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Abstract

We evaluate the impact of heavy-tailed innovations on some popular unit root tests. In the
context of a near-integrated series driven by linear-process shocks, we demonstrate that their
limiting distributions are altered under infinite variance vis-à-vis finite variance. Reassuringly,
however, simulation results suggest that the impact of heavy-tailed innovations on these tests are
relatively small. We use the framework of Amsler and Schmidt (2012) whereby the innovations
have local-to-finite variances being generated as a linear combination of draws from a thin-
tailed distribution (in the domain of attraction of the Gaussian distribution) and a heavy-tailed
distribution (in the normal domain of attraction of a stable law). We also explore the properties
of ADF tests which employ Eicker-White standard errors, demonstrating that these can yield
significant power improvements over conventional tests.

JEL: C12, C22, C58.
Keywords: Infinite variance, α-stable distribution, Eicker-White standard errors, asymptotic local
power functions, weak dependence.

1 Introduction

Gaussianity is a commonly employed assumption in time series analysis and in econometrics in
general. Characteristically, tests for stochastic trends or persistence have been based on ordinary
least squares (OLS) estimation, achieving optimal power properties under normality. For example,
the asymptotic local power envelopes frequently discussed in the unit root literature (see, among
others, Elliott, Rothenberg and Stock, 1996) are derived under the assumption that the latent
innovations driving the processes are Gaussian. In practice, however, many variables in macroeco-
nomics and finance appear to be driven by heavy-tailed shocks, often exhibiting large and sudden
movements, similar to additive outliers. To give just two examples, Falk and Wang (2003) test the
long-run purchasing power parity hypothesis considering exchange rate returns and inflation rates to
be heavy-tailed stochastic processes, using residual and likelihood-ratio-based co-integration tests
which explicitly allow for infinite-variance innovations, while Charemza, Hristova and Burridge
(2005) apply unit root tests to inflation data allowing for infinite variance innovations.

As discussed in Rothenberg and Stock (1997), if the data are non-Gaussian but remain finite
variance, then OLS-based inference typically remains valid in large samples, but is inefficient com-
pared to methods which exploit the correct form of the likelihood. Rothenberg and Stock (1997)

∗The authors would like to thank participants of the Econometrics and Finance seminar at the Leibniz Universität
Hannover, Germany for useful feedback on an earlier version of the paper. Correspondence to: Paulo Rodrigues, Banco
de Portugal, Economics and Research Department, Av. Almirante Reis, 71-6th floor, 1150-012 Lisbon, Portugal.
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and Jansson (2008) discuss the development of power envelopes for non-Gaussian data; see also
Haldrup and Jansson (2006, pp.260-270) for a useful summary of this material. As Haldrup and
Jansson (2006) discuss, minimal sufficient statistics which are derived under the assumption of
Gaussianity are invariant with respect to the distribution of the disturbances as long as these have
an expected value of zero and an unconditional variance of one. The Gaussian asymptotic local
power envelope can therefore be seen as the lower bound of the maximal attainable local asymp-
totic power. Rothenberg and Stock (1997) derive an upper bound on the magnitude of the power
gains available when the innovations are non-Gaussian under the assumption that the underlying
innovation distribution is known. Jansson (2008) derives further results for the case where the inno-
vation distribution is not assumed known. Where the innovations are symmetrically distributed he
demonstrates that the result in Rothenberg and Stock (1997) can be obtained without knowledge
of the innovation distribution.

Since the seminal work of Mandelbrot (1967) and Fama (1965) heavy tails have received con-
siderable attention in the statistics, econometrics and finance literatures; see Resnick (1997) for a
comprehensive review. Given that unusually large movements in economic and financial time series
seem to occur more often than is implied by Gaussianity and that in practice the exact distribu-
tion of the innovations cannot be assumed known, information on the performance of unit root
tests and an evaluation of their resilience with respect to deviations from Gaussianity is of consid-
erable empirical relevance. Moreover, a growing literature on unit root testing in processes with
infinite-variance innovations, drawn from the α-stable class of distributions, has developed in recent
years; see Ahn, Fotopoulos and He (2001) for a partial review. Chan and Tran (1989) and Rachev,
Mittnik and Kim (1998) detail large sample results for OLS-based unit root tests where the under-
lying data generation process [DGP] is an AR(1) driven by independent and identically distributed
[IID] heavy-tailed innovations. Knight (1989) develops M -estimation and least absolute deviation
based unit root tests in the context of the same DGP, while Knight (1991) extends these results to
the case where the driving shocks display infinite-order moving average dynamics. Phillips (1990)
generalises the Phillips and Perron (1988) unit root tests to the context of processes driven by
weakly dependent shocks whose innovations display infinite variance. More recently, Samarakoon
and Knight (2009) consider M -based testing for unit roots in finite-order autoregressive processes
driven by infinite variance innovations. Bootstrap based unit root tests are proposed by Horváth
and Kokoszka (2003), Moreno and Romo (2012), and Cavaliere, Georgiev and Taylor (2016b), the
latter focusing on the popular augmented Dickey Fuller [ADF] tests of Dickey and Fuller (1979).
Chan, Peng and Qi (2006) derive results for inference in a near-integrated first-order autoregressive
process with IID innovations and infinite variance based on quantile regression methods.

Cappuccio and Lubian (2007) investigate the behaviour of a variety of stationarity and non-
stationarity tests under a class of local-to-finite variance IID errors, originally introduced in Amsler
and Schmidt (1999) and subsequently published as Amsler and Schmidt (2012). The local-to-finite
variance formulation is intended to deliver an improvement over standard Wiener asymptotics for
data that, on the one hand, possess finite variance, while on the other hand exhibit heavy-tailed
behaviour that can render the Wiener approximation inadequate in finite samples. Using this
local-to-finite variance set up, in this paper we evaluate both analytically and through Monte Carlo
experiments the impact that heavy tailed innovations have on the size and power performance of
popular unit root tests. In particular, we generalise existing results in three directions. First, we
work within a local-to-unity framework, thereby allowing an evaluation of the impact of heavy-
tailed innovations on the asymptotic local power functions of the tests. Second, we allow for the
case where the driving shocks follow a linear process in heavy-tailed innovations rather than simply
follow an IID process. Finally, we explore how variants of the familiar ADF unit root tests which
employ Eicker-White (rather than OLS) standard errors behave when applied to heavy-tailed data.
In conventional stationary regression settings, these standard errors are designed to yield regression
t- and F -tests which are robust to certain forms of heteroskedasticity in the latent error process. It
therefore seems worth exploring how they behave with heavy-tailed data. Our results suggest that
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a very simple implementation of Eicker-White can deliver ADF-type tests which display significant
finite sample power gains relative to other standard tests.

The remainder of the paper is structured as follows. In section 2 we present and discuss
our reference time series model, a local-to-unity autoregressive process driven by shocks which
follow a stable and invertible linear process driven by heavy-tailed innovations. Section 3 briefly
outlines some of the most widely used unit root tests in the literature, including the variants of
the conventional ADF tests implemented with Eicker-White standard errors. Section 4 details the
large sample behaviour of these unit root statistics when the innovations are heavy-tailed. Section 5
reports results from a Monte Carlo simulation study into the finite sample size and power properties
of the tests in such cases. Section 6 concludes. All proofs are contained in a mathematical appendix.

2 Near-Integrated Local-to-Finite Variance Processes

Consider the data {xt}Tt=1 generated from the near-integrated process,

xt = φTxt−1 + ut (1)

where x0 = Op(1) and φT := 1−c/T , with c a fixed finite constant, which characterises the local-to-
unity properties of xt. Our interest lies in testing the unit root null hypothesis H0 : φT = 1 (c = 0)
against the locally stable alternative H1,c : |φT| < 1 (c > 0), although the large sample results which
we provide do not in fact restrict c to be non-negative and so could also be used to evaluate the
performance of these tests against locally explosive alternatives of the form H1,c− : |φT| > 1 (c < 0).

In the context of (1) we specify ut to follow a linear process; that is,

ut = ψ(L)εt, εt = ε1t + γa−1
T T 1/2ε2t (2)

where ψ(L) is a potentially infinite-ordered moving average polynomial, conditions on which will
be specified below. The innovations {ε1t}t∈Z and {ε2t}t∈Z are independent sequences with ε1t ∼
IID(0, σ2

1) and where ε2t is IID and symmetrically distributed in the normal domain of attraction
of a stable law with characteristic exponent (or tail index) α ∈ [1, 2), denoted ε2t ∈ ND(α); see,
for example, Ibragimov and Linnik (1971, pp.92–93). The normalisation of ε2t, by γ > 0 and
aT := aT 1/α, is such that the partial sum process of T−1/2εt converges weakly to a Lévy process
with a Wiener component and an α-stable component whose relative weights depend on σ1 and γ.

The process in (2) can be equivalently written as,

ut = ψ(L)ε1t + γa−1
T T 1/2ψ(L)ε2t (3)

= ε∗1t + γa−1
T T 1/2ε∗2t

where ε∗it := ψ(L)εit, i = 1, 2. The specification in (2) was originally proposed by Amsler and
Schmidt (1999, 2012) for the particular case where ψ(L) = 1, so that ut in (2) is also an IID
process. In their case, (3) therefore simplifies to

ut = ε1t + γa−1
T T 1/2ε2t. (4)

The error process ut in (3) maintains the infinite variance property in finite samples, while
collapsing to the standard finite variance assumption asymptotically (for T →∞ and t fixed); see
also Callegari et al. (2003), Capuccio and Lubain (2007) and Samarakoon and Knight (2009, pp.
330-331). It is important to recognise, however, that the passage to the limit in (4), and in (3), for a
fixed t is distinct from the passage to the limit which occurs for statistics computed by aggregation
over t; in the latter case, the contribution of ε2t rather than vanishing as T → ∞ gives rise to a
Lévy α-stable component. Anticipating this functional convergence, we recall its one-dimensional
counterpart. It follows from the definition of the ND(α) domain that the non-degenerate limit of
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a (scaled and centred) sum of IID ND(α) variables is an α-stable random variable. It is usual to
denote an α-stable distribution by Sα(β, σ, µ), indicating that the distribution is defined by four
parameters: (i) the characteristic exponent α, α ∈ (0, 2]; when α = 2 we obtain the Gaussian
distribution with variance 2σ2, and when α < 2 the resulting distribution is heavy-tailed with
the key property that the moments E |Sα(β, σ, µ)|r are finite for r < α and infinite for r ≥ α,
(ii) the skewness parameter β which determines the shape of the distribution (for β > 0 (< 0)
the distribution is positively (negatively) skewed and for β = 0 it is symmetric), (iii) the scale
parameter σ, σ ∈ R+, and (iv) the location parameter µ ∈ R. Because we have assumed symmetry
here, we have that a−1

T

∑T
t=1 ε2t ⇒ Sα(0, 1, 0), with no need for centring, where ⇒ denotes weak

convergence and noting that the scale parameter in the limit distribution is made unity by an
appropriate choice of the constant a in the definition of aT . For more details on stable distributions
see, for example, Feller (1971), and for stable processes, Samorodnitsky and Taqqu (2000).

In what follows, we place the following set of conditions, collectively labelled Assumption A, on
ut of (3).

Assumption A:

A.1 : {ε∗it}t∈Z , i = 1, 2, are generated by a linear process such that

ε∗it = ψ(L)εit =

∞∑
j=0

ψjεij

with ψ0 := 1 and ψ(z) :=
∑∞

j=0 ψjz
j has no roots on the closed unit complex disk.

A.2 : {ε1t}t∈Z is an IID sequence with E[ε1t] = 0, E[ε2
1t] = σ2

1 > 0 and E[ε4
1t] <∞, t ∈ Z.

A.3 : {ε2t}t∈Z is an IID sequence of symmetrically distributed random variables in the normal
domain of attraction of a stable law with characteristic exponent α ∈ [1, 2), denoted as
ε2t ∈ ND(α). In particular, E[ε2t] = 0, t ∈ Z, whenever the expectation exists.

A.4 : {ε1t}t∈Z and {ε2t}t∈Z are independent.

A.5 :
∑∞

j=0 j
∣∣ψj∣∣δ/2 <∞ for some δ ∈ (0, α)∩(0, 1] and the inverse 1+

∑∞
j=1 βjz

j := (
∑∞

j=0 ψjz
j)−1

satisfies
∑∞

j=1 |βj |δ <∞.

Remark 2.1: Although the more general assumption α ∈ (0, 2) could be considered instead
of α ∈ [1, 2), as specified in A.3, values for the tail index in the range α ∈ (0, 1) are arguably of
limited empirical relevance for economic and financial variables in view of the finiteness of moments
property of α-stable random variables noted above; hence, in what follows we restrict our attention

to α ∈ [1, 2). Regarding summability, Assumption A.1 and the condition that
∑∞

j=0 j
∣∣ψj∣∣δ/2 <∞

from Assumption A.5 are sufficient for (
∑∞

j=0 ψjz
j)−1 to be bounded and bounded away from zero

for |z| ≤ 1. The conditions placed on ψ (z) in Assumptions A.1 and A.5 imply Assumption 2 of
Chang and Park (2002) and coincide with Assumption A(b,d) of Cavaliere et al. (2016a), allowing
us to use certain results from these papers. �

Remark 2.2: Assumptions A.2 and A.3 impose an IID condition on {ε1t} and {ε2t}, respectively.
In the case of {ε1t} this can be relaxed to the considerably weaker globally stationary martingale
difference sequence [MDS] assumption of, inter alia, Davidson (1994, p.450), without altering the
limiting results given in this paper. In the case of {ε2t}, however, we cannot weaken this assumption
because of the absence in the literature of any counterparts for the IID convergence results given
in Lemma 4.1 below for the case where {ε2t} is a MDS. �
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3 Unit Root Tests

A large number of procedures has been proposed to test for the presence of an autoregressive unit
root. In this section we briefly review the most widely used of these tests, summarising known facts
about their behaviour in the pure finite variance case (i.e., ut = ε∗1t) and pure infinite variance case
(i.e., ut = ε∗2t). We will subsequently evaluate the behaviour of these tests, both analytically and
through Monte Carlo simulations, in the context of heavy-tailed data generated from (1) and (3).

3.1 Augmented Dickey-Fuller Tests

The well-known ADF tests are computed from the sieve regression

∆xt = ρxt−1 +

pT∑
j=1

βj∆xt−j + εpT ,t, t = pT + 1, ..., T. (5)

In the context of (5) we can test the unit root null hypothesis, H0, against the locally stable root
alternative, H1,c, using either the ADF t-ratio, tρ̂ := ρ̂/se (ρ̂), or the associated normalised bias

statistic Zρ̂ := T ρ̂/(1 −
∑pT

i=1 β̂i), where ρ̂ and β̂j , j = 1, ..., pT are the OLS slope estimates of ρ
and βj , j = 1, ..., pT , respectively, and se (ρ̂) is the OLS standard error of ρ̂.

In the pure finite variance case (ut = ε∗1t), Chang and Park (2002) show that provided the lag
truncation parameter, pT in (5), satisfies the rate condition 1/pT + p3

T /T → 0 as T →∞, and that
standard summability and moment conditions hold, that tρ̂ and Zρ̂ have the usual pivotal Dickey-
Fuller limiting null distributions (which are functionals of a standard Brownian motion process)
regardless of any weak dependence present in ut. Cavaliere et al. (2016b) demonstrate that the
same rate condition is sufficient in the pure infinite variance case, ut = ε∗2t. In particular, they
show that under the summability conditions of Assumption A.5 this rate condition on pT ensures
that tρ̂ and Zρ̂ have the same limiting null distributions when weak dependence is present as in the
case where ut is IID. In the pure infinite variance case, however, these limiting null distributions
are functionals of an α-stable motion (with α < 2). The limiting null distributions, in both the
pure finite variance and pure infinite variance cases, are special cases of the limiting distributions
we shall report in Theorem 4.1, below.

We will also consider implementations of the ADF t-statistic which, rather than using the OLS
standard error of ρ̂, use Eicker-White standard errors. Such implementations seem worth exploring
in the present context, given that these standard errors are used to control for heteroskedasticity
in the latent error process in the case of standard stationary regression models. While they will
clearly not control for heavy-tailed behaviour in the present context they might mitigate against
the impact of the type of large innovations associated with heavy-tails. To that end, let ∆Xt−1 :=
(∆xt−1, ...,∆xt−pT )′. Then the Eicker-White analogues of the ADF tρ̂ statistic can be defined in
potentially several ways, including tWρ̂,i = ρ̂/seW,i (ρ̂), i = 1, 2, where

seW,1 (ρ̂) :=

 T∑
t=pT+1

x2
t−1

−1 T∑
t=pT+1

x2
t−1ε̂

2
pT ,t

1/2

(6)

with ε̂pT ,t denoting the OLS residual from estimating (5), and

seW,2 (ρ̂) :=

 T∑
t=pT+1

x2
t−1 − S1∆(S∆∆)−1S′1∆

−1 T∑
t=pT+1

x2
t−1ε̂

2
pT ,t
− S1∆,ε(S∆∆,ε)

−1S′1∆,ε

1/2

(7)
with S1∆ =

∑T
t=pT+1 xt−1∆X ′t−1, S∆∆ =

∑T
t=pT+1 ∆Xt−1∆X ′t−1, S1∆,ε =

∑T
t=pT+1 xt−1∆X ′t−1ε̂

2
pT ,t

and S∆∆,ε =
∑T

t=pT+1 ∆Xt−1∆X ′t−1ε̂
2
pT ,t

. In what follows we will focus attention on the tWρ̂,1 which
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provides a simple theoretical benchmark, but we will also provide some results for tWρ̂,2 in order

to make comparison with Demetrescu (2010) who derived the asymptotic null distribution of tWρ̂,2
in the pure finite-variance case, ut = ε∗1t, for the case where ψ(L) is the inverse of a finite AR(p)
polynomial. Specifically, from the results in Demetrescu (2010) it follows that under finite variance,
homoskedasticity (and some additional technical conditions), the standard ADF statistic tρ̂ and its
robust versions tWρ̂,i, i = 1, 2, are all asymptotically equivalent. One of our findings in this paper,
which will be discussed in section 4, is that this is no longer the case when γ 6= 0 in (3). Not only
does the limit distribution of tρ̂ differ from those of tWρ̂,i, i = 1, 2, but tWρ̂,1 and tWρ̂,2 also converge to
different limiting distributions under the heavy-tailed error specification in (3).

