Accepted Manuscript

Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies

D.M. Torta, V. Legrain, A. Mouraux, E. Valentini

PII: S0010-9452(17)30016-3

DOI: 10.1016/j.cortex.2017.01.010

Reference: CORTEX 1923

To appear in: Cortex

Received Date: 15 June 2016

Revised Date: 5 December 2016

Accepted Date: 16 January 2017

Please cite this article as: Torta D, Legrain V, Mouraux A, Valentini E, Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies, *CORTEX* (2017), doi: 10.1016/j.cortex.2017.01.010.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Attention to pain! A neurocognitive perspective on attentional
2	modulation of pain in neuroimaging studies
3	
4	Torta DM ^a *, Legrain V ^a , Mouraux A ^a , Valentini E ^b
5	
6	^a Institute of Neuroscience, Cognitive and System Neuroscience (COSY) Unit, Faculty of
7	Medicine, Université catholique de Louvain, Brussels, Belgium
8	^b Department of Psychology and Centre for Brain Science, University of Essex, England,
9	UK
10	
11	* Correspondence should be addressed to:
12	Diana M.E. Torta,
13	Institute of Neuroscience (IoNS), Université catholique de Louvain
14	Avenue Mounier 53 Boite B1.53.04, 1200, Brussels, Belgium
15	diana.torta@uclouvain.be, diana.torta@gmail.com
16	

1 Abstract

Several studies have used neuroimaging techniques in an attempt to characterize brain 2 correlates of the attentional modulation of pain. Although these studies have advanced the 3 knowledge in the field, important confounding factors such as imprecise theoretical 4 definitions of attention, incomplete operationalization of the construct under exam, and 5 6 limitations of techniques relying on measuring regional changes in cerebral blood flow 7 have hampered the potential relevance of the conclusions. Here, we first provide an overview of the major theories of attention and of attention in the study of pain to bridge 8 9 theory and experimental results. We conclude that *load* and *motivational/affective* theories are particularly relevant to study the attentional modulation of pain and should be carefully 10 integrated in functional neuroimaging studies. Then, we summarize previous findings and 11 discuss the possible neural correlates of the attentional modulation of pain. We discuss 12 whether classical functional neuroimaging techniques are suitable to measure the effect of 13 a fluctuating process like attention, and in which circumstances functional neuroimaging 14 can be reliably used to measure the attentional modulation of pain. Finally, we argue that 15 the analysis of brain networks and spontaneous oscillations may be a crucial future 16 development in the study of attentional modulation of pain, and why the interplay between 17 attention and pain, as examined so far, may rely on neural mechanisms shared with other 18 sensory modalities. 19

20

Keywords: pain, attention, neuroimaging, bottom-up attention, top-down attention, brain
networks.

1 1. Introduction

Pain and nociception are not the same phenomena. Nociception refers to the peripheral 2 and central nervous system processes triggered by the activation of nociceptors 3 (Sherrington, 1906). Pain is a subjective experience, one of the possible outcomes of 4 nociceptors activation. Several behavioral studies have shown that pain can induce 5 attentional biases (but see (Crombez, Van Ryckeghem, Eccleston, & Van Damme, 2013) 6 for an important meta-analysis on the topic), and may interrupt behavior (Eccleston & 7 Crombez, 1999; Moore, Keogh, & Eccleston, 2012). However, attentional manipulations 8 can also modulate the perception of pain and reaction times to nociceptive stimuli, 9 especially when the concurrent pain-unrelated task requires effort and demands cognitive 10 resources (Buhle & Wager, 2010; Legrain, Crombez, & Mouraux, 2011; Romero, Straube, 11 Nitsch, Miltner, & Weiss, 2013; Verhoeven, Van Damme, Eccleston, Van Ryckeghem, 12 Legrain, & Crombez, 2011). 13

In a recent review we offered a critical perspective on the influence of cognition/attention on the electrophysiological responses to nociceptive and painful stimuli, particularly on the functional relationship between attention and the magnitude of event related potentials (ERPs) (Legrain, Mancini, Sambo, Torta, Ronga, & Valentini, 2012). The aim of the present review is to discuss the contribution of neuroimaging studies to the study of attentional modulation of pain and nociceptive inputs with a special emphasis on theoretical and methodological perspectives ^{1,2}.

¹ Throughout the review, we will refer sometimes to 'nociceptive' and sometimes to 'pain' modulation. The rationale of using either term was based on the terminology used in the reviewed literature. We used the term 'pain' if the original article reported the term 'pain', nociception if it was unclear whether the stimuli could be qualified as painful. Furthermore, the use of the concept 'pain' can be misleading in imaging studies. Indeed, the activation of brain regions in response to nociceptive inputs is not sufficient to be referred to as 'pain' when no subjective report on the perceived quality of the stimulus is available.

² In this review, we will elaborate on why attention cannot be considered as a unitary concept. However, we will also use the notion of *'attentional modulation of pain'* as a general term to refer to all possible effects of attention on pain and nociception.

The first functional neuroimaging studies on the attentional modulation of pain often 1 referred to 'attention' as a monolithic construct. This was likely motivated by practical 2 operational reasons and by the fact that the concept of attention is difficult to disentangle 3 from the concept of consciousness or executive control. However, attention is not a unitary 4 process. Therefore, it should be considered that different attentional processes can 5 modulate pain and cortical responses to nociceptive stimuli via different mechanisms 6 mediated by different neural substrates (Raz & Buhle, 2006). Here, we will attempt to 7 highlight how interpreting attention as a unitary construct might have led to partially 8 contradictive findings and, occasionally, over-generalized conclusions. We will first outline 9 some key concepts of attention, in particular those relevant for a critical review of 10 neuroimaging studies on the attentional modulation of pain. 11

Selective attention. Selective attention is one of the most used notions when referring to 12 attention. The concept of selectivity was introduced more than a century ago by William 13 James, (James, 1890) who defined attention as a restricted focus of consciousness on 14 one out of several objects physically present in the environment. In this view, selective 15 attention would constitute a means to filter the flow of incoming information in order to 16 prioritize the processing of information according to its relevance. Why should it be 17 important to select relevant information? According to the limited-capacity bottleneck 18 theory (Broadbent, 1958), we are unable to process all the available information 19 simultaneously; therefore, a selection is required. Importantly, this limited capacity could 20 be related more to the limited number of actions that an individual can perform rather than 21 the limited amount of sensory information that is processed. In this vein, selective attention 22 would serve to prioritize the processing of information that enables us to select the most 23 relevant among several possible actions (Allport, 1987; Hommel, 2010). This interpretation 24

implies that selective attention to painful stimuli would therefore prioritize escape or
 defensive actions to maintain the integrity of the body.

'Executive attention' is a concept strictly linked to that of executive functions, proposed as 3 part of attentional processes in the influential theory of attention by Posner and Petersen 4 (Petersen & Posner, 2012; Posner & Petersen, 1990). Executive attention would refer to 5 6 the ability to keep the effective processing of a target stimulus regardless of concomitant 7 distraction by irrelevant elements. The concept of executive attention clearly overlaps with that of 'selective attention' (or according to the authors' terminology focal attention). 8 However, the definition of 'executive attention' by Petersen and Posner (2012) does not 9 place much emphasis on spatial or motor aspects. Rather, it conceives executive attention 10 as the process that enables us to maintain cognitive control and, for instance, to stay on 11 task while filtering irrelevant distractive information. Moreover, in the Petersen and Posner 12 model, each component of attention is wired in specific brain regions and networks. 13 Executive attention is associated with the activity of the anterior cingulate cortex and 14 networks comprising it (Dosenbach, Fair, Miezin, Cohen, Wenger, Dosenbach, Fox, 15 Snyder, Vincent, Raichle, Schlaggar, & Petersen, 2007; Dosenbach, Visscher, Palmer, 16 Miezin, Wenger, Kang, Burgund, Grimes, Schlaggar, & Petersen, 2006). 17

The concept of 'executive attention' is relevant for the study of pain in that it explains why the concomitant execution of pain-unrelated cognitive tasks can prevent the attentional capture by nociceptive/ painful inputs (Buhle & Wager, 2010; Legrain, Crombez, & Mouraux, 2011; Legrain, Crombez, Plaghki, & Mouraux, 2013; Seminowicz & Davis, 2007a; Van Damme, Gallace, Spence, Crombez, & Moseley, 2009; Van Damme, Legrain, Vogt, & Crombez, 2009; Verhoeven, Van Damme, Eccleston, Van Ryckeghem, Legrain, & Crombez, 2011).

Posner and Petersen's theory also describes other types of attention such us *alerting attention*, i.e. the ability to increase and maintain response readiness to an impending stimulus, and *orienting attention*, i.e. the ability to select specific stimuli among multiple sensory stimuli. For this latter concept, the authors refer to the influential work by Corbetta and Schulman (e.g. (Corbetta & Shulman, 2002)) on the dorsal attentional network, which we will explain in the next paragraph.

Bottom-up vs top-down processes. Some stimuli are particularly difficult to ignore and 7 capture attention automatically even when they are far away from the focus of attention 8 (Theeuwes, 1991). This involuntary capture of attention is defined as "bottom-up" or 9 "stimulus driven". Bottom-up attention is an exogenous attention, meaning that it is 10 triggered by external cues or events and is opposed to the top-down, endogenous, and 11 often voluntary deployment of attention (Egeth & Yantis, 1997; Knudsen, 2007). While top-12 down attention allows an individual to focus on what is relevant in terms of goals and 13 motivations, bottom-up capture of attention constitutes a mechanism serving to re-orient 14 attention towards salient stimuli whose physical features make them stand out from 15 concurrent or preceding stimuli. Bottom-up capture of attention is also involved in the 16 detection of changes in the incoming stream of sensory input. The bottom-up capture of 17 attention can rely, for instance, on the detection of a mismatch between internal 18 representations of environmental regularities (built on recent past experiences) and new 19 sensory inputs disrupting such regularity (Escera & Malmierca, 2014; Näätänen & 20 Kreegipuu, 2011; Polich, 2007; Sokolov, 1963). 21

At the cortical level these two systems are subserved by two distinct networks. The first, called 'dorsal attentional network' is involved in the top-down selection of stimuli and responses and encompasses the intraparietal cortex and the superior frontal cortex. The second (ventral fronto-parietal network) comprises the temporo-parietal cortex and the

inferior frontal cortex and is engaged by salient or deviant stimuli (Corbetta & Shulman,
2002). These two systems work in synergy with activity of the ventral parietal network
being suppressed during task execution, but activity in the dorsal parietal network being
modulated by incoming relevant and salient stimuli (Corbetta, Patel, & Shulman, 2008).
See figure 1 for an illustration of the different attentional networks as identified with fMRI.
See figure 2 for an illustration of the dorsal and ventral attentional networks.

