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Abstract

The set Dn of all difunctional relations on an n element set is an inverse semigroup under a variation
of the usual composition operation. We solve an open problem of Kudryavtseva and Maltcev (2011),
which asks: What is the rank (smallest size of a generating set) of Dn? Specifically, we show that the
rank of Dn is B(n) + n, where B(n) is the nth Bell number. We also give the rank of an arbitrary ideal
of Dn. Although Dn bears many similarities with families such as the full transformation semigroups and
symmetric inverse semigroups (all contain the symmetric group and have a chain of J -classes), we note
that the fast growth of rank(Dn) as a function of n is a property not shared with these other families.
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1 Introduction

Fix a positive integer n, write n = {1, . . . , n}, and denote by Bn the set of all binary relations on n. For
α ∈ Bn and for x ∈ n, write xα = {y ∈ n : (x, y) ∈ α} and αx = {y ∈ n : (y, x) ∈ α}. The set Bn forms a
semigroup under the composition operation ◦ defined by α ◦ β = {(x, y) ∈ n× n : xα ∩ βy 6= ∅}. In [17],
the second author introduced and studied an alternative operation � on Bn, defined by

α � β = {(x, y) ∈ n× n : xα = βy 6= ∅}.

It was shown in [17] that the operation � is not associative on Bn, but that it is associative on the subset Dn

of Bn consisting of all difunctional relations on n; see Section 2 for the definition of difunctionality. The
semigroup (Dn, �) was shown to be an inverse semigroup in [17], and further properties of this semigroup
were investigated in [12], including Green’s relations, ideals, maximal subsemigroups and congruences. It
was left as an open problem in [12] to determine the rank of Dn: that is, the minimal size of a (semigroup)
generating set for Dn.1 In this note, we solve this problem; see Theorem 2.3. In fact, we solve a more general
problem, and calculate the rank of each ideal of Dn; see Proposition 2.2. This being trivial for n = 1, we
assume n ≥ 2 for the remainder of the article.

2 Preliminaries and statement of the main results

Recall from [16] that a relation α on n is difunctional if α = α ◦ α−1 ◦ α, where α−1 = {(y, x) : (x, y) ∈ α}
is the inverse relation of α. There are many equivalent formulations of the difunctionality property. To
describe the one that is most convenient for our purposes, we first introduce some notation. For a set X,
we write P(X) for the set of all set partitions of X. For 1 ≤ k ≤ |X|, we write P(X, k) for the set of all
set partitions of X into k blocks. By convention, we also define P(∅) = P(∅, 0) = {∅}.

A binary relation α ∈ Bn is difunctional if and only if it is of the form α = (A1 × B1) ∪ · · · ∪ (Ar × Br),
for some subsets A,B ⊆ n and some partitions {A1, . . . , Ar} ∈ P(A, r) and {B1, . . . , Br} ∈ P(B, r). We

∗Centre for Research in Mathematics, School of Computing, Engineering and Mathematics, Western Sydney University,
Locked Bag 1797, Penrith NSW 2751, Australia. Email: j.east @ westernsydney.edu.au
†Department of Mathematical Sciences, University of Essex, Colchester, United Kingdom. Email: asvern @ essex.ac.uk
1We note that Proposition 7 in an earlier version of [12], available at arxiv.org/pdf/math/0602623v1.pdf, leads to a lower

bound for rank(Dn) that is fairly close to the precise value.
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denote α as above by
[
A1

B1

···
···

Ar

Br

]
. We write

rank(α) = r, dom(α) = A1 ∪ · · · ∪Ar, ker(α) = {A1, . . . , Ar}, def(α) = |n \ dom(α)|,
codom(α) = B1 ∪ · · · ∪Br, coker(α) = {B1, . . . , Br}, codef(α) = |n \ codom(α)|,

and we call these parameters the rank, domain, codomain, kernel, cokernel, defect and codefect of α, respec-
tively. Note that the empty relation ∅ is difunctional, corresponding to the r = 0 case above.