3.2 Phillips-Perron Tests

The so-called Phillips-Perron [PP] unit root tests of Phillips (1987) and Phillips and Perron (1988)
control for weak dependence in ut through non-parametric correction factors, based on consistent
estimates of both the long-run and short-run variances of ut. The PP test statistics are constructed
as

Zφ := T
(
φ̂− 1

)
− 1

2

(
ω̂2
u − σ̂2

u

)(
T−2

T∑
t=1

x2
t−1

)−1

(8)

Zt :=
σ̂u
ω̂u
t
φ̂=1
− 1

2

(
ω̂2
u − σ̂2

u

)(
T−2ω̂2

u

T∑
t=1

x2
t−1

)−1/2

(9)

where φ̂ is the OLS estimate of the slope parameter obtained from regressing xt on xt−1 (t =
1, ..., T ), and t

φ̂=1
:= σ̂−1

u (φ̂−1)(
∑T

t=1 x
2
t−1)1/2, with σ̂2

u := T−1
∑T

t=1 û
2
t and ût := xt−φ̂xt−1. In the

pure finite variance case, σ̂2
u is a consistent estimator of the short run variance σ2

u := E(u2
t ) = Ψ2σ2

1,
Ψ2 :=

∑∞
j=0 ψ

2
j . Finally, ω̂2

u, is defined such that, at least in the pure finite variance case, it is a

consistent estimator of the long-run variance ω2
u := 2πfu(0) = {ψ(1)}2σ2

1, where fu(·) denotes the
spectral density of ut.

In the pure finite variance context, ut = ε∗1t, following Perron and Ng (1996), two alternative
estimators for the long-run variance are usually considered. First, a non-parametric kernel estima-
tor based on the sample autocovariances, ω̂2

u = s2
WA, with s2

WA :=
∑T−1

h=−T+1K(h/m)γ̂h, where

γ̂h := T−1
∑T−|h|

t=1 ûtût+|h|, K (·) is a kernel function satisfying the general conditions reported in
Jansson (2002, Assumption A3), and the bandwidth parameter m > 0 satisfies the rate condition
1/m + m2/T → 0 as T → ∞ (which corresponds to Assumption A4 of Jansson, 2002). Second, a
parametric autoregressive spectral density [ASD] estimator, ω̂2

u = s2
AR, of the form suggested by

Berk (1974), with s2
AR := s2

pT
/(1 −

∑k
i=1 β̂i)

2 and s2
pT

:= T−1
∑T

t=pT+1 ε̂
2
pT ,t

, where ε̂pT ,t are the
OLS residuals from estimating (5). The conditions for the asymptotic validity of the finite order
autoregressive approximation in (5) have been discussed in Section 3.1. The consistency of the
short-run variance, s2

pT
, follows from Chang and Park (2002) and Berk (1974, p.492) who showed

that, s2
pT

:= T−1
∑T

t=pT+1 ε̂
2
pT ,1t

= T−1
∑T

t=1 ε
2
1t + op(1)

p→ σ2
1.

Although originally proposed for the finite variance case, the PP test statistics defined in (8)
and (9) can also be meaningfully implemented in the pure infinite variance case. In particular,
the correction factors used in (8) and (9) attain the same purpose of cleansing the limiting null
distributions of the pseudo AR(1) regression statistics φ̂ and t

φ̂=1
from nuisance parameters arising

from weak dependence in ut. The only difference is that while these correction quantities were
previously related to σ2

1 (which can be interpreted as the quadratic variation at the point 1 of
a Brownian motion) they are now related to the quadratic variation at 1 of an infinite-variance
random process. We give further details on this in Remark 3.1.
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Remark 3.1: In the pure α-stable context (α < 2, ut = ε∗2t), it holds that

a−2
T

T∑
t=1

ε∗22t ⇒ Ψ2[Uα]1, (10)

where [Uα]1 is the quadratic variation at the point 1 of a Lévy α-stable process Uα(r) (see Lemma 4.1
below), Ψ2 :=

∑∞
j=0 ψ

2
j and aT := aT 1/α. From Phillips (1990), when φ̂ is a T -consistent estimator

of φT , the same result as in (10) holds if ε∗2t is replaced by the residual ε̂∗2t := xt − φ̂xt−1, and
hence, Ta−2

T σ̂2
u ⇒ Ψ2[Uα]1. Furthermore, if ω̂2

u is defined by a kernel procedure (as detailed above),
then it is argued in Phillips (1990, p.53) that Ta−2

T ω̂2
u ⇒ {ψ(1)}2[Uα]1. The same convergence

holds for the ASD estimator, ω̂2
u = s2

AR, based on (5). Specifically, in the pure infinite variance

context the consistency of the estimators β̂j , j = 1, ..., pT , and the convergence Ta−2
T s2

pT
⇒ [Uα]1

are established in Cavaliere et al. (2016b). Although σ̂2
u and ω̂2

u need to be re-normalised to achieve
non-trivial convergence, no re-normalisations are needed in (8) and (9) because the contributions
of aT cancel out, as does [Uα]1 in the limits of the statistics. �

In both the pure finite variance case and the pure infinite variance case, under suitable regularity
conditions, the PP Zφ statistic is known to share the same limiting null distribution as the ADF
normalised bias statistic, Zρ̂ from (5), while Zt shares the same limiting null distribution as tρ̂; see,
among others, Phillips (1987), Phillips and Perron (1988), and Phillips (1990).

3.3 M Unit Root Tests

We also consider the popular trinity of modified or so-calledM unit root tests due to Stock (1999)
and Perron and Ng (1996). These are defined as follows:

MSB :=

(
ω̂−2
u T−2

T∑
t=1

x2
t−1

)1/2

(11)

MZφ :=

(
2T−2

T∑
t=1

x2
t−1

)−1 (
T−1x2

T − ω̂2
u

)
(12)

MZt := MSB ×MZφ (13)

where ω̂2
u is as defined previously in the context of the PP statistics in (8) and (9). Haldrup and

Jansson (2006) argue that theM tests, when coupled with the modified AIC lag selection method
of Ng and Perron (2001), are preferable to the standard ADF tests in the pure finite variance
case because of their superior finite sample properties when weak dependence is present in {ut}.
Representations for the limiting null distributions of the M statistics in the pure finite variance
case, under suitable regularity conditions, are provided in, among others, Haldrup and Jansson
(2006). In particular, MZφ and MZt are asymptotically equivalent to Zρ̂ and Zt, respectively.
As with the PP tests discussed above, in the pure infinite-variance case, ut = ε∗2t, the M unit
root tests can again be meaningfully implemented with no change in (11)-(13). To the best of our
knowledge the large sample behaviour of the M statistics has not been established in the pure
infinite variance case. These can be obtained as a special case of the large sample results we will
subsequently provide in section 4.2.

3.4 Breitung’s Variance Ratio Test

Finally, we will also consider the variance ratio test (VRT ) proposed by Breitung (2002),

VRT := T−2

(
T∑
t=1

x2
t

)−1 T∑
t=1

 t∑
j=1

xj

2

. (14)
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The variance ratio test has some appealing properties in the pure finite variance case. First, it
requires no correction, either parametric or non-parametric, to account for any weak dependence
in ut. Second, by virtue of this, it has been advocated by some authors (see, for example, Müller,
2008) as a unit root test which avoids the criticisms of Faust (1996) regarding the (theoretical)
uncontrollability of the size of unit root tests based around (parametric or non-parametric) cor-
rections for general weak dependence in ut. Representations for the limiting null distributions of
the VRT statistic in the pure finite variance case are given, under suitable regularity conditions,
in Breitung (2002) and Breitung and Taylor (2003). In the pure infinite-variance case, ut = ε∗2t,
the VRT test can again be meaningfully implemented with no change needed in the formulation
of (14). Again to the best of our knowledge, the large sample behaviour of the VRT statistic has
not been established in the pure infinite variance case, and again can be obtained as a special case
of the large sample results we give in section 4.2.

4 Large Sample Results

As we have seen, in the pure infinite variance case, ut = ε∗2t, commonly used unit root tests designed
for the pure finite variance case, ut = ε∗1t, may still be implemented without modifications to the
functional form of the test statistics. Their limiting null distributions differ between the two cases,
however. In the pure finite variance case these distributions are particular functionals of a Brownian
motion process (which is 2-stable), while in the pure infinite variance case they take the form of
the corresponding functionals of an α-stable motion (with α < 2). In this section we will show
that under the Amsler and Schmidt (2012) specification in (4), weak convergence is again obtained
(again without modifications to the test statistics) and, typically, the resulting limit distributions
are expressible as functionals of a Lévy process with a Wiener and an α-stable (α < 2) component,
corresponding to the two components in (4). The results we give in this section can therefore be
used to evaluate the asymptotic null distributions of the statistics and the asymptotic local power
functions of the associated tests. A by-product of our results is that they also enable us to detail
the limiting null distributions of the M and VRT statistics in the pure infinite variance case.

4.1 Preliminary Results

Here we present some functional and product moment convergence facts needed for our main
results. For a semi-martingale S, recall that the associated quadratic variation process is given
by [S]r := S2(r) − 2

∫ r
0 S(u)dS(u), r ∈ [0, 1]. In particular, for a standard Brownian motion W

the quadratic variation is deterministic: [σ1W ]r = σ2
1r, whereas for a pure jump Lévy α-stable

process (α < 2) it is the sum (infinite series) of squared jumps until r, which are countably many.
Throughout, the space Dn[0, 1] of cadlag functions on [0, 1] with values in Rn is equipped with
Skorokhod’s (1956) J1 topology.

We first state Lemma 4.1 which details the joint weak convergence properties of the (scaled)
partial sum processes relevant for establishing the large sample behaviour of the unit root statistics
from section 3. The proof of Lemma 4.1 is discussed in Remark 4.1.

Lemma 4.1 Let Assumptions A.1−A.5 hold. Then, as T →∞, it holds thatT−1/2

[rT ]∑
t=1

ε∗1t, a
−1
T

[rT ]∑
t=1

ε2t, T
−1

[rT ]∑
t=1

ε∗21t , a
−2
T

[rT ]∑
t=1

ε2
2t

⇒ {
ψ(1)σ1W (r),Uα(r),Ψ2σ2

1r, [Uα]r
}
(15)
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in D4[0, 1], and a−1
T

[rT ]∑
t=1

ε∗2t, a
−2
T

[rT ]∑
t=1

ε∗22t

 f.d.d.→
{
ψ(1)Uα(r),Ψ2 [Uα]r

}
, (16)

where W and Uα are, respectively, independent standard Wiener and Lévy α-stable processes,
f.d.d.→

denotes convergence of the finite dimensional distributions (f.d.d.) jointly with (15), ψ(1) :=∑∞
j=0 ψj , Ψ2 :=

∑∞
j=0 ψ

2
j and the norming sequence aT is given by aT := aT 1/α.

Remark 4.1: For a proof of the marginal convergence involving the Brownian motion process W
alone, see Phillips (1987) and Hamilton (1994, Proposition 17.3, pp.505-506), and for that involving
Uα alone, see Resnick (1986, pp. 94-95), Phillips (1990), Avram and Taqqu (1992), and Phillips
and Solo (1992, p.975). As {ε1t}t∈Z and {ε2t}t∈Z are independent, then so are W and Uα, and
because W is also continuous a.s., convergence is in D4[0, 1] as asserted in Lemma 4.1. �

Remark 4.2: As shown by Avram and Taqqu (1992) - see also Phillips (1990) and Phillips and
Solo (1992) - the finite dimensional convergence in (16) cannot be replaced by weak convergence
in D2[0, 1], because the linear structure of the errors under heavy-tails induces collisions of large
jumps in the partial sum process. As discussed by, among others, Phillips and Solo (1992) and
Chan and Zhang (2009), in considering possible dependent noise sequences with infinite variances
a coarser topology is required to ensure weak convergence of partial sums. For instance, Chan and
Zhang (2009) develop, in a topology known as M1, interesting results for near-integrated processes
under strong dependence and infinite variances. �

Following Phillips (1987) and given the local-to-unity behaviour of our DGP, we define the
(Gaussian) Ornstein-Uhlenbeck [OU] process Jc(r) :=

∫ r
0 e

(s−r)cdW (s) = W (r)−c
∫ r

0 e
(s−r)cW (s)ds,

r ∈ [0, 1], generated by the stochastic differential equation dJc(r) = −cJc(r)dr + dW (r), with
Jc(0) = 0. Given the specification of ut considered in (4), we will also require the analogue
of Jc in the α-stable context introduced by Chan (1990); that is, a Lévy driven OU process,
defined as Jc,α(r) := Uα(r) − c

∫ r
0 e

(s−r)cUα(s)ds, r ∈ [0, 1], and which results from dJc,α(r) =
−cJc,α(r)dr + dUα(r), with Jc,α(0) = 0.

In Lemma 4.2 we now provide intermediate results which will enable us subsequently to provide
characterisations of the limit distributions of the unit root test statistics outlined in Section 2.
Lemma 4.2 is formulated in terms of the process Hc,ν := Jc+νJc,α, where ν := γ/σ1. In particular,
relating to the null hypothesis, H0 (where c = 0), H0,ν = W + νUα and its quadratic variation
[H0,ν ]r satisfies [H0,ν ]r = [W ]r + [νUα]r = r + ν2[Uα]r, r ∈ [0, 1]. Although under the conditions of

Lemma 4.1 the weak convergence of T−1/2
∑[rT ]

t=1 ut to ψ (1)σ1H0,ν(r) holds only in f.d.d. sense, it

is still true that T−1/2
∑[rT ]

t=1 εt ⇒ σ1H0,ν(r) in D[0, 1], which is sufficient for Lemma 4.2.

Lemma 4.2 Let {xt} be generated according to the DGP in (1) and (3), and let Assumptions

9



A.1−A.5 hold. Then, as T →∞, the following convergence results hold jointly:

i) T−1
T∑
t=1

u2
t ⇒ Ψ2σ2

1[H0,ν ]1

ii) T−3/2
T∑
t=1

xt ⇒ ψ(1)σ1

∫ 1

0
Hc,ν(r)dr

iii) T−2
T∑
t=1

x2
t−1 ⇒ {ψ(1)}2σ2

1

∫ 1

0
H2
c,ν(r)dr

iv) T−1
T∑
t=1

xt−1ut ⇒ {ψ(1)}2σ2
1

{∫ 1

0
Hc,ν(r)dH0,ν(r) +

1

2

(
1− Ψ2

{ψ(1)}2

)
[H0,ν ]1

}

v) T−1
T∑
t=1

xt−1εt ⇒ ψ(1)σ2
1

∫ 1

0
Hc,ν(r)dH0,ν(r)

vi) T−2
T∑
t=1

x2
t−1ε

2
t ⇒ {ψ(1)}2σ4

1

∫ 1

0
H2
c,ν(r)d[H0,ν ]r

where Hc,ν := Jc + νJc,α, with ν := γ/σ1, and where [H0,ν ]1 = 1 + ν2[Uα]1, Ψ2 :=
∑∞

j=0 ψ
2
j and

ψ(1) :=
∑∞

j=0 ψj.

Remark 4.3: In Lemma 4.2(vi), the presence of a stochastic integral with respect to the quadratic
variation [H0,ν ]r is natural on noting that T−2

∑T
t=1 x

2
t−1ε

2
t is the quadratic variation at 1 of the

process T−1
∑[Tr]

t=1 xt−1εt, r ∈ [0, 1]. As the latter process has I(r) := ψ(1)σ2
1

∫ r
0 Hc,ν(s)dH0,ν(s),

r ∈ [0, 1], as its weak limit, it is then not surprising that T−2
∑T

t=1 x
2
t−1ε

2
t converges weakly to the

quadratic variation at 1 of I, which is given by [I]1 := {ψ(1)}2σ4
1

∫ 1
0 H

2
c,ν(r)d[H0,ν ]r. It could also

be useful to note that∫ 1

0
H2
c,ν(r)d[H0,ν ]r =

∫ 1

0
H2
c,ν(r)dr + ν2

∑
r∈(0,1]

H2
c,ν(r−){∆Uα(r)}2,

where
∫ 1

0 H
2
c,ν(r)dr =

[∫ r
0 Hc,ν(s)dW (s)

]
1

and
∑

r∈(0,1]H
2
c,ν(r−){∆Uα(r)}2 =

[∫ r
0 Hc,ν(s)dUα(s)

]
1
.

Moreover, the non-zero jumps ∆Uα(r), r ∈ (0, 1], are countably many, and
∑

r∈(0,1]H
2
c,ν(r−) {∆Uα(r)}2

converges a.s. because Hc,ν is bounded a.s. and
∑

r∈(0,1]{∆Uα(r)}2 = [Uα]1 <∞, a.s. �

Recall from section 3.2 that the PP unit root tests are based on modifications of the T (φ̂− 1)
and t

φ̂=1
statistics, obtained from the regression of xt on xt−1. In Proposition 4.1 we detail the

large sample properties of these statistics when xt is generated by the DGP (1) and (3). We
will subsequently use these results in section 4.2 to derive the large sample distributions of the
corresponding PP tests, Zφ and Zt.

Proposition 4.1 Let the conditions of Lemma 4.2 hold. Then, as T → ∞, the following weak

convergence results hold:

T
(
φ̂− 1

)
⇒ −c+

∫ 1

0
Hc,ν(r)dH0,ν(r) +

[H0,ν ]1
2

(
1− Ψ2

{ψ(1)}2

)
∫ 1

0
H2
c,ν(r)dr

10



and

t
φ̂=1
⇒ ψ(1)

Ψ[H0,ν ]
1/2
1

−c
(∫ 1

0
H2
c,ν(r)dr

)1/2

+

∫ 1
0 Hc,ν(r)dH0,ν(r) +

[H0,ν ]1
2

(
1− Ψ2

{ψ(1)}2

)
(∫ 1

0 H
2
c,ν(r)dr

)1/2


where Hc,ν , [H0,ν ]1, ψ(1) and Ψ are as defined in Lemma 4.2.