7

---Figure 1---

9

8

Despite the frequent usage of these terms in the literature on the study of pain and 10 nociception, all these operational definitions of attention have significant conceptual 11 overlaps, and basic research on attention has not opted for a unitary perspective. 12 Moreover, the above-mentioned descriptions are not meant to be exhaustive or to be 13 14 considered 'specific' for pain. Nevertheless, we believe that this conceptual organization is useful to offer insights on the neural mechanisms of the attentional modulation of 15 nociception and pain. In the next paragraph, we will briefly discuss some of the major 16 theoretical frameworks in the pain field, in which some of these operational definitions are 17 embedded. 18

2. Theoretical models and conceptual frameworks used to study the effects of attention on pain

21 2.1. Major theories of attention to pain: gate, load, motivational and affective theories

We have all had the every-day life experience that the perception of pain varies considerably depending on the context. Therefore, it is not surprising that the ability of attention to modulate nociceptive processing and pain perception has always captured the

interest of pain researchers. Several theories have tried to explain and conceptualize
 these interactions in a coherent framework.

Gate theories of pain. Melzack and Wall (Melzack & Wall, 1965) were the first to propose 3 that the spinal transmission of nociceptive inputs can also be under the descending 4 influence of supra-spinal mechanisms, including attention. Convincing experimental 5 evidence for this notion comes from studies showing how cognitive tasks and distraction 6 can modulate the nociceptive flexion reflex, a spinal reflex (Ruscheweyh, Kreusch, Albers, 7 Sommer, & Marziniak, 2011; Willer, Roby, & Le Bars, 1984). Leventhal & Everhart 8 (Leventhal & Everhart, 1979) and McCaul & Malott (McCaul & Malott, 1984) proposed that 9 nociceptive processing involves several operations, which transform an input signal (i.e. 10 nociceptive input) into output signals, one of them being the sensation of pain. In this 11 regard, the processing of nociceptive information would be reduced by limited-resources 12 constraints. As such, the processing of nociceptive and non-nociceptive information, would 13 lead to a competition. Considering that, in most circumstances, nociceptive inputs may 14 represent a higher threat to the organism as compared to non-nociceptive inputs; attention 15 to nociceptive input would be prioritized with respect to other contextually relevant events. 16 The important implication of this theory for the attentional modulation of pain, is that top-17 down processes can influence the spinal transmission of nociceptive inputs, possibly 18 gating incoming afferent inputs. 19

Load theories of pain. Perceptual load theories (Lavie, 2005) propose that attentional effects on sensory processing depend on the interaction between task difficulty and stimuli features. In this vein, high load tasks requiring to process non-nociceptive information (e.g. performance of a difficult task involving the discrimination of non-nociceptive sensory stimuli) would consume shared cognitive resources that, in turn, would become less readily available for the processing of nociceptive input (Legrain, Crombez, Plaghki, &

Mouraux, 2013). This would explain why nociceptive stimuli can be perceived as less painful when they occur in the context of a high cognitive load task not involving the processing of these nociceptive stimuli (Romero, Straube, Nitsch, Miltner, & Weiss, 2013).

Motivational theories of pain. Motivational theories of pain importantly address the 4 discrepancy between experimental and clinical findings. When pain is investigated in an 5 experimental context and consists of brief painful stimuli, the engagement in other 6 cognitive tasks can reduce the experience of pain. However, when the experience of pain 7 is intense, persistent and invalidating, it can take over and become the constant focus of 8 attention. As such, managing pain can become a goal for chronic pain patients. This 9 aspect of the interaction between attention and pain has been made explicit in the 10 'motivational account for pain' to explain the maladaptive effects in chronic pain states. 11 Van Damme et al. (Van Damme, Legrain, Vogt, & Crombez, 2009) emphasized that pain 12 must be conceived in the frame of goal pursuit. According to these authors, the ability of 13 pain to distract individuals from current goals depends both on the characteristics of the 14 goal and on those of the pain experience. For instance, the authors suggested that if pain 15 occurs during the pursuit of a goal, it is likely to capture attention although it is not goal-16 relevant. However, chronic pain patients constantly deal with ongoing pain and, therefore, 17 pain management itself becomes the goal, triggering an enhanced processing of pain-18 related information. 19

Affective theories. Affective theories highlight the role that *affective aspects* of the stimulus (e.g. affective signals of threat) have in modulating attention to it. For instance, it has been proposed that emotional signals can shape perception by partially operating with different processes and brain structures than those related to endogenous attentional processes (Pourtois, Schettino, & Vuilleumier, 2013). Studies in the pain domain have shown that affective factors such as catastrophizing and negative priming can enhance responses to

pain (Dillmann, Miltner, & Weiss, 2000; Godinho, Magnin, Frot, Perchet, & Garcia-Larrea, 1 2 2006; Keogh, Ellery, Hunt, & Hannent, 2001; Vlaeyen, Timmermans, Rodriguez, Crombez, van Horne, Ayers, Albert, & Wellens, 2004; Wunsch, Philippot, & Plaghki, 2003). In 3 addition to this, recent influential theories underline how emotional factors might play a role 4 in the transition from acute to chronic pain (Baliki & Apkarian, 2015). These theories might 5 also explain individual susceptibility and behavioural patterns, as individuals might put 6 subjective affective weights on painful stimuli also when these are applied in experimental 7 contexts. 8

9 2.2. Salience and relevance of pain: on the concept of bottom-up and top-down attention in
10 pain research

The concept of 'bottom-up' and 'top-down' is shared by several approaches to study 11 attention. How does pain research integrate these concepts? Experimental evidence 12 shows that, during the execution of cognitive tasks not involving pain (e.g., the 13 performance of a task involving the processing of auditory stimuli) the occurrence of a 14 painful stimulus can strongly capture attention and impair performance, even when the 15 painful stimulus is completely irrelevant for the task. This would suggest that nociceptive 16 inputs can cause an involuntary shift of attention from its current focus towards the 17 nociceptive stimulus (Crombez, Baeyens, & Eelen, 1994; Crombez, Eccleston, Baeyens, & 18 Eelen, 1996, 1998; Crombez, Vervaet, Lysens, Baeyens, & Eelen, 1998; Eccleston & 19 Crombez, 1999). 20

However, it would be simplistic to consider that painful stimuli *always* capture attention. It
is true that nociceptive stimuli are often able to trigger attentional capture by making the
subject disengage attention from the achievement of planned goals and interrupt ongoing
activities in order to prioritize escape or survival (Loeser & Melzack, 1999; Melzack &
Casey, 1968). It is also clear that orienting and maintaining attention towards or away from

a nociceptive stimulus (or pain) depends on the balance between its salience and 1 relevance³ to current behavioral goals, and most probably, also by the emotional 2 relevance that the stimulus has for the person (Keogh, Ellery, Hunt, & Hannent, 2001). 3 Legrain et al. (Legrain, Van Damme, Eccleston, Davis, Seminowicz, & Crombez, 2009) 4 suggested that the capture of attention by brief nociceptive stimuli can be modulated by 5 three factors. First, unattended nociceptive stimuli are more likely to capture attention if the 6 attentional focus is on features that are shared with the nociceptive distracter (attentional 7 set hypothesis; (Van Ryckeghem, Crombez, Eccleston, Legrain, & Van Damme, 2012). 8 Second, nociceptive stimuli are less likely to capture attention if the goal is effortful and, 9 thereby, recruits all available attentional resources (attentional load hypothesis; (Legrain, 10 Bruyer, Guerit, & Plaghki, 2005). Third, nociceptive stimuli are less likely to capture 11 attention if other cognitive processes, not necessarily an effortful task, are concomitantly 12 engaged to maintain goal priorities and actively shield the processing of the attended 13 stimulus from distraction (Legrain, Crombez, Plaghki, & Mouraux, 2013). For a 14 representation of this model please refer to the figures in (Legrain, Perchet, & Garcia-15 Larrea, 2009; Legrain & Torta, 2015). 16

17 **3.** Functional imaging of the attentional modulation of pain

The first neuroimaging studies of pain (e.g. (Bushnell, Duncan, Hofbauer, Ha, Chen, &
Carrier, 1999; Coghill, Talbot, Evans, Meyer, Gjedde, Bushnell, & Duncan, 1994; Jones,
Brown, Friston, Qi, & Frackowiak, 1991; Peyron, Garcia-Larrea, Gregoire, Costes,
Convers, Lavenne, Mauguiere, Michel, & Laurent, 1999; Rainville, Duncan, Price, Carrier,
& Bushnell, 1997; Talbot, Marrett, Evans, Meyer, Bushnell, & Duncan, 1991; Tolle,
Kaufmann, Siessmeier, Lautenbacher, Berthele, Munz, Zieglgansberger, Willoch,

³ We use the term salience to refer to the physical properties of the stimulus that captures attention (bottom-up). We use relevance to refer to the characteristics of the stimulus that make it pertinent for cognitive goals (top-down).

Schwaiger, Conrad, & Bartenstein, 1999) aimed to identify which areas of the brain 1 respond to painful stimuli. Regional cerebral blood flow changes (rCBF) were interpreted 2 as reflecting both pain- and attention-related activity (Derbyshire, Jones, Devani, Friston, 3 Feinmann, Harris, Pearce, Watson, & Frackowiak, 1994; Hsieh, Stahle-Backdahl, 4 Hagermark, Stone-Elander, Rosenguist, & Ingvar, 1996; Jones, Brown, Friston, Qi, & 5 Frackowiak, 1991; Svensson, Minoshima, Beydoun, Morrow, & Casey, 1997). Subsequent 6 reports tried to characterize differential activations to painful stimuli and cognitive tasks 7 demanding attention (e.g. (Davis, Taylor, Crawley, Wood, & Mikulis, 1997; Derbyshire & 8 Jones, 1998), by exploring activity in the cingulate cortex, a region thought to contain 9 manifold subregions devoted to cognitive, sensory, and affective processing (Devinsky, 10 Morrell, & Vogt, 1995; B. Vogt, 2009; B. A. Vogt, 2005; B. A. Vogt, Nimchinsky, Vogt, & 11 Hof, 1995). In these studies pain stimuli and attentional tasks were presented in separate 12 13 blocks. Altogether, these results suggested that painful stimuli and attentional tasks activate adjacent, but not overlapping, segments of the cingulate cortex. However, these 14 15 studies could not provide any insight on the *interactions* between attention and pain, which were addressed in later studies (Bantick, Wise, Ploghaus, Clare, Smith, & Tracey, 2002; 16 Brooks, Nurmikko, Bimson, Singh, & Roberts, 2002; Frankenstein, Richter, McIntyre, & 17 Remy, 2001; Petrovic, Petersson, Ghatan, Stone-Elander, & Ingvar, 2000; Peyron, Garcia-18 Larrea, Gregoire, Costes, Convers, Lavenne, Mauguiere, Michel, & Laurent, 1999), 19 wherein painful stimuli were presented *during* the execution of an attentional task. Later 20 studies set out to study the effects of attention on pain and, occasionally, the effects of 21 pain on attentional tasks. We review these studies in the next paragraphs, with a particular 22 focus on the attentional component that they investigated. 23

24 3.1. The effect of selective attention on pain

Selective attention to pain has been tested in different ways. Some studies asked participants to attend to specific features of a painful stimulus. Other studies have instead used stimuli of another sensory modality as distracters, adding a component of *intermodal* attention. In the next two paragraphs, we will present and discuss the results and conclusion of those studies.

