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Abstract

In this paper, we adopt a wavelet-based option valuation model and empirically compare

the pricing and forecasting performance of this model with that of the stochastic volatility

model with jumps and the spline method. Both the in-sample valuation and out-of-sample

forecasting accuracy are examined using daily index options in the UK, Germany, and Hong

Kong from January 2009 to December 2012. Our results show that the wavelet-based model

compares favorably with the other two models and that it provides an excellent alternative

for valuing option prices. Its superior performance comes from the powerful ability of the

wavelet method in approximating the risk-neutral moment-generating functions.

Keywords: Pricing; Option Pricing; Wavelet Method; Stochastic Volatility; Jump Risk
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1 Introduction

Since the seminal work of Black and Scholes (1973), huge progress has taken place in the the-

oretical and empirical option valuation literature that has greatly improved our understanding

of the options market as a place for trading information and gauging investor expectation. A

large number of parametric and nonparametric methods have been proposed to relax one or

more restrictions of the original Black-Scholes model.

One avenue for extending the Black-Scholes model is to develop nonparametric models

that are better at capturing the volatility smile and the literature has seen innovative methods

in this area. Wavelets are well-known for their remarkable ability in numerical approximation

and the wavelet-based option pricing model developed in Ma (2011) takes advantage of this

and approximates the implied risk-neutral moment-generating functions (MGF) using wavelets.

It offers a novel approach in the nonparametric option pricing literature. Unlike many other

nonparametric option valuation models that require a large collection of data, the wavelet-

based option pricing model is computationally efficient and requires only a reasonable amount

of different strikes. Using numerical experiments, Haven et al. (2009) demonstrate that this

model can price and forecast options with great precision.

In this paper, we contribute to the literature by taking this further to empirically compare

the valuation and forecasting performance of the wavelet-based model with two other well-

established models, namely the parametric stochastic volatility model with jumps (SVJ) and

the nonparametric spline method. We focus on the key research questions of whether the

excellent performance of this model in simulation still remains in the acid test with market

data, and how its empirical performance compares with that of widely-accepted models in the

literature.

To the best of our knowledge, this is the first research that subjects the wavelet-based

option pricing model to market data. We use daily index options written on the FTSE-100

index and the DAX-30 index, the major financial indices in Europe, and the Heng Seng index

in Hong Kong, the financial hub of Asia, from January 2, 2009, to December 28, 2012. Our

main empirical findings can be summarized as follows. In the in-sample test across the three

markets, the wavelet-based model produces smaller pricing errors than the SVJ and the spline

method for the medium- and long-term options. For the short-term options, the performance

of the three models are similar and the spline method produces slightly smaller average pricing

errors than the other two models. When it comes to the out-of-sample forecasts, the wavelet-
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based model outperforms the other two methods by big margin for all three maturities across all

markets. Our strong empirical evidence substantiates the wavelet-based option pricing model

as an excellent alternative in the option valuation literature.

The rest of the paper is organized as follows. In Section 2, we review the relevant literature

that motivates our study. Section 3 introduces the wavelet-based option pricing model, the SVJ

model, and the spline method. In Section 4, we describe data and analyze empirical results.

Finally, Section 5 concludes.

2 Literature review

In this section, we review two strands of the literature to which our paper makes a contribution,

namely the literature of option pricing and that of the wavelet method.

In the parametric option pricing literature, researchers have identified a number of priced

factors essential in capturing the volatility smile, which has become a stylized fact since the

market crash of 1987. For example, volatility is shown to relate negatively to the underlying

asset returns and that delta-hedged portfolios of options and the underlying stocks produce

statistically significant negative returns (see, for instance, Bakshi and Kapadia (2003), Coval

and Shumway (2001), Heston (1993), and Wong and Lo (2009)). Moreover, the random and

unexpected jumps are also found to command significant risk premium in the options market

(Bates (1996, 2000), Cai and Kou (2011), and Pan (2002)). Another priced factor worth noting is

the demand pressure in the market, which affects option prices in incomplete markets (Gârleanu

et al. (2009)).

Bakshi et al. (1997) propose a closed-form parametric option pricing model that simulta-

neously admits the stochastic volatility risk, the jump risk, and the stochastic interest rate risk.

One or more risks can be singled out by setting the parameters of the remaining risk factors to

zero so that the importance of each risk factor can be closely investigated. Based on the pricing,

forecasting, and hedging performance of nested models, they show that the stochastic volatility

and jumps are of first-order importance when it comes to accommodating the volatility smile

observed in the market.