Denote by In the subset of Dn consisting of all difunctional relations
[
A1

B1

···
···

Ar

Br

]
for which |Ai| = |Bi| = 1 for

each 1 ≤ i ≤ r. It was shown in [17] that (In, �) is a subsemigroup of (Dn, �); in fact, it was shown that the
operations � and ◦ coincide on In, so that In is precisely the symmetric inverse monoid on n. In particular,
the symmetric group Sn = {α ∈ Dn : rank(α) = n} is contained in Dn. We note that the identity element
of Sn is not an identity element of Dn. In fact, Dn does not have an identity element, but it does have a
zero element, namely the empty relation, ∅.

Let S be a semigroup, and write S1 for the monoid obtained by adjoining an identity element to S if
necessary. Recall that Green’s preorders ≤R , ≤L , ≤J are defined, for a, b ∈ S by

a ≤R b ⇔ a ∈ bS1, a ≤L b ⇔ a ∈ S1b, a ≤J b ⇔ a ∈ S1bS1,

and that Green’s relations R, L , J are defined by R = ≤R ∩ ≥R , L = ≤L ∩ ≥L , J = ≤J ∩ ≥J .
Green’s relation H is defined by H = R ∩L . For more on Green’s relations, and (inverse) semigroups
more generally, the reader is referred to [9, 13]. The next result describes Green’s relations and preorders
on Dn; its proof is routine, and is ommitted. (Parts (iv)–(vi) may be found in [12], in slightly different
language, without proof.)

Lemma 2.1. Let α, β ∈ Dn. Then

(i) α ≤R β if and only if ker(α) ⊆ ker(β),

(ii) α ≤L β if and only if coker(α) ⊆ coker(β),

(iii) α ≤J β if and only if rank(α) ≤ rank(β),

(iv) αRβ if and only if ker(α) = ker(β),

(v) αL β if and only if coker(α) = coker(β),

(vi) αJ β if and only if rank(α) = rank(β). 2

It follows from parts (iii) and (vi) of Lemma 2.1 that the J -classes of Dn are the sets

Jr = {α ∈ Dn : rank(α) = r} for 0 ≤ r ≤ n,

and that these form a chain under the usual ordering on J -classes: J0 < J1 < · · · < Jn. That is,
Jr ⊆ Dn � Js � Dn for any 0 ≤ r ≤ s ≤ n. Note also that Jn = Sn and J0 = {∅}. In any semigroup in
which the J -classes form a chain, the ideals form a chain under inclusion. So the ideals of Dn are the sets

Ir = J0 ∪ · · · ∪ Jr = {α ∈ Dn : rank(α) ≤ r} for 0 ≤ r ≤ n.

Our main results calculate the ranks of these ideals, including that of In = Dn itself. Recall that the rank of
a semigroup S is defined to be rank(S) = min

{
|A| : A ⊆ S, S = 〈A〉

}
, the least cardinality of a generating

set for S. The rank of a semigroup should not be confused with the rank of a difunctional relation.

To state our main results, we recall the definition of the Stirling and Bell numbers. For non-negative integers
n and k, the Stirling number of the second kind S(n, k) denotes the number of partitions of a set of size n
into k (nonempty) subsets. The Bell number B(n) = S(n, 1) + · · · + S(n, n) denotes the total number of
partitions of a set of size n into any number of subsets. Note that S(0, 0) = 1, and S(n, k) = 0 if k > n.
The Stirling and Bell numbers are listed as Sequences A008277 and A000110, respectively, on [1].

Proposition 2.2. Let n ≥ 2 and 0 ≤ r ≤ n. Then the rank of the ideal Ir = {α ∈ Dn : rank(α) ≤ r} of Dn

is given by

rank(Ir) =

{
ρnr if r = 0 or r ≥ 3

ρnr − 1 if 1 ≤ r ≤ 2,

where ρnr = r + (r + 1)S(n, r + 1) +

r∑
k=1

S(n, k).
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Proposition 2.2 yields a formula for the rank of Dn itself, upon putting r = n. This formula may be
simplified, noting that S(n, n+ 1) = 0, and that

∑n
k=1 S(n, k) = B(n):

Theorem 2.3. If n ≥ 3, then rank(Dn) = B(n) + n. 2

For completeness, we note that rank(D2) = B(2) + 1 = 3. We end this section with a simple combinatorial
lemma.