6 3.1.1 Attention to specific features of the painful stimulus

7 Kulkarni et al. (Kulkarni, Bentley, Elliott, Youell, Watson, Derbyshire, Frackowiak, Friston, & Jones, 2005) used Positron Emission Tomography (PET) to investigate whether 8 attending to the location or unpleasantness of a painful stimulus applied on the left side of 9 the body would result in a differential *pattern* of regional brain activity. The basic 10 assumption was that attending to the *location* of the stimulus would increase activity in 11 'sensory' areas, whereas attending to its unpleasantness would increase activity in 12 'emotional' areas. The results supported their hypothesis by showing increased activations 13 in the perigenual cingulate cortex, amygdala, orbitofrontal cortex, primary motor cortex, 14 hypothalamus, and posterior insula when participants were attending to unpleasantness as 15 compared to location. Conversely, increased activations were observed in the right primary 16 sensory cortex (S1) and in the inferior parietal cortices when participants were attending to 17 location as compared to unpleasantness. These results were taken to support the 18 distinction between selective modulation of lateral (sensory) and medial (affective) pain 19 systems. Although such a sharp division of these two systems, especially concerning the 20 insula and the cingulate cortex, can be questioned (Buchel, Bornhovd, Quante, Glauche, 21 Bromm, & Weiller, 2002; Coghill, Sang, Maisog, & Iadarola, 1999; Valentini, Betti, Hu, & 22 23 Aglioti, 2013), these results suggested that different patterns of brain activity could reflect the processing of different features of the stimulus. These results also suggested that the 24

amygdala could be involved in some aspects of the processing of experimental nociceptive
 stimuli, in line with affective attentional theories.

Other studies also supported the possibility that attentional selection of different features of 3 a nociceptive stimulus may unveil partially distinguishable patterns of brain responses to 4 painful stimuli. Oshiro and colleagues used functional magnetic resonance imaging (fMRI) 5 to investigate spatial (e.g. stimulus location (Oshiro, Quevedo, McHaffie, Kraft, & Coghill, 6 2007)) and non-spatial (e.g. stimulus intensity (Oshiro, Quevedo, McHaffie, Kraft, & 7 Coghill, 2009)) features of nociceptive stimuli. The authors used a delayed match-to-8 9 sample task in which participants had to compare the characteristics of a first stimulus to those of a stimulus presented after a delay, thus implying a more direct involvement of top-10 down attention driven by working memory processes. The findings of their two studies 11 showed that matching the stimuli according to the spatial location or intensity yielded both 12 different and common activations. In both tasks, the stimuli activated the cingulate cortex. 13 However, matching the stimulus location increased activity in prefrontal and posterior 14 parietal regions, whereas matching the stimulus on the basis of intensity increased activity 15 in the anterior insula, in line with the notion that the insula is involved in pain intensity 16 coding or serves as a 'general magnitude estimator' (zu Eulenburg, Baumgartner, Treede, 17 & Dieterich, 2013). 18

In a subsequent study, Lobanov et al. (Lobanov, Quevedo, Hadsel, Kraft, & Coghill, 2013) aimed to integrate the two approaches by using a delayed match-to-sample task, but asking participants to either selectively attend to the spatial location or to the intensity of pairs of painful heat stimuli and to detect whether the second stimulus had the same or different cued feature of the first one. They observed that changes in the spatial location of the stimulus were easier to detect, but nonetheless yielded greater posterior parietal activations (intraparietal sulcus and superior parietal lobule), in all periods of the task, from

the cue to the discrimination phase. They concluded that the posterior parietal cortex plays a role in the processing of spatial aspects of the noxious stimuli. However, it should be emphasized that the posterior parietal cortex is involved in the processing of spatial aspects of a variety of sensory stimuli, among which nociceptive ones.

5 Taken together, these studies indicate that attention to different features of nociceptive 6 stimuli can recruit different areas (or networks as we will argue later). However, they also 7 highlight the need to take into consideration factors other than selective attention before 8 drawing conclusions about the effects of selective attention on nociceptive processing, in 9 particular, the cognitive load required to perform the different tasks.

Overall, protocols contrasting brain responses to different features of the same painful 10 stimuli can bear several advantages over other experimental approaches. Indeed, one 11 problem of using intermodal attention is that it might become difficult to distinguish 12 between brain activations that reflect differences in the characteristic of the incoming 13 stimulus (for instance a tactile stimulus is usually less intense that a nociceptive one, 14 therefore some activations may be related to the unmatched intensity of the stimulus) and 15 brain activations that reflect attentional modulation of the incoming stimulus. This issue is 16 resolved when the same incoming sensory stimulus is used. 17

18 3.1.2 Selective attention to pain, to another modality or 'distraction' from pain

Using PET, Peyron et al. (Peyron, Garcia-Larrea, Gregoire, Costes, Convers, Lavenne, Mauguiere, Michel, & Laurent, 1999) asked participants either to attend to thermal painful stimuli, to attend to auditory stimuli, or to perform no task at all, trying in this way to characterize possibly selective features of *attention to pain per se*. They found that selective attention to pain triggered stronger responses in prefrontal, posterior parietal and

cingulate cortices, as compared to selective attention to auditory stimuli, which was
 associated with increased responses in temporal regions.

Brooks et al. (Brooks, Nurmikko, Bimson, Singh, & Roberts, 2002) used a similar approach to compare the effects of selectively attending to 15-second duration heat stimuli that were either painful or non-painful, or to visual stimuli presented concomitantly. They observed stronger responses in the anterior insula when participants focused on pain. In contrast, when attention was focused on the visual stimuli and directed away from the painful stimuli, they observed stronger responses in the mid-insula.

Although tempting, it is difficult to conclude that these results reflect the effects of selective 9 attention to painful stimuli. Indeed, by definition, intermodal modulation of attention implies 10 attentional fluctuations from pain to the other modality and vice versa. In addition, this 11 approach cannot easily take into account the distracting effect of the unattended stimulus 12 per se. Finally, stimuli belonging to different modalities were delivered at different spatial 13 locations, therefore introducing a possible confound related to the deployment of spatial 14 attention to the source of the sensory event. This is important as studies have shown that 15 the spatial location of distracters modulates their effectiveness in capturing attention 16 (e.g.(Van Ryckeghem, Crombez, Eccleston, Legrain, & Van Damme, 2012)). Therefore, 17 although these studies have provided important information on the relationship between 18 attention and pain, conclusions should be cautious due to the plurality of possible 19 interpretations. 20

In another study, Tracey and colleagues (Tracey, Ploghaus, Gati, Clare, Smith, Menon, &
Matthews, 2002) tested the effect of 'focusing' on pain vs. being distracted from pain, i.e.
think of something else. As a control, they also asked participants to perform the same
task when a warm, instead of a painful stimulus, was applied. Their behavioral results
suggested that participants rated stimuli in the 'non-attend' session as less painful, but this

was not the case for warm stimuli. However, it is important to mention that the same trend 1 2 of reduction in the non-attend condition was observed for both modalities, and considering that only nine participants were included in the study, definite conclusions about the pain 3 specificity of the results could be prone to false positives. Their fMRI results suggested 4 that activity in the periaqueductal gray (PAG) increased for the non-attended condition, 5 when BOLD signal in response to painful stimuli was subtracted from the BOLD signal in 6 response to warm stimuli. The authors concluded that increase in PAG activity reflects top-7 down influences on descending inhibitory pathways. 8

9 3.2 Competition for attentional resources: the effects of working memory and executive
10 control on pain processing

According to the limited attentional resources model, when participants perform a highly 11 demanding cognitive task, the attentional load will reduce available resources needed to 12 process task-irrelevant stimuli (Legrain, Van Damme, Eccleston, Davis, Seminowicz, & 13 Crombez, 2009). This would result in a reduction of the pain triggered by irrelevant 14 nociceptive stimuli (Bantick, Wise, Ploghaus, Clare, Smith, & Tracey, 2002). In this 15 context, a highly effective task is the Stroop task, in which participants have to inhibit an 16 automatic process and, instead, perform a non-automatic process (e.g. the word 'red' is 17 displayed in blue, and participants have to name the color blue, instead of reading the 18 19 word red).

Several studies have compared the brain responses elicited by painful stimuli while subjects perform a Stroop task vs. a low attentional demands task (Bantick, Wise, Ploghaus, Clare, Smith, & Tracey, 2002; Seminowicz & Davis, 2007a, 2007c; Valet, Sprenger, Boecker, Willoch, Rummeny, Conrad, Erhard, & Tolle, 2004). Some of these studies (e.g. (Bantick, Wise, Ploghaus, Clare, Smith, & Tracey, 2002)) have observed reduced activity to painful stimuli during the Stroop test in the mid-cingulate cortex. Others 17

(e.g. (Seminowicz & Davis, 2007a, 2007b, 2007c; Seminowicz, Mikulis, & Davis, 2004))
found that performing the Stroop test can attenuate responses to moderately painful
stimuli in primary and secondary somatosensory cortices (S1, S2) and in the anterior
insula (Seminowicz, Mikulis, & Davis, 2004).

These differences could be related to crucial differences in the performed tasks. Bantick et 5 al. asked participants to rate the intensity of the painful stimuli whereas Seminowicz et al. 6 did not. This additional 'pain rating' task actually rendered the painful stimuli relevant for 7 the participant's behavioural goals. For this reason, in the study of Bantick et al., the 8 nociceptive stimuli cannot truly be considered as task irrelevant. In addition to this, it has 9 been shown that the effects of attentional manipulation on painful stimuli can vary 10 depending on the interactions between the cognitive load and the perceived intensity of 11 the stimuli (see also (Romero, Straube, Nitsch, Miltner, & Weiss, 2013)). While in the study 12 of Valet et al., (2004), the Stroop test had a strong impact on stimulus-related activations, 13 Seminowicz and Davis (2007) did not observe a complete disruption of pain related activity 14 by the cognitive load and vice versa. 15

Using a different approach, Bingel et al. (Bingel, Rose, Glascher, & Buchel, 2007) explored 16 the 'distractive' effects of pain and of the execution of a visual working memory task on 17 visual processing. Participants performed an N-back task, which required comparing a 18 letter appearing on an irrelevant background image (of different levels of visibility), to a 19 letter appeared one or two images before. Laser stimuli of different intensity were 20 presented concomitantly with the visual stimulus. BOLD signal in visual areas was 21 modulated by the visibility of the background image but, importantly, the administration of 22 23 painful stimuli reduced this BOLD increase. The authors proposed that the distractive effects of pain and of working memory on visual processing were driven by different brain 24

regions: the rostral anterior cingulate cortex could explain the BOLD modulation of visual
areas by pain, and the inferior parietal cortex by working memory.

