ0 for quarterly,

monthly and daily data). The bias caused by the serial correlation can be much more

serious than that induced by the presence of lagged dependent variables. Note that it

does not disappear as the span goes to infinity.

1.6 Monte Carlo simulations

This section examines the performance of the analytical expressions using Monte Carlo

simulations. To generate simulated data, we first compute the discrete time disturbances

as follows

ηth = σηϑth, t = 1, ..., n, (1.38)

11Note that the ML estimator (conditional on fixed or random initial value) is equivalent to the LS
estimator.
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when the variable is a stock and according to

ηh = m11ϑh, (1.39)

η2h = m22ϑ2h +m21ϑh, (1.40)

ηth = mttϑth +mt,t−1ϑth−h, t = 3, ..., n, (1.41)

when the variable is a flow, where ϑth is a random draw from a standard normal

distribution, ση is the positive square root of the variance given in (1.4), the coefficients

m21, mt,t−1 (t = 3, ..., n) and the positive coefficients mtt (t = 1, ..., n) are obtained

recursively from the equations

m2
11 = γ̃0,

m21 = γ1/m11,

m2
22 = γ0 −m2

21,

mt,t−1 = γ1/mt−1,t−1,

m2
tt = γ0 −m2

t,t−1, t = 3, ..., n,

with γ̃0, γ0 and γ1 given in (1.8)-(1.10).

Assuming that the initial condition is either x(0) = 0 or x(0) ∼ N(0,−σ2/2a),

simulated data are then computed by using (1.2), and the corresponding equation for

observation h (i.e. xh = eahx(0) + ηh for stocks and xh = a−1(eah − 1)x(0) + ηh for

flows). We consider different values for the continuous time parameter a over the

interval [-3,0) and five combinations of sampling interval and data span, these being

(T = 5, h = 1/12), (T = 10, h = 1/12), (T = 20, h = 1/12), (T = 10, h = 1/4),

(T = 10, h = 1/252), which correspond to 5, 10 and 20 years of monthly data, 10 years

of quarterly data, and 10 years of daily data, respectively. The experiment is replicated

10000 times for each of these combinations. The initial condition is included in the

sample for stocks but not for flows. Thus, the number of observations used for

estimation is n + 1 when x(t) is a stock and n when x(t) is a flow. For simplicity, we

assume that the discrete time disturbance corresponding to the first observation is zero

and compute the conditional maximum likelihood estimates. For the flow case, the

log-likelihood function is calculated based on the ARMA representation.12

In order to reduce the dimension of the optimization problem from two to only one

dimension, it is convenient to concentrate out σ2. The concentrated log-likelihood

function is obtained by maximising `(a, σ2) with respect to σ2, and then substituting σ̂2

12Alternatively, we can obtain exact Gaussian estimates. See the iterative estimation procedure
proposed by Bergstrom (1990, pg. 113-114), which does not require expressing the disturbances as
a moving average process.
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into `(a, σ2). Conditioning on x0, the concentrated log-likelihood function for stocks is

(ignoring a constant)

`(a) = −n
2

ln

[
n∑
t=1

(xth − eahxth−h)2

]
, (1.42)

and conditioning on xh and εh = 0, the concentrated log-likelihood function for flows

becomes (ignoring a constant)

`(a) = −n− 1

2
ln

[
n∑
t=2

(xth − eahxth−h − θεth−h)2

]
. (1.43)

For each simulation the ML estimate of a is, therefore, the value of a that maximizes

the concentrated likelihood. The actual bias is calculated by subtracting a from the

average of the estimates obtained from the 10000 simulated samples.13 Figures 1.5-1.12

plot the actual bias and the approximate bias according to the analytical bias expressions

as a function of a. When x(0) is random, the bias is approximated by using expression

(1.21) for both stocks and flows. We observe from the figures that the bias expressions

do a good job of capturing the actual bias of â.

The implications of the analytical bias expressions seem to be similar to those

suggested by the simulations. First, the bias is mainly determined by the data span.

Increasing the data frequency reduces the bias, but it does not disappear unless the

span goes to infinity. Second, the bias is larger when the initial condition is fixed than

when it is random, though the gap seems to reduce as T increases. Third, the initial

condition has an important impact on the bias function when a is relatively small.

Results indicate that as a → 0 the bias goes to zero for the case of random x0 while it

does not disappear for the case of fixed x0. Fourth, the bias is smaller for flows than for

stocks, although the discrepancy appears to reduce when the span increases or the

sampling interval decreases. For example, if a = −3, T = 10 and x0 is fixed, the bias is

-0.34 for flows and -0.45 for stocks when h = 1/4 (i.e. quarterly data) while it is -0.19

for both flows and stocks when h = 1/252 (i.e. daily data). Results indicate, therefore,

that for large samples the magnitude of the bias does not depend on whether

observations are stocks or flows.

Fifth, there is a considerable discrepancy between the analytical bias function and that

obtained by simulation for the near unit root situation for the case of random x0, which is

where the bias function is highly non-linear. This result is, however, not surprising since

we have derived our bias expressions under the assumption of stationarity (i.e. a < 0).

We can see this in Figure 1.13 which shows the bias as a function of the data span for

13Since the number of simulated samples is large, the bias obtained by simulations must closely match
the true bias.
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Figure 1.5: The bias of â for stock and monthly frequency data with x0 fixed as a function of a. The graphs correspond to
T = 5, 10, 20 (i.e. n = 60, 120, 240), respectively. The dashed line is the actual bias and the solid line is the approximate
bias according to the formula (1.18).
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Figure 1.6: The bias of â for flow and monthly frequency data with x0 fixed as a function of a. The graphs correspond to
T = 5, 10, 20 (i.e. n = 60, 120, 240), respectively. The dashed line is the actual bias and the solid line is the approximate
bias according to the formula (1.27).

25



−3.0 −2.0 −1.0 0.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0

a

bi
as

Actual Bias
Formula (1.21)

−3.0 −2.0 −1.0 0.0

−
0.

25
−

0.
20

−
0.

15
−

0.
10

−
0.

05
0.

00

a

bi
as

−3.0 −2.0 −1.0 0.0

−
0.

12
−

0.
10

−
0.

08
−

0.
06

−
0.

04
−

0.
02

0.
00

a
bi

as

Figure 1.7: The bias of â for stock and monthly frequency data with x0 random as a function of a. The graphs correspond
to T = 5, 10, 20 (i.e. n = 60, 120, 240), respectively. The dashed line is the actual bias and the solid line is the approximate
bias according to the formula (1.21).
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Figure 1.8: The bias of â for flow and monthly frequency data with x0 random as a function of a. The graphs correspond
to T = 5, 10, 20 (i.e. n = 60, 120, 240), respectively. The dashed line is the actual bias and the solid line is the approximate
bias according to the formula (1.21).
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Figure 1.9: The bias of â for stock data and T = 10 with x0 fixed as a function of a. The graphs correspond to quarterly,
monthly and daily data (i.e. n = 40, 120, 2520), respectively. The dashed line is the actual bias and the solid line is the
approximate bias according to the formula (1.18).
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Figure 1.10: The bias of â for flow data and T = 10 with x0 fixed as a function of a. The graphs correspond to quarterly,
monthly and daily data (i.e. n = 40, 120, 2520), respectively. The dashed line is the actual bias and the solid line is the
approximate bias according to the formula (1.27).
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Figure 1.11: The bias of â for stock data and T = 10 with x0 random as a function of a. The graphs correspond to
quarterly, monthly and daily data (i.e. n = 40, 120, 2520), respectively. The dashed line is the actual bias and the solid
line is the approximate bias according to the formula (1.21).
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Figure 1.12: The bias of â for flow data and T = 10 with x0 random as a function of a. The graphs correspond to quarterly,
monthly and daily data (i.e. n = 40, 120, 2520), respectively. The dashed line is the actual bias and the solid line is the
approximate bias according to the formula (1.21).
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Figure 1.13: The bias of â for monthly frequency data with x0 random as a function of T . The graphs correspond to
a = −0.1,−0.5,−1, respectively. The dashed lines are the actual bias and the solid line is the approximate bias according
to the formula (1.21).

monthly data and three values of a, these being -0.1, -0.5 and -1. Figure 1.13 suggests

that the gap between the actual bias and the bias expressions is larger for small values

of a and T . The gap reduces, however, when the data span increases.

Figures 1.14-1.17 display the actual and asymptotic variance of â. There is a

considerable discrepancy between the analytical expression and that obtained by

simulations, although the gap decreases as the data span increases. We also see that the

variance is larger for stocks than for flows when T is small or the frequency is low. The

variance does not depend on the nature of the variable when the sample size is large.

We now explore the bias caused by ignoring the serial correlation in the disturbances.

Data are generated according to (1.2) and (1.39)-(1.41) (i.e. the variable is a flow), but

the model is estimated assuming that disturbances satisfy the properties given in (1.4)

and (1.5) (i.e. the variable is treated as a stock).

Following Maeshiro (1999) the bias is decomposed into the bias caused by the serial

correlation and the bias caused by the lagged dependent variable. The former is called by

Maeshiro (1999) the correlation effect and the latter the dynamic effect. We use the same

terminology. The dynamic effect corresponds to the bias expressions derived for the stock

case (i.e. equation (1.18)). The correlation effect is obtained by subtracting the dynamic

effect from the bias. These two effects are shown in Figures 1.18-1.21. It can be seen from

these figures that the bias can be substantial, being especially large when the parameter
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a moves away from zero. The correlation effect is positive as predicted by the theoretical

results and is much larger than the dynamic effect when a is away from zero. Since the

dynamic effect is negative, the two effects are mutually offsetting. Figures 1.18-1.21 also

suggest that the bias does not disappear as the data span goes to infinity nor as the

sampling interval tends to zero. Figures 1.22 and 1.23 show the actual correlation bias

and the asymptotic bias of the estimator â. Results reveal that there is a considerable

difference between the analytical expression and that obtained by simulations, although

the gap decreases as the data span increases.

1.7 Conclusions

The main contribution of this paper has been the derivation of explicit expressions

to approximate the bias in continuous time models for stock and flow variables. The

implications of the bias formulae are consistent with what has been found in the literature.

The bias depends mainly on the data span, implying that the bias will not disappear

unless the data span goes to infinity. Findings also suggest that the bias is larger when

the initial condition is fixed than when it is random, and smaller for flows than for stocks,

although the discrepancy decreases when the data span and the sample size increases,

respectively. A Monte Carlo study reveals that the performance of the bias formulae is

reasonably good, although there is a considerable discrepancy between the analytical bias

function and that obtained by simulation for the near unit root situation for the case of

random x0. These gaps reduce, however, when the data span increases.

The bias formulae derived in this paper have important practical applications for

statistical inference and model analysis, and its application can be expected to lead

to more accurate estimates of the parameters as compared with uncorrected estimates.

Although our analytical results have been confined to univariate first-order differential

equations, the approach used in this paper could be applied to more general models. It

would be useful, for example, to measure the magnitude of the estimation bias in higher

order differential equations or a system of equations with mixed stock and flow data.

1.8 Appendix

Proof of Theorem 1.3.1. Substituting (1.4) into (1.17) gives

`(a, σ2) = −n− 1

2
ln(2π)− n− 1

2
ln

[
−σ

2(1− e2ah)

2a

]
+
a
∑n−1

t=1 (xth − eahxth−h)2

(1− e2ah)σ2
. (1.44)
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Figure 1.14: The variance of â for monthly frequency data with x0 fixed as a function of a. The graphs correspond to
T = 5, 10, 20 (i.e. n = 60, 120, 240), respectively. The dashed lines are actual variances and the solid line is the approximate
variance according to the formula (1.33).
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Figure 1.15: The variance of â for monthly frequency data with x0 random as a function of a. The graphs correspond to
T = 5, 10, 20 (i.e. n = 60, 120, 240), respectively. The dashed lines are actual variances and the solid line is the approximate
variance according to the formula (1.33).
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Figure 1.16: The variance of â for T = 10 with x0 fixed as a function of a. The graphs correspond to quarterly, monthly and
daily data (i.e. n = 40, 120, 2520), respectively. The dashed lines are actual variances and the solid line is the approximate
variance according to the formula (1.33).
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Figure 1.17: The variance of â for T = 10 with x0 random as a function of a. The graphs correspond to quarterly,
monthly and daily data (i.e. n = 40, 120, 2520), respectively. The dashed lines are actual variances and the solid line is the
approximate variance according to the formula (1.33).
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Figure 1.18: The bias of â for flow and monthly frequency data with x0 fixed as a function of a. The graphs correspond to
T = 5, 10, 20 (i.e. n = 60, 120, 240), respectively. The dashed line is the dynamic effect, the dotted line is the correlation
effect and the solid line is the total bias.
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Figure 1.19: The bias of â for flow and monthly frequency data with x0 random as a function of a. The graphs correspond
to T = 5, 10, 20 (i.e. n = 60, 120, 240), respectively. The dashed line is the dynamic effect, the dotted line is the correlation
effect and the solid line is the total bias.
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Figure 1.20: The bias of â for flow data and T = 10 with x0 fixed as a function of a. The graphs correspond to quarterly,
monthly and daily data (i.e. n = 40, 120, 2520), respectively. The dashed line is the dynamic effect, the dotted line is the
correlation effect and the solid line is the total bias.
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Figure 1.21: The bias of â for flow data and T = 10 with x0 random as a function of a. The graphs correspond to quarterly,
monthly and daily data (i.e. n = 40, 120, 2520), respectively. The dashed line is the dynamic effect, the dotted line is the
correlation effect and the solid line is the total bias.
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Figure 1.22: The correlation bias of â for flow and monthly frequency data as a function of a. The graphs correspond to
T = 5, 10, 20 (i.e. n = 60, 120, 240), respectively. The dashed lines are actual correlation biases and the solid line is the
asymptotic bias according to the formula (1.36).
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Figure 1.23: The correlation bias of â for flow data and T = 10 as a function of a. The graphs correspond to quarterly,
monthly and daily data (i.e. n = 40, 120, 2520), respectively. The dashed lines are actual correlation biases and the solid
line is the asymptotic bias according to the formula (1.36).
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The partial derivatives of (1.44) with respect to a and σ2 are

∂l

∂a
=

(
1− e2ah + 2ahe2ah

)
(n− 1)

2a (1− e2ah)
−

2aheah
∑n−1

t=1

(
xth − eahxth−h

)
xth−h

(1− e2ah)σ2

+

∑n−1
t=1

(
xth − eahxth−h

)2

(1− e2ah)σ2
+

2ahe2ah
∑n−1

t=1

(
xth − eahxth−h

)2

(1− e2ah)2 σ2
, (1.45)

∂l

∂σ2
= −n− 1

2σ2
−
a
∑n−1

t=1

(
xth − eahxth−h

)2

(1− e2ah)σ4
. (1.46)

Computing the second derivatives of the function (1.44), taking expectation, and

simplifying, we have

k11 = −(n− 1) + e2ah [−2(n− 1) + 4(n− 1)ah+ 2(n− 2)a2h2]

2a2 (1− e2ah)2

− e4ah [(n− 1)− 4(n− 1)ah+ 2na2h2]

2a2 (1− e2ah)2 , (1.47)

k12 =

(
1− e2ah + 2ahe2ah

)
(n− 1)

2a (1− e2ah)σ2
, (1.48)

k22 = −n− 1

2σ4
. (1.49)

(1.47)-(1.49) are obtained by taking account the fact that E
[(
xth − eahxth−h

)
xth−h

]
=

E [ηthxth−h] = 0, E
[∑n−1

t=1

(
xth − eahxth−h

)2
]

= E
[∑n−1

t=1 η
2
th

]
= (n− 1)σ2

(
e2ah − 1

)
/2a,

and E
[∑n−1

t=1 x
2
th−h

]
= −(n− 2)σ2/2a. Note that E (x2

0) = 0 since x0 = 0.

Differentiating (1.47) and (1.48) with respect to a, we obtain

k
(1)
11 =

(n− 1)− e2ah [3(n− 1)− 2(n− 1)ah+ 4(n− 1)a2h2 + 2(n− 2)a3h3]

a3 (1− e2ah)3

+
e4ah [3(n− 1)− 4(n− 1)ah+ 4(n− 1)a2h2 − 2(3n− 2)a3h3]

a3 (1− e2ah)3

− e6ah[(n− 1)− 2(n− 1)ah]

a3 (1− e2ah)3 , (1.50)

k
(1)
12 = −

(
1 + e4ah − 2e2ah − 4a2h2e2ah

)
(n− 1)

2a2 (1− e2ah)2 σ2
. (1.51)

36



Computing the third derivatives of the function (1.17), taking expectation, and

simplifying, we have

k111 =
(n− 1)− 3e2ah [(n− 1) + (3n− 4)a2h2 + (n− 2)a3h3]

a3(1− e2ah)3

+
3e4ah [(n− 1) + 2(n− 2)a2h2 − 4(n− 1)a3h3)

a3(1− e2ah)3

− e6ah [(n− 1)− 3na2h2 + (n+ 2)a3h3]

a3(1− e2ah)3
, (1.52)

k112 =
e2ahh [2(n− 1) + (3n− 4)ah]− e4ahh [2(n− 1)− nah]

a (1− e2ah)2 σ2
, (1.53)

k122 = −
(
1− e2ah + 2ahe2ah

)
(n− 1)

a (1− e2ah)σ4
. (1.54)

Substituting (1.47)-(1.54) into (1.15) gives

E(â− a) = −3 + e−2ah

2T
− 3 + e−2ah

T (n− 2)
+ O(n−2). (1.55)

Ignoring terms of order less than T−1 gives equation (1.18).

Proof of Theorem 1.3.2. Substituting σ2
η and σ2

x into (1.16) gives

`(a, σ2) = −n
2

ln(2π)− 1

2
ln

[
−σ

2

2a

]
+

a

σ2
x2

0 −
n− 1

2
ln

[
−σ

2(1− e2ah)

2a

]
+
a
∑n−1

t=1 (xth − eahxth−h)2

(1− e2ah)σ2
. (1.56)

The partial derivatives of (1.56) with respect to a and σ2 are

∂l

∂a
=
n
(
1− e2ah

)
+ 2(n− 1)ahe2ah

2a (1− e2ah)
+
x2

0

σ2
−

2aheah
∑n−1

t=1

(
xth − eahxth−h

)
xth−h

(1− e2ah)σ2

+

∑n−1
t=1

(
xth − eahxth−h

)2

(1− e2ah)σ2
+

2ahe2ah
∑n−1

t=1

(
xth − eahxth−h

)2

(1− e2ah)2 σ2
, (1.57)

∂l

∂σ2
= − n

2σ2
− ax2

0

σ4
−
a
∑n−1

t=1

(
xth − eahxth−h

)2

(1− e2ah)σ4
. (1.58)
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Computing the second derivatives of (1.56) and taking expectation, we have

k11 = −n+ e2ah [−2n+ 4(n− 1)ah+ 2(n− 1)a2h2]

2a2 (1− e2ah)2

− e4ah [n− 4(n− 1)ah+ 2(n− 1)a2h2]

2a2 (1− e2ah)2 , (1.59)

k12 =
n
(
1− e2ah

)
+ 2(n− 1)ahe2ah

2a (1− e2ah)σ2
, (1.60)

k22 = − n

2σ4
. (1.61)

As before we use the fact that E[ηthxth−h] = 0, E
[∑n−1

t=1 η
2
th

]
= (n−1)σ2

(
e2ah − 1

)
/2a.

Note that in this case E
[∑n−1

t=1 x
2
th−h

]
= −(n− 1)σ2/2a since E (x2

0) = −σ2/2a.

Differentiating (1.59) and (1.60) with respect to a, we obtain

k
(1)
11 =

n− e2ah [3n− 2(n− 1)ah+ 4(n− 1)a2h2 + 2(n− 1)a3h3]

a3 (1− e2ah)3

+
e4ah [3n− 4(n− 1)ah+ 4(n− 1)a2h2 − 6(n− 1)a3h3]− e6ah [n− 2(n− 1)ah]

a3 (1− e2ah)3 ,

(1.62)

k
(1)
12 = −

n
(
1− e2ah

)2 − 4(n− 1)a2h2e2ah

2a2 (1− e2ah)2 σ2
. (1.63)

Computing the third derivatives of (1.56) and taking expectation, we have

k111 =
n− 3e2ah [n+ 3(n− 1)a2h2 + (n− 1)a3h3]

a3(1− e2ah)3

+
3e4ah [n+ 2(n− 1)a2h2 − 4(n− 1)a3h3)

a3(1− e2ah)3

− e6ah [n− 3(n− 1)a2h2 + (n− 1)a3h3]

a3(1− e2ah)3
, (1.64)

k112 =
e2ahh(n− 1) [2 + 3ah]− e4ahh(n− 1) [2− ah]

a (1− e2ah)2 σ2
, (1.65)

k122 = −
n
(
1− e2ah

)
+ 2(n− 1)ahe2ah

a (1− e2ah)σ4
. (1.66)
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Substituting (1.59)-(1.66) into (1.15), we obtain equation (1.21).

Proof of Lemma 1.3.1. It follows from representation (1.24) that

E(η2
th) = γ0 = σ2

ε(1 + θ2), (1.67)

E(ηthηth−h) = γ1 = θσ2
ε . (1.68)

Equation (1.67) implies σ2
ε = γ0/(1 + θ2). Substituting into equation (1.68) we obtain

γ1 = γ0θ/(1 + θ2), which can be written as

θ2ρ− θ + ρ = 0, (1.69)

where

ρ =
γ1

γ0

=
e2ah − 2aheah − 1

2 [1 + ah(e2ah + 1)− e2ah]
. (1.70)

The coefficient ρ is positive for a < 0 and reaches its maximum value of 0.25 when

the continuous time process has a root near zero. This last result is consistent with the

findings in Working (1960) for the first differences of averages in a discrete time random

walk. See also Figure 1.24, which shows ρ as a function of a14 for quartely (i.e. h=1/4),

monthly (i.e. h=1/12) and daily (i.e. h=1/12) data.

The roots of the equation (1.69) are

1±
√

1− 4ρ2

2ρ
, (1.71)

Note that the term into the radical is positive and the roots are reciprocals of each other.

Assuming invertibility, θ is, therefore, the smallest root (1−
√

1− 4ρ2)/(2ρ).

Proof of Theorem 1.3.3. Substituting σ2
ε into (1.26) gives

`(a, σ2) = −n− 1

2
ln(2π)− n− 1

2
ln

[
−σ

2(1 + 2aheah − e2ah)

2a3θ

]
+
a3θ
∑n−1

t=1

[
xth − eahxth−h − θεth−h

]2
(1 + 2aheah − e2ah)σ2

. (1.72)

14For these graphs we use a wide range of possible values of a. The parameter a takes values from
the region of [-10, 0), [-30, 0) and [-630, 0) for quartely, monthly and daily data, respectively, which
correspond to [0.08, 1) for the autoregressive coefficient in the discrete time model.
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Figure 1.24: The parameter ρ for quartely, monthly and daily data as a function of a.

It should be noted that the error εth in (1.72) depends on a, implying that dεth/da is

different from zero. To see this, let us write εth in terms of xth and its lagged values

εh = xh − eahx0 − θε0,

εth = xth − eah
[
xth−h − θxth−2h + ...+ (−1)t−1θt−1x0

]
− θ

[
xth−h − θxth−2h + ...+ (−1)t−2θt−2xh + (−1)t−1θt−1ε0

]
, t = 2, ..., n− 1, (1.73)

which can be written more compactly as

εth = xth − eahλt(Lh)xth−h − θ
[
λt−1(Lh)xth−h + (−1)t−1θt−1ε0

]
, t = 1, ..., n− 1, (1.74)

where λt(L
h) = [1 − θLh + ... + (−1)t−1(θLh)t−1] and λ0(Lh) = 0. In what follows we

simply write λt(L
h) as λt.

Note, too, that θ is a function of a, implying that dθ/da is non-zero. This derivative is,

however, a complex function of a and its inclusion considerably complicates calculations

as will be shown in Remark 2, where we present a new bias expression for the case of

fixed x0. Moreover, as can be seen in Remark 1 the derivative of θ with respect to a is

negligible. For these reasons, in the rest of the proof we assume that dθ/da = 0. Remark

2 also describes the implications of this assumption.

We now turn to the derivation of the likelihood function with respect to the parameters.
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The partial derivatives of (1.72) with respect to a and σ2 are

∂l

∂a
=

(
3− 2ah(−2 + ah)eah + (−3 + 2ah)e2ah

)
(n− 1)

2a (1 + 2aheah − e2ah)

+
2a3θ

∑n−1
t=1

(
hθeahλt−1xth−2h − heahxth−h

) [
xth − eahxth−h − θεth−h

]
(1 + 2aheah − e2ah)σ2

+
3a2θ

∑n−1
t=1

(
xth − eahxth−h − θεth−h

)2

(1 + 2aheah − e2ah)σ2

−
a3θ(2heah − 2he2ah + 2ah2eah)

∑n−1
t=1

(
xth − eahxth−h − θεth−h

)2

(1 + 2aheah − e2ah)2 σ2
, (1.75)

∂l

∂σ2
= −n− 1

2σ2
−
a3θ
∑n−1

t=1

(
xth − eahxth−h − θεth−h

)2

(1 + 2aheah − e2ah)σ4
. (1.76)

Before computing second derivatives, we first note that the second term of ∂l/∂a

depends on λt−1xth−2h, which implies that two additional terms need to be calculated to

obtain k11. The first term is

E[
n−1∑
t=1

xth−h(λt−1xth−2h)] = E [x2hλ2xh + x3hλ3x2h + · · ·+ xnh−2hλn−2xnh−3h]

= (n− 3)γ
(x)
1 − (n− 4)θγ

(x)
2 + · · ·+ (−1)n−4θn−4γ

(x)
n−3

= nγ
(x)
1 [1− θeah + · · ·+ (−1)n−4θn−4eah(n−4)]

− γ(x)
1 [3− 4θeah + · · ·+ (−1)n−4(n− 1)θn−4eah(n−4)]

= (n− 2)γ
(x)
1

[
1 + (−1)n−4(θeah)n−3

1 + θeah

]
− (n− 3)γ

(x)
1

[
(−1)n−4(θeah)n−3

1 + θeah

]
− γ(x)

1

[
1 + (−1)n−4(θeah)n−3

(1 + θeah)2

]
, (1.77)

where γ
(x)
i denotes the i autocovariance of x. Notice that θn−2 ∼= 0. Approximating,

equation (1.77) becomes

E[
n−2∑
t=1

xth−h(λt−1xth−2h)] =
(n− 2)γ

(x)
1

1 + θeah
− γ

(x)
1

(1 + θeah)2
, (1.78)

where the first autocovariance γ
(x)
1 is

γ
(x)
1 = −(1 + 2aheah − e2ah)(θ + eah)(1 + θeah)σ2

2a3θ(1− e2ah)
. (1.79)
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The second term that we have to calculate is

E[
n−1∑
t=1

(λt−1xth−2h)
2] = E

[
(λ2xh)

2 + (λ3x2h)
2 + · · ·+ (λn−2xnh−3h)

2
]

= σ2
x

[
(n− 3) + (n− 4)θ2 + · · ·+ θ2n−8

]
− 2γ

(x)
1

[
(n− 4)θ + (n− 5)θ3 + · · ·+ θ2n−9

]
+ 2γ

(x)
2

[
(n− 5)θ2 + (n− 6)θ4 + · · ·+ θ2n−10

]
+ · · ·+ (−1)n−52γ

(x)
n−5

[
2θn−5 + θn−3

]
+ (−1)n−42γ

(x)
n−4θ

n−4

= (n− 2)σ2
x

[
1− θ2n−6

1− θ2

]
− σ2

x

[
1− θ2n−6

(1− θ2)2
− (n− 3)

θ2n−6

1− θ2

]
− 2θγ

(x)
1

1− θ2

[
1 + (−1)n−5(θeah)n−4

1 + θeah

] [
(n− 2)− 1

1 + θeah
− 1

1− θ2

]
+

2θ2n−7γ
(x)
1

1− θ2

[
1 + (−1)n−5(θ−1eah)n−4

1 + θ−1eah

] [
(n− 2)− 1

1− θ2
− (n− 3)

]
+

2θ(n− 4)γ
(x)
1

1− θ2

[
(−1)n−5(θeah)n−4

1 + θeah

]
. (1.80)

Approximating, (1.80) becomes

E[
n−1∑
t=1

(λt−1xth−2h)
2] =

(n− 2)σ2
x

1− θ2
− σ2

x

(1− θ2)2
− 2θ(n− 2)γ

(x)
1

(1− θ2)(1 + θeah)
+

2θγ
(x)
1

(1− θ2)(1 + θeah)2

+
2θγ

(x)
1

(1− θ2)2(1 + θeah)
. (1.81)

Computing the second derivatives of (1.72), taking expectation, and using (1.78) and

(1.81), we obtain

k11 = −
[
3 + 2ah(2− ah)eah − (3− 2ah)e2ah

]2
(n− 1)

2a2 (1 + 2aheah − e2ah)2

+
h2e2ah

[
2− 3θ2 − θ3eah + n(1 + θeah)(−1 + θ2)

]
(−1 + e2ah)(1 + θeah)(−1 + θ2)

, (1.82)

k12 =

(
3 + 2ah(2− ah)eah − (3− 2ah)e2ah

)
(n− 1)

2a (1 + 2aheah − e2ah)σ2
, (1.83)

k22 = −n− 1

2σ4
. (1.84)
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Differentiating (1.82) and (1.83) with respect to a gives

k
(1)
11 =

2h3e2ah
[
−2 + 3θ2 − n(θ2 − 1)(1 + θeah)2 + θ(3θ2 − 1)eah + θ4e2ah + θ(θ2 − 1)e3ah

]
(−1 + e2ah)2(1 + eahθ)2(θ2 − 1)

+
(n− 1)

[
9 + 6ah(8 + ah+ a2h2)eah + (−27 + 6ah+ 60a2h2 − 8a3h3 − 4a5h5)e2ah

]
a3(1 + 2aheah − e2ah)3

−
(n− 1)

[
4ah(24− 9ah− 3a2h2 + a3h3)e3ah + 2ah(24− 21ah+ 7a2h2 − 2a3h3)e5ah

]
a3(1 + 2aheah − e2ah)3

+
(n− 1)

[
(27− 12ah− 60a2h2 + 48a3h3 − 16a4h4 + 4a5h5)e4ah − (9− 6ah)e6ah

]
a3(1 + 2aheah − e2ah)3

,

(1.85)

k
(1)
12 = −

(n− 1)
[
3 + 2ah(6 + 2ah+ a2h2)eah − (6− 4a2h2)e2ah

]
2a2 (1 + 2aheah − e2ah)2 σ2

−
(n− 1)

[
−2ah(6− 2ah+ a2h2)e3ah + 3e4ah

]
2a2 (1 + 2aheah − e2ah)2 σ2

. (1.86)

Computing the third derivatives of (1.72), taking expectation and simplifying, we have

k111 =
3h2e2ah

[
3 + ah+ 4aheah − (3− ah)e2ah

] [
2− 3θ2 − θ3eah + n(1 + θeah)(θ2 − 1)

]
a(−1 + e2ah)(1 + θeah)(θ2 − 1)(1 + 2aheah − e2ah)

+
(n− 1)heah

[
9(2 + 4ah+ a2h2)− 6(3− 3ah− 10a2h2 + 3a3h3 + a4h4)eah

]
a2(1 + 2aheah − e2ah)3

+
(n− 1)heah

[
(−36− 72ah+ 22a2h2 + 42a3h3 − 24a4h4 + 4a5h5)e2ah

]
a2(1 + 2aheah − e2ah)3

+
(n− 1)heah

[
6(6− 6ah− 8a2h2 + 7a3h3 − a4h4)e3ah − 2(9− 9ah+ 2a2h2)e5ah

]
a2(1 + 2aheah − e2ah)3

+
(n− 1)heah

[
3(6 + 12ah− 13a2h2 + 2a3h3)e4ah

]
a2(1 + 2aheah − e2ah)3

, (1.87)

k112 =
(n− 1)

[
3 + ah(6− 8ah− a2h2)eah − 2(3− 3ah− 3a2h2 + 4a3h3 − a4h4)e2ah

]
a2 (1 + 2aheah − e2ah)2 σ2

+
(n− 1)

[
−3ah(2− 4ah+ a2h2)e3ah + (3− 6ah+ 2a2h2)e4ah

]
a2 (1 + 2aheah − e2ah)2 σ2

−
h2e2ah

[
2− 3θ2 − θ3eah + n(1 + θeah)(−1 + θ2)

]
(−1 + e2ah)(1 + θeah)(θ2 − 1)σ2

, (1.88)

k122 = −
(n− 1)

(
3 + 2ah(2− ah)eah − (3− 2ah)e2ah

)
a (1 + 2aheah − e2ah)σ4

. (1.89)
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Substituting (1.82)-(1.89) into (1.15) gives

E(â− a) = −3 + e−2ah

2T
− A

2TB2
+ O(n−2), (1.90)

where

A = n(θ2 − 1)
[
(3 + e−2ah)(−2 + 3θ2 − θeah + 3θ3eah + θ4e2ah)− (θ2 − 1)θ(eah − 5e−ah)

]
− (3 + e−2ah)(−2 + 3θ2 + θ3eah)2,

B = n(θ2 − 1)(1 + θeah) + 2− 3θ2 − θ3eah.