Parallel to the intensive interest in the parametric option pricing literature, a large number

of nonparametric models have also been proposed. Although the nonparametric models lack the

economic interpretation that the parameters contain in the parametric family of models, they

are often more flexible as they impose no prior assumption on the underlying asset process.
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These include the flexible distribution method (Rubinstein (1994)), the cubic spline method

(Shimko (1994)), which is further developed by Bliss and Panigirtzoglou (2002), the kernel

estimation method (Aı̈t-Sahalia and Lo (1998), Aı̈t-Sahalia and Duarte (2003) and Birke and

F. (2009)), the neural network method (Hutchinson et al. (1994), Garcia and Gençay (2000) and

Andreou et al. (2008)), and the ϵ-arbitrage replicating portfolio method (Bandi and Bertsimas

(2014)).

The cubic spline method seeks to relax the constant volatility assumption in the Black-

Scholes paradigm. By allowing the implied volatilities to be a nonlinear function of option

moneyness, Shimko (1994) proposes the method that successfully captures the volatility smile

and the heavily left-skewed risk-neutral densities embedded in option prices. Modifying the

methodology, Bliss and Panigirtzoglou (2002) argue that it is more accurate and computationally

efficient to interpolate the implied volatilities in the volatility-option delta space, rather than in

the volatility-moneyness space. They fit a piecewise cubic polynomials between option deltas

and let the function be linear outside the deltas. In this way, the implied volatilities are no

longer constant.

A notable shortcoming of the cubic spline method is that it does not ensure non-negativity

of the risk-neutral probability density function (PDF). This problem is addressed in Monteiro

et al. (2008), where non-negativity is guaranteed by replacing the quadratic programming (QP)

approach with the semi-definite programming (SDP). However, it is also noted in Monteiro et al.

(2008) that the QP approach is generally sufficient to recover an appropriate risk-neutral PDF

both with simulated and market data. Hence we adopt the QP method for the spline method

in this paper.

A more recent addition to this growing literature is Ma (2011). The paper develops a non-

parametric option pricing model that focuses on approximating the implied risk-neutral MGF of

the underlying asset returns using wavelets. The risk-neutral MGF has a number of advantages

compared with the implied risk-neutral PDF although there is a one-to-one relationship between

them. For example, the MGF is more tractable when jumps are present in the underlying price

process; the MGF obtained from options is a continuous function; all the statistical moments

of the underlying asset distributions can easily be obtained from the MGF; and out-of-sample

options with different maturity dates can be directly estimated using the risk-neutral MGF.1

Ma (2011) also represents another effort in applying the wavelet methods, already a widely

1 See Haven et al. (2009) for detailed properties of the risk-neutral MGF.
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used tool in science and engineering, in the area of economics and finance.2 As pointed out in

Haven et al. (2009) and Haven et al. (2012), there are mainly three types of application of wavelet

methods in finance and economics. First of all, wavelets are used for multi-scaling analysis. For

example, Ramsey and Lampart (1998a,b) use the wavelet method to analyze the relationship

between economic variables at different scales and suggest that the relationship changes over

different time horizons. Gençay et al. (2001a,b, 2003, 2005) employ the wavelet multi-scaling

approach to examine intra-day seasonalities, foreign exchange volatilities, and systematic risk.

Weron (2009) implement the wavelet method to de-seasonalize electricity prices. More examples

can be found in Zapart (2002), Connor and Rossiter (2005), Kim and In (2005), Mitra (2006),

In and Kim (2006), Fernandez (2006), Lien and Shrestha (2007), Gallegati and Gallegati (2007),

and Nikkinen et al. (2011).

Secondly, wavelets are used to de-noise raw data. Capobianco (1999, 2001) show that

wavelets as a pre-processing de-noising tool are useful for improving volatility analysis. The

superior de-noising ability of the wavelet is also recognized in Haven et al. (2012) which apply the

wavelet method to de-noise option prices before estimating the implied risk-neutral PDF from

the option prices. Their findings show that the wavelet de-noising process significantly improves

the density estimation quality and the forecasting abilities of the estimated densities. Sun

and Meinl (2012) substantiates the superior performance of wavelet-based local linear scaling

approximation algorithm in denoising high-frequency financial data. Asgharian (2011) de-noise

frequency variations in the first principal component of a business cycle with wavelets. Other

research in this stream includes, among others, Averkamp and Houdré (2003) and Lada and

Wilson (2006).

Finally, wavelets are utilized to estimate unknown parameters of a model. For example,

Jensen (1999, 2000) and Ko and Vannucci (2006) adopt wavelets for calibrating parameters

of long memory processes. Genon-Catalot and Laredo (1992) apply wavelets in estimating a

diffusion function non-parametrically. Matache et al. (2005) adopt wavelet to price American-

style options driven by Lévy processes. Manchaldore et al. (2010) implement the wavelet method

to obtain intra-day volume. Ortiz-Gracia and Oosterlee (2016) use Shannon wavelet to price

European options. Additional references include Bayraktar et al. (2004), Hong and Kao (2004),

Dong and He (2007), Esteban-Bravo and Vidal-Sanz (2007), and Haven et al. (2009).