Although these findings offer a new and interesting perspective, it should also be noted 3 that no control condition with equally salient non-nociceptive stimuli was used, to 4 investigate whether these effects were specific for pain. Moreover, specific regions of 5 interest (ROIs) were chosen to test the effects of pain and working memory over visual 6 activation, leaving open the possibility that areas other than the selected ones were also 7 modulated. Finally, participants were asked to provide pain ratings, which made the painful 8 stimulus behaviorally relevant. Therefore, it remains unclear whether BOLD changes in 9 visual areas were dependent on distraction from pain or on the involvement in two tasks at 10 the same time (working memory task and intensity rating task). 11

12 A study by Sprenger and colleagues supported the possibility that working memory modulates the processing of nociceptive inputs at the level of the spinal cord (Sprenger, 13 Eippert, Finsterbusch, Bingel, Rose, & Buchel, 2012). These authors recorded spinal cord 14 fMRI data while participants received painful stimuli during the execution of an N-back 15 working memory task. Their results suggested that the distractive effect of the N-back task 16 17 reduced the spinal activity related to the incoming nociceptive input. Importantly the authors also showed that the administration of naloxone, an opioid receptor antagonist, 18 diminished - but did not abolish - the effect of working memory on the stimuli, suggesting 19 that the effects of working memory are partially dependent on opioid-sensitive descending 20 inhibitory circuits. 21

The fact that naloxone did not abolish completely the effects of working memory on painful
stimuli may be important as it suggests that more than one mechanism operating both at
spinal and at supraspinal levels, can participate in modulating the responses (Torta,
Churyukanov, Plaghki, & Mouraux, 2015).

To summarize, the use of tasks involving working memory and executive functions can 1 2 provide important insights especially in terms of attentional modulation of pain in the context of 'load theories'. However, critical review of these studies also indicates that it is 3 important to consider carefully that even apparently negligible tasks like providing a 4 sensory rating can have an important impact on BOLD changes, as they constitute a task 5 per se (Seminowicz & Davis, 2007c). Moreover, although tempting, conclusions about 6 'specific' effects on pain should be avoided, if other stimuli of comparable salience are not 7 tested. 8

9 4. Advantages and disadvantages of using fMRI to study the interactions between

10 pain and attention

As highlighted in previous paragraphs, different cognitive functions or different attentional 11 processes may exert their effect on the processing of nociceptive input through different 12 mechanisms, and these mechanisms could operate at supraspinal and/or spinal levels. 13 One open issue regards how to disentangle, using fMRI, effects related to bottom-up and 14 top-down mechanisms. Indeed, although some tasks can be expected to tap bottom-up 15 mechanisms more than top-down mechanisms, it is unlikely that responses to a stimulus 16 17 presented in a given context reflect completely one or the other process. For example, when a deviant stimulus is presented in a stream of standard stimuli, a bottom-up capture 18 of attention occurs, that is possibly followed by top-down maintenance of the attentional 19 focus on the deviant stimulus, if this acquired relevance for the ongoing behavioral goals. 20 A major issue is that these processes are likely to occur within a time interval that cannot 21 be resolved using standard fMRI, which is dependent on slow changes in the BOLD signal. 22 23 Furthermore, some effects of attention on the BOLD responses sampled in a given brain region could depend on a 'reactivation' of that brain region, due to feedback projections 24 (see (Pessoa, Kastner, & Ungerleider, 2003) for a review). In this respect, studies relying 25

on the recording of ERPs are able to pinpoint more precisely the time intervals at which
attention may exert its effects on the processing of nociceptive stimuli. However, ERP
studies cannot provide any clear evidence about the engagement of subcortical structures
that are instead crucial in attentional processing.

5 5. Do the 'insula' and the 'cingulate cortex' have a pivotal role in the attentional
6 modulation of pain?

From a simplistic summary of the findings reported so far, we could conclude that the
insula and the cingulate cortex are two key players in pain-attention interactions.

What is the possible functional role of these brain regions? Several lines of evidence 9 suggest that it is difficult to attribute to these regions a selective role in the attentional 10 modulation of pain, or even a unique function (Cauda, D'Agata, Sacco, Duca, Geminiani, & 11 Vercelli, 2011; Chang, Yarkoni, Khaw, & Sanfey, 2013; Craig, 2009; Palomero-Gallagher, 12 Mohlberg, Zilles, & Vogt, 2008; Palomero-Gallagher, Vogt, Schleicher, Mayberg, & Zilles, 13 2009; Shackman, Salomons, Slagter, Fox, Winter, & Davidson, 2011; Torta & Cauda, 14 2011; B. A. Vogt, 2016). In order to advance our understanding of their role during the 15 experience of pain we should first consider their anatomo-functional complexity. 16

The insula is not a unitary structure, neither structurally nor functionally. In fact, studies 17 have reported at least two (Cauda, Costa, Torta, Sacco, D'Agata, Duca, Geminiani, Fox, & 18 Vercelli, 2012; Cauda, D'Agata, Sacco, Duca, Geminiani, & Vercelli, 2011; Cerliani, 19 Thomas. Jbabdi, Siero, Nanetti, Crippa, Gazzola, D'Arceuil, & Keysers, 2011; Treister, 20 Eisenberg, Gershon, Haddad, & Pud, 2010), three (Chang, Yarkoni, Khaw, & Sanfey, 21 2013; Deen, Pitskel, & Pelphrey, 2011) or even nine (Kelly, Toro, Di Martino, Cox, Bellec, 22 Castellanos, & Milham, 2012) functionally distinct clusters. The anterior insula has been 23 proposed to play a central role in the integration of exteroceptive and interoceptive sensory 24

inputs, whereas the posterior insula has been proposed to be more specifically related to 1 specific somatosensory functions (Cauda, Costa, Torta, Sacco, D'Agata, Duca, Geminiani, 2 Fox, & Vercelli, 2012; Cauda, D'Agata, Sacco, Duca, Geminiani, & Vercelli, 2011; Cerliani, 3 Thomas, Jbabdi, Siero, Nanetti, Crippa, Gazzola, D'Arceuil, & Keysers, 2011; Treister, 4 Eisenberg, Gershon, Haddad, & Pud, 2010). In other words, the anterior insula could 5 constitute an integration hub mediating attention and internally oriented self-cognition 6 (Craig, 2002, 2009; zu Eulenburg, Baumgartner, Treede, & Dieterich, 2013). Furthermore, 7 the anterior and posterior insula could work in synergy to modulate autonomic reactivity to 8 salient stimuli (V. Menon & Uddin, 2010), painful stimuli being just one of the possible 9 10 stimuli triggering these reactions.

Some authors have proposed that the insula is activated by stimuli belonging to several 11 sensory modalities (zu Eulenburg, Baumgartner, Treede, & Dieterich, 2013), and serves 12 the role of a 'general magnitude estimator' (Baliki, Geha, & Apkarian, 2009). This would 13 explain why 'attention to pain' tends to increase both the intensity of pain perception and 14 the magnitude of pain-related insular responses. At the same time, this notion would entail 15 that attentional effects of pain-related insular responses are not specific for pain (Baliki et 16 al., 2009). For all these reasons, stating that the insula is *the* site of interaction between 17 pain and attention is probably reductive (Davis, Bushnell, Iannetti, St Lawrence, & Coghill, 18 2015; Feinstein, Khalsa, Salomons, Prkachin, Frey-Law, Lee, Tranel, & Rudrauf, 2015), 19 and a supramodal perspective should be instead adopted. Furthermore, future studies 20 should consider the most recent findings about the complexity of insular anatomy, 21 structural connectivity and functional connectivity to avoid overly simplistic views. 22

The activation of the cingulate cortex is also observed consistently in studies of attentional modulation of pain. A potential role of the anterior, mid-cingulate cortex and dorsal anterior cingulate cortex was proposed already in the very first fMRI studies. These studies often

concluded that attention and pain elicited responses in distinct subregions of the cingulate
 cortex (Moont, Crispel, Lev, Pud, & Yarnitsky, 2012; Nir, Sinai, Moont, Harari, & Yarnitsky,
 2012; Peyron, Garcia-Larrea, Gregoire, Costes, Convers, Lavenne, Mauguiere, Michel, &
 Laurent, 1999).

Again, the complexity of this brain region should be discussed. On the one hand, studies 5 6 have allowed important advances on the relationship between cytoarchitectonic and 7 functional overlaps in the cingulate cortex, providing support at the receptor level of four distinct areas (Palomero-Gallagher, Vogt, Schleicher, Mayberg, & Zilles, 2009; B. A. Vogt, 8 2005; B. A. Vogt, Berger, & Derbyshire, 2003; B. A. Vogt & Laureys, 2005; B. A. Vogt & 9 Vogt, 2003; B. A. Vogt, Vogt, Perl, & Hof, 2001). On the other hand, as already proposed 10 in (B. A. Vogt, 2005), studies using a meta-analytic approach provide evidence of large 11 functional overlaps. Both Shackman et al., (Shackman, Salomons, Slagter, Fox, Winter, & 12 Davidson, 2011) and Torta & Cauda (Torta & Cauda, 2011) observed substantial 13 activation overlap between responses to 'pain', and 'attention' (not necessarily pain-14 related). This overlap was especially evident in the mid-cingulate and dorsal anterior 15 cingulate cortex. Such evidence is in line with the view that the response triggered by 16 nociceptive stimuli in the cingulate cortex could largely reflect orienting of attention to 17 sensory stimuli independently of the modality of the stimuli and regardless of whether 18 these stimuli elicit a perception of pain (see (Kucyi, Hodaie, & Davis, 2012; Legrain, Van 19 Damme, Eccleston, Davis, Seminowicz, & Crombez, 2009; Seeley, Menon, Schatzberg, 20 Keller, Glover, Kenna, Reiss, & Greicius, 2007; Shackman, Salomons, Slagter, Fox, 21 Winter, & Davidson, 2011; Torta, Costa, Duca, Fox, & Cauda, 2013). Further evidence 22 supports this interpretation. First, the mid-cingulate cortex is anatomically and functionally 23 connected to motor, premotor and parietal areas (Torta & Cauda, 2011; Yu, Zhou, Liu, 24 25 Jiang, Dong, Zhang, & Walter, 2011) and could thus easily prompt flight or fight responses

to potentially harmful stimuli. Second, salient sensory events such as novel stimuli trigger 1 strong responses in the mid-cingulate cortex independently of sensory modality (Downar, 2 Crawley, Mikulis, & Davis, 2002). Third, nociceptive evoked EEG responses possibly 3 originating from the mid-cingulate cortex (Garcia-Larrea, Frot, & Valeriani, 2003) are 4 enhanced when attention is more strongly captured by those nociceptive stimuli (Legrain, 5 Guerit, Bruyer, & Plaghki, 2002, 2003). Conversely, the same EEG responses were 6 reduced in amplitude when participants succeeded to not be distracted by the nociceptive 7 stimuli (Legrain et al., 2013). 8

9 Importantly, although we have treated in this paragraph the insula and the cingulate cortex 10 as two 'stand-alone' regions, significant evidence suggest that they operate in close 11 synergy, although possibly keeping separate functional roles (V Menon, 2015), as 12 discussed in the following paragraph about brain networks.