Ignoring terms of order less than T−1 gives equation (1.27).

Remark 1. From Lemma 1.3.1 we observe that θ is a function of a, but not of σ2. Figures

1.25 and 1.26 show θ for different values of a15 for quartely (i.e. h = 1/4) and monthly

(i.e. h = 1/12) data and the first two derivatives of θ with respect to a, which are given

by

dθ

da
=

θ

ρ
√

1− 4ρ2

dρ

da
, (1.91)

d2θ

da2
=

1

ρ
√

1− 4ρ2

[
dθ

da

dρ

da
− θ

ρ

(
dρ

da

)2

+
4θρ

1− 4ρ2

(
dρ

da

)2

+ θ
d2ρ

da2

]
, (1.92)

where

dρ

da
= −

(eah − 1)h
[
1− eah(1 + 2ah+ 2a2h2) + e2ah(−1 + 2ah− 2a2h2) + e3ah

]
2 [1 + ah+ e2ah(−1 + ah)]2

,

(1.93)

d2ρ

da2
= −

h2
[
1 + aheah(3 + 2ah+ a2h2)− e2ah(3 + 4a2h2)− 6ahe3ah(1 + a2h2)

]
[1 + ah+ e2ah(−1 + ah)]3

−
h2
[
e4ah(3 + 4a2h2) + ahe5ah(3− 2ah+ a2h2)− e6ah

]
[1 + ah+ e2ah(−1 + ah)]3

. (1.94)

We observe that the first two derivatives of θ with respect to a are negligible, being

smaller for high frequency data. In fact, applying L’Hôpital’s rule it can be seen that

dθ/da → 0 when h → 0 or a → 0 while d2θ/da2 → 0 when h → 0 and d2θ/da2 →
(3− 2

√
3)h2/15 when a→ 0.

15For these graphs we use a wide range of possible values of a. The parameter a takes values from the
region of [-10, 0) and [-30, 0) for quartely and monthly data, respectively, which correspond to [0.08, 1)
for the autoregressive coefficient in the discrete time model.
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Figure 1.25: The parameter θ, dθ/da and d2θ/da2 for quartely data as a function of a.
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Figure 1.26: The parameter θ, dθ/da and d2θ/da2 for monthly data as a function of a.
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Remark 2: Bias expression without assuming dθ/da = 0. Under model given in (1.2) and

(1.24) for t = 1, ..., n− 1 with a fixed initial condition x̃0 = 0, the bias of â is

E(â− a) = −(θ2 − 1)E

2TF 2
+ O(n−2), (1.95)

where

E = n2
[
e2ah(θ2 − 1)(1 + θeah)2(1 + 3e2ah)

]
+ n

[
2− 3θ2 − 2θeah + (6− 9θ2 − θ4)e2ah

+2θ(5− 8θ2)e3ah − 3θ4e4ah
]

+ n2

[
(1 + eahθ)2(θ2 − 1)

(
dθ

da
eah(1− 5θeah + 4e2ah − 3θe3ah − 5e4ah)

+

(
dθ

da

)2

2eah(−3θ + (1 + 2θ2)eah + 3θe2ah − e3ah) +

(
dθ

da

)3

2θ(e2ah − 1)

+
d2θ

da
(e2ah − 1)(−eah + e3ah + θe2ah) +

d2θ

da

dθ

da
(e2ah − 1)(1 + θ2 − e2ah)

)]
and

F = n
[
e2ah(1 + eahθ)(θ2 − 1)

]
+ e2ah

[
2− 3θ2 − θ3eah

]
+ n

[
(1 + eahθ)(θ2 − 1)

(
−dθ
da

2eah(−1 + θeah + e2ah) +

(
dθ

da

)2

(1 + θ2 − e2ah)

)]
.

When a→ 0 the bias reduces to

E(â− a) = − 2

T
+ o(T−1), (1.96)

and when h→ 0 it becomes

E(â− a) = − 2

T
+ o(T−1). (1.97)

To save space we have ignored terms of order less than O(n) in expressions E and F .

To see the impact of dropping the additional terms, which are of order O(n0) = O(1),

we plot the bias expression (1.95) and that including the additional terms (see Figure

1.27). We observe that the two expressions are almost the same. For comparison purpose

we also plot the bias expression (1.27). Figure 1.27 shows that there is a considerable

discrepancy between (1.95) and (1.27) for large values of a. This gap reduces, however,

when a becomes smaller. Indeed, (1.28) and (1.96) suggest that the bias expressions

are identical when a → 0. Similarly, (1.29) and (1.97) indicate the bias expressions are

identical when h→ 0. These results suggest that although the bias expressions (1.27) and
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Figure 1.27: The bias of â for flow data and T = 10 with a fixed initial condition as a function of a. The graphs correspond
to quartely, monthly and daily data (i.e. n = 40, 120, 2520), respectively. The solid line is the approximate bias according
to the formula (1.95) and the dashed line is the bias expression that includes terms of order O(1). The dotted line is the
approximate bias according to the formula (1.27).

(1.30) provide a good approximation for a range of parameter values that would appear

to be relevant in practice, the quality of the approximation deteriorates as a increases.

Proof of Theorem 1.3.4. Substituting σ2
ε and σ2

x into (1.25) gives

`(a, σ2) = −n
2

ln(2π)− 1

2
ln

[
−σ

2(1 + 2aheah − e2ah)(1 + 2θeah + θ2)

2a3θ(1− e2ah)

]
+

a3θ(1− e2ah)x2
0

(1 + 2aheah − e2ah)(1 + 2θeah + θ2)σ2
− n− 1

2
ln

[
−σ

2(1 + 2aheah − e2ah)

2a3θ

]
+
a3θ
∑n−1

t=1

[
xth − eahxth−h − θ(xth−h − eahλt−1xth−2h − θλt−1xth−2h)

]2
(1 + 2aheah − e2ah)σ2

. (1.98)

The rest of the proof is very similar to that of Theorem 1.3.3, but longer. To save

space we only present the equations equivalent to (1.77) and (1.80) and the corresponding

bias expression.
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E[
n−1∑
t=1

xth−h(λt−1xth−2h)] = E [xhλ1x0 + x2hλ2xh + · · ·+ xnh−2hλn−2xnh−3h]

= (n− 2)γ
(x)
1 − (n− 3)θγ

(x)
2 + · · ·+ (−1)n−3θn−3γ

(x)
n−2

= nγ
(x)
1 [1− θeah + · · ·+ (−1)n−3θn−3eah(n−3)]

− γ(x)
1 [2− 3θeah + · · ·+ (−1)n−3(n− 1)θn−3eah(n−3)]

= (n− 1)γ
(x)
1

[
1 + (−1)n−3(θeah)n−2

1 + θeah

]
− (n− 2)γ

(x)
1

[
(−1)n−3(θeah)n−2

1 + θeah

]
− γ(x)

1

[
1 + (−1)n−3(θeah)n−2

(1 + θeah)2

]
. (1.99)

Approximating, equation (1.99) becomes

E[
n−1∑
t=1

xth−h(λt−1xth−2h)] =
(n− 1)γ

(x)
1

1 + θeah
− γ

(x)
1

(1 + θeah)2
. (1.100)

E[
n−1∑
t=1

(λt−1xth−2h)
2] = E

[
(λ1x0)2 + (λ2xh)

2 + · · ·+ (λn−2xnh−3h)
2
]

= σ2
x

[
(n− 2) + (n− 3)θ2 + · · ·+ θ2n−6

]
− 2γ

(x)
1

[
(n− 3)θ + (n− 4)θ3 + · · ·+ θ2n−7

]
+ 2γ

(x)
2

[
(n− 4)θ2 + (n− 5)θ4 + · · ·+ θ2n−8

]
+ · · ·+ (−1)n−42γ

(x)
n−4

[
2θn−4 + θn−2

]
+ (−1)n−32γ

(x)
n−3θ

n−3

= (n− 1)σ2
x

[
1− θ2n−4

1− θ2

]
− σ2

x

[
1− θ2n−4

(1− θ2)2
− (n− 2)

θ2n−4

1− θ2

]
− 2θγ

(x)
1

1− θ2

[
1 + (−1)n−4(θeah)n−3

1 + θeah

] [
(n− 1)− 1

1 + θeah
− 1

1− θ2

]
+

2θ2n−5γ
(x)
1

1− θ2

[
1 + (−1)n−4(θ−1eah)n−3

1 + θ−1eah

] [
(n− 1)− 1

1− θ2
− (n− 2)

]
+

2θ(n− 3)γ
(x)
1

1− θ2

[
(−1)n−4(θeah)n−3

1 + θeah

]
. (1.101)
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Approximating, (1.101) becomes

E[
n−1∑
t=1

(λt−1xth−2h)
2] =

(n− 1)σ2
x

1− θ2
− σ2

x

(1− θ2)2
− 2θ(n− 1)γ

(x)
1

(1− θ2)(1 + θeah)
+

2θγ
(x)
1

(1− θ2)(1 + θeah)2

+
2θγ

(x)
1

(1− θ2)2(1 + θeah)
. (1.102)

The bias of â is

E(â− a) = −3 + e−2ah

2T
+
e−2ahC

2TD2
+ O(n−2), (1.103)

where

C = n3[(θ2 − 1)(e2ah − 1)(1 + θ2 + 2θeah)2(−1 + 2θ2 + θ4 + 2θ6 + 2θ3(3 + 2θ2 + 3θ4)eah

+ (4 + 21θ2 + 2θ4 + 5θ6)e2ah + 4θ(9 + 16θ2 − 7θ4 − 6θ6)e3ah + (5 + 96θ2 + 39θ4 − 94θ6

− 6θ8)e4ah + 2θ(6 + 37θ2 − 36θ4 − 15θ6)e5ah − θ2(7 + 28θ2 + 27θ4 + 2θ6)e6ah − 16θ3(2

+ θ2)e7ah + 2θ4(−7 + θ2)e8ah)] + n2[1− 6θ2 + 2θ4 + 4θ6 + 9θ8 + 2θ10 + 4θ12 − 2θ(5

+ 9θ2 − 28θ4 − 28θ6 − 9θ8 + 3θ10)eah − (9 + 53θ2 − 136θ4 − 266θ6 − 67θ8 + 101θ10

+ 50θ12)e2ah − 2θ(17− 41θ2 − 335θ4 − 122θ6 + 147θ8 + 115θ10 + 11θ12)e3ah + θ(3

+ 79θ2 + 680θ4 + 730θ6 − 597θ8 − 433θ10 − 62θ12)e4ah + 2θ(37 + 277θ2 + 389θ4 − 374θ6

− 425θ8 + 41θ10 + 23θ12)e5ah + θ(21 + 357θ2 + 706θ4 − 1042θ6 − 1623θ8 + 297θ10

+ 384θ12 + 4θ14)e6ah + 2θ(65 + 311θ2 + 367θ4 − 1294θ6 + 63θ8 + 575θ10 + 39θ12)e7ah

+ θ2(311 + 174θ2 − 2294θ4 − 760θ6 + 1795θ8 + 298θ10 + 12θ12)e8ah + 2θ3(180− 285θ2

− 614θ4 + 680θ6 + 250θ8 + 29θ10)e9ah + 2θ4(119− 194θ2 + 168θ4 + 170θ6 + 57θ8)e10ah

+ 8θ5(19 + 5θ2 − θ4 + 13θ6)e11ah + 12θ6(7− 6θ2 + 3θ4)e12ah − 4n(eah + θ)2(1 + eahθ)3

× (θ2 − 1)[1− 2θ2 − θ4 − 2θ6 − θ(3 + 8θ2 + θ4)eah + (−2− 24θ2 + 6θ6)e2ah − 2θ(9

+ 17θ2 − 10θ4 − 2θ6)e3ah + (−7− 38θ2 + 3θ4 + 30θ6)e4ah + θ(−19− 8θ2 + 51θ4 + 4θ6)

× e5ah + 2θ2(−4 + 19θ2 + 3θ4)e6ah + 2θ3(5 + θ2)e7ah] + 4(1 + 3e2ah)(eah + θ)4

× (1 + eahθ)6(θ2 − 1)2,

D = n2[(e2ah − 1)(θ2 − 1)(1 + θeah)(1 + 2θeah + θ2)2] + n[−1 + 2θ2 + θ4 + 2θ6

+ (θ + 8θ3 + 3θ5)eah + (3 + 10θ2 + 3θ4 − 8θ6)e2ah + (9θ + 4θ3 − 19θ5 − 2θ7)e3ah

− 2θ2(−3 + 7θ2 + 2θ4)e4ah − 2θ3(1 + θ2)e5ah + 2(θ2 − 1)(θ + eah)2(1 + θeah)3.
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Proof of Theorem 1.4.1. Computing the inverse of the Fisher Information matrix for the

continuous time parameters a and σ2 and extracting the entry (1,1), we have

Under model given in (1.2)-(1.5) for t = 1, ..., n−1 with a fixed initial condition x0 = 0,

the asymptotic variance of â is

V ar(â) = −1− e−2ah

Th
− 2(1− e−2ah)

T (n− 2)h
. (1.104)

Under model given in (1.2)-(1.5) for t = 1, ..., n − 1 with a random Gaussian initial

condition x0 with mean 0 and variance −σ2/2a, the asymptotic variance of â is

V ar(â) = −1− e−2ah

Th
− (1− e−2ah)[(3n− 2)e2ah − n]

T (n− 1)h[(n− 2)e2ah − n]
. (1.105)

Under model given in (1.2) and (1.24) for t = 1, ..., n− 1 with a fixed initial condition

x0 = 0, the asymptotic variance of â is

V ar(â) = −1− e−2ah

Th
− (1− e−2ah)[−2 + 3θ2 + θ3eah]

Th[n(θ2 − 1)(θeah + 1) + 2− 3θ2 − θ3eah]
. (1.106)

Under model given in (1.2) and (1.24) for t = 1, ..., n − 1 with a random Gaussian

initial condition x0 = 0 with mean 0 and variance σ2(1 + ah − eah)/a3, the asymptotic

variance of â is

V ar(â) = −1− e−2ah

Th
− (1− e−2ah)(nF +G)

Th(n2H + nF +G)
, (1.107)

where

F = 1− 2θ2 − θ4 − 2θ6 − θ(1 + 8θ2 + 3θ4)eah − (3 + 10θ2 + 3θ4 − 8θ6)e2ah − θ(9 + 4θ2

− 19θ4 − 2θ6)e3ah − 2θ2(3− 7θ2 − 2θ4)e4ah + 2θ3(1 + θ2)e5ah,

G = −2(θ + eah)2(1 + θeah)3(θ2 − 1),

H = (e2ah − 1)(1 + θeah)(θ2 − 1)(1 + 2θeah + θ2)2.

Ignoring terms of order less than T−1 gives equation (1.33).

Proof of Theorem 1.5.1. Applying natural logarithm to φ̂ and using the preservation of
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convergence for continuous transformations (i.e. plim ln(φ̂) = ln(plim φ̂)), we have

plim â =
1

h
ln
(
plim eâh

)
=

1

h
ln

[
eah +

−1− 2aheah + e2ah

2(1 + ah− eah)

]
=

1

h
ln

[
−(eah − 1)2

2(1 + ah− eah)

]
. (1.108)

Subtracting a in both sides of the equation and noting that a can be written as h−1lneah,

we obtain (1.36).
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Chapter 2

Bias reduction methods in

continuous time models with stock

and flow variables

2.1 Introduction

It is well known that the maximum likelihood (ML) estimator in continuous time

models may be seriously biased in finite samples, being especially severe when the

continuous time process is nearly a zero root process. For example, Yu (2012) showed

that the bias of the ML estimator for the mean reversion parameter in the Vasicek

model is about 250% when the speed of mean reversion is slow and a three-year time

interval is considered, regardless of the sample frequency. The bias can be corrected if

an explicit expression for the bias function or the first terms in an asymptotic expansion

of the bias can be obtained analytically. For standard models, a bias expansion is often

available. For instance, Tang and Chen (2009) developed expansions for the bias of

parameter estimators for the Vasicek (Vasicek, 1977), CIR (Cox et al., 1985) and

general linear drift diffusion processes. They showed that the first term in the bias

expansion of the mean reversion estimator is of order 1/T , where T is the data span.

A simple bias correction can be computed by subtracting the first order term of the

bias expansion from the parameter estimate. The approach has the advantage of removing

the first order bias without altering the variance. A drawback of this correction method

is that it is not applicable to models for which an asymptotic expansion is not available.

In many cases, even the first terms of a bias expansion are difficult to compute explicitly

as in the case of complex models containing flow variables, or the leading terms may be

analytically involved. Because of these difficulties, alternative methods, which do not
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rely on the explicit form of an asymptotic expansion, could be preferred to implement in

practice. The main purpose of this paper is, therefore, to compare some bias reduction

techniques in the context of continuous time models.

Among these bias reduction techniques is the jackknife, which combines estimates

obtained by application of a given method to the whole sample and sub-samples, in

a way that eliminates the first order bias. One drawback of the jackknife is that it

tends to inflate the variance of the estimator. Various studies have shown, however,

that a carefully designed method may reduce the finite sample bias without any loss

of asymptotic efficiency. For example, in the context of continuous time models, the

jackknife has been applied to maximum likelihood estimators and directly to option price

by Phillips and Yu (2005), who showed that this technique not only leads to substantial

bias reductions, but also these reductions may be accomplished without compromising

the gains by much larger variability. The main attraction of the jackknife is that it is

computationally cheap to implement.

Another resampling method commonly used for bias reduction is the bootstrap. As

opposed to the jackknife, it has been found that the bootstrap can deliver substantial bias

reductions without inflating the variance (see for example, Tang and Chen, 2009). Because

it depends on new samples drawn from the original sample, this technique can take into

account different features of the data such as dependent observations or heteroskedasticity

without making specific assumptions on the structure of the data generating process.

A third method, which can be effective for bias reduction, is indirect inference.

Similar to the bootstrap, indirect inference is computer intensive because it makes use

of Monte Carlo simulations. Its advantages not only for estimating models with

intractable likelihood functions, but also for correcting the bias have been highlighted in

the literature. For example, in the context of CIR models, it was shown by Phillips and

Yu (2009) that indirect inference estimation can be very successful in removing bias

without increasing the variance. Indirect inference uses an auxiliary model for the

estimation stage, which does not need to be correctly specified. This auxiliary model

becomes particularly convenient when the initial model is difficult to estimate as in the

case of continuous time models with correlated discrete time disturbances.

Some comparisons of these bias correction techniques for continuous time processes

have been conducted in recent years. For example, Tang and Chen (2009) found that

indirect inference and bootstrap exhibit a similar performance, although the first method

tends to have smaller variance but larger bias than the second one. These authors also

provide evidence to support the superiority of these two methods in terms of root mean

square error (RMSE) as compared to the jackknife. A Monte Carlo experiment conducted

in Phillips and Yu (2009) reveals that indirect inference is more effective on removing
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the bias than the jackknife. These bias reduction techniques have been implemented

on continuous time models in finance, with diffusion processes being the main focus.

The most important diffusion processes, which have been commonly used to describe

the dynamics of asset prices, including stock prices, interest rates and exchange rates,

allow for instantaneously observed variables and are formulated as a first order stochastic

differential equation.

Many economic variables such as GDP, consumption and exports are measured as

the accumulation of the underlying rate of flow over a given time interval. The main

difference of this type of variable as compared to instantaneously observed ones is that the

temporal aggregation occurring with flows induces serial correlation in the discrete time

disturbances. In addition, economic variables often exhibit a more complex correlation

structure, which could be more accurately described by using higher order differential

equations. Orders greater than one also induce correlation in the discrete time errors.

Contrary to diffusion processes, bias reduction methods in the presence of correlated

discrete time disturbances have not received attention in the continuous time literature.

This paper considers two cases where this situation occurs, the former is a continuous time

AR(1) with the variable of interest assumed to be a flow, and the latter is a continuous

time AR(2) with the variable assumed to be a stock.

In the last decades much work has been done on estimating continuous time models in

the presence of correlated errors (see for example, Bergstrom, 1990). Working with serially

correlated disturbances is, however, more difficult econometrically than working with

white noise disturbances. In particular, the likelihood function becomes more complex.

In this paper, we show that indirect inference is very convenient for estimating continuous

time models because it not only corrects the finite sample bias arising from estimation,

but also can be successfully used to avoid the complications of working with correlated

errors. We show that the indirect inference estimator based on the likelihood function

of an approximate model with white noise disturbances has little bias. We also show

that unlike indirect inference, the other bias reduction methods are not able to deliver

substantial bias reductions when the serial correlation in the disturbances is not taken

into account.

The paper is organised as follows. Section 2 briefly presents the continuous time model

for the univariate and multivariate cases and the bias corrected estimators computed by

using analytical bias expressions. Section 3 describes the jacknnife, indirect inference

and bootstrap methods of bias reduction, and examines the finite sample properties of

these three estimators by providing stochastic expansions. Section 4 explores the finite

sample performance of the four bias corrected estimators using a Monte Carlo experiment.

The robustness of the results to departures from normal, homoskedastic and white noise

errors are also explored. Section 5 considers an empirical application to the broad effective
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exchange rate series for euro area and Section 6 concludes.

2.2 Continuous time model

2.2.1 Univariate model

We consider the model defined by,

dx(t) = [ax(t) + b]dt+ ζ(dt), t > 0, (2.1)

where x(t) is a scalar continuous time process, x(0) is given, a is a negative scalar

parameter and ζ(dt) is white noise with mean zero and variance σ2dt. Since x(t) is

observable only at discrete time points, the parameters of the continuous time model

must be estimated from discrete data. Assuming equispaced discrete data observed at

(h, 2h, ..., nh),1 the exact discrete time model corresponding to (2.1) is

xth = eahxth−h + c+ ηth, t = 2, ..., n. (2.2)

The constant c, the first observation xh and the discrete time disturbance ηth take different

forms depending on the way in which the variable is sampled, as a stock or as a flow.

When it is a stock, so that the sequence {xh, x2h, ..., xnh} = {x(h), x(2h), ..., x(nh)} is

observed at points of time, the constant is c = (1 − eah)µ with µ = −b/a, the first

observation is

xh = eahx(0)− b

a
(1− eah) + ηh, (2.3)

and the discrete time disturbance given by

ηth =

∫ th

th−h
ea(th−r)ζ(dr), t = 1, ..., n, (2.4)

is white noise with zero mean and variance

E(η2
th) = σ2

η =
σ2

2a

[
e2ah − 1

]
. (2.5)

If x(t) is a flow variable, the observed data take the form of integrals xth =
∫ th
th−h x(r)dr.

The observed vector is {xh, x2h, ..., xnh} = {
∫ h

0
x(r)dr,

∫ 2h

h
x(r)dr, ...,

∫ nh
nh−h x(r)dr}, the

1h is the sampling interval and n is the total number of observations. Note that the time span of
the data is T = nh. For example, if monthly data are recorded in a 20 year time interval, then h = 1

12 ,
T = 20 and n = 240.
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constant is c = (1− eah)µh and the first observation is

xh =
1

a

[
(eah − 1)

(
x(0) +

b

a

)
− bh

]
+ ηh. (2.6)

The disturbance defined by

ηh =
1

a

∫ h

0

(
ea(h−r) − 1

)
ζ(dr), (2.7)

ηth =
1

a

[∫ th

th−h

(
ea(th−r) − 1

)
ζ(dr) +

∫ th−h

th−2h

(
eah − ea(th−h−r)) ζ(dr)

]
, (2.8)

for t = 2, ..., n, is a first-order moving average with variance

E(η2
h) = γ̃0 =

σ2

2a3

[
3 + 2ah− 4eah + e2ah

]
, (2.9)

E(η2
th) = γ0 =

σ2

a2

[
h(e2ah + 1) +

1− e2ah

a

]
, t = 2, ..., n, (2.10)

and first-order autocovariance

E(ηthηth−h) = γ1 =
σ2

a2

[
e2ah − 1

2a
− heah

]
. (2.11)

The exact discrete time model for this case of flow data can alternatively be expressed

as

xth = eahxth−h + c+ εth + θεth−h, t = 2, ..., n, (2.12)

where θ = (1 −
√

1− 4ρ2)/(2ρ), ρ = γ1/γ0 and εth is a white noise process with mean

zero and variance σ2
ε = γ1/θ = γ0/(1 + θ2) (see Lemma 1.3.1).

One field where the literature on continuous time models driven by Brownian motions

and more recently by Lévy processes is well developed is finance. Much of the focus in

this area has been on the univariate stochastic differential equation

dx(t) = k(µ− x(t))dt+ σdB(t), t > 0, (2.13)

where B(t) is a standard Brownian motion. The parameter of major interest being k,

reflects the rate of convergence towards the long run mean, µ. This model proposed by

(Vasicek, 1977) for interest rates, can be seen as a special case of (2.1) with a = −k,

b = kµ and ζ(dt) = σdB(t).

From the financial literature it is well known that the estimator of the mean reversion

parameter k, as opposed to the estimators of µ and σ2, can suffer from substantial bias in
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finite samples, being especially acute when the continuous time process has a root near

zero2. Yu (2012) derived the following bias expression for the case of known long run

mean

E(â− a) = −3 + e−2ah

2T
+ o(T−1). (2.14)

Tang and Chen (2009) approximated the bias when the long run mean is unknown, and

showed that the bias expression for this case becomes

E(â− a) = −5 + 2e−ah + e−2ah

2T
+ o(T−1). (2.15)

These bias expressions were derived by assuming that the variable is observed at

specific points in time. This assumption is reasonable for financial variables, but not for

some economic variables such as consumption, income and exports, which are observed

as the accumulation of the underlying rate over the sampling interval. Using the general

formula obtained by Cox and Snell (1968), a bias expression for this type of variable when

the mean is known (assumed to be 0) was derived in the first chapter. It was shown that

the bias is smaller for flows than for stocks, although the leading term in both expressions

is the same.

We could apply the Cox and Snell’s formula to approximate the bias for the flow case

with unknown mean. Since calculations are more complicated due to the inclusion of

an additional parameter, the mean, and the resulting bias expression is cumbersome, we

do not derive these results in this paper. We will show through simulations that similar

to the known mean case, the bias is smaller for flows than for stocks when the mean is

unknown. The leading term is expected to be identical in both formulae, for flows and

stocks.

We can use the analytical bias expression evaluated at â to compute a bias corrected

estimator (BC). The BC estimator for the case of known mean (equal to zero) is given

by

ã = â+
3 + e−2âh

2T
, (2.16)

and for the case of unknown mean by

ã = â+
5 + 2e−âh + e−2âh

2T
. (2.17)

The BC estimators can be used in both cases, when the variable of interest is a stock or

when it is a flow. Since we subtract the first order term of the bias expansion from the

2It implies a root near unity in the discrete time process.
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parameter estimate, the BC estimator satisfies

E(ã− a) = o(T−1). (2.18)

2.2.2 Multivariate model

We consider the multivariate continuous time model given by

dX(t) = [A(Θ)X(t) +B(Θ)] dt+ ζ(dt), t > 0, (2.19)

where X(t) = (X1(t), ..., Xg(t))
′ is a g-dimensional continuous time random process, X(0)

is given, the g× g matrix A and g× 1 vector B are known functions of an unknown p× 1

parameter vector Θ (p ≤ g(g+ 1)) and ζ(dt) is vector white noise with covariance matrix

Σ(ω)dt with Σ(ω) a function of an unknown q×1 parameter vector ω (q ≤ g(g+1)/2). It

is also assumed that all characteristic roots of the coefficient matrix A have negative real

parts to ensure stationarity and a priori restrictions on the structure of the continuous

system ensure identifiability.3

The exact discrete time model corresponding to (2.19) is given by

Xh = eA(Θ)hX(0) + (eA(Θ)h − I)A−1(Θ)B(Θ) + εh, (2.20)

Xth = eA(Θ)hXth−h + (eA(Θ)h − I)A−1(Θ)B(Θ) + εth, t = 2, ..., n, (2.21)

where the matrix exponential is defined by eAh =
∑∞

i=0(Ah)i/i!. Under the assumption

that the vector X(t) comprises only stock variables,4 the discrete time disturbance vector

εth takes the form

εth =

∫ th

th−h
e(th−r)Aζ(dr), (2.22)

and satisfies the following properties

E(εthε
′
th) = Ω =

∫ h

0

erAΣerA
′
dr, (2.23)

E(εshε
′
th) = 0, s 6= t. (2.24)

Wang et al. (2011) derived two analytical expressions to approximate the bias in linear

systems when the vector X(t) comprises stock variables. The first expression corresponds

to the estimator based on the Euler approximation and the second one to that based on

3One complication arises when a continuous system is estimated from the exact discrete model.
This complication is the aliasing phenomenon, which in a system of differential equations leads to an
identification problem.