2 For excellent reference for applications of the wavelet method in finance and economics, see Gençay et al.

(2002). See also Percival and Walden (2000) for applications of the wavelet method in the time series analysis.
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3 Model specifications

In this section, we outline the wavelet-based option pricing model of Ma (2011), the SVJ of

Bakshi et al. (1997), and the spline method of Bliss and Panigirtzoglou (2002) in detail.

The wavelet-based option pricing model

The wavelet-based model by Ma (2011) is the latest theoretical contribution to the option

pricing literature. Its motivation and relation to the option-implied risk-neutral MGF and the

option-implied risk-neutral PDF are discussed in Haven et al. (2009) and Ma (2011).

With fairly general assumptions including i.i.d. distribution for asset returns, the wavelet-

based option pricing model can be expressed as follows,

Ct(St, X, T ) = Xe−r(T−t)L−1

(
ΘT−t(s)

s(s+ 1)

)(
ln

X

St

)
, (1)

where L−1 denotes the bilateral inverse Laplace transform3, Ct is the time-t price for a European

call option written on asset whose price is St with strike price X and a future maturity date T .

Interest rate r is assumed to be constant.

The core of this pricing model is ΘT−t(s)
s(s+1) , where s is a complex value whose real part is

defined to be less than -1. The MGF ΘT−t(s) of the logarithmic returns ln ST
St

captures the

underlying asset dynamics and investors expectation embedded in option prices and needs to

be approximated with wavelets.

To approximate the implied MGF with the wavelet method, a particular wavelet need to

be chosen from a huge family of wavelet functions. Probably a large number of wavelet functions

are able to approximate the MGF with reasonable accuracy as wavelets are well known for their

ability in function approximation. The wavelet literature seems to agree that there is no best

wavelet for a particular application. Therefore, we follow Mallat (1999) and try to choose a

wavelet that can achieve a reasonable level of accuracy with minimum number of wavelet terms.

The Franklin hat function performs well on this criterion. In addition, it has the properties

of being symmetric, smooth, and piecewise continuous, and it closely emulates the probability

density function of asset returns.

The risk-neutral MGF Θ(s) of the return per unit of time is therefore estimated using the

3 See Appendix for the definition and properties of the bilateral inverse Laplace transform
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Franklin hat function h(t), which is defined as follows:

h(t) =

 (1− |t|)

0

if − 1 ≤ t < 1

otherwise
. (2)

The Laplace transform of h(t) is denoted as mh(s):

mh(s) = (
es/2 − e−s/2

s
)2. (3)

A set of generalized functions can be generated from the Franklin hat function h(t):

hl,k(t) = 2
l
2h(2lt− k), l, k = 0,±1,±2, ... (4)

The scaling parameter l determines the degree of dilation or contraction and the shifting pa-

rameter k controls the horizontal location of the function. Perform Laplace transform on hl,k(t),

we obtain ml,k(s) as follows:

ml,k(s) = 2−
l
2 e

− ks

2l mh(
s

2l
), l, k = 0,±1,±2, ... (5)

The risk-neutral MGF of the return per unit of time Θ(s) can be expanded using the Laplace

transform of the set of the generalized Franklin function as follows:

Θ(s) =

∞∑
l=−∞

∞∑
k=−∞

alkml,k(s), (6)

where al,k is a set of unknown coefficients and needs to be estimated by minimizing the sum

of squared error between the true option prices and the estimated option prices. We follow the

procedure in Haven et al. (2009) and estimate the unknown coefficients as follows.

1. Truncate the coefficients alk setting alk = 0 for all |l| > L and |k| > K, where L and K

are positive integers.4 Let θL,K ≡ {alk}l=L,|k|≤K.

2. Given a collection of market data set for options at time-t,

{St, Xi, Ct,i, T, r}, (7)

where i=1,2,..., N, we estimate the unknown coefficients θL,K by minimizing the sum of

squared errors between the market option prices Ct,i and the estimated prices Cw
t,i:

min
θL,K

Σi(Ct,i − Cw
t,i(θL,K , St, Xi, T, t, r))

2. (8)

4 According to Haven et al. (2009), K is chosen so that it equals the smallest integer greater than 0.7 ∗ 2l +1.

This is because the log return typically lies in the range [−0.7, 0.7]. The value of K can be easily adapted

according to specific situation.
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3. Increase L by 1 at a time and repeat the above steps until a satisfactory result is achieved.

