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Abstract. Fiedler pencils are a family of strong linearizations for polynomials expressed in the
monomial basis, that include the classical Frobenius companion pencils as special cases. We generalize
the definition of a Fiedler pencil from monomials to a larger class of orthogonal polynomial bases. In
particular, we derive Fiedler-comrade pencils for two bases that are extremely important in practical
applications: the Chebyshev polynomials of the first and second kind. The new approach allows one
to construct linearizations having limited bandwidth: a Chebyshev analogue of the pentadiagonal
Fiedler pencils in the monomial basis. Moreover, our theory allows for linearizations of square matrix
polynomials expressed in the Chebyshev basis (and in other bases), regardless of whether the matrix
polynomial is regular or singular, and for recovery formulae for eigenvectors, and minimal indices
and bases.
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1. Motivation. In computational mathematics, many applications require to
compute the roots of a polynomial expressed in a nonstandard basis. Particularly
relevant in practice [28] are the Chebyshev polynomials of the first kind, that we
denote by Tk(x), see (3.1) for their formal definition. For example, suppose that we
want to approximate numerically the roots of the polynomial

T5(x)− 4T4(x) + 4T2(x)− T1(x) (1.1)

The roots of (1.1) are easy to compute analytically and they are ±1/2, ±1, and 2.
However, we know that in general a quintic (or higher degree) polynomial equation
cannot be solved algebraically. A standard approach would be to solve the equivalent
problem of computing the eigenvalues of the colleague matrix [17, 28] of (1.1):




2 1/2 −2 1/2 0
1/2 0 1/2

1/2 0 1/2
1/2 0 1/2

1 0



,

where throughout the paper we occasionally omit some, or all, the zero elements of a
matrix. Note en passant that (1.1) is monic in the Chebyshev basis, i.e., it is a degree
5 polynomial and its coefficient for T5(x) is 1. This is why we could linearize it with
a standard eigenvalue problem. Had we considered a nonmonic polynomial, we could
have used the colleague pencil instead, or we could have normalized it first: see [24]
for a thorough discussion on the numerical implications of this choice.

The colleague matrix is an example of what is called a linearization in the theory
of (matrix) polynomials. A linearization has the same elementary divisors of the
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original polynomial, and in particular it has the same eigenvalues. In the scalar case
m = 1, this implies that the eigenvalues of the linearizations are precisely the roots
of the linearized scalar polynomial. See Section 4.1 for more details.

When polynomials in the monomial basis are considered, many linearizations have
been studied in recent years. One family of particular interest is Fiedler pencils (and
Fiedler matrices), introduced in [13] and since then deeply studied and generalized in
many directions, see for example [2, 4, 7, 11, 30] and the references therein. Among
Fiedler pencils we find, for instance, companion linearizations (the monomial ana-
logues of the colleague), the particular Fiedler pencil analyzed in [18] (particularly
advantageous for the QZ algorithm), and pentadiagonal linearizations (also poten-
tially advantageous numerically, although currently lacking an algorithm capable to
fully exploit the small bandwidth).

On the other hand, many linearizations in nonmonomial bases exist and they have
recently been studied under many points of view, see, e.g., [1, 3, 22, 23, 24, 25] and
the references therein. One may wonder if these two research lines can be unified:
Is it possible to construct Fiedler pencils for at least some nonmonomial bases, and
in particular for the Chebyshev basis? The main goal of this paper is to answer
this question in the affirmative. For the impatient reader, here is a pentadiagonal
Fiedler-Chebyshev linearization of (1.1):




2 1/2 1/2
1/2 0 −4 1/2
1/2 0 0 0 1/2

1/2 1/2 0 2
1 0 0



.

Additionally, matrix polynomials that arise in applications often have particular
structures. Expanding a matrix polynomial P (x) in a given polynomial basis {φi(x)},
i.e.,

P (x) =
∑

Piφi(x), with Pi ∈ C
m×m,

the most relevant of theses structures are:

(i) symmetric: PT
i = Pi;

(ii) palindromic: PT
i = Pn−i;

(iii) skew-symmetric: PT
i = −Pi;

(iv) alternating: P (−x) = P (x)T or P (−x) = −P (x)T ,

together with their variants involving conjugate-transposition instead of transposi-
tion. Since the structure of a matrix polynomial is reflected in its spectrum, numerical
methods to solve polynomial eigenvalue problems should exploit to a maximal extent
the structure of matrix polynomials [21]. For this reason, finding linearizations that
retain whatever structure the matrix polynomial P (x) might possess is a fundamental
problem in the theory of linearizations (see, for example, [4, 5, 8, 21] and the references
therein). The results in this work expand the arena in which to look for linearizations
of matrix polynomials expressed in some orthogonal polynomial bases having addi-
tional useful properties. Furthermore, the Fiedler-Chebyshev pencils that we analyze
in this paper may be used as a starting point to construct structure-preserving lin-
earizations for some classes of structured matrix polynomials. In particular, one may
use the theory that we are going to build to generalize the family of block symmetric
Fiedler pencils with repetitions [4]. For example, if P (x) =

∑7
k=0 CkUk(x) is a m×m
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matrix polynomial expressed in the Chebyshev polynomials of the second kind basis
{Uk(x)}, the following pencil




2xC7+C6 −Im −C7 0 0 0 0
−Im 0 2xIm 0 −Im 0 0
−C7 2xIm 2xC5+C4−C6 −Im −C5 0 0
0 0 −Im 0 2xIm 0 −Im
0 −Im −C5 2xIm 2xC3+C2−C4 −Im −C3

0 0 0 0 −Im 0 2xIm
0 0 0 −Im −C3 2xIm 2xC1+C0−C2




is a heptadiagonal block symmetric strong linearization of P (x).

Apart from the preservation of structure, in order to be useful in the numerical
applications a linearization of a matrix polynomial P (x) must allow one to recover the
eigenvectors, and minimal indices and bases of P (x). We will show that this recovery
property is satisfied by any of the linearizations presented in this work: eigenvectors
and minimal bases of P (x) can be recovered without any computational cost from
those of the linearization, while the minimal indices of P (x) are obtained from the
minimal indices of the linearization by a uniform subtraction of a constant.

Our strategy is to first extend Fiedler pencils (and matrices, as Fiedler matrices
are just the constant terms of the Fiedler pencils associated to polynomials that are
monic in the considered basis) to a class of orthogonal nonmonomial bases, including
among others Chebyshev polynomials of the second kind. Section 2 is devoted to this
task. Then, in Section 3 we are going to show how to modify our construction to
tackle Chebyshev polynomials of the first kind. For simplicity, we will first expose
everything for scalar polynomials. In Section 4, we will discuss how to extend our
theory to (square) matrix polynomials. To this goal, we review the concepts of (strong)
linearization, minimal indices, minimal bases and duality of matrix pencils in Sections
4.1 and 4.3. Readers unfamiliar with the theory of matrix polynomials may find more
details in [7, 9, 10, 14, 27] and the references therein. Finally, in Section 5 we are going
to draw some conclusions and to say a few words about possible future applications
of this work.

We have tried to keep the technical prerequisites to read this paper to the mini-
mum. Nevertheless, in some instances we have found useful to apply certain techniques
first invented by V. N. Kublanovskaya [19], and recently rediscovered and applied to
the theory of Fiedler pencils [27]. Also, for simplicity we will state our results for the
field C. However, our theory is applicable to any field F.

2. Fiedler pencils in orthogonal bases with constant recurrence rela-

tions. In this section we consider a family of orthogonal polynomials with a constant
three-term recurrence relation, i.e., we set

φ−1(x) = 0, φ0(x) = 1,

αφk+1(x) = xφk(x) − βφk(x) − γφk−1(x), k = 0, . . . , n− 1,
(2.1)

where 0 6= α, β, γ ∈ C do not depend on n.

Although the requirement of a constant recurrence relation unfortunately excludes
many commonly used orthogonal polynomials, such as Legendre or Jacobi, some prac-
tically important polynomial bases that fit into the above defined category include
the monomials (α = 1, β = γ = 0) and the Chebyshev polynomials of the second kind
(α = γ = 1/2, β = 0).

Suppose now that we have a polynomial of degree n expressed in the basis
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{φ0, . . . , φn},

p(x) =

n∑

j=0

cjφj(x), with cn 6= 0, (2.2)

and where c0, . . . , cn ∈ C. Then the following n × n pencil is known as the comrade
pencil [3, 24] of (2.2):

C(x) = x




cn
1

. . .

1
1



−




−dn−1 −dn−2 −dn−3 . . . −d0
α β γ

. . .
. . .

. . .

α β γ
α β



, (2.3)

where dn−1 = αcn−1 − βcn, dn−2 = αcn−2 − γcn, and dk = αck for k = 0, . . . , n− 3.
It is not hard to show that the characteristic polynomial of (2.3) is equal to αnp(x)
1.

In the following, in the spirit of [13] we will construct a family of comrade pencils
that contains as a particular case the comrade pencil (2.3). To this purpose, we now
recall the definition of some special matrices that we denote by Mj and Nj . The
discovery of the Mj is due to M. Fiedler [13] and was historically the first approach
to Fiedler pencils (in the monomial basis).