4We focus on stock variables, but flows or a mixture of stocks and flows may be considered.
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the trapezoidal approximation. We only consider the second bias expression to compute

the bias corrected estimator since the trapezoidal rule leads to a smaller discretization

bias. The estimation bias is given by

E(Â− A) = − 4

T
(I + eAh)−1K(I + eAh)−1 − 4

h
L(I + eAh)−1 + o(T−1), (2.25)

where L is a g × g matrix whose ijth element is

Lij =
1

n

g∑
s=1

e′g(s−1)+i∆eg(j−1)+s, (2.26)

with ∆ = [Ig ⊗ (I + eAh)−1]Γ(0)−1⊗Ω[Ig ⊗ (I + eAh)−1]′, and ei being a column vector of

dimension g2 whose ith element is 1 and other elements are 0. When B(Θ) is unknown,

K is given by

K = Ω

(I − eA′h)−1 + eA
′h(I − e2A′h)−1 +

∑
λ∈Spec(C)

λ(I − λeA′h)−1

Γ(0)−1, (2.27)

where Γ(0) =
∑∞

i=0 e
iAhΩeiA

′h and Spec(C) is the set of eigenvalues of eA
′h. If B(Θ) is

known, K becomes

K = Ω

eA′h(I − e2A′h)−1 +
∑

λ∈Spec(C)

λ(I − λeA′h)−1

Γ(0)−1. (2.28)

The BC estimator can be computed as

Ã = Â+
4

T
(I + eÂh)−1K̂(I + eÂh)−1 +

4

h
L(I + eÂh)−1, (2.29)

and satisfies

E(Ã− A) = o(T−1). (2.30)

Computing a bias corrected estimator is straightforward once an explicit expression

for the bias function or the first terms in an asymptotic expansion of the bias have

been derived. In many cases, even the first terms of a bias expansion are difficult to

compute explicitly, or they may be analytically involved. Because of these difficulties,

other approaches could be preferred to implement in practice.
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2.3 Bias reduction methods

In this section we consider three alternative approaches for bias reduction which do

not rely on the explicit form of an asymptotic expansion of the bias, these being the

jackknife, indirect inference and bootstrap methods. We start by describing the bias

correction procedures. The finite sample properties of these three alternative estimators

are then examined by providing stochastic expansions. We first assume that the estimator

is consistent. We then consider the case of inconsistent estimators and show that the

methods may fail to reduce the bias as intended. Let Φ denote a d-dimensional parameter

vector, whose true value is equal to Φ0.

2.3.1 Jackknife

The jackknife method for reducing the bias was introduced by Quenouille (1949).

Based on Quenouille’s jackknife, Phillips and Yu (2005) proposed a bias reduction method

in the time series context. Instead of deleting observation i or a block of d observations

from the full sample, which is applicable for i.i.d observations, the Phillips and Yu’s

method uses non-overlapping sub-samples in order to preserve the dynamic dependence

of the data. The procedure requires dividing the sample of n observations into m non-

overlapping sub-samples of size l such that n = ml. Using a given method, such as ML,

the parameter vector is estimated for each sub-sample and the entire sample. Let Yi

(i = 1, ...,m) denote the set of m sub-samples, Φ̂i (i = 1, ...,m) the set of m sub-sample

estimators and Φ̂ the estimator that uses the whole sample. The jackknife estimator is

then computed as the linear combination of the whole-sample and sub-sample estimators

Φ̂J,m = wΦ̂ + wm
1

m

m∑
i=1

Φ̂i, (2.31)

where the weights are given by

w =
m

m− 1
and wm = − 1

m− 1
.

Alternative sampling schemes could be used to obtain the jackknife estimator (see

Chambers, 2013). The weights have to be, however, modified to take into account the

type of employed sub-samples. Weights need to be also modified when the sub-sample

lengths are not all equal. For the case of two different sets of sub-samples Y1,i

(i = 1, ...,m1) and Y2,i (i = m1 + 1, ...,m1 + m2), Chambers (2013) showed that the
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weights become

w =
m1n(l1 − l2)−mnl1

m1n(l1 − l2)−ml1(n− l2)
and wm =

ml1l2
m1n(l1 − l2)−ml1(n− l2)

,

where lj (j = 1, 2) is the length of sub-sample Yj,i and m1 = m−m2.

The jackknife estimator defined above has the property that it eliminates the bias

term of order n−1. Since the jackknife method based on non-overlapping sub-samples

only requires estimating the model m + 1 times, it is computationally much cheaper to

implement than other bias reduction methods such as bootstrapping or indirect inference,

which usually require a large number of repetitions. One drawback of jackknife is that it

tends to inflate the variance of the estimator. In the next section it will be shown that

despite increasing the variance, the jackknife can make substantial reductions in the bias

that offset the inflated variance, leading to a decrease in the RMSE. Another limitation

of the jackknife is that it does not completely remove the first order bias when the process

has a unit root. The reason is that the limit distribution of the estimator depends on the

initial condition, implying different functional forms in different sub-samples. We expect

a similar behaviour for the nearly unit root situation.

To see if this issue occurs in a near unit root process, we simulate 240 monthly

observations from the univariate model (2.2)-(2.5) for two values of the continuous time

parameter a, these being -3 and -0.1 and corresponding to a stationary and a nearly

unit root process, respectively. The variable is assumed to be a stock and b is set to 0.

Figure 2.1 shows the distribution of the sub-sample estimates using m = 3 and 10000

replications. As opposed to the stationary case, when a = −0.1 the distribution of Φ̂i

appears to be different for one of the sub-samples.

In order to improve the performance of the jackknife in unit root models, a modified

estimator with new weights was proposed by Chambers and Kyriacou (2013). Optimal

weights that minimize the variance of this modified jackknife were suggested by Chen

and Yu (2015).

2.3.2 Indirect inference

The indirect inference method was originally proposed by Smith (1993) and generalized

independently by Gallant and Tauchen (1996) and Gourieroux et al. (1993). It is a

simulation-based method that can be used to estimate the parameters of a model. Its

advantages not only for estimating models with complex likelihood functions, but also

for correcting the bias arising from estimation, have been highlighted in the literature

(see for example, Gourieroux et al., 1993; Phillips and Yu, 2009). As pointed out by
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Figure 2.1: Distribution of the sub-sample estimates using m = 3. The solid line corresponds to the 1st sub-sample and
the dotted and dashed lines to the 2nd and 3rd sub-samples, respectively. The graph in the left corresponds to a = −0.1
and the one in the right to a = −3.

Gourieroux et al. (1993), indirect inference can be also used to remove the discretization

bias that is induced by discretizing continuous time models.5 This method also has

the valuable advantage of its generality. It is applicable in a wide range of economic

and statistical models, including DSGE models, dynamic panel models, discrete choice

models and continuous time models. It can also be implemented with different estimation

methods and may inherit some of the good properties of the original estimators.

The method requires generating samples from the original model. Given a parameter

choice Φ, let ys(Φ) = {ysh, ys2h, ..., ysnh}6 be the artificial data, where s = 1, ..., S, and S

being the number of simulated paths. Indirect inference uses these artificial data to

estimate an auxiliary model, which is easy to estimate but is not necessarily correctly

specified. Let {Φ̂s(Φ)}Ss=1 denote the estimates obtained from simulated data. The

auxiliary model is also estimated using the observed data. Let Φ̂ denote the estimates

obtained from observed data. The estimate that uses the observed data is then

compared to the average of the S estimates based on the artificial data by employing

some measure of distance, for example the absolute value of its numerical difference (i.e.

5In finance, for example, where many models involve non-linearities, some form of approximation such
as Euler scheme or trapezoidal rule is often used to obtain a discrete representation of the continuous
time model. The estimates suffer, however, from bias that is induced by the approximation.

6For calibration purposes, the number of observations in ys(Φ) has to be the same as that in the
observed data.
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|Φ̂− 1
S

∑S
s=1 Φ̂s(Φ)|). Let us call it the distance estimate. The procedure is repeated for

various (say i) possible values of the parameter vector Φ, leading to a set of i distance

estimates. The indirect inference estimate is the minimum distance estimate (see section

2.4 for a more detailed description of the method applied to continuous time models).

More formally, the estimator is defined by7

Φ̂II,S = argmin
Φ

∥∥∥∥∥Φ̂− 1

S

S∑
s=1

Φ̂s(Φ)

∥∥∥∥∥ , (2.32)

where ‖.‖ is some finite-dimensional distance metric. As the number of simulated paths

S tends to infinity, the II estimator becomes

Φ̂II = argmin
Φ

∥∥∥Φ̂− E
(

Φ̂s(Φ)
)∥∥∥ . (2.33)

2.3.3 Bootstrap

The bootstrap, due to Efron (1979, 1982), is a resampling method that uses the original

sample to generate new samples, each of which is employed to calculate the statistic of

interest. Unlike jackknife, every resample has the same number of observations as the

original sample. There are different ways to obtain bootstrap samples. In the residual

bootstrap, for example, S resamples are drawn from the residuals with replacement,

which are then employed to generate bootstrap samples of the variable of interest. Given a

parameter estimate Φ̂, let ys(Φ̂) = {ysh, ys2h, ..., ysnh} be the sth resample, where s = 1, ..., S,

and S being the number of bootstrap simulated paths. This leads to S data sets and

hence S estimates of Φ. Let {Φ̂s(Φ̂)}Ss=1 denote the estimates obtained from the artificial

data and Φ̃ be the sample average of {Φ̂s(Φ̂)}Ss=1, that is,

Φ̃ =
1

S

S∑
s=1

Φ̂s(Φ̂). (2.34)

The bootstrap bias corrected estimator of Φ is

Φ̂B,S = 2Φ̂− Φ̃. (2.35)

7The number of paramaters in the auxiliary model must be at least as large as the number of
parameters in the original model. Note that we are assuming that the dimension of the auxiliary
paramenter is the same as that of the initial parameter. When the dimension of the auxiliary parameter

is larger, the indirect inference estimator becomes Φ̂II,S = argmin
Φ

∥∥∥Φ̂− 1
S

∑S
s=1 Φ̂s(Φ)

∥∥∥2

Ω̂
, where Ω̂ is a

positive definite matrix converging to a deterministic positive definite matrix Ω.
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2.3.4 Stochastic expansions of the bias corrected estimators

We now present some stochastic expansions of the bias corrected estimators in

continuous time models. Let us first consider the ML estimator of Φ, which is given by

Φ̂ = argmax
Φ

`(Φ), (2.36)

where `(Φ) is the log-likelihood function. If the function `(Φ) is correctly specified, Φ̂

is consistent. In such situations, jackknife, indirect inference and bootstrap are useful

methods for correcting the finite sample bias.

We assume that the estimator Φ̂ admits the stochastic expansion

Φ̂ = Φ0 +
P (v,Φ0)

T 1/2
+
Q(v,Φ0)

T
+ o(T−1), (2.37)

where P (v,Φ0) and Q(v,Φ0) are d-dimensional random vectors, which depend on some

asymptotic random term v. Note that the stochastic expansion is given in powers of

T−1/2, where T is the data span. The reason for expanding the estimator in powers of

T−1/2 rather than of n−1/2 is that the bias in continuous time models is mainly determined

by the data span.

It is straightforward to show that the jackknife estimator satisfies the following

expansion

Φ̂J,m = (w+wm)Φ0 +

(
w

T 1/2
+

wm
(lh)1/2

)
P (v,Φ0)+

(w
T

+
wm
lh

)
Q(v,Φ0)+o(T−1). (2.38)

Chambers (2013) shows that the jackknife estimator Φ̂J,m with weights

w =
m

m− 1
and wm = − 1

m− 1

for equal sub-sample lengths or weights equal to

w =
m1T (l1 − l2)−mTl1

m1T (l1 − l2)−ml1(T − hl2)
and wm =

mhl1l2
m1T (l1 − l2)−ml1(T − hl2)

for unequal sub-sample lengths, satisfies

E(Φ̂J,m − Φ0) = o(T−1). (2.39)

To obtain the last result we have used the fact that E[P (v,Φ0)] = 0.8 The jackknife

8Note that the first order term of the bias expressions presented in section two is of order T−1 not
T−1/2. See also the results obtained by Bao and Ullah (2007) for a general class of estimators in linear
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estimator has, therefore, the property that it eliminates the bias term of order T−1.

Gouriéroux et al. (2000) show that under some regularity conditions, the indirect

inference estimator admits the following stochastic expansion9

Φ̂II,S = Φ0 +
P II

T 1/2
+
QII

T
+ o(T−1), (2.40)

where the coefficients P II and QII are given by

P II = P (v,Φ0)− 1

S

S∑
s=1

P (vs,Φ0), (2.41)

QII = Q(v,Φ0)− 1

S

S∑
s=1

Q(vs,Φ0)−

[
1

S

S∑
s=1

∂P

∂Φ′
(vs,Φ0)

]
P II . (2.42)

The random vectors P (v,Φ0) and Q(v,Φ0) are the first and second order terms of the

expansion applied to the estimator Φ̂ (i.e. that based on the observed data). The random

vectors P (vs,Φ0) and Q(vs,Φ0) are the corresponding first and second order terms of the

expansion applied to the estimator Φ̂s(Φ) (i.e. that based on the simulated values). It

is also assumed that the random variables v and vs, s = 1, ..., S are independent and

identically distributed.

For an infinite number of replications S, the terms of order T−1/2 and T−1 in the

expansion satisfy E
(

lim
S→∞

P II
)

= E
(

lim
S→∞

QII
)

= 0. The indirect inference estimator

has the property that it eliminates the T−1/2 and T−1 order bias terms, satisfying,

therefore,

E(Φ̂II − Φ0) = o(T−1). (2.43)

For a finite number of replications S, the last result is not valid. Although E(P II) = 0,

E(QII) is no longer zero. It is now given by

E(QII) =
1

S

d∑
j=1

cov

[
∂P

∂Φj

(v,Φ0), Pj(v,Φ0)

]
. (2.44)

The T−1 order bias term of the indirect inference estimator Φ̂II,S is smaller than that of

the estimator Φ̂ as soon as

1

S

∣∣∣∣∣
d∑
j=1

cov

[
∂P

∂Φj

(v,Φ0), Pj(v,Φ0)

]∣∣∣∣∣ ≤ |E [Q(v,Φ0)]| (2.45)

and non-linear time series models.
9See also Gourieroux et al. (1993) and Smith (1993) for the proof of consistency of the indirect

inference estimator.
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(for further details see Gouriéroux et al., 2000, pg. 342).

The bootstrap estimator also satisfies the stochastic expansion

Φ̂B,S = Φ0 +
PB

T 1/2
+
QB

T
+ o(T−1), (2.46)

where the coefficients PB and QB are

PB = P (v,Φ0)− 1

S

S∑
s=1

P (vs,Φ0), (2.47)

QB = Q(v,Φ0)− 1

S

S∑
s=1

Q(vs,Φ0)−

[
1

S

S∑
s=1

∂P

∂Φ′
(vs,Φ0)

]
P (v,Φ0). (2.48)

Given independence between the random variables v and vs, s = 1, ..., S, and the

fact that E[P (v,Φ0)] = 0, we obtain E(PB) = E(QB) = 0. The bootstrap estimator

eliminates the T−1/2 and T−1 order bias terms, satisfying, therefore,

E(Φ̂B,S − Φ0) = o(T−1). (2.49)

The expansions indicate that the T−1 order bias of the jackknife and bootstrap

estimators vanishes, while that of the indirect inference estimator only disappears for an

infinite number of simulations. Note that since S cannot be made infinite in practice,

the number of indirect inference replications has to be large to ensure accuracy in bias

corrections.

We now present the corresponding asymptotic expansions when the estimators are

inconsistent and show that the methods may fail to correct the bias in this scenario. A

typical case in which this situation can occur is when an approximate discrete model is

used for estimation. In this case the estimator is inconsistent due to the discretization

bias, although this asymptotic bias reduces as the data frequency increases. If the variable

is observed as a flow or the order of the differential equation is higher than one, there is an

additional source of asymptotic bias. The temporal aggregation occurring with flows as

well as orders greater than one induce serial correlation in the discrete time disturbances,

which is not taken into account by an approximate discrete model obtained, for example,

from the Euler scheme.

Let the ML estimator calculated on this approximate model be

Φ̂ = argmax
Φ

`a(Φ), (2.50)
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where `a(Φ) denotes the log-likelihood function of the approximate model. Since `a(Φ)

is misspecified, Φ̂ is in general inconsistent. Suppose that the estimator Φ̂ admits the

following stochastic expansion

Φ̂ = b(Φ0) +
P (v,Φ0)

T 1/2
+
Q(v,Φ0)

T
+ o(T−1), (2.51)

where b(Φ0) = Φ0 + bias(Φ0), with bias(Φ0) being the asymptotic bias of Φ̂.

The expansion of the jackknife estimator is now given by

Φ̂J,m = (w + wm)b(Φ0) +

(
w

T 1/2
+

wm
(lh)1/2

)
P (v,Φ0) +

(w
T

+
wm
lh

)
Q(v,Φ0) + o(T−1),

(2.52)

and the bias of Φ̂J,m by

E(Φ̂J,m − Φ0) = bias(Φ0) + o(T−1). (2.53)

Although the jackknife estimator eliminates the T−1 order bias term, it is not able to

remove the asymptotic bias. The estimator Φ̂J,m is, therefore, inconsistent.

Gourieroux and Monfort (1997, pg. 78) show that when the first step estimator Φ̂ is

inconsistent, the terms P II and QII in the stochastic expansion given in (2.40) become

P II =

[
∂b

∂Φ′
(Φ0)

]−1
[
P (v,Φ0)− 1

S

S∑
s=1

P (vs,Φ0)

]
, (2.54)

QII =

[
∂b

∂Φ′
(Φ0)

]−1
[
Q(v,Φ0)− 1

S

S∑
s=1

Q(vs,Φ0)

]

−
[
∂b

∂Φ′
(Φ0)

]−1
[

1

S

S∑
s=1

∂P

∂Φ′
(vs,Φ0)P II +

1

2

(
P II′ ∂

2bj(Φ0)

∂Φ∂Φ′
P II

)
j=1,...,d

]
. (2.55)

The term of order T−1/2 satisfies E(P II) = 0, while the term of order T−1 satisfies

E(QII) = −
[
∂b

∂Φ′
(Φ0)

]−1

− 1

S

d∑
j=1

cov

 ∂P
∂Φj

(v,Φ0),

([
∂b

∂Φ′
(Φ0)

]−1

P (v,Φ0)

)
j


+

1

2

(
1 +

1

S

)[
Tr

(
∂2bj
∂Φ∂Φ′

(Φ0)

[
∂b

∂Φ′
(Φ0)

]−1

V (P (v,Φ0))

[
∂b′

∂Φ
(Φ0)

]−1
)]

j=1,...,d


(2.56)

(for details the interested reader is referred to Gourieroux and Monfort, 1997, pg. 79).
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Although not eliminating the T−1 order bias term in its entirety, the indirect inference

estimator is able to remove the asymptotic bias. The bias of Φ̂II,S is given by

E(Φ̂II,S − Φ0) =
1

T
E(QII) + o(T−1). (2.57)

Note that the bias of the indirect inference estimator vanishes when the span goes to

infinity. As opposed to the jackknife estimator, the indirect inference estimator appears

to enjoy good properties when the ML estimator Φ̂ is inconsistent.

The expansion of the bootstrap estimator becomes

Φ̂B,S = b(Φ0)− [b(Φ̂)− Φ̂] +
PB

T 1/2
+
QB

T
+ o(T−1), (2.58)

and the bias is now given by

E(Φ̂B,S − Φ0) = bias(Φ0)− bias(Φ̂) + o(T−1). (2.59)

The last expression is obtained by taking account the fact that b(Φ̂) = Φ̂ + bias(Φ̂), with

bias(Φ̂) being the asymptotic bias of the estimator Φ̂s(Φ̂) (i.e. that based on simulated

data). This formula indicates that the bias of the bootstrap estimator is is small when Φ̂

is close to Φ0 and smaller in magnitude than that of the jackknife estimator, when the

terms bias(Φ0) and bias(Φ̂) have the same sign and bias(Φ0) > 0.5 bias(Φ̂), in which case

the two asymptotic biases are mutually offsetting. However, since these biases do not

disappear as the data span goes to infinity, the indirect inference seems to be preferred

in general when the ML estimator is inconsistent.

The next section explores the implementation of the bias reduction methods in

continuous time models using simulations.

2.4 Monte Carlo simulations

2.4.1 Univariate model

We begin by considering the univariate continuous time model (2.1) with ζ(dt) =

σdB(t) and B(t) a standard Brownian motion. Data are generated from the exact discrete

representation with h = 1/12 and T = 20, corresponding to 20 years of monthly data.

We first generate the discrete time disturbances as

ηth = σηϑth, t = 1, ..., n, (2.60)
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when the variable is a stock and according to

ηh = m11ϑh, (2.61)

η2h = m22ϑ2h +m21ϑh, (2.62)

ηth = mttϑth +mt,t−1ϑth−h, t = 3, ..., n, (2.63)

when the variable is a flow, where ϑth is a random draw from a standard normal

distribution, ση is the positive square root of the variance given in (2.5), the coefficients

m21, mt,t−1 (t = 3, ..., n) and the positive coefficients mtt (t = 1, ..., n) are obtained

recursively from the equations

m2
11 = γ̃0,

m21 = γ1/m11,

m2
22 = γ0 −m2

21,

mt,t−1 = γ1/mt−1,t−1,

m2
tt = γ0 −m2

t,t−1, t = 3, ..., n,

with γ̃0, γ0 and γ1 given in (2.9)-(2.11). Assuming x(0) = −b/a, simulated data are then

computed by using (2.2), and the corresponding equation for observation xh (i.e. (2.3) for

stocks and (2.6) for flows). We consider different values of the continuous time parameter

a over the interval [−3, 0), σ = 0.1, µ = 0.1 when the mean is unknown and µ = 0 when

the mean is known.10 The experiment is replicated 10000 times.

For simplicity, we assume that the discrete time disturbance corresponding to the first

observation is zero and compute the conditional maximum likelihood estimates. For the

flow case, the log-likelihood function is calculated based on the ARMA representation

given in (2.12).11 Since we are conducting a large number of simulations it is convenient

to reduce the dimension of the optimisation problem by concentrating the likelihood

function with respect to σ2. Conditioning on the first observation xh, the concentrated

log-likelihood function for stocks is (ignoring a constant)

` = −n− 1

2
ln

[
n∑
t=2

(xth − eahxth−h − (1− eah)µ)2

]
, (2.64)

and conditioning on xh and εh = 0, the concentrated log-likelihood function for flows is

10Results are invariant to other choices of σ and µ.
11Alternatively, we can obtain exact Gaussian estimates. See the iterative estimation procedure

proposed by Bergstrom (1990, pg. 113-114), which does not require expressing the disturbances as
a moving average process.
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(ignoring a constant)

` = −n− 1

2
ln

[
n∑
t=2

(xth − eahxth−h − (1− eah)µh− θεth−h)2

]
, (2.65)

where θ = (1 −
√

1− 4ρ2)/(2ρ), ρ = γ1/γ0. For each simulation, we employ maximum

likelihood (ML), jackknife (JA), indirect inference (II) and bootstrap (BOOT) to estimate

a. We use the bias of the ML estimator as the benchmark.

Four values of m = {2, 3, 4, 8}, the number of non-overlapping sub-samples, are

employed to compute the JA estimator. We consider three values of the number of

simulated paths for indirect inference, these being S = {100, 1000, 10000}. For a stock

variable and a given value of a, each indirect inference sample is computed recursively

according to

xsth = eahxsth−h + (1− eah)µ+ σηu
s
th, (2.66)

where usth ∼ i.i.dN(0, 1) and ση is the positive square root of the variance given in (2.5).

For a flow, each sample is obtained as

xsth = eahxsth−h + (1− eah)µh+ σεw
s
th + θσεw

s
th−h, (2.67)

where wsth ∼ i.i.dN(0, 1) and σε =
√
γ1/θ.

The indirect inference samples are obtained by assuming ση, σε and µ known.12 We

select a grid of possible values for the parameter a, these being a = 0.5 − 0.05i, i =

0, ..., 150,13 and compute the sample average of the S estimates obtained from the artificial

data for each value of a (i.e. 1
S

∑S
s=1 â

s(a)). We keep the simulated disturbance paths

constant over a to allow xsth to change only because of the different values of a. The

indirect inference estimator is the value of a that minimize the distance between â and
1
S

∑S
s=1 â

s(a).

The number of bootstrap repetitions S is set to 100. For stocks, each bootstrap sample

is obtained according to

xsth = eâhxsth−h + (1− eâh)µ̂+ usth, (2.68)

where usth is a random draw with replacement from the centered residuals η̂th, with η̂th =

12Results are robust to other choices of ση, σε and µ.
13Gouriéroux et al. (2000) applied indirect inference in a discrete time AR(1) model using S = 15000

and a finer grid of possible values for the autoregressive parameter. Their results indicate that the
indirect inference estimator works as well as the median unbiased estimator of Andrews (1993). We
also consider a finer grid of possible values for a. Results do not change much with respect to the ones
presented in this paper.
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xth − eâhxth−h − (1− eâh)µ̂. For flows, each bootstrap sample is computed using

xsth = eâhxsth−h + (1− eâh)µ̂h+ wsth + θ̂wsth−h, (2.69)

where wsth is a random draw with replacement from the centered residuals ε̂th, with

ε̂th = xth− eâhxth−h− (1− eâh)µ̂h− θ̂εth−h and θ̂ = (1−
√

1− 4ρ̂2)/(2ρ̂) and ρ̂ = γ̂1/γ̂0.14

Figures 2.2 and 2.3 plot the bias and root mean square error (RMSE) of the ML

estimator in the model with known mean and the BC estimator given in (2.16) for different

values of the continuous time parameter a over the interval [−3, 0). Results shown in

Figure 2.2 are obtained under the assumption that the variable is a stock while those

contained in Figure 2.3 assume that the variable is a flow.

We observe that the curvature of the bias function of the BC estimator is similar to

that of the ML estimator for the near unit root situation. The reason for this is that

the analytical bias expression is not able to reproduce the curvature of the actual bias

function. Note that when a approaches zero the bias function obtained from simulations

is highly nonlinear, while the first order term in the analytical bias expression is linear.

More importantly, we see from the figures that the BC estimator exhibits only a small

bias and has lower RMSE than the ML estimator for both stock and flow variables.

Table 2.2 in the Appendix reports the bias and RMSE of the JA estimators of a for

the values of m considered. It is clear from Table 2.2 that the bias increases with m for

the majority of parameter values while the RMSE decreases with m. As opposed to the

JA estimator based on 2 sub-samples, the RMSE of the JA estimator based on 3, 4 or

8 sub-samples is smaller than that of the original estimator. The bias and RMSE of the

II estimator for the three values of S are reported in Table 2.3 in the Appendix. We see

that the bias reduces with S as suggested by equation (2.44). The RMSE also decreases

as S becomes larger.

Figures 2.2 and 2.3 show the bias and RMSE of the JA estimator that minimises

bias and performs better than the original estimator in terms of RMSE, this being the

one based on 3 sub-samples. We see that âJ,3 produces considerable bias reductions,

despite not removing completely the first order bias when a approaches zero. The bias

and RMSE of âII,10000 and âB,100 are also reported in Figures 2.2 and 2.3. Related to the

II estimator, the graphs indicate that it performs as well as the BC estimator. A similar

picture emerges for the BOOT estimator. There are no important differences between

II, BOOT and BC estimators in terms of bias or RMSE. We also see that BC, II and

BOOT estimators produce not only substantial bias reductions for all values of a, even

those near the unit root, but also smaller RMSEs than the ML and JA estimators (see

14Note that we have used the ARMA representation to simulate the indirect inference and bootstrap
samples. We could alternatively use the approach employed to generate the original data.
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Figure 2.2: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of a in a univariate model with known mean
and stock data as a function of a. Data are generated using T = 20, h = 1/12 (i.e. n = 240) and µ = 0. The dark solid
line corresponds to the ML estimator and the solid line to the BC estimator. The dark dashed line corresponds to the JA
estimator, the dashed line to the II estimator and the dotted line to the BOOT estimator.
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Figure 2.3: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of a in a univariate model with known mean
and flow data as a function of a. Data are generated using T = 20, h = 1/12 (i.e. n = 240) and µ = 0. The dark solid
line corresponds to the ML estimator and the solid line to the BC estimator. The dark dashed line corresponds to the JA
estimator, the dashed line to the II estimator and the dotted line to the BOOT estimator.
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also Table 2.4 in the Appendix, which summarises these results for some values of a).

Tables 2.5, 2.6 and 2.7 in the Appendix, and Figures 2.4 and 2.5 report the

corresponding biases and RMSEs of â in the model with unknown mean. Results for the

JA estimators are similar to those for the known mean case, reductions in the RMSE

come at the cost of increased bias. Table 2.6 indicates that the bias of the II estimator

reduces with S. From the figures we observe that the JA estimator seem to remove

more than the first order bias. The graphs also suggest that the BC, II and BOOT

estimators perform better than the JA estimator in terms of RMSE, even when larger

values of the number of sub-samples m are used (see also Tables 2.5 and 2.7).

2.4.2 Multivariate model

We now turn to the multivariate case. We consider the bivariate model with known

mean used by Wang et al. (2011)

dX(t) = AX(t)dt+ ΣdB(t), (2.70)

where X(t) = (X1(t), X2(t))′, B(t) is the standard bivariate Brownian motion whose

components are independent and the matrices A and Σ are given by

A =

(
a11 0

a21 a22

)
and Σ = σ2

(
1 0

0 1

)
,

with a11 = −0.7, a21 = −0.5, a22 taking different values over the interval [−3, 0), and

σ2 = 1.15 We generate data from the exact discrete model

Xh = FX(0) + εh, (2.71)

Xth = FXth−h + εth, t = 2, ..., n, (2.72)

where the parameter matrix F is given by

F = eAh =

(
f11 0

f21 f22

)
,

with f11 = ea11h, f22 = ea22h and f21 a function of the continuous time parameters. The

vector εth is white noise with covariance matrix Ω = σ2V with V =
∫ h

0
erAerA

′
dr.