13 4. Moving from brain regions to brain networks

In the last years, neuroimaging research has suggested that brain functions emerge from 14 the activity of large-scale networks, both at rest (Fox, Snyder, Vincent, Corbetta, Van 15 Essen, & Raichle, 2005) and during task-execution (Laird, Fox, Eickhoff, Turner, Ray, 16 McKay, Glahn, Beckmann, Smith, & Fox, 2012). Another approach to study the attentional 17 effects over pain is thus to conceive these effects in terms of brain *networks*. A network 18 approach would foster the understanding of the recurrent functional relationship between 19 brain regions such as the insula and the cingulate cortex. Indeed, these two regions (more 20 specifically the anterior insula and the dorsal anterior cingulate cortex) would form the so-21 called 'salience network' (Kucyi, Hodaie, & Davis, 2012; V Menon, 2015; Seeley, Menon, 22 Schatzberg, Keller, Glover, Kenna, Reiss, & Greicius, 2007), and be part, as hubs, to more 23 than a brain network (Cauda, Costa, Torta, Sacco, D'Agata, Duca, Geminiani, Fox, & 24 25 Vercelli, 2012; Cauda, Torta, Sacco, Geda, D'Agata, Costa, Duca, Geminiani, & Amanzio, 24

2012; Chang, Yarkoni, Khaw, & Sanfey, 2013; V. Menon & Uddin, 2010; Torta, Costa,
Duca, Fox, & Cauda, 2013; Yu, Zhou, Liu, Jiang, Dong, Zhang, & Walter, 2011). One of
the major advantages of the network approach is that the functional relationship between
two or more brain regions can be tested under the assumption that co-variations of the
BOLD signal imply functional links. This approach has offered the possibility to move from
'localizationist' approaches to functional hypotheses.

Valet et al. (Valet, Sprenger, Boecker, Willoch, Rummeny, Conrad, Erhard, & Tolle, 2004) 7 observed that during distraction from painful stimuli using a Stroop Task, the activity in the 8 perigenual anterior cingulate cortex and the orbitofrontal cortex co-varied with activity in 9 the PAG and posterior thalamus. This covariation was present when the painful stimuli 10 were applied concomitantly with the Stroop Task, but was not observed when the Stroop 11 Task was executed during the administration of non-painful stimuli. Seminowicz and Davis 12 (Seminowicz & Davis, 2007b) investigated the interaction between cognitive load and pain 13 intensity, using a network perspective. They first isolated a brain activity pattern associated 14 with the cognitive load that could be identified as 'attentional'. This network was composed 15 of task-positive parts (e.g. areas synergistically active that increased their activity with 16 increasing difficulty of the task, including the frontal and parietal regions and the anterior 17 insula) and task-negative parts (e.g. areas that showed the opposite pattern, including the 18 precuneus and the posterior cingulate cortex). When all conditions were included (pain 19 and cognitive load)⁴, and an analysis run using the mask previously identified, the 20 activation of the task-positive network was increased by pain. As suggested by the 21 authors, these findings could reflect a substrate for the effects of pain on attention, or more 22 simply general arousal measure capturing the activity of a network modulated by 23 exteroception. 24

⁴ The areas of the task-negative network were remarkably similar to those of the 'default mode network', see next note on the topic.

The network perspective opens a more ecologically grounded approach: that spontaneous 1 2 brain oscillations and variations in attention can themselves influence pain-attention interactions (see (Kucyi & Davis, 2015). In this vein, Kucyi and colleagues, using a more 3 advanced dynamic functional connectivity analysis, showed that the resting state network 4 activity can shape the experience of pain. Furthermore, focusing on pain changes 5 networks dynamics, likely promoting a decreased engagement of the default mode 6 7 network (DMN, a network most active when there are no significant events in the surrounding environment and when participants are not involved in a specific task) and an 8 increased engagement of two other networks, referred to as the 'salience network' and the 9 'antinociceptive network' (Kucyi, Salomons, & Davis, 2013)⁵. Similarly, Ter-Minassian et al. 10 (Ter Minassian, Ricalens, Humbert, Duc, Aube, & Beydon, 2013) found reduced DMN 11 activity during anticipation of pain while the so-called 'dorsal attention network' was, 12 instead, in a more activated state. 13

Future studies may exploit more advanced network metrics provided by graph theory analysis (see Bullmore and Sporns, 2009) to elucidate the relationship between these different networks during different experimental manipulations of attention and pain.

17 Figure 3 shows a summary of the evolution in the study of the attentional modulation of

18 pain across the years.

19

---Figure 3---

20 5. Concluding remarks

⁵ Several networks can be identified in the "resting brain". Besides the aforementioned attentional networks, researchers have consistently identified the *default mode network (DM*N), which is thought to be composed by areas including the posterior cingulate cortex, the precuneus, and the medial prefrontal cortex; the *salience network* which includes as prominent areas the anterior insula and the dorsal anterior cingulate cortex; the *'antinociceptive network'* would include the medial prefrontal cortex, the periaqueductal gray, and the rostroventral medulla. In other words, it would include descending inhibitory systems.

Pain has often been regarded as a unique sensory and emotional experience that would 1 deeply differ from the experience emerging from the processing of stimuli in other sensory 2 modalities. However, although descending mechanisms are thought increasingly to play 3 an important role in pain modulation, as well as in the susceptibility to develop chronic 4 pain, it is important to emphasize that the top-down modulation of sensory input is not a 5 unique feature of the nociceptive system. In this vein, the top-down projections that are 6 often assumed to be specifically involved in pain modulation may actually play a more 7 general role, facilitating/inhibiting physiological reactions, for defensive actions/escape or 8 survival (Mason, 2005). This possibility would further support the interpretation of pain as 9 resulting from the activity of a general cortical system prioritizing and prompting action in 10 response to potentially dangerous stimuli that are meaningful for body homeostasis 11 (Legrain et al., 2011). Some authors have shown that spinal responses to innocuous and 12 nociceptive cold can be differentially modulated by PAG activity, which would affect 13 responses to nociceptive, but not to innocuous stimuli (Leith, Koutsikou, Lumb, & Apps, 14 15 2010). In addition, similar corticofugal mechanisms modulate the transmission of nonnociceptive somatosensory input at the level of dorsal column nuclei. Indeed, it has been 16 shown that corticofugal projections can modulate the responses of dorsal column nuclei to 17 tactile stimuli (Malmierca, Chaves-Coira, Rodrigo-Angulo, & Nunez, 2014; Nunez & 18 Malmierca, 2007). This effect could contribute to the mechanisms of selective attention. 19 Therefore, we conclude that at least a part of the attentional modulation of nociception is 20 similar to the modulation observed in other sensory modalities. Yet, painful stimuli may 21 gain a different affective weight compared to other modalities, as they have the potential to 22 damage the body. In line with this view, we believe that motivational, load and affective 23 theories may be particularly suitable to capture the complex interplay between attention 24 and pain (Lavie, Beck, & Konstantinou, 2014; Pourtois, Schettino, & Vuilleumier, 2013; 25 Van Damme, Legrain, Vogt, & Crombez, 2009). Indeed, they offer a clear framework to 26 27

show how affective factors, contextual factors and cognitive load may shape the
 interruptive nature of pain.

Our review of the literature has also highlighted the importance of the choice of theoretical 3 framework in the experimental design and interpretation of the results, considering that the 4 concepts of attention and pain, as well as their neural substrates can be largely 5 6 overlapping. In this sense, paradigms in which brain responses to different features of a 7 painful stimulus are compared and paradigms using working memory tasks might be less prone to potentially confounding effects, and can lead to more solid conclusions. What is 8 9 more, methodological aspects regarding the time of the BOLD signal response should also be considered more carefully when addressing a fluctuating phenomenon like attention. 10

Future directions in the study of attentional modulation of pain should conceive complex 11 models that consider the individual valence and relevance of nociceptive stimuli. 12 Moreover, future lines of research should take into account individual variability in the 13 ability to engage in alternative tasks or disengaging from salient stimuli, how much 14 individual differences are modifiable by experience or represent stable personality traits. 15 Finally, research may benefit from the use of more ecological conditions to investigate 16 17 spontaneous oscillations of attention at rest and during tasks. Figure 4 shows current cognitive models of attentional modulation of pain and nociceptive inputs and suggests 18 possible future directions of study. 19

1 Acknowledgements

- 2 VL is supported by the Fund for Scientific Research of the French-speaking Community of
- 3 Belgium (F.R.S.-FNRS). AM received support from an ERC starting grant "PROBING-
- 4 PAIN" (336130). The authors declare the absence of any conflict of interest.
- 5
- 6 Figures

Orienting network

Executive network

7

Figure 1. Reproduced with permission and modified from (Raz, 2004; Raz & Buhle, 2006).
Attentional networks as identified by fMRI (and in line with (Petersen & Posner, 2012). This
figure is meant to illustrate that different attentional processes can be subserved by
different attentional networks. The authors propose the existence of three attentional
networks, the alerting, the orienting and the executive (see also note 5 for further
description of brain networks). The alerting network shows thalamic activation, the

- 1 orienting network shows parietal activation, and the executive network anterior cingulate
- 2 cortex activations.