Remark 4.4: The proof of Proposition 4.1 follows straightforwardly from the results given in
Lemma 4.2. Hence, as is the case for both the pure finite variance and pure infinite variance cases
(see, inter alia, Phillips, 1987, and Phillips, 1990, respectively), the limit distributions of T (φ̂− 1)
and t

φ̂=1
are not nuisance parameter free, and therefore any procedure based on these statistics

needs to employ corrections for any weak dependence present in ut, and in particular those discussed
in section 3.2. �

4.2 Limiting Distributions of Unit Root Statistics

In Theorem 4.1 we now collect together representations for the limiting distributions of the unit
root statistics detailed in section 3, with the exception of the second heteroskedasticity-robust ADF
statistics tWρ̂,2, from section 3.1. This turns out to behave rather differently from the other statistics
and we will discuss aspects of this statistic in section 4.3.

Theorem 4.1 Let the conditions of Lemma 4.2 hold. Then, as T → ∞, the following weak con-

vergence results hold:

i) Provided the lag length pT in (5) satisfies the rate condition that 1/pT + p3
T /T → 0, as T →∞,

then the ADF test statistics from section 3.1 satisfy,

Zρ̂ ⇒ −c+

∫ 1

0
Hc,ν(r)dH0,ν(r)∫ 1

0
H2
c,ν(r)dr

=: Z∞,

tρ̂ ⇒ −c

(∫ 1

0
H2
c,ν(r)dr

)1/2

[H0,ν ]
1/2
1

+

∫ 1

0
Hc,ν(r)dH0,ν(r)

[H0,ν ]
1/2
1

(∫ 1

0
H2
c,ν(r)dr

)1/2
=: t∞,

tWρ̂,1 ⇒ −c

∫ 1

0
H2
c,ν(r)dr(∫ 1

0
H2
c,ν(r)d[H0,ν ]r

)1/2
+

∫ 1

0
Hc,ν(r)dH0,ν(r)(∫ 1

0
H2
c,ν(r)d[H0,ν ]r

)1/2
;

ii) Provided the conditions stated on ω̂2
u in section 3.2 hold, then the PP statistics are such that,

Zφ ⇒ Z∞ and Zt ⇒ t∞;

iii) Again provided the conditions stated on ω̂2
u in section 3.2 hold, then the M statistics from

11



section 3.3 are such that,

MSB ⇒


∫ 1

0
H2
c,ν(r)dr

[H0,ν ]1


1/2

, MZφ ⇒ Z∞ , and MZt ⇒ t∞;

iv) Breitung’s variance ratio statistic from section 3.4 is such that,

VRT ⇒

∫ 1

0

(∫ r

0
Hc,ν(s)ds

)2

∫ 1

0
H2
c,ν(r)dr

.

Remark 4.5: All of the limiting distributions given in Theorem 4.1 can be seen to depend,
regardless of whether H0 holds or not, on two key parameters: the maximal moment exponent,
α, characterising the Lévy process Uα, and the relative weight ν := γ/σ1 of the infinite-variance
component. It is, however, important to observe that these limiting representations are all invariant
to any weak dependence present in ut. For all of the statistics given, representations for their
limiting null distributions obtain setting c = 0, while expressions for their asymptotic local power
functions can be obtained from the representations with c 6= 0. �

Remark 4.6: The results given in Theorem 4.1 include as special cases the limiting distributions
of unit root test statistics under the pure finite variance and pure infinite variance specifications.
The pure finite variance (ut = ε∗1t) limits obtain by setting γ = ν = 0 and Hc,0 = Jc (H0,0 = W )
in the limiting representations, whereas the limiting distributions in the pure infinite variance case
(ut = ε∗2t) obtain by letting ν → ∞ and replacing Hc,ν by Jc,α (H0,ν by Uα) in the limits from
Theorem 4.1. For example, in the pure finite variance case we then have (noting that the stochastic
differential equation satisfied by Jc(r) is used to write the numerator of (17) more succinctly) that

tWρ̂,1 ⇒

∫ 1

0
Jc(r)dJc(r)(∫ 1

0
J2
c (r)dr

)1/2
, (17)

which is the same as the limiting distribution for the standard ADF statistic tρ̂ in the pure finite
variance case, whereas in the pure infinite variance case the limit distributions of the two statistics
are distinct, viz :

tρ̂ ⇒

∫ 1

0
Jc,α(r)dJc,α(r)

([Uα]1)1/2

(∫ 1

0
J2
c,α(r)dr

)1/2
, and tWρ̂,1 ⇒

∫ 1

0
Jc,α(r)dJc,α(r)(∫ 1

0
J2
c,α(r)d[Uα]r

)1/2
. (18)

Notice, moreover, that for α = 2 the two limiting distributions given in (18) both reduce to the
right member of (17). �

Remark 4.7: The large sample results given in Theorem 4.1 relate to the case where no determin-
istic component is allowed for in computing the unit root statistic in question. These results can be
generalised to the case where the statistics are computed using de-meaned or de-trended data, as is
typically done in the unit root testing literature. This involves replacing xt in the computation of
the statistics from section 3 by either: the residual x̂t := xt− z′tθ̂ obtained from the OLS regression
of xt on zt := 1, where θ := µ or on zt := (1, t)′, where θ := (µ, τ); or, by setting φT = 1−c/T (where
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the value of c is pre-specified according to the deterministic specification considered and the desired
significance level), the residual x̃t := xt − z′tθ̃, with θ̃ obtained from the quasi-differenced (GLS)
regression of Xc := (x0, x1 − φTx0,..., xT − φTxT−1)′ on Zc := (z0, z1 − φT z0,..., zT − φT zT−1)′,
as in Elliott et al. (1996), where again zt := 1 when de-meaned data is required and zt := (1,
t)′ when de-trended data is required. In terms of the limiting distributions given in Proposition
4.1 and Theorem 4.1, these remain valid in such cases provided the limiting processes H0,ν and

Hc,ν , and the functionals thereof, are replaced by their appropriate de-meaned (Hk,µ
0,ν and Hk,µ

c,ν ,

k = OLS or GLS) or de-trended (Hk,τ
0,ν and Hk,τ

c,ν , k = OLS or GLS) counterparts. In particular,

HOLS,µ
i,ν (r) := Hi,ν(r) −

∫ 1
0 Hi,ν(s)ds, HOLS,τ

i,ν (r) := HOLS,µ
i,ν (r) − 12(r − 1/2)

∫ 1
0 (s − 1/2)Hi,ν(s)ds,

HGLS,τ
i,ν (r) := Hi,ν(r) − r{c∗Hi,ν(1) + 3(1 − c∗)

∫ 1
0 sHi,ν(s)ds}, for i = 0, c, and where c∗ :=

(1 + c)/(1 + c + c2/3). As in Müller and Elliott (2003), in the case where OLS de-meaning or
de-trending is employed, the term −T x̂2

0 (which weakly converges to HOLS,µ
c,ν (0)2 under de-meaning

and to HOLS,τ
c,ν (0)2 under de-trending) needs to be added to the numerator of MZφ from section

3.3 in order that MZφ and MZt remain asymptotically equivalent to Zρ̂ and tρ̂, respectively. �

4.3 Further Results Relating to the Eicker-White ADF Tests

We conclude this section with some further considerations regarding the limit distributions of the
statistics tWρ̂,1 and tWρ̂,2 from section 3.1, which modify the corresponding standard ADF test statistics
through the use of Eicker-White rather than OLS standard errors. In section 4.3.1 we first explore
the relationship between the limiting distributions of tρ̂ and tWρ̂,1 in order to try and shed some light
on some of the findings we subsequently make in our Monte Carlo study in section 5. Secondly, in
section 4.3.2 we present some material relating to the limiting distribution of tWρ̂,2.

4.3.1 Further Discussion of the Large Sample Behaviour of tWρ̂,1 Relative to tρ̂

Under the conditions of Theorem 4.1, the limiting distribution of the ratio of tWρ̂,1 to tρ̂ can be shown
to be given by

tWρ̂,1
tρ̂
⇒

 [H0,ν ]1

∫ 1

0
H2
c,ν(r)dr∫ 1

0
H2
c,ν(r)d[H0,ν ]r


1/2

. (19)

In the pure finite variance case (ut = ε∗1t), it is known from Demetrescu (2010) that tρ̂ and tWρ̂,1 are
asymptotically equivalent, such that the limit in (19) equal to 1 (with the same result holding for the
ratio of tWρ̂,2 to tρ̂); see also Remark 4.6. In particular, T−2

∑T
t=1 x

2
t−1ε

2
t = σ2

1T
−2
∑T

t=1 x
2
t−1 + op(1)

and s2
pT
T−2

∑T
t=1 x

2
t−1 = σ2

1T
−2
∑T

t=1 x
2
t−1 + op(1) jointly converge to the same weak limit, so that

the impact of the Eicker-White correction is asymptotically negligible.
In contradistinction, in the pure infinite variance case (ut = ε∗2t), the analogue of the result

in Lemma 4.2(vi) is T−2
∑T

t=1 x
2
t−1ε

2
t ⇒ γ4{ψ(1)}2

∫ 1
0 J2

c,α(r)d [Uα]r, whereas s2
pT
T−2

∑T
t=1 x

2
t−1 ⇒

γ4{ψ(1)}2 [Uα]1
∫ 1

0 J2
c,α(r)dr, with the convergence joint and the two weak limits distinct. As a

result, in this case it holds that

tWρ̂,1
tρ̂
⇒

 [Uα]1

∫ 1

0
J2
c,α(r)dr∫ 1

0
J2
c,α(r)d[Uα]r


1/2

=: τ c,α. (20)

In order to gain some insight into how the non-trivial limit in (19) is likely to manifest itself in
the behaviour of the test statistics, we will focus attention on the pure infinite variance case where
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σ1 = 0. We might expect that the qualitative conclusions from this exercise would be maintained,
at least for relatively small values of σ1, when σ1 6= 0. This is indeed confirmed by the Monte Carlo
simulation results later reported in section 5. To that end, consider decomposing the weak limit of

tρ̂ in the pure infinite variance case into t∞ = t
(1)
∞ + t

(2)
∞ with

t(1)
∞ := −c

(∫ 1

0
J2
c,α(r)dr

)1/2

[Uα]
1/2
1

and t(2)
∞ :=

∫ 1

0
J2
c,αdUα(r)

[Uα]
1/2
1

(∫ 1

0
J2
c,α(r)dr

)1/2
.

Under H0, t
(1)
∞ = 0 and so the limiting null distributions of tρ̂ and tWρ̂,1 are given by t

(2)
∞ and τ0,αt

(2)
∞ ,

respectively. Under Hc (c > 0), however, a shift leftwards by, respectively, t
(1)
∞ and τ c,αt

(1)
∞ occurs.

To quantify these effects, we investigate two special cases: first, the null hypothesis, H0, where
c = 0, and second one particular local alternative, Hc for c = 15. For that purpose, in Table 1
we report simulations1 of the cumulative distribution function [cdf] of τ c,α for α ∈ {1, 1.5, 1.75},
both unconditionally and conditionally on the event that t

(2)
∞ < −1.95.2 Specifically, Table 1

reports values for Fc,α(x) = P [τ c,α ≤ x], which is the unconditional cdf of τ c,α, and Fc,α(x|t(2)
∞ <

−1.95) = P [τ c,α ≤ x|t(2)
∞ < −1.95], which corresponds to a cdf of τ c,α conditional on t

(2)
∞ taking

a (relatively) large negative value. The purpose is to see how frequently and by what magnitude

the multiplication of t
(1)
∞ and t

(2)
∞ by τ c,α, resulting from the Eicker-White correction, inflates or

deflates the statistics, both in general and for outcomes in the left tail of t
(2)
∞ which are conducive to

rejections of H0. Although the value of −1.95 is chosen as the fifth percentile of the Dickey-Fuller
distribution in the finite variance case, qualitative conclusions are the same if the critical value is
taken from the limit null distribution for the true α.

[Please insert Table 1 about here]

In Table 1, the simulated probabilities for x = 1 correspond to the event that |tW1,∞| ≤ |t∞|,
where tW1,∞ is the weak limit of tWρ̂,1, and are highlighted in bold. Starting from the null hypothesis

c = 0, the results suggest that the unconditional distribution of τ0,α = tW1,∞/t∞ displays positive

asymmetry for all values of α considered, yielding a predominance of cases where |tW1,∞| > |t∞|.
In other words, and with probabilities ranging between 0.8 and 0.6 (decreasing in α), it is seen
that in large samples the Eicker-White correction gives rise to a larger (in magnitude) value of the
t-statistic, and that this effect is more pronounced the smaller is α. Nevertheless, because τ c,α and
t∞ are not independent, this does not imply, per se, that the Eicker-White corrected ADF test
will reject H0 more frequently than the standard ADF test based on tρ̂, even if the same critical
value is used in both tests. In fact, when H0 is true, the results for the cdf of τ0,α conditional on

the occurrence of a large negative value of t∞ = t
(2)
∞ (conducive to rejections of H0), are the exact

opposite of the general case, with predominance of outcomes where |tW1,∞| ≤ |t∞| and the respective
probabilities ranging from 0.6 to 0.8 (decreasing in α). Thus, although under H0 the Eicker-White
correction more frequently inflates |t∞| than deflates it, in the proximity of the conventional critical
regions for H0 the situation is reversed and |t∞| is more frequently deflated. In the Monte Carlo
results reported in section 5 it will be seen that this leads to undersizing in the test based on tWρ̂,1.

Turning to c = 15, the unconditional cdf of τ15,α is essentially unaltered compared to that of
τ0,α, while variations in the simulated conditional cdf are minor.3 The conclusions drawn under

1The random processes are discretised over a grid of 10000 points and 10000 replications are performed.
2For both c = 0 and c = 15, the event {t(2)∞ < −1.95} occurred with simulated frequencies of 0.028, 0.041 and

0.048 for α = 1, α = 1.5 and α = 1.75, respectively.
3It should of course be noted that the conditional cdf is less precisely simulated because the proportion of repli-

cations where the conditioning event occurs is relatively small by construction.
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H0 for t∞, therefore, remain valid under c = 15 for t
(2)
∞ . However, t∞ and tW1,∞ are now shifted

downwards by, respectively, t
(1)
∞ and τ c,αt

(1)
∞ which are proportional to −c which, obviously, is

independent of t
(2)
∞ . Therefore, through the downward shift, the unconditionally more frequent

inflation than deflation of −c by τ c,α becomes relevant and, at least for large c, will dominate the

contribution of t
(2)
∞ and τ c,αt

(2)
∞ to t∞ and tW1,∞. In the Monte Carlo results reported in section 5 it

will be seen that this leads to power gains in the test based on tWρ̂,1 relative to that based on tρ̂.

4.3.2 Some Limiting Results for tWρ̂,2

We conclude this section by reporting some asymptotic results for the Eicker-White corrected ADF
tWρ̂,2 statistic. Our purpose here is to show that under the Amsler and Schmidt (2012) infinite vari-

ance specification in (4), the statistics tWρ̂,1 and tWρ̂,2 are not asymptotically equivalent. Specifically,

in large samples tWρ̂,1 tends to be smaller in magnitude than tWρ̂,2 and the ratio tWρ̂,1/t
W
ρ̂,2 is bounded

away from one, in probability, potentially leading to asymptotically more frequent rejections using
tWρ̂,2 than tWρ̂,1, for the same critical value. As this turns out to be a consequence of the interaction
between the two additive terms, ε1t and ε2t in (4), which is an artefact of the Amsler-Schmidt
specification, we restrict ourselves to a rigorous yet indirect argument that avoids any explicit
representation of the limiting distribution of tWρ̂,2. Moreover, we focus on the case where xt is a
random walk because the lack of asymptotic equivalence in this special case implies that asymptotic
equivalence does not hold in general either. We stress that the random walk case is the simplest,
yet by no means exceptional, counterexample to asymptotic equivalence.

Our reasoning is as follows. Recall definitions (6) and (7). On the one hand, it holds that

T∑
t=pT+1

x2
t−1ε̂

2
pT ,t
− S1∆,ε(S∆∆,ε)

−1S′1∆,ε ≤
T∑

t=pT+1

x2
t−1ε̂

2
pT ,t

by considerations of positive definiteness, and we also showed in the proof of Theorem 4.1 that,
under its assumptions,

T−2
T∑

t=pT+1

x2
t−1 − T−2S1∆(S∆∆)−1S′1∆ = T−2

T∑
t=pT+1

x2
t−1 + op(1), (21)

where T−2
∑T

t=pT+1 x
2
t−1 is bounded away from 0 in probability. Therefore, for every δ > 0,

P
(
tWρ̂,1/t

W
ρ̂,2 ≤ 1 + δ

)
= P (seW,2 (ρ̂) /seW,1 (ρ̂) ≤ 1 + δ)→ 1

as T →∞, under the same conditions as in Theorem 4.1. This could be restated as max
{
tWρ̂,1/t

W
ρ̂,2, 1

}
P→ 1 and interpreted as meaning that in large samples tWρ̂,1 tends to be no larger in magnitude than

tWρ̂,2. The same result also holds in the pure finite variance case and does not, by itself, preclude

the asymptotic equivalence of tWρ̂,1 and tWρ̂,2.
On the other hand, however, let xt be a pure random walk with x0 = 0, so that ∆xt = εt. In this

case we establish, under Assumption A, the existence of a random variable θ with P (θ ∈ (0, 1)) = 1
such that, for every z ∈ R where the cdf of θ is continuous, it holds that

lim inf
T→∞

P
(
tWρ̂,1/t

W
ρ̂,2 ≤ z

)
≥ P (θ ≤ z) . (22)

In particular, it can be concluded that P (tWρ̂,1/t
W
ρ̂,2 < 1)→ 1 and, moreover, that tWρ̂,1/t

W
ρ̂,2 is bounded

away from one, in probability.
Details about the random variable θ are given in Proposition 4.2, which relies on the weak

convergence of the process
∑[Tr]

t=1 (εt, ε
2
2tε
′
1t)
′ upon appropriate normalisation, where we define ε1t :=

(1, ε1,t−1, ε
2
1,t−1, ε

2
1,t+1)′.
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Proposition 4.2 Under Assumption A it holds that

[Tr]∑
t=1

(T−1/2εt, a
−2
T ε2

2tε
′
1t)
′ ⇒ (σ1Hν,0(r), [Uα]r, S(r), Q−(r), Q+(r))′ (23)

in D5[0, 1], where S and Q± are α
2 -stable processes with Q± ≥ 0 a.s. Furthermore, as a consequence,

for the random walk xt =
∑t

s=1 εs inequality (22) holds with

θ =

1−
ν4
[∫ 1

0 H0,ν(r)dS(r)
]2

{σ2
1 + ν2 [Q−(1) +Q+(1)]}

∫ 1
0 H

2
c,ν(r)d[H0,ν ]r


1/2

. (24)

Remark 4.8: The dependence structure of the limit random process in (23) can be inferred from
the proof of the proposition given in the Appendix. However, this fact is secondary with respect
to our main point which follows from the functional form of the right-hand side in (24) alone.
Specifically, θ < 1 a.s. because

∫ 1
0 H0,νdS 6= 0 a.s. �

5 Finite Sample Simulations

In this section we report results from an in-depth Monte Carlo simulation study into the finite
sample size (section 5.2) and local power (section 5.2) properties of the unit root tests considered
in section 3 under the Amsler and Schmidt (2012) local-to-finite variance specification in (4).
Before doing so we first briefly explore in section 5.1 estimation of the tail index of a best stable
approximation to local-to-finite variance processes of the form given for ut in (2).