Definition 2.1. Given the polynomial (2.2) expressed in the orthogonal polyno-
mial basis defined by (2.1), define

M0 =

[
In−1

−c0

]
, N0 =

[
In−1

0

]
, Mn =

[
cn

In−1

]

and for k = 1, 2, . . . , n− 1

Mk =




In−k−1

−ck 1
1 0

Ik−1


 , Nk = M−1

k =




In−k−1

0 1
1 ck

Ik−1


 .

Importantly, the matrices Nk and Mk both satisfy the commutativity relations

[Xi, Yj ] = 0 ⇔ |i− j| 6= 1, for any X,Y ∈ {M,N}. (2.4)

In the following theorem we present a factorization of the comrade pencil C(x) in
terms of the matrices Mk and Nk introduced in Definition 2.1. This factorization can
be seen as the comrade pencil analogue of the factorization of the companion matrix
in [13, Lemma 2.1].

Theorem 2.2. The comrade pencil (2.3) can be factorized as

C(x) = Mnx− αMn−1 · · ·M1M0 − βMn − γMnN0N1 · · ·Nn−1Mn.

1In this work, the characteristic polynomial of a pencil Ax+B refers to the polynomial det(Ax+
B).

4



Proof. It is evident that the linear term in C(x) is, by definition, the matrix Mn.
We therefore only need to prove that equality holds for the constant term. From (2.3)
we may write it, up to a minus sign, as the sum of three terms:

α




−cn−1 −cn−2 · · · −c0
1

. . .

1
1



+ βMn + γ




0 cn
0 1

. . .
. . .

1
0



.

That the first term is equal to αMn−1 · · ·M1M0 has been already proved in [13,
Lemma 2.1]. It remains to show that the third term is equal to γMnN0N1 · · ·Nn−1Mn.
To see this, we claim that for m = 0, . . . , n− 1 it holds

N0N1 · · ·Nm =

[
In−m−1

Jm+1

]
,

where Jk denotes a nilpotent Jordan block of size k, i.e., the matrix

Jk =




0 1
. . .

. . .

0 1
0


 ∈ C

k×k.

We prove this result by induction. The claim is obviously true for m = 0. Now
suppose that it holds for m− 1 and note that

N0N1 · · ·Nm =

[
In−m

Jm

]
Nm =

[
In−m−1

Jm+1

]
,

concluding the inductive step. Then, in particular, N0N1 · · ·Nn−1 = Jn, and hence
γMnN0N1 · · ·Nn−1Mn = γMnJnMn = γMnJn, concluding the proof.

As in [13], our approach will be based in permuting the factors Mk in a different
order. The important difference with respect to the monomial basis is that we will
simultaneously permute the factors Nk in the reverse order. By this we mean that
if the factors Mk appear as Mi0Mi1 · · ·Min−1

, then the factors Nk will appear as
Nin−1

· · ·Ni1Ni0 .
Definition 2.3. Let σ be a permutation of {0, 1, . . . , n − 1}, and let us define

Mσ := Mσ(0) · · ·Mσ(n−1), and Nσ := Nσ(n−1) · · ·Nσ(0). Then the pencil

Fσ(x) := Mnx− αMσ − βMn − γMnNσMn (2.5)

is called the Fiedler-comrade pencil associated with the permutation σ.
The relations (2.4) imply that some Fiedler-comrade pencils associated with dif-

ferent permutations σ are equal. For example, for n = 3, the Fiedler-colleague pen-
cils xM3 − αM0M2M1 − βM3 − γM3N1N2N0M3 and xM3 − αM2M0M1 − βM3 −
γM3N1N0N2M3 are equal. From (2.4), we observe that the relative positions of the
matrices Mi and Mi+1 in the product Mσ(0) · · ·Mσ(n−1) or, equivalently, the posi-
tion of the matrices Ni and Ni+1 in the product Nσ(n−1) · · ·Nσ(0) are of fundamental
importance. This motivates the definition of the consecutions and inversions of a
permutation, introduced in [7], that we recall here.

Definition 2.4. [7, Definition 3.3] Let σ be a permutation of {0, 1, . . . , n − 1}.
Then, for i = 0, 1, . . . , n−2, the permutation σ has a consecution at i if σ(i) < σ(i+1),
and it has an inversion at i otherwise.
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The previous definition allows us to define a canonical form for the products
Mσ = Mσ(0) · · ·Mσ(n−1) and Nσ = Nσ(n−1) · · ·Nσ(0) in (2.5).

Lemma 2.5. Let Fσ(x) be the Fiedler-comrade pencil associated with the per-
mutation σ, and let σ have precisely Γ consecutions at c1 − 1, . . . , cΓ − 1. Denote
Mj:i = Mj−1 · · ·Mi and Nj:i = Ni · · ·Nj−1. Then, Fσ(x) can be written in the nor-
mal form

Fσ(x) = Mnx− αMc1:0Mc2:c1 · · ·Mn:cΓ − βMn − γMnNn:cΓ · · ·Nc2:c1Nc1:0Mn. (2.6)

Proof. It is immediate from the commutativity properties of the matrices Mj and
Nj .

In the following theorem we show that any Fiedler-comrade pencil Fσ(x) is strictly
equivalent to C(x), that is, there exist nonsingular matrices U and V such that
UFσ(x)V = C(x). In addition, the theorem also shows that all Fiedler-comrade
pencils associated with a polynomial p(x) satisfy det(Fσ(x)) = αnp(x). In other
words, the eigenvalues of Fσ(x) are precisely the roots of p(x).

Theorem 2.6. Any Fiedler-comrade pencil of a polynomial p(x) as in (2.2) is
strictly equivalent to the comrade pencil (2.3). Moreover, its characteristic polynomial
is equal to αnp(x).

Proof. By Lemma 2.5, we may assume that any Fiedler pencil is in the normal
form (2.6).

We now proceed by induction on the number of consecutions Γ in the permutation
σ. If Γ = 0, we recover the comrade pencil (2.3), which is, obviously, strictly equivalent
to itself. Additionally, as we said after the equation (2.3), we have det(C(x)) =
αnp(x). Now suppose that we have proved the result for the sequence c2, . . . , cΓ,
Γ ≤ n− 1, that is, for a Fiedler-comrade pencil with Γ− 1 consecutions, and prepend
an extra element c1. We now need to inductively prove the statement for c1, c2, . . . , cΓ.
Let Q = Mc2:c1 · · ·Mn:cΓ , P = Mc1:0, and R = Nc1:0. Note that Q and Mn are
invertible, while both P and R commute with Mn, as this will be important in the
following.

By assumption, the pencilMnx−αQP−βMn−γMnRQ−1Mn is strictly equivalent
to the comrade pencil (2.3) since it is associated with a permutation that has Γ −
1 consecutions. So we just need to show that the pencils Mnx − αPQ − βMn −
γMnQ

−1RMn andMnx−αQP−βMn−γMnRQ−1Mn are strictly equivalent. Indeed,

QM−1
n (Mnx− αPQ − βMn − γMnQ

−1RMn)Q
−1Mn =

Mnx− αQP − βMn − γMnRQ−1Mn,

which shows that the result is true for any Fiedler-comrade pencil with Γ consecutions.
The second statement of the theorem follows because det(QM−1

n ) det(Q−1Mn) = 1.

Interestingly, as in the monomial case, some of the Fiedler-comrade pencils have a
pentadiagonal bandwidth. We say that σ is an even/odd permutation of {0, 1, . . . , n−
1} if it either lists first all the even elements of {0, 1, . . . , n− 1} and then all the odd
ones, or vice versa.

Theorem 2.7. Let σ be an even/odd permutation. Then Fσ(x) is a pentadiagonal
pencil.

Proof. The argument is very similar to the one in the monomial basis. Indeed, the
key observation is that when we multiply the matrices Mk for only k even (or odd),
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we obtain a tridiagonal matrix because the non-identity blocks do not overlap. The
very same observation holds for the Nk. We now only need the following facts: the
product of two tridiagonal matrices is pentadiagonal, and the (left or right) product
of a pentadiagonal matrix with a diagonal matrix is pentadiagonal. Therefore:

• The addend xMn is diagonal;
• The addend −αMσ is pentadiagonal;
• The addend −βMn is diagonal;
• The addend −γMnNσMn is pentadiagonal.

Hence, their sum is a pentadiagonal pencil.
We illustrate one of the pentadiagonal Fiedler-comrade pencils in two cases: for

a polynomial with degree 7 (odd degree) and for a polynomial with degree 8 (even

degree), so its general pattern can be discerned. First, for a polynomial
∑7

k=0 ckφk(x)
the Fiedler-comrade pencil associated with the permutation (0, 2, 4, 6, 1, 3, 5) is equal
to




xc7 + αc6 − βc7 αc5 − γc7 −α 0 0 0 0
−α x− β 0 −γ 0 0 0
−γc7 αc4 − γc6 x− β αc3 − γc5 −α 0 0
0 −α 0 x− β 0 −γ 0
0 0 −γ αc2 − γc4 x− β αc1 − γc3 −α
0 0 0 −α 0 x− β 0
0 0 0 0 −γ αc0 − γc2 x− β




,

and, second, for the polynomial
∑8

k=0 ckφk(x) the pentadiagonal Fiedler-comrade
pencil associated with the permutation (0, 2, 4, 6, 1, 3, 5, 7) is equal to




xc8 + αc7 − βc8 −α −γc8 0 0 0 0 0
αc6 − γc8 x− β αc5 − γc7 −α 0 0 0 0

−α 0 x− β 0 −γ 0 0 0
0 −γ αc4 − γc6 x− β αc3 − γc5 −α 0 0
0 0 −α 0 x− β 0 −γ 0
0 0 0 −γ αc2 − γc4 x− β αc1 − γc3 −α
0 0 0 0 −α 0 x− β 0
0 0 0 0 0 −γ αc0 − γc2 β




.