- 3
- 4 Figure 2. Reproduced with permission and modified from Aboitiz et al., 2014 (Aboitiz,
- 5 Ossandon, Zamorano, Palma, & Carrasco, 2014), Chica and Bartolomeo 2012 (Chica &
- 6 Bartolomeo, 2012). Anatomy of the ventral and dorsal attention networks. FEF Frontal eye
- 7 field, IPS/SPL Intra parietal sulcus/ Superior parietal lobe, TPJ Temporo-parietal junction,
- 8 IFG/MFG inferior frontal gyrus, medial frontal gyrus.
- 9

1 2

Figure 3. The evolution of the theoretical perspective in the study of the attentional 3 modulations of pain. The 'pain vs. attention center'. The first studies aimed at identifying 4 which brain activations were related to pain and which ones to attention. Attention tasks 5 and painful stimuli were often presented in separate blocks and differential activations 6 7 taken to indicate that different brain regions elaborate pain perception (or nociceptive elaboration) and attentional tasks (e.g. Davis et al., 1997). 'Interactions pain and attention 8 9 (areas)'. Subsequent studies sought to determine which areas underpin the attentional modulation of pain. For this aim, noxious stimuli were applied during the execution of an 10 attentional task and brain activations obtained in these conditions compared to brain 11 activations elicited by noxious stimuli without a concomitant task (e.g. Bantick et al., 2002). 12 'Interactions pain attention (networks)'. A further step moved the interest from single (or 13 multiple areas) studied as working separately to brain networks. Attentional modulation of 14 noxious stimuli were investigated by studying activation and deactivation of networks of 15 areas (e.g. Seminowicz et al., 2007). 'From activation to mechanisms'. The suggestion that 16 17 cognitive factors, including attention, could modulate activity at the level of the spinal cord was proposed back in the 1960s. However, imaging evidence was available later on, 18

showing reduced activations to noxious stimuli at the level of the spinal cord activations
during the execution of a working memory task. These (de)activations were also used to
predict pain reductions (Sprenger et al., 2012). 'Multiple network dynamics'. More recently,
it has been suggested that spontaneous mind wandering from pain is correlated with
network dynamics, with strengthened or weakened function connectivity between the PAG
and the DMN.

7

Environment

9 Figure 4. Schematic illustration of the attentional processes that contribute to the elaboration of nociceptive stimuli. Priority access to working memory is gained depending on top-down selection (dependent on intentional control) and bottom-up selection (triggered by involuntary capture of attention). The intentional selection of the stimuli is made based on the relevance of cognitive goals (i.e. it depends on the possibility that stimuli are targets [T] of the task). Stimuli that are not goal-relevant (i.e. that are distractors [D]) can enter into the spot of attention, if they are salient enough to capture attention

involuntarily (D1) or if they share some features with the targets (D2). For a thorough 1 description of the model please refer to (Legrain & Torta, 2015; Legrain, Van Damme, 2 Eccleston, Davis, Seminowicz, & Crombez, 2009). In an update of this model, we suggest 3 that other factors can influence the balance between top-down and bottom-up processes 4 (see left and right boxes). For instance the balance between top-down and bottom-up 5 selection can be shaped by the emotional status of the person (e.g. (Sussman, Szekely, 6 7 Hajcak, & Mohanty, 2016; Vanlessen, Rossi, De Raedt, & Pourtois, 2014), and by spontaneous fluctuations of attention (Kucyi, Salomons, & Davis, 2013). Anxious 8 individuals for instance might find it problematic to focus on an alternative goal and be 9 more susceptible to being attracted by bottom-up distracters. In contrast, spontaneous 10 'mind wandering' away from the stimuli might contribute to reduce the bottom-up 11 distraction of the stimuli even independently from a concomitant non-pain related goal. 12 Individual differences in terms of personality traits and cognitive abilities may also 13 contribute to a flexible (or non-flexible) balancing between the two systems. It remains to 14 15 be elucidated how much these characteristics are unchangeable by the experience or can be trained. 16

17

References

- Aboitiz, F., Ossandon, T., Zamorano, F., Palma, B., & Carrasco, X. (2014). Irrelevant stimulus processing in
 ADHD: catecholamine dynamics and attentional networks. *Front Psychol*, *5*, 183.
- 5 Allport, D. A. (1987). Selection for action: Some behavioral and neurophysiological considerations of 6 attention and action.
- Baliki, M. N., & Apkarian, A. V. (2015). Nociception, Pain, Negative Moods, and Behavior Selection. *Neuron*,
 87(3), 474-491.
- Baliki, M. N., Geha, P. Y., & Apkarian, A. V. (2009). Parsing pain perception between nociceptive
 representation and magnitude estimation. *Journal of Neurophysiology*, 101(2), 875-887.
- Bantick, S. J., Wise, R. G., Ploghaus, A., Clare, S., Smith, S. M., & Tracey, I. (2002). Imaging how attention
 modulates pain in humans using functional MRI. *Brain*, *125*(Pt 2), 310-319.
- Bingel, U., Rose, M., Glascher, J., & Buchel, C. (2007). fMRI reveals how pain modulates visual object
 processing in the ventral visual stream. *Neuron*, 55(1), 157-167.
- 15 Broadbent, D. (1958). *Perception and Communication*.
- Brooks, J. C., Nurmikko, T. J., Bimson, W. E., Singh, K. D., & Roberts, N. (2002). fMRI of thermal pain: effects
 of stimulus laterality and attention. *Neuroimage*, *15*(2), 293-301.
- Buchel, C., Bornhovd, K., Quante, M., Glauche, V., Bromm, B., & Weiller, C. (2002). Dissociable neural
 responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior
 cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J
 Neurosci, 22(3), 970-976.
- Buhle, J., & Wager, T. D. (2010). Performance-dependent inhibition of pain by an executive working
 memory task. *Pain*, *149*(1), 19-26.
- Bushnell, M. C., Duncan, G. H., Hofbauer, R. K., Ha, B., Chen, J. I., & Carrier, B. (1999). Pain perception: is
 there a role for primary somatosensory cortex? *Proceedings of the National Academy of Sciences* USA 96(14), 7705-7709.
- Cauda, F., Costa, T., Torta, D. M., Sacco, K., D'Agata, F., Duca, S., Geminiani, G., Fox, P. T., & Vercelli, A.
 (2012). Meta-analytic clustering of the insular cortex: Characterizing the meta-analytic connectivity
 of the insula when involved in active tasks. *Neuroimage*.
- Cauda, F., D'Agata, F., Sacco, K., Duca, S., Geminiani, G., & Vercelli, A. (2011). Functional connectivity of the
 insula in the resting brain. *Neuroimage*, 55(1), 8-23.
- Cauda, F., Torta, D. M., Sacco, K., Geda, E., D'Agata, F., Costa, T., Duca, S., Geminiani, G., & Amanzio, M.
 (2012). Shared "core" areas between the pain and other task-related networks. *PLoS One, 7*(8), e41929.
- Cerliani, L., Thomas, R. M., Jbabdi, S., Siero, J. C., Nanetti, L., Crippa, A., Gazzola, V., D'Arceuil, H., & Keysers,
 C. (2011). Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in
 the human insular cortex. *Hum Brain Mapp*.
- Chang, L. J., Yarkoni, T., Khaw, M. W., & Sanfey, A. G. (2013). Decoding the role of the insula in human
 cognition: functional parcellation and large-scale reverse inference. *Cereb Cortex, 23*(3), 739-749.
- 40 Chica, A. B., & Bartolomeo, P. (2012). Attentional routes to conscious perception. *Front Psychol*, *3*, 1.
- Coghill, R. C., Sang, C. N., Maisog, J. M., & Iadarola, M. J. (1999). Pain intensity processing within the human
 brain: a bilateral, distributed mechanism. *Journal of Neurophysiology*, *82*(4), 1934-1943.
- Coghill, R. C., Talbot, J. D., Evans, A. C., Meyer, E., Gjedde, A., Bushnell, M. C., & Duncan, G. H. (1994).
 Distributed processing of pain and vibration by the human brain. *Journal of Neuroscience*, *14*(7), 4095-4108.
- Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from
 environment to theory of mind. *Neuron*, 58(3), 306-324.
- 48 Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain.
 49 *Nature Review Neuroscience, 3*(3), 201-215.
- Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body.
 Nat Rev Neurosci, 3(8), 655-666.

- Craig, A. D. (2009). How do you feel--now? The anterior insula and human awareness. *Nature Review Neuroscience*, 10(1), 59-70.
- Crombez, G., Baeyens, F., & Eelen, P. (1994). Sensory and temporal information about impending pain: the
 influence of predictability on pain. *Behav Res Ther, 32*(6), 611-622.
- Crombez, G., Eccleston, C., Baeyens, F., & Eelen, P. (1996). The disruptive nature of pain: an experimental
 investigation. *Behav Res Ther, 34*(11-12), 911-918.
- Crombez, G., Eccleston, C., Baeyens, F., & Eelen, P. (1998). Attentional disruption is enhanced by the threat
 of pain. *Behav Res Ther*, *36*(2), 195-204.
- 9 Crombez, G., Van Ryckeghem, D. M., Eccleston, C., & Van Damme, S. (2013). Attentional bias to pain-10 related information: a meta-analysis. *Pain*, *154*(4), 497-510.
- Crombez, G., Vervaet, L., Lysens, R., Baeyens, F., & Eelen, P. (1998). Avoidance and confrontation of painful,
 back-straining movements in chronic back pain patients. *Behav Modif, 22*(1), 62-77.
- Davis, K. D., Bushnell, M. C., Iannetti, G. D., St Lawrence, K., & Coghill, R. (2015). Evidence against pain
 specificity in the dorsal posterior insula. *F1000Res*, *4*, 362.
- Davis, K. D., Taylor, S. J., Crawley, A. P., Wood, M. L., & Mikulis, D. J. (1997). Functional MRI of pain- and
 attention-related activations in the human cingulate cortex. *J Neurophysiol*, *77*(6), 3370-3380.
- Deen, B., Pitskel, N. B., & Pelphrey, K. A. (2011). Three systems of insular functional connectivity identified
 with cluster analysis. *Cereb Cortex, 21*(7), 1498-1506.
- Derbyshire, S. W., & Jones, A. K. (1998). Cerebral responses to a continual tonic pain stimulus measured
 using positron emission tomography. *Pain, 76*(1-2), 127-135.
- Derbyshire, S. W., Jones, A. K., Devani, P., Friston, K. J., Feinmann, C., Harris, M., Pearce, S., Watson, J. D., &
 Frackowiak, R. S. (1994). Cerebral responses to pain in patients with atypical facial pain measured
 by positron emission tomography. *J Neurol Neurosurg Psychiatry*, *57*(10), 1166-1172.
- Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of Anterior Cingulate Cortex to Behaviour.
 Brain, 118, 279-306.
- Dillmann, J., Miltner, W. H., & Weiss, T. (2000). The influence of semantic priming on event-related
 potentials to painful laser-heat stimuli in humans. *Neurosci Lett, 284*(1-2), 53-56.
- Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., Fox, M. D., Snyder,
 A. Z., Vincent, J. L., Raichle, M. E., Schlaggar, B. L., & Petersen, S. E. (2007). Distinct brain networks
 for adaptive and stable task control in humans. *Proc Natl Acad Sci U S A*, 104(26), 11073-11078.
- Dosenbach, N. U., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., Burgund, E. D.,
 Grimes, A. L., Schlaggar, B. L., & Petersen, S. E. (2006). A core system for the implementation of task
 sets. *Neuron*, 50(5), 799-812.
- Downar, J., Crawley, A. P., Mikulis, D. J., & Davis, K. D. (2002). A cortical network sensitive to stimulus
 salience in a neutral behavioral context across multiple sensory modalities. *Journal of Neurophysiology*, 87(1), 615-620.
- Eccleston, C., & Crombez, G. (1999). Pain demands attention: a cognitive-affective model of the interruptive
 function of pain. *Psychol Bull*, *125*(3), 356-366.
- Egeth, H. E., & Yantis, S. (1997). Visual attention: control, representation, and time course. Annu Rev
 Psychol, 48, 269-297.
- Escera, C., & Malmierca, M. S. (2014). The auditory novelty system: an attempt to integrate human and
 animal research. *Psychophysiology*, *51*(2), 111-123.
- Feinstein, J. S., Khalsa, S. S., Salomons, T. V., Prkachin, K. M., Frey-Law, L. A., Lee, J. E., Tranel, D., & Rudrauf,
 D. (2015). Preserved emotional awareness of pain in a patient with extensive bilateral damage to
 the insula, anterior cingulate, and amygdala. *Brain Struct Funct*.
- Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human
 brain is intrinsically organized into dynamic, anticorrelated functional networks. *Proc Natl Acad Sci U S A*, 102(27), 9673-9678.
- Frankenstein, U. N., Richter, W., McIntyre, M. C., & Remy, F. (2001). Distraction modulates anterior
 cingulate gyrus activations during the cold pressor test. *Neuroimage*, 14(4), 827-836.
- 51 Garcia-Larrea, L., Frot, M., & Valeriani, M. (2003). Brain generators of laser-evoked potentials: from dipoles 52 to functional significance. *Neurophysiologie Clinique*, *33*(6), 279-292.