The above optimization process yields an estimate of the risk-neutral MGF, which is ex-

pressed as a series of the Laplace transform of the set of the generalized Franklin functions:

Θ̂(s) =
∑
|l|=L

∑
|k|≤K

âlkmlk(s). (9)

The stochastic volatility model with jumps (SVJ)

The volatility and jump risks have long been shown in the literature to be priced factors in

the options market and should be included in option pricing models (Coval and Shumway

(2001), Bates (1996), Huang and Wu (2004), Pan (2002), Santa-Clara and Yan (2010)). Bakshi

et al. (1997) propose a parametric model that incorporates a mean-reverting stochastic volatility

component that correlates with the underlying stock and a jump process that follows the Poisson

distribution.

Assuming constant interest rate, the closed-form formula for European call options is as

follows,

c(t, T ) = StΠ1(t, T, St, Vt)−X exp(−r(T − t))Π2(t, T, St, Vt), (10)

where the risk-neutral probabilities Π1 and Π2

Πj(t, T, St, Vt) =
1

2
+

1

π

∫ ∞

0
Re

[
exp(−iϕ ln(X)fj(t, T, St, Vt;ϕ)

iϕ

]
dϕ, j = 1, 2

are obtained by inverting the characteristic functions f1 and f2 whose exact specifications are

given in the appendix of the paper by Bakshi et al. (1997) .

There are a number of parameters in the SVJ model. The jump process is described with

the mean jump size µJ , the standard deviation of jump size σJ , and the jump frequency λ. The

mean-reverting stochastic volatility process Vt are parameterized by the speed of adjustment κv,

the long-term mean of the volatility θv/κv, and the variation coefficient of the diffusion volatility

σv. The volatility process and the underlying asset dynamics are correlated with coefficient ρ.

For index options and most equity options, ρ is negative corresponding to the negative skewness

found in the risk-neutral distributions.
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The spline method

The spline method is first proposed in Bliss and Panigirtzoglou (2002) and applied in Bliss and

Panigirtzoglou (2004) and Liu et al. (2007). It is a very flexible nonparametric method that

estimates risk-neutral densities from option prices, which can be used to price options and other

derivatives written on the same underlying asset.

To apply this method, we first obtain market implied volatilities σi, where i = 1, 2, ...N , for

all the N observed options. The implied volatilities are to be fitted by spline function of option

deltas ∆i
5 and a parameter vector θ. The spline function σ(∆|θ) is composed of linear pieces

and cubic polynomials defined over intervals between N observations ∆1 < ∆2 < . . . < ∆N .

The cubic is defined over intervals between point ∆i to ∆i+1 while the function is linear for

∆ ≤ ∆1 and ∆ ≥ ∆N .

The spline function is constrained by the requirement that its first two derivatives are

continuous functions. It has N free parameters and there is a unique spline with the required

property that passes through the points (∆i, σi). The parameter vector of the risk-neutral

densities θ is obtained by minimizing a function that combines the accuracy and the smoothness

of the fitted spline function. For N market implied volatilities σi and a set of weights wi, we

minimize the following function,

η

N∑
i=1

wi(σ̂i(∆|θ)− σi)
2 + (1− η)

∫ ∆N

∆1

σ
′′
(∆|θ)2d∆, (11)

where wi is the weight6; σ̂i(∆|θ) is the fitted volatility based on the estimated parameter θ;

and σ
′′
(∆|θ)2 is the squared curvature of the regression function σ(∆|θ). The parameter η is

between zero and one, and it controls the trade-off between accuracy and smoothness of the

fitted probability density function. The closer the η is to 1, the more accurate and jagged the

density is. Conversely, the closer the η is to 0, the smoother the density is. A straightforward

solution to the above optimization problem is provided by Lange (1998).

A shortcoming of the cubic spline method is that it does not ensure non-negativity of the

risk-neutral PDF. This issue is addressed in Monteiro et al. (2008), where non-negativity is en-

sured by replacing the Quadratic Programming (QP) approach with semidefinite programming

(SDP). However, it is also noted in Monteiro et al. (2008) that the simpler QP approach is

generally sufficient to recover an appropriate risk-neutral PDF with both simulated and market

5 The Greek letter ∆ stands for the partial derivative of the option price with respect to the underlying asset

price. It measures the sensitivity of the option price to the underlying asset price.
6 Following Bliss and Panigirtzoglou (2002, 2004), we use option vegas as the weights in equation (11).
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data. Hence we adopt the QP method for the spline method in this paper.

4 Data and empirical analysis

In this paper, we use daily FTSE-100 index options (ESX) in the UK, the DAX-30 options

(DAX) in the German market, and Hang Seng index standard options (HSI) in Hong Kong for

our empirical investigation. The sample period is from January 2, 2009 to December 28, 2012.