Lemma 2.4. Let 0 ≤ r ≤ n. Then

(i) Jr contains (r + 1)S(n, r + 1) + S(n, r) R-classes (and the same number of L -classes), and

(ii) the H -class of any idempotent from Jr is isomorphic to the symmetric group Sr.

Proof. By Lemma 2.1(iv), an R-class in Jr is uniquely determined by the kernel of each of its elements.
This is a partition A = {A1, . . . , Ar} of some subset A of n for which |A| ≥ r. The number of such partitions
with |A| = n is equal to S(n, r). The number of such partitions with |A| < n is (r + 1)S(n, r + 1); indeed,
to specify such a partition, we first partition n into r+ 1 blocks and choose one of these not to include as a
block of A. This completes the proof of (i).

By Lemma 2.1(iv) and (v), it is clear that the H -class of the idempotent
[
1
1
···
···

r
r

]
∈ Jr consists of all

permutations of the set {1, . . . , r}, so that part (ii) of the current lemma is true of this idempotent. But all
group H -classes in Jr are isomorphic; see [9, Proposition 2.3.6]. 2

Remark 2.5. An alternative way of counting the R-classes in Jr involves (in the notation of the proof of
Lemma 2.4) first choosing the subset A and then the partition A ∈P(A, r). This leads to the alternative
expression of

∑n
k=r

(
n
k

)
S(k, r) for the number of such R-classes.

3 Proof of the main result

Note that Proposition 2.2 is trivial for r = 0, since I0 = {∅} and ρn0 = 1, so for the duration of this section,
we fix n ≥ 2 and some 1 ≤ r ≤ n.

Recall from [9, Section 3.1] that the principal factor of a J -class J in a semigroup S is the semigroup J∗

with underlying set J ∪ {0}, where 0 is a symbol not in J , and with product ∗ defined by

a ∗ b =

{
ab if a, b, ab ∈ J
0 otherwise.

Recall from [11] that the relative rank of a semigroup S with respect to a subset A ⊆ S, denoted rank(S : A),
is the smallest cardinality of a subset B ⊆ S such that S = 〈A∪B〉. The proof of the next result is routine,
but is included for convenience.

Lemma 3.1. Let S be a finite semigroup with a single maximal J -class J that is not a subsemigroup of S.
Then rank(S) = rank(J∗) + rank(S : J).

Proof. To avoid confusion during the proof, if X ⊆ J , we will write 〈X〉 for the subsemigroup of S generated
by X, and 〈X〉∗ for the subsemigroup of J∗ generated by X.

First, suppose J∗ = 〈A〉∗ and S = 〈J ∪ B〉, with |A| = rank(J∗) and |B| = rank(S : J). Since J
is not a subsemigroup of S, we have A ⊆ J . Then 〈A ∪ B〉 = 〈〈A〉 ∪ B〉 = 〈J ∪ B〉 = S, so that
rank(S) ≤ |A ∪B| ≤ |A|+ |B| = rank(J∗) + rank(S : J).

Conversely, suppose S = 〈C〉, and put A = C ∩ J and B = C \ J . Let x ∈ J , and consider an expression
x = c1 · · · ck, where c1, . . . , ck ∈ C. Since S \ J is a (nonempty) ideal of S, each factor ci must belong
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to J ; that is ci ∈ A. It follows that J ⊆ 〈A〉, and so J∗ = 〈A〉∗; note that 0 ∈ 〈A〉∗ because J is not a
subsemigroup of S. In particular, |A| ≥ rank(J∗). But also S = 〈A ∪ B〉 = 〈〈A〉 ∪ B〉 ⊇ 〈J ∪ B〉 ⊇ S, so it
follows that S = 〈J ∪ B〉, giving |B| ≥ rank(S : J). Thus, |C| = |A|+ |B| ≥ rank(J∗) + rank(S : J). Since
this is true for any generating set C for S, it follows that rank(S) ≥ rank(J∗) + rank(S : J). 2

In the case that S is the ideal Ir of Dn, it follows that rank(Ir) = rank(J∗r ) + rank(Ir : Jr). We give the
values of rank(J∗r ) and rank(Ir : Jr) in Lemmas 3.2 and 3.3, respectively.