The experiment is replicated 10000 times, using X(0) = 0, h = 1/12 and T = 20.

The restrictions on the exact discrete representation implied by the triangular form of

15Results are invariant to other choices of σ2.
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Figure 2.4: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of a in a univariate model with unknown mean
and stock data as a function of a. Data are generated using T = 20, h = 1/12 (i.e. n = 240) and µ = −0.1. The dark solid
line corresponds to the ML estimator and the solid line to the BC estimator. The dark dashed line corresponds to the JA
estimator, the dashed line to the II estimator and the dotted line to the BOOT estimator.
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Figure 2.5: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of a in a univariate model with unknown mean
and flow data as a function of a. Data are generated using T = 20, h = 1/12 (i.e. n = 240), and µ = −0.1. The dark solid
line corresponds to the ML estimator and the solid line to the BC estimator. The dark dashed line corresponds to the JA
estimator, the dashed line to the II estimator and the dotted line to the BOOT estimator.
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the matrix A are taken into account for both, simulation and estimation. As for the

univariate case, the parameter vector is estimated by maximum likelihood. To reduce

the dimension of the optimisation problem we concentrate the likelihood function with

respect to Σ. It is straightforward to show that the concentrated conditional log-likelihood

function is (ignoring a constant)

l = −n− 1

2
ln

∣∣∣∣∣
n∑
t=2

εthε
′
th

∣∣∣∣∣ . (2.73)

We also compute the BC, JA, II, and BOOT estimators, and compare their bias

and RMSE with those of the ML estimator. To implement indirect inference in the

multivariate context we use the following algorithm. First, use ML estimates obtained

from observed data Φ̂ = (â11, â21, â22)′ to generate S simulated paths for Xs
th, s = 1, ..., S.

Each path is generated recursively according to

Xs
th = eÂhXs

th−h + Ω̂
1
2U s

th, (2.74)

where U s
th ∼ i.i.dN(0, I). The estimates {Φ̂s(Φ̂)}Ss=1 obtained from the artificial data are

then employed to compute a new estimate of Φ

Φ̂(1) = Φ̂ + λ

(
Φ̂− 1

S

S∑
s=1

Φ̂s(Φ̂)

)
, (2.75)

with λ a given scalar between 0 and 1. Second, using Φ̂(1) and the same

pseudo-observations for {U s
th}Ss=1 generate S new simulated paths for Xs

th, and update

the estimate of Φ by

Φ̂(2) = Φ̂(1) + λ

(
Φ̂− 1

S

S∑
s=1

Φ̂s(Φ̂(1))

)
. (2.76)

Third, repeat step two until convergence, that is, until the change in Φ̂(q) with respect to

the estimate obtained in the previous step (i.e. Φ̂(q−1)) be sufficiently small.

This algorithm leads to a sequence of Q estimates Φ̂(q), q = 1, ..., Q, with the last

value Φ̂(Q) being the indirect inference estimate.16 Note that if this sequence converges,

Φ̂(Q) is the value of Φ̂(q) that minimizes the objective function
∥∥∥Φ̂− 1

S

∑S
s=1 Φ̂s(Φ̂(q))

∥∥∥.

We use λ = 1 and λ = 0.2 for those cases in which the algorithm does not seem to

16Gouriéroux et al. (2000) uses this algorithm to implement the indirect inference method in a
discrete time AR(2) model. Results obtained by the authors suggest that the indirect inference
estimator computed with this numerical algorithm performs as well as the approximately median unbiased
estimators of Rudebusch (1992) and Andrews and Chen (1994). A similar algorithm has been also used
by MacKinnon and Smith (1998) and Smith et al. (1997).
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be converging.17 The convergence criterion used is |Φ̂j − 1
S

∑S
s=1 Φ̂s

j(Φ̂
(q)
j )| ≤ 0.0002 for

j = 1, 2, 3. The number of simulated paths is set to S = 100. We do not consider

larger values of S because the implementation of the algorithm is highly computationally

expensive. Note that a different sequence Φ̂(q) has to be obtained for each Monte Carlo

simulation. Moreover, the algorithm seems to work well with this chosen value of S,

although it may be desirable to employ larger values of S for empirical applications.

Alternatively, a grid search procedure could be employed to obtain the indirect

inference estimates of Φ = (a11, a21, a22). The key advantage of the grid search approach

is that 1
S

∑S
s=1 Φ̂s(Φ) is computed only once for each of the possible values of Φ, and

this quantity can be then used to calculate the objective function for each Monte Carlo

simulation without any additional simulation or resampling. However, different from the

univariate case the implementation of the grid search method may be computationally

expensive in the multivariate context, since different combinations of the elements of Φ

would have to be considered. For example, if 10 possible values for each parameter are

chosen, the grid search method requires evaluating the function 10000 times. The

number of evaluations increases exponentially as the grid becomes finer. This would be

8000 if 20 values of each parameter are considered and 125000 when the grid evaluates

each parameter at 50 points.

The bootstrap samples are obtained using

Xs
th = eÂhXs

th−h + U s
th, (2.77)

where U s
th is a random draw with replacement from the centered residuals ε̂th. The

number of bootstrap repetitions is S = 100. Figures 2.6-2.8 plot the bias and RMSE of

the ML, BC, JA, II and BOOT estimators of the parameter matrix A as a function of

the continuous time parameter a22 using 10000 replications. The figures only show the

JA estimator based on 3 sub-samples, results for other values of m are reported in Table

2.8 in the Appendix (see also Table 2.9 which summarizes the results for the multivariate

case).

We observe that the bias of the BC estimator of a11 is positive, which is opposite to

that of the ML estimator, and larger than those of its rivals JA, II and BOOT

estimators. Nonetheless, the BC estimator exhibits the smallest RMSE. As opposed to

the JA estimator based on 2 sub-samples, all estimators have smaller RMSE than the

benchmark. The BC, II, BOOT and JA estimators of the parameters a21 and a22

produce substantial bias reductions, being the first three ones which offer the best

17As pointed out by MacKinnon and Smith (1998) larger values of λ lead to a faster convergence but
a lower probability that the sequence will converge. The authors recommend to start with λ = 1 and
then use lower values of λ for thoses cases in which the algorithm does not seem to be converging.
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Figure 2.6: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of the parameter a11 in a multivariate model
with stock data as a function of a22. The graphs correspond to T = 20, h = 1/12 (i.e. n = 240) and B = 0. The dark solid
line corresponds to the ML estimator and the solid line to the BC estimator. The dark dashed line corresponds to the JA
estimator, the dashed line to the II estimator and the dotted line to the BOOT estimator.
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Figure 2.7: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of the parameter a21 in a multivariate model
with stock data as a function of a22. The graphs correspond to T = 20, h = 1/12 (i.e. n = 240) and B = 0. The dark solid
line corresponds to the ML estimator and the solid line to the BC estimator. The dark dashed line corresponds to the JA
estimator, the dashed line to the II estimator and the dotted line to the BOOT estimator.
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Figure 2.8: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of the parameter a22 in a multivariate model
with stock data as a function of a22. The graphs correspond to T = 20, h = 1/12 (i.e. n = 240) and B = 0. The dark solid
line corresponds to the ML estimator and the solid line to the BC estimator. The dark dashed line corresponds to the JA
estimator, the dashed line to the II estimator and the dotted line to the BOOT estimator.

performance in terms of RMSE, even when larger values of m are used to compute the

JA estimator. From Table 2.8 we also see that similar to the univariate case reductions

in the RMSE of the JA estimator come at the cost of increased bias.

Although not producing the smallest RMSE, the JA estimator is much cheaper to

implement that those based on simulations. The jackknife method requires estimating the

model m+ 1 times for each Monte Carlo simulation, while bootstrap requires generating

S new pseudo-data sets and estimating the model S + 1 times. Indirect inference is

even more expensive. As pointed out by Gouriéroux et al. (2000), the bootstrap method

performs only the first step of the algorithm employed to compute the indirect inference

estimator for the choice λ = 1. If the number of simulated paths are the same in both

methods, computing Φ̂(1) is as expensive as computing Φ̂B,S. The iterated algorithm

requires estimating the model S times again for each additional iteration, making the

procedure highly expensive. This additional computational cost is, however, offset by the

gains derived from a better evaluation of the bias used to correct the initial estimator.18

These gains are clearly visible when the ML estimator is inconsistent as will be shown

later.

18Note that the q step estimator can be written as Φ̂(q) = (1− λ)Φ̂(q−1) + λ
(

Φ̂− bias
)

, where bias =

1
S

∑S
s=1 Φ̂s(Φ̂(q−1)) − Φ̂(q−1). The q step estimator is, therefore, a combination of the previous step

estimator and the bias corrected estimator based on observed data.
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Figure 2.9: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of a in a univariate model with unknown mean,
flow data and Gamma disturbances as a function of a. Data are generated using T = 20, h = 1/12 (i.e. n = 240), and
µ = −0.1. The dark solid line corresponds to the ML estimator and the solid line to the BC estimator. The dark dashed
line corresponds to the JA estimator, the dashed line to the II estimator and the dotted line to the BOOT estimator.

We now study the performance of the bias reduction methods under model

misspecifications. We only present results for one of the models considered in this

section, this being the univariate continuous time model with unknown mean and the

variable of interest assumed to be a flow.

2.4.3 Non-normal and heteroskedastic disturbances

So far we have assumed that the disturbances are homoskedastic and follow a normal

distribution. In this section we explore the robustness of the results to departures from

these assumptions. To investigate the effect of non-normality, we generate the discrete

time disturbances according to (2.61)-(2.63) with ϑth ∼ Γ(1, 1)−1. It is assumed therefore

that ϑth follows a Gamma distribution with raw moments m1 = 0, m2 = 1, m3 = 2 and

m4 = 9. Note that under the assumption of Gamma discrete time disturbances ζ(dt) =

σdL(t), where L(t) is a Lévy process. The simulated bias and RMSE reported in Figure

2.9 are smaller in magnitude than the corresponding values under normal disturbances.

Similar to the case of normal errors, BC, BOOT and II estimators dominate in terms of

RMSE.
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To investigate the effect of heteroskedasticity we consider the model

dx(t) = [ax(t) + b]dt+ |x(t)|αdB(t). (2.78)

The Euler scheme is used to obtain an approximate discrete model, from which data

are generated. It is desirable to use a sufficiently small step size in order to increase the

accuracy of the approximation. To do this, we partition each original interval [(j−1)h, jh]

j = 1, ..., n, into 100 new sampling intervals. Let δ = h/100 denote the new sampling

interval. It should be noted that as the partition becomes finer, the accuracy of the

approximation increases. However, the amount of computation required is inevitably

higher as well. The simulated data from the Euler scheme are obtained as following

xiδ = (aδ + 1)x(i−1)δ − aµδ + |x(i−1)δ|αδ1/2υiδ, (2.79)

where i = 1, ...,
h

δ
,
h

δ
+ 1, ...,

2h

δ
, ...

h

δ
(n− 1) + 1, ...,

h

δ
n and υiδ ∼ i.i.dN(0, 1).

This simulated trajectory can be seen as a nearly exact continuous sample path of the

process x(t). Observations from (t− 1)h+ δ to th, t = 1, ..., n, are then used to compute

xsth as following

xsth =

h/δ∑
j=1

δx(t−1)h+jδ, t = 1, ..., n. (2.80)

Note that the integral
∫ th
th−h x(r)dr is approximated by the sum of the observations over

the interval (t− 1)h+ δ to th.

To take into account heteroskedastic disturbances, a recursive-design wild bootstrap

estimator of the type proposed by Gonçalves and Kilian (2004) is used. Each bootstrap

sample is computed recursively according to

xsth = eâhxsth−h + ĉ+ wsth + θ̂wsth−h, (2.81)

where wsth = ε̂thυth, with ε̂th = xth − eâhxth−h − ĉ− θ̂εth−h and υth ∼ i.i.dN(0, 1).

Figures 2.10 and 2.11 show the bias and RMSE of the ML, BC, BOOT, II and JA

estimators of a in the univariate model with α = {1.5, 1}. The second value of α, as well

as small values of a (i.e. those close to zero), generate larger departures from

homoskedasticity. As can be seen, the bias is bigger than the corresponding values

under homoskedastic errors. We observe that heteroskedasticity changes the curvature

of the bias function, which is now much more negative as a approaches zero. The BOOT

and JA estimators are more robust to heteroskedasticity than the other estimators.

Heteroskedasticity also has a big impact on RMSE, with this figure being larger in

magnitude. Although all methods still offer considerable bias reductions, the remaining
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Figure 2.10: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of a in a univariate model with unknown mean,
flow data and heteroskedastic disturbances as a function of a. Data are generated using T = 20, h = 1/12 (i.e. n = 240),
µ = −0.1 and α = 1.5. The dark solid line corresponds to the ML estimator and the solid line to the BC estimator. The
dark dashed line corresponds to the JA estimator, the dashed line to the II estimator and the dotted line to the BOOT
estimator.

80

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

a

bi
as

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

0.
8

0.
9

1.
0

1.
1

a

R
M
SE

ML
BC
JA
II
Boot

Figure 2.11: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of a in a univariate model with unknown mean,
flow data and heteroskedastic disturbances as a function of a. Data are generated using T = 20, h = 1/12 (i.e. n = 240),
µ = −0.1 and α = 1. The dark solid line corresponds to the ML estimator and the solid line to the BC estimator. The
dark dashed line corresponds to the JA estimator, the dashed line to the II estimator and the dotted line to the BOOT
estimator.
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Figure 2.12: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of a in a univariate model with unknown
mean and flow data when correlated errors are ignored. Data are generated using T = 20, h = 1/12 (i.e. n = 240), and
µ = −0.1. The dark solid line corresponds to the ML estimator and the solid line to the BC estimator. The dark dashed
line corresponds to the JA estimator, the dashed line to the II estimator and the dotted line to the BOOT estimator.

bias is larger than when the disturbances are homoskedastic (normal or non-normal).

2.4.4 Misspecified model

In this section we explore the robustness of the results to departures from white

noise disturbances. The bias caused by correlated errors can be much more serious than

that induced by the presence of lagged dependent variables because it can be

considerably large, and it does not disappear as the span goes to infinity nor as the

sampling interval tends to zero. Data are generated from the exact discrete analogue

(2.2) with Gaussian errors with variance and first-order autocovariance given by

equations (2.9)-(2.11) (i.e. the variable is a flow). The model is estimated by using the

concentrated log-likelihood function for a stock variable, that is ignoring the correlation

in the disturbances. The simulated data used to compute the indirect inference and

bootstrap estimators are generated by using equations (2.66) and (2.68), respectively.

Note that the indirect inference and bootstrap samples are obtained by assuming that

the data generating process (DGP) is a continuous time AR(1) with stock data, which

is different from the DGP used to generate the original data. Figure 2.12 shows the bias

and RMSE of the ML, BC, JA, II and BOOT estimators of a.
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We see that the bias of the ML estimator can be substantial, being especially large

when the parameter a moves away from zero. Not surprisingly, the four bias corrected

estimators are unable to produce considerable bias reductions. The BC estimator given

in (2.17) is not designed to eliminate the bias caused by the serial correlation in the

disturbances. Similarly, the JA estimator is unable to remove the asymptotic bias as

suggested by the stochastic expansion when the original estimator is inconsistent. Related

to corrections based on indirect inference and bootstrap methods, note that the synthetic

samples do not mimic the dependence structure of the original data, and hence the

estimators â and âs enjoy different properties. In particular, â is inconsistent while âs is

consistent. Results suggest, therefore, that both methods are dependent on the validity

of the DGP used to produce the synthetic samples, although some robustness may be

expected, as it was shown above for the case of non-normal disturbances.

We also observe that the bias of the four alternative estimators is larger than that of

the ML estimator for most of the parameter values. The reason for this is that the bias

due to correlated errors has sign opposite to that arising from estimation. The bias of

the ML estimator reported in Figure 2.12 is, therefore, the total bias caused by these two

mutually offsetting effects. Figure 2.12 also suggests that the bias caused by the serial

correlation can be more serious than that induced by the presence of a lagged dependent

variable, being the first one which dominates for most of the parameter values. We also see

that the bias and RMSE of all estimators are larger in magnitude than the corresponding

values when the model is correctly specified (compare Figures 2.5 and 2.12), although the

difference reduces as a approaches zero, leading in some cases to the opposite situation.

As suggested by the stochastic expansions, corrections based on indirect inference

and bootstrap methods should be able to produce large bias reductions when the

original estimator is inconsistent. It is clear from the results obtained in this section

that both methods fail to correct the bias because the synthetic samples do not

resemble the original data. In particular, they do not preserve the dependence structure

of the original observations. In the next section we show that both estimators are

capable of considerable bias reductions when the synthetic samples are generated from

the true DGP.

2.4.5 Bias correction for inconsistent estimators

We now assume that the DGP is known, and explore two modified versions of the bias

correction methods reviewed in the previous section, which are based on the misspecified

likelihood that ignores the serial correlation in the discrete time disturbances. There

are a number of reasons why it would be convenient to use a misspecified likelihood.

First of all, it should be noted that working with serially correlated disturbances is more
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difficult econometrically than working with white noise disturbances. The reason is that

the likelihood function becomes more complex. The approach considered in this section

offers, therefore, some benefits in terms of computational cost since the likelihood function

is not only easier to derive, but also easier to evaluate.

Second, different to the approach based on the correctly specified likelihood function,

the first modified version does not require to fully characterize the properties of the

discrete time disturbances. Note that in the case of the AR(1) model, the approach

based on the correctly specified likelihood function requires knowing the form of the

variance and first-order autocovariance of ηth, while for the misspecified likelihood case

only the precise form of the variance of ηth needs to be known in order to compute an

estimate for the continuous time parameter σ. The second modified version does not

require deriving the exact discrete representation, and could be applied to more general

models, for example those involving non-linearities.

We illustrate both approaches by considering two univariate continuous time models

whose discrete time representations contain a moving average component. The former

is the same model studied above, a continuous time AR(1) with unknown mean and

the variable of interest assumed to be a flow, and the latter is a continuous time AR(2)

with known mean and the variable assumed to be a stock. Note that in both models

the discrete time disturbances admit the representation ηth = εth + θεth−h, where θ is a

function of the continuous time autoregressive parameters.

For the AR(1) model, original data are generated as described in last section. The BC

estimator can be easily modified to reduce not only the bias arising from estimation, but

also the bias induced by the correlation in the disturbances. The asymptotic bias caused

by this second effect is presented in the following theorem.

Theorem 2.4.1. Under model xth = φxth−h + c + ηth where ηth is a first-order moving

average, the asymptotic bias of the ML estimator â = lnφ̂/h is

plim(â− a) =
1

h
ln

[
γ1

eahγ
(x)
0

+ 1

]
, (2.82)

where γ1 is the first-order autocovariance of ηth and γ
(x)
0 is the variance of xth.

A bias corrected (BC) estimator can be, therefore, computed as19

ã = â+
5 + 2e−âh + e−2âh

2T
− 1

h
ln

[
γ̂1

eâhγ̂
(x)
0

+ 1

]
. (2.83)

19Note that we have subtracted the asymptotic correlation bias. A more accurate estimator could
be calculated by subtracting the T−1 order term of an expansion for the correlation bias as well. This
derivation is, however, more difficult to obtain, and it is not considered in this paper.
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To avoid the derivation of explicit expressions for γ1 and γ
(x)
0 , in this section we employ

the sample autocovariance of η̂th and the sample variance of xth.

As suggested by the stochastic expansion, the JA estimator is not able to eliminate the

asymptotic bias when the estimator is inconsistent. In order to improve the corrections

offered by this method we subtract the asymptotic bias from the estimate based on the

whole sample as well as from the estimates based on the sub-samples. We then compute

the JA estimator in the usual way, that is as

Φ̂J,m = wä+ wm
1

m

m∑
i=1

äi, (2.84)

where the estimates that uses the whole sample and sub-samples are given by

ä = â− 1

h
ln

[
γ̂1

eâhγ̂
(x)
0

+ 1

]
and äi = âi −

1

h
ln

[
γ̂1

eâhγ̂
(x)
0

+ 1

]
.

So far we have used the exact discrete model to simulate the artificial data employed

to compute the indirect inference and bootstrap estimators. We now explore an

alternative approach based on an approximate discrete model obtained from the Euler

scheme. Simulated data are generated as follows

xiδ = (aδ + 1)xiδ−δ − aµδ + σδ1/2υiδ, (2.85)

where i = 1, ...,
h

δ
,
h

δ
+ 1, ...,

2h

δ
, ... ,

h

δ
(n − 1) + 1, ...,

h

δ
n and δ = h/20. For bootstrap

υiδ is a random draw with replacement from the standardized residuals and for indirect

inference υiδ ∼ i.i.dN(0, 1). Observations from (t − 1)h + δ to th, t = 1, ..., n, are then

used to compute xsth as following

xsth =

h/δ∑
j=1

δx(t−1)h+jδ, t = 1, ..., n. (2.86)

The advantage of using this approach to generate the synthetic samples instead of the

one described in section 2.4.1 is that it does not require knowing the form of either θ, γ0,

or γ1. The II estimator is computed by using the grid search reviewed in section 2.4.1.

As before, for the estimation stage we use the log-likelihood function for a stock variable

as the auxiliary misspecified model. The graph in the left of Figure 2.13 reports the ML

and the four bias corrected estimators. We see that the BC, JA and BOOT estimators

correct only part of the bias caused by the serial correlation. In contrast, the bias of the

ML estimator is succesfully corrected by the II estimator.

85



−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

a

bi
as

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

a

bi
as

ML
BC
JA
II
Boot

Figure 2.13: Bias of the ML, BC, JA, II and BOOT estimators of a in a univariate model with unknown mean and flow
data when correlated errors are ignored and the DGP is assumed to be known. Data are generated using T = 20, h = 1/12

(i.e. n = 240) and µ = −0.1. The estimator in the left is â = 1
h

lnφ̂, while the one in the right is â = 1
h

(φ̂− 1). The dark
solid line corresponds to the ML estimator and the solid line to the BC estimator. The dark dashed line corresponds to
the JA estimator, the dashed line to the II estimator and the dotted line to the BOOT estimator.

Until now we have used the exact discrete representation to estimate the continuous

time parameters. Although formulae for the exact discrete analogue corresponding to a

general linear system of stochastic differential equations are available in the literature

(see Bergstrom, 1990; Chambers, 1999), the precise form of the coefficient matrices and

especially the covariance matrices of the disturbances are increasingly complicated as

the continuous time model becomes more complex. An alternative estimator of the

continuous time parameters can be obtained from the Euler approximate discrete

model. The asymptotic bias of this estimator is given in Theorem 2.4.2.

Theorem 2.4.2. Under model xth = φxth−h + c + ηth where ηth is a first-order moving

average, the asymptotic bias of the ML estimator â = (φ̂− 1)/h is

plim(â− a) =
1

h

[
γ1

γ
(x)
0

+H

]
, (2.87)

where H = eah − 1− ah.

According to Theorem 2.4.2, the asymptotic bias can be decomposed into two parts,

the correlation bias and the discretization bias, which are given by γ1/hγ
(x)
0 and H/h,
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respectively. We can use this result to compute a new BC estimator

ã = â+
5 + 2e−âh + e−2âh

2T
− 1

h

[
γ̂1

γ̂
(x)
0

− eâh + 1 + âh

]
, (2.88)

and a new JA estimator, where the estimates ä and äi are now given by

ä = â− 1

h

[
γ̂1

γ̂
(x)
0

− eâh + 1 + âh

]

and

äi = âi −
1

h

[
γ̂1

γ̂
(x)
0

− eâh + 1 + âh

]
.

The graph in the right of Figure 2.13 reports the ML and the four bias corrected

estimators based on the Euler approximate discrete model. We see from this figure

that the bias of the estimators is larger than that based on the exact discrete analogue,

implying that the sign of the discretization bias is positive. As shown by Wang et al.

(2011), the signs of the discretization bias and estimation bias are opposite to each other.

Similar to the estimator based on the exact discrete model, the BC, JA and BOOT

estimators correct only part of the correlation bias. The reason is that the bias expressions

depend on a, but we are employing the estimates, which are very different from the true

value of the parameter, especially when a moves away from zero. For example, when

a = −3 the discretization bias H/h is equal to 0.35, while it is only 0.15 if â is used

instead of a. In contrast, the II estimator appears to enjoy good properties as suggested

by the stochastic expansions when the original estimator is inconsistent.

For the second case, we consider the continuous time AR(2) model with known mean

d[Dx(t)] = [a1Dx(t) + a2x(t)]dt+ σdB(t), t > 0, (2.89)

where D is the mean square differential operator. Bergstrom (1983) showed that the

exact discrete analogue corresponding to (2.89) is

xh = [ehĀ]11x(0) + [ehĀ]12Dx(0) + ηh, (2.90)

xth =
(

[ehĀ]22 + [ehĀ]11

)
xth−h +

(
[ehĀ]12[ehĀ]21 − [ehĀ]22[ehĀ]11

)
xth−2h + ηth, (2.91)

for t = 2, ..., n, where [ehĀ]ij (i, j = 1, 2) is the ijth element of the matrix
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[
[ehĀ]11 [ehĀ]12

[ehĀ]21 [ehĀ]22

]
=

[
1 0

0 1

]
+

[
0 1

a2 a1

]
h+

1

2

[
0 1

a2 a1

]2

h2 +
1

3!

[
0 1

a2 a1

]3

h3 + ...

= I + Āh+
1

2
Ā2h2 +

1

3!
Ā3h3 + ...,

and the error ηth is a first-order moving average with variance

E(η2
h) = σ2

∫ h

0

[e(h−s)Ā]212ds, (2.92)

E(η2
th) = σ2

(∫ h

0

[esĀ]212ds+ [ehĀ]222

∫ h

0

[esĀ]212ds+ [ehĀ]212

∫ h

0

[esĀ]222ds

− 2[ehĀ]12[ehĀ]22

∫ h

0

[esĀ]22[esĀ]12ds

)
, (2.93)

for t = 2, ..., n, and first-order autocovariance

E(ηthηth−h) = σ2

(
[ehĀ]12

∫ h

0

[esĀ]12[esĀ]22ds− [ehĀ]22

∫ h

0

[esĀ]212ds

)
. (2.94)

Disturbances ηth are generated by using the Cholesky decomposition of the covariance

matrix of η = (ηh, ..., ηnh), that is as η = Mε, where ε ∼ N(0, I) and M is a lower

triangular real matrix with positive elements on the diagonal such that MM ′ = Ω, with

Ω being the covariance matrix. It is assumed that x(0) = Dx(0) = 0. We fix the

parameter a1 = −3 and consider different values for a2 over the interval [−3, 0).20 We

use h = 1/12 and T = 20, corresponding to 20 years of monthly data. Similar to the

AR(1) model, the synthetic samples used to compute the II and BOOT estimators are

generated from the approximate discrete model obtained by applying the Euler scheme21

xiδ = (a1δ + 2)xiδ−δ + (a2δ
2 − a1δ − 1)xiδ−2δ + σδ3/2υiδ, (2.95)

where i = 1, ...,
h

δ
,
h

δ
+1, ...,

2h

δ
, ... ,

h

δ
(n−1)+1, ...,

h

δ
n and δ = h/20, υiδ is a random draw

with replacement from the standardized residuals for bootstrap and υiδ ∼ i.i.dN(0, 1)

for indirect inference. Every (h/δ)th observation is then choosen to form the sequence

{xsh, xs2h, ..., xsnh}. The II estimator is calculated by using the algorithm described in

section 2.4.2. The number of simulated paths S is set to 100.22

20Note that a2 < 0 implies stationarity, the process having a root near unity when a2 approaches
zero. Note too that by allowing the paramater to vary over the range [−3, 0) we are considering different
scenarios, equal real roots when a2 = −2.25 and complex or different real roots for other values of a2.

21The Euler approximate discrete model corresponding to the continuous time AR(2) model is derived
in the Appendix.

22As can be seen below the procedure with the chosen value of S seems to work well for the Monte
Carlo simulations of the continuous time AR(2) model considered here. In empirical applications it would
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Because of the difficulty of solving ([ehĀ]22 +[ehĀ]11) and ([ehĀ]12[ehĀ]21−[ehĀ]22[ehĀ]11)

for a1 and a2, the asymptotic biases of â1 and â2 are only derived by using the approximate

discrete model obtained by the Euler scheme. The results are presented in the following

theorem.

Theorem 2.4.3. Under model xth = φ1xth−h + φ2xth−2h + ηth where ηth is a first-order

moving average, the asymptotic biases of the ML estimators â1 = (φ̂1 − 2)/h and â2 =

(φ̂2 + 1 + â1h)/h2 are

plim(â1 − a1) =
1

h

[
γ1γ

(x)
0

(γ
(x)
0 )2 − (γ

(x)
1 )2

]
+
H1

h
, (2.96)

plim(â2 − a2) =
1

h2

[
γ1(γ

(x)
0 − γ

(x)
1 )

(γ
(x)
0 )2 − (γ

(x)
1 )2

]
+
H1 +H2

h2
, (2.97)

where H1 = [ehĀ]22+[ehĀ]11−2−a1h and H2 = [ehĀ]12[ehĀ]21−[ehĀ]22[ehĀ]11−a2h
2+1+a1h.

The asymptotic bias can be decomposed into two parts, the correlation bias, which

is given by the first term of each expression, and the discretization bias, which is given

by the second term. Similar to the AR(1) case, the JA estimator can be computed by

subtracting the asymptotic bias from the estimate based on the whole sample as well

as from the estimates based on the sub-samples.23 The model is estimated by using

the concentrated log-likelihood function corresponding to a discrete time AR(2), that

is ignoring the correlation in the disturbances. Figure 2.14 shows the bias of the ML,

II and BOOT estimators of the parameters a1 and a2 as a function of a2 based on the

exact discrete analogue, while Figure 2.15 reports the bias of the ML, II, JA and BOOT

estimators of the continuous time parameters based on the Euler approximate discrete

model. A similar pictures emerges from these graphs. The II estimator can deliver

substantial bias reductions, outperforming its rivals.

Overall, the simulation study shows that the indirect inference method could be

successfully used to avoid the complications of working with correlated errors. Instead

of maximizing the exact log-likelihood function, which is of a more complicated form,

we can maximize that corresponding to an approximate model with white noise

disturbances, that is, ignoring the serial correlation in the disturbances. The estimator

be desirable to use a large number of simulated paths to ensure a good finite sample performance of the
indirect inference estimator.