Option prices are calculated as the average of end-of-day bid price and ask price.7 Interest

rates and dividend yield are obtained from the Datastream. We take the LIBOR rate as the

interest rate for the UK market, the Euro LIBOR rate for the German market, and the Hong

Kong interbank rate for the Hong Kong market. Interest rates that we use have five different

maturities from one month to 12 months. They are matched with the options data based on

their maturities. We apply conventional exclusion rules to clean the raw options data. The

rules include the following:

• Out-of-money calls and puts, which are more frequently traded than at-the-money or

in-the-money options are used;

• Options with prices below unity are removed to avoid microstructure issues;

• Options with less than 14 days to maturity or more than 365 days to maturity are excluded;

• Options with less than 10 trading volume are excluded;

• Options with less than 9 different strike prices are removed as we need sufficient strikes

for parameter estimation.

Options traded on the same day with the same expiry date are put into the same group. After

applying these rules, we have 2465 groups of call options and 4133 groups of put options for

ESX over 988 business days. For DAX options, we have 4401 groups of calls and 4563 groups

of puts over 1004 business days. For the Heng Seng options, the corresponding numbers are

1998 for calls and 2298 for puts, respectively, over 976 business days. The number of strikes in

each group varies across trading days and across markets. On average, the DAX has the largest

number of strikes per day among the three markets.

We separate the data into call and put options to remove microstructure errors as the

microstructure issues are likely to affect the estimation and forecast precision. Put prices are

converted to call prices using the put-call parity. We take the bid-ask spread into account by

7 The data are obtained from www.ivolatility.
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Table 1. Summary statistics of call options

This table provides summary statistics of call options written on the UK FTSE-100 index (ESX), the

German DAX-30 index (DAX) and the Hong Kong HangSeng index (HSI). The sample period is from

January 2, 2009, to December 28, 2012. The proportion of options for each moneyness category is

reported in parentheses.

ESX DAX HSI

total number of options 29486 65867 30420
total number of trading days 988 1004 976

Panel A. Short-term options (≤ 90 days)

Avg. No. of options per day 12 15 16
range of moneyness [6.84e-06,0.40] [4.17e-06,0.65] [1.33e-06,0.56]
0<moneyness≤0.1 18757(82.03%) 26539(75.75%) 18283(64.81%)
0.1<moneyness≤0.2 3878(16.96%) 7902(22.55%) 8986(31.85%)
0.2<moneyness≤0.3 228(1.00%) 564(1.61%) 838(2.97%)
moneyness>0.3 2(0.00%) 31(0.00%) 104(0.37%)

Panel B. Medium-term options (90 to 180 days)

Avg. No. of options per day 11 18 12
range of moneyness [1.86e-05, 0.38] [4.17e-06, 0.47] [8.48e-05,0.56]
0<moneyness≤0.1 2567(57.61%) 8768(55.39%) 992(48.02%)
0.1<moneyness≤0.2 1496(33.57%) 5450(34.43%) 761(36.83%)
0.2<moneyness≤0.3 356(7.99%) 1426(9.01%) 218(10.55%)
moneyness>0.3 37(0.83%) 187(1.18%) 95(4.6%)

Panel C. Long-term options (>180 days)

Avg. No. of options per day 10 14 10
range of moneyness [3.06e-04, 0.44] [4.17e-06,0.65] [0.00,0.49]
0<moneyness≤0.1 955(44.11%) 6526(43.51%) 45(31.47%)
0.1<moneyness≤0.2 764(35.29%) 4888(32.59%) 45(31.47%)
0.2<moneyness≤0.3 385(17.78%) 2485(16.57%) 34(23.78%)
moneyness>0.3 61(2.82%) 1101(7.34%) 19(13.29%)

using the following put-call parity relationship: Pb = Ca + Ke−rT − Se−yT , where y stands

for the dividend yield, which is obtained from the Datastream. Index options are adjusted to

reflect dividend payment by discounting the index level by annual dividend yields. We report

the empirical results based on call options only due to space limit.8

8 The results from put options are qualitatively the same and available upon request.
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Descriptive statistics for the call options are summarized in Table 1. Following Bates

(1996), we divide the options into three categories. Short-term options have 90 days or less

before expiry; medium-term options are between 90 to 180 days to maturity; and long-term

options are between 180 and 364 days to expiry. In this way we avoid weighting the longer-

term options more heavily than shorter-term options in the parameter estimation later to be

carried out (Huang and Wu (2004)). The majority of short term call options are near-the-

money options, with moneyness9 in the range of 0 and 0.1. This is expected as when it is

close to expiration, the chance of large price changes is small and near-the-money calls will be

more frequently traded than those with the same expiration with deeper moneyness. As time

to maturity increases, options become progressively more out-of-the-money.