5.1 Tail Index Estimates

Consider ut from (2). By design, the tail index of ut for fixed T coincides with the tail index α
of ε2t (whenever γ > 0), and therefore, is independent of T . Nevertheless, given the decreasing
weight of ε2t in the definition of ut, we may also conceive of pseudo tail indices for ut that behave
continuously and converge to 2 as T → ∞, in agreement with the localisation idea. For instance,
we might expect the tail indices of the sequence of stable distributions that, for each T , best
approximate the distribution of ut with respect to some meaningful criterion, to behave in this
way. We adopt the approach of Koutrouvelis (1980,1981), where the approximation criterion is
defined in terms of proximity of the characteristic functions, and the corresponding tail indices
(denoted by αu) of the best stable approximation can be estimated by Monte Carlo simulation, by
applying the estimator of Koutrouvelis to samples of generated ut’s.

4

To that end, we generate samples of ut, as ut = ε1t + γT−1/α2+1/2ε2t, for T = 100, 1000, 10000
and 100000 observations, with ε1t ∼ IIDN(0, 1) and independent of ε2t ∼ IID Sα2(0, 1, 0). For the
infinite variance component, ε2t, we consider values of the tail index α2 ∈ {1, 1.25, 1.5, 1.75, 2}.
To generate data from a stable distribution with index α2 we use the method of Samorodnitsky
and Taqqu (1994, Proposition 1.7.1). As regards the relative weighting parameter between the
finite and infinite variance components, γ, we follow Amsler and Schmidt (2012) and consider
γ ∈ {0.1, 0.316, 1, 3.16, 10, 31.6}.

[Please insert Table 2 about here]

4We also investigated the quantile-based estimator of McCulloch (1986) and found the results to be very similar

(although it should be stressed that the pseudo parameters estimated by this approach need not coincide with those

obtained using Koutrouvelis’s method).
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Table 2 provides the average value (taken across 1000 Monte Carlo replications) of the tail index
estimate, denoted α̂u, of ut. The results illustrate the local-to-finite behaviour of the underlying
distribution of ut. In particular, we observe that, other things being equal, and as might be
expected, α̂u will lie further from 2 the bigger is γ, the smaller is α2 and the smaller is T . For
small values of γ (γ = 0.1 and γ = 0.316) with small samples (T = 100) and as α2 approaches 1,
the empirical average of the empirical stability index α̂u can be well below 2, although it quickly
reverts towards 2 as the sample size increases, other things equal. However, it can also be seen
from the results in Table 2 that for γ > 0.316, substantially larger sample sizes are required for the
average of the estimated tail index to lie close to 2; for example, when γ = 3.16 and α2 < 2, even
T = 100000 is not a sufficiently large sample size to yield a value of the average of α̂u close to 2.

5.2 Empirical Size

In this subsection (empirical size) and the next (empirical power) we compare the empirical rejection
frequencies [ERFs] of the unit root tests discussed in this paper to data generated according to

xt = φTxt−1 + ut (25)

where x0 = 0, φT := 1− c/T with c ≥ 0 and fixed. The error process {ut} is generated as

(1− ϕL)ut = (1− θL)εt (26)

where εt = ε1t + γT−1/α2+1/2ε2t, with ε1t and ε2t generated as detailed in section 5.1. Results are
reported for α2 ∈ {1, 1.25, 1.5, 1.75, 2} and γ ∈ {0.1, 1, 10}. The finite sample size and power
of the tests is evaluated for samples of size T = 200 and T = 500, based on 5000 Monte Carlo
replications. All simulations were performed in MATLAB 7.8.0 (R2009a). The size and power
results reported pertain to the empirically most relevant case where the unit root tests are based
on (either OLS or local GLS) de-meaned data. Corresponding results for tests based on de-trended
data were qualitatively similar and can be obtained from the authors on request.

For, the finite sample size analysis reported in this section we set φT = 1 (c = 0), such that the
unit root null hypothesis holds, and allow for autoregressive and moving average dynamics in the
error term in (26) by allowing ϕ ∈ {−0.5, 0, 0.5} and θ ∈ {−0.5, 0, 0.5}, respectively. Results are
reported for tests based on the ADF t-statistic, tρ̂, Breitung’s variance ratio statistic, VRT , the
trinity ofM statistics,MSB,MZφ andMZt, and the Eicker-White corrected ADF tWρ̂,1 statistic.
Results are not reported here for the PP tests from section 3.2 or for the normalised bias ADF
test Zρ̂ from section 3.1, because these displayed very unreliable finite sample size properties in the
presence of serial correlation, a phenomenon also well documented for the former in the pure finite
variance case. In each case the statistics were compared to the standard (Gaussian) asymptotic
critical values that would be relevant in the pure finite variance case. We also consider a further test
based on the tWρ̂,1 statistic which, rather than using the standard finite variance critical value, uses
a critical value simulated from the limiting null distribution of this statistic based on the pseudo
tail index estimate, α̂u, calculated as outlined in section 5.1. In order to distinguish between these
two tests, we will denote the latter by tW,αuρ̂,1 in what follows. All tests were run at the nominal
asymptotic 5% level.

For the implementation of the semi-parametric unit root tests, the reported results relate to the
use of parametric ASDEs of the long run variances as we found these to deliver significantly better
finite sample performance than the corresponding tests based on sums-of-covariances estimators
using either the Bartlett or Quadratic Spectral kernels. The autoregressive lag order used in
constructing the ASDEs was determined using modified MAIC criteria with Schwert’s rule applied

to obtain the maximum lag length allowed; that is, kmaxK := [K
(
T

100

)1/4
] with K = 12. As in

Perron and Qu (2007) the MAIC criteria is computed based on OLS de-trended data. The same
lag length selection method was used in the context of the standard ADF test, tρ̂ and for the
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corresponding Eicker-White corrected ADF tests. The empirical size results for these tests are
reported in Tables 3-8.

[Please insert Tables 3 - 8 about here]

Consider first the results for T = 200 reported in Tables 3-5. In the case where no serial
correlation is present in ut (i.e., ϕ = θ = 0) the ERFs conform well in general to the nominal
level. With the exception of the VRT test based on local GLS de-meaned data, the empirical
sizes of the various tests when γ = 0.1, 1 and 10, lie between [0.035, 0.067], [0.023, 0.060], and
[0.003, 0.068], respectively. In general, again with the exception of the local GLS de-meaned VRT
test, the tests appear to become more conservative the smaller is α2. Again excluding the VRT
test, little differences are seen between the tests based on OLS de-meaning and the corresponding
tests based on local GLS de-meaning. The behaviour of the VRT test is, however, quite different
depending on which method of de-meaning is used; while the empirical sizes of VRT test based
on OLS de-meaning show only small deviations from the nominal 5% level, those based on local
GLS de-meaning show a tendency to significant over-sizing as α2 decreases and γ increases. For
example, for α2 = 1 and γ = 10 the empirical size of the local GLS de-meaned VRT test is close to
11%. In contrast the empirical size of the OLS de-meaned version of the test is 4.4%. It is worth
noting that even in the pure finite variance case, the results reported in Breitung and Taylor (2003)
show that the VRT based on OLS de-meaned data is preferable to the version based on local GLS
de-meaned data.

Where serial correlation is present in ut (i.e., ϕ = ±0.5 or θ = ±0.5) the results in Tables
3-5 suggest that in general the empirical sizes of the tests remain quite robust to the heavy tailed
behaviour in ut, particularly bearing in mind the sample size is only T = 200 here. These results
can essentially be summarised as follows: the size of the tρ̂, VRT , MSB, MZφ, MZt, tWρ̂,1 and

tW,αuρ̂,1 tests when ϕ = ±0.5 or θ = 0.5 for γ = 0.1, 1 and 10, when OLS de-meaning is considered,
lie between [0.029, 0.069], [0.023, 0.059], and [0.004, 0.070], respectively; whereas when local GLS
de-meaning is used, excluding VRT , they lie between [0.039, 0.076], [0.030, 0.068], and [0.019,
0.074], respectively. As is also well known to occur in the pure finite variance case, empirical sizes
deteriorate in the negative moving average case, where θ = −0.5, for some of the tests; in particular,
we observe that for γ = 0.1, 1 and 10, when OLS de-meaning is used the empirical sizes of the tests
lies between [0.038, 0.109], [0.042, 0.101] and [0.033, 0.126], respectively, whereas when local GLS
de-meaning is used they lie between [0.054, 0.114], [0.043, 0.123], and [0.035, 0.173], respectively.
The largest distortions are observed for the Eicker-White corrected statistics, whereas tρ̂, MSB,
MZφ and MZt are close to the 5% nominal significance level.

Excluding the negative moving average case, the Eicker-White corrected ADF tests, tWρ̂,1 and

tW,αuρ̂,1 , become increasingly conservative as γ increases, other things equal, particularly for the OLS

de-meaned versions. For example, the OLS de-meaned tWρ̂,1 and tW,αuρ̂,1 tests display ERFs of 0.3%
and 1.1%, respectively, when γ = 10, α2 = 1 and where no serial correlation is present in ut, and
display similar behaviour for ϕ = ±0.5 or θ = 0.5). The local GLS de-meaned tWρ̂,1 and tW,αuρ̂,1 tests
also become more conservative as γ increases when ϕ = 0, ϕ = ±0.5 or θ = 0.5 and α2 = 1,
but, although the tests are conservative, their ERFs are in most cases considerably higher than
those of the corresponding OLS de-meaned tests. Notice that this observed under-sizing seen in the
simulation results accords with the discussion in Section 4.3 concerning the asymptotic distributions
of the Eicker-White corrected ADF statistics in the benchmark case of no deterministics.

Consider now Tables 6 - 8 which display the corresponding results for T = 500. Overall, the
relative performance of the tests remains qualitatively similar to what was seen in the results for
T = 200, although in general the size distortions of the tests improve somewhat relative to T = 200.
This is particularly so in the serially correlated cases considered, as is of course anticipated by the
asymptotic distribution theory presented in section 4.
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5.3 Empirical Power

We now turn to a comparison of the finite sample local power properties of the unit root tests. For
the local power analysis the Monte Carlo data are generated by (25)-(26) for the local alternatives
generated by c ∈ {1, ..., 50}. In order to eliminate finite sample differences between the tests
which are attributable solely to weak dependence, we set ϕ = θ = 0. Results are reported for the
same set of tests as were considered in the finite sample size simulations in section 5.2 except that
among the three M tests we only report results for the MSB test, as its finite sample local power
properties were essentially indistinguishable from those of MZφ and MZt. All comments which
follow regarding MSB therefore apply equally to the corresponding MZφ and MZt tests.

[Please insert Figures 1 - 8 about here]

Consider first Figures 1-4 which graph the finite sample local power properties of both the OLS
and local GLS de-meaned tests for T = 200. A comparison of the results in each of these Figures
suggests that, for both OLS and local GLS de-meaned data, the finite sample power properties
of the tρ̂, VRT , and MSB statistics vary relatively little with γ and α2, while in contrast the

two Eicker-White corrected tests, tWρ̂,1 and tW,αuρ̂,1 , display considerable improvements in power as α2

decreases and as γ increases. As is also known to happen in the pure finite variance case, finite
sample local power for a given test is higher when local GLS de-meaning is used relative to OLS
de-meaning, although the converse holds for the VRT test; see Elliott et al. (1996) and Breitung
and Taylor (2003), among others. Where OLS de-meaning is used the MSB test is more powerful
than the Eicker-White corrected tests when γ = 0.1 for c < 25 with the reverse holding otherwise.
For the larger values of γ considered the Eicker-White corrected tests tend to be more powerful than
MSB. These three tests clearly dominate the other tests on power. Where local GLS de-meaned
data is used the Eicker-White corrected tests display superior power properties to the other tests
for all the values of γ considered. The MSB and tρ̂ are, however, only marginally less powerful
here than the Eicker-White corrected tests. In the case of local GLS de-meaning the power of the
VRT test is very much lower than that of all the other tests. In the case of OLS de-meaning it is
more competitive.

Consider next the results in Figures 5-8 which give the corresponding results for T = 500. The
most striking feature of these results is how close they are to the results in Figures 1-4 for T = 200.
Indeed there are almost no discernable differences between the results for the two sample sizes.
This is very encouraging because it suggests that the local asymptotic distribution theory given
in section 4 provides a very close approximation to the finite sample local power functions of the
tests.

We conclude this section by considering some extra graphs designed to provide further insight
into the changes in the finite sample power properties of the tests that are seen as α2 decreases
and γ increases. To that end, Figures 9 and 10 for T = 200 and T = 500, respectively, depict the
changes that occur, for a given value of α2, in the finite sample local power properties of the tests
between the two extreme cases considered for the weight parameter, γ, namely between γ = 0.1
and γ = 10. For each test what is graphed is the difference between the power for γ = 10 and
γ = 0.1 scaled by the power for γ = 0.1. Essentially then, these graphs show the rate of change in
power of the tests between γ = 0.1 and γ = 10.

[Please insert Figures 9 and 10 about here]

A number of interesting observations can be drawn from these graphs. First, we again see little
differences between the results for T = 200 and T = 500 confirming what was seen in Figures 1-8.
Second, it is seen that as α2 decreases then so the use of the Eicker-White correction can prove
useful in increasing power (regardless of whether OLS or local GLS de-meaning is used) and that
this improvement becomes larger the smaller is α2. Moreover, this is not a small sample artifact,
as is seen by comparing Figures 9 and 10. An explanation of this behaviour based on asymptotic

19



considerations was provided in Section 4.3 for the tests not involving deterministics, although the
same logic seems likely to apply. Third, as c increases then so, other things equal, the power
differences between the two values of γ becomes negligible for all of the tests, indicating that for
large c the most relevant determinant of local power for any given test (for a given method of
de-meaning) is the local-to-unity parameter, c. Fourth, among all the tests, the test whose local
power shows least dependence on γ is the VRT test. Fifth, the largest power gains among the
tests are seen with the tW,αuρ̂,1 test, closely followed by tWρ̂,1, and these gains are generally maximised
for values of c of about 5, exactly the region of the alternative parameter space where maximising
local power is most useful.

6 Conclusions

In this paper, we have provided representations for the large sample distributions of a number of
the most commonly used unit root test statistics in the scenario where the data generation process
is a near-integrated process driven by linear process shocks whose innovations are heavy-tailed,
following a local-to-finite variance process. The form of the local-to-finite variance process we use
is based on the recent framework of Amsler and Schmidt (2012) which models the innovations as
a linear combination of a pure finite variance component and a pure infinite variance component,
the latter scaled such that it does not dominate the former in the limit. This has enabled us to
provide analytical expressions for both the limiting null distributions and asymptotic local power
of these tests within this framework, thereby facilitating a comparison of these results with those
which obtain under the standard pure finite variance assumption and also under a pure infinite
variance assumption. We have also reported results from a finite sample Monte Carlo study which
suggest that, although the limiting distributions of the unit root statistics differ under local-to-
finite variance innovations relative to the pure finite variance case, the impact of such innovations
on standard unit root tests which compare these statistics with the asymptotic critical values which
obtain in the pure finite variance case can be relatively modest with some of the tests displaying
almost no deviations from the nominal level. Our results suggest that a variant of the usual ADF
tests based on the use of Eicker-White standard errors can deliver significant gains in local power
relative to other standard unit root tests. From an empirical perspective our results are important
in that they help validate the use of standard unit root tests on heavy-tailed data, as is frequently
done in empirical finance research.
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A Appendix

For later reference, define Pt :=
∑t−1

j=0 φ
t−j
T εt−j and Pi,t :=

∑t−1
j=0 φ

t−j
T εi,t−j (i = 1, 2), so that

Pt = P1,t + γa−1
T T 1/2P2,t. In view of Lemma 4.1, summation by parts can be used to justify

the standard joint convergence (T−1/2P1,[Tr], a
−1
T P2,[Tr])

′ ⇒ (σ1Jc(r), Jc,α(r))′ in D2[0, 1], which

by the continuity of Jc(r) implies that T−1/2P[Tr] ⇒ σ1Hc,ν(r) on D[0, 1]. As a direct result, for
ξt := ψ(1)Pt it holds on D[0, 1] that

T−1/2ξ[Tr] ⇒ σ1ψ(1)Hc,ν(r). (A.1)

Recall further that,

ut = ψ(L)εt =
∞∑
j=0

ψjεt−j

with ψ(L) :=
∑∞

j=0 ψjL
j and εt := ε1t + γa−1

T T 1/2ε2t. Thus, considering a Beveridge-Nelson de-
composition of ut we obtain,

ut = ψ(1)εt + ε̃t−1 − ε̃t (A.2)

where ε̃t := ψ̃(L)εt =
∑∞

j=0 ψ̃jεt−j , with ψ̃j :=
∑∞

k=j+1 ψk. Alternatively, considering ut as given
in (3), we can write (A.2) as,

ut = [ψ(1)ε1t + ε̃1,t−1 − ε̃1t] + γa−1
T T 1/2 [ψ(1)ε2t + ε̃2,t−1 − ε̃2t] . (A.3)

Here the series for ε̃it, i = 1, 2, are well-defined a.s. given that
∑∞

j=0 |ψ̃j |δ <∞ for δ of Assumption

A.5 (
∑∞

j=0 |ψ̃j |δ <
∑∞

k=0 k|ψk|δ <∞; cf. Phillips and Solo (1992, pp.976,984)), and ε̃2t belongs to
the normal domain of attraction of a stable law with characteristic exponent α.