3. Fiedler pencils and Chebyshev polynomials of the first kind. We
do not believe that our approach can be easily generalized to any (nonconstant)
three-term recurrence relation, but these difficulties can be easily overcome when the
recurrence is nonconstant only because of a small number of exceptions. The price
that one pays is that there are fewer Fiedler-comrade pencils for a given degree n. We
illustrate this by analyzing the important case of the Chebyshev polynomials of the
first kind, that we denote by Tk(x) := cos(k arccos(x))2.

Our motivation to focus on this particular case is that, among nonstandard poly-
nomial bases, Chebyshev polynomials of the first kind are of great practical impor-
tance. To name but one reason, it is (mainly) Chebyshev technology that allows the
software package chebfun [29] to graciously achieve its goal to deliver accurate nu-
merical computations with continuous functions. Applications also exist for matrix
polynomials expressed in the Chebyshev basis [12]. Unfortunately, the analysis of the
previous section does not cover the Chebyshev polynomials of the first kind, since

2This defining formula holds on [−1, 1].
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they fail to satisfy a constant recurrence relation. Yet, they are very close to doing
so. Indeed, the corresponding recurrence is

T0(x) = 1, T1(x) = xT0(x),

1

2
Tk+1(x) = xTk(x) −

1

2
Tk−1(x), k = 1, . . . , n− 1.

(3.1)

In other words, α = γ = 1
2 , β = 0, with the only exception of k = 0, where α = 1.

This can be overcome by “melting” the matrices M1 and M0, as well as the matrices
N1 and N0, in Definition 2.1, to accomodate the two different values that α can take.
More explicitly, we can define the following factors:

Definition 3.1. Given the polynomial p(x) =
∑n

j=0 cjTj(x) expressed in the
Chebyshev polynomial basis of the first kind defined by (3.1), define

M1 =



In−2

−c1 −c0
2 0


 , N1 =



In−2

0 1
0 0


 , Mn =

[
cn

In−1

]

and for k = 2, 3, . . . , n− 1

Mk =




In−k−1

−ck 1
1 0

Ik−1


 , Nk = M−1

k .

Again, the matrices Nk and Mk satisfy the commutativity relations

[Mi,Mj ] = 0 ⇔ |i− j| 6= 1, [Ni, Nj] = 0 ⇔ |i− j| 6= 1.

The Chebyshev version of the comrade pencil is known as the colleague pencil [3,
17, 24]. The colleague pencil of p(x) =

∑n

j=0 cjTj(x) is

CT (x) = x




cn
1

. . .

1
1



−




−dn−1 −dn−2 −dn−3 . . . −d0
1
2

1
2

. . .
. . .

1
2

1
2

1



, (3.2)

where dn−2 = cn−2/2− cn/2 and dk = ck/2 for k = 0, . . . , n− 3 and k = n− 1.
In Theorem 3.2 we present a factorization of the colleague pencil CT (x) in terms

of the matrices Mk and Nk introduced in Definition 3.1.
Theorem 3.2. The colleague pencil (3.2) can be factorized as

CT (x) = Mnx+
1

2

(
Mn−1 · · ·M2M1 +MnN1N2 · · ·Nn−1Mn

)
.

Proof. The proof follows closely that of Theorem 2.2, and we invite the reader to
fill in the details.

We now introduce the Fiedler-Chebyshev pencils of a polynomial p(x) expressed
in the Chebyshev basis. We have decided not to give the details of the proofs of the
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results in the rest of this section, because they follow very closely their Fiedler-comrade
pencil analogues, that were explained in detail in the previous section.

Definition 3.3. Let σ be a permutation of {1, 2, . . . , n− 1}, and define Mσ :=
Mσ(1) · · ·Mσ(n−1), and Nσ := Nσ(n−1) · · ·Nσ(1). Then the pencil

Fσ(x) = Mnx−
1

2
(Mσ +MnNσMn)

is called the Fiedler-Chebyshev pencil associated with the permutation σ.
Observe that, because of the one exceptional α in the recurrence relation,

Fiedler-Chebyshev pencils of a polynomial of degree n are constructed from only
n − 1 building blocks Mi, in contrast with the situation of Section 2, where there
were n such blocks. This implies that we only get 2n−2, rather than 2n−1, distinct
Fiedler pencils. However, we can overcome this loss by defining a different family of
Fiedler-Chebyshev pencils using a different M1 and N1, namely,

M̃1 = MT
1 = In−2 ⊕

[
−c1 2
−c0 0

]
and Ñ1 = NT

1 = In−2 ⊕

[
0 0
1 0

]
.

This second family is related to the Fiedler-Chebyshev pencils of Definition 3.3 by
transposition.

Analogously to the normal form for Fiedler-comrade pencil, there is a normal
form for Fiedler-Chebyshev pencils which follows immediately from the commutativity
properties of the matrices Mk and Nk.

Lemma 3.4. Let Fσ(x) be the Fiedler-Chebyshev pencil associated with the per-
mutation σ, and let σ have precisely Γ consecutions, at c1 − 1, . . . , cΓ − 1. Denote
Mj:i = Mj−1 · · ·Mi and Nj:i = Ni · · ·Nj−1. Then, Fσ(x) can be written in the normal
form

Fσ(x) = Mnx+
1

2
(Mc1:1Mc2:c1 · · ·Mn:cΓ +MnNn:cΓ · · ·Nc2:c1Nc1:1Mn). (3.3)

The following theorem shows that all Fiedler-Chebyshev pencils associated with
the same polynomial p(x) are strictly equivalent to the colleague pencil CT (x) of p(x),
and that their characteristic polynomials are equal to p(x)/2n−1.

Theorem 3.5. Every Fiedler-Chebyshev pencil of a polynomial p(x) is strictly
equivalent to the colleague pencil (3.2) of the polynomial p(x). Moreover, its charac-
teristic polynomial is equal to p(x)/2n−1.

Again, we obtain pentadiagonal pencils by taking even/odd permutations. As in
the previous section, we illustrate one of the pentadiagonal Fiedler-Chebyshev pencils
in two cases: for a polynomial with degree 7 (odd degree) and for a polynomial with
degree 8 (even degree), so its general pattern can be discerned. First, for a poly-

nomial
∑7

k=0 ckTk(x) the Fiedler-Chebyshev pencil associated with the permutation
(1, 3, 5, 2, 4, 6) is equal to

1

2




2xc7 + c6 −1 −c7 0 0 0 0
c5 − c7 2x c4 − c6 −1 0 0 0
−1 0 2x 0 −1 0 0
0 −1 c3 − c5 2x c2 − c4 −1 0
0 0 −1 0 2x 0 −1
0 0 0 −1 c1 − c3 2x c0 − c2
0 0 0 0 −2 0 2x




,
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and, second, for the polynomial
∑8

k=0 ckTk(x) the pentadiagonal Fiedler-Chebyshev
pencil associated with the permutation (1, 3, 5, 7, 2, 4, 6) is equal to

1

2




2xc8 + c7 c6 − c8 −1 0 0 0 0 0
−1 2x 0 −1 0 0 0 0
−c8 c5 − c7 2x c4 − c6 −1 0 0 0
0 −1 0 2x 0 −1 0 0
0 0 −1 c3 − c5 2x c2 − c4 −1 0
0 0 0 −1 0 2x 0 −1
0 0 0 0 −1 c1 − c3 2x c0 − c2
0 0 0 0 0 −2 0 2x




.

From these examples, the reader may get the generic version of the example we have
used as a motivation in the introduction.

4. Matrix polynomials. The goal of this section is to extend our treatment to
matrix polynomials. Being Chebyshev polynomials of the first kind the most impor-
tant family of orthogonal polynomials in numerical applications, we will first focus
on generalizing Fiedler-Chebyshev pencils to the matrix polynomial case. Later, we
will argue that one can do the same with Fiedler-comrade pencils, obtaining simi-
lar results. To complete these tasks, we will make use of the concepts of (strong)
linearizations, minimal bases e indices, and duality of matrix pencils. For readers
not familiar with them, they are very briefly reviewed in Sections 4.1 and 4.3. See
[7, 9, 10, 14, 27] for more complete summaries.

Also, we introduce the following notation. The degree of a matrix polynomial
A(x) is denoted by deg(A(x)). For a matrix polynomial A(x) of degree n, expressed
in a certain polynomial basis {φ0, φ1, . . . , φn}, we define the following map denoted
by row (A):

A(x) =

n∑

k=0

Akφk(x) 7→ row (A) =
[
An · · · A1 A0

]
. (4.1)

Clearly, (4.1) implicitly depends on the choice of basis {φ0, φ1, . . . , φn}, which should
be clear from the context.