- Godinho, F., Magnin, M., Frot, M., Perchet, C., & Garcia-Larrea, L. (2006). Emotional modulation of pain: is it
 the sensation or what we recall? *J Neurosci, 26*(44), 11454-11461.
- Hommel, B. (2010). Grounding attention in action control: The intentional control of selection: Cambridge,
 MA:MIT Press.
- Hsieh, J. C., Stahle-Backdahl, M., Hagermark, O., Stone-Elander, S., Rosenquist, G., & Ingvar, M. (1996).
 Traumatic nociceptive pain activates the hypothalamus and the periaqueductal gray: a positron
 emission tomography study. *Pain, 64*(2), 303-314.
- 8 James, W. (1890). *The principles of psychology*. New York.
- Jones, A. K., Brown, W. D., Friston, K. J., Qi, L. Y., & Frackowiak, R. S. (1991). Cortical and subcortical
 localization of response to pain in man using positron emission tomography. *Proc Biol Sci*,
 244(1309), 39-44.
- Kelly, C., Toro, R., Di Martino, A., Cox, C. L., Bellec, P., Castellanos, F. X., & Milham, M. P. (2012). A
 convergent functional architecture of the insula emerges across imaging modalities. *Neuroimage*, 61(4), 1129-1142.
- Keogh, E., Ellery, D., Hunt, C., & Hannent, I. (2001). Selective attentional bias for pain-related stimuli
 amongst pain fearful individuals. *Pain*, *91*(1-2), 91-100.
- 17 Knudsen, E. I. (2007). Fundamental components of attention. *Annu Rev Neurosci, 30*, 57-78.
- 18 Kucyi, A., & Davis, K. D. (2015). The dynamic pain connectome. *Trends Neurosci, 38*(2), 86-95.
- Kucyi, A., Hodaie, M., & Davis, K. D. (2012). Lateralization in intrinsic functional connectivity of the
 temporoparietal junction with salience- and attention-related brain networks. *J Neurophysiol*,
 108(12), 3382-3392.
- Kucyi, A., Salomons, T. V., & Davis, K. D. (2013). Mind wandering away from pain dynamically engages
 antinociceptive and default mode brain networks. *Proc Natl Acad Sci U S A*, *110*(46), 18692-18697.
- Kulkarni, B., Bentley, D. E., Elliott, R., Youell, P., Watson, A., Derbyshire, S. W., Frackowiak, R. S., Friston, K.
 J., & Jones, A. K. (2005). Attention to pain localization and unpleasantness discriminates the
 functions of the medial and lateral pain systems. *Eur J Neurosci, 21*(11), 3133-3142.
- Laird, A. R., Fox, P. M., Eickhoff, S. B., Turner, J. A., Ray, K. L., McKay, D. R., Glahn, D. C., Beckmann, C. F.,
 Smith, S. M., & Fox, P. T. (2012). Behavioral interpretations of intrinsic connectivity networks. J
 Cogn Neurosci, 23(12), 4022-4037.
- Lavie, N. (2005). Distracted and confused?: selective attention under load. *Trends Cogn Sci, 9*(2), 75-82.
- Lavie, N., Beck, D. M., & Konstantinou, N. (2014). Blinded by the load: attention, awareness and the role of
 perceptual load. *Philos Trans R Soc Lond B Biol Sci, 369*(1641), 20130205.
- Legrain, V., Bruyer, R., Guerit, J. M., & Plaghki, L. (2005). Involuntary orientation of attention to unattended
 deviant nociceptive stimuli is modulated by concomitant visual task difficulty. Evidence from laser
 evoked potentials. *Clinical Neurophysiology*, *116*(9), 2165-2174.
- Legrain, V., Crombez, G., & Mouraux, A. (2011). Controlling attention to nociceptive stimuli with working
 memory. *PLoS One*, 6(6), e20926.
- Legrain, V., Crombez, G., Plaghki, L., & Mouraux, A. (2013). Shielding cognition from nociception with
 working memory. *Cortex*, *49*(7), 1922-1934.
- Legrain, V., Guerit, J. M., Bruyer, R., & Plaghki, L. (2002). Attentional modulation of the nociceptive
 processing into the human brain: selective spatial attention, probability of stimulus occurrence, and
 target detection effects on laser evoked potentials. *Pain, 99*(1-2), 21-39.
- Legrain, V., Guerit, J. M., Bruyer, R., & Plaghki, L. (2003). Electrophysiological correlates of attentional
 orientation in humans to strong intensity deviant nociceptive stimuli, inside and outside the focus
 of spatial attention. *Neuroscience Letters, 339*(2), 107-110.
- Legrain, V., Mancini, F., Sambo, C. F., Torta, D. M., Ronga, I., & Valentini, E. (2012). Cognitive aspects of
 nociception and pain: bridging neurophysiology with cognitive psychology. *Neurophysiol Clin, 42*(5),
 325-336.
- Legrain, V., Perchet, C., & Garcia-Larrea, L. (2009). Involuntary orienting of attention to nociceptive events:
 neural and behavioral signatures. *Journal of Neurophysiology*, *102*(4), 2423-2434.
- Legrain, V., & Torta, D. M. (2015). Cognitive psychology and neuropsychology of nociception and pain. In G.
 S. E. P. In: Pickering G., Emotion and Cognition: a Complex Nexus. Springer (Ed.).

- Legrain, V., Van Damme, S., Eccleston, C., Davis, K. D., Seminowicz, D. A., & Crombez, G. (2009). A
 neurocognitive model of attention to pain: behavioral and neuroimaging evidence. *Pain*, 144(3),
 230-232.
- Leith, J. L., Koutsikou, S., Lumb, B. M., & Apps, R. (2010). Spinal processing of noxious and innocuous cold
 information: differential modulation by the periaqueductal gray. *J Neurosci, 30*(14), 4933-4942.
- Leventhal, H., & Everhart, D. (1979). Emotion, pain, and physical illness *Emotions in personality and psychopathology* (pp. 261-299): Springer.
- Lobanov, O. V., Quevedo, A. S., Hadsel, M. S., Kraft, R. A., & Coghill, R. C. (2013). Frontoparietal mechanisms
 supporting attention to location and intensity of painful stimuli. *Pain, 154*(9), 1758-1768.
- 10 Loeser, J. D., & Melzack, R. (1999). Pain: an overview. *Lancet*, *353*(9164), 1607-1609.
- Malmierca, E., Chaves-Coira, I., Rodrigo-Angulo, M., & Nunez, A. (2014). Corticofugal projections induce
 long-lasting effects on somatosensory responses in the trigeminal complex of the rat. *Front Syst Neurosci, 8*, 100.
- 14 Mason, P. (2005). Deconstructing endogenous pain modulations. *J Neurophysiol*, *94*(3), 1659-1663.
- 15 McCaul, K. D., & Malott, J. M. (1984). Distraction and coping with pain. *Psychol Bull, 95*(3), 516-533.
- Melzack, R., & Casey, K. (1968). Sensory, motivational, and central control determinants of pain: a new
 conceptual model *The skin senses (Kenshalo R, ed)* (pp. 423–443). Springfield.
- 18 Melzack, R., & Wall, P. D. (1965). Pain mechanisms: a new theory. *Science*, *150*(3699), 971-979.
- 19 Menon, V. (2015). Salience Network. *Brain Mapping: An Encyclopedic Reference, Academic Press: Elsevier*.
- Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula
 function. *Brain Struct Funct*, 214(5-6), 655-667.
- Moont, R., Crispel, Y., Lev, R., Pud, D., & Yarnitsky, D. (2012). Temporal changes in cortical activation during
 distraction from pain: a comparative LORETA study with conditioned pain modulation. *Brain Res,* 1435, 105-117.
- Moore, D. J., Keogh, E., & Eccleston, C. (2012). The interruptive effect of pain on attention. *Q J Exp Psychol* (*Hove*), 65(3), 565-586.
- Näätänen, R., & Kreegipuu, K. (2011). The Mismatch Negativity (MMN). In O. H. online (Ed.), *The Oxford Book of Event-Related Potential Components*: Oxford University Press.
- Nir, R. R., Sinai, A., Moont, R., Harari, E., & Yarnitsky, D. (2012). Tonic pain and continuous EEG: prediction
 of subjective pain perception by alpha-1 power during stimulation and at rest. *Clin Neurophysiol*,
 123(3), 605-612.
- Nunez, A., & Malmierca, E. (2007). Corticofugal modulation of sensory information. *Adv Anat Embryol Cell Biol, 187*, 1 p following table of contents, 1-74.
- Oshiro, Y., Quevedo, A. S., McHaffie, J. G., Kraft, R. A., & Coghill, R. C. (2007). Brain mechanisms supporting
 spatial discrimination of pain. *J Neurosci*, *27*(13), 3388-3394.
- Oshiro, Y., Quevedo, A. S., McHaffie, J. G., Kraft, R. A., & Coghill, R. C. (2009). Brain mechanisms supporting
 discrimination of sensory features of pain: a new model. *J Neurosci, 29*(47), 14924-14931.
- Palomero-Gallagher, N., Mohlberg, H., Zilles, K., & Vogt, B. (2008). Cytology and receptor architecture of
 human anterior cingulate cortex. *J Comp Neurol, 508*(6), 906-926.
- Palomero-Gallagher, N., Vogt, B. A., Schleicher, A., Mayberg, H. S., & Zilles, K. (2009). Receptor architecture
 of human cingulate cortex: evaluation of the four-region neurobiological model. *Hum Brain Mapp*,
 30(8), 2336-2355.
- Pessoa, L., Kastner, S., & Ungerleider, L. G. (2003). Neuroimaging studies of attention: from modulation of
 sensory processing to top-down control. *J Neurosci, 23*(10), 3990-3998.
- Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. *Annu Rev Neurosci, 35*, 73-89.
- Petrovic, P., Petersson, K. M., Ghatan, P. H., Stone-Elander, S., & Ingvar, M. (2000). Pain-related cerebral
 activation is altered by a distracting cognitive task. *Pain*, *85*(1-2), 19-30.
- Peyron, R., Garcia-Larrea, L., Gregoire, M. C., Costes, N., Convers, P., Lavenne, F., Mauguiere, F., Michel, D.,
 & Laurent, B. (1999). Haemodynamic brain responses to acute pain in humans: sensory and
 attentional networks. *Brain, 122 (Pt 9),* 1765-1780.