Finally, for xt of (1) we find that

xt =
t∑

j=0

φjTut−j + φtTx0 = ψ(1)Pt − ε̃t + (1− φT )
t−1∑
j=1

φj−1
T ε̃t−j + ε̃0 + φtTx0

= ξt − ε̃t + ζt, (A.4)

where the equality defines ζt. From maxt=1,...,T |
∑t−1

j=1 φ
j−1
T ε̃t−j | ≤

∑T
t=1 |̃ε1t|+γa−1

T T 1/2
∑T

t=1 |̃ε2t|,
Markov’s inequality and, for α = 1, Karamata’s theorem, it follows that maxt=1,...,T |ζt| = Op(1).

Proof of Lemma 4.2
Without loss of generality under our assumption that x0 = Op(1), we may set x0 = 0 in what

follows.
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i) Let Ψ2 :=
∑∞

j=0 ψ
2
j . Consider first the sample variance of ut, that is,

T−1
T∑
t=1

u2
t = T−1

T∑
t=1

[ψ(L)ε1t]
2 +

γ2

a2
T

T∑
t=1

[ψ(L)ε2t]
2 +

2γ

T 1/2aT

T∑
t=1

[ψ(L)ε1t] [ψ(L)ε2t] .

Here T−1
∑T

t=1 [ψ(L)ε1t]
2 p→ V ar(ψ(L)ε11) = Ψ2σ2

1 by a law of large numbers [LLN], a−2
T

∑T
t=1 [ψ(L)ε2t]

2

⇒ Ψ2[Uα]1 by Theorem 4.2 of Davis and Resnick (1985), and
∑T

t=1 [ψ(L)ε1t] [ψ(L)ε2t] = op(T
1/2aT )

by Markov’s inequality. In fact,

E

∣∣∣∣∣
T∑
t=1

[ψ(L)ε1t] [ψ(L)ε2t]

∣∣∣∣∣
η

≤ TE|ε1t|ηE|ε2t|η(
∞∑
j=1

|ψj |η)2 = O(T ),

where η = 1 if α > 1 and η ∈ [δ/2, 1) is arbitrary if α = 1, so
∑T

t=1 [ψ(L)ε1t] [ψ(L)ε2t] = Op(T ) =

op(T
1/2aT ) if α > 1 and

∑T
t=1 [ψ(L)ε1t] [ψ(L)ε2t] = O(T 1+ε) for all ε > 0 if α = 1, with O(T 1+ε) =

op(T
1/2aT ) for ε ∈ (0, 1

2) in the latter case. By collecting these facts, we establish that,

T−1
T∑
t=1

u2
t ⇒ Ψ2σ2

1 + γ2Ψ2[Uα]1 = Ψ2σ2
1

(
1 + ν2[Uα]1

)
.

ii) Using (A.4) and the uniform evaluation of ξt there, we find that

T−3/2
T∑
t=1

xt = T−3/2
T∑
t=1

ξt − T−3/2
T∑
t=1

ε̃t + op(1),

where further
∑T

t=1 ε̃t = Op(T ) by the same argument as for the remainder in (A.4). Hence, by

(A.1) and the Continuous mapping theorem [CMT], T−3/2
∑T

t=1 xt ⇒ ψ(1)σ1

∫ 1
0 Hc,νdr.

iii) Again by (A.4) with a uniformly Op(1) remainder ζt,

1

4

∣∣∣∣∣T−1
T∑
t=1

(x2
t−1 − ξ2

t−1)

∣∣∣∣∣ ≤ T−1
T∑
t=1

|ξt−1(ε̃t−1 − ζt−1)|+ T−1

4

T∑
t=1

(ε̃t−1 − ζt−1)2

≤ max
t=1,...,T

|ξt−1|(
1

T

T∑
t=1

|̃ε2,t−1|+
1

T 1/2aT

T∑
t=1

|̃ε2,t−1|+Op(1))

+T−1
T∑
t=1

ε̃2
1,t−1 +

1

a2
T

T∑
t=1

ε̃2
2,t−1 + op(T ) = op(T )

because maxt=1,...,T |T−1/2ξt−1| ⇒ σ1|ψ(1)| sup[0,1] |Hc,ν | <∞ a.s. by (A.1) and the CMT,
∑T

t=1 |̃ε
i
2,t−1|

= Op(T ), i = 1, 2, by an LLN,
∑T

t=1 |̃ε2,t−1| = Op(T ) for α > 1 by an LLN,
∑T

t=1 |̃ε2,t−1| = Op(T lT )

with a slowly varying lT for α = 1 by Markov’s inequality, and
∑T

t=1 ε̃
2
2,t−1 = Op(a

2
T ) by Theorem 4.2

of Davis and Resnick (1985). Therefore, T−2
∑T

t=1 x
2
t−1 =

∑T
t=1 ξ

2
t−1+op(1)⇒ {ψ(1)}2σ2

1

∫ 1
0 H

2
c,νdr

by (A.1) and the CMT.

iv) Regarding T−1
∑T

t=1 xt−1ut, following Phillips (1988, 1990) we observe that:

T∑
t=1

x2
t =

T∑
t=1

(φTxt−1 + ut)
2 =

T∑
t=1

(φ2
Tx

2
t−1 + 2φTxt−1ut + u2

t ).
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Since φ2
T = (1− c/T )2 = 1− 2c/T + c2/T 2, it follows that

T∑
t=1

x2
t =

T∑
t=1

x2
t−1 −

2c

T

T∑
t=1

x2
t−1 +

c2

T 2

T∑
t=1

x2
t−1 + 2

T∑
t=1

xt−1ut −
2c

T

T∑
t=1

xt−1ut +
T∑
t=1

u2
t .

Hence,

x2
T =

T∑
t=1

(
x2
t − x2

t−1

)
= −2c

T

T∑
t=1

x2
t−1 + 2

T∑
t=1

xt−1ut +
T∑
t=1

u2
t + op(T ).

Thus, we establish that

T−1
T∑
t=1

xt−1ut =
1

2

(
T−1x2

T + T−22c

T∑
t=1

x2
t−1 − T−1

T∑
t=1

u2
t

)
+ op(1) (A.5)

From (A.4), x2
T = ξ2

T − 2ξT (ε̃T − ζT ) + (ε̃T − ζT )2, where T−1/2ξT ⇒ σ1ψ (1)Hc,ν(1) by (A.1)
and the CMT, and ε̃T = ε̃1T + T 1/2a−1

T ε̃2T = ε̃1T + op(1) = Op(1) because {ε̃1t} and {ε̃2t} are
stationary with a.s. finite terms. Thus, x2

T ⇒ {ψ(1)}2σ2
1H

2
c,ν(1). Considering also Lemma 4.2(i,

iii), we establish that,

T−1
T∑
t=1

xt−1ut ⇒
1

2

{
{ψ(1)}2σ2

1H
2
c,ν(1) + 2cσ2

1{ψ(1)}2
∫ 1

0
H2
c,ν(r)dr −Ψ2σ2

1[H0,ν ]1

}
.

Finally, we obtain the limit in Lemma 4.2(iv) by straightforward manipulations and using the
identity

H2
c,ν(1) ≡ [H0,ν ]1 − 2c

∫ 1

0
H2
c,ν(r)dr + 2

∫ 1

0
Hc,ν(r)dH0,ν(r). (A.6)

v) The convergence of T−1
∑T

t=1 xt−1εt can be deduced from part (iv) and the identities

T∑
t=1

xt−1εt = {ψ(1)}−1
T∑
t=1

xt−1ut +
T∑
t=1

xt−1∆ε̃t

= {ψ(1)}−1
T∑
t=1

xt−1ut −
T∑
t=1

∆xtε̃t + xT ε̃T

= {ψ(1)}−1
T∑
t=1

xt−1ut −
T∑
t=1

utε̃t + T−1c
T∑
t=1

xt−1ε̃t + xT ε̃T .

Handling mixed products as in the proof of part (i), we find that

1

T

T∑
t=1

utε̃t =
1

T

T∑
t=1

u1tε̃1t +
γ2

a2
T

T∑
t=1

u2tε̃2t + op(1)

⇒ Cov(u11, ε̃11) + γ2[Uα]1

∞∑
i=0

ψiψ̃i = σ2
1[H0,ν ]1

∞∑
i=0

ψiψ̃i

by an LLN and Theorem 4.2 of Davis and Resnick (1985). As |
∑T

t=1 xt−1ε̃t| ≤ maxt=1,...,T |xt|
∑T

t=1 |̃εt| =
Op(T

3/2), see the derivation of (A.4), and xT ε̃T = Op(T
1/2), it remains to apply part (iv) to∑T

t=1 xt−1ut and to observe that
∑∞

i=0 ψiψ̃i = 1
2({ψ(1)}2 −Ψ2).
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vi) First, T−2
∑T

t=1 x
2
t−1ε

2
t = T−2

∑T
t=1 ξ

2
t−1ε

2
t + op(1) since, using (A.4),

T∑
t=1

∣∣x2
t−1 − ξ2

t−1

∣∣ ε2
t =

T∑
t=1

∣∣2ξt−1(ε̃t − ζt) + (ε̃t − ζt)2
∣∣ ε2
t

≤ 2 max
t=1,...,T

|ξt| (
T∑
t=1

|̃εt−1|ε2
t + max

t=1,...,T
|ζt|

T∑
t=1

ε2
t )

+2

T∑
t=1

ε̃2
t−1ε

2
t + 2 max

t=1,...,T
ζ2
t

T∑
t=1

ε2
t

with (i) max |T−1/2ξt| = Op(1), as a consequence of the fact that it converges weakly, (ii),

T∑
t=1

|̃εt−1|ε2
t ≤ 2

2∑
i,j=1

(γa−1
T T 1/2)i+2j−3

T∑
t=1

|̃εi,t−1|ε2
jt = op(T

3/2)

by LLN for j = 1 and by Markov’s inequality for j = 2 :

E(

T∑
t=1

|̃εi,t−1|ε2
2t)

η/2 ≤
T∑
t=1

E |̃εi,t−1|η/2E|ε2t|η = O (T ) ,

so
∑
|̃εi,t−1|ε2

2t = O
(
T 2/η

)
for all η ∈ (0, α), (iii), T−1

∑
ε2
t = Op(1), again because it converges

weakly, and (iv),
T∑
t=1

ε̃2
t−1ε

2
t ≤ 4

2∑
i,j=1

(γ2a−2
T T )i+j−2

T∑
t=1

ε̃2
i,t−1ε

2
jt = op(T

2)

by LLN for i = j = 1 and by Markov’s inequality applied to the η/2 powers otherwise.

Second, we turn to T−2
∑
ξ2
t−1ε

2
t . It holds that (T−1/2

∑bTrc
t=1 εt, T

−1
∑bTrc

t=1 ε2
t )⇒ (σ1Hν,0(r), σ2

1[Hν,0]r)

in D2[0, 1] because, (i), (T−1/2
∑bTrc

t=1 ε1t, a
−1
T

∑bTrc
t=1 ε2t, a

−2
T

∑bTrc
t=1 ε2

2t)⇒ (σ1W (r),Uα(r), [Uα]r) in
D3[0, 1] by Theorem 4 of Resnick and Greenwood (1979) and the independence of {ε1t} and {ε2t},
and (ii),

1

T

bTrc∑
t=1

ε2
t =

1

T

bTrc∑
t=1

ε2
1t +

γ2

a2
T

bTrc∑
t=1

ε2
2t +

2γ

T 1/2aT

bTrc∑
t=1

ε1tε2t ⇒ σ2
1r + γ2[Uα]r = σ2

1[Hν,0]r (A.7)

because {ε1tε2t} is IID with tail index α, so maxr∈[0,1] |T−1/2a−1
T

∑bTrc
t=1 ε1tε2t|

p→ 0. By Theorem 2.7

of Kurtz and Protter (1991), it follows that T−2
∑T

t=1 ξ
2
t−1ε

2
t = [ψ (1)]2T−2

∑T
t=1(

∑t−1
s=1 εs)

2ε2
t ⇒

[ψ (1)]2σ4
1

∫
H2
ν,0d[Hν,0], where condition C2.7 of the theorem can be checked as on pp.784-786 of

Paulauskas and Rachev (1998). Recalling the previous paragraph, we conclude that T−2
∑T

t=1 x
2
t−1ε

2
t

converges weakly to the same limit as that of T−2
∑T

t=1 ξ
2
t−1ε

2
t . �

Proof of Theorem 4.1. To discuss the ADF statistics, we need a precise expression for the
error term in the AR sieve. Thus, if (

∑∞
i=0 ψiz

i)−1 = 1 +
∑∞

i=1 βiz
i, then ∆xt = −(c/T )xt−1 +∑pT

i=1 βi∆xt−i + εt,pT with εt,pT = εt + (c/T )
∑pT

i=1 βixt−i−1 +
∑∞

i=pT+1 βiut−i. Without loss of
generality under our stated rate condition on pT , we proceed with an effective sample size of T
(instead of T − pT ), assuming the availability of pre-sample values related to x0 via equation (1).

The validity of the AR sieve will require that ρ̂ computed from (5) should satisfy

T ρ̂ = −c+

(
T−2

T∑
t=1

x2
t−1

)−1

T−1
T∑
t=1

xt−1εt + op(1). (A.8)

27



By standard OLS algebra,

ρ̂ = − c
T

+

(
T∑
t=1

x2
t−1 − S10S

−1
00 S01

)−1( T∑
t=1

xt−1εt,pT − S10S
−1
00 S0ε

)
, (A.9)

where S00 :=
∑T

t=1 ∆Xt−1∆X ′t−1, S0ε :=
∑T

t=1 ∆Xt−1εt,pT and S01 :=
∑T

t=1 ∆Xt−1xt−1 = S′10. We
evaluate S00 first. Upon splitting the observations and the product moments into the contributions
of the finite and the infinite variance components, with notation corresponding to decomposition

in (4), we argue in steps that ‖S00−S(1)
00 −S

(2)
00 ‖∗ = op(T ), where ‖ · ‖∗ denotes the spectral matrix

norm, S
(i)
00 :=

∑T
t=1 ∆Xi,t−1∆X ′i,t−1 (i = 1, 2) and the norming sequence γa−1

T T 1/2 is incorporated

into ∆X2t. Thus, defining CT := {cij}pTi,j=1 with cij :=
∑T−1

t=0 ∆x1t∆x2,t−|i−j|, we find that

1

2
‖S00 − S(1)

00 − S
(2)
00 ‖∗ ≤ ‖

T∑
t=1

∆X1,t−1∆X ′2,t−1‖∗ ≤ ‖CT ‖∗ + p2
T max
i=1,...,pT

{(∆x−i)2 + (∆xT−i)
2}

= ‖CT ‖∗ + p2
T {op(pT ) + a−2

T TOp(a
2
pT

)} = ‖CT ‖∗ + op(T ) (A.10)

under p3
T /T → 0. Further, given the Toeplitz structure of CT ,

1

2
‖CT ‖∗ ≤

pT∑
i=1

|c1i| ≤
pT∑
i=1

|
T−1∑
t=0

u1tu2,t−i+1|+Op(pTT
1/2+ε), (A.11)

where Op(pTT
1/2+ε), with ε > 0 arbitrary, stands for

pT∑
i=1

{( c
T

)2
T−1∑
t=0

x1,t−1x2,t−i +
c

T
max

t=1,...,T
(|x1,t−1|+ |x2,t−i|)

T−1∑
t=0

(|u1t|+ |u2,t−i+1|)},

given that maxt=−pT ,...,T |x1t| = Op(T
1/2) and

∑pT
i=1

∑T−1
t=0 (|u1,t| + |u2,t−i+1|) ≤ pT

∑T−1
t=0 |u1,t| +

pT
∑T−1

t=−pT |u2,t| = Op(pT lTT ) with a slowly varying lT (constant except for α = 1). Regarding∑T−1
t=0 u1,tu2,t−i+1 = a−1

T T 1/2γ(χ≤i + χ>i ), with

χRi :=
T−1∑
t=0

∞∑
u,v=0

ψuψvε1,t−uε2,t−v−i+1I|ε2,t−v−i+1|RaT , R ∈ {≤, >},

it holds that (i), E
∑pT

i=1 |χ
≤
i | ≤

∑pT
i=1{E(χ≤i )2}1/2 by Jensen’s inequality, where, using Karamata’s

theorem, we find that

E(χ≤i )2 ≤ TEε2
11E(ε2

21I|ε21|≤aT )(

∞∑
u=0

|ψu|)4 = O(a2
T ),

where I denotes the usual indicator function, because {ε1t} and {ε2t} are independent, Eε1,t−u = 0,
E(ε2,t−v−i+1I|ε2,t−v−i+1|≤aT ) = 0 by symmetry, and E(ε2