For the wavelet method, the scaling parameter L and the shift parameter K are chosen

by the optimisation programme so that a satisfactory estimation result can be obtained. The

optimisation programme usually stops when K reaches 4 or 6. For the spline method, we test

both cases when η = 0.1 and when η = 0.9. We find that the average estimation and forecasting

errors are generally slightly smaller when η = 0.9. However, in some cases with extreme outliers,

the estimation and forecasting errors are much higher when η = 0.9 resulting in extremely larger

pricing errors. Hence the results we report are based on η = 0.1.

9Moneyness is defined as log(K/S).
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We use the entire sample period for in-sample fitting. Table 2 summarizes the mean

squared errors (MSE), a popular measure of pricing accuracy, of the in-sample performance of

the three models for the FTSE-100 index options, the DAX-30 index options, and the Heng Seng

index options. The mean, standard deviation, minimum, maximum, and median of the MSE

are reported across different maturities for the models. For the ESX options, the wavelet-based

method generally produces smaller estimations errors than the other two models, except for

the short-term options where the spline method produces the smallest average MSE. For the

DAX options, the wavelet-based method is the best-performing model for long-term options.

For the short-term and medium-term options, the wavelet-based model and the SVJ method

exhibit similar performance. But the spline method is undoubtedly the poorest for the DAX

options. In the Heng Seng index options market, the spline method tend to beat the other

two methods for the short-term and medium-term options. But the wavelet-based method is

still the best for the long-term options. To summarize, the wavelet-based method consistently

performs better than the other two methods for long-term options. But for short-term and

medium-term options, there is no clear winner. It is worth noting that in most cases the spline

method produces much larger in-sample average pricing errors than the other two methods.

However, when looking at the individual pricing errors on a daily basis, we notice that that the

spline method does sometimes perform better than the wavelet-based method. However, there

are incidents of extremely large pricing errors due to outliers. For example, in Figure 1 we plot

the implied volatilities of the FTSE-100 index options on 27th January, 2009. There is an outlier

of 0.5327 in the volatilities implied with 25 days to maturity when all other implied volatilities

are about 0.3538 and less. The pricing error for the spline method is 64.42, over 100 times

larger than the MSE the other two models. As the spline method fits the implied volatilities

directly, it is difficult to handle the outliers leading to large valuation errors on average, and it

is the method that fares poorest when outliers are present in the data.

The wavelet-based and the SVJ models also produce larger pricing errors in this case due

to the implied volatility outlier but the magnitude of the errors are much smaller than that of

the spline method. On the day plotted in Figure 1, for example, the pricing error for the SVJ

method is 34.94, about 50 times the average MSE. For the wavelet-based model the MSE is 6.82,

about 9 times the average of the MSE. The wavelet-based model is the most robust estimation

method among the three, particularly when dealing with noisy or polluted data. This is due

to the fact that the wavelet method inherently has the ability of denoising, and it is able to

de-noise option prices at the same time of estimating the risk-neutral MGF.
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Table 3. Parameter estimates of the SVJ model

This table summarizes the in-sample parameter estimates of the SVJ model for call options written

on the UK FTSE-100 index (ESX), the German DAX-30 index (DAX) and the Hong Kong HangSeng

index (HSI). The sample period is from January 2, 2009, to December 28, 2012.

λ µJ σJ θv κv σv Vt ρ

Panel A. UK FTSE-100 index options

Short-term options

Mean 1.49 -0.08 0.08 0.26 5.72 0.66 0.04 -0.55
Std 1.41 0.08 0.09 0.23 3.12 0.27 0.04 0.26

Medium-term options

Mean 1.84 -0.10 0.09 0.15 5.93 0.68 0.06 -0.60
Std 1.94 0.08 0.08 0.14 2.95 0.28 0.05 0.28

Long-term options

Mean 1.34 -0.12 0.11 0.10 5.88 0.67 0.08 -0.61
Std 1.60 0.08 0.07 0.09 3.23 0.32 0.08 0.35

Panel B. German DAX-30 index options

Short-term options

Mean 1.85 -0.11 0.09 0.27 5.82 0.62 0.05 -0.54
Std 1.91 0.09 0.09 0.28 3.48 0.32 0.05 0.29

Medium-term options

Mean 1.94 -0.13 0.10 0.12 5.66 0.60 0.07 -0.50
Std 2.49 0.11 0.09 0.13 3.42 0.38 0.07 0.44

Long-term options

Mean 1.57 -0.19 0.13 0.07 4.74 0.55 0.10 -0.39
Std 2.20 0.14 0.11 0.09 3.81 0.41 0.09 0.63

Panel C. HongKong HSI index options

Short-term options

Mean 1.54 -0.09 0.10 0.26 5.52 0.61 0.04 -0.28
Std 1.68 0.10 0.10 0.27 3.46 0.29 0.04 0.46