- 1 Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2 2128-2148. 3 Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annu Rev Neurosci, 13, 25-4 42. 5 Pourtois, G., Schettino, A., & Vuilleumier, P. (2013). Brain mechanisms for emotional influences on perception and attention: what is magic and what is not. Biol Psychol, 92(3), 492-512. 6 7 Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., & Bushnell, M. C. (1997). Pain affect encoded in human 8 anterior cingulate but not somatosensory cortex. Science, 277(5328), 968-971. 9 Raz, A. (2004). Anatomy of attentional networks. Anat Rec B New Anat, 281(1), 21-36. 10 Raz, A., & Buhle, J. (2006). Typologies of attentional networks. *Nat Rev Neurosci, 7*(5), 367-379. Romero, Y. R., Straube, T., Nitsch, A., Miltner, W. H., & Weiss, T. (2013). Interaction between stimulus 11 12 intensity and perceptual load in the attentional control of pain. Pain, 154(1), 135-140. 13 Ruscheweyh, R., Kreusch, A., Albers, C., Sommer, J., & Marziniak, M. (2011). The effect of distraction 14 strategies on pain perception and the nociceptive flexor reflex (RIII reflex). Pain, 152(11), 2662-15 2671. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. 16 17 (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. 18 Journal of Neuroscience, 27(9), 2349-2356. 19 Seminowicz, D. A., & Davis, K. D. (2007a). Interactions of pain intensity and cognitive load: the brain stays 20 on task. Cereb Cortex, 17(6), 1412-1422. 21 Seminowicz, D. A., & Davis, K. D. (2007b). Pain enhances functional connectivity of a brain network evoked 22 by performance of a cognitive task. J Neurophysiol, 97(5), 3651-3659. 23 Seminowicz, D. A., & Davis, K. D. (2007c). A re-examination of pain-cognition interactions: implications for 24 neuroimaging. Pain, 130(1-2), 8-13. 25 Seminowicz, D. A., Mikulis, D. J., & Davis, K. D. (2004). Cognitive modulation of pain-related brain responses 26 depends on behavioral strategy. Pain, 112(1-2), 48-58. 27 Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The 28 integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Review 29 Neuroscience, 12(3), 154-167. 30 Sherrington, C. S. (1906). Observations on the scratch-reflex in the spinal dog. J Physiol, 34(1-2), 1-50. Sokolov, E. N. (1963). Higher nervous functions; the orienting reflex. Annu Rev Physiol, 25, 545-580. 31 32 Sprenger, C., Eippert, F., Finsterbusch, J., Bingel, U., Rose, M., & Buchel, C. (2012). Attention modulates 33 spinal cord responses to pain. Curr Biol, 22(11), 1019-1022. 34 Sussman, T. J., Szekely, A., Hajcak, G., & Mohanty, A. (2016). It's all in the anticipation: How perception of 35 threat is enhanced in anxiety. *Emotion, 16*(3), 320-327. 36 Svensson, P., Minoshima, S., Beydoun, A., Morrow, T. J., & Casey, K. L. (1997). Cerebral processing of acute 37 skin and muscle pain in humans. J Neurophysiol, 78(1), 450-460. 38 Talbot, J. D., Marrett, S., Evans, A. C., Meyer, E., Bushnell, M. C., & Duncan, G. H. (1991). Multiple 39 representations of pain in human cerebral cortex. Science, 251(4999), 1355-1358. 40 Ter Minassian, A., Ricalens, E., Humbert, S., Duc, F., Aube, C., & Beydon, L. (2013). Dissociating anticipation 41 from perception: Acute pain activates default mode network. Hum Brain Mapp, 34(9), 2228-2243. 42 Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Percept Psychophys, 50(2), 184-193. 43 Tolle, T. R., Kaufmann, T., Siessmeier, T., Lautenbacher, S., Berthele, A., Munz, F., Zieglgansberger, W., 44 Willoch, F., Schwaiger, M., Conrad, B., & Bartenstein, P. (1999). Region-specific encoding of sensory 45 and affective components of pain in the human brain: a positron emission tomography correlation 46 analysis. Annals of Neurology, 45(1), 40-47. 47 Torta, D. M., & Cauda, F. (2011). Different functions in the cingulate cortex, a meta-analytic connectivity 48 modeling study. *Neuroimage*, 56(4), 2157-2172.
- Torta, D. M., Churyukanov, M. V., Plaghki, L., & Mouraux, A. (2015). The effect of heterotopic noxious
 conditioning stimulation on Adelta-, C- and Abeta-fibre brain responses in humans. *Eur J Neurosci*,
 42(9), 2707-2715.

- Torta, D. M., Costa, T., Duca, S., Fox, P. T., & Cauda, F. (2013). Parcellation of the cingulate cortex at rest and during tasks: a meta-analytic clustering and experimental study. *Front Hum Neurosci, 7*, 275.
- Tracey, I., Ploghaus, A., Gati, J. S., Clare, S., Smith, S., Menon, R. S., & Matthews, P. M. (2002). Imaging
 attentional modulation of pain in the periaqueductal gray in humans. *J Neurosci, 22*(7), 2748-2752.
- Treister, R., Eisenberg, E., Gershon, E., Haddad, M., & Pud, D. (2010). Factors affecting and relationships
 between-different modes of endogenous pain modulation in healthy volunteers. *Eur J Pain, 14*(6),
 608-614.
- Valentini, E., Betti, V., Hu, L., & Aglioti, S. M. (2013). Hypnotic modulation of pain perception and of brain
 activity triggered by nociceptive laser stimuli. *Cortex, 49*(2), 446-462.
- Valet, M., Sprenger, T., Boecker, H., Willoch, F., Rummeny, E., Conrad, B., Erhard, P., & Tolle, T. R. (2004).
 Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain--an
 fMRI analysis. *Pain*, 109(3), 399-408.
- Van Damme, S., Gallace, A., Spence, C., Crombez, G., & Moseley, G. L. (2009). Does the sight of physical
 threat induce a tactile processing bias? Modality-specific attentional facilitation induced by viewing
 threatening pictures. *Brain Res, 1253*, 100-106.
- Van Damme, S., Legrain, V., Vogt, J., & Crombez, G. (2009). Keeping pain in mind: a motivational account of
 attention to pain. *Neuroscience Biobehavioral Reviews*, 34(2), 204-213.
- Van Ryckeghem, D. M., Crombez, G., Eccleston, C., Legrain, V., & Van Damme, S. (2012). Keeping pain out of
 your mind: The role of attentional set in pain. *Eur J Pain*.
- Vanlessen, N., Rossi, V., De Raedt, R., & Pourtois, G. (2014). Feeling happy enhances early spatial encoding
 of peripheral information automatically: electrophysiological time-course and neural sources. *Cogn Affect Behav Neurosci, 14*(3), 951-969.
- Verhoeven, K., Van Damme, S., Eccleston, C., Van Ryckeghem, D. M., Legrain, V., & Crombez, G. (2011).
 Distraction from pain and executive functioning: an experimental investigation of the role of inhibition, task switching and working memory. *European Journal of Pain*, 15(8), 866-873.
- Vlaeyen, J. W., Timmermans, C., Rodriguez, L. M., Crombez, G., van Horne, W., Ayers, G. M., Albert, A., &
 Wellens, H. J. (2004). Catastrophic thinking about pain increases discomfort during internal atrial
 cardioversion. J Psychosom Res, 56(1), 139-144.
- 29 Vogt, B. (2009). *Cingulate neurobiology and disease*: Oxford University Press, New York.
- Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. *Nature Reviews Neuroscience, 6*(7), 533-544.
- Vogt, B. A. (2016). Midcingulate cortex: Structure, connections, homologies, functions and diseases. J Chem
 Neuroanat, 74, 28-46.
- Vogt, B. A., Berger, G. R., & Derbyshire, S. W. (2003). Structural and functional dichotomy of human
 midcingulate cortex. *European Journal of Neuroscience, 18*(11), 3134-3144.
- Vogt, B. A., & Laureys, S. (2005). Posterior cingulate, precuneal and retrosplenial cortices: cytology and
 components of the neural network correlates of consciousness. *Cognition, Emotion and Autonomic Responses: The Integrative Role of the Prefrontal Cortex and Limbic Structures, 150,* 205-217.
- Vogt, B. A., Nimchinsky, E. A., Vogt, L. J., & Hof, P. R. (1995). Human Cingulate Cortex Surface-Features,
 Flat Maps, and Cytoarchitecture. *Journal of Comparative Neurology*, *359*(3), 490-506.
- Vogt, B. A., & Vogt, L. (2003). Cytology of human dorsal midcingulate and supplementary motor cortices. J
 Chem Neuroanat, 26(4), 301-309.
- Vogt, B. A., Vogt, L. J., Perl, D. P., & Hof, P. R. (2001). Cytology of human caudomedial cingulate,
 retrosplenial, and caudal parahippocampal cortices. *J Comp Neurol*, *438*(3), 353-376.
- Willer, J. C., Roby, A., & Le Bars, D. (1984). Psychophysical and electrophysiological approaches to the pain relieving effects of heterotopic nociceptive stimuli. *Brain*, *107* (*Pt 4*), 1095-1112.
- Wunsch, A., Philippot, P., & Plaghki, L. (2003). Affective associative learning modifies the sensory
 perception of nociceptive stimuli without participant's awareness. *Pain, 102*(1-2), 27-38.
- Yu, C., Zhou, Y., Liu, Y., Jiang, T., Dong, H., Zhang, Y., & Walter, M. (2011). Functional segregation of the
 human cingulate cortex is confirmed by functional connectivity based neuroanatomical
 parcellation. *Neuroimage*, 54(4), 2571-2581.

- zu Eulenburg, P., Baumgartner, U., Treede, R. D., & Dieterich, M. (2013). Interoceptive and multimodal
 functions of the operculo-insular cortex: tactile, nociceptive and vestibular representations.
 Neuroimage, 83, 75-86.
- 4
- -
- 5
- 6

Ctip All