21I|ε21|≤aT ) = E(ε2
2,t−v−i+1I|ε2,t−v−i+1|≤aT ) =

O(T−1a2
T ), and (ii), E(

∑pT
i=1 |χ

>
i |)η ≤

∑pT
i=1E|χ

>
i |η, where η = 1 for α > 1, η ∈ [δ, 1) is arbitrary

for α = 1, and

E|χ>i |
η ≤

T−1∑
t=0

∞∑
u,v=0

|ψu|η|ψv|ηE|ε11|ηE(|ε21|ηI|ε21|>aT ) = O(aηT )(
∞∑
u=0

|ψu|η)2 = O(aηT )

using Karamata’s theorem again, so eventually, by Markov’s inequality, ‖S00 − S
(1)
00 − S

(2)
00 ‖∗ ≤

Op(pTT
1/2+ε) + op(T ) = op(T ), because p3

T /T → 0 as T →∞, where ε > 0 is arbitrary. Let Σp :=
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{r|i−j|}
pT
i,j=1 with ri :=

∑∞
j=0 ψiψj+i; then the eigenvalues of Σp are bounded and bounded away from

zero under Assumptions A.1 and A.5. As additionally, under p3
T /T → 0, ‖S(1)

00 − TΣpσ
2
1‖∗ = op(T )

by Lemma 3 of Berk (1974) and ‖S(2)
00 − a

−2
T Tγ2Σp

∑T
t=1 ε

2
2t‖∗ = op(T ) by Lemma 2 of Cavaliere et

al. (2016a), by combining the previous results it follows that

‖T−1S00 − Σp(σ
2
1 + γ2a−2

T

T∑
t=1

ε2
2t)‖∗ = op(1), (A.12)

and using inequality (2.15) of Berk (1974), it also holds that

‖(T−1S00)−1 − Σ−1
p (σ2

1 + γ2a−2
T

T∑
t=1

ε2
2t)
−1‖∗ = op(1). (A.13)

Second, S−1
00 S0ε can be decomposed as

(S−1
00 S

(1)
00 )(S

(1)
00 )−1S

(1)
0ε + (S−1

00 S
(2)
00 )(S

(2)
00 )−1S

(2)
0ε + S−1

00

T∑
t=1

(∆X1,t−1ε2t,pT + ∆X2,t−1ε1t,pT ),

where ‖(S(1)
00 )−1S

(1)
0ε ‖ = op(p

−2
T ) as in Lemma 3.2 of Chang and Park (2002), (S

(2)
00 )−1S

(2)
0ε =

Op(apT a
ε−1
T +

∑∞
i=pT+1 |βi|) for all ε > 0 as in Equation (7.1) of Cavaliere et al. (2016a), both under

the condition that p2
T /T + 1/pT → 0 as T → ∞, and ‖

∑T
t=1(∆X1,t−1ε2t,pT + ∆X2,t−1ε1t,pT )‖ =

Op(pTT
1/2) by Markov’s inequality and Karamata’s theorem as, e.g., for the first kind of summands,

‖
T∑
t=1

∆X1,t−1ε2t,pT ‖
2 =

pT∑
i=1

(

T∑
t=1

∆x1,t−iε2t,pT )2

≤ 2

pT∑
i=1

{
T∑
t=1

∆x1,t−i(a
−1
T T 1/2ε2t +

∞∑
i=pT+1

βiu2,t−i)}2

+2c2pTT
−2 max

t=−pT ,...,T
x2

2t(
T−1∑

t=1−pT

|∆x1t|)2(
∞∑
i=1

|βi|)2

with maxt=−pT ,...,T |x2t| = Op(T
1/2),

∑T−1
t=1−pT |∆x1t| = Op(T ),

E

pT∑
i=1

{
T∑
t=1

∆x1,t−iε2tI|ε2t|≤aT }
2 = pTTE(ε2

21I|ε21|≤aT )[E(∆x11)2] = O(pTa
2
T ),

E[

pT∑
i=1

{
T∑
t=1

∆x1,t−iε2tI|ε2t|>aT }
2]η/2 ≤ pTTE(|ε21|ηI|ε21|>aT )E|∆x11|η = O(pTa

η
T )

for η = 1 if α > 1 and η ∈ [δ, 1) arbitrary if α = 1, and similarly for the terms involving u2t:

E

pT∑
m=1

{
T∑
t=1

∆x1,t−m

∞∑
i=pT+1

βi

∞∑
j=0

ψjε2,t−i−jI|ε2,t−i−j |≤aT }
2

≤ pTTE(ε2
21I|ε21|≤aT )[E(∆x11)2](

∞∑
i=pT+1

|βi|
∞∑
j=0

|ψj |)2 = o(a2
T ),

E[

pT∑
m=1

{
T∑
t=1

∆x1,t−m

∞∑
i=pT+1

βi

∞∑
j=0

ψjε2,t−i−jI|ε2,t−i−j |>aT }
2]η/2

≤ pTTE(|ε21|ηI|ε21|>aT )E|∆x11|η
∞∑

i=pT+1

|βi|η
∞∑
j=0

|ψj |η = o(pTa
η
T )
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since pT
∑∞

i=pT+1 |βi| → 0,
∑∞

i=pT+1 |βi|η → 0 as pT → ∞. Accounting also for (A.13), which

implies that ‖TS−1
00 ‖∗ = Op(1), it follows that for all ε > 0,

‖S−1
00 S0ε‖ = Op(p

−2
T + T ε−1/2pT +

∞∑
i=pT+1

|βi|). (A.14)

Third, it holds that

‖S10 − 1′pT

T∑
t=1

xt−1∆xt − Tr{(S(1)
00 + S

(2)
00 + 2CT )ΥpT }‖ = op(T ),

where 1pT is a pT -vector of ones, ΥpT is an upper triangular matrix with ones on and above the
main diagonal, and the difference is due to presample and end-of-sample contributions as in (A.10).
Thus, further,

‖S10‖ ≤ p
1/2
T |

T∑
t=1

xt−1∆xt|+ ‖Tr(S(1)
00 ΥpT )‖+ ‖Tr(S(2)

00 ΥpT )‖+ 2‖Tr(CTΥpT )‖+ op(T )

≤ Op(p
1/2
T T ) + p

1/2
T

pT∑
i=1

|c1i| = Op(p
1/2
T T ) (A.15)

since
∑T

t=1 xt−1∆xt =
∑T

t=1 xt−1ut−(c/T )
∑T

t=1 x
2
t−1 = Op(T ) by Lemma 4.2(iii,iv), ‖Tr(S(i)

00 ΥpT )‖ =

Op(p
1/2
T T ) (i = 1, 2) is shown in the proof of Lemma 3.2(b) of Chang and Park (2002) and Lemma

A.1(d) of Cavaliere et al. (2016b), and
∑pT

i=1 |c1i| = Op(pTT
1/2+ε) for all ε > 0 by the argument

following (A.11) and p3
T /T → 0.

From (A.9), (A.13), (A.14) and (A.15), using the boundedness away from zero in probability of
T−2

∑T
t=1 x

2
t−1 and the finiteness of

∑∞
i=1 i|βi|, it follows that

T ρ̂ = −c+

(
T∑
t=1

x2
t−1

)−1 T∑
t=1

xt−1εt,pT + op(1)

under the rate condition that p3
T /T + 1/pT → 0 as T →∞. To obtain (A.8), it remains to observe

that

T∑
t=1

xt−1εt,pT =
T∑
t=1

xt−1εt +
c

T

pT∑
i=1

βi

T∑
t=1

x2
t−1

+
c

T

pT∑
i=1

βi

T∑
t=1

xt−1(xt−i−1 − xt−1) +

T∑
t=1

xt−1(

∞∑
i=pT+1

βiut−i),

where
∑T

t=1 xt−1(xt−i−1 − xt−1) = op(T
2) uniformly in i = 1, ..., pT by partial summation and the

evaluation of S00, and
∑T

t=1 xt−1(
∑∞

i=pT+1 βiut−i) = op(T ) by relating it to (
∑T

t=1 xt−1ut)(
∑∞

i=pT+1 βi) =
op(T ). Then (A.8) and Lemma 4.2(iii,v) imply that

T ρ̂⇒
−c+

∫ 1
0 Hc,ν(r)dH0,ν(r)

ψ(1)
∫ 1

0 H
2
c,ν(r)dr

(A.16)

under the rate condition that p3
T /T + 1/pT → 0, as T →∞, where ψ(1) = (1−

∑∞
i=1 βi)

−1.
The limits of the ADF statistics then follow by examining various normalisations of ρ̂. First,

pT∑
i=1

|β̂i − βi| = ‖S−1
00 S0ε − (ρ̂+ c/T )S−1

00 S01‖1 (A.17)

≤ p
1/2
T ‖S

−1
00 S0ε‖+Op(T

−1p
1/2
T )‖S−1

00 ‖∗‖S0ε‖ = op(1)
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by (A.13), (A.14), (A.15) and the condition p3
T /T + 1/pT → 0. Since

∑∞
i=pT+1 |βi| → 0, it

follows that
∑pT

i=1 β̂i
p→
∑∞

i=1 βi, which jointly with (A.16) yields the limit of Zρ̂. Second,

s2
pT

= T−1
∑T

t=1 ε̂
2
pT ,t

, where ε̂pT ,t are the OLS residuals from (5), satisfies

|Ts2
pT
−

T∑
t=1

ε2
t | ≤

T∑
t=1

(ε̂pT ,t − εt)
2 + 2|

T∑
t=1

(ε̂pT ,t − εt)εt|

≤
T∑
t=1

(ε̂pT ,t − εt)
2 + 2{

T∑
t=1

(ε̂pT ,t − εt)
2}1/2{

T∑
t=1

ε2
t }1/2 = op(T )

since
∑T

t=1 ε
2
t = Op(T ) and, for βpT := (β1, ..., βpT )′,

T∑
t=1

(ε̂pT ,t − εt)
2 ≤ 3(ρ̂+ c/T )2

T∑
t=1

x2
t−1 + 3‖β̂pT − βpT ‖

2‖S00‖∗

+3
T∑
t=1

(εpT ,t − εt)
2 = op(T )

with ρ̂ + c/T = Op(T
−1) by (A.16),

∑T
t=1 x

2
t−1 = Op(T

2) by Lemma 4.2(iii), ‖β̂pT − βpT ‖ ≤∑pT
i=1 |β̂i − βi| = op(1) by (A.17), ‖S00‖∗ = Op(T ) by (A.12) with ‖Σp‖∗ = O (1), and

T∑
t=1

(εpT ,t − εt)
2 ≤ 2c2T−2

T∑
t=1

(

pT∑
i=1

βixt−i−1)2 + 2

T∑
t=1

(

∞∑
i=pT+1

βiut−i)
2

≤ 2c2T−1 max
t=−pT ,...,T

x2
t (
∞∑
i=1

|βi|)2 + 2
T∑
t=1

(
∞∑

i=pT+1

βiu1,t−i)
2

+2γ2Ta−2
T

T∑
t=1

(

∞∑
i=pT+1

βiu2,t−i)
2

+4γT 1/2a−1
T

T∑
t=1

(
∞∑

i=pT+1

βiu1,t−i)(
∞∑

i=pT+1

βiu2,t−i) = op(T )

as maxt=−pT ,...,T x
2
t = Op(T ),

∑T
t=1(

∑∞
i=pT+1 βiu1,t−i)

2 = op(T ) for pT →∞ by Markov’s inequal-

ity,
∑T

t=1(
∑∞

i=pT+1 βiu2,t−i)
2 = op(a

2
T ) for pT → ∞ by the proof of Lemma 3 of Cavaliere et al.

(2016a), and
∑T

t=1(
∑∞

i=pT+1 βiu1,t−i)(
∑∞

i=pT+1 βiu2,t−i) = op(aT ) similarly to the terms involving∑∞
i=pT+1 βiu2,t−i in the derivation of (A.14). Therefore, s2

pT
= T−1

∑T
t=1 ε

2
t + op(1) ⇒ σ2

1[H0,ν ]1.

As tρ̂ = (
∑T

t=1 x
2
t−1 − S10S

−1
00 S01)1/2ρ̂s−1

pT
, its limit now follows from the previous discussion of ρ̂.

Third, along similar lines,

|
T∑
t=1

x2
t−1(ε̂pT ,t − ε

2
t )| ≤

T∑
t=1

x2
t−1(ε̂pT ,t − εt)

2 + 2|
T∑
t=1

x2
t−1(ε̂pT ,t − εt)εt|

≤
T∑
t=1

x2
t−1(ε̂pT ,t − εt)

2 + 2{
T∑
t=1

x2
t−1(ε̂pT ,t − εt)

2}1/2{
T∑
t=1

x2
t−1ε

2
t }1/2

is op(T
2) because

∑T
t=1 x

2
t−1ε

2
t = Op(T

2) by Lemma 4.2(vi) and

T∑
t=1

x2
t−1(ε̂pT ,t − εt)

2 ≤ max
t=1,...,T

x2
t

T∑
t=1

(ε̂pT ,t − εt)
2 = op(T

2)
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as maxt=−pT ,...,T x
2
t = Op(T ) and

∑T
t=1(ε̂pT ,t−εt)2 = op(T ). Hence, T−2

∑T
t=1 x

2
t−1ε̂pT ,t =

∑T
t=1 x

2
t−1ε

2
t+

op(1) and the limit of tWρ̂,1 follows from (A.16) and Lemma 4.2(iii,vi).
The remaining limits in Theorem 4.1 follow from Proposition 4.1, Lemma 4.2, the convergence

of σ̂2
u :

σ̂2
u = T−1

T∑
t=1

û2
t = T−1

T∑
t=1

u2
t + T−1(φ̂− 1)2

T∑
t=1

x2
t−1 + 2T−1(φ̂− 1)

T∑
t=1

xt−1ut

= T−1
T∑
t=1

u2
t + op(1)⇒ Ψ2σ2

1[H0,ν ]1

which follows from results established above, and the fact that, under the conditions stated in
section 3.2, the weak convergence result ω̂2

u ⇒ {ψ(1)}2σ2
1[H0,ν ]1 holds for both ω̂2

u = s2
WA and

ω̂2
u = s2

AR, which again follows from results established above. Indeed, the stated results will hold
for any estimator ω̂2

u whose weak limit is {ψ(1)}2σ2
1[H0,ν ]1. We also remark that the weak limits

of MZφ and MZt obtain readily in the form

MZφ ⇒
H2
c,ν(1)− [H0,ν ]1

2

∫ 1

0
H2
c,ν(r)dr

, MZt ⇒
H2
c,ν(1)− [H0,ν ]1

2 {[H0,ν ]1}1/2
{∫ 1

0
H2
c,ν(r)dr

}1/2
,

and are seen to be the same as for the tρ̂ and Zt statistics given in parts (i) and (ii) of Theorem

4.1 by using the Îto-type equation (A.6). �

To introduce the idea behing Proposition 4.2, for lag lengths k between 1 and pT define

Ω̂k := Ω̂0 −
T∑

t=pT+1

xt−1∆X
(k)′
t−1 ε̂

2
pT ,t

(
T∑

t=pT+1

∆X
(k)
t−1∆X

(k)′
t−1 ε̂

2
pT ,t

)−1
T∑

t=pT+1

xt−1∆X
(k)′
t−1 ε̂

2
pT ,t

,

where Ω̂0 :=
∑T

t=pT+1 x
2
t−1ε̂

2
pT ,t

and ∆X
(k)
t−1 := (∆xt−1, ...,∆xt−k)

′. Using the poisitive definiteness

of
∑T

t=pT+1(xt−1,∆X
′
t−1)(xt−1,∆X

′
t−1)′ε̂2

pT ,t
, it follows that Ω̂k1 ≥ Ω̂k2 for any k1 < k2 between 0

and pT . As a result, it holds that

seW,1 (ρ̂) = (
T∑

t=pT+1

x2
t−1)−1Ω̂

1/2
0 ≥ (

T∑
t=pT+1

x2
t−1)−1Ω̂

1/2
1 ≥ (

T∑
t=pT+1

x2
t−1)−1Ω̂1/2

pT
.

If we could show that Ω̂
1/2
1 /Ω̂

1/2
0 converges weakly to some r.v. θ, then from the previous chain of

inequalities it would follow that

lim inf
T→∞

P

(

T∑
t=pT+1

x2
t−1)−1Ω̂1/2

pT
/seW,1 (ρ̂) ≤ z

 ≥ P (θ ≤ z)

for all z ∈ R where the cdf of θ is continuous. Finally, in view of (21), also

lim inf
T→∞

P
(
tWρ̂,1/t

W
ρ̂,2 ≤ z

)
= lim inf

T→∞
P (seW,2 (ρ̂) /seW,1 (ρ̂) ≤ z) ≥ P (θ ≤ z)

would hold.
We turn to the weak convergence of Ω̂

1/2
1 /Ω̂

1/2
0 in the case where xt is a pure random walk and

x0 = 0. Under the rate condition of Theorem 4.1, we can replace pT by 1 in the definition of Ω̂k

without changing their limit behaviour. First, T−2Ω̂0 = T−2
∑T

t=1 x
2
t−1ε̂pT ,t = T−2

∑T
t=1 x

2
t−1ε

2
t +
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op(1) ⇒ σ4
1

∫ 1
0 H

2
c,ν(r)d[H0,ν ]r, with ψ(1) = 1 for the random walk, as established in the proof of

Theorem 4.1. Second, we need to discuss

T−2Ω̂1 = T−2Ω̂0 − {T−1
T∑
t=2

(∆Xt−1)2ε̂2
1,t}−1{T−3/2

T∑
t=2

∆Xt−1xt−1ε̂
2
1,t}2

with ∆Xt = ∆xt = εt, where, as a result of a standard argument,

T−3/2
T∑
t=2

xt−1∆Xt−1ε̂
2
1,t = γ2

T∑
t=1

(T−1/2xt−1)
(
a−2
T ε1,t−1ε

2
2t

)
+ op(1),

T−1
T∑
t=2

(∆Xt−1)2ε̂2
1,t = T−1

T∑
t=1

ε2
t−1ε

2
t + op(1)

= T−1
T∑
t=1

ε2
1,t−1ε

2
1,t + a−2

T γ2
T∑
t=1

(ε2
1,t−1ε

2
2,t + ε2

2,t−1ε
2
1,t) + op(1)

as T → ∞. To obtain the weak limit θ of Ω̂
1/2
1 /Ω̂

1/2
0 as in (24), it remains to show that, in terms

of the limiting processes in eq. (23),

T∑
t=1

(T−1/2xt−1)
(
a−2
T ε1,t−1ε

2
2t

)
⇒ σ1

∫ 1

0
Hν,0(r)dS(r), (A.18)

T−1
T∑
t=1

ε2
1,t−1ε

2
1,t + a−2

T γ2
T∑
t=1

(ε2
1,t−1ε

2
2,t + ε2

2,t−1ε
2
1,t) ⇒ σ4

1 + γ2(Q−(1) +Q+(1)) (A.19)

jointly with the convergence of Ω̂0, which we do next.
Proof of Proposition 4.2. First, we argue that

[Tr]∑
t=1

 a−1
T ε2t

a−2
T εtε

2
2t

T−1/2ε1t

⇒ (Uα(r), [Uα]r, S(r), Q−(r), Q+(r), σ1W (r))′ (A.20)

in D6[0, 1], where W is independent of the remaining components of the limit process. Second, as
W is continuous a.s., (23) obtains by an application of the CMT.