4.1. Linearizations, eigenvectors, minimal bases and minimal indices of

matrix polynomials. In this section we review the definitions and some basic prop-
erties of strong linearizations of matrix polynomials, eigenvectors of regular matrix
polynomials, and minimal bases and minimal indices of singular matrix polynomi-
als. The concept of strong linearization was introduced in [15, 16] for regular matrix
polynomials, and then extended to the singular case in [6].

Definition 4.1. If P (x) is an m×m square matrix polynomial of degree n, the
pencil Ax+B is a linearization of P (x) if there exists unimodular (i.e., with nonzero
constant determinant) matrix polynomials U(x) and V (x) such that

U(x)(Ax +B)V (x) =

[
P (x) 0
0 Imn−m

]
.

Furthermore, a linearization Ax + B is called a strong linearization of P (x) if the
pencil Bx + A is a linearization of the reversal polynomial of P (x) (i.e., the matrix
polynomial revP (x) := xnP (x−1)).
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We recall that the key property of any strong linearization Ax + B of a matrix
polynomial P (x) is that Ax+B and P (x) share the same finite and infinite elementary
divisors [9, Theorem 4.1]. However, when det(P (x)) is identically equal to 0 (i.e., the
matrix polynomial P (x) is singular), Definition 4.1 only guarantees that the number
of left (resp. right) minimal indices of Ax + B is equal to the number of left (resp.
right) minimal indices of P (x). The concepts of minimal bases and minimal indices
of singular matrix polynomials are recalled in the following definitions.

A vector polynomial is a vector whose entries are polynomials in the variable x,
and its degree is the greatest degree of its components. If an m×m matrix polynomial
P (x) is singular, then it has non-trivial left and right null spaces:

Nℓ(P ) := {w(x)T ∈ C(x)1×m such that w(x)TP (x) = 0},

Nr(P ) := {v(x) ∈ C(x)m×1 such that P (x)v(x) = 0}
(4.2)

where C(x) denotes the field of rational functions with complex coefficients. These
null spaces are particular examples of rational subspaces, i.e., subspaces over the field
C(x) formed by p-tuples whose entries are rational functions. It is not difficult to show
that any rational subspace V has bases consisting entirely of vector polynomials. The
order of a vector polynomial basis of V is defined as the sum of the degrees of its
vectors [14, Definition 2]. Among all the possible polynomial bases of V , those with
least order are called minimal bases of V [14, Definition 3]. There are infinitely many
minimal bases of V , but the ordered list of degrees of the vector polynomials in any
minimal basis of V is always the same [14, Remark 4, p. 497]. This list of degrees is
called the list of minimal indices of V . With this definitions at hand, the right and
left minimal indices of a singular matrix polynomial P (x) are introduced in Definition
4.2.

Definition 4.2. The left (resp. right) minimal indices and bases of a singular
matrix polynomial P (x) are defined as those of the subspace Nℓ(P ) (resp. Nr(P )).

With a slight abuse of notation, we sometimes say that a matrix polynomial is
a minimal basis to mean that its columns are a minimal basis of the subspace they
span. With this convention, we recall that a matrix polynomial M(x) is a minimal
basis if and only if M(x0) has full column rank for all x0 ∈ C and its high order
coefficient matrix [10, Definition 2.11], denoted by M(x)hc, has full column rank (see
[10, Theorem 2.14]).

When det(P (x)) is not identically equal to 0 (i.e., the matrix polynomial P (x)
is regular), the finite eigenvalues of the matrix polynomial P (x) are the zeros of the
scalar polynomial det(P (x)). Moreover, a column vector v (resp. a row vector wT )
is a right (resp. left) eigenvector of P (x) associated with a finite eigenvalue x∗ if
P (x∗)v = 0 (resp. wTP (x∗) = 0). Also, a regular matrix polynomial P (x) has
an infinite eigenvalue if and only if zero is an eigenvalue of the reversal polynomial
revP (x) = xnP (x−1), and the corresponding left and right eigenvectors of P (x) at
the eigenvalue ∞ are just the left and right null vectors of revP (0).

It is well known that strong linearizations may change right and left minimal
indices arbitrarily, except by the constraints on their numbers (see, for example, [9,
Theorem 4.11]), and that they do not preserve neither minimal basis or eigenvectors
[7]. Therefore the recovery of the minimal indices, minimal basis, or eigenvectors of
P (x) from those of any of its linearizations is, in general, a non-trivial task. However,
this recovery is very simple for the colleague pencil (4.4), as we show in the following
section.
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4.2. The colleague pencil and the generalized Horner shifts of a matrix

polynomial. Let Cj ∈ Cm×m and consider a matrix polynomial expressed in the
Chebyshev basis (3.1):

P (x) =

n∑

j=0

CjTj(x). (4.3)

The colleague pencil of the matrix polynomial (4.3) is:

CT (x) = x




Cn

Im
. . .

Im
Im


−

1

2




−Dn−1 −Dn−2 −Dn−3 ... −D0

Im 0 Im
. . .

. . .
. . .

Im 0 Im
2Im 0


 , (4.4)

where the Di are defined analogously to the di in Section 3.
The colleague pencil CT (x) is a remarkable pencil. It is a strong linearization for

P (x) regardless of whether P (x) is regular or singular. Moreover, the eigenvectors
(when P (x) is regular) and the minimal indices and bases (when P (x) is singular) of
CT (x) and of P (x) are related in simple ways. All these claims are proved in Theorem
4.4. But first, we need to introduce the notion of generalized Horner shift and gener-
alized Horner shift of the second kind, which are matrix polynomials associated with
(4.3). These matrix polynomials, denoted by Hk,h(x) and Vk,h(x), are generalizations
of the Horner shifts of a matrix polynomial expressed in the monomial basis (see, for
example, [7]).

Definition 4.3. Let P (x) be a matrix polynomial as in (4.3). Its generalized
Horner shift of order (k, h) is

Hk,h(x) =

k∑

j=0

Cj+n−kTj+h(x),

and its generalized Horner shift of the second kind of order (k, h) is

Vk,h(x) =

k∑

j=0

Cj+n−kUj+h(x),

where U0(x), . . . , Un(x) are the Chebyshev polynomials of the second kind.
Note that the generalized Horner shifts in Definition 4.3 do not coincide with the

Clenshaw shifts introduced in [26], although both families of matrix polynomials can
be seen as a generalization of the Horner shifts.

In Theorem 4.4, we state and prove all the properties of the colleague pencil
claimed at the beginning of this section. When the matrix polynomial P (x) is regular,
some of this properties have been already proved [1], however we extend the analysis
to cover also the singular matrix polynomial case.

Theorem 4.4. Let P (x) be a matrix polynomial as in (4.3) and let CT (x) be its
colleague pencil (4.4). Then:

(a) The colleague pencil CT (x) is a strong linearization of P (x).
(b) Assume that P (x) is singular.

(b1) If M(x) is a right minimal basis of P (x) with minimal indices 0 ≤ ǫ1 ≤
ǫ2 ≤ · · · ≤ ǫp, then

[
Tn−1(x)Im · · · T1(x)Im T0(x)Im

]T
M(x)
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is a right minimal basis of CT (x) with minimal indices 0 ≤ ǫ1 +n− 1 ≤
ǫ2 + n− 1 ≤ · · · ≤ ǫp + n− 1.

(b2) If N(x)T is a left minimal basis of P (x) with minimal indices 0 ≤ η1 ≤
η2 ≤ · · · ≤ ηq, then

N(x)T
[
V0,0(x) V1,0(x) · · · Vn−2,0(x)

1
2Vn−1,0(x)

]

is a left minimal basis of CT (x) with minimal indices 0 ≤ η1 ≤ η2 ≤
· · · ≤ ηq.

(c) Assume that P (x) is regular.
(c1) If v is a right eigenvector of P (x) with finite eigenvalue x∗, then

[
Tn−1(x∗)v

T · · · T1(x∗)v
T T0(x∗)v

T )
]T

is a right eigenvector of CT (x) with finite eigenvalue x∗.
(c2) If wT is a left eigenvector of P (x) with finite eigenvalue x∗, then

[
wTV0,0(x∗) wTV1,0(x∗) · · · wTVn−2,0(x∗)

1
2w

TVn−1,0(x∗)
]

is a left eigenvector of CT (x) with finite eigenvalue x∗.
(c3) If v and wT are, respectively, right and left eigenvectors of P (x) for

the eigenvalue ∞ then
[
vT 0T(n−1)m×1

]T
and

[
wT 01×(n−1)m

]
are,

respectively, right and left eigenvectors of CT (x) for the eigenvalue ∞,
where 0ℓ1×ℓ2 denotes the zero matrix of size ℓ1 × ℓ2.

Proof. First, we prove part (a). Consider the vectors Λ(x) =
[
xn−1 · · · x0

]T

and Φ(x) =
[
Tn−1(x) · · · T0(x)

]T
, and let B be the change of basis matrix such

that Φ(x) = BΛ(x). Then, a direct computation gives

CT (x)(B ⊗ Im)(Λ(x) ⊗ Im) = CT (x)(Φ(x) ⊗ Im) =
1

2
e1 ⊗ P (x),

which means that the pencil CT (x)(B ⊗ Im) belongs to the vector space L1(P ) (see
[20, 27] for more details about the L1(P ) vector space). Since B ⊗ Im is invertible,
it is clear that CT (x) is a strong linearization of P (x) if and only if CT (x)(B ⊗
Im) is. By [27, Theorem 8.3], the pencil CT (x)(B ⊗ Im) is a strong linearization of
P (x) if row (CT (B ⊗ Im)) has rank mn − µ where µ = n − rank row (P ). Clearly,
row (CT (B⊗ Im)) and row (CT ) have the same rank. Similarly, row (P ) has the same
rank regardless of the choice of the basis in (4.1), as changing basis is equivalent to
postmultiplying row (P ) by an invertible square matrix.