23Since the asymptotic bias of the ML estimators has been only derived for the discrete time
representation obtained by the Euler scheme, we only compute the JA estimator based on this
approximate model.
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Figure 2.14: Bias of the ML, II and BOOT estimators of a1 and a2 in a univariate AR(2) model with stock data when
correlated errors are ignored and the DGP is assumed to be known. Data are generated using T = 20, h = 1/12 (i.e.
n = 240) and µ = 0. The graph in the left corresponds to â1, while the one in the right to â2, based on the exact discrete
model. The dark solid line is the bias of the ML estimator. The dashed line to the II estimator and the dotted line to the
BOOT estimator.
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Figure 2.15: Bias of the ML, II, JA and BOOT estimators of a1 and a2 in a univariate AR(2) model with stock data
when correlated errors are ignored and the DGP is assumed to be known. Data are generated using T = 20, h = 1/12
(i.e. n = 240) and µ = 0. The graph in the left corresponds to â1, while the one in the right to â2, based on the Euler
approximate discrete model. The dark solid line is the bias of the ML estimator. The dotted line corresponds to the JA
estimator with m = 3, the dashed line to the II estimator and the dark dashed line to the BOOT estimator.
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Figure 2.16: Bias and RMSE of the ML and II estimators of a in a univariate model with unknown mean and flow data as
a function of a. Data are generated using T = 20, h = 1/12 (i.e. n = 240), and µ = −0.1. The dark solid line corresponds
to the ML estimator, the solid line to the II estimator based on the correct likelihood function, the dashed lines to the II
estimators based on the misspecified likelihood function.

based on this misspecified log-likelihood function is inconsistent. However, the second

step of this bias reduction method, which is based on S simulated paths of the initial

model, provides a consistent estimator. The alternative bias corrected estimators also

produce some important bias reductions, but they are not as great as the ones offered

by the II estimator.

We now compare the II estimator based on the correct likelihood function to those

based on the misspecified likelihood function. We only present results for the continuous

time AR(1) model with a flow variable. Figure 2.16 shows that there are not important

differences between the estimator based on the correct likelihood function (i.e.

IICORRECT) and those based on the misspecified function (i.e. IIMEXACT and

IIMEULER) in terms of bias and RMSE.

2.5 Empirical application

The bias reduction methods are applied to the broad effective exchange rate for euro

area, obtained from the Bank for International Settlements (BIS). The effective

exchange rate, which is calculated as geometric weighted averages of bilateral exchange

rates, measures how the euro changes over time, relative to a bundle of other currencies
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(for an explanation of the methodology used to compute the index see Klau and Fung,

2006). The exchange rate is available as monthly averages and consists of 256

observations, corresponding to the period 1994:1-2015:4.24 The observed series is

averaged to form a monthly series, and hence it suffers from temporal aggregation. We

treat it as a flow variable.

We begin by considering an unrestricted discrete ARMA(1,1) model. The estimated

equation (with standard errors in parenthesis) is

xth = 0.972xth−h + 2.643 + ε̂th + 0.338ε̂th−h, σ̂2
ε = 1.579. (2.98)

(0.011) (1.029) (0.059)

As can be seen all coefficients are statistically significant at the 5% level. We now estimate

the discrete time analogue corresponding to a continuous time AR(1) model with flow

data, which is an ARMA(1,1) with its three parameters (autoregressive, moving average

and variance) being functions of the continuous time parameters a and σ2. The estimated

equation of the continuous time model (with standard errors in parenthesis)25 is

dx(t) =[−0.316x(t) + 366.021]dt+ 67.285 dB̂(t), (2.99)

(0.128) (143.928)

and the corresponding exact discrete analogue is

xth = 0.974xth−h + 2.509 + ε̂th + 0.268ε̂th−h, σ̂2
ε = 1.587. (2.100)

We observe that there are no big differences between the parameter estimates in (2.98)

and those in (2.100), except for θ̂.

We also compute the bias corrected estimators considered in this paper. The first

row of Table 2.1 shows the estimates of the continuous time parameter a when the

likelihood function is correctly specified with their corresponding standard errors.

Figures in brackets are the asymptotic standard errors and figures in parenthesis are the

standard errors based on the Hessian matrix computed numerically, II and BOOT

resamples, respectively. The asymptotic standard error is the square root of the leading

term of an analytical variance expression evaluated at â (see Section 1.4, also Tang and

Chen, 2009). The number of simulated paths used is S = 100 for bootstrap and S =

10000 for indirect inference.26

24See the Appendix for some additional information about the time series under consideration.
25Standard errors are based on the Hessian matrix computed numerically. See also the Appendix for

some diagnostic tests.
26We also consider S = 1000 for indirect inference, but the results do not change much to the ones

presented in Table 2.1.
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ML BC JA II BOOT
Correctly specified likelihood

-0.316 -0.126 -0.084 -0.055 -0.086
[0.174] [0.109] [0.089] [0.072] [0.090]
(0.128) (0.201) (0.237)

Misspecified likelihood - Exact
-0.265 -0.147 -0.173 -0.162 -0.196
[0.159] [0.118] [0.128] [0.124] [0.137]
(0.106) (0.172) (0.161)

Misspecified likelihood - Euler
-0.262 -0.145 -0.183 -0.163 -0.198
[0.158] [0.117] [0.132] [0.124] [0.137]
(0.104) (0.167) (0.156)

Figures in brackets and parenthesis are standard errors.

Table 2.1: Parameter estimates of a in the continuous time AR(1) model fitted to the effective exchange
rate for euro area.

We see from the table that all bias corrected estimates are smaller (in absolute

value) than the ML estimate, which is consistent with the Monte Carlo results. We also

compute the estimates of a in the discrete time AR(1) model that ignores the serial

correlation in the disturbances. As can be seen, the ML estimator is smaller (in

absolute value) than the corresponding value in the ARMA(1,1) model, this being

consistent with the results obtained in the Monte Carlo simulations. Similar to the case

of correctly specified likelihood, the bias corrected estimates are smaller in magnitude

(in absolute value) than the ML estimate. Bias corrections differ significantly between

approaches. We also observe that there is a substantial discrepancy between asymptotic

standard errors and those based on simulations (i.e. bootstrap or indirect inference

samples). In spite of these differences, all bias corrected coefficients are not statistically

significant at conventional significance levels as opposed to the original estimate.

2.6 Conclusions

This paper has conducted a comparison of some bias reduction methods in

continuous time models. All approaches deliver substantial bias reductions when the

original estimator is consistent. There are not important differences between the bias

corrected estimator based on the asymptotic expansion and those based on indirect

inference or bootstrap methods. The jackknife tends to inflate the variance of the

estimator, leading to larger values of RMSE compared to its competitors. Although not

producing the smallest RMSE, the jackknife estimator appears to be very useful in

practice since it is computationally much cheaper to implement compared to alternative
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bias reduction methods. We also explore the robustness of the results to departures

from normal, homoskedastic and white noise errors. As opposed to non-normality,

heteroskedasticity has a significant impact on all estimators, the bootstrap and

jackknife being the most robust estimators.

The bias correction based on indirect inference methods is found to work particularly

well when the original estimator is inconsistent, a case ocurring when the serial correlation

in the discrete time disturbances is ignored. The bootstrap also produces some important

bias reductions, but one iteration seems not to be enough to remove the bias caused by the

serial correlation in the disturbances. It would be revelant to explore the implementation

of the iterated bootstrap or at least the fast double bootstrap in this case, in which the

ML is inconsistent. An empirical application to the broad effective exchange rate data

for euro area indicates that there are considerable differences between the bias reduction

approaches considered in this paper, although the bias corrected estimates are smaller

(in absolute value) than the ML estimate, which is consistent with the results obtained

in the Monte Carlo simulations.

2.7 Appendix: Tables

2.7.1 Results for the univariate model with known mean

Bias RMSE
a âJ,2 âJ,3 âJ,4 âJ,8 âJ,2 âJ,3 âJ,4 âJ,8

Stock -0.1 -0.0255 -0.0315 -0.0350 -0.0443 0.2219 0.2011 0.1942 0.1887
-1 -0.0082 -0.0109 -0.0126 -0.0164 0.3974 0.3826 0.3765 0.3708
-2 -0.0065 -0.0075 -0.0081 -0.0082 0.5392 0.5271 0.5224 0.5172
-3 -0.0054 -0.0050 -0.0054 -0.0032 0.6677 0.6563 0.6525 0.6483

Flow -0.1 -0.0254 -0.0305 -0.0360 -0.0458 0.2257 0.2017 0.1948 0.1887
-1 -0.0093 -0.0110 -0.0143 -0.0208 0.3953 0.3796 0.3751 0.3690
-2 -0.0077 -0.0088 -0.0102 -0.0136 0.5348 0.5237 0.5197 0.5169
-3 -0.0072 -0.0078 -0.0083 -0.0101 0.6623 0.6531 0.6493 0.6448

Table 2.2: Bias and RMSE of the JA estimator of a in a univariate model with known mean for different values of m.

Bias RMSE
a âII,100 âII,1000 âII,10000 âII,100 âII,1000 âII,10000

Stock -0.1 -0.0377 -0.0140 -0.0040 0.1990 0.1883 0.1836
-1 -0.0605 -0.0244 -0.0023 0.3751 0.3733 0.3708
-2 -0.0616 -0.0294 -0.0048 0.5212 0.5193 0.5168
-3 -0.0646 -0.0330 -0.0060 0.6527 0.6499 0.6478

Flow -0.1 -0.0275 -0.0197 -0.0150 0.1856 0.1826 0.1781
-1 -0.0327 -0.0232 -0.0053 0.3711 0.3710 0.3690
-2 -0.0367 -0.0283 -0.0072 0.5175 0.5167 0.5148
-3 -0.0406 -0.0318 -0.0089 0.6480 0.6468 0.6446

Table 2.3: Bias and RMSE of the II estimator of a in a univariate model with known mean for different values of S.
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Bias RMSE
a â ã âJ,3 âII,10000 âB,100 â ã âJ,3 âII,10000 âB,100

Stock -0.1 -0.0982 0.0026 -0.0315 -0.0040 -0.0000 0.2143 0.1897 0.2011 0.1836 0.1885
-1 -0.1091 -0.0040 -0.0109 -0.0023 -0.0030 0.3875 0.3699 0.3826 0.3708 0.3720
-2 -0.1153 -0.0046 -0.0075 -0.0048 -0.0032 0.5319 0.5161 0.5271 0.5168 0.5194
-3 -0.1216 -0.0043 -0.0050 -0.0060 -0.0027 0.6627 0.6467 0.6563 0.6478 0.6509

Flow -0.1 -0.0985 0.0024 -0.0305 -0.0150 -0.0052 0.2141 0.1893 0.2017 0.1781 0.1852
-1 -0.1073 -0.0022 -0.0110 -0.0053 -0.0046 0.3845 0.3673 0.3796 0.3690 0.3708
-2 -0.1112 -0.0005 -0.0088 -0.0072 -0.0051 0.5275 0.5125 0.5237 0.5148 0.5168
-3 -0.1150 0.0022 -0.0078 -0.0089 -0.0053 0.6566 0.6418 0.6531 0.6446 0.6483

Table 2.4: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of a in a univariate model with known mean.

2.7.2 Results for the univariate model with unknown mean

Bias RMSE
a âJ,2 âJ,3 âJ,4 âJ,8 âJ,2 âJ,3 âJ,4 âJ,8

Stock -0.1 -0.0031 -0.0013 0.0035 0.0176 0.3851 0.3321 0.3081 0.2851
-1 0.0150 0.0213 0.0297 0.0557 0.4904 0.4528 0.4411 0.4305
-2 0.0093 0.0151 0.0233 0.0548 0.6051 0.5762 0.5675 0.5605
-3 0.0076 0.0132 0.0212 0.0578 0.7229 0.6972 0.6895 0.6829

Flow -0.1 -0.0037 0.0023 0.0000 0.0061 0.3832 0.3271 0.3049 0.2789
-1 0.0146 0.0202 0.0242 0.0404 0.4812 0.4455 0.4359 0.4211
-2 0.0051 0.0122 0.0145 0.0339 0.5976 0.5692 0.5644 0.5531
-3 0.0067 0.0089 0.0138 0.0349 0.7123 0.6904 0.6842 0.6751

Table 2.5: Bias and RMSE of the JA estimator of a in a univariate model with unknown mean for different values of m.

Bias RMSE
a âII,100 âII,1000 âII,10000 âII,100 âII,1000 âII,10000

Stock -0.1 -0.0633 -0.0415 -0.0298 0.2671 0.2578 0.2517
-1 -0.0384 -0.0184 -0.0005 0.4061 0.4118 0.4114
-2 -0.0291 -0.0214 -0.0039 0.5415 0.5448 0.5437
-3 -0.0266 -0.0238 -0.0052 0.6693 0.6707 0.6696

Flow -0.1 -0.0519 -0.0387 -0.0329 0.2614 0.2535 0.2490
-1 -0.0306 -0.0150 -0.0034 0.4023 0.4055 0.4053
-2 -0.0265 -0.0184 -0.0073 0.5376 0.5394 0.5389
-3 -0.0265 -0.0209 -0.0083 0.6645 0.6656 0.6644

Table 2.6: Bias and RMSE of the II estimator of a in a univariate model with unknown mean for different values of S.

Bias RMSE
a â ã âJ,3 âII,10000 âB,100 â ã âJ,3 âII,10000 âB,100

Stock -0.1 -0.2748 -0.0715 -0.0013 -0.0298 -0.0254 0.3767 0.2652 0.3321 0.2517 0.2728
-1 -0.2333 -0.0221 0.0213 -0.0005 -0.0035 0.4702 0.4048 0.4528 0.4114 0.4107
-2 -0.2365 -0.0147 0.0151 -0.0039 -0.0024 0.5960 0.5411 0.5762 0.5437 0.5457
-3 -0.2455 -0.0116 0.0132 -0.0052 -0.0008 0.7198 0.6680 0.6972 0.6696 0.6733

Flow -0.1 -0.2718 -0.0686 0.0023 -0.0329 -0.0268 0.3721 0.2610 0.3271 0.2490 0.2683
-1 -0.2301 -0.0189 0.0202 -0.0034 -0.0053 0.4626 0.3978 0.4455 0.4053 0.4053
-2 -0.2310 -0.0093 0.0122 -0.0073 -0.0062 0.5875 0.5341 0.5692 0.5389 0.5426
-3 -0.2370 -0.0032 0.0089 -0.0083 -0.0039 0.7093 0.6599 0.6904 0.6644 0.6680

Table 2.7: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of a in a univariate model with unknown mean.
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2.7.3 Results for the multivariate model

Bias RMSE

a22 ÂJ,2 ÂJ,3 ÂJ,4 ÂJ,8 ÂJ,2 ÂJ,3 ÂJ,4 ÂJ,8

a11 -0.1 -0.0001 -0.0016 -0.0043 -0.0126 0.3463 0.3291 0.3236 0.3163
-1 -0.0001 -0.0016 -0.0043 -0.0126 0.3463 0.3291 0.3236 0.3163
-2 -0.0001 -0.0016 -0.0043 -0.0126 0.3463 0.3291 0.3235 0.3163
-3 -0.0001 -0.0016 -0.0043 -0.0126 0.3463 0.3291 0.3236 0.3163

a21 -0.1 -0.0195 -0.0222 -0.0254 -0.0290 0.3738 0.3570 0.3506 0.3449
-1 -0.0026 -0.0040 -0.0060 -0.0078 0.3625 0.3493 0.3432 0.3378
-2 -0.0001 -0.0006 -0.0020 -0.0017 0.3545 0.3416 0.3360 0.3300
-3 0.0006 0.0004 -0.0006 0.0008 0.3502 0.3372 0.3322 0.3261

a22 -0.1 -0.0081 -0.0072 -0.0073 -0.0047 0.2227 0.1989 0.1893 0.1784
-1 0.0019 0.0036 0.0033 0.0129 0.4179 0.3947 0.3859 0.3773
-2 0.0041 0.0061 0.0075 0.0226 0.5687 0.5481 0.5401 0.5314
-3 0.0052 0.0075 0.0106 0.0324 0.7042 0.6845 0.6768 0.6688

Table 2.8: Bias and RMSE of the JA estimators of the elements of A in a multivariate model for different values of m.

Bias RMSE

a22 Â Ã ÂJ,3 ÂII,100 ÂB,100 Â Ã ÂJ,3 ÂII,100 ÂB,100

a11 -0.1 -0.0986 0.0655 -0.0016 0.0044 0.0048 0.3329 0.3115 0.3291 0.3179 0.3183
-1 -0.0986 0.0412 -0.0016 0.0044 0.0048 0.3329 0.3104 0.3291 0.3179 0.3183
-2 -0.0986 0.0290 -0.0016 0.0044 0.0048 0.3329 0.3110 0.3291 0.3179 0.3183
-3 -0.0986 0.0224 -0.0016 0.0044 0.0048 0.3329 0.3119 0.3291 0.3179 0.3183

a21 -0.1 -0.0506 -0.0055 -0.0222 -0.0112 -0.0068 0.3493 0.3296 0.3570 0.3302 0.3303
-1 -0.0470 -0.0033 -0.0040 -0.0032 -0.0037 0.3523 0.3277 0.3493 0.3298 0.3306
-2 -0.0359 -0.0022 -0.0006 -0.0015 -0.0015 0.3431 0.3230 0.3416 0.3246 0.3253
-3 -0.0293 -0.0021 0.0004 -0.0009 -0.0006 0.3374 0.3206 0.3372 0.3219 0.3224

a22 -0.1 -0.0983 -0.0155 -0.0072 -0.0104 -0.0000 0.2081 0.1783 0.1989 0.1685 0.1724
-1 -0.1631 -0.0136 0.0036 -0.0073 -0.0053 0.4127 0.3701 0.3947 0.3716 0.3721
-2 -0.1915 -0.0128 0.0061 -0.0052 -0.0046 0.5678 0.5266 0.5481 0.5283 0.5279
-3 -0.2114 -0.0152 0.0075 -0.0046 -0.0040 0.7063 0.6660 0.6845 0.6669 0.6662

Table 2.9: Bias and RMSE of the ML, BC, JA, II and BOOT estimators of the elements of A in a multivariate model.

2.8 Appendix: Proofs

Proof of Theorem 2.4.1. Maeshiro (1999) showed that the asymptotic correlation effect

of the estimator of the parameter φ in the model xth = c + φxth−h + ηth is given by the

term cov(ηth, xth−h)/var(xth−h), where cov(.) and var(.) denote covariance and variance,

respectively. Applying the plim operator to â = ln(φ̂)/h and using the preservation of

convergence for continuous transformations (i.e. plim ln(φ̂) = ln(plim φ̂)), we have

plim â =
1

h
ln
[
plim φ̂

]
=

1

h
ln

[
γ1

γ
(x)
0

+ φ

]

=
1

h
ln

[
γ1

γ
(x)
0

+ eah

]
(2.101)
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Proof of Theorem 2.4.2. The coefficient φ can be written as φ = eah = 1 + ah + H.

Applying the plim operator to â = (φ̂− 1)/h and then substituting φ by 1 +ah+H gives

plim â =
1

h

[
plim φ̂

]
− 1

h

=
1

h

[
γ1

γ
(x)
0

+ φ− 1

]

=
1

h

[
γ1

γ
(x)
0

+H

]
+ a (2.102)

Deriving the Euler approximate discrete model. The continuous time AR(2) model given

in (2.89) can be written in state space form as

dy(t) = Āy(t)dt+ σdW (t), (2.103)

where

y(t) =

[
x(t)

Dx(t)

]
, Ā =

[
0 1

a2 a1

]
, dW (t) =

[
0

dB(t)

]
.

Applying the Euler scheme to (2.103), we obtain

yth = (Āh+ I2)yth−h + σh1/2ω∗th,

where

yth =

[
x(th)

Dx(th)

]
, ω∗th =

[
0

ω(th)

]
,

and ω(th) ∼ i.i.dN(0, 1). From the first equation of the system we obtain

Dx(th− h) =
1

h
[x(th)− x(th− h)] (2.104)

Dx(th− 2h) =
1

h
[x(th− h)− x(th− 2h)] . (2.105)

Lagging the second equation of the system gives

Dx(th− h) = a2hx(th− 2h) + (a1h+ 1)Dx(th− 2h) + σh1/2w(th− h). (2.106)
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Substituting (2.104) and (2.105) into (2.106) we obtain

x(th) = (a1h+ 2)x(th− h) + (a2h
2 − a1h− 1)x(th− 2h) + σh3/2w(th− h). (2.107)

Proof of Theorem 2.4.3. The model xth = φ1xth−h+φ2xth−2h+ηth can be written in state

space form as

yth = Πyth−h + η∗th, (2.108)

where

yth =

[
xth

xth−h

]
, Π =

[
φ1 φ2

1 0

]
, η∗th =

[
ηth

0

]
.

The asymptotic correlation effect of the estimator of Π is given by

cov(η∗th, y
′
th−h)[var(yth−h)]

−1 =

[
γ1 0

0 0

][
γ

(x)
0 γ

(x)
1

γ
(x)
1 γ

(x)
0

]−1

(2.109)

=
1

(γ
(x)
0 )2 − (γ

(x)
1 )2

[
γ1γ

(x)
0 −γ1γ

(x)
1

0 0

]
. (2.110)

The coefficients φ1 and φ2 can be written as φ1 = [ehĀ]22 + [ehĀ]11 = 2 + a1h+H1 and

φ2 = [ehĀ]12[ehĀ]21 − [ehĀ]22[ehĀ]11 = a2h
2 − 1 − a1h + H2. Applying the plim operator

to â1 = (φ̂1 − 2)/h and to â2 = (φ̂2 + 1 + â1h)/h2, using the results given in (2.110) and

substituting φ1 by 2 + a1h+H1 and φ2 by a2h
2 − 1− a1h+H2, we obtain

plim â1 =
1

h

[
plimφ̂1

]
− 2

h

=
1

h

[
γ1γ

(x)
0

(γ
(x)
0 )2 − (γ

(x)
1 )2

+ φ1 − 2

]

=
1

h

[
γ1γ

(x)
0

(γ
(x)
0 )2 − (γ

(x)
1 )2

+H1

]
+ a1 (2.111)

98



plim â2 =
1

h2

[
plimφ̂2 + hplimâ1

]
+

1

h2

=
1

h2

[
− γ1γ

(x)
1

(γ
(x)
0 )2 − (γ

(x)
1 )2

+ φ2 + 1 + hplimâ1

]

=
1

h2

[
− γ1γ

(x)
1

(γ
(x)
0 )2 − (γ

(x)
1 )2

]
+ a2 +

1

h
plim(â1 − a1) +

H2

h2

=
1

h2

[
γ1γ

(x)
0 − γ1γ

(x)
1

(γ
(x)
0 )2 − (γ

(x)
1 )2

+H1 +H2

]
+ a2 (2.112)
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2.9 Appendix: Additional information for the

empirical application
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Figure 2.17: Graph, ACF and PACF of the effective exchange rate for euro area.

Normality ARCH effects Serial correlation
JB A(1) A(4) A(8) LM(8) LM(12) LM(24)

p-value 0.000 0.258 0.144 0.202 0.874 0.973 0.868
JB is the Jarque-Bera test, A(i) is the ith order ARCH test, LM(i) denotes the ith order Breusch-Godfrey LM test.

Table 2.10: Diagnostic tests for residuals. We assume that the conditional mean of the time series is described by a
continuous time AR(1) model.
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Figure 2.18: ACF of residuals and squared residuals. We assume that the conditional mean of the time series is described
by a continuous time AR(1) model.
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Chapter 3

Cointegrated continuous time

models with mixed sample data

3.1 Introduction

Continuous time models have been commonly used to describe the dynamics of

economic behaviour. Although information is collected at certain frequencies such as

quarters, months or years, the movements in the variables do not necessarily coincide

with the observational interval, this being the case of macroeconomic information,

which is collected at low frequencies (usually quarterly or annually). Continuous time

modelling may, therefore, provide a more realistic approximation to the actual dynamics

of the economy, which involve a large number of economic agents making decisions at

different points of time.

The advantages of this type of models over those formulated in discrete time have

been widely discussed in the literature (see for example, Bergstrom, 1996; Bergstrom and

Nowman, 2007). Among them is the separate treatment of stock and flow variables. It

is explicitly recognised that stocks are observed at specific points of time, while flows are

measured as the accumulation of the underlying rate over a time interval. Because of

the distinction in the treatment of these two type of variables, these models do not suffer

from time aggregation bias whereas it may be a serious problem in their discrete time

counterpart.

Continuous time models also have the advantage of allowing for a mixture of both

stock and flow variables. Mixed sampling often arises in econometric modelling. A

typical money demand model, for example, comprises variables that are measured

instantaneously such as prices and exchange rates, and variables that are observed as

integrals such as income. Another example is the Fisher effect, this hypothesis being
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tested by using interest rates (stocks), and expected or actual inflation rate (a flow).

Different approaches have been considered to estimate parameters of continuous time

systems with mixed sample data. Among them are Kalman filtering techniques based

on state space representations (see Harvey and Stock, 1985, 1988; Zadrozny, 1988), and

methods based on spectral representations (see Phillips, 1991a; Robinson, 1993).

Another important contribution to estimation methodology is the exact Gaussian

estimation method proposed by Bergstrom (1983, 1985, 1986), who pointed out the

benefits of this last approach in terms of computational efficiency of estimators. The

Gaussian method requires, however, the derivation of the exact discrete analogue that is

induced by the continuous system.

In the last decades much work has been done on estimating continuous time models

based on the exact discrete analogue. In the context of non-stationary continuous

systems, Bergstrom (1997) developed an algorithm for the Gaussian estimation of a

mixed first- and second-order stochastic differential equation system with mixed

sampling and unobservable stochastic trends, which allows for the possibility of

cointegration. However, the exact discrete analogue obtained by the author exhibits

some excess differencing since it is written entirely in terms of first differences instead of

lagged levels along with lagged differences as it is specified in cointegrated systems

formulated directly in discrete time. As noted by Bergstrom (1997, 2009), the Gaussian

likelihood remains invariant under differencing, but the discrete time representation is

not adequate to investigate the sampling properties of the estimates due to the presence

of unit roots in the moving average part of the discrete model. A more precise

specification of the discrete analogue is, therefore, required.

Chambers (2009) proposed an alternative approach to derive the exact discrete

analogue, which is based on the idea of replacing unobservable components with their

observable counterpart, whose difference is then assigned to the disturbance term (see

also Phillips, 1991a, who first proposed this idea). The model considered by the author

is a triangular system of first-order stochastic differential equations with mixed sampling

and observable stochastic trends. The resulting discrete analogue retains the triangular

form of the continuous time system, and does not suffer from the excess differencing.

Many economic variables often exhibit a complex correlation structure, which requires

the use of higher order differential equations. It is, therefore, relevant to extend the

methods used by Chambers (2009) to more complex continuous time models, and this is

the main purpose of this paper. We consider a system of mixed first- and second-order

stochastic differential equations with mixed sampling and observable stochastic trends,

and derive the corresponding exact discrete representation. Some formulae to implement

the Gaussian estimation are also provided.

103



It is well known that parameter estimators in continuous time diffusion processes can

suffer from substantial bias in finite samples (see for example Tang and Chen, 2009; Wang

et al., 2011). The estimation bias has been widely studied in the context of stationary

models, but has not received much attention in the cointegration framework. Another

aim of this paper is to explore the finite sample properties of the Gaussian estimator

of parameters in cointegrated continuous time systems with mixed sampling. For this

purpose, we conduct a Monte Carlo experiment using two bivariate models, a system

of first-order stochastic differential equations and a system of first- and second-order

stochastic differential equations.

The remainder of this paper is organised as follows. Section 2 briefly describes the first-

order model. In Section 3 the mixed-order system is formulated and the exact discrete

representation is derived. Section 4 describes the computation of the Gaussian likelihood.

Section 5 reports some simulations results to examine the finite sample properties of the

Gaussian estimator and Section 6 concludes.

3.2 First-order model

We consider a p-dimensional continuous time random process y(τ) that is partitioned

into two subvectors y1(τ) and y2(τ) of dimensions p1 × 1 and p2 × 1, respectively, where

p1 + p2 = p. It is assumed that the vector y(τ) is I(1), that is non-stationary with zero

root, but that there exist an p1 × p matrix B′ whose rows are linearly independent such

that B′y(τ) is stationary. It is also assumed that y(τ) satisfies the stochastic differential

equation system

dy(τ) = [a+ bτ + AB′ y(τ)] dτ + u(τ)dτ, τ > 0, (3.1)

where u(τ) is a p × 1 vector of white noise with covariance matrix Σdτ , a and b are

p × 1 vectors of constants, and A = (C ′, 0p1×p2)
′ and B′ = (Ip1 ,−Π) are coefficient

matrices. The matrix C, known as the matrix of adjustment coefficients, describes the

responsiveness of the system variables to deviations from equilibrium, represented by

y1(τ) − Πy2(τ). All eigenvalues of C are assumed to have negative real parts to ensure

that y1(τ) is I(1) and cointegrated.1 The matrix B is called a cointegration matrix or

cointegration vectors. Cointegration is characterized by the singularity of AB′, where

A and B are p × p1 matrices, both of rank p1. Note that the first p1 components of B

have been normalized to the identity matrix to ensure the uniqueness of the cointegration

matrix.

1Note that if some eigenvalues have non-negative real parts y1(τ) may be I(q), with q > 1, or y1(τ)
may be I(1) but not cointegrated.
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Equation (3.1) can be also written as following

dy1(τ) = [a1 + b1τ + C (y1(τ)− Πy2(τ))] dτ + u1(τ)dτ, τ > 0, (3.2)

dy2(τ) = [a2 + b2τ ] dτ + u2(τ)dτ, τ > 0. (3.3)

in which the vectors a, b and u(τ) have been partitioned conformably with y1 and y2.

From the last representation it is clear that the stationary increments in y1(τ) depend

on the deviations from the equilibrium relation. The second equation specifies the p2

common stochastic trends.

The system (3.2)-(3.3) can be seen as a special case of the Phillips’ triangular

representation2 augmented with deterministic components

y1(τ) = ă1 + b̆1τ + Πy2(τ) + ν1(τ), τ > 0, (3.4)

Dy2(τ) = a2 + b2τ + u2(τ), τ > 0, (3.5)

where D is the mean square differential operator and ν1 is a stationary process satisfying

dν1(τ) = [Cν1(τ) + θu2(τ)]dτ + ŭ1(τ)dτ. (3.6)

It is straightforward to show that the deterministic components of (3.2) are related to

those of (3.4) by a1 = −Că1 + b̆1 + Πa2 and b1 = −Cb̆1 + Πb2. Similarly, the error terms

of both systems are related as follows: u1(τ) = (θ + Π)u2(τ) + ŭ1(τ).