To start from a situation with tail-balanced components, we introduce zt := (sgn(ε2t), ε
′
t)
′ and

Zt := ztε
2
2t, where sgn(ε2t) := 1 if ε2t ≥ 0 and sgn(ε2t) := −1 if ε2t < 0; then zt and ε2

2t are
independent under symmetry of ε2t. Since zt have finite variance, Zt are regulary varying with
tail index α/2 (the same as ε2

2t), by the multivariate Breiman lemma (Proposition A.1 of Basrak
et al., 2002). If we were given an IID sequence {z∗t } = {(sgn(ε2t), ε

∗′
t )′} independent of {ε2

2t} and

with each ε∗t distributed like ε1, for Z∗t = z∗t ε
2
2t it would hold that a−2

T

∑[Tr]
t=1 Z

∗
t ⇒ L(r) in D5[0, 1],

where L is a α/2-stable Lévy process with series representation L (r) =
∑∞

i=1 I{Ui≤r}Γ
−2/α
i θi, {Γi}i

is the partial sum sequence of an IID standard exponential sequence, {Ui}i is an IID sequence of

uniform random variables on [0, 1], and {Γi}i, {Ui}i and {θi}i
d
= {z∗i }i are jointly independent.

This conclusion could be drawn as in Theorem 1 of LePage et al. (1981).

Although {zt} is not IID, a−2
T

∑[Tr]
t=1 Zt converges like a−2

T

∑[Tr]
t=1 Z

∗
t by a result of Tyran-Kamińska

(2010) for regularly varying processes with isolated extremes in the sense of Davis (1983). Specif-
ically, the periods of extreme values are inherited from ε2t, which is IID and trivially has isolated
extremes. This fact allows also for a direct proof of convergence, by approximation, as follows.
Possibly upon an expansion of the probability space, take {ε∗t } distributed as before and indepen-
dent of {ε1t, ε2t}. For a fixed δ > 0, let It be the indicator of the event that {|a−1

T ε2t| > δ and
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|a−1
T ε2,t−2| ≤ δ and {|a−1

T ε2,t+2| ≤ δ}. Then Z̃t = ιtδZt+ (1− ιtδ)Z∗t , t ∈ N, defines an IID sequence

independent of {ε2t}, and hence, a−2
T

∑[Tr]
t=1 Z̃t ⇒ L(r) in D5[0, 1]. On the other hand, for every

λ > 0,

lim
δ→0

lim sup
T→∞

P

(
max

s=1,...,T

∥∥∥∥∥a−2
T

s∑
t=1

(Z̃t − Zt)

∥∥∥∥∥ ≥ λ
)

= 0,

which by Theorem 4.2 of Billingsley (1968) implies that also a−2
T

∑[Tr]
t=1 Zt ⇒ L(r) in D5[0, 1]. In

fact, let

et = {V ar(ε2
2tI{|a−1

T ε2,t−2|≤δ})}
−1/2{ε2

2tI{|a−1
T ε2,t−2|≤δ} − E(ε2

2tI{|a−1
T ε2,t−2|≤δ})};

since
∑T

t=1 ιtδ =
∑T

t=1 I{|a−1
T ε2t|>δ} with probability approaching one as T → ∞, with the same

probability it holds that

max
s=1,...,T

∥∥∥∥∥a−2
T

s∑
t=1

(Z̃t − Zt)

∥∥∥∥∥ = max
s=1,...,T

∥∥∥∥∥∥a−2
T

[Tr]∑
t=1

ε2
2tI{|a−1

T ε2t|<δ}(ε
∗
t − εt)

∥∥∥∥∥∥
≤ T 1/2E(a−2

T ε2
2tI{|a−1

T ε2t|≤δ}) max
r∈[0,1]

∥∥∥∥∥∥T−1/2

[Tr]∑
t=1

(ε∗t − εt)

∥∥∥∥∥∥
+{TE(a−4

T ε4
2tI{|a−1

T ε2,t−2|≤δ})}
1/2 max

s=1,...,T

∥∥∥∥∥∥T−1/2

[Tr]∑
t=1

et(ε
∗
t − εt)

∥∥∥∥∥∥ ,
where T 1/2E(a−2

T ε2
2tI{|a−1

T ε2,t|≤δ})→ 0 as T →∞ and TE(a−4
T ε4

2tI{|a−1
T ε2,t|≤δ})→ δ4−αα/(4−α)→ 0

as T →∞ followed by δ → 0, both by Karamata’s theorem, whereas the maximum over r does not
depend on δ and converges weakly as T →∞ to the maximum on [0, 1] of a Wiener processes, while
the maximum over s is OP (1) as T →∞, uniformly in δ, by Kolmogorov’s maximal inequality.

Approximation can again be used to argue that the convergence a−2
T

∑[Tr]
t=1 Zt ⇒ L(r) is joint

with WT (r) ⇒ σ1W (r) in D6[0, 1]. To this end, consider additionally an IID sequence {ε∗∗1t }
independent of the random elements introduced so far and with ε∗∗1t distributed like ε11. Next, in
WT replace ε1t by ε∗∗1t whenever ε1t was retained in {Z̃t} :

WT,δ(r) = WT (r) + T−1/2

[Tr]∑
t=1

ιtδ(ε
∗∗
t−1 + ε∗∗t+1 − εt−1 − εt+1).

Then WT,δ is distributed like WT , so WT,δ(r) ⇒ W (r). Since WT,δ(r) and a−2
T

∑[Tr]
t=1 Z̃t are inde-

pendent, their convergence is joint and to independent limits. On the other hand, since

max
r∈[0,1]

‖WT,δ(r)−WT (r)‖ ≤ (Eιtδ)
1/2 max

r∈[0,1]

∥∥∥∥∥∥T−1/2

[Tr]∑
t=1

ιtδ − Eιtδ
{V ar(ιtδ)}1/2

(ε∗∗t−1 + ε∗∗t+1 − εt−1 − εt−2)

∥∥∥∥∥∥
+Eιtδ max

r∈[0,1]

∥∥∥∥∥∥T−1/2

[Tr]∑
t=1

(ε∗∗t−1 + ε∗∗t+1 − εt−1 − εt−2)

∥∥∥∥∥∥ P→ 0

as T → ∞, because Eιtδ → 0 and the maxima over r converge weakly to maxima of Wiener

processes with variances independent of δ, we can conclude that a−2
T

∑[Tr]
t=1 Zt and WT (r) converge

like a−2
T

∑[Tr]
t=1 Z̃t and WT,δ(r):a−2

T

bTrc∑
t=1

Z ′t,WT (r)

′ ⇒ ( ∞∑
i=1

I{Ui≤r}Γ
−2/α
i θ′i, σ1W (r)

)′
(A.21)
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in D6[0, 1] as T →∞, with independent jump and Wiener components.
To obtain the unbalanced-tail convergence (A.20), for every δ > 0 consider the J1-continuous

(Jacod and Shiryaev (2003), Corollary VI.2.8) map Gδ : D6[0, 1] 7→ D7[0, 1] defined for V ∈ D6[0, 1]
by

V
Gδ7−→

∑
s≤r

gδ(∆V1(s)), V ′ (r)

′
r∈[0,1]

,

where gδ (x) = sgn(x)
√
|x|{I|x|≥2δ + I|x|∈[δ,2δ)(δ

−1|x| − 1)} is continuous and vanishes on (−δ, δ).
From the CMT it follows that, jointly with (A.21),

bTrc∑
t=1

gδ(a
−2
T sgn(ε2t)ε

2
2t)⇒

∞∑
i=1

I{Ui≤r}gδ(Γ
−2/α
i θi1).

Further, by Kolmogorov’s maximal inequality and Karamata’s theorem, for all λ > 0 it holds that

P

 sup
r∈[0,1]

∣∣∣∣∣∣
bTrc∑
t=1

(gδ(a
−2
T sgn(ε2t)ε

2
2t))− a−1

T ε2t)

∣∣∣∣∣∣ ≥ λ
 ≤ λ−2a−2

T TE(ε2
21I|a−1

T ε21|≤
√

2δ)

→
T→∞

1

λ2

α

2− α
(2δ)1−α

2 →
δ→0

0,

whereas

sup
r∈[0,1]

∣∣∣∣∣
∞∑
i=1

I{Ui≤r}{gδ(Γ
−2/α
i θi1)− Γ

−2/α
i θi1}

∣∣∣∣∣ ≤
∞∑
i=1

I|Γ−2/α
i |≤2δ

Γ
−2/α
i =

∞∑
j=min{i:|Γ−2/α

i |≤2δ}

Γ
−2/α
j

a.s.→
δ→0

0

because Γ
−2/α
j ∼ j−2/α a.s. implies min{i : |Γ−2/α

i | ≤ 2δ} → ∞ a.s. when δ → 0. Therefore, by
Theorem 4.2 of Billingsley (1968),a−1

T

bTrc∑
t=1

ε2t, a
−2
T

bTrc∑
t=1

Z ′t,WT (r)

′ ⇒ ( ∞∑
i=1

I{Ui≤r}(Γ
−1/α
i θi1,Γ

−2/α
i θ′i)

′, σ1W (r)

)
,

which by the CMT implies (A.20), and hence, (23), with

(Uα(r), [Uα]r, S(r), Q−(r), Q+(r))′ =

∞∑
i=1

I{Ui≤r}(Γ
−1/α
i θi1,Γ

−2/α
i (1, θi3, θi4, θi5)′)′.

From here (A.19) follows directly. As to (A.18), it follows from Theorerm 2.7 of Kurtz and Protter
(1991) since the UT (uniform tightness) condition can be checked as on pp.784-786 of Paulauskas
and Rachev (1998). �
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(d) α = 1.75,γ = 1
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(e) α = 1.75,γ = 10
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(f) α = 1.75,γ = 10

Figure 1: Local power of unit root tests under OLS and local GLS de-meaning when
T = 200. The DGP is (25) and (26) with c ∈ {0, 1, 2, ..., 50} and ϕ = θ = 0.
Key: tρ̂
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(a) α = 1.5,γ = 0.1
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(b) α = 1.5,γ = 0.1
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(c) α = 1.5,γ = 1
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(d) α = 1.5,γ = 1
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(e) α = 1.5,γ = 10
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Figure 2: Local power of unit root tests under OLS and local GLS de-meaning
when T = 200. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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(a) α = 1.25,γ = 0.1
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(b) α = 1.25,γ = 0.1
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(c) α = 1.25,γ = 1
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(d) α = 1.25,γ = 1
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(e) α = 1.25,γ = 10
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(f) α = 1.25,γ = 10

Figure 3: Local power of unit root tests under OLS and local GLS de-meaning
when T = 200. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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(a) OLS de-meaning, α = 1.0,γ = 0.1
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(b) GLS de-meaning, α = 1.0,γ = 0.1
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(c) OLS de-meaning, α = 1.0,γ = 1
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(d) GLS de-meaning, α = 1.0,γ = 1
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(e) OLS de-meaning, α = 1.0,γ = 10
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(f) GLS de-meaning, α = 1.0,γ = 10

Figure 4: Local power of unit root tests under OLS and local GLS de-meaning
when T = 200. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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Figure 5: Local power of unit root tests under OLS and local GLS de-meaning
when T = 500. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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Figure 6: Local power of unit root tests under OLS and local GLS de-meaning
when T = 500. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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Figure 7: Local power of unit root tests under OLS and local GLS de-meaning
when T = 500. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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Figure 8: Local power of unit root tests under OLS and local GLS de-meaning
when T = 500. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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Figure 9: Local power variation of the unit root tests. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50, ϕ = θ = 0 and T = 200.

Key: tρ̂

50 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
0 10 20 30 40 50

−1

−0.5

0

0.5

1

1.5

2

2.5

c

tρ VRT MSB tρ,1
W tρ,1

W,α
u; VRT

50 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
0 10 20 30 40 50

−1

−0.5

0

0.5

1

1.5

2

2.5

c

tρ VRT MSB tρ,1
W tρ,1

W,α
u; MSB

50 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
0 10 20 30 40 50

−1

−0.5

0

0.5

1

1.5

2

2.5

c

tρ VRT MSB tρ,1
W tρ,1

W,α
u; tWρ̂,1

50 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
0 10 20 30 40 50

−1

−0.5

0

0.5

1

1.5

2

2.5

c

tρ VRT MSB tρ,1
W tρ,1

W,α
u; tW,αu

ρ̂,1

50 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
0 10 20 30 40 50

−1

−0.5

0

0.5

1

1.5

2

2.5

c

tρ VRT MSB tρ,1
W tρ,1

W,α
u.



OLS de-meaning

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

3

c

(a) α = 1.75

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

3

c

(b) α = 1.50

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

3

c

(c) α = 1.25

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

3

c

(d) α = 1.00

GLS de-meaning

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

c

(e) α = 1.75

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

c

(f) α = 1.50

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

c

(g) α = 1.25

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

c

(h) α = 1.00

Figure 10: Local power variation of the unit root tests. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50, ϕ = θ = 0 and T = 500.
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Table 1. Unconditional `(u)' and conditional `(c)' cdfs of τc,α at x ∈ {0.5, 1, 1.5, 2, 3}

x, α 1
(u)

1
(c)

1.5
(u)

1.5
(c)

1.75
(u)

1.75
(c)

1
(u)

1
(c)

1.5
(u)

1.5
(c)

1.75
(u)

1.75
(c)

c = 0 c = 15
0.5 0.13 0.80 0.12 0.53 0.08 0.31 0.13 0.80 0.12 0.53 0.07 0.30
1 0.23 0.89 0.32 0.77 0.37 0.67 0.23 0.89 0.32 0.77 0.36 0.67
1.5 0.31 0.95 0.51 0.92 0.70 0.91 0.32 0.95 0.51 0.92 0.69 0.91
2 0.37 0.98 0.62 0.98 0.81 0.98 0.38 0.98 0.62 0.98 0.80 0.98
3 0.47 1.00 0.73 1.00 0.88 0.99 0.46 1.00 0.73 1.00 0.87 0.99

Table 2. Average estimate of α̂u

T = 100 T = 1000 T = 10000 T = 100000
α2 α̂u α̂u α̂u α̂u

γ = 0.1 2.00 1.97 1.99 2.00 2.00
1.75 1.97 1.99 2.00 2.00
1.50 1.96 1.99 2.00 2.00
1.25 1.96 1.99 2.00 2.00
1.00 1.96 1.99 2.00 2.00

γ = 0.316 2.00 1.97 1.99 2.00 2.00
1.75 1.96 1.98 1.99 1.99
1.50 1.94 1.97 1.99 1.99
1.25 1.93 1.97 1.99 1.99
1.00 1.92 1.97 1.99 2.00

γ = 1 2.00 1.98 1.99 2.00 2.00
1.75 1.89 1.91 1.93 1.94
1.50 1.84 1.89 1.93 1.96
1.25 1.82 1.90 1.95 1.98
1.00 1.81 1.92 1.97 1.99

γ = 3.16 2.00 1.98 1.99 2.00 2.00
1.75 1.79 1.80 1.81 1.82
1.50 1.62 1.68 1.75 1.82
1.25 1.55 1.71 1.83 1.92
1.00 1.58 1.81 1.92 1.97

γ = 10 2.00 1.98 1.99 2.00 2.00
1.75 1.76 1.76 1.76 1.76
1.50 1.52 1.53 1.56 1.61
1.25 1.31 1.43 1.59 1.74
1.00 1.24 1.57 1.80 1.92

γ = 31.6 2.00 1.98 2.00 2.00 2.00
1.75 1.76 1.75 1.75 1.75
1.50 1.51 1.50 1.51 1.52
1.25 1.25 1.28 1.35 1.47
1.00 1.03 1.26 1.58 1.81



Table 3. Empirical size of unit root tests under OLS and local GLS de-meaning. The DGP is (25) and (26) with T = 200 and γ = 0.1.