Lemma 3.2. If 1 ≤ r ≤ n, then rank(J∗r ) = rank(Sr)− 1 + (r + 1)S(n, r + 1) + S(n, r).

Proof. Since Dn is an inverse semigroup, J∗r is a Brandt semigroup. More specifically, by Lemma 2.4(ii),
J∗r is a Brandt semigroup over the symmetric group Sr. By [7, Corollary 9], it follows that rank(J∗r ) =
rank(Sr)− 1 + q, where q is the number of R-classes in Jr. The result now follows from Lemma 2.4(i). 2

In light of Lemmas 3.1 and 3.2, and the fact [14] that

rank(Sr) =

{
1 if r ≤ 2

2 if r ≥ 3,

the proof of Proposition 2.2 will be complete if we can prove the following.

Lemma 3.3. If 1 ≤ r ≤ n, then rank(Ir : Jr) = r − 1 +
r−1∑
k=1

S(n, k).

To prove Lemma 3.3, we will first need to prove a number of intermediate results. Consider a partition
A = {A1, . . . , Ak} ∈P(n) with min(A1) < · · · < min(Ak). We define the difunctional relations

λA =
[
A1

1
···
···

Ak
k

]
and ρA =

[
1
A1

···
···

k
Ak

]
.

Here and elsewhere, we use an obvious shorthand notation: for example,
[
A1

1
···
···

Ak
k

]
is an abbreviation for[

A1

{1}
···
···

Ak
{k}
]
. For 1 ≤ k ≤ n, put

Lk = {λA : A ∈P(n), |A| ≤ k} and Rk = {ρA : A ∈P(n), |A| ≤ k}.

Recall that the symmetric inverse monoid In is a subsemigroup of Dn.

Lemma 3.4. Let α ∈ Ir−1. Then α = β � γ � δ for some β ∈ Lr, γ ∈ In, δ ∈ Rr with rank(γ) = rank(α).

Proof. Write α =
[
A1

B1

···
···

Ak
Bk

]
, noting that k ≤ r − 1. Put Ak+1 = n \ dom(α) and Bk+1 = n \ codom(α),

and let

A =

{
{A1, . . . , Ak} if Ak+1 = ∅
{A1, . . . , Ak, Ak+1} if Ak+1 6= ∅

and B =

{
{B1, . . . , Bk} if Bk+1 = ∅
{B1, . . . , Bk, Bk+1} if Bk+1 6= ∅.

Then it is easy to see that α = λA � γ � ρB, where γ = ρA � α � λB ∈ In with rank(γ) = k. 2

Lemma 3.5. We have Ir = 〈Jr ∪ Lr ∪Rr〉.

Proof. We must consider two separate cases. Suppose first that r < n. Note that Jr contains the set
Ω = {α ∈ In : rank(α) = r}. It is well known that 〈Ω〉 = {α ∈ In : rank(α) ≤ r}; see for example [19,
Lemma 4.7]. The result now follows from Lemma 3.4.

Suppose now that r = n, so Jr = Sn. By Lemma 3.4, it suffices to show that In ⊆ 〈Sn ∪Ln ∪Rn〉. For this,
let A ∈ P(n, n − 1) be arbitrary, and put α = ρA � λA ∈ 〈Ln ∪ Rn〉, noting that α =

[
1
1
···
···

n−1
n−1
]
∈ In and

rank(α) = n− 1. It then follows from the proof of [6, Theorem 3.1] (see also [15]) that In = 〈Sn ∪ {α}〉. 2
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Let A,B ∈ P(n, r), and write A = {A1, . . . , Ar} and B = {B1, . . . , Br} with min(A1) < · · · < min(Ar)
and min(B1) < · · · < min(Br). We define φA,B =

[
A1

B1

···
···

Ar

Br

]
. In order to simplify notation in what follows,

and since n is fixed, for each 1 ≤ k ≤ n, we will write pk = S(n, k). For each 1 ≤ k ≤ n, let us denote the
elements of P(n, k) by Ak,1, . . . ,Ak,pk .

Lemma 3.6. For each 1 ≤ k ≤ n − 1, let Σk = {φAk,1,Ak,2
, . . . , φAk,pk−1,Ak,pk

} ∪ {λAk,pk
, ρAk,1

}. Then for
any 1 ≤ r ≤ n, Ir = 〈Jr ∪ Σ1 ∪ · · · ∪ Σr−1〉.