System (3.1) was considered by Chambers (2009) for the general case in which each

of the vectors yi(τ) (i = 1, 2) comprises psi stock variables observed at the points of time

0, h, 2h, ..., nh, where h is the sampling interval (i.e. the period between observations)

and n is the total number of observations, and pfi flow variables observed as integrals

over the intervals [0, h], [h, 2h], ..., [(n− 1)h, nh], where psi + pfi = pi. It was shown by the

author that the exact discrete analogue corresponding to (3.1) is given by3

yh − y(0) = Φ10B
′y(0) + βh + ξh, (3.7)

∆y2h = Φ21B
′yh + Φ20B

′y(0) + β2h + ξ2h, (3.8)

∆yth = Φ0B
′yth−h + Φ1∆yth−h + βth + ξth, t = 3, ..., n, (3.9)

where the first two equations corresponding to periods h and 2h, respectively, relate

the first two observations (i.e. yh and y2h) to the initial state value y(0), with ∆ =

1 − Lh, L being the lag operator such that Lhyth = yth−h, and t being the time index

2The triangular representation of a cointegrated system was first proposed by Phillips (1991b) for
discrete time models and Phillips (1991a) for continuous time models.

3System (3.7)-(3.9) differs from that given by Chambers (2009) in that the sampling interval h is
normalised to unity in the original paper.
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of the observations. The matrices Φ’s and the vector βth are complicated functions of

the parameters of the continuous time system, and the disturbance vector ξth is a MA(1)

process (see Appendix for the definition of these terms).

The exact discrete model is a reduced rank VARMA(2,1) system when y1(τ) includes

both stocks and flows, and a reduced rank VARMA(1,1) when y1(τ) includes one type of

variable only, that is either p1 stocks or p1 flows. It was also shown by Chambers (2009)

that the last p2 elements of the matrices Φ’s are zeros, implying a triangular structure in

the exact discrete model.

3.3 Mixed-order model

3.3.1 The continuous time model and its solution

The disturbances of (3.2) are now assumed to satisfy

du1(τ) = [Ψ1u1(τ) + Ψ2u2(τ)]dτ + n̆1(τ)dτ, −∞ < τ <∞, (3.10)

where Ψ1 and Ψ2 are coefficient matrices, and n̆1(τ) is a white noise process. It is also

assumed that all characteristic roots of the coefficient matrix Ψ1 have negative real parts

in order for the process u1(τ) to be stationary. Substituting (3.10) into (3.2), we obtain a

system comprising a mixture of first- and second-order differential equations with white

noise disturbances, which is given by

d[Dy1(τ)] =
[
µ1 + γ1τ + ΨDy1(τ) + C̃ (y1(τ)− Πy2(τ))

]
dτ + n1(τ)dτ, τ > 0 (3.11)

dy2(τ) = [a2 + b2τ ] dτ + u2(τ)dτ, τ > 0. (3.12)

The parameters of the system (3.2)-(3.3) with disturbances given in (3.10) are related

to those of (3.11)-(3.12) as follows: C̃ = −Ψ1C, Ψ = C + Ψ1, µ1 = b1 − Ψ1a1 − Πa2,

γ1 = −Ψ1b1 − Πb2, and n1(τ) = (Ψ2 − Π)u2(τ) + n̆1(τ). It should be noted that only in

certain regions of the parameter space there is one to one correspondence between the two

parameter sets.4 To avoid possible identification problems, we shall concentrate on the

parameters of the system (3.11)-(3.12) rather than on the original parameter vector. Let

Θ = (Θ1,Θ2) denote the vector of parameters, where Θ1 = (µ, γ,Ψ, C̃,Π), µ = (µ′1, a
′
2)′,

γ = (γ′1, b
′
2)′ and Θ2 contains the elements of the covariance matrix of the disturbance

vector n(τ) = (n1(τ)′, u2(τ)′)′.

4For example, the vector (C̃ = −1,Ψ = −2)) corresponds to (C = −1,Ψ = −1). However, the vector
(C̃ = −2,Ψ = −3)) corresponds to both (C = −2,Ψ = −1) and (C = −1,Ψ = −2). In this last case the
parameters of the first system are not identified from the second system.
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In this section we shall deal with the problem of estimating Θ from a sample of

discrete observations generated by the system (3.11)-(3.12). The approach adopted here

is to derive the exact discrete analogue, which holds exactly for data generated by the

continuous time system, and apply the Gaussian methods proposed by Bergstrom (1983,

1985, 1986) on the discrete representation. In order to derive the exact discrete analogue

it is convenient to write (3.11)-(3.12) as a first-order system

dx(τ) =
[
µ∗ + γ∗τ + Āx(τ)

]
dτ + n∗(τ)dτ, (3.13)

where the (p+ p1)× 1 vector x(τ) is defined by x(τ) = [y1(τ)′, y2(τ)′, Dy1(τ)′]′, and

Ā =

0 0 Ip1

0 0 0

C̃ − C̃Π Ψ

 , µ∗ =

 0

a2

µ1

 , γ∗ =

 0

b2

γ1

 , n∗(τ) =

 0

u2(τ)

n1(τ)

 .

From the first-order system representation it is easy to see that cointegration is

characterized by the singularity of the matrix Ā. We know that subject to the boundary

conditions x(0) = (y1(0)′, y2(0)′, Dy1(0)′)′, equation (3.13) has a solution given by

x(τ) = eτĀx(0) +

∫ τ

0

e(τ−s)Ā(µ∗ + γ∗s)ds+

∫ τ

0

e(τ−s)Ān∗(s)ds, τ > 0, (3.14)

where, for any square matrix A, eA =
∑∞

i=0A
i/i! defines the matrix exponential.

We turn now to the assumptions about the observability of the continuous time pro-

cesses y1(τ) and y2(τ). It is assumed that y2(τ) includes ps2 stock variables and pf2 flow

variables, where ps2 + pf2 = p2. We also assume that y1(τ) includes one type of variable

only, that is, either p1 stocks or p1 flows. The case considered here is less general than

that considered in Chambers (2009) since the vector y1(τ) is not allowed to include both

stocks and flows. The extension of our results to allow for that general case would require

additional complications and will not be dealt with in this paper.5

We assume that the stocks are observed at the points of time 0, h, 2h, ..., nh, and

the flows as integrals over the intervals [0, h], [h, 2h], ..., [(n − 1)h, nh]. Without loss of

generality, let the elements of the vector y2(τ) be ordered as following

y2(τ) =

(
ys2(τ)

yf2 (τ)

)
,

5It should be noted that the method used by Chambers (2009) to eliminate the unobservable
components associated with the variable y1 can not be straightforwardly implemented in our context.
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and the observations of this vector as

y2,th =

(
ys2,th
yf2,th

)
=

 ys2(th)

1

h

∫ th

th−h
yf2 (r)dr

 ,

for t = 1, ..., n, with t being the time index of the observations, and where the

superscripts s and f denote the stock and flow components, respectively. The

observable vector for y1(τ) is y1,th = ys1(th) if y1(τ) is composed entirely of stocks and

y1,th = h−1
∫ th
th−h y

f
1 (r)dr if it is composed entirely of flows. Note that the flow variables

have been normalised by dividing by h. As noted by Chambers (2011) this

normalisation is required in nonstationary/cointegrated systems to ensure the

stationarity of all terms in the discrete time representation.

Our interest is to estimate the parameters of the continuous time model from the

observable vectors y1,th and y2,th. It should be noticed that whereas the vectors of the

initial values of the stock variables ys1(0) and ys2(0) are part of the sample, the vectors

of the initial values of the flow variables yf1 (0) and yf2 (0) and those of the mean square

derivatives of y1 (i.e. Dy1(0) ) are unobservable. Thus, in addition to the continuous time

parameters we could estimate the part of x(0) that is unobservable by using, for example,

the iterative estimation procedure proposed by Bergstrom (1990, pg. 113-114).6

The derivation of the exact discrete analogue with mixed sampling requires solving

out the unobservable vectors w2,th defined by

w2,th =

(
ws2,th
wf2,th

)
=

1

h

∫ th

th−h
ys2(r)dr

yf2 (th)

 ,

for t = 1, ..., n.

Next section provides some preliminary results that will be then used to derive the

exact discrete model with mixed data.

3.3.2 The exact discrete model for common data sampling

To derive the exact discrete model satisfied by mixed data we shall make use of two

sets of equations. The former is the exact discrete representation that would result if the

sample was comprised entirely of stocks, and the latter is the exact discrete model if the

6However, as pointed out by Bergstrom (1990) there is no way of obtaining a consistent estimate
of x(0). Furthermore, the contribution of the initial condition to the likelihood function tends to be
negligible as the sample size increases, implying that for large samples there is little to be gained from
estimating x(0).
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sample consisted entirely of flows. Before presenting the exact discrete models, we shall

make the following assumption.

Assumption 1. The p1 × p1 sub-matrix [ehĀ]13 is non-singular.7

Agbeyegbe (1984) showed that the exact discrete model for the case of stock variables

is

y(th) = F1y(th− h) + F2y(th− 2h) + κth + ϑth, t = 2, ..., n, (3.15)

where F1 and F2 are p× p matrices given by

F1 =

(
F1,11 F1,12

F1,21 F1,22

)
, F2 =

(
F2,11 F2,12

F2,21 F2,22

)
,

F1,11 = [ehĀ]11 + [ehĀ]13[ehĀ]33[ehĀ]−1
13 ,

F1,12 =
(
Ip1 − [ehĀ]11

)
Π,

F1,21 = F2,21 = F2,22 = 0,

F1,22 = Ip2 ,

F2,11 = [ehĀ]13[ehĀ]31 − [ehĀ]13[ehĀ]33[ehĀ]−1
13 [ehĀ]11,

F2,12 = −
(

[ehĀ]13[ehĀ]31 + [ehĀ]13[ehĀ]33[ehĀ]−1
13 (Ip1 − [ehĀ]11)

)
Π,

and κth and ϑth are p× 1 vectors given by

κth = S̃1

∫ th

th−h
e(th−s)Ā(µ∗ + γ∗s)ds+ S̃2

∫ th−h

th−2h

e(th−h−s)Ā(µ∗ + γ∗s)ds,

ϑth = S̃1

∫ th

th−h
e(th−s)Ān∗(s)ds+ S̃2

∫ th−h

th−2h

e(th−h−s)Ān∗(s)ds,

with [ehĀ]ij denoting the entry (i, j) of the matrix exponential ehĀ (see the Appendix)

ehĀ =

[ehĀ]11 [ehĀ]12 [ehĀ]13

[ehĀ]21 [ehĀ]22 [ehĀ]23

[ehĀ]31 [ehĀ]32 [ehĀ]33

 =

[ehĀ]11 (Ip1 − [ehĀ]11)Π [ehĀ]13

0 Ip2 0

[ehĀ]31 − [ehĀ]31Π [ehĀ]33

 ,

and

S̃1 =

(
Ip1 0 0

0 Ip2 0

)
, S̃2 =

(
−[ehĀ]13[ehĀ]33[ehĀ]−1

13 0 [ehĀ]13

0 0 0

)
.

Note that the matrices F1 and F2 have been partitioned conformably with the elements

7This sub-matrix is the entry (1,3) of the matrix exponential ehĀ defined below.
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of y(τ) (i.e. y1(τ) and y2(τ)), and the matrix ehĀ conformably with the elements of x(τ)

(i.e. y1(τ), y2(τ) and Dy1(τ)). Equation (3.15) differs from that given by Agbeyegbe

(1984) in that the matrix Ā is non-singular in his paper.8

Subtracting y(th − h) on both sides of equation (3.15) and adding the term (F2 −
F2)y(th− h) to the right-hand side of (3.15) yields

∆y(th) = −(Ip − F1 − F2)y(th− h)− F2∆y(th− h) + κth + ϑth. (3.16)

We can alternatively write (3.16) as

∆y(th) = GQB′y(th− h)− F2∆y(th− h) + κth + ϑth, t = 2, ..., n, (3.17)

where G = (Ip1 , 0p1×p2)
′ and Q = ([ehĀ]13[ehĀ]33[ehĀ]−1

13 −Ip1)(Ip1− [ehĀ]11)+[ehĀ]13[ehĀ]31.

Note that since B′y(th − h) is stationary, ∆y(th) is stationary too. Note, too, that the

coefficient matrix on y(th− h) is of reduced rank.

The model given in (3.17) holds for periods 2h, ..., nh. To complete the exact discrete

representation for the case of stock variables, we must derive a supplementary equation

relating the first observation y(h) to the initial state vector x(0) = (y(0)′, Dy1(0)′)′. This

equation, which is obtained from the system of difference equations implied by (3.14), is

given by (see the Appendix for details)

y(h)− y(0) = GR1B
′y(0) +GR2Dy1(0) + κ̃h + ϑ̃h, (3.18)

where R1 = [ehĀ]11 − Ip1 , R2 = [ehĀ]13, and the vectors κ̃h and ϑ̃h are

κ̃h = S̃1

∫ h

0

e(h−s)Ā(µ∗ + γ∗s)ds,

ϑ̃h = S̃1

∫ h

0

e(h−s)Ān∗(s)ds.

We turn now to the derivation of the exact discrete model assuming that all variables

are flows. Integrating (3.17) over (th−h, th) and defining ȳ(th) = h−1
∫ th
th−h y(r)dr yields

∆ȳ(th) = GQB′ȳ(th− h)− F2∆ȳ(th− h) + ιth + ςth, t = 3, ..., n, (3.19)

8See Assumption 2 in Agbeyegbe (1984) which implies that Ā is non-singular. We have also change
the order of the elements of y(th), that being y(th) = (y2(th)′, y1(th)′)′ in the original paper. The
elements of the matrix exponential have been replaced by those defined before.
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where

ιth =
1

h

[
S̃1

∫ th

th−h

∫ r

r−h
e(r−s)Ā(µ∗ + γ∗s)dsdr + S̃2

∫ th

th−h

∫ r−h

r−2h

e(r−h−s)Ā(µ∗ + γ∗s)dsdr

]
,

ςth =
1

h

[
S̃1

∫ th

th−h

∫ r

r−h
e(r−s)Ān∗(s)dsdr + S̃2

∫ th

th−h

∫ r−h

r−2h

e(r−h−s)Ān∗(s)dsdr

]
.

The following two supplementary equations relating the first two observations (i.e.

ȳ(h) and ȳ(2h)) to the initial state vector x(0) complete the exact discrete representation

for the case of flow variables (see the Appendix for details)

ȳ(h)− y(0) = GU1B
′y(0) +GU2Dy1(0) + ι̃h + ς̃h, (3.20)

∆ȳ(2h) = GR1B
′ȳ(h) +GR2U3B

′y(0) +GR2U4Dy1(0) + ι̃2h + ς̃2h, (3.21)

where U1 = h−1
∫ h

0
([erĀ]11 − Ip1)dr, U2 = h−1

∫ h
0

[erĀ]13dr, U3 = h−1
∫ h

0
[erĀ]31dr,

U4 = h−1
∫ h

0
[erĀ]33dr, and the vectors ι̃h, ς̃h, ι̃2h and ς̃2h are

ι̃h =
1

h

[
S̃1

∫ h

0

∫ r

0

e(r−s)Ā(µ∗ + γ∗s)dsdr

]
,

ς̃h =
1

h

[
S̃1

∫ h

0

∫ r

0

e(r−s)Ān∗(s)dsdr

]
,

ι̃2h =
1

h

[
S̃1

∫ 2h

h

∫ r

r−h
e(r−s)Ā(µ∗ + γ∗s)dsdr + S̃3

∫ h

0

∫ r

0

e(r−s)Ā(µ∗ + γ∗s)dsdr

]
,

ς̃2h =
1

h

[
S̃1

∫ 2h

h

∫ r

r−h
e(r−s)Ān∗(s)dsdr + S̃3

∫ h

0

∫ r

0

e(r−s)Ān∗(s)dsdr

]
,

with
∫ h

0
[erĀ]ijdr being the entry (i, j) of the matrix

∫ h
0
erĀdr, and S̃3 given by

S̃3 =

(
0 0 [ehĀ]13

0 0 0

)
.

We shall now use equations (3.17)-(3.21) to derive the exact discrete model satisfied by

mixed data.

3.3.3 The exact discrete time model for mixed data sampling

The exact discrete representation corresponding to the continuous time system (3.11)-

(3.12) with mixed sampling can be obtained by combining the observable stock and flow

components of equations (3.17)-(3.21). It should be noted, however, that the equation

determining y1(τ) contains some unobservable variables, which must be eliminated and

replaced with their observable counterpart. The exact discrete model is presented in
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Theorems 3.3.1 and 3.3.2, in which the unobservable components are eliminated by using

the results contained in Lemma 1 in Chambers (2009) (see the Appendix for more details).

Theorem 3.3.1. Let y(τ) be generated by the system (3.11)- (3.12) and the elements of

y1(τ) be stock variables. Then, under Assumption 1, the observable vector yth satisfies

yh − y(0) = GR1B
′y(0) +GR2Dy1(0) + αh + ξh, (3.22)

∆y2h = GQB′yh − F2∆yh + α2h + ξ2h, (3.23)

∆yth = GQB′yth−h − F2∆yth−h + αth + ξth, t = 3, ..., n, (3.24)

where

αh = N1κ̃h +N2ι̃h, ξh = N1ϑ̃h +N2ς̃h,

α2h = N1κ2h +N2ι̃2h +N3κ̃h −N3ι̃h, ξ2h = N1ϑ2h +N2ς̃2h +N3ϑ̃h −N3ς̃h,

αth = N1κth +N2ιth +N3φth−h +N4φth−2h, ξth = N1ϑth +N2ςth +N3εth−h +N4εth−2h,

with φth−h =
[
(1

2
µ− 1

6
γh) + 1

2
γ(th− h)

]
h, εth−h = −h−1

∫ th
th−h(th − h − s)n(s)ds, and

the selection matrices Nj (j = 1, 2, 3, 4) given by

N1 =

Ip1 0 0

0 Ips2 0

0 0 0

 , N2 =

0 0 0

0 0 0

0 0 Ipf2

 ,

N3 =

0 0 −QΠf − F f
2,12

0 0 0

0 0 0

 , N4 =

0 0 F f
2,12

0 0 0

0 0 0

 .

Theorem 3.3.2. Let y(τ) be generated by the system (3.11)- (3.12) and the elements of

y1(τ) be flow variables. Then, under Assumption 1, the observable vector yth satisfies

yh − y(0) = GU1B
′y(0) +GU2Dy1(0) + αh + ξh, (3.25)

∆y2h = GR1B
′yh +GR2U3B

′y(0) +R2U4Dy1(0) + α2h + ξ2h, (3.26)

∆yth = GQB′yth−h − F2∆yth−h + αth + ξth, t = 3, ..., n, (3.27)

where

αh = N1κ̃h +N2ι̃h, ξh = N1ϑ̃h +N2ς̃h,

α2h = N1κ2h +N2ι̃2h − Ñ3κ̃h + Ñ3ι̃h, ξ2h = N1ϑ2h +N2ς̃2h − Ñ3ϑ̃h + Ñ3ς̃h,

αth = N1κth +N2ιth +N3φth−h +N4φth−2h, ξth = N1ϑth +N2ςth +N3εth−h +N4εth−2h,
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with φth−h =
[
(1

2
µ− 1

6
γh) + 1

2
γ(th− h)

]
h, εth−h = −h−1

∫ th
th−h(th − h − s)n(s)ds, and

the selection matrices Nj (j = 1, 2, 3, 4) and Ñ3 given by

N1 =

0 0 0

0 Ips2 0

0 0 0

 , N2 =

Ip1 0 0

0 0 0

0 0 Ipf2

 , Ñ3 =

0 −R1Πs 0

0 0 0

0 0 0

 ,

N3 =

0 QΠs + F s
2,12 0

0 0 0

0 0 0

 , N4 =

0 − F s
2,12 0

0 0 0

0 0 0

 .

Note that the matrices Nj (j = 1, 2, 3, 4) and Ñ3 have been partitioned in accordance

with the elements of yth (i.e. y1,th, y
s
2,th, y

f
2,th). We turn now to the characterization of

the properties of ξth.

3.3.4 Properties of the discrete time disturbances

For estimation purposes it is necessary to derive the precise form of the autocovariances

of the discrete time disturbances. To do this, it is convenient to first reduce the double

integrals appearing in the vectors ς̃h, ς̃2h, ςth (t = 3, ..., n) to single integrals as follows9

∫ h

0

∫ r

0

e(r−s)Ān∗(s)dsdr =

∫ h

0

Θ(h− s)n∗(s)ds, (3.28)∫ th

th−h

∫ r

r−h
e(r−s)Ān∗(s)dsdr =

∫ th−h

th−2h

[Θ(h)−Θ(th− h− s)]n∗(s)ds

+

∫ th

th−h
Θ(th− s)n∗(s)ds, t = 2, ..., n, (3.29)∫ th

th−h

∫ r−h

r−2h

e(r−h−s)Ān∗(s)dsdr =

∫ th−2h

th−3h

[Θ(h)−Θ(th− 2h− s)]n∗(s)ds

+

∫ th−h

th−2h

Θ(th− h− s)n∗(s)ds, t = 3, ..., n, (3.30)

where Θ(z) =
∑∞

j=0 z
j+1Āj/(j + 1)!.

Now, let ζth = (ζ ′1,th, ζ
′
2,th, ζ

′
3,th, ζ

′
4,th)

′ (t = 1, ..., n) be an 4(p + p1) × 1 vector, whose

9These expressions are obtained by using the results of Bergstrom (1997), McCrorie (2000) and Lemma
1 in Chambers (1999). See also Appendix A.2 in McCrorie and Chambers (2006).
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elements are given by

ζ1,th =

∫ th

th−h
z(th− s)n∗(s)ds, z(s) = esĀ,

ζ2,th =
1

h

∫ th

th−h
Θ(th− s)n∗(s)ds, Θ(s) =

∫ th

th−s
z(r − th+ s)dr,

ζ3,th =
1

h

∫ th

th−h
Ξ(th− s)n∗(s)ds, Ξ(s) = Θ(h)−Θ(s),

ζ4,th = −1

h

∫ th

th−h
(th− h− s)n∗(s)ds.

It can be shown that the vectors determining the discrete time disturbances can be

written in terms of ζth as following

ϑ̃h = S̃1ζ1,h, (3.31)

ϑth = S̃1ζ1,th + S̃2ζ1,th−h, t = 2, ..., n, (3.32)

ς̃h = S̃1ζ2,h, (3.33)

ς̃2h = S̃1ζ2,2h + S̃1ζ3,h + S̃3ζ2,h, (3.34)

ς̃th = S̃1ζ2,th + S̃1ζ3,th−h + S̃2ζ2,th−h + S̃2ζ3,th−2h, t = 3, ..., n, (3.35)

εth = S̃4ζ4,th, t = 1, ..., n, (3.36)

where the selection matrix S̃4 is

S̃4 =

(
0 0 Ip1

0 Ip2 0

)
.

It follows from the above equations that the discrete time disturbance vectors ξh, ..., ξnh

have the moving average representation

ξh = B0ζh, (3.37)

ξ2h = B0ζ2h + B̃1ζh, (3.38)

ξth = B0ζth +B1ζth−h +B2ζth−2h, t = 3, ..., n, (3.39)

where

B0 =
(
N1S̃1 N2S̃1 0 0

)
, B1 =

(
N1S̃2 N2S̃2 N2S̃1 N3S̃4

)
, B2 =

(
0 0 N2S̃2 N4S̃4

)
.

The matrix B̃1 takes different forms depending on the nature of the variable y1. When
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it is composed of stock variables, B̃1 is

B̃1 =
(
N1S̃2 +N3S̃1 N2S̃3 −N3S̃1 N2S̃1 0

)
,

and when y1 is composed of flow variables, the matrix becomes

B̃1 =
(
N1S̃2 − Ñ3S̃1 N2S̃3 + Ñ3S̃1 N2S̃1 0

)
.

From the moving average representation, the autocovariances of the discrete time

disturbances ξth follow immediately. Theorem 3.3.3 provides the results.

Theorem 3.3.3. The discrete time disturbance vectors ξh, ..., ξnh satisfy the following

properties

E(ξhξ
′
h) = Ω11 = B0ΩζB

′
0,

E(ξ2hξ
′
2h) = Ω22 = B0ΩζB

′
0 + B̃1ΩζB̃

′
1,

E(ξthξ
′
th) = Ω0 = B0ΩζB

′
0 +B1ΩζB

′
1 +B2ΩζB

′
2, t = 3, ..., n,

E(ξ2hξ
′
h) = Ω21 = B̃1ΩζB

′
0,

E(ξ3hξ
′
2h) = Ω32 = B1ΩζB

′
0 +B2ΩζB̃

′
1,

E(ξthξ
′
th−h) = Ω1 = B1ΩζB

′
0 +B2ΩζB

′
1, t = 4, ..., n,

E(ξthξ
′
th−2h) = Ω2 = B2ΩζB

′
0, t = 3, ..., n,

E(ξthξ
′
th−jh) = 0, j > 2,

where Ωζ = E(ζthζ
′
th) is

1

h2


h2
∫ h

0
z(s)Σ∗z(s)′ds h

∫ h
0
z(s)Σ∗Θ(s)′ds h

∫ h
0
z(s)Σ∗Ξ(s)′ds h

∫ h
0
z(s)Σ∗(h− s)ds

h
∫ h

0
Θ(s)Σ∗z(s)′ds

∫ h
0

Θ(s)Σ∗Θ(s)′ds
∫ h

0
Θ(s)Σ∗Ξ(s)′ds

∫ h
0

Θ(s)Σ∗(h− s)ds
h
∫ h

0
Ξ(s)Σ∗z(s)′ds

∫ h
0

Ξ(s)Σ∗Θ(s)′ds
∫ h

0
Ξ(s)Σ∗Ξ(s)′ds

∫ h
0

Ξ(s)Σ∗(h− s)ds
h
∫ h

0
(h− s)Σ∗z(s)′ds

∫ h
0

(h− s)Σ∗Θ(s)′ds
∫ h

0
(h− s)Σ∗Ξ(s)′ds (h3/3)Σ∗


and Σ∗ = E[n∗(τ)n∗(τ)′] is

Σ∗ =

(
0 0

0 Σ̃

)
, Σ̃ =

(
E[u2(τ)u2(τ)′] E[u2(τ)n1(τ)′]

E[n1(τ)u2(τ)′] E[n1(τ)n1(τ)′]

)
.
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3.3.5 Computation

As can be seen from Theorems 3.3.1 and 3.3.2, the deterministic terms αth depend on

κth and ιth, which involve integrals of the exponential of the matrix hĀ. The covariance

matrix Ωζ also involves integrals of ehĀ. Some formulae to compute these terms are given

in Theorem 3.3.4, which requires the following assumption.

Assumption 2. The 2p1 × 2p1 matrix V defined in Theorem 3.3.4 is non-singular.

Theorem 3.3.4. Under Assumption 2, the vectors κh, κth, ιh, ι2h and ιth have the

following representations

κ̃h = S̃1Θ(h)µ∗ − S̃1ג(h)γ∗ + S̃1Θ(h)γ∗h, (3.40)

κth = (S̃1 + S̃2)Θ(h)µ∗ − (S̃1 + S̃2)ג(h)γ∗ + S̃1Θ(h)γ∗th+ S̃2Θ(h)γ∗(th− h), (3.41)

ι̃h =
1

h
S̃1Υ(h)µ∗ + S̃1

[
Υ(h)− 1

h
ℵ(h)

]
γ∗, (3.42)

ι̃2h =

[
S̃1Θ(h) +

1

h
S̃3Υ(h)

]
µ∗ +

[
3

2
S̃1Θ(h)h− S̃1ג(h) + S̃3Υ(h)− 1

h
S̃3ℵ(h)

]
γ∗, (3.43)

ιth = (S̃1 + S̃2)Θ(h)µ∗ − (S̃1 + S̃2)

[
(h)ג +

1

2
Θ(h)h

]
γ∗ + S̃1Θ(h)γ∗th

+ S̃2Θ(h)γ∗(th− h), (3.44)

where

Θ(h) = J0 + J1h+ J2e
hVA′2, Υ(h) = J0h+

1

2
J1h

2 + J2V̄ A
′
2,

(h)ג =
1

2
J1h

2 + J2V V̄1A
′
2, ℵ(h) =

1

2
J0h

2 +
1

3
J1h

3 + J2V̄1A
′
2,

with the matrices Ji (i = 0, 1, 2), V , V̄ , V̄1, A1 and A′2 being

J0 = −A1V
−2A′2, J1 = Ip+p1 − A1V

−1A′2, J2 = A1V
−2,

V = A′2A1, V̄ = V −1(ehV − I2p1), V̄1 = V −1(hehV − V̄ ),

A1 =

Ip1 0

0 0

0 Ip1

 , A′2 =

(
0 0 Ip1

C̃ − C̃Π Ψ

)
.

The integrals determining Ωζ are given by∫ h

0

z(s)Σ∗z(s)′ds = J1Σ∗J ′1h+ J1Σ∗A2V̄
′V ′J ′2 + J2V V̄ A

′
2Σ∗J ′1 + J2V V̄2V

′J ′2, (3.45)
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∫ h

0

Θ(s)Σ∗z(s)′ds = J0Σ∗J ′1h+ J0Σ∗A2V̄
′V ′J ′2 +

1

2
J1Σ∗J ′1h

2 + J1Σ∗A2V̄
′

1V
′J ′2

+ J2V̄ A
′
2Σ∗J ′1 + J2V̄2V

′J ′2, (3.46)∫ h

0

Θ(s)Σ∗Θ(s)′ds = J0Σ∗J ′0h+
1

2
J0Σ∗J ′1h

2 + J0Σ∗A2V̄
′J ′2 +

1

2
J1Σ∗J ′0h

2 +
1

3
J1Σ∗J ′1h

3

+ J1Σ∗A2V̄
′

1J
′
2 + J2V̄ A

′
2Σ∗J ′0 + J2V̄1A

′
2Σ∗J ′1 + J2V̄2J

′
2, (3.47)∫ h

0

Ξ(s)Σ∗z(s)′ds = Θ(h)Σ∗Θ(h)′ −
∫ h

0

Θ(s)Σ∗z(s)′ds, (3.48)∫ h

0

Ξ(s)Σ∗Θ(s)′ds = Θ(h)Σ∗Υ(h)′ −
∫ h

0

Θ(s)Σ∗Θ(s)′ds, (3.49)∫ h

0

Ξ(s)Σ∗Ξ(s)′ds = Θ(h)Σ∗Θ(h)′h−Υ(h)Σ∗Θ(h)′ −
∫ h

0

Ξ(s)Σ∗Θ(s)′ds, (3.50)∫ h

0

(h− s)Σ∗z(s)′ds = −1

2
Σ∗J ′1h

2 − Σ∗A2V̄1V
′J ′2 + hΣ∗Θ(h)′, (3.51)∫ h

0

(h− s)Σ∗Θ(s)′ds = −1

2
Σ∗J ′0h

2 − 1

3
Σ∗J ′1h

3 − Σ∗A2V̄
′

1J
′
2 + hΣ∗Υ(h)′, (3.52)∫ h

0

(h− s)Σ∗Ξ(s)′ds = −1

2
Σ∗Θ(h)′h2 −

∫ h

0

(h− s)Σ∗Θ(s)′ds+ Σ∗Θ(h)′, (3.53)

where V̄2 =
∫ h

0
erVA′2Σ∗A2e

rV ′
dr.