OLS de-meaning Local GLS de-meaning

ϕ θ α2 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1

0 0 1.75 0.042 0.052 0.035 0.038 0.037 0.054 0.047 0.049 0.056 0.051 0.046 0.047 0.057 0.049

1.5 0.044 0.052 0.039 0.040 0.039 0.058 0.049 0.051 0.066 0.051 0.049 0.050 0.060 0.051

1.25 0.045 0.047 0.037 0.038 0.036 0.053 0.047 0.050 0.058 0.051 0.049 0.047 0.059 0.067

1 0.040 0.046 0.036 0.035 0.035 0.046 0.051 0.048 0.061 0.050 0.047 0.048 0.057 0.065

0.5 0 1.75 0.040 0.044 0.048 0.046 0.041 0.055 0.050 0.045 0.052 0.058 0.052 0.051 0.056 0.053

1.5 0.038 0.045 0.049 0.048 0.043 0.056 0.054 0.051 0.062 0.062 0.058 0.058 0.064 0.052

1.25 0.044 0.041 0.050 0.049 0.043 0.057 0.051 0.051 0.055 0.063 0.059 0.057 0.060 0.066

1 0.040 0.040 0.043 0.043 0.039 0.045 0.056 0.046 0.058 0.058 0.053 0.052 0.059 0.067

-0.5 0 1.75 0.041 0.060 0.029 0.030 0.032 0.067 0.061 0.046 0.059 0.044 0.042 0.043 0.065 0.057

1.5 0.043 0.060 0.033 0.033 0.032 0.069 0.065 0.050 0.070 0.049 0.046 0.046 0.070 0.056

1.25 0.042 0.056 0.034 0.036 0.031 0.066 0.058 0.048 0.062 0.045 0.044 0.046 0.066 0.076

1 0.036 0.054 0.030 0.031 0.032 0.058 0.065 0.047 0.064 0.043 0.039 0.043 0.064 0.073

0 0.5 1.75 0.034 0.050 0.039 0.037 0.040 0.057 0.050 0.040 0.057 0.054 0.047 0.047 0.057 0.050

1.5 0.032 0.050 0.041 0.042 0.038 0.056 0.053 0.046 0.064 0.057 0.054 0.053 0.065 0.054

1.25 0.036 0.045 0.047 0.046 0.040 0.055 0.050 0.043 0.057 0.054 0.050 0.051 0.062 0.067

1 0.035 0.044 0.041 0.039 0.039 0.048 0.054 0.040 0.061 0.049 0.046 0.044 0.058 0.065

0 -0.5 1.75 0.045 0.075 0.044 0.044 0.039 0.108 0.097 0.064 0.071 0.059 0.055 0.057 0.100 0.097

1.5 0.041 0.077 0.046 0.045 0.038 0.102 0.104 0.064 0.072 0.058 0.057 0.057 0.101 0.094

1.25 0.049 0.071 0.048 0.048 0.045 0.106 0.094 0.062 0.070 0.055 0.054 0.054 0.099 0.112

1 0.045 0.068 0.041 0.044 0.039 0.097 0.109 0.061 0.067 0.057 0.054 0.054 0.101 0.114



Table 4. Empirical size of unit root tests under OLS and local GLS de-meaning. The DGP is (25) and (26) with T = 200 and γ = 1.

OLS de-meaning Local GLS de-meaning

ϕ θ α2 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1

0 0 1.75 0.046 0.047 0.036 0.036 0.039 0.042 0.044 0.043 0.067 0.045 0.039 0.040 0.052 0.060

1.5 0.050 0.052 0.036 0.038 0.043 0.032 0.040 0.046 0.070 0.051 0.044 0.042 0.057 0.055

1.25 0.053 0.052 0.039 0.039 0.047 0.025 0.033 0.047 0.079 0.056 0.046 0.044 0.053 0.046

1 0.056 0.045 0.034 0.040 0.053 0.026 0.023 0.032 0.090 0.043 0.031 0.033 0.043 0.047

0.5 0 1.75 0.045 0.040 0.041 0.045 0.044 0.043 0.045 0.041 0.063 0.052 0.045 0.046 0.055 0.062

1.5 0.050 0.045 0.050 0.049 0.051 0.035 0.041 0.044 0.067 0.062 0.054 0.050 0.056 0.059

1.25 0.049 0.046 0.050 0.049 0.052 0.027 0.031 0.049 0.076 0.068 0.058 0.057 0.054 0.048

1 0.055 0.038 0.042 0.046 0.057 0.026 0.024 0.034 0.086 0.051 0.040 0.038 0.044 0.048

-0.5 0 1.75 0.042 0.053 0.029 0.030 0.032 0.052 0.055 0.041 0.070 0.038 0.034 0.036 0.059 0.066

1.5 0.048 0.060 0.033 0.035 0.039 0.039 0.055 0.045 0.073 0.045 0.038 0.039 0.067 0.065

1.25 0.050 0.059 0.034 0.035 0.042 0.035 0.043 0.045 0.082 0.052 0.043 0.042 0.059 0.056

1 0.056 0.052 0.029 0.037 0.051 0.032 0.034 0.033 0.093 0.039 0.030 0.032 0.048 0.057

0 0.5 1.75 0.039 0.043 0.038 0.040 0.039 0.043 0.048 0.038 0.060 0.049 0.043 0.043 0.057 0.060

1.5 0.042 0.050 0.041 0.042 0.048 0.036 0.042 0.038 0.069 0.054 0.047 0.045 0.054 0.049

1.25 0.044 0.051 0.046 0.045 0.050 0.027 0.032 0.043 0.080 0.060 0.051 0.050 0.052 0.048

1 0.051 0.043 0.035 0.042 0.056 0.025 0.023 0.030 0.086 0.045 0.035 0.035 0.042 0.049

0 -0.5 1.75 0.052 0.066 0.043 0.045 0.042 0.089 0.101 0.056 0.080 0.052 0.049 0.049 0.097 0.108

1.5 0.057 0.072 0.050 0.055 0.051 0.081 0.098 0.061 0.077 0.059 0.053 0.053 0.116 0.108

1.25 0.056 0.071 0.051 0.056 0.053 0.070 0.084 0.061 0.093 0.064 0.056 0.056 0.112 0.106

1 0.064 0.068 0.051 0.057 0.061 0.069 0.065 0.050 0.104 0.059 0.045 0.043 0.111 0.123



Table 5. Empirical size of unit root tests under OLS and local GLS de-meaning. The DGP is (25) and (26) with T = 200 and γ = 10.

OLS de-meaning Local GLS de-meaning

ϕ θ α2 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1

0 0 1.75 0.046 0.045 0.034 0.036 0.039 0.031 0.052 0.045 0.068 0.049 0.044 0.044 0.054 0.054

1.5 0.056 0.051 0.039 0.042 0.052 0.016 0.057 0.040 0.076 0.047 0.040 0.038 0.045 0.057

1.25 0.056 0.050 0.038 0.039 0.057 0.007 0.037 0.033 0.093 0.047 0.035 0.033 0.037 0.068

1 0.067 0.044 0.039 0.044 0.066 0.003 0.011 0.024 0.106 0.046 0.027 0.026 0.024 0.031

0.5 0 1.75 0.044 0.038 0.046 0.045 0.044 0.033 0.052 0.044 0.065 0.056 0.050 0.051 0.055 0.057

1.5 0.056 0.045 0.046 0.048 0.058 0.019 0.058 0.041 0.073 0.058 0.049 0.047 0.044 0.061

1.25 0.056 0.046 0.044 0.047 0.061 0.007 0.037 0.032 0.089 0.057 0.043 0.040 0.038 0.067

1 0.065 0.040 0.043 0.050 0.070 0.004 0.011 0.021 0.103 0.055 0.033 0.029 0.024 0.031

-0.5 0 1.75 0.046 0.051 0.029 0.031 0.036 0.044 0.063 0.044 0.072 0.044 0.040 0.040 0.063 0.064

1.5 0.056 0.057 0.033 0.038 0.049 0.025 0.069 0.039 0.081 0.043 0.038 0.036 0.054 0.069

1.25 0.056 0.057 0.033 0.036 0.053 0.013 0.049 0.031 0.098 0.045 0.031 0.030 0.048 0.074

1 0.067 0.050 0.036 0.045 0.065 0.007 0.019 0.023 0.108 0.041 0.027 0.023 0.030 0.041

0 0.5 1.75 0.038 0.043 0.037 0.036 0.043 0.032 0.054 0.036 0.067 0.049 0.045 0.044 0.053 0.056

1.5 0.051 0.049 0.040 0.045 0.056 0.019 0.057 0.033 0.074 0.050 0.040 0.039 0.043 0.061

1.25 0.049 0.049 0.037 0.041 0.058 0.007 0.039 0.028 0.091 0.049 0.038 0.036 0.034 0.061

1 0.061 0.043 0.035 0.043 0.069 0.006 0.013 0.019 0.103 0.042 0.027 0.025 0.020 0.028

0 -0.5 1.75 0.050 0.063 0.044 0.044 0.044 0.077 0.113 0.059 0.078 0.055 0.050 0.049 0.101 0.109

1.5 0.063 0.070 0.052 0.055 0.060 0.060 0.126 0.052 0.084 0.056 0.049 0.049 0.108 0.131

1.25 0.063 0.069 0.050 0.055 0.065 0.044 0.114 0.048 0.104 0.062 0.047 0.047 0.114 0.173

1 0.074 0.065 0.055 0.061 0.074 0.033 0.062 0.035 0.114 0.056 0.038 0.035 0.118 0.150



Table 6. Empirical size of unit root tests under OLS and local GLS de-meaning. The DGP is (25) and (26) with T = 500 and γ = 0.1.

OLS de-meaning Local GLS de-meaning

ϕ θ α2 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1

0 0 1.75 0.044 0.053 0.045 0.045 0.042 0.050 0.050 0.045 0.054 0.045 0.046 0.045 0.051 0.050

1.5 0.044 0.050 0.043 0.044 0.041 0.046 0.049 0.054 0.051 0.053 0.052 0.053 0.056 0.048

1.25 0.042 0.054 0.043 0.046 0.042 0.050 0.044 0.049 0.051 0.051 0.049 0.049 0.054 0.051

1 0.043 0.054 0.047 0.046 0.042 0.044 0.040 0.048 0.056 0.050 0.047 0.047 0.051 0.063

0.5 0 1.75 0.045 0.051 0.052 0.052 0.046 0.051 0.054 0.045 0.053 0.047 0.046 0.046 0.053 0.050

1.5 0.043 0.047 0.051 0.050 0.043 0.045 0.051 0.052 0.050 0.055 0.053 0.053 0.054 0.048

1.25 0.043 0.051 0.051 0.052 0.043 0.048 0.044 0.049 0.050 0.054 0.052 0.052 0.054 0.052

1 0.044 0.051 0.052 0.051 0.045 0.044 0.040 0.049 0.055 0.051 0.052 0.051 0.053 0.062

-0.5 0 1.75 0.043 0.056 0.042 0.042 0.040 0.057 0.057 0.047 0.055 0.045 0.045 0.046 0.055 0.055

1.5 0.042 0.053 0.041 0.041 0.038 0.049 0.056 0.051 0.053 0.051 0.048 0.048 0.059 0.051

1.25 0.041 0.057 0.039 0.042 0.038 0.054 0.047 0.049 0.052 0.049 0.046 0.046 0.057 0.055

1 0.044 0.056 0.044 0.044 0.040 0.048 0.046 0.047 0.057 0.047 0.045 0.046 0.053 0.063

0 0.5 1.75 0.043 0.052 0.051 0.054 0.048 0.056 0.056 0.048 0.053 0.052 0.049 0.049 0.055 0.053

1.5 0.040 0.049 0.052 0.054 0.047 0.049 0.052 0.049 0.051 0.054 0.052 0.052 0.056 0.049

1.25 0.041 0.053 0.050 0.051 0.046 0.053 0.044 0.047 0.047 0.051 0.051 0.052 0.053 0.052

1 0.036 0.053 0.053 0.050 0.045 0.045 0.045 0.046 0.056 0.054 0.049 0.048 0.054 0.062

0 -0.5 1.75 0.050 0.062 0.057 0.056 0.049 0.077 0.078 0.058 0.054 0.056 0.055 0.054 0.073 0.074

1.5 0.049 0.060 0.056 0.055 0.047 0.075 0.075 0.059 0.057 0.056 0.054 0.056 0.074 0.068

1.25 0.047 0.061 0.058 0.059 0.049 0.073 0.068 0.058 0.054 0.057 0.052 0.055 0.073 0.072

1 0.048 0.061 0.057 0.057 0.044 0.067 0.065 0.057 0.060 0.052 0.052 0.055 0.074 0.081



Table 7. Empirical size of unit root tests under OLS and local GLS de-meaning. The DGP is (25) and (26) with T = 500 and γ = 1.

OLS de-meaning Local GLS de-meaning

ϕ θ α2 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1

0 0 1.75 0.049 0.050 0.046 0.047 0.047 0.041 0.051 0.046 0.054 0.051 0.047 0.047 0.051 0.058

1.5 0.052 0.050 0.046 0.048 0.053 0.028 0.040 0.042 0.063 0.051 0.044 0.043 0.048 0.046

1.25 0.050 0.053 0.046 0.047 0.048 0.022 0.029 0.038 0.064 0.048 0.039 0.037 0.039 0.048

1 0.052 0.043 0.043 0.044 0.051 0.021 0.024 0.033 0.074 0.044 0.034 0.031 0.040 0.042

0.5 0 1.75 0.049 0.047 0.048 0.047 0.049 0.041 0.054 0.046 0.052 0.052 0.049 0.047 0.048 0.062

1.5 0.053 0.046 0.049 0.053 0.056 0.028 0.046 0.044 0.063 0.051 0.045 0.047 0.049 0.050

1.25 0.048 0.049 0.052 0.054 0.050 0.025 0.032 0.039 0.061 0.051 0.043 0.042 0.039 0.049

1 0.052 0.041 0.048 0.046 0.055 0.023 0.026 0.032 0.073 0.045 0.037 0.036 0.041 0.043

-0.5 0 1.75 0.048 0.053 0.045 0.045 0.047 0.045 0.049 0.046 0.056 0.047 0.044 0.045 0.053 0.059

1.5 0.052 0.054 0.044 0.045 0.050 0.031 0.042 0.042 0.064 0.049 0.041 0.041 0.051 0.046

1.25 0.049 0.055 0.046 0.046 0.047 0.027 0.037 0.039 0.065 0.048 0.040 0.039 0.041 0.049

1 0.051 0.044 0.042 0.042 0.051 0.025 0.024 0.032 0.075 0.042 0.033 0.031 0.044 0.043

0 0.5 1.75 0.044 0.049 0.052 0.052 0.051 0.043 0.048 0.043 0.056 0.051 0.046 0.046 0.050 0.064

1.5 0.049 0.049 0.051 0.054 0.055 0.030 0.044 0.041 0.062 0.052 0.044 0.044 0.049 0.048

1.25 0.047 0.051 0.051 0.054 0.050 0.025 0.030 0.038 0.062 0.055 0.045 0.043 0.043 0.049

1 0.049 0.042 0.047 0.049 0.055 0.024 0.025 0.032 0.072 0.045 0.036 0.035 0.042 0.046

0 -0.5 1.75 0.053 0.059 0.052 0.056 0.055 0.067 0.074 0.053 0.055 0.054 0.050 0.051 0.070 0.085

1.5 0.058 0.060 0.055 0.060 0.059 0.050 0.064 0.054 0.065 0.056 0.051 0.050 0.072 0.073

1.25 0.055 0.062 0.061 0.062 0.055 0.044 0.049 0.047 0.067 0.060 0.049 0.046 0.074 0.079

1 0.058 0.050 0.055 0.054 0.057 0.042 0.042 0.041 0.081 0.050 0.042 0.039 0.080 0.082



Table 8. Empirical size of unit root tests under OLS and local GLS de-meaning. The DGP is (25) and (26) with T = 500 and γ = 10.

OLS de-meaning Local GLS de-meaning

ϕ θ α2 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1

0 0 1.75 0.045 0.048 0.041 0.044 0.044 0.029 0.056 0.044 0.050 0.048 0.043 0.043 0.044 0.048

1.5 0.053 0.054 0.044 0.047 0.054 0.017 0.057 0.037 0.067 0.047 0.040 0.038 0.041 0.055

1.25 0.058 0.053 0.046 0.049 0.059 0.007 0.027 0.028 0.079 0.042 0.030 0.028 0.028 0.047

1 0.062 0.048 0.045 0.048 0.064 0.002 0.007 0.025 0.095 0.040 0.025 0.024 0.022 0.025

0.5 0 1.75 0.046 0.044 0.048 0.047 0.045 0.028 0.054 0.045 0.048 0.049 0.048 0.048 0.045 0.048

1.5 0.055 0.050 0.047 0.049 0.058 0.017 0.058 0.038 0.066 0.051 0.043 0.041 0.042 0.057

1.25 0.057 0.050 0.050 0.051 0.062 0.007 0.027 0.029 0.078 0.045 0.033 0.032 0.031 0.050

1 0.063 0.044 0.048 0.050 0.066 0.003 0.007 0.026 0.092 0.045 0.032 0.029 0.022 0.023

-0.5 0 1.75 0.045 0.050 0.039 0.041 0.042 0.034 0.060 0.044 0.051 0.047 0.043 0.042 0.049 0.050

1.5 0.054 0.057 0.043 0.044 0.052 0.019 0.062 0.037 0.068 0.044 0.038 0.037 0.043 0.059

1.25 0.057 0.055 0.045 0.048 0.059 0.010 0.031 0.027 0.080 0.041 0.030 0.028 0.031 0.052

1 0.062 0.052 0.043 0.049 0.063 0.005 0.010 0.025 0.096 0.041 0.025 0.025 0.026 0.027

0 0.5 1.75 0.042 0.047 0.044 0.046 0.048 0.031 0.056 0.042 0.052 0.049 0.044 0.044 0.046 0.052

1.5 0.054 0.052 0.049 0.051 0.057 0.019 0.063 0.037 0.066 0.050 0.043 0.041 0.044 0.058

1.25 0.057 0.053 0.052 0.055 0.063 0.007 0.032 0.029 0.078 0.047 0.035 0.034 0.034 0.050

1 0.061 0.047 0.051 0.054 0.068 0.003 0.010 0.028 0.094 0.048 0.032 0.032 0.023 0.028

0 -0.5 1.75 0.052 0.056 0.050 0.053 0.050 0.052 0.088 0.056 0.053 0.056 0.053 0.052 0.071 0.076

1.5 0.060 0.062 0.054 0.057 0.061 0.037 0.093 0.048 0.073 0.055 0.047 0.048 0.070 0.093

1.25 0.064 0.060 0.055 0.061 0.066 0.022 0.058 0.039 0.083 0.052 0.040 0.040 0.067 0.097

1 0.069 0.057 0.058 0.060 0.073 0.014 0.025 0.038 0.099 0.053 0.039 0.037 0.074 0.085
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