Proof. Put Ω = Jr ∪ Σ1 ∪ · · · ∪ Σr−1. By Lemma 3.5, to show that Ir = 〈Ω〉, it suffices to show that 〈Ω〉
contains both Lr and Rr. Let A ∈P(n) with |A| ≤ r. We must show that λA, ρA ∈ 〈Ω〉. If |A| = r, then
λA, ρA ∈ Jr ⊆ 〈Ω〉, so suppose A ∈P(n, k), where 1 ≤ k ≤ r− 1. Then A = Ak,l for some 1 ≤ l ≤ pk. But
then

λA = λAk,l
= (φAk,l,Ak,l+1

� · · · � φAk,pk−1,Ak,pk
) � λAk,pk

,

ρA = ρAk,l
= ρAk,1

� (φAk,1,Ak,2
� · · · � φAk,l−1,Ak,l

),

where the first bracketed expression is omitted if l = pk, and the second if l = 1. 2

Remark 3.7. We could not help noticing that the generating set used in Lemma 3.6 looks very similar to
the construction of so-called rainbow tables in computer security [8]. This is perhaps not surprising, since
both constructions have the purpose, broadly speaking, of reducing the total amount of memory used for
storing given information.

Since |Σk| = S(n, k) + 1 for each k, it follows from Lemma 3.6 that rank(Ir : Jr) ≤ r− 1 +
∑r−1

k=1 S(n, k). To
complete the proof of Lemma 3.3, we must therefore show that this upper bound for rank(Ir : Jr) is also a
lower bound. To do this, we will show in Lemmas 3.10 and 3.12 that if Σ ⊆ Ir is such that Ir = 〈Jr ∪ Σ〉,
then Σ must include certain specified kinds of relations. First, we prove two intermediate lemmas. There
are obvious dual versions of Lemmas 3.8 and 3.9, but we will not state them.

Lemma 3.8. If α, β, γ ∈ Dn are such that α = β � γ and dom(α) = n, then ker(α) = ker(β).

Proof. Since α = β � γ, we have α ≤R β, so Lemma 2.1(i) gives ker(α) ⊆ ker(β). Since dom(α) = n, it is
clear that ker(α) is maximal, inclusion-wise, so we must in fact have ker(α) = ker(β). 2

Lemma 3.9. If α, β, γ ∈ Dn are such that α = β � γ, ker(α) = ker(β) and codom(β) = n, then β−1 � α = γ.

Proof. Since ker(β) = ker(α) = ker(β � γ), it follows that coker(β) ⊆ ker(γ). Since codom(β) = n, coker(β)
is maximal, inclusion-wise, so we must in fact have coker(β) = ker(γ). But then β−1 � β = γ � γ−1, which
gives γ = γ � γ−1 � γ = β−1 � β � γ = β−1 � α. 2

Lemma 3.10. If Ir = 〈Jr∪Σ〉, and if 1 ≤ k ≤ r−1, then there exist σ, τ ∈ Σ with dom(σ) = codom(τ) = n,
rank(σ) = rank(τ) = k and codef(σ), def(τ) > 0.

Proof. It suffices to prove the existence of σ, as the existence of τ will follow by a symmetrical argument
(for which we need the duals of Lemmas 3.8 and 3.9). Let 1 ≤ k ≤ r − 1, and write

Ω = {α ∈ Dn : dom(α) = n, rank(α) = k, codef(α) > 0}.

For α ∈ Ω, write `(α) for the minimum value of m such that α = β1 � · · · � βm for some β1, . . . , βm ∈ Jr ∪Σ.
Let L = min{`(α) : α ∈ Ω}. To establish the existence of σ, it suffices to prove that L = 1. To do this,
suppose to the contrary that L ≥ 2, and choose some α =

[
A1

B1

···
···

Ak
Bk

]
∈ Ω with `(α) = L. So we may write

α = β1 � β2 � · · · � βL for some β1, β2, . . . , βL ∈ Jr ∪Σ. For simplicity, put β = β1 and γ = β2 � · · · � βL, so
α = β � γ. Lemma 3.8 gives ker(β) = ker(α), so we may write β =