This last term can be calculated as V̄2 = Z̄ ′22Z̄12, where Z̄22 and Z̄12 are elements of

the matrix exponential

Z̄ =

(
Z̄11 Z̄12

0 Z̄22

)
= exp

(
−V h A′2Σ∗A2h

0 V ′h

)
.

(see Jewitt and McCrorie, 2005).

Once the exact discrete analogue has been derived, standard estimation methods can

be applied to obtain estimates of the continuous time parameters. Next section

describes the Gaussian methods proposed by Bergstrom (1983, 1985, 1986), which have

been commonly employed for this purpose.

3.4 Estimation

Assuming that the continuous time disturbance vector (i.e. u(τ) in the first-order

system and n(τ) in the mixed-order system) is multivariate Gaussian, which implies a

discrete time disturbance vector being Gaussian too, exact maximum likelihood estimates
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can be obtained by minimizing

lnL =
n∑
t=1

($′th$th + 2ln|Mtt|) , (3.54)

where lnL denotes minus twice the logarithm of the likelihood function (ignoring the

constant term), $h, ..., $nh are functions of the observations and the parameters, which

can be computed recursively as follows

$h = M−1
11 ξh, (3.55)

$2h = M−1
22 (ξ2h −M21$h), (3.56)

$th = M−1
tt (ξth −Mt,t−1$th−h −Mt,t−2$th−2h), t = 3, ..., n, (3.57)

and the coefficient matrices M11, M21, M22, Mt,t−2, Mt,t−1 and Mtt (t = 3, ..., n) are

obtained recursively from the equations

M11M
′
11 = Ω11, (3.58)

M21 = Ω21[M ′
11]−1, (3.59)

M22M
′
22 = Ω22 −M21M

′
21, (3.60)

M31 = Ω2[M ′
11]−1, (3.61)

M32 = [Ω32 −M31M
′
21][M ′

22]−1, (3.62)

M33M
′
33 = Ω0 −M31M

′
31 −M32M

′
32, (3.63)

Mt,t−2 = Ω2[M ′
t−2,t−2]−1, t = 4, ..., n, (3.64)

Mt,t−1 = [Ω1 −Mt,t−2M
′
t−1,t−2][M ′

t−1,t−1]−1, t = 4, ..., n, (3.65)

MttM
′
tt = Ω0 −Mt,t−2M

′
t,t−2 −Mt,t−1M

′
t,t−1, t = 4, ..., n. (3.66)

It should be noted that the coefficient matrices Mt,t−2, Mt,t−1 and Mtt are

time-dependent, although they converge to constant matrices as t goes to infinity (See

Bergstrom, 1990, Ch.7). Also, Mt,t−2 = 0 (t = 3, ..., n) in the first-order system since ξth

is a MA(1) process.

3.5 Monte Carlo simulations

This section explores the finite sample properties of the Gaussian estimator using

Monte Carlo simulations. We consider two bivariate continuous time models, these being

a first-order system and a mixed-order system. In both cases, it is assumed that the first

variable of interest is a stock, while the second one is a flow, which is motivated by the
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theory of the Fisher effect.10 Let y(τ) = (ys(τ), yf (τ))′ and b(τ) = (bs(τ), bf (τ))′, where

yj(τ) (j = s, f) is a scalar continuous time process, bj(τ) (j = s, f) is a scalar Brownian

motion process, and the superscripts s and f denote a stock or a flow, respectively. The

covariance matrix of the increment of the Brownian motion db(τ) = [dbs(τ), dbf (τ)]′, is

Σdτ , where Σ is a 2× 2 symmetric positive definite matrix, taken to be

Σ =

(
σss σsf

σsf σff

)
=

(
1 σsf

σsf σff

)
.

To ensure that Σ is positive definite during the estimation step, we use a Cholesky

decomposition such that Σ = PP ′, where P is a lower triangular matrix, and estimate

the elements of P instead of the elements of Σ. Estimates of the original parameters can

be recovered by using the following equations, which relate the elements of both matrices:

σss = p2
11, σsf = p11p21, and σff = p2

21 + p2
22.

In order to assess the effects of increasing the data frequency and the data span on the

sampling properties of the Gaussian estimator, we consider five combinations of T and h,

these being (T = 30, h = 1/4), (T = 40, h = 1/4), (T = 50, h = 1/4), (T = 50, h = 1/12),

and (T = 50, h = 1/52), which correspond to 30, 40 and 50 years of quarterly data,

50 years of monthly data, and 50 years of weekly data, respectively. The experiment is

replicated 10000 times.

3.5.1 First-order system

The first model considered is given by

dys(τ) = [as + C(ys(τ)− Πyf (τ))]dτ + dbs(τ), τ > 0, (3.67)

dyf (τ) = afdτ + dbf (τ), τ > 0. (3.68)

Data are generated from the exact discrete representation, which is

yh − y(0) = GJB′y(0) + βh + ξh, (3.69)

∆yth = GJB′yth−h + β + ξth, t = 2, ..., n, (3.70)

10This theory introduced by Fisher (1930) postulates that the nominal interest rate is equal to the sum
of the real interest rate and the expected rate of inflation. Fisher (1930) claimed a one-to-one relationship
between the nominal interest rate (a stock variable) and the expected rate of inflation (a flow variable).
The relationship has been often examined empirically by testing a long-run unitary coefficient on the
expected inflation rate.
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where J = ehC − 1, and the vectors βh and β are

βh = S1H0a+ S2

(
1

2
I2 +H2B

′
)
ah,

β = H0a+
1

2
S5ah,

with a = (as, af )′, H0 and H2 defined in the Appendix, and the selection matrices Sj

(j = 1, 2, 5) being

S1 =

(
1 0

0 0

)
, S2 =

(
0 0

0 1

)
, S5 =

(
0 − JΠ

0 0

)
.

The disturbance vector ξth is given by

ξh = S1ηh + S2υ̃h, (3.71)

ξ2h = S1η2h + S5ηh + S2υ2h − S5υ̃h, (3.72)

ξth = S1ηth + S2υth + S5εth−h, t = 3, ..., n, (3.73)

and satisfies the following properties

E(ξhξ
′
h) = Ω11 =

∫ h

0

J2(s)ΣJ2(s)′ds,

E(ξthξ
′
th) = Ω0 =

∫ h

0

J0(s)ΣJ0(s)′ds+

∫ h

0

J1(s)ΣJ1(s)′ds, t = 2, ..., n,

E(ξthξ
′
th−h) = Ω1 =

∫ h

0

J1(s)ΣJ0(s)′ds, t = 2, ..., n,

E(ξthξ
′
th−jh) = 0, j > 1,

where
∫ h

0
Ji(s)ΣJk(s)

′ds (see the Appendix for the definition of this term, and also for the

definition of ηth, υ̃h, υth, and εth−h) is a function of the matrices Jik (i = 0, 1; k = 0, 1, 2)

given in the following table

k

i 0 1 2

0 S1(Ip −GB′) 1
hS2 S1G

1 S2 + S5 − 1
h [S2 + S5] 0

Table 3.1: Definition of the Jik matrices in a bivariate system.

To generate artificial data, we first compute the discrete time disturbance vector ξth
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as follows

ξh = M11%h,

ξth = Mtt%th +Mt,t−1%th−h, t = 2, ..., n,

where %th = (%sth, %
f
th)
′, %jth (j = s, f) are random draws from a standard normal

distribution, and the coefficient matrices M11, Mt,t−1 and Mtt (t = 2, ..., n) are obtained

recursively from the equations11

M11M
′
11 = Ω11,

Mt,t−1 = Ω1[M ′
t−1,t−1]−1, t = 2, ..., n,

MttM
′
tt = Ω0 −Mt,t−1M

′
t,t−1, t = 2, ..., n.

Assuming that the initial state vector is y(0) = 0, we then compute simulated data

for the vector y by using equations (3.69)-(3.70). The following values for the parameters

are employed: as = af = 0, C = {−0.3,−0.5,−1,−2}, Π = 1, σsf = 0 and σff = 1.

We only consider small values of the adjustment parameter C because of the empirical

evidence suggesting a slow reaction of the system variables to long-run disequilibrium

(see for example, Rogoff, 1996; Johansen and Juselius, 1990). The initial value of the

flow variable yf1 (0) is unobservable and must be estimated in addition to the continuous

time parameters. For simplicity, we assume that ξh = 0 and compute the conditional

maximum likelihood estimates, thus avoiding the computation of Ω11 and the estimation

of yf1 (0).12 Table 3.2 reports the bias and variance of the parameter estimates in the

continuous time system with unknown mean.

We observe that the bias of Ĉ is negative and more pronounced as C moves to zero.

For example, for 30 years of quarterly data the percentage bias is 7% when C = −2,

while it is 13%, 28%, and more than 50% when the adjustment coefficient is -1, -0.5

and -0.3, respectively. Increasing the sample size reduces the bias and variance of Ĉ,

these reductions being much larger when the span increases than when the sampling

interval decreases. We also see from the table that the long-run equilibrium coefficient

is downward biased, its bias and variance depend on the size of C, these being smaller

as C moves away from zero. Increasing the span reduces the bias and variance of Π̂, but

increasing the sampling frequency does not produce substantial changes in the figures.

The variance of Π̂ decreases faster than the variance of the other coefficients when the

data span increases.

11Note that these are the same equations given in (3.58)-(3.66) with Mt,t−2 = 0.
12Alternatively, we could obtain exact Gaussian estimates (see the iterative estimation procedure

proposed by Bergstrom (1990, pg. 113-114). The conditional maximum likelihood estimator should yield
a good approximation to the exact Gaussian estimator when the sample is large.
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Quarterly Monthly Weekly
True value T=30 T=40 T=50 T=50 T=50

Bias
C -0.3 -0.1532 -0.1065 -0.0797 -0.0782 -0.0753
Π 1 -0.0624 -0.0429 -0.0317 -0.0319 -0.0310
σss 1 0.0163 0.0110 0.0083 0.0023 0.0006
σsf 0 -0.0189 -0.0148 -0.0119 -0.0043 -0.0014
σff 1 -0.0017 -0.0012 -0.0004 0.0001 0.0006
as 0 0.0040 0.0066 0.0038 0.0014 0.0006
af 0 -0.0035 -0.0035 -0.0023 -0.0031 -0.0025
C -0.5 -0.1393 -0.0987 -0.0745 -0.0719 -0.0686
Π 1 -0.0297 -0.0192 -0.0139 -0.0142 -0.0135
σss 1 0.0148 0.0101 0.0077 0.0020 0.0005
σsf 0 -0.0198 -0.0154 -0.0121 -0.0044 -0.0014
σff 1 -0.0017 -0.0012 -0.0005 0.0001 0.0006
as 0 0.0032 0.0065 0.0033 0.0019 0.0001
af 0 -0.0033 -0.0034 -0.0023 -0.0031 -0.0025
C -1 -0.1326 -0.0958 -0.0732 -0.0677 -0.0629
Π 1 -0.0093 -0.0058 -0.0042 -0.0044 -0.0040
σss 1 0.0143 0.0101 0.0079 0.0019 0.0005
σsf 0 -0.0206 -0.0158 -0.0124 -0.0045 -0.0014
σff 1 -0.0016 -0.0012 -0.0005 0.0001 0.0006
as 0 0.0032 0.0061 0.0031 0.0026 -0.0003
af 0 -0.0030 -0.0031 -0.0020 -0.0030 -0.0025
C -2 -0.1415 -0.1036 -0.0800 -0.0671 -0.0603
Π 1 -0.0025 -0.0017 -0.0013 -0.0014 -0.0012
σss 1 0.0162 0.0118 0.0094 0.0020 0.0005
σsf 0 -0.0211 -0.0161 -0.0126 -0.0045 -0.0014
σff 1 -0.0014 -0.0012 -0.0006 0.0000 0.0005
as 0 0.0037 0.0065 0.0032 0.0032 -0.0003
af 0 -0.0022 -0.0025 -0.0015 -0.0029 -0.0025

Variance
C -0.3 0.0378 0.0216 0.0142 0.0132 0.0125
Π 1 0.1575 0.0905 0.0545 0.0549 0.0547
σss 1 0.0195 0.0141 0.0113 0.0035 0.0008
σsf 0 0.0144 0.0105 0.0085 0.0027 0.0006
σff 1 0.0174 0.0129 0.0104 0.0034 0.0008
as 0 0.2090 0.1406 0.0969 0.0955 0.0949
af 0 0.0334 0.0247 0.0197 0.0203 0.0200
C -0.5 0.0438 0.0270 0.0189 0.0168 0.0157
Π 1 0.0567 0.0315 0.0194 0.0193 0.0194
σss 1 0.0199 0.0144 0.0115 0.0035 0.0008
σsf 0 0.0146 0.0107 0.0086 0.0028 0.0006
σff 1 0.0174 0.0128 0.0104 0.0034 0.0008
as 0 0.1684 0.1164 0.0824 0.0809 0.0813
af 0 0.0334 0.0246 0.0197 0.0203 0.0200
C -1 0.0697 0.0464 0.0341 0.0279 0.0252
Π 1 0.0138 0.0077 0.0047 0.0046 0.0047
σss 1 0.0211 0.0153 0.0122 0.0036 0.0008
σsf 0 0.0154 0.0112 0.0091 0.0028 0.0006
σff 1 0.0174 0.0128 0.0104 0.0034 0.0008
as 0 0.1387 0.0997 0.0717 0.0703 0.0712
af 0 0.0334 0.0246 0.0197 0.0203 0.0200
C -2 0.1509 0.1048 0.0799 0.0544 0.0457
Π 1 0.0034 0.0019 0.0012 0.0011 0.0011
σss 1 0.0243 0.0176 0.0140 0.0038 0.0008
σsf 0 0.0171 0.0125 0.0101 0.0029 0.0006
σff 1 0.0174 0.0128 0.0103 0.0033 0.0008
as 0 0.1285 0.0918 0.0672 0.0655 0.0664
af 0 0.0334 0.0245 0.0197 0.0203 0.0200

Table 3.2: Bias and variance of parameter estimates in system (3.67)-(3.68) with unknown
mean.

The magnitude of C has a smaller effect or no effect on the bias and variance of the

other parameter estimates. Estimation of the covariance parameters enjoys small bias

and variance, both statistics decreasing as the sample size becomes larger, although not
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Quarterly Monthly Weekly
True value T=30 T=40 T=50 T=50 T=50

Bias
C -0.3 -0.0909 -0.0634 -0.0490 -0.0484 -0.0463
Π 1 -0.0152 -0.0114 -0.0092 -0.0097 -0.0107
σss 1 0.0132 0.0091 0.0070 0.0019 0.0005
σsf 0 -0.0124 -0.0096 -0.0078 -0.0030 -0.0010
σff 1 0.0067 0.0051 0.0045 0.0019 0.0009
C -0.5 -0.0857 -0.0605 -0.0469 -0.0456 -0.0430
Π 1 -0.0076 -0.0048 -0.0038 -0.0042 -0.0047
σss 1 0.0125 0.0087 0.0068 0.0018 0.0005
σsf 0 -0.0131 -0.0100 -0.0080 -0.0031 -0.0011
σff 1 0.0067 0.0050 0.0045 0.0018 0.0009
C -1 -0.0839 -0.0604 -0.0468 -0.0439 -0.0400
Π 1 -0.0020 -0.0011 -0.0010 -0.0013 -0.0014
σss 1 0.0126 0.0090 0.0071 0.0018 0.0004
σsf 0 -0.0137 -0.0104 -0.0082 -0.0032 -0.0011
σff 1 0.0068 0.0050 0.0044 0.0018 0.0009
C -2 -0.0904 -0.0666 -0.0517 -0.0437 -0.0386
Π 1 -0.0002 -0.0002 -0.0003 -0.0004 -0.0005
σss 1 0.0144 0.0106 0.0085 0.0019 0.0004
σsf 0 -0.0141 -0.0108 -0.0085 -0.0032 -0.0011
σff 1 0.0070 0.0049 0.0044 0.0017 0.0009

Variance
C -0.3 0.0278 0.0165 0.0117 0.0110 0.0103
Π 1 0.0935 0.0477 0.0282 0.0294 0.0293
σss 1 0.0190 0.0138 0.0111 0.0034 0.0008
σsf 0 0.0143 0.0104 0.0084 0.0027 0.0006
σff 1 0.0175 0.0130 0.0105 0.0034 0.0008
C -0.5 0.0356 0.0226 0.0166 0.0150 0.0139
Π 1 0.0305 0.0161 0.0097 0.0100 0.0100
σss 1 0.0194 0.0141 0.0114 0.0035 0.0008
σsf 0 0.0146 0.0106 0.0086 0.0028 0.0006
σff 1 0.0175 0.0130 0.0105 0.0034 0.0008
C -1 0.0621 0.0421 0.0319 0.0265 0.0238
Π 1 0.0070 0.0039 0.0024 0.0023 0.0024
σss 1 0.0207 0.0150 0.0121 0.0036 0.0008
σsf 0 0.0153 0.0112 0.0091 0.0028 0.0006
σff 1 0.0176 0.0129 0.0105 0.0034 0.0008
C -2 0.1420 0.0993 0.0771 0.0531 0.0444
Π 1 0.0017 0.0010 0.0006 0.0006 0.0006
σss 1 0.0238 0.0173 0.0139 0.0038 0.0008
σsf 0 0.0170 0.0125 0.0101 0.0029 0.0006
σff 1 0.0175 0.0129 0.0104 0.0034 0.0008

Table 3.3: Bias and variance of parameter estimates in system (3.67)-(3.68) with known mean.

uniformly for the the bias of σff which increases for weekly data. Results indicate that

increasing the span reduces the variance of the intercepts, but does not produce a clear

effect on the bias of these coefficients. The bias of as also reduces as the sampling interval

goes to zero.

Table 3.3 reports the bias and variance of the parameter estimates for the first-order

system with known mean. A similar picture emerges from these results. Comparing

Tables 3.2 and 3.3, we also observe that the bias of Ĉ and Π̂ increases considerably

when intercepts are estimated. So far we have only considered cases when the Brownian

motions driving ys(τ) and yf (τ) have equal variances (i.e. the ratio σff /σss = 1) and are

uncorrelated (i.e. σsf = 0). Tables 3.4 and 3.5 report the corresponding results for three

values of σff = {0.5, 1, 2} and σsf = {−0.5, 0, 0.5}, respectively. For both cases we only

consider the system with unknown mean and one value for the adjustment coefficient,
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Quarterly Monthly Weekly
True value T=30 T=40 T=50 T=50 T=50

Bias
C -1 -0.1732 -0.1260 -0.0967 -0.0885 -0.0825
Π 1 -0.0116 -0.0075 -0.0054 -0.0057 -0.0052
σss 1 0.0230 0.0166 0.0129 0.0035 0.0008
σsf 0 -0.0134 -0.0104 -0.0082 -0.0030 -0.0009
σff 0.5 -0.0009 -0.0006 -0.0002 0.0001 0.0003
as 0 0.0026 0.0060 0.0031 0.0029 -0.0003
af 0 -0.0023 -0.0023 -0.0015 -0.0022 -0.0018
C -1 -0.1326 -0.0958 -0.0732 -0.0677 -0.0629
Π 1 -0.0093 -0.0058 -0.0042 -0.0044 -0.0040
σss 1 0.0143 0.0101 0.0079 0.0019 0.0005
σsf 0 -0.0206 -0.0158 -0.0124 -0.0045 -0.0014
σff 1 -0.0016 -0.0012 -0.0005 0.0001 0.0006
as 0 0.0032 0.0061 0.0031 0.0026 -0.0003
af 0 -0.0030 -0.0031 -0.0020 -0.0030 -0.0025
C -1 -0.0901 -0.0648 -0.0493 -0.0460 -0.0426
Π 1 -0.0065 -0.0040 -0.0029 -0.0031 -0.0028
σss 1 0.0051 0.0034 0.0027 0.0003 0.0001
σsf 0 -0.0279 -0.0213 -0.0166 -0.0061 -0.0019
σff 2 -0.0030 -0.0025 -0.0011 0.0002 0.0011
as 0 0.0035 0.0063 0.0031 0.0025 -0.0002
af 0 -0.0037 -0.0041 -0.0026 -0.0042 -0.0035

Variance
C -1 0.0941 0.0629 0.0461 0.0371 0.0336
Π 1 0.0261 0.0147 0.0091 0.0090 0.0091
σss 1 0.0223 0.0161 0.0128 0.0036 0.0008
σsf 0 0.0075 0.0055 0.0044 0.0014 0.0003
σff 0.5 0.0043 0.0032 0.0026 0.0008 0.0002
as 0 0.1466 0.1052 0.0747 0.0725 0.0733
af 0 0.0167 0.0123 0.0098 0.0102 0.0100
C -1 0.0697 0.0464 0.0341 0.0279 0.0252
Π 1 0.0138 0.0077 0.0047 0.0046 0.0047
σss 1 0.0211 0.0153 0.0122 0.0036 0.0008
σsf 0 0.0154 0.0112 0.0091 0.0028 0.0006
σff 1 0.0174 0.0128 0.0104 0.0034 0.0008
as 0 0.1387 0.0997 0.0717 0.0703 0.0712
af 0 0.0334 0.0246 0.0197 0.0203 0.0200
C -1 0.0459 0.0303 0.0225 0.0186 0.0169
Π 1 0.0074 0.0041 0.0025 0.0024 0.0024
σss 1 0.0198 0.0144 0.0116 0.0035 0.0008
σsf 0 0.0319 0.0232 0.0188 0.0057 0.0013
σff 2 0.0696 0.0513 0.0415 0.0134 0.0031
as 0 0.1312 0.0940 0.0686 0.0680 0.0691
af 0 0.0668 0.0491 0.0394 0.0406 0.0400

Table 3.4: Bias and variance of parameter estimates in system (3.67)-(3.68) with unknown mean
for different values of σff .

this being C = −1.

From Table 3.4 we observe that the bias and variance of Ĉ, Π̂ and σ̂ss and the variance

of âs decrease as the ratio σff /σss increases,13 as opposed to the bias and variance of σ̂sf ,

σ̂ff and âf , which increase when the ratio σff /σss becomes larger. There is a tendency for

the bias of âs to increase for quarterly data, and to decrease for higher frequency data.

Table 3.5 suggests that the covariance parameter affects the bias and variance of some

parameter estimates, although not in the same way. For example, the bias and variance

of the adjustment coefficient are larger when σsf goes from -0.5 to 0.5, while those of the

long-run coefficient are higher when σsf = 0. The effect of increasing the sample size is

13The result for the bias of the long-run coefficient is consistent with the findings in Gonzalo (1994)
for discrete time cointegrated models.
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Quarterly Monthly Weekly
True value T=30 T=40 T=50 T=50 T=50

Bias
C -1 -0.0703 -0.0509 -0.0381 -0.0350 -0.0329
Π 1 -0.0065 -0.0045 -0.0030 -0.0032 -0.0033
σss 1 0.0125 0.0089 0.0068 0.0017 0.0004
σsf -0.5 -0.0192 -0.0143 -0.0113 -0.0039 -0.0013
σff 1 -0.0006 -0.0003 0.0002 0.0005 0.0008
as 0 0.0013 0.0049 0.0028 0.0026 0.0014
af 0 -0.0045 -0.0043 -0.0030 -0.0034 -0.0023
C -1 -0.1326 -0.0958 -0.0732 -0.0677 -0.0629
Π 1 -0.0093 -0.0058 -0.0042 -0.0044 -0.0040
σss 1 0.0143 0.0101 0.0079 0.0019 0.0005
σsf 0 -0.0206 -0.0158 -0.0124 -0.0045 -0.0014
σff 1 -0.0016 -0.0012 -0.0005 0.0001 0.0006
as 0 0.0032 0.0061 0.0031 0.0026 -0.0003
af 0 -0.0030 -0.0031 -0.0020 -0.0030 -0.0025
C -1 -0.2049 -0.1486 -0.1151 -0.1002 -0.0923
Π 1 -0.0071 -0.0046 -0.0033 -0.0031 -0.0023
σss 1 0.0133 0.0093 0.0074 0.0015 0.0004
σsf 0.5 -0.0187 -0.0145 -0.0111 -0.0040 -0.0011
σff 1 -0.0019 -0.0015 -0.0007 -0.0003 0.0002
as 0 0.0066 0.0066 0.0026 0.0018 0.0020
af 0 -0.0008 -0.0013 -0.0005 -0.0019 -0.0020

Variance
C -1 0.0333 0.0227 0.0165 0.0137 0.0127
Π 1 0.0119 0.0064 0.0038 0.0037 0.0037
σss 1 0.0209 0.0152 0.0123 0.0036 0.0008
σsf -0.5 0.0149 0.0109 0.0089 0.0028 0.0006
σff 1 0.0170 0.0127 0.0104 0.0034 0.0008
as 0 0.1036 0.0770 0.0567 0.0543 0.0552
af 0 0.0333 0.0249 0.0197 0.0202 0.0198
C -1 0.0697 0.0464 0.0341 0.0279 0.0252
Π 1 0.0138 0.0077 0.0047 0.0046 0.0047
σss 1 0.0211 0.0153 0.0122 0.0036 0.0008
σsf 0 0.0154 0.0112 0.0091 0.0028 0.0006
σff 1 0.0174 0.0128 0.0104 0.0034 0.0008
as 0 0.1387 0.0997 0.0717 0.0703 0.0712
af 0 0.0334 0.0246 0.0197 0.0203 0.0200
C -1 0.1225 0.0785 0.0584 0.0443 0.0388
Π 1 0.0102 0.0055 0.0034 0.0032 0.0033
σss 1 0.0197 0.0142 0.0113 0.0035 0.0008
σsf 0.5 0.0158 0.0115 0.0093 0.0028 0.0006
σff 1 0.0172 0.0128 0.0102 0.0033 0.0008
as 0 0.1307 0.0850 0.0629 0.0593 0.0606
af 0 0.0334 0.0245 0.0197 0.0200 0.0204

Table 3.5: Bias and variance of parameter estimates in system (3.67)-(3.68) with unknown mean
for different values of σsf .

similar to that found for the case of uncorrelated errors with equal variances.

According to the Monte Carlo study, it seems that the bias and the variance of Ĉ

and Π̂ as well as the variance of the intercepts are mainly determined by the data span,

which is consistent with the results in Tang and Chen (2009) for stationary continuous

time models. In contrast, the bias and variance of σ̂ij appear to depend on the sample

size, implying that these parameters will be estimated very accurately in both cases when

the span gets larger or when the sampling interval gets smaller. This last result is also

consistent with the Tang and Chen’s findings for stationary continuous time models.
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3.5.2 Mixed-order system

The second model considered is

d[Dys(τ)] =
[
µs + ΨDys(τ) + C̃(ys(τ)− Πyf (τ))

]
dτ + dbs(τ), τ > 0, (3.74)

dyf (τ) = afdτ + dbf (τ), τ > 0. (3.75)

Similar to the first-order system, we simulate data from the exact discrete representation,

which is given by

yh − y(0) = GR1B
′y(0) +GR2Dy

s(0) + αh + ξh, (3.76)

∆y2h = GQB′yh − F2∆yh + α2h + ξ2h, (3.77)

∆yth = GQB′yth−h − F2∆yth−h + α + ξth, t = 3, ..., n, (3.78)

where R1 = [ehĀ]11 − 1, R2 = [ehĀ]13, Q = ([ehĀ]33 − 1)(1 − [ehĀ]11) + [ehĀ]13[ehĀ]31, the

matrix F2 is

F2 = G(F2,11 F2,12),

F2,11 = [ehĀ]13[ehĀ]31 − [ehĀ]33[ehĀ]11,

F2,12 = −
(

[ehĀ]13[ehĀ]31 + [ehĀ]33(1− [ehĀ]11)
)

Π,

and the vectors α’s are

αh = N1S̃1Θ(h)µ∗ +
1

h
N2S̃1Υ(h)µ∗,

α2h = (S̃1 + S̃2)Θ(h)µ∗ +N3S̃1

[
Θ(h)− 1

h
Υ(h)

]
µ∗,

α = (S̃1 + S̃2)Θ(h)µ∗ +
1

2
(N3 +N4)µh,

with the matrices Sj (j = 1, 2) and Nj (j = 1, 2, 3, 4) being

S̃1 =

(
1 0 0

0 1 0

)
, S̃2 =

(
−[ehĀ]33 0 [ehĀ]13

0 0 0

)
,

N1 =

(
1 0

0 1

)
, N2 =

(
0 0

0 1

)
, N3 =

(
0 −QΠ− F2,12

0 0

)
, N4 =

(
0 F2,12

0 0

)
.

The disturbance vector ξth is a vector MA(2) process with autocovariances given in

Theorem 3.3.3.
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We simulate the discrete time disturbances as follows

ξh = M11%h,

ξ2h = M22%2h +M21%h,

ξth = Mtt%th +Mt,t−1%th−h +Mt,t−2%th−2h, t = 3, ..., n,

where %th = (%sth, %
f
th)
′, %jth (j = s, f) are random draws from a standard normal

distribution, and the coefficient matrices M11, M21, M22, Mt,t−2, Mt,t−1 and Mtt

(t = 3, ..., n) are obtained recursively from equations (3.58)-(3.66). We then compute

simulated data for y by using (3.76)-(3.78), assuming that the initial state vector is

x(0) = (y(0), Dys(0)) = 0. Three combinations of Ψ and C̃ are considered, these being

(Ψ = −1.5, C̃ = −0.5), (Ψ = −2, C̃ = −1) and (Ψ = −3, C̃ = −2). In all three cases we

use µs = af = 0, σss = σff = 1, and σsf = 0. For estimation it is assumed that ys(0) is

observable and equal to zero. We also assume that ξh = 0, thus avoiding the

computation of Ω11, Ω21, R1 and R2, and the estimation of yf1 (0) and Dys(0). Table 3.6

reports the conditional maximum likelihood estimates.