The structure of CT (x) makes clear that the rank of row (CT ) is m(n − 1) + ν,
where ν is the rank of the first block row of row (CT ). It remains to show that
rank row (P ) = ν. To this goal observe that the rank of the first block row of row (CT )
is equal to rank

[
Cn Dn−1 Dn−2 Dn−3 · · · D0

]
, and that

[
Cn Dn−1 Dn−2 Dn−3 · · · D0

]
=

[
Cn Cn−1 Cn−2 Cn−3 . . . C0

]




Im 0 − 1
2Im

1
2Im

1
2Im

1
2Im

. . .
1
2Im



,
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which implies that rank row (P ) = ν.

Then, we prove part (b1). First, it is immediate to verify that 2CT (x)(Φ(x) ⊗
M(x)) = e1 ⊗ (P (x)M(x)) = 0. Since Φ(x) ⊗M(x) clearly has full column rank, we
have that it is a basis of the right null space Nr(CT (x)). It remains to show that
it is minimal. But this follows from the minimality of M(x): indeed, for any µ ∈ C

rankΦ(µ) ⊗ M(µ) = rankM(µ), and denoting by M(x)hc the high order coefficient
matrix [14] of M(x) we have that (Φ(x) ⊗M(x))hc = e1 ⊗M(x)hc. To complete the
argument, note that all the blocks of Φ(x) ⊗M(x) are of the form Tℓ(x)M(x), with
0 ≤ ℓ ≤ n− 1, and that the maximum degree, which is equal to n− 1+deg(M(x)), is
attained in the topmost block of Φ(x)⊗Mx). The result now follows from [14, Main
Theorem]. The proof of part (b2) follows very closely that of part (b1), so we omit it.

To prove part (c1), just note 2CT (x)(Φ(x) ⊗ v) = e1 ⊗ (P (x)v), which implies
that CT (x∗)(Φ(x∗)⊗ v) = 0 if and only if P (x∗)v = 0. Again, the proof for part (c2)
is very similar, so we omit it.

Finally, notice that revP (0) = 2n−1Cn. Since the leading coefficient of CT (x) is
diag [Cn, Im(n−1)] we get immediately part (c3).

Before extending the notion of Fiedler-Chebyshev pencils to the matrix polyno-
mial case and obtaining for them analogous results to those in Theorem 4.4 for the
colleague pencil, we review the concept of duality of matrix pencils, which, together
with Theorem 4.4, will be one of our main tools in completing these tasks.

4.3. Duality of matrix pencils. In this section we recall the concepts of pencil
duality and column and row minimality [19, 27]. Duality will allow us to extend
Theorem 4.4 to any Fiedler-Chebyshev pencil by slightly modifying the proofs of [27]
for Fiedler pencils.

Definition 4.5. [27] The m × n pencil L(x) = xL1 + L0 and the n × p pencil
R(x) = xR1 +R0 are said to be dual pencils if the following two conditions hold:

1. L1R0 = L0R1;

2. rank
[
L1 L0

]
+ rank

[
R1

R0

]
= 2n.

In this case we say that L(x) is a left dual of R(x) and that R(x) is a right dual
of L(x). Moreover, if rank

[
L1 L0

]
= m we say that L(x) is row-minimal, and if

rank

[
R1

R0

]
= p we say that R(x) is column-minimal.

The rest of the paper heavily uses Definition 4.5 specialized to the square case
m = n = p.

We now recall two results that show how the concept of duality may be applied
to the study of linearizations of matrix polynomials, and how right minimal indices
and bases, and right eigenvectors of a pair of dual pencils are related.

Theorem 4.6. [27, Theorem 6.2] Let P (x) be a matrix polynomial and let R(x)
be a strong linearization of P (x). If R(x) is column-minimal, any row-minimal left
dual pencil of R(x) is also a strong linearization of P (x).

Theorem 4.7. [27, Theorems 3.8 and 4.14] Let L(x) = xL1 + L0 and R(x) =
xR1 + R0 be a pair of square row-minimal and column-minimal, respectively, pair of
dual pencils.

(a) Assume that L(x) and R(x) are singular. If M(x) is a right minimal basis
for R(x), then N(x) = R1M(x) is a right minimal basis for L(x). Moreover,
if 0 ≤ ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫp are the right minimal indices of M(x), then
0 ≤ ǫ1 − 1 ≤ ǫ2 − 1 ≤ · · · ≤ ǫp − 1 are the right minimal indices of N(x).
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(b) Assume that L(x) and R(x) are regular. If v is a right eigenvector of R(x)
with finite eigenvalue x∗, then R1v is a right eigenvector of L(x) with finite
eigenvalue x∗.

4.4. Fiedler-Chebyshev pencils of a matrix polynomial. Analogously to
Section 3, given a polynomial P (x) as in (4.3), define

M1 =



Im(n−2)

−C1 −C0

2Im 0


 , N1 =



Im(n−2)

0 Im
0 0


 , Mn =

[
Cn

Im(n−1)

]
,

and for k = 2, 3, . . . , n− 1

Mk =




Im(n−k−1)

−Ck Im
Im 0

Im(k−1)


 , Nk =




Im(n−k−1)

0 Im
Im Ck

Im(k−1)


 .

Then, the Fiedler-Chebyshev pencil of P (x) is defined as in Definition 3.3.
In Theorem 4.8 we extend the results in Theorem 4.4 for the colleague pencil to

any Fiedler-Chebyshev pencil. We want to emphasize that to prove these results we
rely heavily on Theorems 4.6 and 4.7.

Theorem 4.8. Let P (x) be a matrix polynomial as in (4.3) and let Fσ(x) be
a Fiedler-Chebyshev pencil associated with a permutation σ with consecutions and
inversions precisely at c1 − 1, c2 − 1, . . . , cΓ − 1 and i1 − 1, i2 − 1, . . . , iΛ − 1, and let
Tσ = Nn:cΓMn · · ·Nn:c2MnNn:c1Mn and Sσ = (MnNn−1 · · ·Ni1)(MnNn−1 · · ·Ni2) · · ·
(MnNn−1 · · ·NiΛ). Then:

(a) The pencil Fσ(x) is a strong linearization of P (x).
(b) Assume that P (x) is singular.

(b1) If M(x) is a right minimal basis of P (x) with minimal indices 0 ≤ ǫ1 ≤
ǫ2 ≤ · · · ≤ ǫp, then

Tσ

[
Tn−1(x)Im · · · T1(x)Im T0(x)Im

]T
M(x)

is a right minimal basis of Fσ(x) with minimal indices 0 ≤ ǫ1+n−1−Γ ≤
ǫ2 + n− 1− Γ ≤ · · · ≤ ǫp + n− 1− Γ.

(b2) If N(x)T is a left minimal basis of P (x) with minimal indices 0 ≤ η1 ≤
η2 ≤ · · · ≤ ηp, then

N(x)T
[
Un−2(x)Im · · · U1(x)Im U0(x)Im

1
2Vn−1,0(x)

]
Sσ

is a left minimal basis of Fσ(x) with minimal indices 0 ≤ η1+n−2−Λ ≤
η2 + n− 2− Λ ≤ · · · ≤ ηp + n− 2− Λ.

(c) Assume that P (x) is regular.
(c1) If v is a right eigenvector of P (x) with finite eigenvalue x∗, then

Tσ

[
Tn−1(x∗)v

T · · · T1(x∗)v
T T0(x∗)v

T )
]T

is a right eigenvector of Fσ(x) with finite eigenvalue x∗.
(c2) If wT is a left eigenvector of P (x) with finite eigenvalue x∗, then

[
wTUn−2(x∗) · · · wTU1(x∗) wTU0(x∗)

1
2w

TVn−1,0(x∗)
]
Sσ

is a left eigenvector of Fσ(x) with finite eigenvalue x∗.
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(c3) If v and wT are, respectively, right and left eigenvectors of P (x) for the

eigenvalue ∞ then
[
vT 01×(n−1)m

]T
and

[
wT 01×(n−1)m

]
are, respec-

tively, right and left eigenvectors of Fσ(x) for the eigenvalue ∞.
Proof. We start proving parts (a), (b1) and (c1). The strategy of the proof follows

closely the proof for the monomial basis given in [27, Theorem 7.2]; however, there
are some differences that we here highlight. By Lemma 3.4, we may assume that any
Fiedler pencil is in the normal form (3.3).

We now proceed by induction on the number of consecutions Γ in the permutation
σ. If Γ = 0, we recover the colleague pencil (4.4), and, so, the results are true by
Theorem 4.4. Suppose that we have proved the results in parts (a), (b1) and (c1) for
the sequence c2, . . . , cΓ, Γ < n−1, that is, for any Fiedler-Chebyshev pencil with Γ−1
consecutions, and prepend an extra element c1. We now need to inductively prove
the statement for c1, c2, . . . , cΓ. Let Q = Mc2:c1 · · ·Mn:cΓ , P = Mc1:1, and R = Nc1:1.
Note that Q is invertible, while both P and R commute with Mn, as this will be
important in the following.