[
A1

C1

···
···

Ak
Ck

]
. If codef(β) > 0, then we put
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σ = β, and the proof of the lemma is complete. So suppose codef(β) = 0. This means that codom(β) = n,
and Lemma 3.9 then gives

β−1 � α = γ = β2 � · · · � βL. (3.11)

But β−1 � α =
[
C1

A1

···
···

Ck
Ak

]
�
[
A1

B1

···
···

Ak
Bk

]
=
[
C1

B1

···
···

Ck
Bk

]
. Consequently, dom(β−1 � α) = codom(β) = n and

codef(β−1 � α) = codef(α) > 0. Thus, β−1 � α ∈ Ω. But `(β−1 � α) ≤ L − 1, by (3.11), contradicting the
minimality of L. This completes the proof. 2

Lemma 3.12. If Ir = 〈Jr∪Σ〉, and if A ∈P(n) with |A| ≤ r−1, then there exist σ, τ ∈ Σ with ker(σ) = A
and coker(τ) = A.

Proof. Again, it suffices to demonstrate the existence of σ. Choose some α ∈ Ir with ker(α) = A, noting
that dom(α) = n. Suppose α = β1 � · · · � βk where β1, . . . , βk ∈ Jr ∪ Σ. If k = 1, then α = β1 ∈ Σ, and we
are done, with σ = α. If k ≥ 2, then α = β1 � (β2 � · · · � βk), and Lemma 3.8 gives ker(β1) = ker(α) = A,
and we are done with σ = β1. 2

Proof of Lemma 3.3. As noted after the proof of Lemma 3.6, it suffices to show that rank(Ir : Jr) ≥
r − 1 +

∑r−1
k=1 S(n, k). Suppose Ir = 〈Jr ∪ Σ〉. For each 1 ≤ k ≤ r − 1, let Σk = {α ∈ Σ : rank(α) = k}, and

fix some such k. It is enough to show that |Σk| ≥ 1 + S(n, k). By Lemma 3.10, there exists some τ ∈ Σk

with def(τ) > 0. By Lemma 3.12, for any A ∈ P(n, k), there exists some σA ∈ Σk with ker(σA) = A.
Clearly these elements of Σ are all distinct, so |Σk| ≥ 1 + |P(n, k)| = 1 + S(n, k), as required. 2

As noted before the statement of Lemma 3.3, this completes the proof of Proposition 2.2.

Remark 3.13. Finally, we note that Dn bears many similarities with several families of semigroups, such
as the symmetric inverse monoids In, the full and partial transformation monoids Tn and PTn, and certain
diagram monoids such as the partition monoids Pn. All these monoids have a chain of J -classes, and have
the symmetric group Sn as their (unique) maximal J -class. However, the ranks of the monoids In, Tn,
PTn and Pn are constant and very small (all being equal to either 3 or 4, for n ≥ 3), and each monoid may
be generated by elements in its top two J -classes; see [2, 3, 6, 18]. The proper ideals of these monoids are
all generated by elements in a single J -class; formulae for the ranks of the ideals of these monoids may be
found in [4, 5, 10, 19]. By contrast, as we have seen, rank(Dn) = B(n) + n grows rapidly with n, and any
generating set for Dn or one of its proper ideals must contain elements from all J -classes except the very
bottom one. Calculated values of rank(Ir) and rank(Dn) are given in Tables 1 and 2, respectively.

n \ r 0 1 2 3 4 5 6 7 8 9 10

0 1
1 1 2
2 1 3 3
3 1 7 8 8
4 1 15 27 21 19
5 1 31 92 84 60 57
6 1 63 303 385 266 213 209
7 1 127 968 1768 1419 986 889 884
8 1 255 3027 7901 8049 5446 4313 4154 4148
9 1 511 9332 34364 45810 33883 23888 21405 21163 21156

10 1 1023 28503 146265 256576 223439 150465 121186 116342 115993 115985

Table 1: Values of rank(Ir); see Proposition 2.2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

rank(Dn) 1 2 3 8 19 57 209 884 4148 21156 115985 678581 4213609 27644450

Table 2: Values of rank(Dn); see Theorem 2.3.
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