Medium-term options

Mean 1.79 -0.07 0.08 0.14 5.02 0.60 0.05 -0.18
Std 1.79 0.07 0.08 0.17 2.99 0.29 0.04 0.49

Long-term options

Mean 1.79 -0.08 0.10 0.11 5.64 0.60 0.07 -0.22
Std 1.89 0.05 0.08 0.09 2.76 0.25 0.06 0.45
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Figure 1. Option implied volatilities for the FTSE-100 index option on Jan 27, 2009
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In Table 3 we report for the SVJ model the summary statistics of the parameters in-

ferred from option prices. These parameters describe the underlying dynamics of the stochastic

volatility and jump processes. The first three parameters relate to the jump process, including

the implied jump frequency λ, mean jump size µJ and jump volatility σJ . For the FTSE-100

index, the implied jump size λ is between 1 and 2 across the three maturities, indicating that

on average the FTSE-100 index tend to have jumps once or twice every year. The negative

values of µJ indicate that all the jumps are negative jumps. The jump size is generally larger

over the long run than over the short run, and the jump volatility implied by long-term options

also tends to be larger than short- and medium-term options. For example, the implied jump

sizes is -0.12 for the long-term options and -0.08 for short-term options. The corresponding

implied jump volatilities are 0.11 and 0.08, respectively. The highest jump frequency seems to

be implied by medium-term options. The results for the DAX-30 index options and the Heng

Seng index options tell a similar story.

Between the last two parameters, Vt is the diffusion process of the return variance when

no jump occurs, and ρ is the correlation coefficient between the underlying asset price dynamics

and the stochastic volatility process. For options written on the market-wide indices, ρ tends
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Figure 2. The risk-neutral density for the FTSE-100 index options on January 6, 2009
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to be negative reflecting the negative risk-neutral skewness found in empirical studies on the

risk-neutral PDF inferred from index options (Liu et al. (2007) and Jackwerth (2000)). Our

results are consistent with this. The correlation coefficient across the markets and maturities

are all negative, indicating left-skewed distribution for the underlying index. See for example

in Figure 2, where we plot the implied risk-neutral PDF estimated using the spline method for

the FTSE-100 options traded on a randomly chosen day.

Out-of-sample forecasting is carried out for the entire sample period but the very first

business day. For each business day, all options with a same maturity date are used to estimate

model parameters, which are then used as inputs to forecast option prices for the following

business day. The Out-of-sample forecasting performance is reported in Table 4. The main

observation of this table is that the wavelet-based model consistently outperforms the SVJ and

the spline method in the out-of-sample forecast. The SVJ method ranks the second and the

spline method the third. For example, for the FTSE-100 index options, the average Mean

Forecasting Squared Error MFSE for short-term options is 58.49, compared with 60.29 for the

SVJ and 75.72 for the spline method. The difference between forecasting errors among the

three models become larger with the time to maturity. These observations remain the same
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for the DAX-30 index options and the HSI index options. The only exception is the long-term

options for the Heng Seng index whereby the SVJ model produces the smallest MFSE, followed

by the wavelet-based model, and the spline model still has the largest forecasting error. For the

rest of the results, the wavelet-based model consistently outperforms the SVJ and the spline

model. The superior forecasting performance of the wavelet-based model is due to the inherent

de-nosing and approximation ability of wavelets. Whilst estimating the implied risk-neutral

MGF, wavelets automatically filter out the extremely noisy information and hence produce

more accurate MGF estimation, which in turn provide cleaner information for forecasting.

We notice that some of the out-of-sample forecasting errors are large in magnitude but the

corresponding percentage error is less so. This is consistent with the findings reported in Bakshi

et al. (1997). For example, the average out-of-sample MSFE produced by the wavelet-based

method for long-term DAX options is 210.89 but the corresponding percentage error is 6.84%.

This suggests that a large proportion of the MSFE is contributed by options with higher prices.

We also notice that both the in-sample valuation errors and the out-of-sample forecasting errors

are larger for the Heng Seng index options than the other two types of index options. This could

also due to the fact that the HSI index option prices are of a much larger magnitude than the

DAX-30 index options and the FTSE-100 index options.
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In addition to the pricing and forecasting errors, we have examined the calibration speed

of the three models. The spline method is the fastest since there is a straightforward solution

to the optimization problem provided by Lange (1998). The average calibration time for the

spline method is 0.11 seconds. The wavelet-based and the SVJ models have similar number

of unknown coefficients to estimate. The SVJ model has eight unknown parameters and the

average time needed for optimisation is 18.04 seconds10. For the wavelet-based method, the

number of unknown parameters depends on how many wavelets are adopted in the estimation.