By assumption, the pencil Fσ̂(x) = Mnx − (QP − MnRQ−1Mn)/2 is a strong
linearization of P (x) since the permutation σ̂ has Γ − 1 consecutions precisely at
c2 − 1, . . . , cΓ − 1. Moreover, Fσ̂(x) is also a column-minimal pencil. To see this,
consider the following two cases: (i) P (x) is regular; and (ii) P (x) singular. If P (x)
is regular, then it is obvious that Fσ̂(x) is column-minimal, and if P (x) is singular,
the right minimal indices of Fσ̂(x) are equal, by the inductive hypothesis, to 0 <
ǫ1 + n−Γ ≤ ǫ2 + n− Γ ≤ · · · ≤ ǫp + n−Γ which are larger than 0. This implies that
Fσ̂(x) is column-minimal.

Now, observe that Fσ̂(x) is strictly equivalent to the pencil Q−1Mnx − (P +
Q−1MnRQ−1Mn)/2, which is still a column-minimal strong linearization of P (x).
We claim that the pencil Fσ(x) = Mnx − (PQ + MnQ

−1RMn)/2 is a row-minimal
left dual of the latter pencil. To see this, we need to check the two conditions in
Definition 4.5. For the first, note that

Mn(P +Q−1MnRQ−1Mn) =MnP +MnQ
−1MnRQ−1Mn =

PMn +MnQ
−1RMnQ

−1Mn =

(PQ+MnQ
−1RMn)Q

−1Mn.

For the second, we need to observe that by the inductive assumption

rank

[
−Q−1Mn

P +Q−1MnRQ−1Mn

]
= nm,

and hence, we only need to check that rank
[
−Mn PQ+MnQ

−1RMn

]
= nm. By

the structure of Mn, it is sufficient to argue that the (1, n − cΓ + 1)th block ele-
ment of PQ + MnQ

−1RMn is equal to Im/2. The latter claim follows from the
following arguments. First, due to the structure of the matrices Mk, the matrix
PQ = Mc1:1Mc2:c1 · · ·McΓ:cΓ−1

has
[
Im 0 · · · 0

]
as its first block row, while, by

direct multiplication, it may be checked that the matrix Mn:cΓ is equal to




−Cn−1 · · · −CcΓ Im
Im

. . .

Im


⊕ Im(cΓ−1).
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Thus, the first block row of the matrix PQ is equal to
[
0 · · · 0 Im 0 · · · 0

]
,

where the entry equal to Im is in the block position (1, n−cΓ+1). Second, recall that
the permutation σ has its last inversion at iΛ− 1. This implies that we can rearrange
the product N0:c1 · · ·NcΓ:n in the form (Nρ(0)Nρ(1) · · ·Nρ(iΛ−1))(Nn−1 · · ·NiΛ+1NiΛ)
for some permutation ρ of (0, 1, . . . , iΛ − 1). Due to the structure of the matrices Nk,
the matrix Nρ(0)Nρ(1) · · ·Nρ(iΛ−1) has

[
Im 0 · · · 0

]
as its first block row, while,

by direct multiplication, it may be checked that the matrix Nn−1 · · ·NiΛ+1NiΛ is equal
to




Im
Im Cn−1

. . .
...

Im CiΛ


⊕ Im(iΛ−1).

Thus, the first block row of the matrix Q−1R is equal to
[
0 · · · 0 Im 0 · · · 0

]
,

where the entry equal to Im is in the block position (1, n− iΛ+1). Since n− iΛ+1 6=
n − cΓ + 1, we conclude that the (1, n − cΓ + 1)th block entry of Fσ(x) is equal to
Im/2. By Theorem 4.6 we get finally that Fσ(x) is a strong linearization of P (x).

Now assume that P (x) is singular and consider the vector Φ(x) =[
Tn−1(x) · · · T0(x)

]T
. By the induction hypothesis we have that a right minimal

basis for Fσ̂(x) and for Q−1Fσ̂(x) is given by

Nn:cΓMn · · ·Nn:c2MnΦ(x) ⊗M(x),

with minimal indices 0 ≤ ǫ1+n−Γ ≤ ǫ2+n−Γ ≤ · · · ≤ ǫp+n−Γ. Since the pencils
Fσ(x) and Q−1Fσ̂(x) are related via a duality relation, from part (a) in Theorem 4.7
we get that a right minimal basis for Fσ(x) is given by

(Q−1Mn)Nn:cΓMn · · ·Nn:c2MnΦ(x)⊗M(x) =

(Nn:cΓMn)(NcΓ:cΓ−1
Mn) · · ·Nc2:c1Nn:c2MnΦ(x)⊗M(x) = TσΦ(x)⊗M(x),

with minimal indices 0 ≤ ǫ1 + n − 1 − Γ ≤ ǫ2 + n − 1 − Γ ≤ · · · ≤ ǫp + n − 1 − Γ.
Therefore part (b1) is true for Fσ(x). If P (x) is regular, the argument to prove the
result for the right eigenvectors of Fσ(x) is similar to the one for part (b1) but using
part (b) in Theorem 4.7 instead of part (a), so we omit it.

Next, we prove parts (b2) and (c2). We will get left eigenvectors, and left minimal
indices and bases of a pencil from right eigenvectors, and right minimal indices and
bases of its transpose pencil. Clearly, if a pencil L(x) is a strong linearization of P (x),
then L(x)T is a strong linearization of P (x)T .

Assume that P (x) is singular. We need to consider first the following Fiedler-
Chebyshev pencil

Ĉ(x) = xMn −
1

2
(M1M2 · · ·Mn−1 +MnNn−1 · · ·N2N1Mn) .

Following closely the proof of Theorem 2.2, it may be checked that the pencil Ĉ(x)T
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is equal to

1

2




2xCT
n + CT

n−1 CT
n−2 − CT

n CT
n−3 · · · CT

2 CT
1 −2Im

−Im 2xIm −Im
. . .

. . .
. . .

−Im 2xIm −Im
−Im 2xIm −Im

−Im 2xIm
−CT

n −CT
n−1 · · · · · · −CT

3 CT
0 − CT

2 2xIm




.

We claim that a right minimal basis for the pencil above is given by

[
Un−2(x)Im · · · U1(x)Im U0(x)Im

1
2Vn−1,0(x)

T
]T

N(x), (4.5)

with minimal indices 0 ≤ η1 + n − 2 ≤ η2 + n− 2 ≤ · · · ≤ ηq + n− 2. The proof for
the previous claim is similar to the one for the right minimal basis for the colleague
pencil in Theorem 4.4, so we only sketch it. First, by direct multiplication and using
the recurrence relations for the Chebyshev polynomials of the second kind ((2.1) with
α = γ = 1/2, β = 0), it may be checked that

Ĉ(x)T
[
Un−2(x)Im · · · U1(x)Im U0(x)Im

1
2Vn−1,0(x)

T
]T

N(x) =

1

2
en ⊗ P (x)TN(x) = 0,

so, using the equation above, it may be proved that (4.5) is, indeed, a right minimal

basis for Ĉ(x)T . To complete the argument, notice that there are only two different
types of blocks in (4.5), namely, Uℓ(x)N(x), with 0 ≤ ℓ ≤ n−2, and Vn−1,0(x)N(x)/2.
Clearly, the maximum degree among all blocks of the form Uℓ(x)N(x) is deg (N(x))+
n− 2, attained only in the topmost block of (4.5). For the block Vn−1,0(x)

TN(x)/2,
notice that

xVn−1,0(x)
TN(x) =P (x)TN(x)+

(
CT

n Un−2(x) + · · ·+ CT
3 U1(x) + CT

2 U0(x)− CT
0 U0(x)

)
N(x) =

(
CT

n Un−2(x) + · · ·+ CT
3 U1(x) + CT

2 U0(x)− CT
0 U0(x)

)
N(x).

Taking degrees in the equation above we get

1 + deg (Vn−1,0(x)
TN(x)) ≤ n− 2 + deg (N(x)).

Thus, deg (Vn−1,0(x)
TN(x)) ≤ n− 3+ deg (N(x)), and, therefore, the degree of (4.5)

is n− 2 + deg (N(x)).

Now let us consider the pencil Fσ(x)
T . With the notation M̂j:i = MT

j−1 · · ·M
T
i

and N̂j:i = NT
i · · ·NT

j−1, and using the commutativity properties of the matrices Mk

and Nk, it is immediate to show that this pencil may be written as

Fσ(x)
T = xMT

n −
1

2

(
M̂i1:1M̂i2:i1 · · · M̂iΛ:n +MT

n N̂iΛ:n · · · N̂i2:i1N̂i1:1M
T
n

)
.

We will prove part (b2) by induction on the number of inversions Λ in the permutation
σ. The procedure is very similar to the one in the inductive argument for right
eigenvectors, and right minimal indices and bases, so we only sketch it. For Λ = 0
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we recover the pencil Ĉ(x), so the result is true in this case as we just have seen.