Results are similar to those obtained for the first-order system. First, the biases of

the short-run, long-run and adjustment coefficients are negative and more pronounced as

Ψ and C̃ get smaller (in absolute value). Second, estimation of the long-run equilibrium

coefficient and covariance parameters enjoys small bias and variance. Third, it appears

that the bias and variance of the estimators of Ψ, C̃ and Π as well as the variance of the

intercepts are mainly determined by the data span. Fourth, the bias and variance of the

covariance coefficients seem to depend on the sample size.

3.6 Conclusions

This paper has derived the exact discrete representation corresponding to a mixed-

order system of stochastic differential equations with a mixture of stock and flow variables.

We have also studied the finite sample properties of the Gaussian estimator using a Monte

Carlo experiment. Simulations based on a first-order system reveals that the magnitude

of the bias of Ĉ and Π̂ depends on the size of the adjustment coefficient, the covariance

and the ratio of the variances of the two Brownian motions.

Results for both a first-order system and a mixed-order system are consistent with

what has been found for stationary continuous time models. The bias and variance of the

estimators of the short-run, long-run and adjustment coefficients as well as the variance of

the intercepts are mainly determined by the data span, while the bias and variance of the

covariance coefficients depend on the sample size. Estimation of the long-run coefficient
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and covariance parameters enjoys smaller bias and variance than the other parameters.

It appears that despite Π̂ being estimated very precisely, there may be some bias in finite

samples, this being especially the case when the model includes an intercept and the

reaction of the system variables to deviations from equilibrium is slow (i.e. C is close to

zero).

Quarterly Monthly Weekly
True value T=30 T=40 T=50 T=50 T=50

Bias
Ψ -1.5 -0.1789 -0.1308 -0.1026 -0.0981 -0.0939

C̃ -0.5 -0.1565 -0.1100 -0.0830 -0.0813 -0.0779
Π 1 -0.0167 -0.0131 -0.0109 -0.0114 -0.0100
σss 1 0.0084 0.0061 0.0050 0.0008 0.0002
σsf 0 -0.0143 -0.0114 -0.0091 -0.0033 -0.0009
σff 1 -0.0102 -0.0075 -0.0055 -0.0015 0.0002
µs 0 0.0048 0.0060 0.0030 0.0020 0.0004
af 0 -0.0034 -0.0036 -0.0024 -0.0031 -0.0025
Ψ -2 -0.1795 -0.1305 -0.1031 -0.0949 -0.0903

C̃ -1 -0.1516 -0.1092 -0.0841 -0.0794 -0.0745
Π 1 -0.0056 -0.0039 -0.0034 -0.0034 -0.0027
σss 1 0.0098 0.0068 0.0056 0.0008 0.0002
σsf 0 -0.0159 -0.0124 -0.0099 -0.0035 -0.0010
σff 1 -0.0101 -0.0075 -0.0055 -0.0015 0.0002
µs 0 0.0042 0.0064 0.0029 0.0023 -0.0003
af 0 -0.0032 -0.0034 -0.0022 -0.0031 -0.0027
Ψ -3 -0.1893 -0.1370 -0.1085 -0.0923 -0.0878

C̃ -2 -0.1648 -0.1202 -0.0942 -0.0814 -0.0747
Π 1 -0.0015 -0.0011 -0.0011 -0.0011 -0.0007
σss 1 0.0121 0.0083 0.0069 0.0006 0.0002
σsf 0 -0.0182 -0.0140 -0.0112 -0.0037 -0.0010
σff 1 -0.0100 -0.0075 -0.0056 -0.0015 0.0001
µs 0 0.0038 0.0072 0.0033 0.0026 -0.0003
af 0 -0.0028 -0.0030 -0.0019 -0.0030 -0.0024

Variance
Ψ -1.5 0.1780 0.1220 0.0909 0.0690 0.0622

C̃ -0.5 0.0507 0.0294 0.0199 0.0185 0.0175
Π 1 0.0850 0.0423 0.0239 0.0229 0.0240
σss 1 0.0260 0.0190 0.0149 0.0038 0.0008
σsf 0 0.0091 0.0068 0.0054 0.0017 0.0004
σff 1 0.0171 0.0127 0.0103 0.0034 0.0008
µs 0 0.1830 0.1263 0.0878 0.0871 0.0881
af 0 0.0334 0.0247 0.0197 0.0203 0.0200
Ψ -2 0.2150 0.1485 0.1132 0.0811 0.0709

C̃ -1 0.0730 0.0474 0.0345 0.0291 0.0268
Π 1 0.0185 0.0097 0.0057 0.0055 0.0057
σss 1 0.0279 0.0203 0.0160 0.0039 0.0008
σsf 0 0.0096 0.0071 0.0056 0.0017 0.0004
σff 1 0.0171 0.0127 0.0103 0.0034 0.0008
µs 0 0.1482 0.1051 0.0758 0.0748 0.0763
af 0 0.0334 0.0246 0.0197 0.0203 0.0200
Ψ -3 0.3214 0.2239 0.1744 0.1098 0.0904

C̃ -2 0.1485 0.1023 0.0784 0.0546 0.0467
Π 1 0.0045 0.0023 0.0014 0.0013 0.0014
σss 1 0.0326 0.0235 0.0186 0.0041 0.0008
σsf 0 0.0108 0.0079 0.0063 0.0018 0.0004
σff 1 0.0171 0.0127 0.0103 0.0033 0.0008
µs 0 0.1329 0.0944 0.0694 0.0688 0.0704
af 0 0.0334 0.0246 0.0197 0.0203 0.0200

Table 3.6: Bias and variance of the parameter estimates in system (3.74)-(3.75).
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3.7 Appendix

The matrices Φ’s and the vectors βth (t = 1, ..., n) are given by14

Φ10 =


Js

Kf

0

0

 , Φ21 =


Js

Jf

0

0

 , Φ20 =


Jsf (Jf −Kf )

Jfs(Ks − Js)
0

0

 ,

Φ0 =

(
P0

0

)
, P0 =

(
P ss

0 P sf
0

0 P ff
0

)
, Φ1 =

(
P1 0

0 0

)
, P1 =

(
P ss

1 0

P fs
1 0

)
,

βh =


cs1,h
ψ̃f1,h
cs2,h
ψ̃f2,h

 , β2h =


βs1,2h
βf1,2h
cs2,2h
ψf2,2h

 , βth =


βs1,th
βf1,th
cs2,th
ψf2,th

 ,

where

J =

(
Js

Jf

)
=

(
Jss Jsf

Jfs Jff

)
= ehC − Ip1 ,

K =

(
Ks

Kf

)
=

(
Kss Ksf

Kfs Kff

)
=

1

h
C−1J − Ip1 ,

and the remaining terms are defined in Table 3.7.

The disturbance vectors ξth are

ξh = S6ηh + S7υ̃h,

ξ2h = S6η2h + S8ηh + S7υ2h − S8υ̃h,

ξth = S1ηth + S2υth + S3eth + S4eth−h + S5εth−h, t = 3, ..., n,

where ηth =
∫ th
th−h e

(th−s)AB′
u(s)ds, eth =

∫ th
th−h u(r)dr, εth = 1

h

∫ th
th−h[h − (th − s)]u(s)ds,

υth = 1
h

∫ th
th−h

∫ r
r−h e

(r−s)AB′
u(s)dsdr, υ̃h = 1

h

∫ h
0

∫ r
0
e(r−s)AB′

u(s)dsdr, and the selection

14The matrices and vectors are partitioned conformably with y1, y2, as well as with the stock and flow
components. Their elements are ordered according to the vector of observations yth, which takes the
form

yth =


ys1,th
yf1,th
ys2,th
yf2,th

 =


ys1(th)

1
h

∫ th
th−h y

f
1 (r)dr

ys2(th)
1
h

∫ th
th−h y

f
2 (r)dr

 .
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Submatrices

[·]ss [·]sf [·]fs [·]ff

P0 Jss + Jsf Γ2 Jsf Γ3 0 Jff − JfsC
−1
ss Csf

P1 Jsf Γ1 0 JfsC
−1
ss h

−1 0

M —– JssΠsf + Jsf Πff JfsΠss + Jff Πfs —–

Γ1 J−1
ff

(
Cfs

(
Jss + Ips1

)
+ Cff Jfs

)
C−1

ss

Γ2 −J−1
ff Jfs

Γ3

[
J−1

ff

(
CfsJsf + Cff

(
Jff + Ipf1

))
− Γ1Csf

]
h

Γ4

[
CfsB

′
s + CffB

′
f

]
h

Subvectors

[·]s [·]f

β1,2h cs1,2h −Msf

(
cf2,h − ψ̃

f
2,h

)
+ Jsf

(
cf1,h − ψ̃

f
1,h

)
ψf1,2h −Mfs

(
ψ̃s2,h − cs2,h

)
+ Jfs

(
ψ̃s1,h − cs1,h

)
β1,th cs1,th + Jsf g

f
th − P ss

0 Πsf φ
f
2,th−h + P sf

0 Πfsφ
s
2,th−h ψf1,th − P

fs
1 h

s
1,th−h + Pff

0 Πfsφ
s
2,th−h

gth —– J−1
ff

(
hf1,th − c

f
1,th + Γ4ψth

)
− Γ1h

s
1,th−h

h1,th

[
a1 + b1

(
th− 1

2h
)]
h

φ2,th

[(
1
2a2 − 1

6b2h
)

+ 1
2b2th

]
h

Matrices

G (Ip1 , 0p1×p2)
′

H0 (Ip +GKB′)h

H1 G
(
K1h

−2 − 1
2Ip
)

H2 G
(
K2h

−2 − 1
2Ip1

)
H3 G

(
C−1K1h

−3 − 1
2hC

−1 − 1
3Ip1

)
H4 G

(
C−1K1h

−3 − C−2Kh−2 − 1
6Ip1

)
K1 C−1ehCh− C−2J

K2 C−2J − C−1

Vectors

cth H0a−
(

1
2Ip +H1B

′) bh2 +H0bth

ψth H0a−
(

1
2 (Ip + h−1H0) +H1B

′) bh2 +H0bth

ψ̃th
(

1
2Ip +H2B

′) ah+
(

1
6Ip + (H3 −H4)B′

)
bh2

Table 3.7: Definition of additional matrices and vectors.
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matrices Sj (j = 1, ..., 8) are

S1 =


Ips1 − Jsf J

−1
ff 0 0

0 0 0 0

0 0 Ips2 0

0 0 0 0

 , S2 =


Jsf J

−1
ff Γ4

0 Ipf1
0 0

0 0 0 0

0 0 0 Ipf2

 ,

S3 =


0 Jsf J

−1
ff 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , S4 =


−Jsf Γ1 0 0 0

−P fs
1 0 0 0

0 0 0 0

0 0 0 0

 ,

S5 =


0 0 P sf

0 Πfs − P ss
0 Πsf

0 0 P ff
0 Πfs 0

0 0 0 0

0 0 0 0

 , S6 =


Ips1 0 0 0

0 0 0 0

0 0 Ips2 0

0 0 0 0

 ,

S7 =


0 0 0 0

0 Ipf1
0 0

0 0 0 0

0 0 0 Ipf2

 , S8 =


0 Jsf 0 −Msf

−Jfs 0 Mfs 0

0 0 0 0

0 0 0 0

 .

The disturbance ξth is a vector MA(1) satisfying the following properties

E(ξhξ
′
h) = Ω11 =

∫ h

0

J2(s)ΣJ2(s)′ds,

E(ξ2hξ
′
2h) = Ω22 =

∫ h

0

J2(s)ΣJ2(s)′ds+

∫ h

0

J3(s)ΣJ3(s)′ds,

E(ξthξ
′
th) = Ω0 =

∫ h

0

J0(s)ΣJ0(s)′ds+

∫ h

0

J1(s)ΣJ1(s)′ds, t = 3, ..., n,

E(ξ2hξ
′
h) = Ω21 =

∫ h

0

J3(s)ΣJ2(s)′ds,

E(ξ3hξ
′
2h) = Ω32 =

∫ h

0

J1(s)ΣJ2(s)′ds,

E(ξthξ
′
th−h) = Ω1 =

∫ h

0

J1(s)ΣJ0(s)′ds, t = 4, ..., n,

E(ξthξ
′
th−jh) = 0, j > 1,
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where∫ h

0

Ji(s)ΣJk(s)
′ds = Ji0ΣJ ′k0h+

1

2
Ji0ΣJ ′k1h

2 + Ji0ΣB(K ′ + Ip1)J
′
k2h+

1

2
Ji1ΣJ ′k0h

2

+
1

3
Ji1ΣJ ′k1h

3 + Ji1ΣBK ′1J
′
k2 + Ji2(K + Ip1)B

′ΣJ ′k0h

+ Ji2K1B
′ΣJ ′k1 + Ji2K3J

′
k2,

K3 =
∫ h

0
esCB′ΣBesC

′
ds and the matrices Jik (i = 0, 1, 2, 3; k = 0, 1, 2) are defined in the

following table.

k

i 0 1 2

0 S1(Ip −GB′)− 1
hS2GC

−1B′ + S3
1
hS2(Ip −GB′) S1G+ 1

hS2GC
−1

1 S2(Ip −GB′) + 1
hS2GC

−1ehCB′ + S5 + S4 − 1
hS2(Ip −GB′)− 1

hS5 − 1
hS2GC

−1

2 S6(Ip −GB′)− 1
hS7GC

−1B′ 1
hS7(Ip −GB′) S6G+ 1

hS7GC
−1

3 −J31h+ 1
hS7GC

−1ehCB′ + 1
hS8GC

−1B′ − 1
h (S7 + S8)(Ip −GB′) S8G− 1

h (S7 + S8)GC−1

Table 3.8: Definition of the Jik matrices.

The term K3 can be obtained from the matrix exponential

M̄ = exp

(
−Ch B′ΣBh

0 C ′h

)
=

(
M̄11 M̄12

0 M̄22

)
,

as K3 = M̄ ′
22M̄12 (see Jewitt and McCrorie, 2005).

3.8 Appendix: Proofs

The matrix exponential. The matrix Ā can be decomposed into a product of two matrices

as follows

Ā = A1A
′
2, (3.79)

where A1 and A′2 are matrices of dimension (p+p1)×2p1 and 2p1× (p+p1), respectively,

given by

A1 =

Ip1 0

0 0

0 Ip1

 , A′2 =

(
0 0 Ip1

C̃ − C̃Π Ψ

)
.

It can be shown that Āj = A1V
j−1A′2 (j = 1, ...,∞), where V = A′2A1, which enables

the matrix exponential ehĀ to be written as
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ehĀ = Ip+p1 + A1V
−1

∞∑
j=1

(hV )j

j!
A′2. (3.80)

Adding the term A1V
−1A′2 − A1V

−1A′2 to the right-hand side of (3.80) yields

ehĀ = Ip+p1 + A1V
−1

[
∞∑
j=0

(hV )j

j!
− I2p1

]
A′2,

= Ip+p1 + A1V̄ A
′
2, (3.81)

where V̄ = V −1(ehV − I2p1).

Partitioning V̄ , pre-multiplying by A1, post-multiplying by A′2, and adding the identity

matrix Ip+p1 , we obtain

ehĀ =

[ehĀ]11 (Ip1 − [ehĀ]11)Π [ehĀ]13

0 Ip2 0

[ehĀ]31 − [ehĀ]31Π [ehĀ]33

 ,

where

[ehĀ]11 = Ip1 + [V̄ ]12C̃,

[ehĀ]13 = [V̄ ]11 + [V̄ ]12Ψ,

[ehĀ]31 = [V̄ ]22C̃,

[ehĀ]33 = [V̄ ]21 + [V̄ ]22Ψ + Ip1 .

Derivation of equations (3.18). From (3.14) we obtain

x(th) = ehĀx(th− h) +

∫ th

th−h
e(th−s)Ā(µ∗ + γ∗s)ds+

∫ th

th−h
e(th−s)Ān∗(s)ds. (3.82)

Setting t = 1 in (3.82), subtracting x(0) on both sides of the equation and pre-multiplying

by S̃1 gives equation (3.18).

Derivation of equations (3.20) and (3.21). Integrating equation (3.14) over the interval

(0, h) gives∫ h

0

x(r)dr =

∫ h

0

erĀdrx(0) +

∫ h

0

∫ r

0

e(r−s)Ā(µ∗ + γ∗s)dsdr +

∫ h

0

∫ r

0

e(r−s)Ān∗(s)dsdr.

(3.83)
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Equation (3.20) is obtained by subtracting hx(0) on both sides of (3.83), and then pre-

multiplying by h−1S̃1.

Integrating (3.82) from h to 2h, subtracting
∫ h

0
x(r)dr on both sides of the equation

and pre-multiplying by h−1S̃1 yields

∆ȳ(2h) = G

[
([ehĀ]11 − Ip1)B′ȳ(h) +

1

h
[ehĀ]13

∫ h

0

Dy1(r)dr

]
+

1

h
S̃1

∫ 2h

h

∫ r

r−h
e(r−s)Ā(µ∗ + γ∗s)dsdr +

1

h
S̃1

∫ 2h

h

∫ r

r−h
e(r−s)Ān∗(s)dsdr. (3.84)

Note that (3.84) contains the unobservable
∫ h

0
Dy1(r)dr, which can be eliminated by

using the last p1 equations of the system (3.83). To extract the last p1 components from∫ h
0
x(r)dr, we pre-multiply (3.83) by S̃ = (0, 0, Ip1), which results in

∫ h

0

Dy1(r)dr =

∫ h

0

[erĀ]31drB
′y(0) +

∫ h

0

[erĀ]33drDy1(0)

+ S̃

∫ h

0

∫ r

0

e(r−s)Ā(µ∗ + γ∗s)dsdr + S̃

∫ h

0

∫ r

0

e(r−s)Ān∗(s)dsdr. (3.85)

Substituting (3.85) into (3.84) gives equation (3.21).

Proof of Theorem (3.3.1) . In order to derive the exact discrete model with mixed data

it is convenient to partition equations (3.17)-(3.21) conformably with y1, ys2 and yf2 as

following.

Equation (3.17) (Discrete model if the sample was comprised entirely of stocks, t =

2, ..., n)

∆y1,th = Q
[
y1,th−h − Πsys2,th−h − Πfwf2,th−h

]
− F2,11∆y1,th−h − F s

2,12∆ys2,th−h

− F f
2,12∆wf2,th−h + κ1,th + ϑ1,th (3.86)

∆ys2,th = κs2,th + ϑs2,th (3.87)

∆wf2,th = κf2,th + ϑf2,th (3.88)

Equation (3.18) (Discrete model if the sample was comprised entirely of stocks, t = 1)

y1,h − y1(0) = R1B
′y(0) +R2Dy1(0) + κ̃1,h + ϑ̃1,h (3.89)

ys2,h − ys2(0) = κ̃s2,h + ϑ̃s2,h (3.90)

wf2,h − y
f
2 (0) = κ̃f2,h + ϑ̃f2,h (3.91)
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Equation (3.19) (Discrete model if the sample was comprised entirely of flows, t =

3, ..., n)

∆w1,th = Q
[
w1,th−h − Πsws2,th−h − Πfyf2,th−h

]
− F2,11∆w1,th−h − F s

2,12∆ws2,th−h

− F f
2,12∆yf2,th−h + ι1,th + ς1,th (3.92)

∆ws2,th = ιs2,th + ςs2,th (3.93)

∆yf2,th = ιf2,th + ςf2,th (3.94)

Equation (3.20) (Discrete model if the sample was comprised entirely of flows, t = 1)

w1,h − y1(0) = U1B
′y(0) + U2Dy1(0) + ι̃1,h + ς̃1,h (3.95)

ws2,h − ys2(0) = ι̃s2,h + ς̃s2,h (3.96)

yf2,h − y
f
2 (0) = ι̃f2,h + ς̃f2,h (3.97)

Equation (3.21) (Discrete model if the sample was comprised entirely of flows, t = 2)

∆w1,2h = R1

[
w1,h − Πsws2,h − Πfyf2,h

]
+R2U3B

′y(0) +R2U4Dy1(0) + ι̃1,2h

+ ς̃1,2h (3.98)

∆ws2,2h = ι̃s2,2h + ς̃s2,2h (3.99)

∆yf2,2h = ι̃f2,2h + ς̃f2,2h (3.100)

Equation (3.22) is obtained by combining the observable stock components of (3.18)

(i.e. equations (3.89) and (3.90)) and the observable flow components of (3.20) (i.e.

equation (3.97)). To derive equation (3.23) we use (3.86), (3.87) and (3.100), after setting

t = 2 in the first two equations. Note that (3.86) contains the unobservable component

wf2,h, and its first difference ∆wf2,h, which must be eliminated and replaced with the

observables yf2,h and ∆yf2,h, respectively. The unobservable flows can be eliminated by

taking the difference of (3.91) and (3.97), which gives

∆wf2,h −∆yf2,h = κ̃f2,h − ι̃
f
2,h + ϑ̃f2,h − ς̃

f
2,h. (3.101)

It follows from the above equations that ∆wf2,h − ∆yf2,h = wf2,h − y
f
2,h. Substituting the

last expressions into (3.86) results in

∆y1,2h = QB′yh − F2,1∆yh + κ1,2h − (QΠf + F f
2,12)(κ̃f2,h − ι̃

f
2,h)

+ ϑ1,2h − (QΠf + F f
2,12)(ϑ̃f2,h − ς̃

f
2,h), (3.102)
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where F2,1 = (F2,11, F
s
2,12, F

f
2,12). Equation (3.23) is obtained by combining (3.102), (3.87)

and (3.100).

To derive equation (3.24) we use (3.86), (3.87) and (3.94). As before, the

unobservable components contained in (3.86) (i.e. wf2,th−h and ∆wf2,th−h) must be

eliminated and replaced with observable terms (i.e. yf2,th−h and ∆yf2,th−h). To do this, we

use the result given in Lemma 1 in Chambers (2009)

y2(th)− ȳ2(th) = φ2,th + ε2,th, t = 1, ..., T, (3.103)

where

φ2,th = h

[(
1

2
a2 −

1

6
b2h

)
+

1

2
b2th

]
, (3.104)

ε2,th =
1

h

∫ th

th−h
[h− (th− s)]u2(s)ds. (3.105)

Applying the difference operator to (3.103), we have

∆y2(th)−∆ȳ2(th) = ∆φ2,th + ∆ε2,th, t = 2, ..., T. (3.106)

Partitioning (3.103) into stocks and flows yields

ys2,th − ws2,th = φs2,th + εs2,th (3.107)

wf2,th − y
f
2,th = φf2,th + εf2,th. (3.108)

Similarly, partitioning (3.106) into stocks and flows gives

∆ys2,th −∆ws2,th = ∆φs2,th + ∆εs2,th (3.109)

∆wf2,th −∆yf2,th = ∆φf2,th + ∆εf2,th. (3.110)

The variable ∆y1,th is expressed in terms of observables by using (3.108) and (3.110)

to eliminate wf2,th−h and ∆wf2,th−h, which gives

∆y1,th = QB′yh − F2,1∆yh + κ1,th − (QΠf + F f
2,12)φf2,th−h + F f

2,12φ
f
2,th−2h

+ ϑ1,th − (QΠf + F f
2,12)εf2,th−h + F f

2,12ε
f
2,th−2h. (3.111)

Equation (3.24) is obtained by combining (3.111), (3.87) and (3.94).

Proof of Theorem (3.3.2) . The proof is very similar to that of Theorem (3.3.1) with the
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difference that the first element of equations (3.17)-(3.21) (i.e. the equation corresponding

to y1) are now given by

∆w1,th = Q
[
w1,th−h − Πsys2,th−h − Πfwf2,th−h

]
− F2,11∆w1,th−h − F s

2,12∆ys2,th−h

− F f
2,12∆wf2,th−h + κ1,th + ϑ1,th (3.112)

w1,h − y1(0) = R1B
′y(0) +R2Dy1(0) + κ̃1,h + ϑ̃1,h (3.113)

∆y1,th = Q
[
y1,th−h − Πsws2,th−h − Πfyf2,th−h

]
− F2,11∆y1,th−h − F s

2,12∆ws2,th−h

− F f
2,12∆yf2,th−h + ι1,th + ς1,th (3.114)

y1,h − y1(0) = U1B
′y(0) + U2Dy1(0) + ι̃1,h + ς̃1,h (3.115)

∆y1,2h = R1

[
y1,h − Πsws2,h − Πfyf2,h

]
+R2U3B

′y(0) +R2U4Dy1(0) + ι̃1,2h + ς̃1,2h

(3.116)

To derive equations (3.25)-(3.27) we use (3.114)-(3.116) as well as the observable

vectors corresponding to y2, and follow the steps described in the proof of Theorem

(3.3.1) to eliminate the unobservables ws2,th−h and ∆ws2,th−h.

Proof of Theorem (3.3.3) . The autocovariance matrices of ξth are computed from the

moving average representation given in (3.37)-(3.39), noting that ζth is a vector white

noise process with covariance matrix Ωζ ; this last matrix being obtained by considering

the covariances between the elements of ζth. As an illustration, the entry (1,1) of Ωζ is

E(ζ1,thζ
′
1,th) = E

[∫ th

th−h
F (th− s)n∗(s)ds

] [∫ th

th−h
F (th− s)n∗(s)ds

]′
,

=

∫ th

th−h
F (th− s)Σ∗F (th− s)′ds,

=

∫ h

0

F (s)Σ∗F (s)′ds. (3.117)

Proof of Theorem (3.3.4) . First note that using the alternative expression for the matrix

exponential, we can write z(s) = esĀ as

z(s) = J1 + J2V e
sVA′2, (3.118)
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from which the following expressions are obtained

Θ(s) =

∫ s

0

z(r)dr = J0 + J1s+ J2e
sVA′2, (3.119)

Υ(s) =

∫ s

0

Θ(r)dr = J0s+
1

2
J1s

2 + J2V̄ A
′
2, (3.120)

(s)ג =

∫ s

0

rz(r)dr =
1

2
J1s

2 + J2V V̄1A
′
2, (3.121)

ℵ(s) =

∫ s

0

rΘ(r)dr =
1

2
J0s

2 +
1

3
J1s

3 + J2V̄1A
′
2, (3.122)

with V̄ and V̄1 being

V̄ =

∫ h

0

erV dr = V −1(ehV − I2p1), (3.123)

V̄1 =

∫ h

0

rerV dr = V −1(hehV − V̄ ). (3.124)

Now, to derive (3.40) and (3.41) we use a change of variable in the integration, which

results in

κ̃h = S̃1

∫ h

0

z(r)[µ∗ + γ∗(h− r)]dr, (3.125)

κth = S̃1

∫ h

0

z(r)[µ∗ + γ∗(th− r)]dr + S̃2

∫ h

0

z(r)[µ∗ + γ∗(th− h− r)]dr. (3.126)

Evaluating the integrals gives the expressions for κ̃h and κth in the Theorem.

The equation for ιth is obtained by integrating κth again from th − h to th, after

dividing by h and evaluating the integrals.

To obtain (3.43), first note that ι̃2h can be written as

ι̃2h =
1

h

{
S̃1

∫ 2h

h

Θ(2h− s)(µ∗ + γ∗s)ds+ S̃1

∫ h

0

[Θ(h)−Θ(h− s)](µ∗ + γ∗s)ds

+S̃3

∫ h

0

Θ(h− s)(µ∗ + γ∗s)ds

}
,

=
1

h

{
S̃1

∫ h

0

Θ(s)(µ∗ + γ∗(2h− s))ds+ S̃1

∫ h

0

[Θ(h)−Θ(s)](µ∗ + γ∗(h− s))ds

+S̃3

∫ h

0

Θ(s)(µ∗ + γ∗(h− s))ds
}
, (3.127)

where the first line follows from an interchange of the orders of integration and the last line

from a change of variable in the integration. Evaluating the integrals gives the expression

for ι̃2h in the Theorem.
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Similarly, equation (3.42) is obtained from

ι̃h =
1

h
S̃1

∫ h

0

Θ(s)[µ∗ + γ∗(h− s)]ds. (3.128)

The integrals determining Ωζ are obtained by using the expressions given in (3.118)-

(3.122) and noting that Ξ(s) = Θ(h)−Θ(s). For example,∫ h

0

z(r)Σ∗z(r)′dr =

∫ h

0

[J1 + J2V e
sVA′2]Σ∗[J1 + J2V e

sVA′2]′dr

=

∫ h

0

[
J1Σ∗J ′1 + J1Σ∗A2e

sV ′
V ′J ′2

+J2V e
sVA′2Σ∗J ′1 + J2V e

sVA′2Σ∗A2e
sV ′
V ′J ′2

]
dr

= hJ1Σ∗J ′1 + J1Σ∗A2V̄
′V ′J ′2 + J2V V̄ A

′
2Σ∗J ′1 + J2V V̄2V

′J ′2. (3.129)
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Conclusions

In the first chapter, we obtain analytical expressions to approximate the bias of the

maximum likelihood estimator in a univariate model with a known mean. Explicit

expressions for the asymptotic variance and the asymptotic bias that arises when the

correlation of the disturbances induced by temporal aggregation is not taken into

account are also provided. A Monte Carlo study suggests that the performance of the

formulae is reasonably good. Findings also suggest that the bias is larger when the

initial condition is fixed than when it is random and smaller for flows than for stocks.

The second chapter provides a comparison of four bias corrected estimators. A

Monte Carlo experiment shows that all approaches deliver substantial bias reductions

when the original estimator is consistent. Results are robust to non-normality. In

contrast, heteroskedasticity has a significant impact on all estimators. The indirect

inference method of bias reduction is found to work particularly well when the original

estimator is inconsistent, a case occurring when the serial correlation in the discrete

time disturbances is ignored.

The third chapter has derived the exact discrete representation corresponding to a

mixed-order system of stochastic differential equations with a mixture of stock and flow

variables. This chapter also explores the finite sample behaviour of the Gaussian estimator

in cointegrated continuous time systems. Results are consistent with what has been found

for stationary continuous time models. In particular, the Monte Carlo simulations suggest

that the bias and variance of the estimators of the short-run, long-run and adjustment

coefficients, as well as the variance of the intercepts are mainly determined by the data

span, while the bias and variance of the covariance coefficients seem to depend on the

sample size. This finding explains why estimation of the covariance parameters enjoys

smaller bias and variance than the other parameters.

The approach used to derive bias expressions as well as the bias reduction methods

employed in this dissertation are expected to work well under much more general models,

for example higher order differential equations with mixed stock and flow data. Their

implementation in empirical applications provides an exciting agenda for future research.
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