If the shift parameters are chosen to be k = −4 : 4 with unit increment, there are nine unknown

wavelet coefficients to estimate, the wavelet-based model needs 9.47 seconds on average to

produce the result. In most cases, k = −6 : 6 would suffice to produce a good estimation result.

The calibration time increases to 11.47 seconds on average if the shift parameters are k = −6 : 6

with 13 unknown wavelet coefficients. Therefore, the wavelet-based model is computationally

more efficient than the SVJ model. This perhaps is due to the fact that the SVJ model has two

integrations to calculate for the two risk-neutral probabilities while the wavelet-based model

needs one integration to calculate for the inverse Laplace transformation.

Overall, for the in-sample fit, the wavelet-based method consistently performs better than

the other two methods for long-term options. For short- and medium-term options, there is no

clear winner. In the out-of-sample forecasting exercise, the wavelet-based option pricing model

outperforms the SVJ model and the spline method for all three options market and across

all maturities. The wavelet-based model is also computationally more efficient than the SVJ

model. This is the case despite a restrictive assumption of constant volatility and despite the

fact that theoretically the SVJ model is designed to tackle stochastic volatility and jump risks

and that the spline method focuses on fitting the implied volatility smile. This is evidence of

the powerful approximation and de-noising ability of the wavelet methodology.

5 Conclusion

This paper empirically evaluates three option pricing models to compare their in-sample valua-

tion and out-of-sample forecasting performance. The parametric SVJ model has the advantage

that we can observe the estimated parameters and assess the economic intuition of the risk fac-

tors they represent. The spline method and the wavelet-based model, on the other hand, possess

greater flexibility in capturing the underlying asset price dynamics and the return distributions.

10 It is noted that Date and Islyaev (2015)) introduce a fast calibrating volatility model for option pricing
based on higher moments. The calibration speed of the SVJ model could therefore be improved based on Date
and Islyaev (2015)) method. In this paper, however, we focus on the original SVJ model.
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The data we use in this paper include daily end-of-day bid and ask prices of the FTSE-100

index options, the DAX-30 index options, and the Hong Kong index options. The whole data

sample is used for both in-sample and out-of-sample estimation. We show that in the in-sample

valuation, the wavelet-based model performs as well as, if not better than, the SVJ and the

spline model. For the out-of-sample forecasting exercise, the wavelet-based option pricing model

significantly outperforms the SVJ model and the spline method. The wavelet method is also

computationally more efficient than the SVJ model. This suggests that the wavelet method is

effective in revealing the risk-neutral MGF and hence useful for option pricing and forecasting.

As suggested by Ma (1992, 2006, 2011), the statistical moments of the underlying asset

distribution and the preference parameter of the utility function can be obtained from the

risk-neutral MGF. Our future research is to reveal the option implied information on the risk

preference and higher moments of the distribution using the wavelet-based option model. It

would also be interesting to estimate the distribution function of the jump sizes of the underlying

asset price with the wavelet method.
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Appendix: Bilateral Laplace transform

Following Haven et al. (2009), the bilateral Laplace transform is defined as follows. For a

real-valued function f(t) which is piecewise continuous on [−∞,∞), its bilateral Laplace trans-

formation is a complex valued function given by

L{f(t)}(s) = F (s) =

∫ ∞

−∞
f(t)e−stdt; (12)

where s is a complex value and L denotes the Laplace transform operator. The inverse Laplace

transform, denoted by L−1{F (s)}(t), can be written as:

L−1{F (s)}(t) = f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)estds; (13)

where c is a specific real number.

Let F (s) denote L{f(x)}(s) and G(s) denote L{g(x)}(s), we have the properties of the

Laplace transform summarized as following:

1. Linearity

L{af(x) + bg(x)}(s) = aF (s) + bG(s); (14)

L−1{aF (s) + bG(s)}(x) = af(x) + bg(x). (15)

2. Frequency shifting

L{e−lxf(x)}(s) = F (s+ l), ∀l ∈ R; (16)

L−1{F (s+ l)}(x) = e−ltf(x), ∀l ∈ R. (17)

3. Time shifting

L{f(x− x0)}(s) = e−x0sF (s), ∀x0 ∈ R; (18)

L−1{e−x0sF (s)}(x) = f(x− x0), ∀x0 ∈ R. (19)

4. Convolution

L{f(x) ∗ g(x)} = F (s)G(s); (20)

L−1{F (s)G(s)}(x) = f(x) ∗ g(x). (21)

where ‘*’ indicates the convolution operator on f and g. This operator can be defined as

(Bracewell (1999, page 25)),

f ∗ g ≡
∫ ∞

−∞
f(τ)g(t− τ)dτ =

∫ ∞

−∞
g(τ)f(t− τ)dτ. (22)
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