Now, let P̂ = M̂i1:1, Q̂ = M̂i2:i1 · · · M̂iΛ:n and R̂ = N̂i1:1. Then, the pencil Fσ(x)
T is

a row-minimal left dual of the pencil Q̂−1
(
xMT

n − (Q̂P̂ +MT
n R̂Q̂−1MT

n )/2
)
, where

the pencil xMT
n − (Q̂P̂ + MT

n R̂Q̂−1MT
n )/2 is the transpose of a Fiedler-Chebyshev

pencil associated with a permutation with Λ − 1 inversions at i2 − 1, . . . , iΛ − 1. By
the induction hypothesis, a right minimal basis for the previous pencil is given by

N̂n:iΛM
T
n · · · N̂n:i2M

T
n

[
Un−2(x)Im · · · U1(x)Im U0(x)Im

1
2Vn−1,0(x)

T
]T

N(x),

so, using Theorem 4.7, we get that a right minimal basis for Fσ(x)
T is given by

N̂n:iΛM
T
n · · · N̂n:i1M

T
n

[
Un−2(x)Im · · · U1(x)Im U0(x)Im

1
2Vn−1,0(x)T

]T
N(x).

Then, the result follows taking the transpose of the equation above. If P (x) is regular,
the argument to prove the result for the left eigenvectors of Fσ(x) is similar to the
one for part (b2) but using part-(b) in Theorem 4.7 instead of part-(a).

Finally we consider part (c3), that is, eigenvectors with eigenvalues at ∞. As we
have seen in the proof of part (c3) in Theorem 4.4, these eigenvectors are the right
and left null vectors of the leading coefficient Cn. Since the leading coefficient of every
Fiedler-Chebyshev pencil is diag [Cn, Im(n−1)] we get immediately part (c3).

Observe that the matrix Tσ in Theorem 4.8 is symbolically the same3 of [27,
Theorem 7.6] for Fiedler pencils with an inversion at 0 (since the matrix M1 never
appears as a factor of the matrix Tσ). This means that the explicit form of the block
vector

Tσ

[
Tn−1(x)Im · · · T1(x)Im T0(x)Im

]T
, (4.6)

mimics exactly the formulae already known for the monomial basis [7], with the only
difference that any monomial xj is replaced by Tj(x), and that any product of xh

times a Horner shift of degree k is replaced by a generalized Horner shift of order
(h, k). Similar observations can be made for the explicit form of the block vector

[
Un−2(x)Im · · · U1(x)Im U0(x)Im

1
2Vn−1,0(x)

]
Sσ. (4.7)

After applying these modifications, all the results known for the monomial basis, see
for instance [7, 27], translate almost verbatim.

Theorem 4.9. Let P (x) be a matrix polynomial as in (4.3), let Fσ(x) be a

Fiedler-Chebyshev pencil of P (x), and let A(x) =
[
A1(x)

T A2(x)
T · · · An(x)

T
]T

and B(x) =
[
B1(x) B2(x) · · · Bn(x)

]
be, respectively, the block vectors in (4.6)

and (4.7). Setting cσ(1 : ℓ) and iσ(1 : ℓ) for the number of consecutions and inver-
sions, respectively, from 1 to ℓ, then the kth block entry of A(x) is given by





Tiσ(1:n−2)+1(x)Im if k = 1,
Tiσ(1:n−k−1)+1(x)Im if 1 < k < n and there is an inversion at n− k,
Hk−1,iσ(1:n−k−1)+1(x) if 1 < k < n and there is a consecution at n− k, and
T0(x)Im if k = n,

3By symbolically the same we mean that it has the same formula, but of course it is built from
the coefficients of (4.3) in the Chebyshev basis T0(x), . . . , Tn(x) rather than those in the monomial
basis.
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and the kth block entry of B(x) is given by




Ucσ(1:n−2)(x)Im if k = 1,
Ucσ(1:n−k−1)(x)Im if 1 < k < n and there is a consecution at n− k,
Vk−1,cσ(1:n−k−1)(x) if 1 < k < n and there is an inversion at n− k, and
1
2V0,n−1(x) if k = n,

for k = 1, 2, . . . , n.
Theorem 4.9 allows us to obtain, for example, explicit formulae for the left and

right eigenvectors of a Fiedler-Chebyshev pencil Fσ(x) associated with an eigenvalue
x∗. Besides their intrinsic matrix theoretical interest, formulae for the eigenvectors of a
linearization find applications in numerical analysis, e.g., for conditioning analysis [25].
As an example of the previous results, consider the pentadiagonal Fiedler-Chebyshev
pencil

Fσ(x) =
1

2




2xC5 + C4 −Im −C5 0 0
C3 − C5 2xIm C2 − C4 −Im 0
−Im 0 2xIm 0 −Im
0 −Im C1 − C3 2xIm C0 − C2

0 0 −2Im 0 2xIm



.

Then, from Theorems 4.8 and 4.9 we obtain that its right and left eigenvectors with
eigenvalue x∗ are, respectively, of the form




T2(x∗)v
(C5T3(x∗) + C4T2(x∗))v
T1(x∗)v
(C5T4(x∗) + C4T3(x∗) + C3T2(x∗) + C2T1(x∗))v
T0(x∗)v




and






U2(x∗)w
U1(x∗)w
(CT

5 U3(x∗) + CT
4 U2(x∗) + CT

3 U1(x∗))w
U0(x∗)w
1
2

(
CT

5 U4(x∗) + CT
4 U3(x∗) + CT

3 U2(x∗) + CT
2 U1(x∗) + CT

1 U0(x∗)
)
w







T

,

where v and wT are, respectively, right and left eigenvectors of P (x) with eigenvalue
x∗.

Note that, since T0(x) = U0(x) = 1, the block vectors A(x) and B(x) in Theorem
4.9 have always one block entry equal to the identity matrix Im: the nth block entry
in the case of A(x), and the (n − c1 + 1)th entry if σ has its first consecution at
c1 − 1 (or the 1st entry if σ has no consecutions) in the case of B(x). This fact
allows one to recover eigenvalues and minimal bases of P (x) from those of any of its
Fiedler-Chebyshev linearizations.

Theorem 4.10. Let P (x) be a matrix polynomial as in (4.3) and let Fσ(x)
be a Fiedler-Chebyshev pencil associated with a permutation σ with first consecution
precisely at c1 − 1 (if σ has no consecutions, set c1 := n).

(a) Assume that P (x) is singular.
(a1) Suppose {z1(x), z2(x), . . . , zp(x)} is any right minimal basis of Fσ(x),

with vectors partitioned into blocks conformable to the blocks of Fσ(x),
and let vj(x) be the nth block of zj(x), for j = 1, 2, . . . , p. Then {v1(x),
v2(x), . . . , vp(x)} is a right minimal basis of P (x).
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(a2) Suppose {y1(x)T , y2(x)T , . . . , yp(x)T } is any left minimal basis of Fσ(x),
with vectors partitioned into blocks conformable to the blocks of Fσ(x),
and let wj(x) be the (n − c1 + 1)th block of yj(x), for j = 1, 2, . . . , p.
Then {w1(x)

T , w2(x)
T , . . . , wp(x)

T } is a left minimal basis of P (x).
(b) Assume that P (x) is regular.

(b1) If z ∈ Cnm×1 is a right eigenvector of Fσ(x) with finite eigenvalue x∗

partitioned into blocks conformable to the blocks of Fσ(x), then the nth
block of z is a right eigenvector of P (x) with finite eigenvalue x∗.

(b2) If yT ∈ C1×nm is a left eigenvector of Fσ(x) with finite eigenvalue x∗

partitioned into blocks conformable to the blocks of Fσ(x), then the (n−
c1 + 1)th block of yT is a left eigenvector of P (x) with finite eigenvalue
x∗.

4.5. Fiedler-comrade pencils of a matrix polynomial. In this section we
focus on matrix polynomials that are expressed using the orthogonal polynomials
introduced in Section 2, that is, matrix polynomials of the form

P (x) =

n∑

k=0

Ckφk(x), with Ck ∈ C
m×m, (4.8)

where φ0(x), φ1(x), . . . , φn(x) satisfy the constant recurrence relations (2.1).
Associated with the matrix polynomial (4.8), we define

M0 =

[
Im(n−1)

−C0

]
, N0 =

[
Im(n−1)

0

]
, Mn =

[
Cn

Im(n−1)

]
,

and, for k = 1, 2, . . . , n− 1,

Mk =




Im(n−k−1)

−Ck Im
Im 0

Im(k−1)


 , Nk =




Im(n−k−1)

0 Im
Im Ck

Im(k−1)


 .

Then, the Fiedler-comrade pencil Fσ(x) of P (x) is defined as in Definition 2.1.
For future references, in the following theorems we state the analogous results

for Fiedler-comrade pencils to those for Fiedler-Chebyshev pencils in the previous
section. The proofs of these results mimic almost exactly the proofs of Theorems 4.8,
4.9 and 4.10, so we omit them.

Theorem 4.11. Let P (x) be a matrix polynomial as in (4.8) and let Fσ(x)
be a Fiedler-comrade pencil associated with a permutation σ with consecutions and
inversions precisely at c1 − 1, c2 − 1, . . . , cΓ − 1 and ii − 1, i2 − 1, . . . , iΛ − 1, and let
Tσ = Nn:cΓMn · · ·Nn:c2MnNn:c1Mn and Sσ = (MnNn−1 · · ·Ni1)(MnNn−1 · · ·Ni2) · · ·
(MnNn−1 · · ·NiΛ). Then:

(a) The pencil Fσ(x) is a strong linearization of P (x).
(b) Assume that P (x) is singular.

(b1) If M(x) is a right minimal basis of P (x) with minimal indices 0 ≤ ǫ1 ≤
ǫ2 ≤ · · · ≤ ǫp, then

Tσ

[
φn−1(x)Im · · · φ1(x)Im φ0(x)Im

]T
M(x)

is a right minimal basis of Fσ(x) with minimal indices 0 ≤ ǫ1+n−1−Γ ≤
ǫ2 + n− 1− Γ ≤ · · · ≤ ǫp + n− 1− Γ.
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(b2) If N(x)T is a left minimal basis of P (x) with minimal indices 0 ≤ η1 ≤
η2 ≤ · · · ≤ ηp, then

N(x)T
[
φn−1(x)Im · · · φ1(x)Im φ0(x)Im

]
Sσ

is a left minimal basis of Fσ(x) with minimal indices 0 ≤ η1+n−1−Λ ≤
η2 + n− 1− Λ ≤ · · · ≤ ηp + n− 1− Λ.

(c) Assume that P (x) is regular.
(c1) If v is a right eigenvector of P (x) with finite eigenvalue x∗, then

Tσ

[
φn−1(x∗)v

T · · · φ1(x∗)v
T φ0(x∗)v

T
]T

is a right eigenvector of Fσ(x) with finite eigenvalue x∗.
(c2) If wT is a left eigenvector of P (x) with finite eigenvalue x∗, then

[
wTφn−1(x∗) · · · wTφ1(x∗) wTφ0(x∗)

]
Sσ

is a left eigenvector of Fσ(x) with finite eigenvalue x∗.
(c3) If v and wT are, respectively, right and left eigenvectors of P (x) for the

eigenvalue ∞ then
[
vT 01×(n−1)m

]T
and

[
wT 01×(n−1)m

]
are, respec-

tively, right and left eigenvectors of Fσ(x) for the eigenvalue ∞.
In Theorem 4.12 we give the explicit expressions of the block vectors

Tσ

[
φn−1(x)Im · · · φ1(x)Im φ0(x)Im

]T
, (4.9)

and

[
φn−1(x)Im · · · φ1(x)Im φ0(x)Im

]
Sσ, (4.10)

that appear in Theorem 4.11. To this purpose, we define the generalized Horner shift
of order (h, k) associated with the matrix polynomial (4.8) as

Hk,h(x) =

k∑

j=0

Cj+n−kφj+h(x).

Theorem 4.12. Let P (x) be a matrix polynomial as in (4.8), let Fσ(x) be a

Fiedler-comrade pencil of P (x), and let A(x) =
[
A1(x)

T A2(x)
T · · · An(x)

T
]T

and B(x) =
[
B1(x) B2(x) · · · Bn(x)

]
be, respectively, the block vectors in (4.9)

and (4.10). Setting cσ(0 : ℓ) and iσ(0 : ℓ) for the number of consecutions and inver-
sions, respectively, from 0 to ℓ, then the kth block entry of A(x) is given by





φiσ(0:n−2)(x)Im if k = 1,
φiσ(0:n−k−1)(x)Im if 1 < k < n and there is an inversion at n− k, and
Hk−1,iσ(0:n−k−1)(x) if 1 < k < n and there is a consecution at n− k,

and the kth block entry of B(x) is given by





φcσ(0:n−2)(x)Im if k = 1,
φcσ(0:n−k−1)(x)Im if 1 < k < n and there is a consecution at n− k, and
Hk−1,cσ(0:n−k−1)(x) if 1 < k < n and there is an inversion at n− k,

for k = 1, 2, . . . , n.
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Notice that, since φ0(x) = 1, the block vectors A(x) and B(x) in Theorem 4.12
have always one block entry equal to the identity matrix Im: the (n− i1 +1)th entry
if σ has its first inversion at i1 − 1 (or the 1st entry if σ has no inversions) in the
case of A(x), and the (n − c1 + 1)th entry if σ has its first consecution at c1 − 1 (or
the 1st entry if σ has no consecutions) in the case of B(x). This fact allows one to
recover eigenvalues, and minimal indices and bases of P (x) from those of any of its
Fiedler-comrade linearizations.

Theorem 4.13. Let P (x) be a matrix polynomial as in (4.8) and let Fσ(x) be
a Fiedler-comrade pencil associated with a permutation σ with first consecution and
first inverstion precisely at c1 − 1 and i1 − 1, respectively (if σ has no consecutions,
set c1 := n, and if σ has no inversions, set i1 := n).

(a) Assume that P (x) is singular.
(a1) Suppose {z1(x), z2(x), . . . , zp(x)} is any right minimal basis of Fσ(x),

with vectors partitioned into blocks conformable to the blocks of Fσ(x),
and let vj(x) be the (n−i1+1)th block of zj(x), for j = 1, 2, . . . , p. Then
{v1(x), v2(x), . . . , vp(x)} is a right minimal basis of P (x).

(a2) Suppose {y1(x)
T , y2(x)

T , . . . , yp(x)
T } is any left minimal basis of Fσ(x),

with vectors partitioned into blocks conformable to the blocks of Fσ(x),
and let wj(x) be the (n − c1 + 1)th block of yj(x), for j = 1, 2, . . . , p.
Then {w1(x)

T , w2(x)
T , . . . , wp(x)

T } is a left minimal basis of P (x).
(b) Assume that P (x) is regular.

(b1) If z ∈ Cnm×1 is a right eigenvector of Fσ(x) with finite eigenvalue x∗

partitioned into blocks conformable to the blocks of Fσ(x), then the (n−
i1 + 1)th block of z is a right eigenvector of P (x) with finite eigenvalue
x∗.

(b2) If yT ∈ C1×nm is a left eigenvector of Fσ(x) with finite eigenvalue x∗

partitioned into blocks conformable to the blocks of Fσ(x), then the (n−
c1 + 1)th block of yT is a left eigenvector of P (x) with finite eigenvalue
x∗.

As a last example, consider the pentadiagonal Fiedler-comrade linearization

Fσ(x) =




xC5 + αC4 − βC5 αC3 − γC5 −αIm 0 0
−α xIm − βIm 0 −γIm 0

−γC5 αC2 − γC4 xIm − βIm αC1 − γC3 −αIm
0 −αIm 0 xIm − βIm 0
0 0 −γIm αC0 − γC2 xIm − βIm



,

of the matrix polynomial P (x) =
∑5

k=0 Ckφk(x). Then, its right and left eigenvectors
with eigenvalue x∗ are, respectively, of the form




φ2(x∗)v
φ1(x∗)v
(C5φ3(x∗) + C4φ2(x∗) + C3φ1(x∗))v
φ0(x∗)v
(C5φ4(x∗) + C4φ3(x∗) + C3φ2(x∗) + C2φ1(x∗) + C1φ0(x∗))v
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and







φ2(x∗)w(
CT

5 φ3(x∗) + CT
4 φ2(x∗)

)
w

φ1(x∗)w(
CT

5 φ4(x∗) + CT
4 φ3(x∗) + CT

3 φ2(x∗) + CT
2 φ1(x∗)

)
w

φ0(x∗)w







T

,

where v and wT are, respectively, right and left eigenvectors of P (x) with eigenvalue
x∗.

5. Future outlook. We see the present paper as a first step towards the un-
derstanding of Fiedler pencils for a class of nonmonomial bases. Fiedler pencils and
their generalizations, such as generalized Fiedler pencils [2] or Fiedler pencils with
repetitions [30], have been studied in the monomial basis for many years since their
invention (for the monic case) by Fiedler [13]. Applications include, to name but a
few, rootfinding [11], polynomial eigenvalue problems [18], and the design of struc-
tured linearizations [4]. We hope that Fiedler pencils in the Chebyshev and related
bases, here introduced, will lead to a similarly fruitful research line in the next future.
We believe that there is the potential for this to happen, as some of the nonmonomial
bases considered here (namely, the Chebyshev basis of the first and second kind) are
very relevant in several applications.

For instance, we display here, focusing for definiteness on degree n = 5, a block-
symmetric linearization for the matrix polynomial P (x) =

∑5
j=0 Cjφj(x) expanded in

an orthogonal basis with constant recurrence relations (as, for example, the Chebyshev
polynomials of the second kind). We have constructed it as a “Fiedler-comrade pencil
with repetitions”, in the same spirit of [4]; an analogous example (for n = 7) was
shown in the Introduction.

xN1N3M5 − αN0N2N4 − βN1N3M5 − γM5N3N1N4N2N0N1N3M5 =



(x−β)C5+αC4 −αIm −γC5 0 0
−αIm 0 (x−β)Im 0 −γIm
−γC5 (x−β)Im (x−β)C3+αC2−γC4 −αIm −γC3

0 0 −αIm 0 (x−β)Im
0 −γIm −γC3 (x−β)Im (x−β)C1+αC0−γC2


 .

We think that a systematic study of generalized Fiedler-Chebyshev pencils is an in-
teresting potential future research line.
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